
:.

• ~·
.

--------------------- TTTTTTTTTTT
--------------------- TTTTTTTTTTT
------------------------- TTT --------
------------------------- TTT --------
~--------'---------------- TTT -------­
..:.·-------.... --------------- TTT -------­
~•.,..-----.,...,---------------- TTT --------
...;.;..._ ,....,.. _ _.4'"".'-'·--...;.;....;...;...________ TTT ------
-?~---:-.;_;;:_ __ ;,;;._______________ TTT ------

I I I I I I I
I I I I I I I

I I I
I I I
I II
I I I
II I · ·

IIIIIII ..
IIIIIll

PPPPPPPPP
pppppppppp
PPPP PPP
PPPP PPP
PPPPPPPPPP
PPPPPPPPP
PPP

· PPP
-PPP

~"!'----.,..-"'"'._,.. ... ___________ 333333333333333 _.;;. ___ _,_... 000000
·· 1._,._ • .;;;;_.;;._;....:.._...;._______ 33333333333333 . _.;... ___ ..:.:.:.;~:- nooooooooo

:.~·.,.:·} .•. ~ ~. __ - _ ,.--.·.·:· _·:.:_-.· · -_-_ .. :."·.*·.~~-.·, .. •.:-._;--_· · _- -_-___ - -_-_-_-_ -_ 3 3 3 3 3 3 3 3 3 3 3 3 3. · _.:.. _ - - -""'·· · .. oop,o o o o o o o o o
- _ 3333333: ' _____ ..:_ -"':~tfooo:·o 00000
~ -"'.'_.,..,.. ;;; __________ ,,.1,...__ 3 3 3 3 3 3 3 .··:_.:_ __ .,.. ' . oii!O~ooo 0 0 0 0 0 0
.,..•--:e: _.~~~.,..--"'"------·~';._;... 3333333 =--::-:-'.""'--~-. ()~pooo 000000
--T---::->--::;_-~~-----------'- 333333333 '.------.- - 0'&-00-00 000000
-~- ___ ,. __________ ...;.o 333333333333 _____ ...;. . 00.-0000 .. 000000
..:..t---'-----·----------- 3333j333' --- 0006-00 000000 _:'" ____ ..., _______________ ..,._______ 3333333 000000 000000

--~--------~-------------;..._____ 3333~33 000000 000000

:::::::::::::::::::: ~~~33333~~~~~~~ 3
----- ogggg~oooogggggo

-~------------------- 3333333333333 --------- 00000000000
----------------------- 333333333 ------------ 00000000

TIP/30 REFERENCE MANUAL

VERSION 2.5 (82/08/01)

ARP-600

A Product of:

Allinaon-Ross Corporation
First Rexdale Place,
155 Rexdale Boulevard, Suite 906
REXDALE, Ontario
Canada M9W SZ8
TEL: (416} 746-3388
TWX: (610) 491-1772

** **
** A L L I I I I I N N ssss 000 N N **
** A A L L I NN N s 0 0 NN N **
** AAAAA L L I N N N SSS 0 0 N N N ===== **
** A A L L I N NN s 0 0 N NN **
** A A LLLLL LLLLL I I I I I N N ssss 000 N N **
** **
** RRRR 000 ssss ssss CCC 000 RRRR PPPP **
** R R 0 0 s s c 0 0 R R p p **
** RRRR 0 0 SSS SSS c 0 0 RRRR PPPP **
** R R 0 0 s s c 0 0 R R p **
** R R 000 ssss ssss CCC 000 R R p **
** **
** CCC 000 pp pp y y RRRR II I I I GGG H H TTTTT **
** c 0 0 p p y y R R I G G H H T **
** c 0 0 PPPP y RRRR I G HHHHH T **
** c 0 0 p y R R I G GG H H T **
** CCC 000 p y R R I I I I I GGGG H H T **
** **

** (C) 1975,1976,1977,1978,1979,1980,l981,1982
** Allinson-Ross Corporation reserves the right to modify or revise
** the content of this document. Except where a Software Usage
** Agreement has been executed, no contractual obligation between
** Allinson-Ross Corporation and the recipient is either expressed
** or implied. It is agreed and understood that the information con­
** tained herein is proprietary and confidential and that the recip­
** ient shall take all necessary precautions to ensure the conf iden­
** tiality thereof. This document, in whole or in part, may not be
** copied or transmitted, in any form or by any means, electronic,
** mechanical, photocopying, or otherwise, without the prior written
** permission of:
** Allinson-Ross Corporation,
**. 155 Rexdale Blvd, Suite 906,
** Rexdale, Ontario,
** Canada M9W 5Z8
** Tel: (416) 746-3388
**

**
**
**
**
**
'**
**
**
**
**
**
**
**
**
**
**
**
**
** **

**
**

THIS DOCUMENT WAS PRODUCED USING THE
ALLINSON-ROSS CORPORATION DOCUMENT GENERATOR.

**
**

~ •

~

~•;

•

CHAPTER I - INTRODUCTION

1. CHAPTER I - INTRODUCTION

1.1 PREFACE

This document is the reference manual for TIP/30 (Transaction
Interface Processor), a software product developed by Allinson-Ross
Corporation.

The names TIP and TIP/30 are used interchangeably in this
manual.

Please direct any inquiries or requests for further information
to:

Allinson-Ross Corporation
First Rexdale Place
155 Rexdale Blvd., Suite 906
Rexdale, Ontario
Canada M9W 5Z8
Tel. (416) 746-3388
TWX. (610) 491-1772

CHAPTER I - INTRODUCTION
PREFACE

Page:
Section:

1
1.1

HOW TO USE

1.2

HOW TO USE THIS REFERENCE MANUAL

HOW TO USE THIS REFERENCE MANUAL HOW TO USE

The TIP/30 reference manual is organized into volumes, chapters,
sections, and sub-sections.

The division into volumes is purely a matter of convenience for
physical handling and distribution.

The manual is a hierarchy of information. The information in the
manual is presented in a "top down" fashion. By this we mean that
the most general information is presented first, proceeding on to
more specific information at a later point in the documentation.

The page numbers at the bottom of each page are relative to each
individual sub-section.

Each sub-section is terminated by a sentinal such as: -+*+-

Following is a brief description of the contents of the chapters
in the reference manual.

Page:
Section:

1
1.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

, 9

-

HOW TO USE
HOW TO USE THIS REFERENCE MANUAL

Chapter I

Chapter II

Chap~er III

Chapter IV

Chapter V

Chapter VI

Chapter VI I

Chapter VIII

Chapter IX

Chapter X

An overview of TIP/30 and the design philosophy of
the product.

This section on how to effectively use the manual.

A generalized table of contents.

A glossary of terms used in the manual.

A presentation of some of the fundamental concepts
necessary to understand the use of TIP/30.

The detailed documentation for all supplied
on-line utility programs.

Documentation for the Allinson-Ross Application
generator utility (Tip Query Language).

The program control system (how to create TIP
native mode programs}.

The file control system (interface with user data
files).

The message control system (terminal interface).

System Maintenance information. (The care and
feeding of TIP/30).

Appendices.

Key Word In Context (KWIC) index.

A KWIC index is produced by indexing every
non-trivial word in title information. Users are
then able to find appropriate information even if
they only remember one conceptual key word.

Although the KWIC index is admittedly voluminous
it is invaluable.

CHAPTER I - INTRODUCTION Page: 2
1.2 HOW TO USE THIS REFERENCE MANUAL Section:

HOW TO USE
HOW TO USE THIS REFERENCE MANUAL

This is a reference manual for the product TIP/30. It is not
intended as a tutorial introduction to (on-line) data processing.
There is no substitute for a proper grasp of the fundamentals of
data processing terms and ideas.

Readers of this manual are assumed to have a reasonable
understanding of general data processing principles. Descriptions
of how terminals work, how the operating system works and the like
are far beyond the scope and intent of this manual. The reader is
urged to consult the appropriate publications from the manufacturer
of the hardware for this type of information.

It is recommended that ALL users read Chapters I and II
thoroughly before attempting to use the features of TIP/30.

Programmers (or users) who will need to know how to run (some
of) the supplied utilities will find Chapter III indispensible as a
reference.

Chapter IV (Applications development systems) describes an
on-line query language. We strongly recommend (as a matter of
fundamental philosophy) that the Data Processing personnel use this
(tool!) as a convenient means to generate applications. Very few
user department personnel will have the capability of making
effective use of this product without extensive training AND
support from the Data Processing Department.

Programmers must read and understand much of Chapters V through
VII before attempting to create new TIP/30 programs of their own.

Chapter VIII (System maintenance) is of primary interest to
those individuals who are responsible for the ongoing maintenance
and support of TIP/30 at the site. The system programmer must have
a thorough knowledge of this chapter to be able to understand fully
the ramifications of any changes he may envision for the TIP/30
system at the site.

Chapter
(including
who must
system.

VIII also contains all the necessary documentation
console messages and commands) for the machine operator
run TIP/30 and be aware of the status of the on-line

Chapter IX contains appendices which provide supplementary
documentation for various topics.

Chapter X is the Key Word In Context (KWIC) index. This index
may be consulted to find information when the user is unsure of its
location in the manual.

Page:
Section:

3
1.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

STRUCTURE
REFERENCE MANUAL STRUCTURE

1.3 REFERENCE MANUAL STRUCTURE STRUCTURE

--
TIP/30 REFERENCE MANUAL STRUCTURE

--
VOLUME I.

CHAPTER

CHAPTER

I: INTRODUCTION

- Preface
- How to use this document
- Structure of this document
- Table of Contents
- Glossary of terms and concepts
- Introduction to TIP/30 (overview)

II: FUNDAMENTAL CONCEPTS

- User identification and Password
- Logon and Logof f procedures
- Command line I options I parameters
- System Security I Catalogue

CHAPTER I - INTRODUCTION
REFERENCE MANUAL STRUCTURE

Page:
Section:

1
1.3

- --------------------------------

STRUCTURE
REFERENCE MANUAL STRUCTURE

CHAPTER III: EXECUTING TIP/30 UTILITY PROGRAMS

Page:
Section:

2
1.3

- Alphabetically ordered documentation of
transactions supplied by Allinson-Ross
that may be executed at a terminal.

- ACCESS
- AFT
- APB
- ASG

- BASIC
- BCP

- CAT
- cc
- CCA
- CPAGE
- CRASH

CREATE

- DD, DOU
- DEBUG
- DEFKEY
- DIE

DLL
- DOC

- EOJ

- FCLOSE
- FIN
- FOPEN
- FREE

- HELP

- IDA

- JBQ
- JCL

- LOGOFF
- LOGON

- MAIL
- MEM
- MODE
- MSG

Assign a dynamic file
Active Fi le Table
A 11 Points Bullet in
Assign a dynamic file

BASIC language interpreter
Batch terminal Control Program

TIP/30 Catalogue Manager ·
COBOL Converter (Reformatter)
!CAM Statistics Display
Change UTS400 control page
Terminate TIP/30 with a dump
Create dynamic file

Dynamic file display
Set file in debug mode
Define function keys
Abort TIP/30 transaction
Down Line Load Utility
Document Processor

TIP/30 normal end of job

Physically Close OS/3 file
Logof f
Physically Open OS/3 file
terminate Access to a file

display HELP informatfon

interactive debug aid

display OS/3 job queue
interactive JCL submittor

Log off TIP/30
Log on TIP/30

interactive Mail
display OS/3 memory usage
set terminal mode
send a message to terminal

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

STRUCTURE
REFERENCE MANUAL STRUCTURE

- MSGAR
- MSGDEF
- MSGSHOW

- NEWUSER
- NOTE

- ODD

- PMDA

- QED

- RELOAD
- RPG
- RV

- SCRATCH
- SET
- SPL
- STATUS
- STOP
- SYM
- SYS

- TCB
- TIPFLG
- TLIB

message (screen format) archiver
message definition
message test

logof f and logon in one step
display note on terminal

Online Data Display

Post Mortem Dump Analysis

TIP/30 text editor

refresh load module from library
editor for RPG source programs
run an OS/3 batch job

scratch dynamic file
set terminal characteristics
spool file processor
TIP/30 statistics
immediate TIP/30 eoj
OS/3 symbiont submitter
OS/3 system status

OS/3 task control block display
Set TIP/30 f lag(s)
TIP/30 Librarian

- UTSASM UTS400 assembly language processor

- VTOC online disc VTOC

- WHOSON display users of TIP/30 system
WMI display user logged on

CHAPTER IV: APPLICATIONS DEVELOPMENT SYSTEMS

CHAPTER I - INTRODUCTION
REFERENCE MANUAL STRUCTURE

- TIP QUERY LANGUAGE (TQL)

Page:
Section:

3
1. 3

STRUCTURE

VOLUME II.

CHAPTER

CHAPTER

Page:
Section:

REFERENCE MANUAL STRUCTURE

V: PROGRAM CONTROL SYSTEM

- structure of on-line programs
- linkage section areas
- TIPABRT establish island code linkage
- TIPBITS convert 32 bytes to fullword
- TIPBYTES convert fullword to 32 bytes
- TIPDATE get date including day of week
- TIPDUMP force deliberate program check
- TIPFCER expanded FCS error code
- TIPFLAG flag services
- TIPFORK start asynchronous process
- TIPRTN return to caller
- TIPSNAP storage dump for selected areas
- TIPSUB 'perform' other program
- TIPSUBP 'perform' resident subprogram
- TIPTIMER timer services
- TIPXCTL transfer control to program (GO)

VI: FILE CONTROL SYSTEM

4
1.3

- TIPFCS and the TIP/30 catalogue
- Record and file locking
- Summary of FCS calls
- File types supported
- Common FCS parameters
- FCS interface packets

- INDEXED FILES (ISAM IRAM MIRAM)
- DIRECT ACCESS FILES (DAM)
- SEQUENTIAL FILES (SAM)
- DYNAMIC FILES (DYN)
- TIPPRINT
- FCS copy elements
- LIBRARY FILES
- EDIT FILES
- DATA BASE INTERFACE
- TIP/30 JOURNAL FILE
- batch access to journal file

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

REFERENCE MANUAL STRUCTURE STRUCTURE

CHAPTER VII: MESSAGE CONTROL SYSTEM

- Screen format generator
- Line oriented I/0 (PROMPT, ROLL etc)
- Direct Control I/0 (TIPTERM)

CHAPTER VIII: SYSTEM MAINTENANCE

- TIP/30 file requirements
- TIP/30 Generation
- execution job control and options
- File recovery
- Batch Jobs [job control information]
- TIP/30 Operation and Error messages

CHAPTER IX: APPENDICES
- Directory of COBOL copy elements
- BASIC Language syntax

CHAPTER X: KEY WORD IN CONTEXT (KWIC) INDEX

CHAPTER I - INTRODUCTION
REFERENCE MANUAL STRUCTURE

Page:
Section:

5
1.3

e

TABLE OF CONTENTS

1.4 TABLE OF CONTENTS

- 1 -

CHAPTER I - INTRODUCTION
PREFACE

1.
1.1
1.2
1.3
1.4
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9

HOW TO USE THIS REFERENCE MANUAL
REFERENCE MANUAL STRUCTURE
TABLE OF CONTENTS
TIP/30 GLOSSARY OF TERMS AND CONCEPTS
TIP/30 OVERVIEW

MESSAGE CONTROL SYSTEM
FILE CONTROL SYSTEM
SECURITY
INTERACTIVE UTILITIES
PROGRAM PREPARATION
DISPLAY FORMAT PREPARATION
PROGRAM TESTING AND DEBUGGING
DOCUMENT PREPARATION
UTILITIES

- 2 -

2. CHAPTER II - FUNDAMENTAL CONCEPTS
2.1 USER IDENTIFICATION AND PASSWORDS
2.2 LOGON AND LOGOFF PROCEDURES
2.3 TIP/30 COMMAND LINE
2.4 TIP/30 SYSTEM SECURITY

- 3 -

CHAPTER III - ON-LINE UTILITY PROGRAMS
ACCESS A FILE

3.
3.1
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9

DISPLAY ACTIVE FILE TABLE
ALL POINTS BULLETIN
ASSIGN A FILE
TIP/30 BASIC INTERPRETER - COMPILER

TERMINATE MONITOR
COMPILE BASIC PROGRAM
COMPILE BASIC PROGRAM WITH LISTING
DELETE BASIC OBJECT FILE
TERMINATE THE BASIC MONITOR
DISPLAY BASIC PROGRAM HELP INFORMATION.
LIST BASIC PROGRAM ON TERMINAL
LIST BASIC PROGRAMS IN TIP CATALOGUE
CHANGE SCREEN ROLL MODE

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

TOC

HOW TO USE
STRUCTURE
TOC
GLOSSARY
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW

CONCEPTS
USER ID
LOGON/LOGOFF
COMMAND LINE
SECURITY

UTILITIES
ACCESS
AFT
APB
ASG
BASIC
BASIC: bye
BASIC: compile
BASIC: cp
BASIC: delete
BASIC: end
BASIC: help
BASIC: list
BASIC: le
BASIC: mode

TDC

Page: 1
Section: Contents

TDC

3.5.10 EDIT A NEW BASIC PROGRAM
3.5.11 EDIT EXISTING BASIC PROGRAM
3.5.12 PRINT BASIC PROGRAM LISTING
3.5.13 TERMINATE BASIC MONITOR
3.5.14 RUN A BASIC PROGRAM
3.5.15 DIRECT EXECUTION OF BASIC PROGRAMS
3.5.16 SAVE A PROGRAM IN A LIBRARY
3.6 BATCH TERMINAL COMMAND PROCESSOR
3.6.1 SUMMARY OF BCP COMMANDS
3.6.2 BCP KEYWORD SHORTFORMS
3.6.3 BCP COMMAND LANGUAGE
3.6.4 BCP STATUS MESSAGES
3.6.5 USER PROGRAM EXECUTION
3.6.6 DELETING PRINT FILE
3.6.7 TERMINATING BCP
3.6.8 BACKGROUND PROGRAMS
3.6.9 CREATE INPUT READER SPOOL
3.6.10 USER LOG-ON PROCEDURE
3.6.11 MODES OF OPERATION
3.6.12 SEND COMPUTER OPERATOR A MESSAGE
3.6.13 TRANSMIT PRINT FILE
3.6.14 TRANSMIT PUNCH FILE
3.6.15 DISPLAYING PRINT FILE QUEUE
3.6.16 SEND DATA FILE TO HOST
3.6.17 RUN BATCH JOB
3.6.18 SEND DATA FILE TO TERMINAL
3.6.19 SUBMIT REMOTE BATCH JOB
3.6.20 USING BCP INTERACTIVELY
3.6.21 ICAM GENERATION CONSIDERATIONS
3.6.22 SAMPLE ICAM
3.7 TIP/30 CATALOGUE MANAGEMENT
3.7.1 ON-LINE CATALOGUE MANAGER
3.7.2 SECURITY LEVEL SPECIFICATION
3.7.3 DEFINITION OF CATALOGUE GROUPS
3.7.4 CATALOGUING A USER-ID
3.7.5 CATALOGUING A TRANSACTION
3.7.6 CATALOGUING A FILE
3.7.7 CATALOGUE HINTS FOR TESTING PROGRAMS
3.7.8 UPDATING CATALOGUE RECORDS
3.7.9 CATALOGUE STATEMENT CONTINUATION
3.7.10 LISTING CATALOGUE ENTRIES
3.8 COBOL REFORMATTER (CONVERSION AID)
3.8.1 COMMUNICATIONS CONTROL AREA DISPLAY
3.9 SET U400 CONTROL PAGE
3.10 ABNORMAL TIP/30 SHUTDOWN
3.11 CREATE A DYNAMIC FILE
3.12 ON-LINE DISK DISPLAY AND UPDATE
3.12.1 INTERACTION WITH DD & DDU
3.12.2 SPECIFYING A RECORD TO BE DISPLAYED
3.12.3 SPECIFYING A RECORD OF AN INDEXED FILE

Page: 2
Section: Contents

TABLE OF CONTENTS

BASIC: new
BASIC: old
BASIC: print
BASIC: quit
BASIC: run
BASIC: run
BASIC: save
BCP
BCP
BCP
BCP
BCP: ack/nak
BCP: call
BCP: delete
BCP: fin
BCP: fork
BCP: in
BCP: logon
BCP: mode
BCP: msg
BCP: print
BCP: punch
BCP: queue
BCP: receive
BCP: run
BCP: send
BCP: submit
BCP
BCP: icam
BCP: icam
CAT
CAT
CAT: security
CAT: security
CAT: user
CAT: prog
CAT: file
CAT
CAT
CAT
CAT: list
cc
CCA
CPAGE
CRASH
CREATE
DD, DDU
DD, DDU
DD, DDU
DD, DDU

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TABLE OF CONTENTS

3.12.4 SPECIFYING A RECORD OF A NON-INDEXED FILE
3.12.5 SPECIFYING DISPLAY MODES
3.12.6 PAGING THROUGH THE CURRENT RECORD
3.12.7 TERMINATING DD & DDU
3.12.8 UPDATING THE RECORD CURRENTLY DISPLAYED
3.12.9 UPDATING A CHARACTER DISPLAY
3.12.10 UPDATING A HEX DISPLAY
3.12.11 UPDATING A MIXED DISPLAY
3.12.12 RECORD PROTECTION
3.12.13 FUNCTION KEY USAGE
3.12.14 POTENTIAL PROBLEMS
3.13 SET FILE IN TEST MODE
3.14 DEFINE FUNCTION KEYS
3.15 ABORT A PROGRAM
3.16 DOWN LINE LOAD UTILITY
3.17 UTS-400 MESSAGE CONTROL SYSTEM
3.18 DOCUMENT GENERATOR
3.18.1 ONLINE DOCUMENT GENERATOR
3.18.2 ADDITIONAL CONSIDERATIONS
3.18.3 SUMMARY OF IMBEDDED COMMANDS
3.18.4 PHYSICAL FORM FEED
3.18.5 START MARGIN FLAGGING
3.18.6 SAVE PARAGRAPH NUMBER
3.18.7 STOP MARGIN FLAGGING
3.18.8 CHANGE COMMAND DELIMITER
3.18.9 SWITCH INPUT TO FILE/ELEMENT
3.18.10 START/STOP UNDERLINING
3.18.11 RECALL PARAGRAPH NUMBER
3.18.12 GENERATE LITERAL AT-SIGN
3.18.13 CALLING MACROS
3.18.14 SPACE TO ABSOLUTE COLUMN
3.18.15 GENERATE DOCUMENT INDEX
3.18.16 END OF LINE {QUAD CENTRE)
3.18.17 EJECT TO NEW PAGE
3.18.18 FLUSH LINE
3.18.19 SET PAGE LENGTH
3.18.20 HORIZONTAL SPACE
3.18.21 SET INDENTATION {LEFT)
3.18.22 JUSTIFY MODE
3.18.23 INCREMENT AND CALL MACRO
3.18.24 END OF LINE {QUAD LEFT)
3.18.25 NOTATION {HANGING INDENT)
3.18.26 START ODD OR EVEN PAGE
3.18.27 RETRIEVE CURRENT PAGE NUMBER
3.18.28 DEFINING MACRO CONTENTS
3.18.29 END OF LINE {QUAD RIGHT)
3.18.30 SET LINE SPACING
3.18.31 UNJUSTIFIED MODE
3.18.32 SAVE COMPOSITION STATUS
3.18.33 RESTORE COMPOSITION STATUS

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

DD, DDU
DD, DOU
DD, DOU
DD, DOU
DD, DOU
DD, DDU
DD, DDU
DD, DDU
DD, DDU
DD, DDU
DD, DOU
DEBUG
DEFKEY
DIE
DLL
MCS400
DOC
DOC: online
DOC
DOC
DOC: @.
DOC: @(
DOC : @ ! n ; @] n
DOC: @)
DOC: @-c
DOC: @%f ile/elt
DOC: @_
DOC: @?n
DOC: @@
DOC: @nn
DOC: @Ann
DOC: @B
DOC: @Cnn
DOC: @Enn,mm
DOC: @Fe
DOC: @Gnn
DOC: @Hnn
DOC: @Inn
DOC: @J
DOC: @Knn
DOC: @Lnn
DOC: @Nnn
DOC: @0
DOC: @P
DOC: @Qnn •.. "
DOC: @Rnn
DOC: @Snn
DOC: @T
DOC: @U
DOC: @V

TOC

Page: 3
Section: Contents

TDC

3.18.34 SET LINE WIDTH
3.18.35 INCREMENT PARAGRAPH NUMBER
3.18.36 LOG LINE IN TABLE OF CONTENTS
3.18.37 SEQUENTIAL TABLE OF CONTENTS
3.18.38 EXAMPLE OF MACRO USE AND DEFINITION
3.18.39 PREDEFINED MACROS 0-39
3.18.40 LIBRARY ERRORS
3.19 NORMAL TIP/30 SHUTDOWN
3.20 PHYSICALLY CLOSE ON-LINE FILE
3.21 LOGOFF TIP/30
3.22 PHYSICALLY OPEN ON-LINE FILE
3.23 DEACCESS A FILE
3.24 DISPLAY USER HELP INFORMATION
3.25 INTERACTIVE DEBUG AID
3.25.1 IDA COMMANDS
3 . 2 5 . 2 I DA. COMMAND EXAMPLES
3.26 DISPLAY OS/3 JOB QUEUE INFORMATION
3.26.1 DISPLAY ALL OS/3 JOB QUEUES
3.26.2 END INTERACTION WITH JBQ PROGRAM
3.26.3 DISPLAY HELP INFORMATION ON TERMINAL
3.26.4 DISPLAY HIGH PRIORITY JOB QUEUE
3.26.5 LIST JOB STEP INFORMATION
3.26.6 DISPLAY NORMAL PRIORITY JOB QUEUE
3.26.7 DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE
3.26.8 END INTERACTION WITH JBQ
3.27 INTERACTIVE JOB CONTROL SUBMITTOR
3.28 LOG OFF TIP/30
3.29 LOG ON TIP/30 SYSTEM
3.30 TIP MAIL SYSTEM
3.31 OS/3 MEMORY DISPLAY
3.32 SPECIFY MODE OF OPERATION
3.33 SENDING A MESSAGE
3.34 MESSAGE ARCHIVER (LIBRARIAN)
3.34.1 CURSOR RESTING LOCATION
3.34.2 DELETE SCREEN FORMAT
3.34.3 DIRECTORY OF SCREEN FORMATS
3.34.4 END MESSAGE ARCHIVER
3.34.5 HELP INFORMATION
3.34.6 LIST SCREEN FORMAT INFORMATION
3.34.7 PRINT SCREEN FORMAT
3.34.8 QUIT MSGAR PROGRAM
3.34.9 RENAME SCREEN FORMAT
3.34.10 RESTORE SCREEN FORMAT
3.34.11 SAVE SCREEN FORMAT
3.34.12 WRITE SCREEN FORMAT NAMES
3.35 MESSAGE DEFINITION
3.35.1 MESSAGE DEFINITION
3.36 MESSAGE TESTING
3.37 SPECIFY CHANGE IN USERID AT TERMINAL
3.38 INFORMATIONAL MESSAGE

Page: 4
Section: Contents

TABLE OF CONTENTS

DOC: @Wnn
DOC: @Xn
DOC: @Y
DOC: @Z
DOC
DOC: @0-@39
DOC
EOJ
FCLOSE
FIN
FOP EN
FREE
HELP
IDA
IDA: commands
IDA: exmaples
JBQ
JBQ: all
JBQ: end
JBQ: help
JBQ: high
JBQ: list
JBQ: normal
JBQ: pre-emptive
JBQ: quit
JCL
LOGO FF
LOGON
MAIL
MEM
MODE
MSG
MS GAR
MSGAR: cursor
MSGAR: delete
MSGAR: directory
MSGAR: end
MSGAR: help
MSGAR: list
MSGAR: print
MSGAR: quit
MSGAR: rename
MSGAR: restore
MSGAR: save
MSGAR: write
MSGDEF
Negative Fields
MSGSHOW/MSGTST
NEWUSER
NOTE

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TABLE OF CONTENTS

3.39 ON-LINE DATA DISPLAY
3.39.1 ON-LINE DATA DISPLAY
3.39.2 ON-LINE DATA DISPLAY
3.39.3 ON-LINE DATA DISPLAY
3.39.4 ON-LINE DATA DISPLAY
3.39.5 ON-LINE DATA DISPLAY
3.39.6 ON-LINE DATA DISPLAY
3.39.7 ON-LINE DATA DISPLAY
3.39.8 ON-LINE DATA DISPLAY
3.39.9 ON-LINE DATA DISPLAY
3.39.10 ON-LINE DATA DISPLAY
3.39.11 ON-LINE DATA DISPLAY
3.39.12 ODD COMMAND LINE FORMAT
3.39.13 ODD FUNCTION KEYS
3.39.14 PROGRAM LIMITATIONS
3.39.15 ODD - PITFALLS TO AVOID
3.40 POST MORTEM DUMP ANALYSIS
3.40.1 DISPLAY MEMORY CONTENTS
3.40.2 END PMDA PROGRAM
3.40.3 PRINT HARD COPY DUMP
3.40.4 END PMDA AND SCRATCH DUMP FILE
3.41 TIP/30 TEXT EDITOR
3.41.1 GETTING STARTED
3.41.2 QED CONTROL CHARACTER, DOUBLE QUOTE
3.41.3 ERROR MESSAGES
3.41.4 LINE LENGTH
3.41.5 ADDING TEXT; THE ADD COMMAND
3.41.6 DISPLAYING LINES; THE PRINT COMMAND
3.41.7 THE CURRENT LINE
3.41.8 DELETING LINES
3.41.9 MODIFYING TEXT; THE SUBSTITUTE COMMAND
3.41.10 CONTEXT SEARCHING
3.41.11 REPEATED SEARCHING FOR THE SAME STRING
3.41.12 CHANGE AND INSERT
3.41.13 MOVING BLOCKS OF TEXT; MOVE
3.41.14 COPYING BLOCKS OF TEXT; COPY
3.41.15 GLOBAL COMMANDS
3.41.16 RE-DIRECTED QED INPUT
3.41.17 READING TEXT FROM A FILE
3.41.18 WRITING AN EDIT BUFFER TO A FILE/ELEMENT
3.41.19 END OF EDIT SESSION: QUIT I END
3.41.20 VERSION NUMBERS
3.41.21 SUPPLEMENTARY QED REFERENCE
3.41.22 MATCHING AT THE BEGINNING OF A LINE
3.41.23 MATCHING AT THE END OF A LINE
3.41.24 MATCHING ANY LETTER
3.41.25 MATCHING ANY DIGIT
3.41.26 DISPLAYING A COLUMN SCALE
3.41.27 SAVE THE CURRENT LINE NUMBER
3.41.28 RECALL SAVED LINE NUMBER

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

ODD
Command Format
ODD: add
ODD: close
ODD: count
ODD: delete
ODD: display
ODD: list
ODD: next
ODD: print
ODD: show
ODD: update
ODD
ODD
ODD
ODD
PMDA
PMDA: display
PMDA: end
PMDA: print
PMDA: quit
QED
QED: intro
QED: "
QED: errors
QED
QED: a
QED: p
QED: dot
QED: d
QED: s
QED
QED
QED: c
QED: m
QED: k
QED: g
QED: "<
QED: r
QED: w
QED: q, e
QED: v
QED
QED: t

QED: $
QED: %
QED: #
QED: 0#
QED: >n
QED: <n

TDC

Page: 5
Section: Contents

TDC

3.41.29 OI MODE REPETITION
3.41.30 MATCHING ANY CHARACTER
3.41.31 WHAT WAS JUST MATCHED
3.41.32 REGULAR EXPRESSION CONSIDERATIONS
3.41.33 SUMMARY OF COMMANDS AND LINE NUMBERS
3.41.34 COMMAND and FUNCTION SUMMARY
3.41.35 LINE NUMBERS
3.41.36 EXERCISE 1: APPEND, QUIT, WRITE
3.41.37 EXERCISE 2: APPEND, PRINT
3.41.38 EXERCISE 3: READ, PRINT, APPEND
3.41.39 EXERCISE 4: ADD, READ, PRINT, WRITE
3.41.40 EXERCISE 5: SUBSTITUTE
3.41.41 EXERCISE 6: CONTEXT SEARCHING
3.41.42 EXERCISE 7: CHANGE
3.42 RELOAD PROGRAM
3.43 RPG EDITOR
3.43.1 ENTERING RPG
3.44 ERROR MESSAGES
3.44.1 DELETE
3.44.2 ADD A RECORD
3.44.3 UPDATE RECORDS
3.44.4 LIST LINES
3.44.5 GETTING OUT OF RPG
3.45 CURRENT LINE
3.45.1 LAST LINE
3.45.2 LINE NUMBER OF CURRENT LINE
3.45.3 WRITING TEXT TO FILE
3.46 START OS/3 BATCH JOB
3.47 SCRATCH A DYNAMIC FILE
3.48 SET ATTRIBUTES FOR PROCESS
3.49 SPOOL FILE ENQUIRY
3.49.1 SPL SECURITY CONSIDERATIONS
3.49.2 SPL KEYWORDS
3.49.3 SPL PROGRAM OPERATION
3.49.4 SPL FUNCTION KEY USE
3.49.5 DELETE SPOOL SUB-FILE
3.49.6 END SPL PROGRAM
3.49.7 DISPLAY SPL PROGRAM HELP
3.49.8 LIST SPOOL FILE ON TERMINAL
3.49.9 LIST (SPACE SUPPRESSED) SPOOL FILE
3.49.10 LIST (TRUNCATED) SPOOL FILE
3.49.11 PRINT SPOOL FILE
3.49.12 PRINT SPOOL FILE WITH TEST PAGE
3.49.13 END SPL PROGRAM AND LOGOFF
3.49.14 RELEASE SPOOL FILE
3 .. 49 .15 SUMMARIZE SPOOL QUEUE CONTENTS
3.49.16 WRITE SPOOL FILE TO EDIT BUFFER
3.49.17 WRITE SPOOL FILE TO FILE/ELEMENT
3.50 DISPLAY TIP/30 STATISTICS
3.50.1 FILE BUFFER USAGE

Page: 6
Section: Contents

TABLE OF CONTENTS

QED: *
QED: .
QED: &
QED
QED
QED: summary
QED
QED: Exercise 1
QED: Exercise 2
QED: Exercise 3
QED: Exercise 4
QED: Exercise 5
QED: Exercise 6
QED: Exercise 7
RELOAD
RPG

RV
SCRATCH
SET
SPL
SPL: security
SPL: keywords
SPL: operation
SPL: fnkeys
SPL: delete
SPL: end
SPL: help
SPL: list
SPL: ls
SPL: 1 t
SPL: print
SPL: pt
SPL: quit
SPL: release
SPL: summary
SPL: write
SPL: wl
STATUS
STATUS: b

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

TABLE OF CONTENTS

3.50.2 DISK DEVICE USAGE
3.50.3 FAST LOAD INDEX
3.50.4 I/0 SUMMARY
3.50.5 KEY HOLDING TABLE
3.50.6 RE-ENTRANT PROGRAM TABLE
3.50.7 GENERAL STATISTICS
3.50.8 TERMINAL USAGE
3.51 IMMEDIATE TIP/30 SHUTDOWN
3.52 SCHEDULE OS/3 SYMBIONT
3.53 SYSTEM STATUS
3.54 TASK CONTROL BLOCK DISPLAY
3.55 TIP FLAG MANIPULATION
3.56 ON-LINE LIBRARIAN
3.56.1 RE-ACTIVATE PREVIOUS VERSION
3.56.2 COPY ELEMENT
3.56.3 DELETE ELEMENT
3.56.4 END TLIB PROGRAM
3.56.5 DISPLAY HELP INFORMATION
3.56.6 SUBMIT REMOTE BATCH JOB
3.56.7 LIST ELEMENT ON TERMINAL
3.56.8 PRINT HARD COPY LISTING
3.56.9 PUNCH ELEMENT
3.56.10 QUIT TLIB PROGRAM
3.57 ON-LINE 8080 CROSS ASSEMBLER
3.58 DISK VOLUME TABLE OF CONTENTS
3.58.1 DISPLAY FILE INFORMATION
3.58.2 END VTOC PROGRAM
3.58.3 FREE SPACE ON VOLUME
3.58.4 DISPLAY HELP INFORMATION
3.58.5 LIST FILES ON VOLUME
3.58.6 PRINT VTOC
3.58.7 END VTOC PROGRAM AND LOGOFF
3.58.8 SORTED VTOC DISPLAY
3.58.9 LIST VOLUMES
3.58.10 CREATE JCL FOR FILES ON VOLUME
3.59 DISPLAY ACTIVE USERS
3.60 DISPLAY USER INFORMATION

- 4 -

CHAPTER IV - APPLICATIONS DEVELOPMENT SYSTEMS
INTRODUCTION TO TIP/30 QUERY LANGUAGE

4.
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

TQL: QUERY PROGRAM SYNTAX
FILE DEFINITION
RECORD DEFINITION
ALLOWING FIELDS TO CHANGE
RECORD IDENTIFICATION
FIELD VERIFICATION
PREDEFINED FIELDS

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

STATUS: d
STATUS: f
STATUS: l

STATUS: k
STATUS: r
STATUS: s
STATUS: t
STOP
SYM
SYS
TCB
TIPFLG
TLIB
TLIB: back
TLIB: copy
TLIB: delete
TLIB: end
TLIB: help
TLIB: job
TLIB: list
TLIB: print
TLIB: punch
TLIB: quit
UTSASM
VTOC
VTOC: display
VTOC: end
VTOC: free

.VTOC: help
VTOC: list
VTOC: print
VTOC: quit
VTOC: sort
VTOC: volumes
VTOC: write
WHO SON
WMI

TQL
TQL
TQL
TQL: file
TQL: record
TQL
TQL: id
TQL: verify
TQL

TDC

Page: 7
Section: Contents

TDC

4.2.7 WORKING STORAGE
4.2.8 DISPLAY DEFINITION
4.2.9 REPORT DEFINITION
4.2.10 DEFINING A TQL PROGRAM
4.2.11 SAMPLE PROGRAM
4.3 INITIALIZING TQL DICTIONARY
4.4 MAINTAINING TQL DICTIONARY
4.4.1 COMPILE FILE/RECORD
4.4.2 COMPILE PROGRAM
4.4.3 DELETE FILE/RECORD
4.4.4 DELETE PROGRAM
4.4.5 LIST FILE/RECORD
4.4.6 LIST PROGRAM
4.4.7 CREATE SCREEN FORMATS
4.4.8 PRINT FILE/RECORD
4.4.9 PRINT PROGRAM
4.4.10 SUMMARY OF FILE/RECORD
4.4.11 SUMMARY OF PROGRAMS
4.4.12 UPDATE CONTROL FILE HEADER
4.4.13 WRITE FILE/RECORD
4.4.14 WRITE TQL PROGRAM TO LIBRARY
4.5 EXECUTING A TQL PROGRAM
4.5.1 PRODUCE A DISPLAY
4.5.2 COUNT RECORDS
4.5.3 PRINT A REPORT
4.5.4 DISPLAY NEXT SCREENFULL
4.5.5 UPDATE RECORD
4.5.6 DELETE RECORD
4.5.7 ADD RECORD
4.5.8 SHOW SUMMARY OF DISPLAY NAMES
4.5.9 SHOW SUMMARY OF FIELD NAMES
4.5.10 END SESSION
4.5.11 OPEN NEW SESSION
4.5.12 USE OF FUNCTION KEYS
4.6 RESERVED WORDS

- 5 -

CHAPTER V - PROGRAM CONTROL SYSTEM 5.
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.2
5.2.1
5.2.2

PROGRAM CONTROL SYSTEM
ON-LINE PROGRAM STRUCTURE
PROCESS INFORMATION BLOCK
CONTINUITY DATA AREA
MESSAGE CONTROL SYSTEM WORKAREA
WORK AREA
GLOBAL DATA AREA

USER PROGRAM ABORT TRAP
CONVERT 32 BYTES TO 32 BITS
CONVERT 32 BITS TO 32 BYTES

Page: 8
Section: Contents

TABLE OF CONTENTS

TQL: workf ields
TQL: display
TQL: report
TQL: program
TQL: sample
TQLINT
TQLMON
TQLMON: c
TQLMON: cp
TQLMON: d
TQLMON: dp
TQLMON: 1
TQLMON: lp
TQLMON: m
TQLMON: p
TQLMON: pp
TQLMON: s
TQLMON: sp
TQLMON: u
TQLMON: w
TQLMON: wp
TQL: commands
TQL: display
TQL: count
TQL: print
TQL: next
TQL: update
TQL: delete
TQL: add
TQL: show
TQL: show
TQL: end
TQL: open
TQL: function key
TQL: words

PCS
PCS
PCS
PCS: pib
PCS: cda
PCS: mes
PCS: workarea
PCS: gda
TIPABRT
TIPBITS
TIPBYTES

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TABLE OF CONTENTS

TODAY'S DATE
FORCE PROGRAM DUMP
FILE ERROR EDIT
FLAG SERVICES

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

CREATE AN ASYNCHRONOUS PROCESS
END ONLINE PROGRAM
SNAP MEMORY
PROGRAM LINKAGE
SUB-ROUTINE LINKAGE
TIMER SERVICES
TRANSFER CONTROL

- 6 -

6. CHAPTER VI - FILE CONTROL SYSTEM
6.1 FILE CONTROL SYSTEM
6.2 TIPFCS AND THE TIP/30 CATALOGUE
6.3 RECORD AND FILE LOCKING
6.3.1 SIMPLE RECORD HOLDING
6.3.2 RECORD HOLDING. FOR THE TRANSACTION
6.3.3 RECORD HOLDING FOR THE UPDATE
6.3.4 RECORD HOLDING SUMMARY
6.3.5 FCS DEADLOCK CONSIDERATIONS
6.4 SUMMARY OF FCS CALLS
6.5 SUPPORTED FILE TYPES
6.6 CALL TIPFCS - COMMON PARAMETERS
6.7 FILE CONTROL SYSTEM INTERFACE PACKETS
6.7.1 LOGICAL FILE NAME PACKET
6.7.2 FILE DESCRIPTOR PACKET
6.8 'TIPFCS' FOR INDEXED FILES
6.8.1 INDEXED: ADD RECORD TO FILE
6.8.2 INDEXED: ROLL BACK UPDATES
6.8.3 INDEXED: CLOSE FILE
6.8.4 INDEXED: DELETE RECORD
6.8.5 INDEXED: END SEQUENTIAL PROCESSING
6.8.6 INDEXED: FLUSH FILE
6.8.7 INDEXED: READ RECORD
6.8.8 INDEXED: READ RECORD AND LOCK
6.8.9 INDEXED: HOLD RESOURCE
6.8.10 INDEXED: GET NEXT RECORD
6.8.11 INDEXED: CANCEL UPDATE
6.8.12 INDEXED: OPEN FILE
6.8.13 INDEXED: UPDATE RECORD
6.8.14 INDEXED: RELEASE RESOURCE
6.8.15 INDEXED: SET SEQUENTIAL MODE
6.8.16 INDEXED: SET SEQUENTIAL MODE
6.8.17 INDEXED: SET SEQUENTIAL MODE
6.8.18 INDEXED: MARK TRANSACTION END
6.9 'TIPFCS' FOR DIRECT ACCESS FILES

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

TIPDATE
TIPDUMP
TIPFCER
TIPFLAG
TIPFORK
TIPRTN
TIPSNAP
TIPSUB
TIPSUBP
TIPTIMER
TIPXCTL

FCS
FCS
FCS
FCS
HOLD=YES
HOLD=TR
HOLD=UP
FCS
FCS
FCS: summary
FCS: types
TIPFCS: params

FCS: file-pkt
FCS: descriptor
FCS: indexed
FCS-ADD
FCS-BACK
FCS-CLOSE
FCS-DELETE
FCS-ESETL
FCS-FLUSH
FCS-GET
FCS-GETUP
FCS-HOLD
FCS-NEXT
FCS-NOUP
FCS-OPEN
FCS-PUT
PCS-RELEASE
FCS-SETL
FCS-SETL-EQ
FCS-SETL-GT
FCS-TREN
FCS: direct

TDC

Page: 9
Section: Contents

TDC

6.9.1 DIRECT: ADD RECORD
6.9.2 DIRECT: ROLL BACK UPDATES
6.9.3 DIRECT: CLOSE FILE
6.9.4 DIRECT: DELETE RECORD
6.9.5 DIRECT: FLUSH FILE
6.9.6 DIRECT: READ RECORD
6.9.7 DIRECT: READ RECORD AND LOCK
6.9.8 DIRECT: HOLD RESOURCE
6.9.9 DIRECT: CANCEL UPDATE
6.9.10 DIRECT: OPEN FILE
6.9.11 DIRECT: UPDATE RECORD
6.9.12 DIRECT: RELEASE RESOURCE
6.9.13 DIRECT: MARK TRANSACTION END
6.10 'TIPFCS' FOR SEQUENTIAL FILES
6.10.1 SEQ: CLOSE FILE
6.10.2 SEQ: READ RECORD
6.10.3 SEQ: OPEN FILE
6.10.4 SEQ: OUTPUT RECORD
6.11 DYNAMIC FCS FILES
6.11.1 DYN: ACCESS FILE
6.11.2 DYN: ASSIGN FILE
6.11.3 DYN: CLOSE FILE
6.11.4 DYN: CREATE FILE
6.11.5 DYN: READ RECORD(S)
6.11.6 DYN: OPEN FILE
6.11.7 DYN: WRITE RECORD(S)
6.11.8 DYN: SCRATCH FILE
6.12 OUTPUT TO PRINT A FILE
6.13 FCS COBOL COPY ELEMENT
6.14 COMMON TIPFCS FUNCTIONS AND STATUS CODES
6.15 ASSEMBLER FCS FUNCTIONS AND STATUS CODES
6.16 'FCS' FOR LIBRARY FILES
6.16.1 LIBRARY FILE DESCRIPTOR
6.16.2 LIB: CLOSE LIBRARY
6.16.3 LIB: READ RECORD
6.16.4 LIB: CLOSE LIBRARY; ABORT OUTPUT
6.16.5 LIB: OPEN LIBRARY
6.16.6 LIB: WRITE RECORD
6.17 'TIPFCS' FOR EDIT BUFFERS
6.17.1 EDIT: ADD
6.17.2 EDIT: CLOSE
6.17.3 EDIT: DELETE
6.17.4 EDIT: FLUSH
6.17.5 EDIT: GET
6.17.6 EDIT: OPEN
6.17.7 EDIT: PUT
6.17.8 EDIT: SCRATCH
6.18 TOTAL DATA BASE
6.19 DATA BASE MANAGEMENT INTERFACE
6.19.1 DMS/90 - XR7DMS

Page: 10
Section: Contents

TABLE OF CONTENTS

FCS-ADD
FCS-BACK
FCS-CLOSE
FCS-DELETE
FCS-FLUSH
FCS-GET
FCS-GETUP
FCS-HOLD
FCS-NOUP
FCS-OPEN
FCS-PUT
PCS-RELEASE
FCS-TREN
FCS: sequential
FCS-CLOSE
FCS-GET
FCS-OPEN
FCS-PUT
FCS: dynamic
FCS-ACCESS
FCS-ASSIGN
FCS-CLOSE
PCS-CREATE
FCS-GET
FCS-OPEN
FCS-PUT
FCS-SCRATCH
TIPPRINT
TC-FCS

FCS: libraries
FCS: libraries
FCS-CLOSE
FCS-GET
FCS-NOUP
FCS-OPEN
FCS-PUT
FCS: edit
FCS-ADD
FCS-CLOSE
FCS-DELETE
FCS-FLUSH
FCS-GET
FCS-OPEN
FCS-PUT
FCS-SCRATCH
FCS: total
FCS: dbms
FCS: dms/90

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TABLE OF CONTENTS

6.19.2 DBS/90 - IXF???
6.20 JOURNAL FILE PROCESSING
6.20.1 'LGOF' JOURNAL RECORD FORMAT
6.20.2 BATCH JOURNAL FILE READ

- 7 -

7. CHAPTER VII - MESSAGE CONTROL SYSTEM
7.1 MESSAGE CONTROL SYSTEM
7.2 MCS SPECIAL TERMINAL NAMES
7.3 DOWN LINE LOADED DISPLAY MANAGEMENT
7.4 MCS INTERFACE PACKET
7.5 READ A MESSAGE FROM A TERMINAL
7.6 SEND AN ERROR MESSAGE
7.7 OUTPUT A MESSAGE TO A TERMINAL
7.8 CURSOR TO LAST POSITION & TRANSMIT
7.9 LINE - ORIENTED TERMINAL I/0
7.9.1 CHECK FOR OPERATOR BREAK
7.9.2 PARAMETERIZE AN INPUT MESSAGE
7.9.3 PROMPT THE USER FOR A REPLY
7.9.4 PROMPT THE USER FOR TEXT
7.9.5 PROMPT THE USER FOR TEXT
7.9.6 SEND ONE LINE AND ROLL SCREEN
7.9.7 SET TERMINAL ROLL POINT
7.9.8 GET ONE LINE FROM TERMINAL
7.9.9 GET ONE LINE FROM TERMINAL
7.9.10 ATTACH AN ALTERNATE TERMINAL
7.9.11 SEND PRINT CODE TO AUX PRINTER
7.9.12 SET UTS-400 CONTROL PAGE
7.9.13 DETACH ALTERNATE TERMINAL
7.9.14 SCAN PARAMETERS FROM STRING
7.9.15 USE ALTERNATE TERMINAL
7.9.16 USE ORIGINAL TERMINAL
7.10 DIRECT COMMUNICATIONS I/0
7.10.1 INPUT AND OUTPUT MESSAGE FORMAT
7.10.2 AUXILIARY DEVICE I/0 DELIVERY STATUS
7.10.3 GENERATE CARRIAGE RETURN
7.10.4 CURSOR POSITIONING
7.10.5 DELETE FU~CTION
7.10.6 ERASE FUNCTION
7.10.7 GENERATE FIELD CONTROL CHARACTERS
7.10.8 INSERT FUNCTION
7.10.9 ROLL THE SCREEN
7.10.10 SCAN FUNCTION
7.10.11 TAB FUNCTIONS
7.10.12 TRANSMIT FUNCTION
7.10.13 YES/NO FUNCTION
7.10.14 TIPTERM FUNCTIONS
7.10.15 CONTROL TERMINAL INPUT

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

FCS: dbs/90
FCS: journal
FCS: journal
FCS: journal

MCS
MCS
*MST/*BYP
MCS: dll
TC-MCS
TIPMSGI
TIPMSGE
TIPMSGO
TIPMSGRV
LINE I/0
BREAK
PARAM
PROMPT
PROMPTX
PROMPTX8
ROLL
ROLLPT
TEXT
TEXTS
TIPATTCH
TIPCOP
TIPCPAGE
TI PD ETCH
TIP SCAN
TIPUALT
TIPUORG
Direct I/O
DCIO: pref ix
DCIO: status
DCIO: carret
DCIO: cursor
DCIO: delete
DCIO: erase
DCIO: f cc
DCIO: insert
DCIO: roll
DCIO: scan
DCIO: tab
DCIO: xmit

DCIO: tipterm
TIPTERM: cntrl

TOC

Page: 11
Section: Contents

TDC

7.10.16 DISCONNECT DIAL-UP LINE
7.10.17 ALLOW FREE TERMINAL INPUT
7.10.18 GET AN INPUT MESSAGE
7.10.19 CHANGE DIAL-UP LINE TELEPHONE NUMBER
7.10.20 OUTPUT A MESSAGE
7.10.21 TEST FOR INPUT
7.10.22 SEND AN UNSOLICITED MESSAGE

- 8 -

8. CHAPTER VIII - SYSTEM MAINTENANCE
8.1 TIP/30 LIBRARY FILE REQUIREMENTS
8.2 EXECUTION TIME WORK FILES
8.3 TIP/30 SYSTEM GENERATION
8.3.l TIPGEN DEFINITION
8.3.2 FILE DEFINITION
8.3.3 CLUSTER DEFINITION
8.3.4 TIP/30 GENERATION KEYWORD SUMMARY
8.3.5 TIP/30 GENERATION JCL EXAMPLE
8.3.6 TIP/30 GENERATION PARAMETER RUN
8.3.7 PARAM OPTIONS FOR TJ$PARAM
8.4 RUN TIME JOB CONTROL OPTIONS
8.5 FILE RECOVERY
8.6 TIP/30 BATCH PROGRAMS
8.7 TIP FILE INITIALIZATION
8.7.1 COPY IN STATEMENTS
8.7.2 USER, PROGRAM, FILE COMMANDS
8.7.3 CATALOGUE INITIALIZATION SAMPLE
8.7.4 TIP FILE INITALIZATION JOBS
8.8 JOURNAL FILE COPY AND INITIALIZATION
8.9 COMPILE COBOL-68 TIP PROGRAM
8.10 COMPILE COBOL-74 TIP PROGRAM
8.11 THE BATCH DOCUMENT GENERATOR
8.11.l TJ$DOCS PARAM CARD FORMAT
8.12 CATALOGUE FILE LISTING
8.12.1 CATALOGUE LIST PROGRAM PARAMETERS
8.13 LIST JOURNAL FILE
8.14 OS/3 CONSOLE OPERATION
8.15 CONSOLE MESSAGES

9. CHAPTER IX - APPENDICES

- 9 -

9.1 DIRECTORY OF COBOL COPY BOOKS
9.2 Basic Compiler-Interpreter
9.2.1 DESCRIPTION OF THE TIP/BASIC LANGUAGE
9.2.2 ABS Predefined Function
9.2.3 ASC Predefined Function

Page: 12
Section: Contents

TABLE OF CONTENTS

TIPTERM: disc
TIPTERM: free
TIPTERM: get
TIPTERM: phone
TIPTERM: put
TIPTERM: test
TIPTERM: un

TIPGEN

workf iles
TIPGEN
TIPGEN
FILE
CLUSTER

TJ$PARAM
TJ$PARAM: options
TIP: exec
TB$RCV
TIP: batch jobs
TB$INT
TB$INT: copy
TB$INT: cat
TB$INT: sample
TB$INT: jobs
TB$JRN
TJ$COB68
TJ$COB74
TJ$DOCS
TJ$DOCS: param
TJ$LC
TJ$LC: params
TJ$LST
opr commands
messages

COPY BOOKS
TIP/BASIC

ABS
ASC

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TABLE OF CONTENTS

9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.2.15
9.2.16
9.2.17
9.2.18
9.2.19
9.2.20
9.2.21
9.2.22
9.2.23
9.2.24
9.2.25
9.2.26
9.2.27
9.2.28
9.2.29
9.2.30
9.2.31
9.2.32
9.2.33
9.2.34
9.2.35
9.2.36
9.2.37
9.2.38
9.2.39
9.2.40
9.2.41
9.2.42
9.2.43
9.2.44
9.2.45
9.2.46
9.2.47
9.2.48
9.2.49
9.2.50
9.2.51
9.2.52
9.2.53

ATN Predefined Function
CALL Statment
CBRT Predefined Function
CHAIN Statement
CHR$ Predefined Function
CLK$ Predefined Function
CLOSE Statement
<constant>
COS Predefined Function
COSH Predefined Function
DAT$ Predefined Function
DATA Statement
DIM Statement
EBC Predefined Function
END Statement
ENDIF Statement
EXITFOR Statement
EXP Predefined Function
<expression>
FILE Statement
FOR Statement
GOSUB Statement
GOTO Statement
<identifier>
IF Statement
IF END Statement
INPUT Statement
INT Predefined Function
LEFT$ Predefined Function
LEN Predefined Function
LET Statement
<line number>
LOG Predefined Function
LOGlO Predefined Function
MID$ Predefined Function
NEXT Statement
NEXTFOR Statement
ON Statement
POS Predefined Function
PRINT Statement
RANDOMIZE Statement
READ Statement
REM Statement
Reserved Word List
RESTORE Statement
RETURN Statement
RIGHT$ Predefined Function
RND Predefined Function
SEG$ Predefined Function
SGN Predefined Function

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

ATN
CALL
CBRT
CHAIN
CHR$
CLK$
CLOSE
<constant>
cos
COSH
DAT$
DATA
DIM
EBC
END
END IF
EXITFOR
EXP
<expression>
FILE
FOR
GO SUB
GOTO
<identifier>
IF
IF END
INPUT
INT
LEFT$
LEN
LET
<line number>
LOG
LOGlO
MID$
NEXT
NEXT FOR
ON
POS
PRINT
RANDOMIZE
READ
REM
Reserved Word Lis
RESTORE
RETURN
RIGHT$
RND
SEG$
SGN

TDC

Page: 13
Section: Contents

-----------------------------------..

TDC

9.2.54
9.2.55
9.2.56
9.2.57
9.2.58
9.2.59
9.2.60
9.2.61
9.2.62
9.2.63
9.2.64
9.2.65
9.2.66
9.2.67
9.2.68
9.2.69
9.2.70
9.2.71
9.2.72
9.2.73
9.2.74

SIN Predefined Function
SINH Predefined Function
Special Characters
SQR Predefined Function
<statement>
<statement list>
STOP Statement
STR$ Predefined Function
<subscript list>
SYSTEM Statement
TAB Predefined Function
TAN Predefined Function
THEN Statement
TRM$ Predefined Function
USR$ Predefined Function
VAL Predefined Function
<variable>
SAMPLE TIP/BASIC PROGRAM
COMPILER STRUCTURE (BCOMP)
INTERPRETER STRUCTURE (BINT)
RUN-TIME MONITOR ERROR MESSAGES

- 10 -

10. KWIC INDEX

Page: 14
Section: Contents

SIN
SINH

TABLE OF CONTENTS

Special Character
SQR
<statement>
<statement list>
STOP
STR$
<subscript list>
SYSTEM
TAB
TAN
THEN
TRM$
USR$
VAL
<variable>
Sample Program

BCOMP
BINT

errors

INDEX

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

GLOSSARY
TIP/30 GLOSSARY OF TERMS AND CONCEPTS

1.5 TIP/30 GLOSSARY OF TERMS AND CONCEPTS GLOSSARY

This section of the manual supplies working definitions of some of
the common terms used in this manual. The definitions are not
intended to be rigorous~ they are explanations within the context
of the TIP/30 system.

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

Page:
Section:

1
1.5

GLOSSARY
TIP/30 GLOSSARY OF TERMS AND CONCEPTS

ACK Acknowledge(ment). A signal indicating that error
detection logic has failed.

asynchronous

auxiliary device

batch

bi-synch

catalogue (OS/3)

catalogue (TIP)

CRT

cursor

Direct Access (DA)

dynamic file

edit buffer

element

Happening simultaneously but independently.

A unit (such as a printer, diskette, or cassette)
attached to a terminal.

Not interactive.

Bi-synchronous; a communications protocol
implies that traffic is synchronized in
direc~ions by acknowledgement messages.

which
both

A directory of file names and
location information.

corresponding

A directory of information about user-ids,
transaction programs, and on-line files.

Literally, Cathode Ray Tube. Often used to refer
to the display screen of a computer terminal.

A current position marker on a CRT. Usually a
blinking rectangle or underline character.

A file organization technique that numbers fixed
size records using integers from 1 to the highest
record number.

A TIP/30 pseudo-file that has characteristics of
direct access.

May be created, manipulated and erased (scratched)
on demand by TIP/30 transaction programs.

A particular type of TIP/30 dynamic file that is
used by the TIP/30 text editor (QED) as a work
space for editting.

The name of a library member or module.

FCS File Control System. TIP/30 interface between
programs and on-line files.

Page:
Section:

2
1.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

GLOSSARY
TIP/30 GLOSSARY OF TERMS AND CONCEPTS

Function Key

hardware

hashing

Host computer

index

interactive

IMS/90

IMS/90 emulation

ISAM

A key on a UNISCOPE terminal keyboard (numbered Fl
F2 •.. etc) which signals the host computer when
pressed.

The physical computer equipment.

A technique of computing a key from information in
the record.

The main computer; the computer which is running
TIP/30.

A collection of keys and associated location
information that can be searched to locate an item
with a given key.

Operating in "question and answer" mode.

An interactive program will present decisions for
a user to make and act according to the response.

A Sperry Univac software product that provides an
execution environment for transaction programs.

A facility of TIP/30 which enables a transaction
program written to use the facilities of IMS/90 to
run under control of TIP/30 without change or
recompilation.

Indexed Sequential Access
organization method that allows
either randomly by a single key
a single key.

Method. A file
access to records
or sequentially by

Reco-rds may be fixed or variable length (UNIVAC
implementation).

key A portion of the data in a record which is used to
index the record.

LFD The name of a file as stated in the Job Control
information for the job which refers to the file.

LFN Logical File Name. The name by which .a TIP/30
program refers to a file. Connected to real LFD
name by TIP/30 catalogue information.

CHAPTER I - INTRODUCTION
TIP/30 GLOSSARY OF TERMS AND CONCEPTS

Page:
Section:

3
1.5

GLOSSARY

MI RAM

MSG-WAIT

TIP/30 GLOSSARY OF TERMS AND CONCEPTS

Multiple Indexed Random Access Method. File
organization method that is similar to ISAM with
the exception that there may be from one to five
keys.

Key on UNISCOPE terminals that signals the host
computer when pressed.

multi thread A number of transactions concurrently sharing
resources.

native mode

NAK

OS/3

A program that uses TIP/30 facilities that is NOT
running under the control of the TIP/30 IMS/90
emulator is said to be running in this mode.

Negative acknowledgement. (not ACK).

Operating System 3. The control software supplied
by Sperry Univac for use on series 90 and 80
machines.

pref ix notation A notation convention adopted by most TIP/30
utilities to allow selection by prefix.

Eg: "*ABC" means all names with pref ix "ABC"

Eg: "!XYZ" means all names NOT with prefix "XYZ"

single thread One transaction monopolizing resources until
completion of the transaction.

Page:
Section:

SOE (character). Start Of Entry character. On UNISCOPE
terminals a character (shaped like a pennant
blowing from left to right) which marks the
leftmost boundary of data to be transmitted to the
host computer.

software

transaction

TIP

TIP/30

4
1.5

the programs which control the operation of the
hardware or other (application) programs.

A program that executes under the control of
TIP/30.

see TIP/30.

Transaction Interface Processor a system
software product of Allinson-Ross Corporation.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

GLOSSARY
TIP/30 GLOSSARY OF TERMS AND CONCEPTS

TOTAL

unsolicited

XMIT

The name of a data base system marketed by CINCOM.
An interface to TOTAL is supported by TIP/30.

(message). A message sent to a terminal that is
not necessarily a response to a previous input
message.

(transmit). A key on UNISCOPE terminals that sends
data from the CRT to the host computer.

CHAPTER I - INTRODUCTION Page: 5
1.5 TIP/30 GLOSSARY OF TERMS AND CONCEPTS Section:

OVERVIEW

1. 6

TIP/30 OVERVIEW

TIP/30 OVERVIEW OVERVIEW

TIP/30 is an integrated system of transaction processing and
program development software which is compatible with the Sperry
Univac OS/3 operating system.

TIP/30 offers the user the following advantages:

*

*

*

*

TIP/30 facilitates the development of application systems

TIP/30 has a large number of productivity tools

TIP/30 makes most efficient use of hardware resources

TIP/30 will execute existing IMS/90 action programs without
modification with no need to compile or link. Because it is a
complete and comprehensive software system, TIP/30 represents
the most powerful transaction processing and program
development software available to the OS/3 user.

The heart of the TIP/30 software system is a multi-thread Program
Control System, an integrated Message Control System, and a
comprehensive File Control System. Included in this nucleus is an
extensive system access security control facility as well as
facilities for maintaining user data base integrity. In addition,
Allinson-Ross supplies an extensive library of interactive utility
programs to aid in program design, testing, implementation and
system monitoring.

Page: 1
Section: 1. 6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

OVERVIEW
TIP/30 OVERVIEW

The TIP/30 Program Control System provides multi-thread control of
application programs.

Through a concept of program stacking, TIP/30
inline return from all external program CALL's. This
each individual program to do more work, thereby
number of programs required in an online system.

provides for
feature allows

reducing the

TIP/30 allows the application designer a great degree of freedom
in the design of applications.

The TIP/30 Program Control System allows application designers
to concentrate on the application instead of ways to overcome
unreasonable system constraints .

CHAPTER I - INTRODUCTION
TIP/30 OVERVIEW

Page:
Section:

2
1.6

OVERVIEW

1.6.1

MESSAGE CONTROL SYSTEM

MESSAGE CONTROL SYSTEM OVERVIEW

The TIP/30 Message Control System is an integrated facility
which provides user programs and programmers complete freedom from
terminal hardware characteristics.

MCS screen formats are developed interactively and stored in the
TIP/30 catalogue.

TIP/30 provides a utility called MSGSHOW which is used to test
developed screen formats with no programming required. Users
therefore, can participate in the design of screen formats. MSGSHOW
makes it easier to develop online systems that feel comfortable to
the user.

MCS allows programs to be written with no concern for the
physical hardware characteristics of the terminal. The user program
deals only with data. TIP/30 assumes the responsibility for knowing
the hardware characteristics of the terminal. TIP/30 users can take
advantage of new terminal hardware with no programming changes.

Page: 1
1.6.1

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•

•

i e
I

•

OVERVIEW
FILE CONTROL SYSTEM

1. 6. 2 FILE CONTROL SYSTEM OVERVIEW

The TIP/30 File Control System provides an efficient interface
to all standard data management files as well as integrated data
base systems such as CINCOM's "TOTAL Data Base Management System".

FCS provides both record and file locking to preserve data
integrity.

Automatic journalling of file updates provides for on-line or
off-line recovery from system failures.

A system for creating, maintaining and scratching temporary
scratch-pad files allows for flexible application design •

CHAPTER I - INTRODUCTION
TIP/30 OVERVIEW

Page:
Section:

1
1.6.2

OVERVIEW

1.6.3

SECURITY

SECURITY OVERVIEW

System-wide security in the TIP/30 system is maintained through
the TIP/30 catalogue file. All users, programs and files must be
catalogued before they can be referenced online. TIP/30 guarantees
security for a user, his programs and his files.

A horizontal layering of security is achieved by the use of a
security level number in the range of 1 to 255. A user can only
access those system facilities permitted by his catalogued security
level. A vertical partitioning of users, programs and files by
application group can be achieved through the group specification
in the TIP/30 catalogue.

A user logged on the TIP/30 system with a valid password only
has access to those features of the system belonging to his
application group for which his security level is high enough to
permit him access.

Page: 1
1.6.3

TIP/30 Reference Manual
Version 2.5 (82/08/01} Section:

OVERVIEW
INTERACTIVE UTILITIES

1. 6. 4 INTERACTIVE UTILITIES OVERVIEW

As a TIP/30 user you will have access to an extensive library of
interactive programs to assist in the design, implementation,
testing and maintenance of online application systems.

CHAPTER I - INTRODUCTION
TIP/30 OVERVIEW

Page:
Section:

1
1.6.4

OVERVIEW
PROGRAM PREPARATION

1. 6. 5 PROGRAM PREPARATION OVERVIEW

For program preparation TIP/30 provides a powerful text editor,
an online librarian and a spool file inquiry utility.

The TIP/30 text editor
elements. These elements
language, or documents.

is
may

used to create and
be source programs,

modify text
job control

The editor's work space is fully recoverable so that no work is
lost due to a system failure. This feature alone results in higher
morale and greater productivity on the part of the programming
staff.

Page: 1
1.6.5

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

OVERVIEW
DISPLAY FORMAT PREPARATION

1.6.6 DISPLAY FORMAT PREPARATION OVERVIEW

TIP/30 Message Control System screen formats are created and
maintained online by the MSGDEF utility.

Screen formats can be tested on-line using the MSGSHOW utility.
The message archiver, MSGAR, can be used to print screen formats,
save screen formats in an OS/3 library, and restore screen formats
from an OS/3 library.

Creating and maintaining screen formats in a TIP/30 system is a
very simple task. User departments can work with the development
staff to design 'friendly' screen formats to help ensure on-line
system success.

CHAPTER I - INTRODUCTION
TIP/30 OVERVIEW

Page:
Section:

1
1.6.6

OVERVIEW

1.6.7

PROGRAM TESTING AND DEBUGGING

PROGRAM TESTING AND DEBUGGING OVERVIEW

TIP/30 provides utilities to help the programmer get his
programs running quickly.

Program dumps may be displayed online by the Post Mortem Dump
Analysis program. This eliminates waiting for the central printer
and also eliminates the printing of most dumps.

User programs can be traced online by the Interactive Debug Aid
(IDA). A programmer can set break points in his program or trace
the program one instruction at a time. Errors can be corrected at
execution time and the execution of the program can be resumed at a
new location. A programmer can find more errors per program test
using IDA thus reducing the number of compilations required to get
a program implemented.

Page: 1
1.6.7

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

OVERVIEW
DOCUMENT PREPARATION

1.6.8 DOCUMENT PREPARATION OVERVIEW

The TIP/30 Document Generator (DOC) simplifies the maintenance
of system documentation.

A programmer maintains the documentation for his programs using
the same Text Editor that is used for program source maintenance.
The documentation is permanently stored in an element of an OS/3
library. DOC reads the source element to produce a document
formatted according to information supplied with the text of the
document.

Good documentation can ensure online system success. Timely
availability of new information can save a lot of headaches during
system implementation.

CHAPTER I - INTRODUCTION
TIP/30 OVERVIEW

Page:
Section:

1
1.6.8

OVERVIEW

1.6.9

UTILITIES

UTILITIES OVERVIEW

TIP/30 provides a comprehensive set of utility programs. A Query
Language program accepts english-like requests for information from
indexed files with no programming.

A Remote Job Entry facility gives you the ability to transfer
files of information from another computer or from a batch terminal
to your TIP/30 system.

An Electronic Mail program allows a user to store full-screen
messages in another user's mailbox file.

Allinson-Ross also provides the TIP/30 user with batch utility
programs to initialize and back up system files as well as a
program to analyze and summarize the system accounting information
that is maintained in the journal file.

Page: 1
1.6.9

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

CONCEPTS CHAPTER II - FUNDAMENTAL CONCEPTS

2. CHAPTER II - FUNDAMENTAL CONCEPTS CONCEPTS

This chapter of the TIP/30 reference manual describes a number of
the fundamental concepts that are of interest to all TIP/30 users.
This chapter of the TIP/30 reference manual describes fundamental
concepts as they apply to the use of the TIP/30 system. These
concepts are considered to be essential information for all users
of the TIP/30 system. A thorough understanding of this chapter is
required to be able to make proper use of the reference manual.

It is assumed in the following discussion that the reader is
familiar with the operation of the UNISCOPE (TM) family of
terminals. The reader that is not familiar with the operation of
the terminal is advised to consult the terminal operator
publications available from the manufacturer of the equipment.

CHAPTER II - FUNDAMENTAL CONCEPTS Page:
Section:

1
2

USER ID

2.1

USER IDENTIFICATION AND PASSWORDS

USER IDENTIFICATION AND PASSWORDS USER ID

A user of the TIP/30 system is assigned a "user-id" by the
installation administrator. This user-id is intended to be a
meaningful pseudo name for the individual. It often takes the form
of the individual's last name, his initials, or any character
string of up to eight characters that might serve to identify the
individual within the user community. For example, a user named
"John Q. Doe" might well have a user-id of "DOE" or "JOHN" or
"JQDOE".

To be able to enforce system security, the TIP/30 system must be
capable of verifying that an individual is who he claims. To that
end, there is a "password" associated with every user-id in the
system. Each user is assigned an initial password with his user-id.
The user must realize that the password is merely an agreement
between the user and the TIP/30 system on a means of positively
identifying the user. The password may be (and should be) changed
at frequent intervals to eliminate the likelihood of unauthorized
use of the user-id.

When a user identifies himself to the TIP/30 system, he must
give his current password. He may also elect to change his password
at this time. If he does change his password, all subsequent logon ~
attempts will require the new password. This process may be ~
repeated as often as deemed necessary by the individual user.

While it is intended that the individual's user-id be known to
other users, the password is the first and most fundamental level
of security. The password should not be known to anyone but the
individual.

The TIP/30 system only requires a password to be given at logon
time~ the password is not required to run programs or to access
files. Once a user has logged on the system his capabilities are
well defined by his positive identification.

Page:
Section:

1
2.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

USER IDENTIFICATION AND PASSWORDS
USER ID

Associated with each user of the system is their security level.
Each user is assigned a security level by the installation
administrator. This security level is a numeric value from 1 to
255. In general terms, the security level is a statement about the
access the user may have to programs and files. A numerically low
security level indicates that the user has a high degree of access.
Since there are 255 security levels, users may be easily organized
into logical access groups. A user may not access a program or file
if their security level does not permit them access.

TIP/30 users may be given membership in groups. These user
groups are established by the installation administrator. A user is
a member of two implicit groups: his own private group (with the
same name as his user-id) and the system-wide group (named
"TIPY"). Each user may also be given membership in one or two
optional, elective groups. The installation administrator specifies
the elective group memberships at the time a user-id is
established. These elective group memberships may be changed at any
time by the administrator. ·

Membership in a group grants a user the potential to access
programs and files belonging to the group. Actual ability to
execute a specific program or to access an individual file depends
on the security level of the user with respect to the security
level of the program or file in question.

CHAPTER II - FUNDAMENTAL CONCEPTS
USER IDENTIFICATION AND PASSWORDS

Page:
Section:

2
2.1

LOGON/LOGOFF
LOGON AND LOGOFF PROCEDURES

2.2 LOGON AND LOGOFF PROCEDURES LOGON/LOGOFF

A user must LOGON the TIP/30 system in order to identify himself
to the system and to establish his capabilities with respect to the
TIP/30 security system. There are two methods of logon:

immediate transmission of a valid user-id and password

transmission of anything not valid as a user-id and
password

If the user transmits {at an idle terminal) a valid user-id and
password he will be logged on immediately. For example, a user with
a user-id of "FRED" and a pa,ssword of "QWERTYUI" might logon by
transmitting the following:

>FRED/QWERTYUI

--OR--.

>LOGON FRED/QWERTYUI

Note the required character {slash) that separates the password
from the user-id. The word "LOGON" is not required in the current
version of TIP/30. If specified however, it must be correct as
shown.

If the user transmits an invalid user-id/password combination or
presses a function key or msg-wait, the TIP/30 system will respond
by displaying a screen format with areas in which the user may
enter his user-id, password, and (optionally) new password. The
user is expected to fill in the appropriate values and press
transmit. TIP/30 will then validate the user-id and password.

Page:
Section:

1
2.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

LOGON/LOGOFF
LOGON AND LOGOFF PROCEDURES

When the user has successfully logged on the system, TIP/30 will
display the standard system prompt:

TIP?>

To log off the TIP/30 system, the user may run the program
"LOGOFF" as a response to the standard system prompt. To run the
LOGOFF program the user would enter:

TIP?>LOGOFF

The logof f program will terminate the session and output a
display giving the date and time of logof f and various statistics
about the session that was just completed (for example: average
response time, number of input and output messages to the terminal
etc).

The installation administrator may (at his discretion) change
the name of the "LOGON" and "LOGOFF" programs. Users are advised to
review their installation's LOGON and LOGOFF requirements with the
installation administrator when they receive their user-id and
initial password.

CHAPTER II - FUNDAMENTAL CONCEPTS
LOGON AND LOGOFF PROCEDURES

Page:
Section:

2
2.2

COMMAND LINE

2.3

TIP/30 COMMAND LINE

TIP/30 COMMAND LINE COMMAND LINE

The TIP/30 system will display on the terminal the standard
system prompt after a successful logon and whenever control returns
to TIP/30 from a transaction program. In order to run transaction
programs, the user must be familiar with the structure of the
Command Line. When the user is given the standard system prompt, he
is being given an opportunity to enter a command to the TIP/30
system. This command has the following structure:

TIP?>transaction-id[,options] [,parameter1] ... [,parameter8]

The transaction-id immediately follows the SOE character and is
the name of the program the user wishes to run. The transaction-id
may be up to eight characters long.

Some transactions (programs) allow the user to enter options
immediately following the transaction-id. The options are separated
from the transaction-id by a comma or a slash. Options are from one
to eight characters which are defined by the particular transaction a program. W

Separated from
characters) by a
may be up to eight
command line.

the transaction-id (and possibly the option
blank are the parameters for the program. There

parameters supplied to the program from the

These command line parameters represent initial input data for
the program. Each parameter is restricted to a maximum of eight
characters. The parameters are positional: any omitted parameters
are indicated by the presence of a comma separator without any
data.

Example:

TIP?>PAYROLL MAR, ,1982

In the example above "PAYROLL" is the transaction-id: there are
no command line options: parameterl is "MAR": parameter2 is
omitted: parameter3 is "1982".

Page:
Section:

1
2.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
COMMAND LINE

TIP/30 COMMAND LINE

It is important to note that the parameters on the command line
are passed to the indicated program as initial data. The programmer
who wrote the program is free to interpret the parameters in any
manner he chooses. The TIP/30 system merely enforces this command
line convention as a simple means of running a program. It is quite
reasonable for a program to require no information from the command
line (for example, menu-driven full-screen oriented systems
frequently require that the user simply enter the name of the menu
program).

Many of the utility programs supplied by Allinson-Ross
Corporation make extensive use of the command line options and
parameters. The documentation for these programs describes the
command line parameters recognized by each utility and the command
line options required.

CHAPTER II - FUNDAMENTAL CONCEPTS
TIP/30 COMMAND LINE

Page:
Section:

2
2.3

SECURITY

2.4

TIP/30 SYSTEM SECURITY

TIP/30 SYSTEM SECURITY SECURITY

TIP/30 provides an extensive security system that may be
utilized by the installation administrator to control access to
programs and files. The security system cannot be selectively
disabled or circumvented. The security system is implemented by
entries in the TIP/30 catalogue. The catalogue is a TIP/30 file
that is managed by the on-line catalogue manager program. The
installation administrator uses the catalogue manager program to
enter and modify information in the catalogue.

The catalogue contains entries for all authorized users of the
TIP/30 system, all programs that are available on-line, and all
files that are accessible on-line.

Each authorized TIP/30 user has an entry in the catalogue that
states his user-id, current password, security level and the names
of (up to two) elective groups to which he belongs.

There is an entry in the catalogue for each program
(transaction-id) which states the group to which the program
belongs and the security level required to access the program.

•

There is an entry in the catalogue for each on-line file in the
system. The entry indicates which group has access to the file and II
the security level required to access the file.

A user may only access programs and files that are defined in
the group(s) in which the user is a member. Furthermore, even
though the user is a member of a group his access to programs and
files in that group is restricted further by the requisite security
level.

The catalogue manager program is generally assigned a high
security level so that only users with high security (the
installation administrator) may change entries in the catalogue.
This ensures there is no mechanism whereby the average user can
alter security levels or group memberships.

Page:
Section:

1
2.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TIP/30 SYSTEM SECURITY
SECURITY

When a user attempts to run a program or access a file, TIP/30
will search for a corresponding program or file entry in the
catalogue. The search follows a fixed order, known as 'the order of
search'. TIP/30 will search the user's private group, elective
group one, elective group two, and the system universal group
("TIPY"). The first program or file entry that is found is
considered to be the intended one. The user's security level is
then compared to the required security level to run the program or
access the file.

If the security level does not imply access, TIP/30 will display
a "SECURITY ERROR" message. It is very important to note that the
catalogue search will NOT continue past the first entry found in
the predefined order of search. If no appropriate entry is found in
the catalogue, the user will receive an error message stating that
the program or file could not be accessed.

The above description of search order also applies whenever a
program attempts to call another program or access files. The
catalogue is searched every time an attempt is made to access a
program or file. The TIP/30 catalogue file is organized in such a
fashion that this order of search may be accomplished very quickly.
There is no appreciable overhead asociated with this security
mechanism .

CHAPTER II - FUNDAMENTAL CONCEPTS
TIP/30 SYSTEM SECURITY

Page:
Section:

2
2.4

UTILITIES
CHAPTER III - ON-LINE UTILITY PROGRAMS

3. CHAPTER III - ON-LINE UTILITY PROGRAMS UTILITIES

This chapter of the TIP/30 reference manual contains documentation
describing the operation of the on-line utility programs that are
supplied with the TIP system.

The documentation is in alphabetical order by transaction name.

The transaction name of a program may be changed by the
installation administrator at the site. Users are advised to
determine what changes, if any, have been mad~ at their site.

All of the programs that operate under the control of TIP/30 are
subject to security restrictions that are maintained by the
installation administrator; many of the programs described in this
chapter may not be available all users.

Many of the utility programs supplied by Allinson-Ross
Corporation provide on-line help information (available through a
"help" command recognized by the program or through the HELP
utility).

CHAPTER III - ON-LINE UTILITY PROGRAMS Page:
Section:

1
3

ACCESS

3.1

ACCESS A FILE

ACCESS A FILE ACCESS

The ACCESS program is used to assign a Logical File Name (LFN)
to a file. Most transaction programs access files via (TIPFCS),
through a Logical File Name.

Syntax:

ACCESS aft-name.file-name

Where:

aft-name

file-name

is the Logical File Name assigned to the file.
This is the name used in the active file table.

is the catalogue name of a file. If the file to be
accessed is an FCS dynamic file, the catalog-name
consists of three sections:
USER-ID/CATL-ID/FILE-ID, which uniquely identify
each FCS file in the catalogue. If the USER-ID is
not specified, then the USER-ID used to LOGON to
TIP will be used. If left blank then CATL-ID =
FILE-ID.

In the following example assume that the user-id 'ARC' was used to
log on.

Example:

ACCESS UPDATE.MASTER

Assign the logical name 'UPDATE' to the file with the catalogued
name of 'MASTER'.

Error Conditions:
TIPFCS errors may be reported.

Page:
Section:

1
3.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

---------~------- -

AFT
DISPLAY ACTIVE FILE TABLE

3.2 DISPLAY ACTIVE FILE TABLE AFT

The AFT program is used to list the files that have been
assigned to this terminal.

Syntax:

AFT[/qual)

Where:

qual

Example:

AFT
AFT/MARY

a command line option available to master level
users to display the active file table of a logged
on user. May be a user-id or terminal name. If
omitted, the active file table for the issuing
user will be displayed.

Logical User-id Catl-id File-id Type Class Hold Element

ARCUST
QEDTRM 11

TIPY
ARC

Error Conditions:

TD$AFT

-------------- ----
ARCUST MI RAM
TD$AFT EDIT

The specified process may not be found.

Additional Considerations:

----- ------------ ---- -------
s YES
E

An asterisk ("*") preceding the Logical file name indicates that
the file is currently in debug mode (updates ignored).

An asterisk ("*") preceding the File-id indicates that the file is
a file that is journalled by TIP/30.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY ACTIVE FILE TABLE

Page:
Section:

1
3.2

APB

3.3

ALL POINTS BULLETIN

ALL POINTS BULLETIN APB

The APB program allows a MASTER user to send a message to all
currently active terminals. When the message is received, it is
prefaced by the USER-ID and terminal name of the sender.

Syntax:

APB

Where:

Example:

[/ALL] text

[/ALL] command line option indicating that the APB
message is to be sent to all terminals (logged on
or not).

text is the text of the message (64 characters maximum)
to be sent.

APB SYSTEM WILL BE DOWN AT 3:15 FOR 30 MIN.

Error Conditions:
None.

Page:
Section:

1
3.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ASG
ASSIGN A FILE

3.4 ASSIGN A FILE ASG

The ASG program is used to assign a Logical File Name (LFN) to a
file. Transaction programs access files by reference to the logical
file name. If the ASG program is used to assign a TIP/30 dynamic
file that does not exist, the ASG program will create the dynamic
file.

Syntax:

ASG aft-name,file-name

Where:

aft-name

file-name

is the Logical File Name assigned to the file.
This is the name used in the active file table.

is the catalogue name of a file. If the file to be
assigned is an FCS dynamic file, the catalog-name
consists of three sections:
USER-ID/CATL-ID/FILE-ID, which uniquely identify
each FCS file in the catalogue. If the USER-ID is
not specified, then the USER-ID used to LOGON to
TIP will be used. If left blank then CATL-ID =
FILE-ID.

In the following example assume that the user-id 'ARC' was used to
log on.

Example:

ASG UPDATE,MASTER

assign the logical name 'UPDATE' to the file with the name of
MASTER.

Error Conditions:
TIPFCS errors may be reported.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ASSIGN A FILE

Page:
Section:

1
3.4

BASIC

3.5

TIP/30 BASIC INTERPRETER - COMPILER

TIP/30 BASIC INTERPRETER - COMPILER BASIC

BASIC is a supplied program that implements a version of the
BASIC programming language. BASIC will interpret and execute
programs written in this language. The syntax of BASIC that is
supported is defined in an appendix of this reference manual. This
section describes the commands that may be given to the BASIC
{monitor) program.

The BASIC monitor program recognizes the following commands:

B - terminate monitor

C - compile a program

CP - compile a program and print compilation listing

D - delete the "object" version of a program

E - terminate monitor

H - display help information on terminal

L - list a program on the terminal

LC - list all basic programs in TIP catalogue

M - change screen roll mode

N - edit a new program

O - edit an old (existing) program

P - print program listing

Q - terminate monitor and LOGOFF system

R - run a program

S - save program source in a file

Page: 1
3.5

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•

•

BASIC: BYE
TERMINATE MONITOR

3.5.1 TERMINATE MONITOR BASIC: bye

This command will terminate the BASIC monitor program in a
normal fashion. This is analagous to the "BYE" command in some
implementations of the basic language.

Syntax:

Bye

Where:
no parameters required.

Example:

B

Will cause the BASIC monitor to terminate normally.

Error Conditions:
None .

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.1

BASIC: COMPILE

3.5.2

COMPILE BASIC PROGRAM

COMPILE BASIC PROGRAM BASIC: compile

The "C" conunand will compile a basic program. The compilation
process actually produces a TIP/30 dynamic file containing
pseudo-code (this file is referred to as the "object" file). The
pseudo-code is later executed (via the "R" conunand) by the BASIC
interpreter.

Syntax:

Where:

Compile [progname] [,group]

progname

group

The name of the program to compile. Default is
last program edited.

The name of the group to own the object code.
Default is the user's private group. A master
level user may specify any group name: system
level users may specify any group to which they
have access: progranuner level users may not
specify a group.

Example:

c test

Will compile the program named "test" into (by default)
the user's private group.

Error Conditions:
The named program may not exist.

Page:
Section:

1
3.5.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BASIC: CP
COMPILE BASIC PROGRAM WITH LISTING

3.5.3 COMPILE BASIC PROGRAM WITH LISTING BASIC: cp

The compile process (described previously) does not produce a
compilation listing. To compile a program and produce a hard copy
listing, the user must use the "CP" command. The listing may be
sent to the site printer (default) or to an auxiliary terminal
printer.

Syntax:

Where:

CP [progname 1 [, group 1 [, des t 1

progname

group

de st

The name of the program to compile. Default is the
last program edited.

The name of the group that is to own the object
code file. Default is the user's private group.

The desired printer. Default is PRNTR
printer). Other choices include: AUXl etc.

(site

Example:

CP test,TIPY,aux1

Would compile the program named "test" into the group TIPY
and generate a compile ljsting at the terminal auxiliary
print device on interface 1.

Error Conditions:
The named program may not exist. The named printer may not be
available.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.3

BASIC: DELETE

3.5.4

DELETE BASIC OBJECT FILE

DELETE BASIC OBJECT FILE BASIC: delete

The delete command will scratch the dynamic file containing the
BASIC object code (pseudo-code) for a basic program. The object
code file would have been produced by the BASIC compilation
process.

Syntax:

Where:

Delete [progname] [,group]

progname

group

The name of the program object file to delete.
Default is the last edited program.

The group owning the specified object
Default is the user's private group.

file.

Example:

De 1 test

Wi 11 delete the object code file for the program "test"
from the user's private group.

Error Conditions:
The object file for the program may not exist in the specified
group.

Page:
Section:

1
3.5.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

91

BASIC: END
TERMINATE THE BASIC MONITOR

3.5.5 TERMINATE THE BASIC MONITOR BASIC: end

This command will cause the BASIC monitor to terminate normally.

Sgntax:

End

Where:
No parameters required.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.5

BASIC: HELP
DISPLAY BASIC PROGRAM HELP INFORMATION

3.5.6 DISPLAY BASIC PROGRAM HELP INFORMATION BASIC: help

This command will cause the BASIC monitor to display help
information which will summarize the recognized command syntax.

Syntax:

Help

Where:
No parameters required.

Error Conditions:
The help information may not be available or may have been deleted.

Page:
Section:

1
3.5.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BAS I c: LI ST
LIST BASIC PROGRAM ON TERMINAL

3.5.7 LIST BASIC PROGRAM ON TERMINAL BASIC: list

This command will list on the terminal the source for a basic
program.

Sgntax:

List [prognamel

Where:

progname The name of the program source to list on the
terminal. Default is the last edited program.

Example:

L test

W i 11 1 is t the source for program named 11 test 11 on the
user's term i na 1 .

Error Conditions:
The named program may not exist.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.7

BASIC: LC

3.5.8

LIST BASIC PROGRAMS IN TIP CATALOGUE

LIST BASIC PROGRAMS IN TIP CATALOGUE BASIC: le

This command actually calls the TIP/30 catalogue manager program
to list entries in the catalogue for BASIC language programs. The
executable pseudo-code for BASIC programs is stored in a TIP/30
dynamic file. The LC command will display all entries in the
catalogue that are available to the user who issued the LC command.

Syntax:

LC [progname] [,group}

Where:

progname

group

Example:

LC

Error Conditions:

Optional program name (pref ix specification
allowed).

Optional group name (pref ix specification
allowed).

The user may not have sufficient security clearance to run the
catalogue manager program.

Page:
Section:

1
3.5.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

BASIC: MODE
CHANGE SCREEN ROLL MODE

3.5.9 CHANGE SCREEN ROLL MODE BASIC: mode

This command will change the way in which BASIC manipulates the
user terminal. The default mode is "roll" mode. This means that
messages from BASIC will appear at the bottom line of the CRT and,
in effect, push up any existing information on the CRT. An
alternative is "scroll" mode. In this mode, output from BASIC
appears on the next line of the CRT; when the last line has been
used, the next output will appear on the top line. In "scroll"
mode, all prompts from BASIC will be issued on the bottom line of
the CRT.

Syntax:

Mode [option]

Where:

option A choice of "roll" or "scroll". Default is "roll".

Example:

M scroll

Error Conditions:
None .

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.9

BASIC: NEW
EDIT A NEW BASIC PROGRAM

3.5.10 EDIT A NEW BASIC PROGRAM BASIC: new

This command will enable the user to edit a program. The BASIC
monitor will attempt to find existing source for the program (as
named). If no existing source is found, the user will begin with an
empty edit work space. The BASIC monitor will call the TIP/30 TEXT
EDITOR (QED) to allow the user to edit the program. The user should
be familiar with the operation of the text editor before attempting
to edit a BASIC program. When the user has completed editing the
program it is important to terminate the text editor session with
the "E" command (see section on QED). The "new" command will set
the name of the "current" program which may be used as a default in
some other BASIC monitor commands. BASIC program names are limited
to a maximum of eight characters.

Syntax:

New progname

Where:

progname The name of the BASIC program to be edited.

Example:

N mytest

Error Conditions:
The user may not have sufficient security clearance to run the
TIP/30 text editor.

Page:
Section:

1
3.5.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

------------------ -

e

EDIT EXISTING BASIC PROGRAM

3.5.11 EDIT EXISTING BASIC PROGRAM

This command is identical to the
command. It is provided primarily
implementations of the BASIC language.

Syntax:

Old progname

Where:

BASIC: OLD

BASIC: old

previously discussed "New"
for compatibility with other

progname The name of the BASIC program to be edited.

Example:

0 myprog

Error Conditions:
The user may not have sufficient security to run the TIP/30 Text
Editor.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.11

BASIC: PRINT
PRINT BASIC PROGRAM LISTING

3.5.12 PRINT BASIC PROGRAM LISTING BASIC: print

This command will enable the user to generate a hard-copy print
of a BASIC program. The BASIC interpreter calls the TIP/30
Librarian (TLIB) to produce the printout. The program may be either
an existing edit work space or may have been filed in a library.

Syntax:

Print [progname, ,dest]

OR Print file,prog[,dest]

OR PA [progname]

Where:

progname

de st

file

prog

Example:

The name of a BASIC program. If omitted, the
current program name (from a previous "New" or
"Old" command) will be assumed.

The name of the desired printer (eg: AUXl etc).
Default is "PRNTR".

The catalogued file name of the library containing
the program to print.

The name of the library element to be printed.

P myprog, ,aux1

Error Conditions:
Various errors associated with the TIP/30 librarian may be
displayed.

Page:
Section:

1
3.5.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BASIC: QUIT
TERMINATE BASIC MONITOR

3.5.13 TERMINATE BASIC MONITOR BASIC: quit

This command will cause the BASIC monitor to terminate
interaction with the user. If the BASIC monitor had been executing
at stack level one the user will be logged off the TIP/30 system.

Syntax:

Quit

Where:
No parameters required.

Example:

Q

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.13

BASIC: RUN
RUN A BASIC PROGRAM

3.5.14 RUN A BASIC PROGRAM BASIC: run

This command will execute a BASIC program. The program must have
been previously compiled.

Syntax:

Run [progname]

Where:

Example:

R spacewar

progname

Error Conditions:

The name of the BASIC program to execute. Default
is the current program name (as set by a previous
"Old" or "New" command).

The program object file may not be found (it might have been
deleted or the program was not compiled).

Page:
Section:

1
3.5.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BASIC: RUN
DIRECT EXECUTION OF BASIC PROGRAMS

3.5.15 DIRECT EXECUTION OF BASIC PROGRAMS BASIC: run

A BASIC program may be executed by using the "run" command in
the BASIC monitor. It is also possible to enable a basic program to
be executed directly from the TIP command line.

To do this, the user must make an entry in the TIP/30 catalogue
(see section on the catalogue manager program "CAT").

The entry in the catalogue would specify the transaction name as
the name of the basic program. The entries for the program (eg:
LOADM=, WORK=, CDA= etc) would correspond exactly with the entries
for the BASIC interpreter ("BINT").

When the user runs the transaction with the name of the basic
program, the BASIC interpreter is loaded. The interpreter detects
that it was called from the command line (as opposed to being
called from the BASIC monitor) and assumes that the user wants to
simulate entering a RUN command with the program name equal to the
transaction id.

When the basic program ends, the user will be prompted again by
the TIP command processor.

An example of a program entry in the TIP/30 catalogue for a
basic program called "spacewar" is as follows:

Example:

>PROG SPACEWAR GRP=TIPY FROM=TIPY/BINT ENTER=YES.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 BASIC INTERPRETER - COMPILER

Page:
Section:

1
3.5.15

BASIC: SAVE
SAVE A PROGRAM IN A LIBRARY

3.5.16 SAVE A PROGRAM IN A LIBRARY BASIC: save

This command will enable a user to save a BASIC program in an
OS/3 library. For editing, the source for a BASIC program is
retained in a text editor work file; to save the source in a more
permanent place, the user would use the "SAVE" command.

Syntax:

Where:

Save file

file The catalogued name of the OS/3 library which is
to contain the current program. The BASIC monitor
will create a library element containing the
source of the current program (set by a previous'
"Old" or "New" command).

Error Conditions:
None.

Page:
Section:

1
3.5.16

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

•

BCP
BATCH TERMINAL COMMAND PROCESSOR

3.6 BATCH TERMINAL COMMAND PROCESSOR BCP

The TIP/30 Batch Terminal Command Processor (BCP) is a system
level transaction program. BCP is activated whenever an input
message arrives from an idle batch terminal. Typical batch
terminals are IBM-3780, IBM-3741, IBM-2780, UDS-2000, etc .. Batch
terminals are file oriented devices. They always send/receive
complete files of data. A file may consist of one or more records,
and take several communications I/O's to complete.

BCP's functions include:

user logon and logof f

interpreting and executing commands,

running user programs.

The user interacts with BCP from a terminal by preparing and
transmitting files of commands and/or data, and by receiving files
from the host computer system .

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6

BCP

3.6.1

SUMMARY OF BCP COMMANDS

SUMMARY OF BCP COMMANDS BCP

All BCP commands must begin in column 1 of the input message and
begin with an@ (commercial at-sign). The following is a summary of
the valid BCP commands available in this release:

Command

CALL
DELETE
FIN
FORK
IN
LOGON
MSG
PRINT
PUNCH
QUEUE
RECEIVE
RUN
SEND
SUBMIT

Function

call user program
delete spool files
logoff the system, disconnect
call user program in background
transmit from terminal to system spool file
logon to the system
send message to computer operator
transmit from system spool file to terminal
transmit from system spool file to terminal
display spool queue
transmit from terminal to system file
start up a batch job on the system
transmit from system file to terminal
copy to RBPIN queue and call RB symbiont

Page: 1
3.6.1

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

BCP KEYWORD SHORTFORMS

3.6.2 BCP KEYWORD SHORTFORMS

Keyword

COMPRESS
COPIES
DELETE
FI LEID
FIN
FORM
IN
INLINE
PAGE
PRINT
PUNCH
QUEUE
RECEIVE
SEND
STEP
STOP
USING

Alternate spelling
------------------------------------co
COPY
DE
LABEL, LABLE
LOGOFF
FD
IN
INL
PA
PR, OUT
PU
QU
RE
SE
STE
ST
USE

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

BCP

Page:
Section:

BCP

1
3.6.2

BCP
BCP COMMAND LANGUAGE

3.6.3 BCP COMMAND LANGUAGE BCP

Once the user has successfully logged on he may begin
transmitting BCP commands. All BCP commands are of a similar
format. The commands begin in column one (1) with an @. Next is the
command itself. Next are any positional parameters separated by
commas. Next are any keyword parameters. The entire command may be
termin~ted by a period.

Sgntax:

@COMMAND Parm1, .. , Parm4 KEY 1=va11, .. , KEYn=va 1 n
Where:

@ all commands begin with an at-sign '@'.

COMMAND

PARAMETERS

KEYl=

is the BCP command being used. (each command is
documented in later sections)

are zero thru four optional fields which are used
to specify variable information.

keyword parameters as required by each command.
The keywords must be spelled in full (the defined
alternate spelling may be used}.

Optional parameters are enclosed in square brackets when being
documented in this section. Example: [filename].

Example:

@PRINT ALL JOB=TESTBCP COPIES=2

An attempt is made to support Univac's RBP style of commands. If an
equivalent RBP command is supported it will be listed at the end of
each section describing the BCP command. Commands may begin with
"/R" instead of "@". This will have the same effect as specifying
INLINE=YES as a parameter.

Page:
Section:

1
3.6.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BCP: ACKINAK
BCP STATUS MESSAGES

3.6.4 BCP STATUS MESSAGES BCP: ack/nak

All informational and status messages returned by BCP will begin
with one space and then the characters BCP:. (' BCP:'). The next
three letters will be ACK if this is an affirmative reply or NAK if
it is a negative reply.

Followino the ACK/NAK status is some informational message.
Following the message will be the time of day in the format HH:MM.

For example:

' BCP:ACK LOGON ACCEPTED FOR RJNORMAN SITE:ARC 17:30'

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.4

BCP: CALL

3.6.5

USER PROGRAM EXECUTION

USER PROGRAM EXECUTION BCP: call

To execute a user written program use the CALL command. The
transaction code may be followed by one or more spaces and up to
six parameters. These parameters make up the called program's
Command Line. Command line parameters may not be more than eight
characters in length and are separated by commas (,},slashes (/},
or one or more blanks. When the user program receives control,
these parameters may be retrieved from the CDA (continuity data
area). Alphanumeric parameters are left justified and space filled.
Numeric parameters are right justified and zero filled. The
parameters are stored in eight consecutive eight byte fields.

Syntax:

Where:

@CALL PROGNAME Param-1, ... , Param-4

PROGNAME is the name of the program to be activated. This
name is the catalogued name.

Example:

@CALL TAX WARD6

This command calls the program 'TAX' and passes the parameter
'WARD6' to the program in the first eight bytes of the continuity
data area.

NOTE: the input file is not cleared, the user program must do
that.

Page:
Section:

1
3.6.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

9,

•

BCP: DELETE
DELETING PRINT FILE

3.6.6 DELETING PRINT FILE BCP: delete

This command must supply either a form-name or job-name
printout which is to be deleted from the spool file. This
must have already been created and placed in hold mode
spooler.

The user-id must match either the job name or the form name
you are allowed access to the print file.

of the
printout

in the

before

Syntax:

@DELETE [q-name) [ALL] [FORM=formname) [JOB=jobname] [STEP=n]

Where:

q-name

ALL

FORM=f ormname

JOB=jobname

STEP=n

Example:

optional positional paramter 1. This
spooler queue name which is to be deleted.
default to the printer spool (PR). Other
include: RDR, PU, RBPPR, RBPPU.

will cause all spool files which match the
criteria to be deleted.

is the form name of the printout wanted •

is the JOB name wanted.

is the job step number to delete.

@DELETE FORM=STAND1 JOB=MYCOMPLE

is the
It will
choices

given

This command deletes the printout with the form name of 'STAND!'
and job-name of 'MYCOMPLE'.

If INLINE=YES was not specified then the terminal will receive a
message for each spool file deleted.

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.6

BCP: FIN
TERMINATING BCP

3.6.7 TERMINATING BCP BCP: fin

The FIN command is used to terminate BCP and log the user off
the system.

Syntax:

@FIN

no parameters are required.

Example:

@FIN

Reply message:

Page:
Section:

LOGGED OFF - PLEASE DISCONNECT

RBP equivalent /RLOGOFF

1
3.6.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

BCP: FORK
BACKGROUND PROGRAMS

3.6.8 BACKGROUND PROGRAMS BCP: fork

TIP/30 provides the facility to execute programs in the
background environment. A background program is not associated with
any terminal and therefore cannot solicit input. It may, however,
use all other TIP/30 functions (ie. call other programs, send
output to any terminal, call TIPTIMER to suspend itself, etc). To
start a program in a background environment use the FORK command.

Example:

@FORK POSTAR 6

In response to the above command, BCP would call TIP/30
to start the program 'POSTAR' in a background
environment. BCP would then continue to interact with the
user while the background program executes.

Reply message: - none, BCP continues to read input file •

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.8

BCP: IN

3.6.9

CREATE INPUT READER SPOOL

CREATE INPUT READER SPOOL BCP: in

This command supplies the label which is to be assigned to an
input reader spool file. BCP will create the spool file and store
the incoming data records in it. This command would normally be the
first record of a data file. The remainder of the data file (up to
end-of-file or another command) is stored in the input reader spool
file. At end of file a '/*' record is written to the spool file.

Syntax:

@IN LABEL='label' [SIZE=n] [RETAIN=Y] [INLINE=Y] [XPAR=YES]

Where:

LABEL='label' is the label of the input reader file to be
created.

SIZE=n

RETAIN=Y

INLINE=Y

XPAR=YES

One of user-id, group names etc .. must match the
pref ix of the label or it will be considered a
security violation.

NOTE: if an input spool file of the same label
already exists then it will be deleted before this
current one is stored.

n is the input record size. Default size is 128.

the spool file will be retained after being read
by the batch job. The default value is R=N.

the data follows immediately in this file.
Normally the input file is cleared and BCP will
tell the terminal to send the data file.

send data in transparent mode.

Reply message: (if INLINE=Y was not specified)

READY TO RECEIVE label - PLEASE XMIT DATA

When the terminal has received the above message it should then
send the data file.

RBP format //DATA FILEID=????? followed by the data, followed
by // FIN.

Page:
Section:

1
3.6.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BCP: IN
CREATE INPUT READER SPOOL

Example:

Terminal Host

@IN LABEL='MAILUPDT' ,SIZE=SO
READY TO RECEIVE MAILUPDT - PLEASE XMIT

NAME1
NAME2
NAME3

ADDRESS1
ADDRESS2
ADDRESS3

3 RECORDS TRANSFERED. FILE: MAILUPDT

This stores 3 data records in the input rdr spool
I MAILUPDT'.

If any error occurs while opening the spool file one of the
following messages is sent to the terminal:

ERROR: CREATING SPOOL FILE COMMAND: IN SITE: site-id

ERROR: NO MEMORY FOR SPOOLER COMMAND: IN SITE: site-id

ERROR: SECURITY VIOLATION COMMAND: IN SITE: site-id

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

2
3.6.9

BCP: LOGON
USER LOG-ON PROCEDURE

3.6.10 USER LOG-ON PROCEDURE BCP: logon

Traffic from an idle batch terminal (idle means no-one logged
on), will cause BCP to be loaded for that terminal.

Once activated, BCP will consult the TIP/30 catalogue to see if
the terminal name has been catalogued as a user-id. If the terminal
name is a valid user-id then no logon is required. If not BCP will
read the in-coming data.

The first record must contain

@LOGON user-id,password[,JOB=jobid][,SIZE=n][,MODE=type]

The 'user-id' is verified in the TIP/30 catalogue. If valid then
the host console is notified of the successful logon (TI#67
message). If not valid then an error message will be sent back to
the terminal attempting connection.

Where:

Page:
Section:

user-id

password

JOB=jobid

SIZE=n

COMPRESS=Y

TIMEOUT=n

1
3.6.10

as setup in the TIP/30 catalogue file.

used for security purposes.

is stored in the first eight (8) bytes of the CDA
and may be accessed by user written programs which
may be called by BCP. This 'jobid' is used later
as the default JOB= value for other commands.

is the new default record size. The remote
terminal must be able to handle a message of this
size. The communications software on the host
computer (ie. ICAM) must have large enough network
buffers. This value is passed in bytes 9 thru 16
of the CDA as a right justified, zero-filled
number.

use 3780 data compression for non-transparent data
transmission.

'N' - do not do any data compression.

the time in minutes for which BCP is to wait for
the next command. When BCP has nothing to do it
will go to sleep for a given time interval. If no
more commands arrive then BCP will automatically
log the user off. The default value is the TIMEOUT

TIP/30 Reference Manual
Version 2.5 (82/08/01)

USER LOG-ON PROCEDURE

OBUFR=n

FF=NO

MODE=type

BCP: LOGON

value given in the TIP/30 generation.

the maximum output buff er size to be used. This
overrides the MODE defaults.

this will cause BCP to not send the form feed
character as a home paper command when printing.
An Escape 'G' will be sent instead. The default is
to use the FF character.

is the terminal type. BCP needs to know if it is
an IBM-2780, IBM-3741, IBM-3780 or UDS-2000. The
default is UDS-2000. If the remote terminal is an
IBM-2780 then specify MODE=IBM-2780.

After a successful logon a TI#67 message is sent to the operator
console. The rest of the input is read and ignored. Then the
following message is sent back to the remote terminal.

LOGON ACCEPTED FOR user-id SITE IS site-id

Other error message may include:

INVALID LOGON FORMAT
INVALID USER-ID
INVALID PASSWORD

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

2
3.6.10

BCP: MODE

3.6.11 MODES OF OPERATION

The following table gives the
default actions unless overidden by

------OUTPUT--------

MODE

IBM-2780
IBM-3780
MOHAWK
IBM-3741
UDS-2000
NIM-3305
DCT-1000
DCT-2000

Page:
Section:

Data
Compress

No
Yes
Yes
Yes
Yes
Yes
No
No

1
3.6.11

Buffer Lines Record
Size I msg size

------ ------ ---- ------- ------ -----
160 1 136
512 21 136
512 21 136
512 21 136
512 21 136
512 500 136
160 1 160
160 1 160

MODES OF OPERATION

BCP: mode

MODE value and corresponding
keyword parameters.

------INPUT---------
Buffer
Size

512
512
512
512
512
512

80
80

Lines Record
I msg Size

------ ------------ ------
50 80
50 128
50 128
50 128
50 128

500 128 (DATAPAC)
1 80
1 80

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-----------·~-----------

•

•

•

BCP: MSG
SEND COMPUTER OPERATOR A MESSAGE

3.6.12 SEND COMPUTER OPERATOR A MESSAGE BCP: msg

The MSG command allows a terminal user to send the host computer
operator a message. When the message is received, it is prefaced by
the USER-ID and terminal name of the sender.

Syntax:

@MSG TEXT

Where:

TEXT is the message (50 characters maximum) to be sent.

Example:

@MSG INVENTORY UPDATE IS COMPLETE .

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.12

BCP: PRINT
TRANSMIT PRINT FILE

3.6.13 TRANSMIT PRINT FILE BCP: print

This command supplies the form-name of the printout which is to
be sent to the requesting terminal. This printout must have already
been created and placed in hold mode in the spooler. The remainder
of the communications file is read to clear the line, and then the
print file is transmitted to the remote terminal.

The user-id must match either the job name or the form name before
you are allowed access to the print file.

Syntax:

@PRINT [q-narne] [ALL] [FORM=forrnnarne] [JOB=jobnarne]
[STOP=n]
[SIZE=sizel

[STEP=step#] [PAGE=n]
[COPY=n] [COMPRESS=N]
[FF=Y/N] [DELETE=YES]

Where:

All parameters must fit on one input line. All parameters are
optional, but you must specify at least one of FORM= or JOB=.

q-name

ALL

COMPRESS=N

COPY=n

DELETE= YES

FORM=f ormname

Page:
Section:

FF=NO

1
3.6.13

optional positional parameter 1. This is the spool
queue name which is to be transmitted. It will
default to the printer spool queue (PR). Other
choices include: RDR, PU, RBPPR, RBPPU.

will cause all spool files which match the given
criteria to be sent.

indicates that the data is not to be compressed.

'n' is the number of copies to print.

this will cause BCP to delete the spool file after
transmission.

is the form name of the printout wanted.

this will cause BCP to not send the form feed
character as a home paper command when printing.
An Escape 'G' will be sent instead. The default is
to use the FF character.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

BCP: PRINT
TRANSMIT PRINT FILE

JOB=jobname is the JOB name wanted

PAGE=n 'n' is the starting page number.

SIZE=size is the size of records to be sent.

STEP=n 'n' is the step number of the job for the printout

STOP=n In' is the stopping page number.

Example:

@PRINT ALL FORM=MAILLIST

This command transmits the printout with the form name of
'MAILLIST' to the terminal.

If the printout does not exist BCP will send back

NO DATA AVAILABLE FOR JOB=jobxx FORM=f ormxx

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

2
3.6.13

BCP: PUNCH
TRANSMIT PUNCH FILE

3.6.14 TRANSMIT PUNCH FILE BCP: punch

This command supplies the name of the punch file which
sent to the requesting terminal. This punch file must have
been created. The remainder of the communications file is
clear the line, then the punch file is transmitted to the
terminal.

is to be
already
read to

remote

The user-id must match either the job name or the form name
you are allowed access to the punch file.

before

Syntax:

@PUNCH [q-name] [ALL] [LABEL=formname] [JOB=jobname]
[STOP=nl
[SIZE=size]

[STEP=step#] [PAGE=n]
[COPY=n] [COMPRESS=N]
[DELETE=YES]

Where:

All parameters must fit on one input line. All parameters are
optional, but you must specify at least one of FORM= or JOB=, or
LABEL=.

Page:
Section:

q-name

ALL

COMPRESS=N

COPY=n

DELETE= YES

LABEL= label

JOB=jobname

PAGE=n

1
3.6.14

optional positional parameter 1. This is the spool
queue name which is to be transmitted. Default is
the punch spool queue (PU). Other choices include:
RDR, PU, RBPPR, RBPPU.

will cause all spool files which match the given
criteria to be sent.

indicates that the data is not to be compressed.

'n' is the number of copies to print.

this will cause BCP to delete the spool file after
transmission.

is the spooler label of the punch file.

is the JOB name wanted

'n' is the starting card-image number.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BCP: PUNCH
TRANSMIT PUNCH FILE

SIZE=size is the size of records to be sent.

STEP=n 'n' is the step number of the job for the printout

STOP=n 1 n 1 is the stopping card-image number.

Example:

@PUNCH ALL LABEL=MAILLIST

This command transmits the punch file with the name of 'MAILLIST'
to the terminal.

If the punch file does not exist BCP will send back

NO DATA AVAILABLE FOR JOB=jobxx FORM=f ormxx

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

2
3.6.14

BCP: QUEUE
DISPLAYING PRINT FILE QUEUE

3.6.15 DISPLAYING PRINT FILE QUEUE BCP: queue

This command may supply either a form-name or job-name of the
printouts which are to be summarized to the terminal. The printouts
must have already been created and placed in hold mode in the
spooler. The job name, job step number, program name, form name,
and number of pages in the spool file is listed back to the
terminal for each spool file which satisfied the search criteria.

Syntax:

@QUEUE [FORM=formname] [JOB=jobname]

Where:

FORM=f ormname is the form name of the printout wanted.

JOB=jobname is the JOB name wanted

Example:

@QUEUE FORM=STAND1

This command sununarizes the printouts with the form name of
'STAND!'.

In reply to this command a sequence of records will be sent back.
Each record is as follows.

JOB=xxxxxx STEP=nn PROG=xxxxxx FORM=xxxxxx PAGES=nnnnn LABEL=label

Page:
Section:

1
3.6.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BCP: RECEIVE
SEND DATA FILE TO HOST

3.6.16 SEND DATA FILE TO HOST BCP: receive

This command supplies the file name and an optional LFD name of
a data file into which BCP is to store the incoming data records.
The remainder of the input file is read to clear the line.

Sgntax:

@RECEIVE FILE [FILEID=lfd] [INLINE=YES]

Where:

FILE

FILEID=lfd

INLINE=YES

is the file name as generated in TIP

is an LFD name to override that known to TIP.

This will modify the file (as it was generated
into TIP/30) to now refer to the specified LFD
name.

data follows inline.

BCP will reply with:

READY TO RECEIVE label - PLEASE XMIT DATA

Example:

Terminal Host

@RECEIVE UDSSO,FILEID=MAILUPD
READY TO RECEIVE UDSSO - PLEASE XMIT

NAME1
NAME2
NAME3

ADDRESS1
ADDRESS2
ADDRESS3

3 RECORDS TRANSFERED. FILE: UDSSO

this stores 3 data records in the data file 'MAILUPDT'.

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.16

BCP: RUN
RUN BATCH JOB

3.6.17 RUN BATCH JOB BCP: run

The JOB command allows a user to RUN a batch job from a
terminal.

Syntax:

@RUN JOB-NAME, ,parameters

Where:

JOB-NAME is the name of the batch job to be run.

Reply message:

JOB REQUESTED: JOBNAME,,Parameters

Example:

Page:
Section:

@RUN AP01, ,MONTH=MARCH

1
3.6.17

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-------------------------------·--·-·· •.

•

BCP: SEND
SEND DATA FILE TO TERMINAL

3.6.18 SEND DATA FILE TO TERMINAL BCP: send

This command supplies the TIP file name and optionally the
LFD-name of a data file which is to be sent the the requesting
terminal. This file must be defined to TIP and should contain valid
data. The remainder of the communications file is read to clear the
line, and then the data file is transmitted to the remote terminal.

Syntax:

@SEND FILE [FILEID=lfd] [XPAR=YES]

Where:

FILE

FILEID=lfd

XPAR=YES

Example:

is the file name as generated in the TIP system.

is an optional LFD name to override the name known
by TIP/30.

This command
was generated
used without
with the last

will actually modify the file as it
into TIP/30. If the file is later
FILEID then it has the name as given
FI LEID.

send data in transparent mode.

@SEND UDS80 FILEID=MAILMST

This command transmits the file MAILMST using the DTF of UDS80.
UDS80 was generated into TIP, and MAILMST was specified in the TIP
job control.

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

l
3.6.18

BCP: SUBMIT
SUBMIT REMOTE BATCH JOB

3.6.19 SUBMIT REMOTE BATCH JOB BCP: submit

The SUBMIT BCP command allows a user to write data into the
remote batch input reader queue (RBPIN) and call the RB symbiont to
process it.

This command operates similiar to the IN command. At end of file
a'// FIN' record will be appended to the spool file.

To use this facility the OS/3 supervisor must be generated with
SPOOLING=REMOTE.

Syntax:

@SUBMIT [LABEL=label] [INLINE=YES]

Where:

LABEL= label spooler file label

INLINE=YES data folows inline, begining with a JOB card.

Reply message:

12 RECORDS TRANSFERRED.

Example:

Page:
Section:

@SUBMIT INLINE=YES.
II JOB TEST
II QPR 'HELLO WORLD'
I&
II FIN

1
3.6.19

-+*+-

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

USING BCP INTERACTIVELY

3.6.20 USING BCP INTERACTIVELY BCP

BCP may also be called from an interactive terminal
UTS-400. The transaction code is BCP. Interactive BCP may
to send/receive data files to/from a batch terminal. To do
must not be concurrently running for the batch terminal.

A summary of available commands follows:

Command

END
IN
MODE
PRINT
RECEIVE
SEND
USING

Function
--end BCP
receive spool file from batch terminal
specify terminal type
transmit spool file to batch terminal
receive file from batch terminal
transmit file to batch terminal
specify terminal name to SEND/RECEIVE

All of the commands (SEND, RECEIVE, PRINT, & IN) have
format as described in previous sections with the
exce~tions:

BCP

such as a
be used
this BCP

the same
following

The commands should be entered on the interactive
terminal without the '@' character.

One additional keyword parameter may be supplied:

USING=terminal-id

Where 'terminal-id' is the name of the batch terminal to be
involved in the data transfer process.

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.20

BCP
USING BCP INTERACTIVELY

Example:

IN FILEID=BCPINPUT USING=BSC2

After successful initiation BCP will display

BCP STARTED ON xxx

If BCP could not be started (terminal not up or does not exist
or is already busy) the following message would be received:

BCP NOT STARTED

All error and diagnostic messages are sent back to the
initiating terminal as unsolicted messages (ie. you must press MSG
WAIT).

Page:
Section:

2
3.6.20

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ICAM GENERATION CONSIDERATIONS
BCP: I CAM

3.6.21 ICAM GENERATION CONSIDERATIONS BCP: icam

!CAM must be generated with network buffers large enough to hold
the largest message which may be generated by BCP. This seems to be
required by !CAM itself. Otherwise you may get NO NETWORK BUFFERS
or no data will be transmitted to the terminal.

You should use disk queueing for all of the terminal queues for
Bi-Sync terminals.

Place LINE definitions for Bi-Sync terminals at the end of the
!CAM gen. This should be done so as not to interfere with
interactive terminals.

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

1
3.6.21

BCP: ICAM SAMPLE ICAM

3.6.22 SAMPLE ICAM BCP: icam

COMMCT
NET1 CCA TYPE=(TCIJ ,FEATURES=(OPCOM,OUTDELV)

BUFFERS 20, 192,4,ARP=35,STAT=YES
LNOB LINE DEVICE=(UNISCOPE) ,TYPE=(9600,SYNC) ,ID=OB,STATS=YES
ARC1 TERM ADDR=(21,51) ,FEATURES=(U400,1920) ,AUX1=(COP,73), x

LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN
ARC2 TERM ADDR=(21,52),FEATURES=(U400,1920) ,AUX1=(COP,73), x

LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN
LN09 LINE DEVICE=(BSC,516,EBCDIC) ,TYPE=(9600,SYNC) ,ID=09 .
BSC1 TERM FEATURES=(BSC,512,MULTI,PRIMARY,TRANSPARENT,0,512), x

LOW=DQBSC,MEDIUM=DQBSC,HIGH=DQBSC
DQFILE DISCFILE FILEDIV=4
DQBSC DISCFILE FILEDIV=4
TCIFLE DISCFILE MSGSIZE=2560

END CC A
MCP MCPNAME=C3, x

CACH=(OB,9600,SYNC), x
CACH=(09,9600,SYNC)

END

Page: 1 TIP/30 Reference Manual
Version 2.5 (82/08/01) Section: 3.6.22

e

•

TIP/30 CATALOGUE MANAGEMENT
CAT

3.7 TIP/30 CATALOGUE MANAGEMENT CAT

The TIP/30 catalogue file contains the information needed to
execute online programs. The catalogue is organized as a hashed (or
calced) file containing three record types:

User-id

Program

File

These records identify valid users of the online
system.

These records describe valid online programs
(transactions). A program record identifies all
the run time requirements of the program. (ie:
load module name, MCS size, Work size etc).

These records describe valid online files. A
record in the catalogue links the logical
name (the name used in a program) with the
name (the name used in the operating system).

file
file

LFD

Each record in the catalogue has a 25 character key. This key is
composed of four fields which together uniquely identify each
record in the catalogue. Duplicate keys in the catalogue are not
allowed. The four fields that form the catalogue key are as
follows:

Group This is the name of the group to which the item
belongs. In the case of a user-id record, this
field will contain the same value as the user-id.
Any items (programs or files) catalogued in a
group with the same name as a user-id record, are
considered to be in that user's private group.

Id This is the id of the program (TRID) or file (FID)
described by the catalogue record. If the
catalogue record is a file type record, then this
field would contain the FID (file id) of the file.
If the record is a program type, then this field
would contain the TRID (transaction id or program
name). If the record is a user-id type, then this
field is not used.

Elt this field is only used if the catalogue record
describes a TIP/30 dynamic file. Dynamic files
have a two level name (id/elt), and this field is
used to contain the element name of the dynamic
file.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

1
3.7

CAT

Type

TIP/30 CATALOGUE MANAGEMENT

this is the type code of the catalogue record.
There are five type codes used as follows:

U - user-id record
P - program (TRID) record
F - file (FID) record

- file records in the catalogue
may also be refered to by the
class code which identifies the type
of file as follows:
S - system (data management) file record
D - dynamic file record
E - dynamic edit file record

Since the catalogue is a hashed file (ie. no index) it cannot be
processed in any order other than on a block by block basis (ie:
block 1, 2, 3 .•.). To produce an ordered listing of the file,
either on-line or in batch, it must be entirely scanned at the
block level to extract the desired records, then those records
selected must be sorted to produce the desired listing. An
understanding of this fact will help the user obtain listings of
records in the catalogue in as short a period of time as possible. •

The catalogue is implemented using a two partition SAT file, the
second partition is used to store the screen formats developed
using t~e TIP/30 Message Control System (MCS). The catalogue file
should never be processed by programs other than those provided
with the TIP/30 system. An exception is the operating system file
dump/restore program (DMPRST).

Page:
Section:

2
3.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

ON-LINE CATALOGUE MANAGER
CAT

3.7.1 ON-LINE CATALOGUE MANAGER CAT

TT$CAT (usually referenced by the transaction id of CAT) is a
system utility program which displays, updates, adds, and deletes
records in the TIP/30 catalogue. The on-line catalogue manager
operates interactively in a free-format command mode. The user
enters a command code, positional parameters (to identify the
required item), and keywords to supply values for the item.

CAT also accepts command line parameters for the list function.

Syntax:
Command P1,P2,P3,P4 key1=v1,key2=v2,key3=v3, ... ,keyn=vn.

Where:
Command is the function to

List List the
terminal.

be performed. The valid functions are:
TIP/30 catalogue on the interactive

Write Write the TIP/30 catalogue to a source element
within a library.

DELete

Prog

User

File

End

Delete catalogue record(s).

Create/Update a program record.

Create/Update a User-id record.

Create/Update a file record.

Terminate execution of the
manager.

online catalogue

Pl,P2,P3,P4 are positional parameters suppl~ed with the command.
For the Prog, User, and File commands, only positional
parameter one is used, positional parameters two, three
and four must not be specified. For the List, Write,
and DELete commands positional parameters one through
four are used to identify the item(s) to be processed.

keyl=, ..• keyn= are keyword parameters that are used to supply
additional information.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

1
3.7.1

CAT: SECURITY SECURITY LEVEL SPECIFICATION

3.7.2 SECURITY LEVEL SPECIFICATION CAT: security

There is one keyword common to each catalogue entry which is
used by the TIP/30 Security system.

SECurity=level - determines the security
level of the catalogue record.

- entered as a numerical value from
1 to 255.

- also may be entered as a reserved

=TECH
=MAST
=SYST
=PROG
=APPL

word as follows:
- sets SECURity=1
- sets SECURity=9
- sets SECURity=19
- sets SECURity=29
- sets SECURity=32

SECurity= specifies a value in the range of 1 to 255 which
defines the security level of the item. The lower
the security number the higher the priority. The
security of an item may also be specified by using
a reserved word in place of the numeric security
level number. The five reserved words that are
allowed with the security= keyword are TECH, MAST,
SYST, PROG, APPL.

The following table lists the security ranges provided and shows
the reseved word equivalent. This table also indicates the
functions allowed by the the online catalogue manager for users
within each range.

Page: 1
3.7.2

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•

SECURITY LEVEL SPECIFICATION

Security
Level

Reserved
Word

Equivalent

CAT: SECURITY

Remarks (allowable functions)
--TECH Master User of the highest priority

2-9 MAST

10-19 SYST

20-29 PROG

30-255 APPL

-may create other Master Users.
-may list, create, update, delete
any record in the catalogue.

Master User
-may list, create, update, delete
any record in the catalogue except
user-id records of master users

System User
-may list, create, update, delete
any catalogue record in a group
to which the user has access

-may create user-id records, but may
not allow access to a group that
the system user does not
have access to.

Programmer
-may list any catalogue record in a
group to which the user has access

-may create, update, delete program
records in the user's private group

-not allowed to create, update file
or user-id record.

Application user
-not allowed to manipulate the
catalogue in any manner.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

2
3.7.2

CAT: SECURITY SECURITY LEVEL SPECIFICATION

When cataloguing files and programs assign them a security level
numerically equal to or less than the security level of the user
who will be accessing them.

When a user attempts to access a file or to run a program the
following security check takes place for these items:

IF user security is less than item security
THEN deny access.

IF user security is not lower than item security
IF the item is time-locked,

Page:
Section:

THEN deny access
ELSE allow access.

3
3.7.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DEFINITION OF CATALOGUE GROUPS CAT: SECURITY

3.7.3 DEFINITION OF CATALOGUE GROUPS CAT: security

The concept of grouping in the TIP/30 catalogue must be
understood to properly utilize the catalogue and its features.
Every program and file is catalogued within a group (a program or
file may appear in several groups).

Every user of the system has a list of groups to which the user
has access.

When a user requests access to a program or file, each group to
which to user has access is consulted to determine if the requested
item exists in that group. The order in which the groups are
consulted is known as the catalogue order of search and is defined
as follows:

Private

Group 1

Group 2

System

This is the users private group. Any items
(programs or files) catalogued in a group with the
same name as the user-id name are considered to be
in the private domain of the user.

This is an optional (elective) group and is
consulted if the user-id record was created using
the GRouP=(a,b) keyword parameter. The first
subparameter of the GRouP= keyword is used to name
the group.

This optional (elective) group is similar to Group
1 above. It is the third group to be consulted
when looking for an item. To specify this group
name, the second subparameter of the GRoup=
keyword of the User command is specified as the
group name.

This group is the last group consulted in the
order of search. The name of the group is TIPY
and it is available to all users.

It is important to note that grouping and the order of search
c?ncepts only cont~ol which item in the catalogue is selected for a
given user. It is the security level of the item that controls
whether the item may be used.

It is through the specification of groups and security levels
that the TIP/30 security mechanism is able to control user access
to programs and files.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

1
3.7.3

CAT: USER
CATALOGUING A USER-ID

3.7.4 CATALOGUING A USER-ID CAT: user

The catalogue manager command USER either creates or modifies a
user-id record in the TIP/30 catalogue.

Syntax:

User

Where:

user-id
ACcounTs=
GRouPs=
MaXUSers=
MENU=
PassWorD=
PROG=
SeaRCH=
SECurity=

user-id

ACCOUNTS=(a,b,c)

GROUPS=(gl,92)

Page:
Section:

MAXUSERS=

1
3.7.4

required positional parameter
list of valid accounts for this user
user group 1 and 2
max concurrent uses of this user-id
screen to be used as menu
password to protect this User-id
program to auto run at logon time
full catalogue search or just TIPY
user security level

Required and must be specified as the first
parameter of the USER command. This is a
positional parameter and is used to identify the
name of the user-id being created or updated.

specifies a list of accounts that can be used by
this user when logging on to the system. A maximum
of 16 account numbers can be specified. Account
numbers are a maximum of four characters long.

If a user is assigned account numbers then the
user must supply one of the valid account numbers
at logon time. If this is not done the user will
not be allowed to logon.

These optional (elective) groups are in addition
to the user's private group and the system group
when TIP searches the catalogue to resolve a
reference to a program or file.

This parameter may be omitted, or only one group
name may be given.

specifies the maximum number of concurrent users
of this user-id. Specifying MXUSR=l implies that
the user-id can only be used on one terminal at a
time.

If this keyword is not specified, there is no
limit to the number of people logged on with this
user-id.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CATALOGUING A USER-ID

MENU=mcsfmt

PASSWORD=pwd

PROG=trid

SEARCH=

SECURITY=nn

CAT: USER

This is the name of a screen format defined by
MSGDEF to be used as a menu (or prompt). Whenever
a program terminates without a reply to the
terminal, this format will be displayed. The user
may also have the menu displayed by pressing the
MSG WAIT key while in system mode. If this
parameter is not not specified, then a standard
prompt message is used.

specifies the password to protect
user-id. (ie. the password must
User-id at logon time).

use of this
accompany the

trid is the transaction code which is to be called
immediately after logon.

When this feature is used
automatically be logged off
program ends.

the user will
when the specified

This facility allows the
specific program (usually
excluding the user from
the system.

user to be limited to a
a menu program) thus
all other facilities of

controls the catalog~e searching done for this
user. If SRCH=NO 1s specified, then only the
system group (TIPY) is searched for programs and
files. If SRCH=YES is specified, then a complete
order-of-search (see previous discussion) will be
performed.

is the security level for this user. This controls
access to programs and files. The security code
may be specified as a number (1-255) or as one of
the following reserved words (TECH, MAST, SYST,
PROG, APPL).

The security level may not be specified as a
numerically lower value than the security level of
the user issuing the command.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

2
3.7.4

-------------------------~---- -------------- - --- ------------ ----------~

CAT: PROG
CATALOGUING A TRANSACTION

3.7.5 CATALOGUING A TRANSACTION CAT: prog

The catalogue manager command PROG creates or modifies a program
entry in the TIP/30 catalogue. All programs must be catalogued. The
format of this command is as follows:

Syntax:

Prog

Page:
Section:

trid
CDAsize=
CMdline=
DeBug=
EDIT=
ENTer=
Files=
FRom=
GRouP=
INsize=
IMS=
LoaDM=
MAXsize=
MCSsize=
OUTsize=
SECur i ty=
TiMelocK=
TRANslate=
USeage=
VOLatile=
WoRKsize=

1
3.7.5

required positional parameter
size of CDA required by program
command line parameters required
type of debugging: YES I NO I IDA
removal of communications characters
allow execution from standard prompt
files to be auto accessed
use Keywords from another PROG entry
group to which this prog entry applies
size of IMA required (IMS emulation)
program run via IMS emulation
load module name
max activation record (IMS emulation)
size of MCS area required by program
size of OMA required (IMS emulation)
security level of program
time range program canNOT be run
translate input message to upper case
program characteristics
size of VOLATILE data area required
size of WORK area required by program

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CATALOGUING A TRANSACTION CAT: PROG

Where:

tr id

CDASIZE=n

DEBUG= YES

DEBUG= IDA

DEBUG=NO

EDIT=YES

EDIT=c

ENTER=NO

FILES=(,,)

FROM=grp/trid

is a required positional parameter specifying the
transaction-id used to schedule this program.

Programs can be called only using their catalogued
transaction-id (trid).

n is the CDA size required by this program.

if the program is to be used in a debug mode. The
use of this option causes the program to be
executed with hardware storage protection in
effect.

To use this facility the OS/3 supervisor must be
be generated with RESMOD=SM$ASCKE.

if this program is to be loaded with
Interactive Debug Aid (IDA) in control.

No debugging.

the

for input messages received by TIPTERM or IMS/90
emulation all communications characters,
sequences, dice and multiple spaces will be
removed. Default is EDIT=NO.

specifies a character to be used as the field
separator in input messages received by TIPTERM or
IMS/90 emulation.

this program may not be called directly
entering the TRID via the TIP command line.

by

That is, it may only be called by another program.
Default=YES.

Up to 12 files to be opened when the program is
loaded.

Indicates that the keywords (except GRP=) for the
program entry for "grp/trid" are to be copied to
this program.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

2
3.7.5

CAT: PROG
CATALOGUING A TRANSACTION

GROUP= name group name to which this program belongs.

IMS= YES if this is an IMS/90 program which is to be
emulated.

INSIZE=

LOADM=

MAXSIZE=

MCSSIZE=

OUTSIZE=

SECURITY=

TIMELOCK=(bgn,end)

TRANSLATE=YES

Page:
Section:

USAGE=REENT

3
3.7.5

The IMA size if this is an action program to be
run under IMS/90 Emulation.

names the load
transaction-id.

module associated with the

Default is the same as the trid positional
parameter.

For programs running under IMS emulation and
USAGE=RELOAD, and utilizing immediate internal
succession, this keyword specifies the size of the
largest program in the succession chain.

Size (in bytes) of the load module plus all
required work areas (CDA, WORK, IMA, OMA etc).

The size of the MCS area (parameter passed to
native mode programs.

The OMA size if this is an action program run
under IMS/90 Emulation.

is the security level assigned to
transaction. Specified as a number between 1
255.

this
and

The hours of the day that this program is NOT
available. Specified using a 24-hour clock.

Eg: =(830,1730) or (1800,900).

For input messages received by TIPTERM or IMS/90
emulation all alphabetic characters will be forced
to upper case.

Def ault=NO.

This program is to be used re-entrantly. This is
also specified for COBOL programs which were
compiled with the shared code option [OUT=(M) for
COBOL68; IMSCOD=YES for COBOL74].

If a COBOL program you must also specify the
VOLATILE data area size (see VOLATILE=).

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

CATALOGUING A TRANSACTION CAT: PROG

USAGE= REUSE

USAGE=RELOAD

VOLATILE=

WORKSIZE=

Re-entrant programs have 'sticking' power and
reduce disk I/O's needed to schedule the program.

This program is serially re-useable. Only one
process is allowed to use this program at a time.

The process must terminate before the load module
may be used by another process.

Re-useable programs have sticking power.

For COBOL programs the VOLATILE data area size
(VOLATILE=) must also be specified.

This program is to be reloaded each time the
program is used.

This entry is required if the program is neither
re-entrant nor re-useable.

The size of the volatile data area of a shareable
COBOL program.

If this program calls any data base
routines, add four times the number of
in the longest "CALL" parameter list to
reported by the COBOL compiler.

management
parameters

the size

The size of the work area required by this
program.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

4
3.7.5

CAT: FI LE

3.7.6

CATALOGUING A FILE

CATALOGUING A FILE CAT: file

The FILE catalogue statement is used to create or modify a file
entry in the TIP/30 catalogue.

All on-line files must be catalogued and it is recommended that
the user take advantage of the logical naming of files and the
assignment of security codes as these capabilities enhance the
flexibility and security of the system. The format of the FILE
statement is as follows:

Syntax:

File lfn logical file name

Where:

Page:
Section:

GRouP=
LFD=
ReaD=
SECurity=
WR i te=

this file statement for this group
LFD name of the file as given in JCL
"NO" : read not al lowed
security level assigned to this file
"NO" : write not al lowed

lfn A required positional parameter identifying the
logical file name by which user on-line programs
must access the file.

GROUP=

LFD=

READ=

SECURITY=n

WRITE=

1
3.7.6

Group to which this file entry applies. Default
"TIPY".

LFD name of the file as given in the TIP/30 JCL
and in the TIP/30 generation.

"NO" indicates file may not be read. (Output only
file for this group). Default is TIP generation
specification.

is the security level assigned to this file. See
description of Security in previous section.

"NO" indicates file may not be written. (Read only
file for this group). Default is TIP generation
specification.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

CATALOGUE HINTS FOR TESTING PROGRAMS CAT

3.7.7 CATALOGUE HINTS FOR TESTING PROGRAMS CAT

When testing a new program it is recommended that the
transaction code be catalogued with slightly larger work areas
(CDA, MCS, WORK, IMA, OMA, etc ...) than actually required. When the
program is completely tested update the catalogue to reflect the
correct sizes.

During program development the areas tend to grow and the
programmer usually forgets to keep the catalogue up to date. Having
an area catalogued too small may result in some portion of another
program or TIP/30 being destroyed.

Catalogue the program being tested as
DEBUG=YES. When completed declare it
DEBUG=NO, and specify the final volatile
re-entrant programs resident .

USage=RELOAD and possibly
re-entrant (if it is),

data area size. Only make

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

1
3.7.7

CAT
UPDATING CATALOGUE RECORDS

3.7.8 UPDATING CATALOGUE RECORDS CAT

When updating existing catalogue records you need only specify
sufficient information to identify the key of the catalogue record
desired and the keywords for the information which is to be
updated.

Always give the type of record USER, FILE, or PROG; the item's
name, and the GROUP name.

Example:

USER TOMMY PROG=TMENU.
PROG UPDT GRP=AP CDA=768.
FILE MAST GRP=AP SECUR=88.

Page:
Section:

1
3.7.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CATALOGUE STATEMENT CONTINUATION
CAT

3.7.9 CATALOGUE STATEMENT CONTINUATION CAT

CAT will only process the first 72 characters of an input line.

If you are entering data on the terminal, type as much as you
can (up to 72 characters) and then press transmit. CAT will prompt
you again.

Leave at least one space after the SOE character in the prompt
and continue to enter the additional keyword parameters.

When you are entering the last line of a multi-line command,
terminate the last line with a period.

CAT will automatically terminate the previous command if it
reads a line which begins with a command.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

1
3.7.9

CAT: LIST LISTING CATALOGUE ENTRIES

3.7.10 LISTING CATALOGUE ENTRIES CAT: list

For the List and Delete commands, the command line format is as
follows:

Syntax:

List
LS
DELete
Write

Where:

Page:
Section:

Group/Id/Elt [,Type]
Group/Id/Elt [,Type]
Group/Id/Elt [,Type]
Group/Id/Elt [,Type]

GRouP=xxxl
GRouP=xxx]
GRouP=xxxl
GRouP=xxxl

LoaDM=xxxl
LoaDM=xxx]

Group

Id

Elt

Type

1
3.7.10

User-id or group name of the catalogue records to
be processed. Only Master type users may process
catalogue records that have a different group name
than their own user-id or one of the groups to
which they have access. If this parameter is not
given, then the user's private group is used.

name of the item (program or
displayed. If not given, then all
specified group are displayed.

file)
items

to be
in the

The element name of a dynamic file. This parameter
is only valid when used with dynamic file entries.
If not given, all elements are processed.

The types of catalogue records to be processed.
The value for this parameter may be as follows:

- '*'
- 'P'
- 'U'
- IF'

= process all entries
= process program entries
= process User-id entries
= process file (all files) entries
- 'D' = process dynamic file entries
- 'E' = process Edit file entries
- 'S' =process System file entries

If type is omitted, all types are processed
(exception is the delete command which insists on
a supplied type!).

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

LISTING CATALOGUE ENTRIES
CAT: LIST

Note: for the first three parameters (Group, Id, and Elt), the
value entered may be preceded with the asterisk (*) character to
denote a pref ix search. If the value entered is preceded with an
exclamation mark (!), then this is taken to be a prefix search for
items that do not begin with that prefix.

GROUP=

LOADM=

Example:

This optional specification limits
the command to entries matching
group name.

the scope of
the specified

This optional specification limits the scope of
the command to entries (obviously PROGRAM entries)
that refer to the specified load module.

List *,*pay

this would indicate a list of all catalogue records (no
type given) of any group(* alone is a 'match all') and
of any name that starts with the letters 'PAY' (*PAY) •

Additional Considerations:

The 'Write' command will list to the terminal as well as write the
information to a library file called RUN/LISTCAT. This file may be
edited by the text editor and later fed back to 'CAT' via '.IN'
files.

List will produce an unsorted listing.

LS will produce a sorted listing.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 CATALOGUE MANAGEMENT

Page:
Section:

2
3.7.10

cc

3.8

COBOL REFORMATTER (CONVERSION AID)

COBOL REFORMATTER (CONVERSION AID) cc

This utility will reformat a COBOL source program. The input
source element may be in COBOL-68 or COBOL-74 format.

The source is reformatted so that (where possible) the PICTURE
clauses are column aligned, the full spelling of COBOL reserved
words is used, IF clauses are indented to show the scope of nesting
etc.

A keyword parameter is available to allow the specification that
a COBOL-68 to COBOL-74 conversion is to be performed. This is a
syntactic conversion; that is, the necessary spelling changes and
cosmetic changes will be made. The user is still responsible for
changes to the input/output statements that are required.

The CC program assumes that the input module is a syntactically
correct program. If this is not the case, unpredictable results may
occur.

Page:
Section:

1
3.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

COBOL REFORMATTER (CONVERSION AID) cc

Syntax:

IN=fi le/elt,OUT=file/elt [,LIST=N,COPY=N,RENUM=Y,MODE=COBOL74]

Where:

IN= Required keyword parameter giving the input file
and element name.

OUT= Required keyword parameter giving the output file
and element name. May not be the same as IN=.

LIST=

COPY=

RENUM=

MODE=

YES/NO option whether to list the output at the
terminal. Default value is "NO".

YES/NO option whether the input module is a DATA
DIVISION copy book. Default is "NO".

YES/NO option whether to automatically renumber
the level numbers of item in the Data Division in
the output element. Increments of 5 are used.
Default is "YES".

Specifies the type of COBOL for the input module.
The default is COBOL68 to COBOL74 conversion. (The
conversion is only suitable for online programs)

MODE=COBOL68 input is COBOL68 program.

input is COBOL74 program. MODE=COBOL74

MODE=DMS90 input is COBOL74 program which uses DMS/90. The
DMS/90 verbs are processed~

Example:

IN=TIP/TTSAMP,OUT=RUN/TEST,MODE=COBOL74

Reformat element "TTSAMP" from file "TIP" and
put the new version in element named "TEST" in file
"RUN" (YRUN). The input module is in COBOL74 format.

CHAPTER III - ON-LINE UTILITY PROGRAMS
COBOL REFORMATTER (CONVERSION AID)

Page:
Section:

2
3.8

cc
COBOL REFORMATTER (CONVERSION AID)

Error Conditions:
The CC program may indicate FCS errors if an error occurs reading
or writing a file/element.

Additional Considerations:

The CC program keywords must be terminated with a period or no
action will be taken.

The CC program will display "Working
successfully processing your command.

Page:

Please Wait" if it is

Section:
3

3.8
TIP/30 Reference Manual
Version 2.5 (82/08/01)

COMMUNICATIONS CONTROL AREA DISPLAY CCA

3.8.1 COMMUNICATIONS CONTROL AREA DISPLAY CCA

CCA is a utility program which displays information and
statistics derived from tables within !CAM.

To use CCA the !CAM must be generated with "STAT=YES" on BUFFER
statements and "STATS=YES" on LINE statements. This will cause !CAM
to collect statistics for lines and buffers. CCA will display
statistics required by a system programmer who is tuning the
performance of a network.

This program should be run
"production" environment for the
meaning.

when TIP/30
statistics to

is operating in a
be of any real

The user should re-run CCA when ever any additional
communications hardware is added or after any major system changes
affecting !CAM through-put.

Syntax:

CCA

The commands are as follows:

Arps

Buffers

Lines

Terminal

End

Quit

produce·s a list of A.R.P. penetration statistics.

produces a list of buffer penetration statistics.

produces a list of lines showing line name, type,
speed, number of terminals, errors, etc.

produces a list of terminals on each line, showing
terminal name, size, polling interval, status,
polls, messages in, messages out, errors, etc.

end execution of CCA.

end execution of CCA, and logoff TIP/30.

CHAPTER III - ON-LINE UTILITY PROGRAMS
COBOL REFORMATTER (CONVERSION AID)

Page:
Section:

1
3.8.1

CPAGE

3.9

SET U400 CONTROL PAGE

SET 0400 CONTROL PAGE CPAGE

The CPAGE program is used to set the control page of a UTS-400
type terminal. This also includes UTS-20 and UTS-40.

Syntax:

Where:

CPAGE [,opt)

opt command line option indicating the desired setting
of the XMIT option of the control page.

"A" sets the control page to transmit all ("ALL")

"V" sets the control page to transmit variable
(unprotected) ("VAR")

"C" sets the control page to transmit changed
("CHAN")

Example:

CPAGE,V

Error Conditions:
None.

Additional Considerations:

The preferred option for TIP/30 operation is 'V' but users doing
IMS/90 emulation may have to use 'A' with its additional
transmission overhead.

Page:
Section:

1
3.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ABNORMAL TIP/30 SHUTDOWN CRASH

3.10 ABNORMAL TIP/30 SHUTDOWN CRASH

This command will cause TIP/30 to shut down immediately. It will
not wait for all users to log off. A JOBDUMP will be taken if the
JOBDUMP option was specified in the TIP/30 job control stream.

Syntax:

CRASH

Where:
No parameters required.

Example:

CRASH

Error Conditions:
None.

Additional Considerations:

The system SHUTDOWN program will NOT be scheduled.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ABNORMAL TIP/30 SHUTDOWN

Page:
Section:

1
3.10

CREATE
CREATE A DYNAMIC FILE

3.11 CREATE A DYNAMIC FILE CREATE

The CREATE program is used to make a file entry in the TIP/30
catalogue. By doing this, the user is creating a new FCS dynamic
file within TIP$RNDM.

Syntax:

Where:

CREATE [, type] aft-name,fi le-name

type

aft-name

file-name

the type of dynmic file to create

'P' : the file created is a permanent dynamic file
and will remain in the system after the user logs
off unless it is specifically scratched.

'T' : the file created is temporary and will be
scratched by TIP/30 when the user logs off. In the
case of an HPR or power failure, this file will be
scratched during the subsequent TIP/30
initialization. NOTE: This is the default type.

is the logical file name to be assigned to the
file. After the file has been created, it is
automatically assigned to the user. This is the
entry in the active file table (AFT).

is the entry to be made in the catalogue for the
new file. The catalogue-name consists of three
sections, USER-ID/CATL-ID/FILE-ID which uniquely
identify each file in the catalogue. The user must
at least specify FILE-ID to access the. file. If
the USER-ID is not specified, then the USER-ID
used to logon TIP/30 is used. If CATL-ID is not
specified then CATL-ID is set to FILE-ID.

In the following examples assume that the USER-ID 'ARC' was used to
LOGON, then:

Page:
Section:

1
3.11

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

CREATE A DYNAMIC FILE CREATE

Example:

CREATE STRTUP,BGNFL

Will create the file 'ARC/BGNFL/BGNFL' as a temporary, dynamic file
and assign it the logical name of STRTUP.

Error Conditions:
Errors may be reported from TIPFCS .

CHAPTER III - ON-LINE UTILITY PROGRAMS
CREATE A DYNAMIC FILE

Page:
Section:

2
3.11

DD, DOU
ON-LINE DISK DISPLAY AND UPDATE

3.12 ON-LINE DISK DISPLAY AND UPDATE DD, DDU

Online disk display and update is a utility used to display and
modify the contents of disk files at a terminal. It is designed to
be a programming aid useful for testing and debugging.

For example, a file could be displayed to determine if a program
being tested had altered it correctly or had erroneously left the
file intact. Using the update feature would allow a quick
modification to prepare for another test.

This utility can handle FCS dynamic files, indexed files,
(including MIRAM), direct access files, and edit buffers. It
displays one record at a time from the selected file. The records
can be displayed in three formats: character, hexadecimal, or both
character and hexadecimal. For records too large to fit on one
screen, an option is provided to allow the user to 'page' through
the rest of the record contents. The user selects records to be
displayed by either record number or key depending on the file
type.

STARTING THE DD UTILITY

Two transaction names are provided to call this utility program.
DD is display only, but DDU allows both display and update
functions.

It is suggested that DDU be catalogued at
level than DD to reflect the relative
transactions. To start up the utility enter:

>transaction-id filename

a higher
power of

security
the two

The following are all valid invocations to allow display only of
the file MYFILE in the group ARC:

Page:
Section:

1
3.12

DD ARC//MYFILE

DD ARC/MYFILE

DD MYFILE

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

INTERACTION WITH DD & DOU
DD, DOU

3.12.1 INTERACTION WITH DD & DDU DD, DDU

When the utility is invoked it displays the first record of the
file specified. For indexed files this is the record with the
lowest primary index. The initial mode of display is character with
all non-displayable bytes shown as underscores.

At this point the user must 'tell' the utility what to do next. The
possible actions are:

(1) specify another record to display

(2) specify another display mode

(3) go to another part of the current record (Paging)

(4) redisplay the current screen

(5) exit the utility (end)

(6) update the record displayed (DDU only)

A description of these actions immediately follows.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page:
Section:

1
3.12.1

DD, DDU
SPECIFYING A RECORD TO BE DISPLAYED

3.12.2 SPECIFYING A RECORD TO BE DISPLAYED DD, DDU

The method of specifying a record to be displayed is dependent
on the file type.

For the purpose of specifying records, files are categorized as
either indexed and non-indexed.

Records of indexed files are referenced through a key.

Records of non-indexed files are reference by a relative (to
one) record number.

Page:
Section:

1
3.12.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPECIFYING A RECORD OF AN INDEXED FILE DD, DOU

3.12.3 SPECIFYING A RECORD OF AN INDEXED FILE DD, DDU

The user can specify the next record to be displayed by entering
the key in one of two fields provided at top of the screen. The
fields are appropriately titled 'Hex' and 'Char' to indicate the
type of key expected. Whatever value is entered as the key is right
filled with low values. DD will display the next record with a
primary index greater than or equal to the one specified.

If the key is given as character then no case conversion takes
place. However, if a hex key is given all characters are converted
to upper case since lower case 'a' through 'f' are meaningless.
Invalid hex values are flagged and an error message is returned.

Pressing function key 2 will cause DD or DDU to display the next
record (in sequence).

The actual key of the record displayed is shown in the same mode
the user entered the key.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page:
Section:

1
3.12.3

DD, DOU
SPECIFYING A RECORD OF A NON~INDEXED FILE

3.12.4 SPECIFYING A RECORD OF A NON-INDEXED FILE DD, DDU

The user can specify the record number in one of two fields
filled with underscores at the top of the screen. These fields are
appropriately titled 'Dec' and 'Hex' to indicate the type of number
they expect.

Pressing function key 2 (F2) will imply that the user wishes to
select the "next" record (sequentially).

When the record is displayed the current record number is
displayed in both decimal and hex.

Specifying invalid record numbers results in a variety of
actions:

Page:
Section:

Entering a record number more than 4096 past the highest
record number will cause the utility to abort.

For FCS dynamic files, specifying a record number past
the current allocation will result in more disk space
being allocated! The user is advised not to do this.

Negative record numbers will result in a 'not found'
message.

If invalid hex values are encountered in input they will
be flagged and an error message will be sent.

1
3.12.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPECIFYING DISPLAY MODES DD, DOU

3.12.5 SPECIFYING DISPLAY MODES DD, DDU

The user controls the mode of display by using the field titled
'display=' at the top of the screen. Valid values are:

C character
H hexadecimal
B both character and hexadecimal

Nondisplayable bytes of character fields are shown as underscores.
All display modes show the zero relative position in the record of
the first byte in the line. These byte numbers are given in decimal
for the character display and in hexadecimal in the other two
display formats. Switching modes sets the display to the beginning
of the record being displayed.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page:
Section:

1
3.12.5

DO, DDU
PAGING THROUGH THE CURRENT RECORD

3.12.6 PAGING THROUGH THE CURRENT RECORD DD, DDU

Whether or not a record will fit on a screen depends on the
display mode being used and the record length of the file. If a
record will not fit on the screen the user can move back and forth
through the record a screenful at a time. Pressing function key 3
pages forward through the current record unless the end of the
record is currently displayed. Pressing function key 4 pages
backward through the current record unless the beginning of the
record is currently displayed.

Page:
Section:

1
3.12.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TERMINATING DD & DOU DD, DOU

3.12.7 TERMINATING DD & DDU DD, DDU

When the user has finished working with DD or DOU he terminates
the utility by pressing msg-wait.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page:
Section:

1
3.12.7

DD, DDU
UPDATING THE RECORD CURRENTLY DISPLAYED

3.12.8 UPDATING THE RECORD CURRENTLY DISPLAYED DD, DDU

This function can only be used by starting the utility with the
transaction-id DDU. It is intended to provide a method for quick
and simple changes to aid in testing and debugging.

The update procedure requires that the user display the record to
be updated. If the record is larger than the screen area the user
may have to page to the segment being updated. To update the record
displayed:

(1) place a 'Y' in the update field,
(2) alter the record as desired,
(3) leave the cursor in the space provided in the bottom right

corner of the screen,
(4) press transmit and wait for a reply.

After completing the above steps the user will receive
informational message about the processing that occurred. If
update was successfully executed the display is redisplayed
the updated record contents and the following message ~ppears:

"RECORD UPDATED SUCCESSFULLY".

an
the

with

Otherwise, an error occurred and an informational message will be •
displayed. The user can now repeat some or all of the above steps
and try to update the record again.

Page:
Section:

1
3.12.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

UPDATING A CHARACTER DISPLAY DD, DDU

3.12.9 UPDATING A CHARACTER DISPLAY DD, DDU

When a record is displayed in character mode, nondisplayable
characters appear as underscores. In updating a character display
DDU ignores all bytes received as underscores. This prevents the
non-displayable data from being converted to underscores. Even
underscores entered by the user will be ignored! To insert
underscores in a record the user must update from one of the other
display modes.

The character display is case sensitive and will display both upper
and lower case. This allows the user to make changes using mixed
case. At the same time remember that no case conversion occurs on
input.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page:
Section:

l
3.12.9

DD, DDU
UPDATING A HEX DISPLAY

3.12.10 UPDATING A HEX DISPLAY DD, DDU

When the user transmits the screen with the new contents of a
record the data is converted to upper case. As a result lower case
'a' through 'f' will be valid input. Invalid hex digits are flagged
and will prevent the update from taking place.

Page: 1
Section: 3.12.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

UPDATING A MIXED DISPLAY
DD, DDU

3.12.11 UPDATING A MIXED DISPLAY DD, DDU

We ref er to the mixed display as showing character and hex
simultaneously. The part of the screen displayed in character is
protected. The reason for this is that only the hex fields are used
in updating the record from this display.

The hex fields are converted to upper case so that lower case 'a'
through 'f' will be valid input. As with the hex display, invalid
hex digits encountered in input are flagged and result in an error
message.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page: 1
Section: 3.12.11

-- ---.

DD, DOU
RECORD PROTECTION

3.12.12 RECORD PROTECTION DD, DDU

When a user attempts to update the record being displayed there
is a possibility that the record has already changed since it was
displayed. For system files, DDU checks to see if the record has
changed. If it has, no update occurs and an error message is sent
to inform the user. It is necessary to do this check since DDU does
not use file locking. Record locking is used with system files for
the duration of the update.

For FCS dynamic files and edit buffers no record locking is used
and no attempt is made to determine if the record has been changed.
Since QED locks an edit buffer changes cannot occur simultaneously
from QED and DDU. However, two users both using DDU could make
changes t9 the same record of an edit buffer without being aware of
changes made by the other user.

The user should remember that DDU is not a general purpose editor
and is designed for quick changes to disk files.

Page: 1
Section: 3.12.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FUNCTION KEY USAGE
DD, DDU

3.12.13 FUNCTION KEY USAGE DD, DDU

MSG-WAIT

Fl or F5

F2 or F6

F3 or F7

F4 or F8

Terminates DD and DDU

Redisplays the current screen as it was last sent to the
terminal.

Displays the first page of the next record in the file.
For non-indexed files, this means the relative record
number is incremented by one. For indexed files, this
means the next record found sequentially.

Displays the next page (or screenful) of the current
record. If the end of the record is currently displayed,
no paging occurs and a redisplay takes place.

Displays the previous page (or screenful) of the current
record. If the beginning of the record is currently
displayed, no paging occurs and a redisplay takes place.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DISK DISPLAY AND UPDATE

Page: 1
Section: 3.12.13

DD, DDU
POTENTIAL PROBLEMS

3.12.14 POTENTIAL PROBLEMS DD, DDU

The following points are guidelines to help the user enjoy
trouble free use of DD.

In the hands of an animal DD can have serious side
effects when used with FCS dynamic files. If the user
asks to see a record past the current end of file then
the file will be automatically extended to provide that
record. For example asking for record 500 when only 40
exist would result in 520 records being allocated to the
file. This is like a malignant tumour feeding itself on
your TIP$RNDM file. To cure this disease use the TIP
SCRATCH program to get rid of any mammoth files created.

Specifying record numbers more than 4096 past the end of
the file (for dynamic files only) causes DD to abort.
Avoid this problem by making sensible requests.

Dynamic files and edit buffers are updated without
locking records. Avoid problems with updates by
cataloguing DDU with at a higher security level than DD.

When updating a file from a character display remember
underscores are ignored. To replace bytes with
underscores you must use the hex or mixed display.

Updates can cause problems if the user forgets
upper and lower case are ~ccepted in character
you want upper case then you would be wise to
data in upper case.

that both
mode. If
enter the

Records in FCS dynamic files (includes edit buffers) and
non-indexed files cannot be physically deleted.

Since DD and DDU are sensitive to the case of character
data, these transactions should be used with caution from
terminals that do not support upper and lower case case.

Page: 1
Section: 3.12.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

.e

SET FILE IN TEST MODE
DEBUG

3.13 SET FILE IN TEST MODE DEBUG

The DEBUG program places a named file in a READ ONLY mode for
testing programs. A command line option indicates whether the file
is to be placed in debug mode or removed from debug mode. In debug
mode, any WRITE attempts from any program (at this terminal) will
be ignored, thus ensuring the integrity of the file.

Syntax:

DEBUG, [opt] aft-name

Where:

op~ furthur defines what operation is to be done.

'N' places a file in debug mode.

'F' removes a file from debug mode. (Default).

aft-name is the name of the assigned file that is to be
placed in (or removed from) debug mode.

Example:

DEBUG,N CUSTOMER

This command would place the file assigned to the logical name of
'CUSTOMER' in debug mode and would ignore any subsequent write
requests to the file from this terminal.

Error Conditions:
File not assigned.

Additional Considerations:

This option is only effective while the file is assigned to the
user (ie. once the file is de-accessed the DEBUG option is no
longer effective).

CHAPTER III - ON-LINE UTILITY PROGRAMS
SET FILE IN TEST MODE

Page:
Section:

1
3.13

DEF KEY
DEFINE FUNCTION KEYS

3.14 DEFINE FUNCTION KEYS DEFKEY

The DEFKEY program is a utility program that allows the user to
specify a character sequence that will be "painted" on the screen
whenever a function key is pressed as a response to the standard
system prompt. After the character sequence is painted on the
screen, TIP/30 will generate an auto transmit sequence to the
terminal. The net effect of this is to simulate the keying of that
character sequence.

The definition of function key contents may be specified by user
group. The search for the appropriate function key contents follows
the same sequence as the standard order of search in the catalogue:
the user's private group is searched first, then elective groups
one and two, and finally, the universal group "TIPY".

By utilizing the DEFKEY program, the user may assign character
strings to function keys and make it simple to enter the character
strings.

The DEFKEY program stores the function key definitions in a
TIP/30 dynamic file with the name: <group>/FUNCTION/KEYS (where the
group is name of the group that owns the definitions).

The DEFKEY program is NOT an interactive utility. It accepts ..
information only from the command line. ..

Page:
Section:

1
3.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DEF KEY
DEFINE FUNCTION KEYS

Syntax:

Where:

DEFKEY [GROUP=xxxxxxxx] [LIST] [nn,' ... 'J

GROUP= This specifies the name of the group desired.
Default is "TIPY".

LIST A positional word indicating that DEFKEY is to
list the current definitions of the function keys
for the specified group.

nn Numeric specification of function key. Valid
values 1 through 23. (Function key 23 may be
returned by the Master terminal in a UTS-400
cluster when a power-on confidence test is
initiated - this is a hardware strapping option of
the UTS-400).

The desired contents of the function key enclosed
in quotes (single or double).

4t Example:

DEFKEY LIST

- Will list the current contents of the function keys for
group "TIPY" (the default).

DEFKEY 12, 'WHOSON' ,9, 'LOGOFF'

- Will define function key 12 as the character string "WHOSON"
and function key 9 as the string "LOGOFF".

CHAPTER III - ON-LINE UTILITY PROGRAMS
DEFINE FUNCTION KEYS

Page:
Section:

2
3.14

DIE
ABORT A PROGRAM

3.15 ABORT A PROGRAM DIE

The DIE program may by used to force an abnormal termination of
a user program running at another terminal.

Syntax:

DIE, identifier

Where:

identifier specifies the user or terminal name of the program
to be aborted.

Example:

DIE,JOHN

This command would cause the program· being executed by user JOHN to
be abnormally terminated.

Error Conditions:
User or terminal cannot be found.

Additional Considerations:

The program is not aborted immediately. It will be aborted the next
time it is activated. One may have to press transmit or msg-wait on
the terminal running the program to cause TIP to reschedule the
program and thus cause the abort.

Page:
Section:

. 1
3.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DLL
DOWN LINE LOAD UTILITY

3.16 DOWN LINE LOAD UTILITY DLL

DLL is a supplied program designed to assist the user working
with the UTS-400 terminal. This program provides the capability of
down line loading the UTS-400 memory from the host. The UTS-400 may
be loaded with user developed programs, compiled with the
Allinson-Ross Corporation 8080 Cross Compiler (UTSASM and ASM80)
and/or programs produced using Univac's software. In addition, the
UTS-400 may also be loaded with screen formats that have been
created with the TIP/30 Message Control System (MSGDEF). A supplied
UTS-400 program (MCS400) must be loaded whenever the user is down
line loading MCS screen formats. Refer to the section on the
Message Control System for further information on the use of down
line loaded screen formats.

It is important to note that the operation of this (DLL) program
involves a staging buffer within the program. All program and
message requests are collected in this staging buffer, then the
entire buffer is loaded into the UTS-400 with a single command.

Note: this program requires 18k of memory, therefore the MAXPROG
parameter in the TIPGEN procedure should be at least 18000.

The DLL commands are as follows:

Include file/element

add the UTS-400 object module generated by either ASM80
or UTSASM (described later) to the staging buffer. The
transfer address is set to the address specified in the
transfer record of this module

TIP/MCS400 is a module which interfaces with MCS in the
host to display screen formats on the terminal.

Get module

add the UTS-400
MAC80, PL/M, or
transfer address
transfer record of

object module as generated by either
UTSCOB to the staging buffer. The
is set to the address specified in the
this module.

Ntr address

the transfer address is changed to the address specified
in the first parameter.

Message mcs-name,[U]

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOWN LINE LOAD UTILITY

Page:
Section:

1
3.16

DLL

Function

Load

LT

DOWN LINE LOAD UTILITY

De-code and load the specified MCS message into the
staging buffer. Only heading information is normally
stored. When this message has been loaded into the
terminal TIP/30's Message Control System will only send
the data portions, thus resulting in a complete screen.
If the second parameter is 'U' this message will be
stored with filler's to represent the data fields. If you
have a data entry screen for which you want the data
fields to be filled with underscores, then specify "U"
with this command and specify '_' as the filler character
in the MCS packet when your program calls TIPMSGO. This
will result in the shortest possible XMIT time to display
the message on the terminal.

key#,word,XMIT,SOE

this equates a UTS-400 function key FS thru Fl3 with a
word of up to 8 characters. When the function key is
pressed the word will be written on the terminal where
the cursor is positioned at that time. If the 3rd
parameter is XMIT then a transmit function will take
place. If the 4th parameter is SOE, a start-of-entry will
be placed in front of the word.

[terminal] [,dvc,name]

the contents of the staging buff er will be down line
loaded into the memory of the UTS-400. After the UTS-400
has been loaded, the transfer record is sent to the
UTS-400. If no terminal is specified, then the down line
load is performed on the terminal that is in use. Note
that only the master or primary terminal of a UTS-400
cluster receive down line loading.

'dvc' is the auxiliary device index where the program is
to be stored (e.g diskette).

'name' is the name to be given to the program when it is
stored on the diskette.

[terminal] [,dvc,name]

same command as Load except the time of day from the host
will be loaded to location A06B in the format 'HHMMSST',
7 digits of hours, minutes, seconds, and tenths.

input re-direction

Page:
Section:

2
3.16

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DLL
DOWN LINE LOAD UTILITY

End

Note:

re-direct input to the given file/element. This command
is very useful. The user may make up a canned run stream
for this program which may be run at the begining of each
day to load all of the UTS-400 clusters with the screen
formats. The .IN file as described in the section on TCP
may be used here. This may be on the command line to DLL,
example

DLL <f ile/elt
DLL R f ile/elt

end execution of DLL

Only the first letter of the DLL commands are required to
identify the command (IE. L-load, I-include etc.).

Example stream which may be stored and called via a .IN file:

Include TIP/MCS400
Message ACCT1,U
Message PAY1
Function 5,PAYUPDT,XMIT,SOE
Loadm TM01
Loadm TM06
End

-MCS terminal program
-accounting screen
-payroll screen
-send in the word PAYUPDT
-load into UTS-400 cluster
-load into UTS-400 cluster
-end of loader

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOWN LINE LOAD UTILITY

Page:
Section:

3
3.16

DLL
DOWN LINE LOAD UTILITY

3.17 UTS-400 MESSAGE CONTROL SYSTEM MCS400

This is a UTS-400 program which is written in Intel 8080
assembler language and supplied to the user as an ASM80 object
module. It operates under the direction of TIP/30's MCS to display
screen formats on the terminal and eliminate the need to
continually transmit it down the line. This program and messages to
be used should be loaded into the UTS-400 master when TIP/30 is
started up, and any time the UTS-400 master (or controller) is
initialized [ie: via a power-on confidence (POC} test].

Function keys 5 thru 13 can be programmed by DLL. The other
function keys perform as follows.

Fl4 := beeps the terminal to let you know that the
program has been successfully loaded.

Fl5 := takes ZZname from home position, looks for 'name'
in the screen table, then displays it.

Fl6 := displays the next screen format in the table. The
screen name is displayed in bottom right hand corner.

Fl7 :=does an erase display and cursor home.

Fl8 := re-displays the last screen format used for this
terminal

All of these functions operate independently per terminal in the
cluster.

Page:
Section:

F20 := allows you to set the time of day in the terminal.
The program will keep the time of day as HHMMSST in
location A06B. To set this time, enter the time at the
home position of the terminal and press F20. Time is kept
in hours, minutes, seconds, and tenths of seconds.

F21 := begins the display of the time of day at the home
position of the terminal.

F22 := end the display of time of day.

1
3.17

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC
DOCUMENT GENERATOR

3.18 DOCUMENT GENERATOR DOC

The Document Generator (DOC) is a program which creates a
formatted document from data files created using the TIP/30 text
editor. A batch version of this on-line program is also supplied by
Allinson-Ross. The data in the input file consists of the text to
be printed as well as imbedded commands which provide formatting
instructions to the DOC program. The DOC program reads this "raw
text", acts on the imbedded commands, and produces a formatted
output document at the terminal, auxiliary printer or the site
printer.

The DOC program consumes resources at a rate roughly proprtional
to the length of the input raw text and the number and nature of
imbedded commands. It may be prudent to use the batch version of
DOC for serious (or high volume) documenting and reserve on-line
use of DOC for testing small, self-contained documents.

DOC recognizes two types of imbedded commands:

declarative

imperative

A declarative command is one which changes the format of the
document or the mode of program operation. A declarative command
does not necessarily have an immediate effect.

An imperative command is one which performs an action either on
the current line or on the next line. All commands are imperative
except as noted in the command descriptions.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18

DOC
DOCUMENT GENERATOR

A command (declarative or imperative) may be in one of three
formats:

Syntax:

Where:

Page:

@F

@FA

@Fnn

'@' is the command delimiter (which is by default the
commercial at sign character as shown);

F represents a single character which indicates the
function to be performed;

A

nn

represents a single character
further information to be used in
command;

which supplies
executing the

represents a one or two digit value which
specifies quantitative information to be used in
executing the command.

If the value required is a single digit, it may be
specified as a single digit unless the first
character of text which follows the command is
also a digit. In that case, a single digit would
be erroneously associated with the digit in the
raw text that follows. To avoid this situation,
the single digit should be specified with a
leading zero, as illustrated by '@I05' in this
example:

@1051. PROCESSING THE COMMANDS ..•

Section:
2

3.18
TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: ONLINE
ONLINE DOCUMENT GENERATOR

3.18.1 ONLINE DOCUMENT GENERATOR DOC: online

The DOC program gives the user the ability to have documentation
produced at the terminal, the central site printer, or a terminal
auxiliary printer.

Syntax:

DOC [, opt ion]

Where:

option

file

element

de st

f i 1 e [, e 1 emen t] [, des t J

choice(s) from the following list:

"U" - force upper case output;

"H" - print identification header page (default if
destination is not an auxiliary device);

"N" do not print header page (default if
destination is an auxiliary device);

The catalogued
element which
of an existing
input to DOC.

name of the library containing the
is to be input to DOC, or the name

edit buffer which is to be the

The element name associated with "file" or omitted
if the first parameter is the name of an edit
buffer.

The destination of the output of the DOC program.
Default is the terminal. Other possibilities are:
PRNTR, AUXl etc. If this parameter is strictly
numeric, it will be interpreted as the number of
lines to output to the terminal (the default
destination) before prompting the user (see
additional considerations following).

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.1

DOC: ONLINE
ONLINE DOCUMENT GENERATOR

Example:

DOC,U source/memo12,PRNTR

Will cause DOC to process the contents of element "memo12"
from the library with catalogued file name "source". The
formatted document wi 11 be sent to the batch printer, with
forced upper case alphabetics.

Error Conditions:
The requested output device may not be available or the specified
file/element or edit buffer may not be found.

Page:
Section:

2
3.18.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ADDITIONAL CONSIDERATIONS
DOC

3.18.2 ADDITIONAL CONSIDERATIONS DOC

When the output of DOC is directed to the terminal, the output
is continuously rolled out (from bottom to top) until the number of
lines specified by parameter 3 is encountered. At that point DOC
will stop rolling out lines and prompt the user. The user has an
opportunity to indicate whether or not to continue the output, go
to a specific page or alter the pause interval. The choices are:

"E" or "Q"

end document production.

"P nnn"

proceed to page nnn.

"L nnn"

change pause interval to nnn lines.

none of the above

continue output.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.2

DOC
SUMMARY OF IMBEDDED COMMANDS

3.18.3 SUMMARY OF IMBEDDED COMMANDS DOC

The Document Generator recognizes these irnbedded commands:

COMMAND

@.
@(
@! or
@)
@-
@%
@
@?
@@
@nn
@A
@B
@C
@E
@F
@G
@H
@l I
@J
@K
@L
@N
@O
@P
@Q
@R
@S
@T
@U
@V
@W
@X
@Y
@Z

Page:
Section:

@)

1
3.18.3

FUNCTION

PHYSICAL FORM FEED
START MARGIN FLAGGING
SAVE PARAGRAPH NUMBER
STOP MARGIN FLAGGING
CHANGE COMMAND DELIMITER
SWITCH INPUT TO FILE/ELEMENT
START/STOP UNDERLINING
RECALL SAVED PARAGRAPH NUMBER
GENERATE LITERAL AT-SIGN
CALL MACRO nn (0 thru 99)
SPACE TO ABSOLUTE COLUMN
GENERATE DOCUMENT INDEX
END OF LINE (CENTRE)
EJECT TO NEW PAGE
FLUSH LINE
SET PAGE LENGTH
HORIZONTAL SPACE
SET INDENTATION (LEFT)
JUSTIFY MODE
INCREMENT AND CALL MACRO
END OF LINE (JUSTIFY LEFT)
NOTATION (HANGING INDENT)
START ODD/EVEN PAGE
RETRIEVE PAGE NUMBER
DEFINE MACRO CONTENTS
END OF LINE (JUSTIFY RIGHT)
SET LINE SPACING
UNJUSTFIED MODE
SAVE COMPOSITION STATUS
RESTORE COMPOSITION STATUS
SET LINE WIDTH
INCREMENT PARAGRAPH NUMBER
LOG LINE IN TABLE OF CONTENTS
PRODUCE TABLE OF CONTENTS

NOTES

0-1 MODIFIER

(batch only)
1 MODIFIER

1-2 MODIFIERS
0-2 MODIFIERS
(batch only)
0-2 MODIFIERS
0-2 MODIFIERS
1 MODIFIER REQUIRED
1-2 MODIFIERS
1-2 MODIFIERS
0-2 MODIFIERS

0-2 MODIFIERS

0-2 MODIFIERS
1-2 MODIFIERS

ONLY USED IN HEADING
ONLY USED IN HEADING
1-2 MODIFIERS
1 MODIFIER ("0"-"9")
(batch only)
(batch only)

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @,
PHYSICAL FORM FEED

3.18.4 PHYSICAL FORM FEED DOC: @.

This command will result in a real page eject. It is usually
found within macro 20 [which is executed whenever a page overflow
condition occurs (via @E or normal overflow)].

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.4

DOC: @(
START MARGIN FLAGGING

3.18.5 START MARGIN FLAGGING DOC: @(

This command causes the printing of a character in the left
margin, thereby flagging the current line and all subsequent lines
until an occurrence of the "turn off margin flagging" command [@)].
The character that is printed in the margin is usually the vertical
bar character ('I'). This character is not printable on some print
devices. The batch version of the DOC program allows the user to
redefine the flag character.

Page:
Section:

1
3.18.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SAVE PARAGRAPH NUMBER
DOC: @!N @ N

3.18.6 SAVE PARAGRAPH NUMBER DOC: @!n ; @]n

This command is used to save the current paragraph number. The
modifier 'n' uniquely identifies the saved number, and may have a
value from 1 to 9. This command may be used in connection with the
recall paragraph number command (@?) to facilitate references to
previous paragraphs without having to guess (or explicitly include)
the actual paragraph number.

This command may be spelled using the exclamation character
("!") or with the right side square bracket character ("]").

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.6

DOC: @)
STOP MARGIN FLAGGING

3.18.7 STOP MARGIN FLAGGING DOC: @)

This command terminates the printing of the margin flag on
subsequent lines. This command is the logical inverse of the
command "@(".

Page:
Section:

1
3.18.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

....--------~------ --

DOC: @-c
CHANGE COMMAND DELIMITER

3.18.8 CHANGE COMMAND DELIMITER DOC: @-c

This command is used to specify a new command delimiter (ie:
other than the default commercial at sign). Once this command is
encountered, all subsequent commands must start with the character
specified as 'c'. This command may be used to change the delimiter
prior to calling a new input element (@%) which may have the
standard delimiter ('@') as part of its text.

EXAMPLE:

When including the source of a program as part of a document
and the program source has the character '@' in it, the
following commands could be used:

@28@-tt%f ile/prognamet-@@29

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.8

DOC: @%FILEIELT
SWITCH INPUT TO FILE/ELEMENT

3.18.9 SWITCH INPUT TO FILE/ELEMENT DOC: @%f ile/elt

This command specifies a source element that is to be used as
input (read in) at this point. When this new element is exhausted,
the data immediately following this command will be processed. The
new input element may also have input switching commands
(@%file/element) in it, however such nesting may only occur to a
maximum of five levels. If the file is not specified, the last
input file is used (ie @%eltname).

For the batch version of the DOC program, the filename must
match an LFD name of a standard OS/3 library file.

For the on-line version of DOC, the filename is the catalogued
name of the library file containing the new input element. In the
online version, the filename may also be the name of an edit buffer
that contains the input data. In this case, the eltname field
remains blank (ie @%buffername).

Syntax:

Where:

@%file [/element] [,type]

file

element

type

The catalogued file name of the library to use or,
the edit buffer name (assuming element and type
are omitted).

The element name to read from the specified
library.

Standard element types: "S", "M", "P" [Default is
"S"].

Example:

Page:
Section:

@%JCS/TIP30

Switch to reading element named "TIP30" from library
catalogued with name "JCS".

1
3.18.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SWITCH INPUT TO FILE/ELEMENT
DOC: @%FILEIELT

Additional Considerations:

This DOC command should be followed by at least one blank (so that
any trailing text is not erroneously associated with the parameters
of this command.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

2
3.18.9

DOC: @_
START/STOP UNDERLINING

3.18.10 START/STOP UNDERLINING DOC: @

This command is implemented as a toggle. It will either start or
stop underlining. The initial state is underlining off. The first
ocurrence of @_ will begin underlining; the next will stop
underlining etc.

Blanks in the string will not be underlined (see following
example).

For example, the following line was underlined by the following
string in the input document:

@ This entire sentence is underlined.@_

This entire sentence is underlined.

Page: 1
Section: 3.18.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

r-------~---

DOC: @?N
RECALL PARAGRAPH NUMBER

3.18.11 RECALL PARAGRAPH NUMBER DOC: @?n

This conunand is used to recall a previously saved paragraph
number. The paragraph number must have been saved with the save
paragraph conunand (@!n - see 3.18.6). The modifier 'n' uniquely
identifies the saved number, and may have a value from 0 to 9. If a
value of 0 is used, then the current paragraph number is recalled.
(This would, for example, be employed in cases where the current
paragraph number was needed in some heading or other information).

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.11

DOC: @@
GENERATE LITERAL AT-SIGN

3.18.12 GENERATE LITERAL AT-SIGN DOC: @@

This command will cause a real commercial at sign to be
generated. Since the at sign is the default command character, it
is necessary to have this mechanism available for those situations
when a real at sign is desired in the output.

Page: 1
Section: 3.18.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @NN
CALLING MACROS

3.18.13 CALLING MACROS DOC: @nn

A macro is called by a command expression of the form:

@nn

Where nn is an integer in the range 0 through 99 identifying which
of the 100 macro definitions is to be called.

Any macro may be called by the user at any point after the
definition of that macro.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.13

DOC: @ANN
SPACE TO ABSOLUTE COLUMN

3.18.14 SPACE TO ABSOLUTE COLUMN DOC: @Ann

This command causes DOC to generate in the current line a number
of space characters. The number of spaces generated is calculated
to be the difference between the current column location and the
value specified as a modifier to this command. If the value
specified is not greater than the current column location, the
command is ignored.

Page: 1
Section: 3.18.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

DOC: @B
GENERATE DOCUMENT INDEX

3.18.15 GENERATE DOCUMENT INDEX DOC: @B

This command is used to produce an index. The index is produced
from the logged (@Y) lines arranged in alphabetical order by the
first significant word.

This command is ignored by the on-line DOC program, but is
processed by the batch version.

The index of this document is initiated as follows

@EI N D E X @Y Page@R @B

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.15

DOC: @CNN
END OF LINE (QUAD CENTRE)

3.18.16 END OF LINE (QUAD CENTRE) DOC: @Cnn

This command causes the line currently being constructed to be
terminated. The line terminated by this command is unjustified and
is centered between the (possibly indented) left margin and the
right margin. The optional modifier 'nn' specifies the number of
lines to leave after the centered line.

The information string

Table of Contents @Cl

Produces the following line

Table of Contents

Page: 1
Section: 3.18.16

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @ENN,MM
EJECT TO NEW PAGE

3.18.17 EJECT TO NEW PAGE DOC: @Enn,mm

Eject to a new page. The optional modifier 'nn' specifies the
number of consecutive lines which must not be split between two
pages. If nn lines (or more) remain on the current page, a new page
is not initiated. If less than nn lines remain on the current page,
a new page is initiated.

Modifier mm specifies the number of lines to leave if a page
eject is not performed by this command.

If nn is not specified, an unconditional eject to a new page is
performed. In any case, if a text line has not yet been terminated
when this command occurs, the line will be terminated as if the
command @L (with no nn specification) had occurred.

It is important to note that this command does not cause a
physical form feed to occur, it generates a space command to
position the current page at the bottom line of the page (as
defined in the @Gnn command) then macro 20 is executed.

Macro 20 is assumed to contain the correct information to
produce a page footing, eject the page and produce a page heading
for the next page. An example of how this is performed for this
document may be found in the section describing initial definitions
of macros.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.17

DOC: @Fe
FLUSH LI NE

3.18.18 FLUSH LINE DOC: @Fe

Flush with character fill. This command causes the text already
in the line to be unjustified and positioned at the beginning of
the line. The text following this command and preceding the next
@Lnn command is positioned at the end of the line. The intervening
space between these two portions of the line is filled with
repetitions of the character c. If space fill is desired, then the
character c must be a space.

The information string

Reader@F.600 CPM@Ll

Produces the following line

Reader ...•............•....•.....•............•........ 600 CPM

Page: 1
Section: 3.18.18

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @GNN
SET PAGE LENGTH

3.18.19 SET PAGE LENGTH DOC: @Gnn

This is a declarative command which controls the number of lines
which may be printed on each page. The "nn" is the number of lines
which will be printed and/or spaced before performing a skip to the
home position. This number must be less than the number of lines
between two consecutive home positions as determined by the
physical carriage control mechanism.

Default = @G55

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.19

DOC: @HNN
HORIZONTAL SPACE

3.18.20 HORIZONTAL SPACE DOC: @Hnn

Immediate horizontal space. This command inserts space in the
'nn' print positions following the text most recently placed in the
current line or, in the absence of such text, inserts space at the
beginning of the (possible indented) line. If less than nn print
positions remain in the current line, the excess is ignored and the
line is not justified.

Page: 1
Section: 3.18.20

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

DOC: @INN
SET INDENTATION (LEFT)

3.18.21 SET INDENTATION (LEFT) DOC: @Inn

This command changes the left indentation by resetting the
indentation at nn print positions from the left margin. This
command will neither terminate nor change the indentation for a
line in progress; the change in indentation will only affect
subsequent lines.

Default = @100

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.21

DOC: @J
JUSTIFY MODE

3.18.22 JUSTIFY MODE DOC: @J

This command is used to set the mode of the Document Processor
back to the standard 'justify' mode. This command is the logical
inverse of the 'card image' (@T) command.

Page: 1
Section: 3.18.22

TIP/30 Reference Manual
Version 2.5 (82/08/01)

.-------------~-------

DOC: @KNN
INCREMENT AND CALL MACRO

3.18.23 INCREMENT AND CALL MACRO DOC: @Knn

This command increments by 1 and retrieves (as text) a 6-digit
counter (leading zero suppressed).

Before using this command, the macro 'nn' should be set to an
all decimal string of 6 digits (ie. @QnnOOOOOO" }.

This command is useful when a running counter is desired (for
example, a STEP number to be used in a heading).

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.23

DOC: @LNN
END OF LINE COUAD LEFT)

3.18.24 END OF LINE (QUAD LEFT) DOC: @Lnn

Terminate current line and start new line; the terminated line
is positioned so that its beginning is at the (possibly indented)
left margin and its end is followed by spaces. The value of nn is
the number of lines of spacing in addition to the standard line
spacing as specified in the command @Snn. The value nn need not be
specified. If nn is greater than the number of lines rema1n1ng on
the current page, a new page is initiated and the excess is
ignored. The line terminated by this command is unjustified. This
command should normally be preceded by a space character.

The information string

@LlTable of Contents@Ll

Produces the following three lines

Table of Contents

-+*+-

Page: 1
Section: 3.18.24

TIP/30 Reference Manual
Version 2.5 (82/08/01)

....------------------------

DOC: @NNN
NOTATION (HANGING INDENT)

3.18.25 NOTATION (HANGING INDENT) DOC: @Nnn

This command is used to produce a notation format (often called
'hanging indentation'). The text preceding this command is placed
at the beginning of the (possibly indented} line. The text
following this command is placed starting at a point which is nn
print positions from the current position in the line; subsequent
lines of text also begin at the same point. The effect of this
command is terminated by the command @Lnn.

It should be noted that if spaces occur in the text preceding
this command and if the line is subsequently expanded to the right
margin, these spaces may be expanded thereby producing an undesired
result. Alternatively, a macro such as macro 10 (see later
description} may be used.

Example:

point one: this is the description of point one. Note that
this description .illustrates hanging indentation
(otherwise known as notation format} and may go on
for a rather long time and keep the temporary
hanging identation.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.25

DOC: @O
START ODD OR EVEN PAGE

3.18.26 START ODD OR EVEN PAGE DOC: @O

This command will call macro 36 if the current page number is
even, otherwise macro 37 will be called. These macros do not have
any specific pre-defined contents. They may be used to cause a new
section to start on an even (or odd) number page.

Page: 1
Section: 3.18.26

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-------------~-

DOC: @P
RETRIEVE CURRENT PAGE NUMBER

3.18.27 RETRIEVE CURRENT PAGE NUMBER DOC: @P

This command will retrieve (as text) the current page number.
The text retrieved is the page number expressed in the minimum
number of decimal digits without leading zeroes. The user would
normally precede and follow this command with any desired spacing
or other decorations (ie: 'Page @P.').

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.27

DOC : @ON N I I I II

DEFINING MACRO CONTENTS

3.18.28 DEFINING MACRO CONTENTS DOC: @Qnn ••• "

There are 100 macros that may be defined by the DOC user. The
contents (ie: definition) of a macro may be changed any time and as
of ten as required.

To define the contents of a macro the user would include a
command such as:

@Qnn ... string-of-commands-and/or-text ... "

Where:

'nn' A number in the range of 0 through 99 identifying
the macro being defined.

the string of commands and/or text is limited in
length to 70 characters. The string must be
terminated by the double quote character.

The string which the macro represents may contain calls to other
macros, but the user should be careful to avoid defining a macro
which calls other macros in such a manner that an endless loop of
calls is created. The DOC program allows nested macro calls to a
depth of 5.

A macro may be called by using the command "@0" through "@99".
There is no provision for passing parameters to a macro.

Page: 1
Section: 3.18.28

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @RNN
END OF LINE (QUAD RIGHT)

3.18.29 END OF LINE (QUAD RIGHT) DOC: @Rnn

This command terminates the line currently being constructed.
The terminated line will be unjustififed and positioned with the
end at the right margin and the space to the left of the first
non-space character is filled with spaces. The optional modifier
'nn' specifies the number of lines to leave after the line that was
right-justified.

The information string

@LlTable of Contents@Rl

Produces the following line:

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Table of Contents

Page: 1
Section: 3.18.29

DOC: @SNN
SET LI NE SPACING

3.18.30 SET LINE SPACING DOC: @Snn

This is a declarative command which controls the spacing that
occurs between lines of the generated output document. Single
spacing is the default. If nn is 1, 2, or 3, then normal spacing is
single, double or triple. If nn is greater than 3, the value 1 is
assumed. If nn is zero, no vertical advance (implying print with no
space or overstriking) will occur until another @Snn occurs with nn
greater than zero.

Page: 1
Section: 3.18.30

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

DOC: @T
UNJUSTIFIED MODE

3.18.31 UNJUSTIFIED MODE DOC: @T

This command causes the Document Generator to enter what is
called 'card image' mode. In this mode, strings of space characters
are not reduced to a single space (as they would be in justify
mode), they are treated as real data characters.

If this command is not followed by any data characters in the
current input, and the line width has been set to 72, then the
following records will be printed as they appear in the input
stream (card image). This is very useful in the production of
complicated diagrams or tables.

It should be noted that in this mode column 72 should always be
left blank as the end-of-line sequence is only invoked whenever a
space is detected in column 72.

This command is often considered 'as is' mode because the raw
text shows the exact format of the generated output text.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.31

DOC: @U
SAVE COMPOSITION STATUS

3.18.32 SAVE COMPOSITION STATUS DOC: @U

This command saves the pertinent information concerning the
composition of the current line. It should be the first command in
the definition of the macro which is executed at page overflow time
(ie. Macro 20). The information which is saved is line width,
indent value, case shift, and margin flagging.

Page: 1
Section: 3.18.32

TIP/30 Reference Manual
Version 2.5 (82/08/01)

........----------~------- -

DOC: @V
RESTORE COMPOSITION STATUS

3.18.33 RESTORE COMPOSITION STATUS DOC: @V

This command restores the information saved by the @U command
concerning the composition of a prior line. It must be the last
command in the definition of the macro which specifies the
composition of page headings (ie. Macro @30) and has no other
purpose.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.33

DOC: @WNN
SET LINE WIDTH

3.18.34 SET LINE WIDTH DOC: @Wnn

This is a declarative command which sets the width of the line.
The value nn is the number of print positions to be contained in
the unindented line. There is no provision within DOC to allow
lines wider than 99 print positions.

Default = @W72

Page: 1
Section: 3.18.34

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @XN
INCREMENT PARAGRAPH NUMBER

3.18.35 INCREMENT PARAGRAPH NUMBER DOC: @Xn

This command will increment the current paragraph number by one.
DOC generates paragraph numbers that are of the form:

nnn.nnn.nnn. etc

There may be from 1 to 9 levels within the paragraph number. Each
level may be from 1 to 3 digits. By issuing the @Xn command the
user is requesting that level 'n' of the current paragraph number
be incremented by one and the levels to the right of the
incremented level be discarded. This command may be considered to
mean: 'start a new paragraph at level n '. For example, issuing the
command @X2 when the current paragraph number was '12.3.4' will
change the current paragraph number to '12.4'.

Given the paragraph number in the lefthand column below as the
current paragraph number, the command @X3 produces the
corresponding paragraph number in the righthand column.

--CURRENT NUMBER @X3 NEW NUMBER

4. 1 . --> 4. 1 . 1 .
6. 13. 5. --> 6. 13. 6.
7.2.9.4. --> 7. 2. 10.
9.6.14.3.7. --> 19.6.15.
12.2. 7 .10.3.14. --> 12.2.8.

--

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.35

DOC: @Y
LOG LINE IN TABLE OF CONTENTS

3.18.36 LOG LINE IN TABLE OF CONTENTS DOC: @Y

This command is used to have the current line stored in the
table of contents file. The line is stored in the file in the order
logged. An internal pointer chain is maintained through the file in
alphabetical order by the first significant text in the line. Any
indents or horizontal skips at the begining of the line will not
affect the resulting order of the logged records.

The logged lines may be recalled into the document (usually near
the end of the document) by using the @Z (sequential order) command
or the @B (alphabetical order) command.

This command is ignored by the on-line DOC program, but is
processed by the batch version.

Page: 1
Section: 3.18.36

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-------------·------

DOC: @Z
SEQUENTIAL TABLE OF CONTENTS

3.18.37 SEQUENTIAL TABLE OF CONTENTS DOC: @Z

This command is used to compose the table of contents containing
those lines logged via the @Y command. This command will cause the
table of contents to be inserted in the document at the point the
@z is coded.

This command is ignored by the on-line DOC program, but is
processed by the batch version.

This command normally appears near the end of the document and
should normally be preceded by commands to format the first page of
the table of contents.

The table of contents may be located at any point in the
document.

The table of contents of a document might be initiated as
follows (for example):

T A B L E@H30 F@H3C 0 N T E N T S@C Page@Rl @z

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.37

DOC
EXAMPLE OF MACRO USE AND DEFINITION

3.18.38 EXAMPLE OF MACRO USE AND DEFINITION DOC

Assume that the user wishes to define a macro that wi'll make it
simpler to achieve the following:

leave two blanks lines

display the company name (centered)

leave two blank lines

One way to do this would be to select a macro number to be used
(assume 61 for example) and then DEFINE that macro as follows:

@Q61@L2Allinson - Ross Corporation@C2"

Whenever.the user wishes to leave two blank lines before and
after displaying the company name (centered) all that would be
needed would be the inclusion of @61 in the text at the appropriate
point. For example:

Page: 1
Section: 3.18.38

Allinson - Ross Corporation

TIP/30 Reference Manual
Version 2.5 (82/08/01)

,.....--------------------

DOC
EXAMPLE OF MACRO USE AND DEFINITION

Another potential use is rather simple but powerful. Assume that a
certain phrase is used very often in a document. Under normal
circumstances, the user would have to key that phrase in every time
it was needed. A much simpler approach would be to define a macro
containing the desired text and then it is just a matter of calling
the macro whenever the text is required.

For example:

DEFINITION:

USE:

@Q61the party of the second part,"

whereas @61 the appellant ...

RESULT: whereas the party of the second part, the appellant ...

The user should note that assigning a number to a macro
definition is a critical part of the process there is no
provision for defining a temporary macro; once a macro is defined,
the previous definition of that macro is no longer obtainable.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 2
Section: 3.18.38

DOC: @0-@39
PREDEFINED MACROS 0-39

3.18.39 PREDEFINED MACROS 0-39 DOC: @0-@39

Macros 0 through 39 (inclusive) have been given default
definitions. These definitions are in effect when the DOC program
begins processing the user raw text. It is advisable to avoid
modifying the definitions of these macros (but under some
circumstances it may be required).

The initial definition of the general purpose macros and their
intended use are described below:

@O = @Q30"@E@X

End document

@l = @E@I@Xl@A6@I05

Produce a first level numbered paragraph heading

@2 = @L2@E30@I@X2@Al0@I05

Produce a second level numbered paragraph heading

@3 = @L2@E20@I@X3@Al2@I05

Produce a third level numbered paragraph heading

@4 = @L2@El5@I@X4@Al5@I05

Produce a fourth level numbered paragraph heading

@5 = @L2@ElO@I@X5@Al8@I05

Produce a fifth level numbered paragraph heading

@6 = @L2@El0@I@X6@A20@I05

Produce a sixth level numbered paragraph heading

@7 = @Ll@E2@I05

Terminates the line in process. Generates one blank line
space, and assures that the next two lines will not be
separated by a page break

Page: 1
Section: 3.18.39

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @0-@39
PREDEFINED MACROS 0-39

@8 = @Ll@E2@I5*@N04

Generates a "bullet" paragraph using the character
the bullet; following is an example:

* as

* This is an example of the @8 bullet paragraph the bullet is
placed in print position 6 and subsequent lines start in print
position 11. The effect of this macro is terminated by
initiation of a new line. This bullet paragraph is logically
superior to the second bullet paragraph, @9, explained below.

@9 = @Ll@E2@I5 -@N04

Generates a "bullet" paragraph using the character as
the bullet; following is an example:

this is an example of the @9 bullet paragraph, the bullet
is placed in print position 11 and subsequent lines start
in print position 16. The effect of this macro is
terminated by initiation of a new line. This bullet
paragraph is logically subordinate to the first bullet
paragraph, @8, explained above.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 2
Section: 3.18.39

DOC: @0-@39
PREDEFINED MACROS 0-39

@10 = @S@L@Sl@N

(1) no def

(1) no def

Produces a notation format using the @n command (see
section 3.18.25) but escapes the limitation of that
command concerning spaces within the noted text.
Following are two examples; the first showing the
limitation in the @n command; the second showing the same
text preceding the macro @10:

notice that, although ten spaces were desired
following "def", the spaces preceding "no" and
"def" might have been expanded when the line
was justified.

notice that now, with the use of the @10 macro,
those spaces preceding "no" and "def" remain
unchanged.

Note that the last command (@n) in the macro definition above is
incomplete; that is, no specification of "pp" is included.
Accordingly, the first two characters following the call on this
macro (@10) must be the digits which complete the @n command at the
end of the macro definition~ for example, @1019, the value of the
two digits following the macro call, @10, should be one less than
the number of print positions from the start of the line to the
point at which the text following the macro call is to be placed.

Of the two examples shown above, the second was created by the
following sequence:

Page: 3
Section: 3.18.39

... line was justified. @7(1) no def@l019notice that
now, with the use of ...

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: @0-@39
PREDEFINED MACROS 0-39

@11 = @Y@L0l@H03

Terminate a heading line

@12 = @Ll@I5@H03

Terminates a paragraph

@13 thru @18 = --reserved for future use--

@19 = @EOO

Called after the table of contents is produced.

@20 = @U@L2@I@.@30

This macro is called when a page overflow condition
occurs. The intent of this macro is to produce a page
footing, eject the form, and produce a page heading for
the next page. The initial definition shown above however
does not contain any page footing data. Macro @20 could
be redefined as follows if the user wanted a page footing
which consisted of the page number.

@U- @P -@C@I@.@30

@21 thru @25 = --reserved for future use--

@26 = --spaces--

Contains the break word during the production of the
index or table of contents.

@27 = Allinson-Ross Corporation Document Generator

This macro is called by macro @30 in the generation of
page headings.

@28 = @Ll@ElO@I@T

@29 = @L@J

Is used to simplify entry into the "card image" mode
described under the command @T (see command @T).

Is used to simplify termination of the "card image" mode
described under the command @J (see command @J). An
indentation in effect prior to entering the "card image"

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 4
Section: 3.18.39

DOC: @0-@39
PREDEFINED MACROS 0-39

mode will no longer be in effect after termination of the
"card image" mode.

Page: 5
Section: 3.18.39

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

DOC: @0-@39
PREDEFINED MACROS 0-39

@30 = @27@F Page @P@L2@V

This macro is used to define the page heading. It is
called via macro @20 which is called at page overflow
time. Since the page heading macro (@30) above calls
macro @27, for the text of the heading, the user need
only modify macro @27 to set up his personalized page
headings.

@31 = @E5,l- @26 -@COl

Generate sub-heading for index or table of contents.

This macro is called automatically during the production
of an index (@B) or table of contents (@Z) whenever a
logical break occurs between two lines. In an index, a
logical break occurs when there is a change in the first
letter. In the table of contents, however, a break is a
change in the first level of the paragraph number.

@32 = 000000

This macro contains the current page number .

@33 = 000002.5

This macro contains the version number as specified by
the '// PARAM VER=' job control card. If the version
number is not specified via job control, then the version
number is taken from the first input module read.

@34 = 82/08/18

contains the date the document was generated.

@35 = 9:07:02

contains the time received from the Operating System at
the start of composition.

@36 = --empty--

This macro is called if the page number is even when the
'call odd or even page macro' (@O) command is executed.
This macro has no initial definition.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 6
Section: 3.18.39

DOC: @0-@39
PREDEFINED MACROS 0-39

@37 = --empty--

This macro is called if the page number is odd when the
'call odd or even page macro' {@O) command is executed.
This macro has no initial definition.

@38 = WEDNESDAY AUGUST 18 1982

@39 = 0

This macro contains the current date in literal format

This macro contains the revision number of the input
element.

@40 through @99 are not predefined and may be defined by the user
to suit the requirements of the document being generated.

Page: 7
Section: 3.18.39

TIP/30 Reference Manual
Version 2.5 (82/08/01}

•

•

•

DOC
LIBRARY ERRORS

3.18.40 LIBRARY ERRORS DOC

If a library error should occur (usually file or element not
found) the following error message will be printed:

LIBRARY ERROR!!!

FILE/ELEMENT= xxxxxxxx(n), FUNCTION= f, ERROR= e.

Where:
xxxxxxxx is the name of the file or element (depending on

the function being performed) that was being
accessed at the time of the error.

n is the file number, each time a new file is
opened, it is assigned a number from 1 to 10
starting at 1 for the first file, 2 for the
second etc.

f is the function being performed as follows:

e

FUNCTION DESCRIPTION

0 open element (xxxxxxxx = element nam~)
2 open file (xxxxxxxx = filename)

is the error type as follows:

ERROR

2
3
3

DESCRIPTION

file not found (// LFD missing)
element not in file
I/0 error

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.40

EOJ
NORMAL TIP/30 SHUTDOWN

3.19 NORMAL TIP/30 SHUTDOWN EOJ

This command will post the END OF JOB REQUESTED flag in TIP/30.
When all users have logged off, TIP/30 will terminate gracefully.

Syntax:

EOJ

Where:
No parameters required.

Example:

EOJ

Error Conditions:
None.

Additional Considerations:

The system SHUTDOWN program (if one is specified) will be
scheduled.

Page:
Section:

1
3.19

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCLOSE
PHYSICALLY CLOSE ON-LINE FILE

3.20 PHYSICALLY CLOSE ON-LINE FILE FCLOSE

This program enables the user to physically cause a Data
Management "CLOSE" to be issued for up to eight files. Once closed,
the files will not be available to on-line programs until a
subsequent "FOPEN" is issued. This facility is also available as an
OS/3 operator unsolicited command to TIP/30 ("CLOSE"). This program
does NOT operate interactively. It requires up to eight filenames
on the command line; OS/3 Data Management will be presented with an
CLOSE request for each file name given.

Syntax:

FCLOSE file1 [,file2] [,file3] [, f i 1 es l

Where:

filel ... 8 the LFD name of the f ile(s) to be closed.

Example:

FCLOSE CUSTMAST,INVMAST,ORDENTRY

Will close the three specified files.

Error Conditions:
The LFD name specified may not be a valid LFD name (ie: not in the
TIP/30 job control stream).

Additional Considerations:

If the operation is held pending (eg: deferred until users have
relinquished control of the file) the user will be not be notified
of actual completion because the FCLOSE program will terminate
before the actual Data Management function is performed.

The LFD names used must be catalogued in the TIP/30 catalogue in a
group to which the user has access.

CHAPTER III - ON-LINE UTILITY PROGRAMS
PHYSICALLY CLOSE ON-LINE FILE

Page:
Section:

1
3.20

FIN
LOGOFF TIP/30

3.21 LOGOFF TIP/30 FIN

The FIN command is used to logoff TIP/30. If TCP was called via
the escape function, control returns to the program that was active
at that time, otherwise the user is logged off.

Syntax:

FIN

Where:
No parameters are required.

Example:

FIN

Error Conditions:
If the user has not logged on, TIP/30 will not allow a logoff.

Additional Considerations:

FIN is a reserved word recognized by the TIP/30 command processor.

The FIN command is recognized to maintain downward compatability
with previous releases of the TIP/30 system. The LOGOFF program is
the preferred method of logoff.

Page:
Section:

1
3.21

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FOPEN
PHYSICALLY OPEN ON-LINE FILE

3.22 PHYSICALLY OPEN ON-LINE FILE FOP EN

This program enables the user to physically cause a Data
Management "OPEN" to be issued for up to eight files. This facility
is also available as an OS/3 operator unsolicited command to
TIP/30. This program does NOT operate interactively. It expects up
to eight filenames on the command line~ OS/3 Data Management will
be presented with an OPEN request for each file name given.

Syntax:

FOPEN file1 [,file2] [,file3] [, f i l e8 J

Where:

filel ... 8 the LFD name of the f ile(s) to be opened.

Example:

FOPEN CUSTMAST,INVMAST,ORDENTRY

Will open the three specified files.

Error Conditions:
The LFD name specified may not be a valid LFD name (ie: not in the
TIP/30 job control stream).

Additional Considerations:

Note that this program references files by the real LFD name - NOT
the catalogued logical file name.

The LFD names used must be catalogued in the TIP/30 catalogue in a
group to which the user has access.

CHAPTER III - ON-LINE UTILITY PROGRAMS
PHYSICALLY OPEN ON-LINE FILE

Page:
Section:

1
3.22

FREE
DEACCESS A FILE

3.23 DEACCESS A FILE FREE

The FREE program is used to release a file from assignment to a
user. The effect is to remove the file from the active file table
for the terminal.

Syntax:

F R EE [, type 1 [a f t - n arne 1

Where:

type type of FREE to be done.

aft-name

Example:

FREE UPDATE

'A' : all assigned files are to be free'd. Any
temporary files are scratched by this option.

'F' : any records held for update for the aft-name
are to be released.

'X' : all records held for update for the user in
any file are to be released.

active file name.

release the file that was assigned with the logical name of UPDATE.

Error Conditions:
TIPFCS errors may be reported.

Page:
Section:

1
3.23

TIP/30 Reference Manual
Version 2.5 (82/08/01)

----------------------------------·---··

•

HELP
DISPLAY USER HELP INFORMATION

3.24 DISPLAY USER HELP INFORMATION HELP

The HELP program is a utility which will display help
information for a specified program. The user may ask to see the
help information for many of the supplied utility programs.

Help information may also be provided (by the installation
administrator) for the installation's user programs.

The HELP program is NOT interactive. It requires only one
parameter (see following) and expects this parameter on the command
line.

Syntax:

HELP [name]

Where:

name The
he lo
wili
HELP

name of the program for which the user needs
information. If omitted, the HELP program
display information to help the user run the

program.

Example:

HELP VTOC

Will display the supplied help information for the
program "VTOC".

Error Conditions:
The requested help information may not be available.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY USER HELP INFORMATION

Page:
Section:

1
3.24

IDA
INTERACTIVE DEBUG AID

3.25 INTERACTIVE DEBUG AID IDA

IDA is a utility program which facilitates the debugging of
on-line programs. When the user activates IDA on behalf of a
program, IDA is given control by TIP/30 and then executes the user
program using the hardware execute instruction. After each user
program instruction has been 'executed' (by IDA), the results and
effects of that execution are displayed on the terminal in a format
similar to the assembly language representation of an instruction.
The information presented includes:

- program and job region relative address
- condition code setting
- instruction mnemonic and operands
- effective addresses (operand 1 and operand 2)
- first four bytes of operand 1 and operand 2

•

If you wish to debug a program that you call directly, and you
only want to debug it once, enter the question mark('?')· character
preceding the transaction code on the command line. This is only
useful when the program to be debugged is the first one called.
Programs that are called from other programs or via IMS/90
succession must be debugged by altering the catalogue entry for the •
program.

In order to have a program loaded with IDA activated, catalogue
the transaction code with DEBUG=IDA. Now, whether invoked directly
or by succession, when the transaction is loaded IDA will also be
loaded and given control.

When IDA receives control, it will display various information
about the current environment (transaction id, load module name
etc) and will then prompt the terminal user for a command.

To begin debugging simply
executing your program at the
address by the Linkage Editor.
the display by pressing MSG/WAIT
the following IDA commands.

Page:
Section:

1
3.25

press transmit. IDA will begin
address specified as the entry
At any time the user may interrupt
or a FUNCTION key and enter any of

TIP/30 Reference Manual
Version 2.5 (82/08/01)

IDA COMMANDS

3.25.1 IDA COMMANDS

(blank)

+,offset

-,offset

A PRA,n

AA addr ,n

AR r,n

B PRA,N,C

IDA: COMMANDS

IDA: commands

no command - continue tracing program

Display next storage

Display next 16 bytes from the address last used
in a 'D' or 'A' command. IDA remembers the last
address which was displayed or altered. The user
may specify a hexadecimal offset <offset> to be
added to the address. If an offset is not
specified a default value of 16 is used.

Display previous storage

Similar to "+,offset" but treats any specified
offset as a negative value.

Alter storage

Begining at the program relative address (given as
PRA) store the value specified as 'n'. The value
may be specified as a hexadecimal string or a
character string within single quotes (').

Alter storage at absolute address

Similar to "A" command except that the <addr> is
specified as an absolute address rather than a
program relative address.

Alter general purpose register

Alter the contents of the register. <r> is the
decimal number of the register to be changed.
Leading zeros are not significant.

Specify breakpoint address

PRA is the program relative address at which the
user wishes to interrupt execution of the program
to be able to call other IDA functions. A maximum
of eight breakpoints is allowed. This command is
usually used in conjunction with the DISPLAY OFF
command when the user wishes to inhibit the IDA
display until a specific address has been reached.

<N> is the display mode
before prompting; usually

option to be executed
"C", "I", or "N".

CHAPTER III - ON-LINE UTILITY PROGRAMS
INTERACTIVE DEBUG AID

Page:
Section:

1
3.25.1

IDA: COMMANDS

Page:
Section:

IDA COMMANDS

<C> is the decimal count of the number of times
the breakpoint address is to be encountered before
prompting the user.

When a breakpoint has been reached its address is
displayed as well as information describing the
display status (on/off) and mode (Continuous or
Instruction).

C Continuous Mode display

D PRA

DA addr

DB

DE PRA

The display is scrolled up for each instruction
displayed. To interrupt the display the user must
press a function key or MSG/WAIT.

Display storage

Display 16 bytes in hex and graphic starting at
the user program relative address given as PRA.

Display storage from absolute address

Display 16 bytes in hexadecimal and graphic
starting at absolute address given as <addr>.

Display Breakpoint Table

Display the user defined breakpoint addresses and
their associated options and counts.

Display edited

Treat the specified program relative address as if
it was an instruction and display that location as
an instruction.

DF Display floating point registers

DI r,offset

2
3.25.1

Display floating point registers 0, 2, 4, and 6.
(Each floating point register is 64 bits wide but
is displayed as left and right 32 bits).

Display indirect

Display 16 bytes in hex and graphic from the
address computed as the sum of the contents of
register <r> and hex offset <offset>.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-----------------------------------·-·-··----·-----

IDA COMMANDS

DR r

IDA: COMMANDS

Display General Purpose Register(s)

Display the contents of the specified (in decimal)
register. If <r> is omitted, all 16 registers are
displayed.

E End tracing

Tracing of the program is discontinued. The user
program continues executing in normal mode (ie:
not executed via IDA). If a subsequent program
check occurs, control reverts to IDA.

ED End tracing and IDA

Similar to the "E" command except that a
subsequent program check will pass control to PMDA
instead of IDA.

F Display OFF

G PRA

Turn the IDA display off. Usually used to inhibit
the display of instructions in anticipation of
reaching a breakpoint.

GO TO address

Alter the PSW to execute the next instruction at
the program relative address given as <PRA>.

I Instruction mode display

L addr

The user is prompted for an IDA command after
every instruction; forces display mode ON.

Specify linked address

The user may enter the linker assigned address of
the traced routine. This maintains a zero relative
display of user program addresses for easy
reference to the program listing.

N Display ON

Turn the IDA display on. Usually used as a
breakpoint option.

CHAPTER III - ON-LINE UTILITY PROGRAMS
INTERACTIVE DEBUG AID

Page:
Section:

3
3.25.1

IDA: COMMANDS

O,PRA

IDA COMMANDS

Omit Breakpoint

The program relative address specified by <PRA> is
omitted (deleted) from the breakpoint table.

Q Stop run

Page:
Section:

R term

S PRA,n

T mnemonic

TN hexop

4
3.25.1

IDA is terminated
previous program
COMMAND PROCESSOR.

and control returns to the
on the stack, usually the TIP

Redirect IDA display

Direct IDA'S output to the specified terminal. The
terminal must be idle, (ie. no user logged on).
This command allows the user to view the debugging
information displayed by IDA at another terminal.
This would normally be done so that the output
from IDA does not destroy the output of the
program being traced.

The "R" command may leave the alternate terminal
locked up if the program terminates. You must set
some breakpoint to get control back, then Redirect
back to the original terminal sometime before the
program terminates.

Search for memory contents (program relative)

Search for the value <n> (1, 2, 3, or 4 bytes)
from program relative address <PRA>. The value <n>
may be specified as a hexadecimal string or as a
character string enclosed in single quotes.

Translate mnemonic to opcode

Translate the <mnemonic> for an instruction to its
internal hexadecimal representation. Used to
determine opcodes when displaying memory contents.

Translate opcode to mnemonic

Translate the specified hex opcode to its mnemonic
equivalent.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

IDA COMMAND EXAMPLES

3.25.2 IDA COMMAND EXAMPLES

COMMAND
=======
(blank)
L 128
D 23A
+20

DR
DR 11
DF
DI 12
DI 12,40
B D6,N,10

0 D6
B 7A
DB
F
N
I
c
A 23A,D200F002EOOO
A 23A, I T301'
s 24A,47BOFOOE
s
s 45E
s O,ClC2
R TRM4
T CLC
TN 41
G 128
DA 2364A
DE 128
ED
E

Q

I DA: EXMAPLES

IDA: exmaples

FUNCTION
========
CONTINUE EXECUTING TRACED PROGRAM
DISPLAY ADDRESSES ZERO RELATIVE TO 128
DISPLAY 16 BYTES AT 'PRA' 23A
DISPLAY 16 BYTES AT 'PRA' 25A
DISPLAY 16 BYTES AT 'PRA' 24A
DISPLAY GENERAL PURPOSE REGISTERS
DISPLAY GENERAL PURPOSE REGISTER 11
DISPLAY FLOATING POINT REGISTERS
DISPLAY 16 BYTES AT ADDRESS IN R12
DISPLAY 16 BYTES AT ADDRESS R12 + 40
STOP AT PRA D6 ON lO'TH ENCOUNTER AND

EXECUTE OPTION 'N' IE. DISPLAY ON
OMIT BREAKPOINT ADDRESS D6
STOP AT PRA 7A, AUTO-OMIT ENTRY
DISPLAY ENTRIES IN BRKPT TABLE
DISABLE IDA DISPLAY
ENABLE IDA DISPLAY
SINGLE INSTRUCTION DISPLAY MODE
CONTINUOUS DISPLAY MODE
ALTER MEMORY AT 23A TO X'D200F002EOOO'
ALTER MEMORY AT 23A TO C'T301'
SEARCH FOR 47BOFOOE FROM ADDRESS 24A
SEARCH FOR NEXT OF PREVIOUS ARGUMENT
SEARCH FROM 45E FOR PREVIOUS ARGUMENT
SEARCH FOR ClC2 FROM ZERO
REDIRECT IDA OUTPUT TO 'TRM4'
TRANSLATE 'CLC' TO HEX OPCODE
TRANSLATE 41 TO MNEMONIC OPCODE
GO TO PROGRAM RELATIVE ADDRESS 128
DISPLAY ABSOLUTE LOCATION 2364A
DISPLAY INSTRUCTION AT 128
END TRACING ALLOW PMDA DUMP
END TRACING, ALLOW USER CPROGRAM TO EXECUT~

(RECALL IDA IF SUBSEQUENT PROGRAM CHECK)
CANCEL IDA SESSION; EXIT TRACED PROGRAM

CHAPTER III - ON-LINE UTILITY PROGRAMS
INTERACTIVE DEBUG AID

Page:
Section:

1
3.25.2

--------------·-·--- --.-

..

••

•

JBO
DISPLAY OS/3 JOB QUEUE INFORMATION

3.26 DISPLAY OS/3 JOB QUEUE INFORMATION JBQ

The JBQ program is a utility program that will display
information about the OS/3 job queue. It is functionally similar to
the OS/3 operator command "DI JBQ". The JBQ program recognizes the
following commands:

display a11 queues
end the JBQ program
display help information on the terminal
display the high priority job queue

A 11
End
Help
High
List
Normal
Pre
Quit

display step information for a selected job name
display the normal priority job queue
display the pre-emptive priority job queue
end the JBQ program and logoff TIP/30

The JBQ program may be executed interactively or may be given a
single command via the command line. If a single command is given
on the command line, JBQ will attempt that command and then
terminate normally. If used interactively, JBQ will prompt the user
for each command until and "End" or "Quit" command is given •

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY OS/3 JOB QUEUE INFORMATION

Page:
Section:

1
3.26

JBO: ALL
DISPLAY ALL OS/3 JOB QUEUES

3.26.1 DISPLAY ALL OS/3 JOB QUEUES JBQ: all

This command will cause the JBQ program to display the status of
all the OS/3 job queues (Normal, High and Pre-emptive priority).
All jobs in each queue will be shown; those job names in
parentheses are currently on hold.

Syntax:

A 1 l

Where:
No parameters required.

Example:

A
Will display all OS/3 job queues.

Error Conditions:
None.

Page:
Section:

1
3.26.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

..

•

END INTERACTION WITH JBO PROGRAM JBO: END

3.26.2 END INTERACTION WITH JBQ PROGRAM JBQ: end

This command will cause the JBQ program to stop prompting the
user for further commands and terminate normally.

Syntax:

End

Where:
No parameters required.

Example:

E

Wi 11 end the JBQ program.

Error Conditions:
None. \

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY OS/3 JOB QUEUE INFORMATION

Page:
Section:

1
3.26.2

JBO: HELP
DISPLAY HELP INFORMATION ON TERMINAL

3.26.3 DISPLAY HELP INFORMATION ON TERMINAL JBQ: help

This command will cause the JBQ program to display help
information on the terminal. The help information is a
summarization of the recognized command syntax.

Syntax:

HElp

Where:
No parameters are required.

Example:

HE

Will display help information on the terminal. Note that
"HE" is the shortest possible string of characters that may
be entered for this command.

Error Conditions:
The help information may not be available.

Page:
Section:

1
3.26.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DISPLAY HIGH PRIORITY JOB QUEUE JBO: HIGH

3.26.4 DISPLAY HIGH PRIORITY JOB QUEUE JBQ: high

This command will display jobs that are in the OS/3 high
priority job queue. Jobs currently held by the OS/3 operator will
be displayed with the job name in parentheses.

Syntax:

High

Where:
No parameters required.

Example:

H

Will display the high priority job queue.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY OS/3 JOB QUEUE INFORMATION

Page:
Section:

1
3.26.4

JBO: LIST
LIST JOB STEP INFORMATION

3.26.5 LIST JOB STEP INFORMATION JBQ: list

This command will display step information about a selected job.
The job may be queued for execution, rolled out, or executing. The
information displayed includes the job status (executing, queued
etc), the queueing priority of the job, the number of steps in the
job and, for each step in the job, the program executed in that
step, the LFD name of the step library and the switching priority
(if currently executing.

Syntax:

List jobname

Where:

jobname the name of the selected job (8 characters max).

Example:

L TIP30

Will display the step information about job named "TIP30".

Error Conditions:
The specified job may not be found in any queue or may not be
currently executing or rolled out.

Page:
Section:

1
3.26.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DISPLAY NORMAL PRIORITY JOB QUEUE JBO: NORMAL

3.26.6 DISPLAY NORMAL PRIORITY JOB QUEUE JBQ: normal

This command will display the jobs in the normal priority job
queue.

Syntax:

Normal

Where:
No parameters required.

Example:

N

Wi 11 display the jobs in the normal priority queue.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY OS/3 JOB QUEUE INFORMATION

Page:
Section:

1
3.26.6

JBQ: PRE-EMPTIVE
DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE

3.26.7 DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE JBQ: pre-emptive

This command will display jobs in the pre-emptive priority job
queue. If the system was generated without pre-emptive job
scheduling the display will indicate no jobs in that queue.

Syntax:

Pre

Where:
No parameters required.

Example:

p

Will display jobs in the pre-emptive job queue.

Error Conditions:
None.

Page:
Section:

1
3.26.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

END INTERACTION WITH JBO JBO: QUIT

3.26.8 END INTERACTION WITH JBQ JBQ: quit

This command will cause the JBQ program to stop prompting the
user for further commands. If the JBQ program is executing at
program stack level one (ie: was NOT called by another program) the
user will be logged off the TIP/30 system.

Sgntax:

Quit

Where:
No parameters required.

Example:

Q

End JBQ program and logoff.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY OS/3 JOB QUEUE INFORMATION

Page:
Section:

1
3.26.8

JCL
INTERACTIVE JOB CONTROL SUBMITTOR

3.27 INTERACTIVE JOB CONTROL SUBMITTOR JCL

The JCL program allows the user to enter job control statements
at the terminal that will be submitted directly to the OS/3 run
processor. This eliminates the necessity of creating an element in
the YJCS library for quick one-time-only jobs. The JCL program
calls the TIP/30 text editor (QED) to enable the user to create (or
modify) a job control stream. When the editing session is
completed, the JCL program submits the edit buffer to the TIP/30
librarian (TLIB) to be submitted to the remote batch reader queue.
A facility for editing and resubmitting job control streams is
provided so that the user need not re-type a control stream that
was almost correct.

Syntax:

Where:

JCL [file.element [,type]]

-OR-

JCL [buffer l

[,buffer]

file,element an optional file and element to initially read
into the editor work buffer

type the type of element to read [default is source
("s")]

buffer the name of the edit buffer that will be accessed.
If an edit buffer of that name does not exist, JCL
will create it.

If the name is not specified, it defaults to
"JCL$tttt" where "tttt" is the !CAM name of the
submitting terminal.

Example:

Page:
Section:

JCL TEST

Will access or create as necessary the edit buffer named
GROUP1/TEST (where GROUP1 is the name of the first
elective group to which the user belongs). The TIP/30
text editor will be called and, if the user exits the editor
with the "E" command, the buffer wi 11 be submitted to the
remote batch reader.

1
3.27

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

INTERACTIVE JOB CONTROL SUBMITTOR
JCL

Error Conditions:
None.

3.28 LOG OFF TIP/30 LOGO FF

The LOGOFF program is used to logoff TIP/30. Only users that
have previously logged on may log off.

Sgntax:

LOGOFF

Where:
No parameters are required.

Example:

LOGOFF

Error Conditions:
None.

Additional Considerations:

This program may only be executed in response to the standard
system prompt. The logoff request will not be honoured at stack
levels higher than one.

CHAPTER III - ON-LINE UTILITY PROGRAMS
INTERACTIVE JOB CONTROL SUBMITTOR

Page:
Section:

1
3.28

LOG ON
LOG ON TIP/30 SYSTEM

3.29 LOG ON TIP/30 SYSTEM LOG ON

To be able to use the TIP/30 system, the user must first
"logon". This may be accomplished by executing the LOGON program.
The LOGON program requires the user to supply his user
identification and current password. Other methods of logging on
the TIP/30 system are described in Chapter II (logon and logoff
procedures). The user id and password supplied by the user are
checked for validity in the TIP/30 catalogue.

Syntax:

Where:

LOGON user id/password [,account]

user id

password

account

the user name (max 8 characters) assigned to the
user by the installation administrator.

the current password associated with the userid.
The password is a maximum of 8 characters. It is
quite legal to have a password that is all blank
(omitted) but this is ill-advised since it
provides rather minimal protection against
unauthorized use.

the account number the user wishes to associate
with this session. The account number is defined
by the installation administrator. and may or may
not be optional.

Example:

LOGON FRED/QWERTYUI

Wi 11 logon a user named "FRED" who has a password
of "QWERTYUI".

Error Conditions:
The userid may not be recognized, the password may not match the
current password for the userid, or the account number does not
appear in a list of valid account for the userid. After three
attempts, TIP/30 will lock the terminal keyboard and inform the
OS/3 system operator that a logon attempt was unsuccessful at that
terminal. The keyboard may be unlocked for more attempts by
pressing the "KBOARD UNLOCK" key.

Page:
Section:

1
3.29

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIP MAIL SYSTEM
MAIL

3.30 TIP MAIL SYSTEM MAIL

MAIL is a program designed to provide user to user communication
through a mailbox file. Each user who wishes to receive mail must
first create a mailbox using the mail program 'Create' command.

If mail is sent to a user who is not logged on, the message is
simply stored in the user's mailbox. However, if the receiving user
is logged on, the message is stored in his mailbox and he is
informed that the message is available for him to read by way of
the 'message/waiting' alarm.

Syntax:

command

Where:

command

Create

?

Send USER-ID

List

List ?

List msg#

List USER-ID

pa ram

is one of the following

Create a new mailbox. If the user already has a
mailbox then this command has no effect. There are
no parameters on the Create command.

Check the mailbox to see how many new messages and
how many old messages it contains. A new message
is a message which has not yet been read. An old
message is a message which has been read by the
user.

Send a message to a specific user. The Send
function will display a blank screen into which
the user can enter the message he wishes to send.

List the directory of the mailbox.

List all NEW messages.

List the message with the specified number.

List all messages sent by the specified USER-ID.
An asterisk may be used to denote a pref ix search.
For example, if the user enters "L *ABC" then all
messages from USER-ID's begining with the
characters "ABC" will be listed.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP MAIL SYSTEM

Page:
Section:

1
3.30

MAIL

List *

Delete

Delete msg#

Delete USER-ID

Delete *

TIP MAIL SYSTEM

List all messages in the mailbox.

Delete all OLD messages. Note that MAIL will not
allow you to delete a message he has not read.

Delete the message with the specified number.

Delete all messages sent by the specified user. As
in the List command, an asterisk may be used to
denote a pref ix search.

Delete all OLD messages in the mailbox.

Additional Considerations:

MAIL may be called to perform a single function by entering the
desired function and its parameters in the command line.

MAIL uses only the first character of a command to identify the
requested function.

Page:
Section:

2
3.30

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MEM
OS/3 MEMORY DISPLAY

3.31 OS/3 MEMORY DISPLAY MEM

The MEM program is a utility which displays the current OS/3
memory utilization (map). The program details job name, memory
region in hex, size in decimal, type, program executing, CPU time,
account number, storage protect key, executing and scheduling
priority.

Syntax:

MEM [Wait] [,Buffers]

Where:

Wait If given causes the MEM
display on the screen every
function key or msg-wait
causes the screen to be
rolled.

program to refresh the
20 seconds or until a
is pressed. This also

scrolled rather than

Buffers Optional parameter to cause program to display
buffer pool information (Release 7 and above).

Example:

MEM

Will display the current OS/3 memory usage map.

Error Conditions:
None.

Additional Considerations:

To discontinue the memory display with the wait parameter, press a
function key or msg-wait and reply "No" to the continuation prompt.

CHAPTER III - ON-LINE UTILITY PROGRAMS
OS/3 MEMORY DISPLAY

Page:
Section:

1
3.31

MODE
SPECIFY MODE OF OPERATION

3.32 SPECIFY MODE OF OPERATION MODE

The MODE program is used to place a user in debug mode, to
specify an MCS screen format to be used in place of the standard
system prompt or specify a transaction program which will replace
the standard system command processor (TCP).

Syntax:

Where:

MODE[,opt] [menu][,prog]

opt defines the mode of operation.

menu

prog

'DB' places the terminal in debug mode: all files
are placed in debug mode. File updates are
ignored.

no option; remove debug mode.

name of a message format which is to be used as
the prompt message.

is the name of a prompt program which is to be
called.

When this program terminates, the user will be
logged off.

Example:

MODE ARMENU

This will change the standard system prompt for the user to
the MCS screen format "ARMENU".

Error Conditions:
None.

Page:
Section:

1
3.32

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•
SENDING A MESSAGE

MSG

3.33 SENDING A MESSAGE MSG

The MSG program allows a terminal user to send a message to
another TIP/30 user, to a specific terminal, or to the computer
operator. If the destination is not valid, the sender will receive
an error message. When the message is received, it is prefaced by
the USER-ID and terminal name of the sender.

Syntax:

MSG[/dest] text

Where:

de st is the name of the user (user-id), or the terminal
name (as defined in ICAM) to which the message is
to be sent.

'dest' follows standard prefix notation.

If the destination is not specified (omitted), the
message will be sent to the computer operator.

text is the message (64 characters maximum) to be sent.

Example:

MSG/BETTY INVENTORY UPDATE IS COMPLETE.
MSG/TRM1 YOU CAN LOG ON NOW.
MSG HOW LONG WILL THE SYSTEM BE UP?
MSG/*MF MANUFACTURING FILES CLOSED!

Error Conditions:
No such user or terminal found.

Additional Considerations:

A message that is sent to the OS/3 operator may be split into two
console lines if the text is too long.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SENDING A MESSAGE

Page:
Section:

1
3.33

MS GAR
MESSAGE ARCHIVER (LIBRARIAN)

3.34 MESSAGE ARCHIVER (LIBRARIAN) MS GAR

The message archiver (MSGAR) is a utility program that provides
librarian services for TIP/30 screen formats (messages). Screen
formats are stored in a partition of the TIP/30 catalogue file and
may also be pooled in memory for fast access (refer to "TIP/30
System Generation").

The message archiver recognizes the following commands:

CURSOR
DELETE
DIRECTORY
END
HELP
LIST
PRINT
QUIT
RENAME
RESTORE
SAVE
WRITE

- specify cursor resting location for a message
- delete a message
- print a directory of message names and information
- end interaction with MSGAR program
- display help information on terminal
- list message names and information
- print a hard copy image of a message
- end interaction with MSGAR program and logoff
- rename a message
- restore a message from an OS/3 library element
- save a message in an OS/3 library element
- create a library element containing message names

The message archiver may be used interactively or may be given a
single command on the command line. If a single command is given on
the command line MSGAR will attempt only that command and then
terminate normally. When used interactively, MSGAR will prompt the
user for each command.

Page:
Section:

1
3.34

TIP/30 Reference Manual
Version 2.5 (82/08/01}

•

•

CURSOR RESTING LOCATION
MSGAR: CURSOR

3.34.1 CURSOR RESTING LOCATION MSGAR: cursor

This command specifies the cursor resting location for a
message. The cursor location may be specified as a row and column
(relative to 1) or may be omitted. If the row and column are
omitted, the archiver will compute the resting location as the
first position of the first unprotected field. If there are no
unprotected fields in the message, the cursor will rest at (1,1).

Syntax:

cursor name [,row,column]

Where:

name the name of a single screen format (pref ix
specification not allowed)

[,row,column] resting location [home position is (1,1)]

Example:

cursor testmsg,5,51

Will force the cursor resting location for screen
format named "TESTMSG" to row 5 column 51.

Error Conditions:
The specified screen format may not be found or the row and column
specification may be incomplete or invalid.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER (LIBRARIAN)

Page:
Section:

1
3.34.1

MSGAR: DELETE
DELETE SCREEN FORMAT

3.34.2 DELETE SCREEN FORMAT MSGAR: delete

This command will delete a screen format. In order to minimize
the possibility of inadvertent wholesale deletes, the screen format
name for this command may NOT be given as a pref ix specification.

Sgntax:

Where:

DELete name

name the name of a single screen format
specification not allowed)

Example:

DEL testmsg

Wi 11 delete the screen format named "TESTMSG".

Error Conditions:
The specified screen format may not be found.

(pref ix

Page:
Section:

1
3.34.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MSGAR: DIRECTORY
DIRECTORY OF SCREEN FORMATS

3.34.3 DIRECTORY OF SCREEN FORMATS MSGAR: directory

This command produces a printout containing information known
about the selected screen formats. The information printed
includes: screen name, author, date and time created, total data
field count, etc.

Syntax:

DI rectory

Where:

*name

printer

*name [,printer]

a single message name or a pref ix specification

the output printer destination.
destination is PRNTR (the site
printer may also be specified as
print device.

The default
printer). The

an auxiliary

Example:

DIR l test, aux1

Produce a directory listing of all screen formats
which have a name NOT starting with the string "TEST"
The printout is to be directed to the auxiliary printer
for the issuing terminal.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER (LIBRARIAN)

Page:
Section:

1
3.34.3

MSGAR: END
END MESSAGE ARCHIVER

3.34.4 END MESSAGE ARCHIVER MSGAR: end

This command causes the message archiver to terminate processing
normally.

Syntax:

Page:
Section:

End

1
3.34.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

HELP INFORMATION MSGAR: HELP

3.34.5 HELP INFORMATION MSGAR: help

This command causes the message archiver to display a summary of
recognized commands and required parameter syntax.

Syntax:

Help

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER. (LIBRARIAN)

Page:
Section:

1
3.34.5

MSGAR: LIST LIST SCREEN FORMAT INFORMATION

3.34.6 LIST SCREEN FORMAT INFORMATION MSGAR: list

This command displays (on the terminal) a summary listing of
information known about the selected screen formats. The
information is similar to that shown by the DIRECTORY command.

Syntax:

List *name

Where:

*name a single message name or a pref ix specification

Example:

Page:
Section:

LIST *test

Produce a listing of all screen formats which have a
name starting wlth the string "TEST".

1
3.34.6

-+*+-

TIP/30 Reference Manual
Version 2.5 (82/08/01)

PRINT SCREEN FORMAT MSGAR: PRINT

3.34.7 PRINT SCREEN FORMAT MSGAR: print

This command will create a hard copy image of specified screen
formats. The image is a representation of the screen as it was
defined to the Message Definition program (see "MSGDEF"). Data
fields and heading fields are shown with original edit and control
information. The hard copy image may be routed to the site printer
PRNTR (the default destination) or to an auxiliary print device
(for example: AUXl).

Syntax:

Print

Where:

*name

printer

case

*name [,printer] [,case]

a single message name or a pref ix specification

the name of the destination printer (default is
PRNTR; other examples are: AUXl AUXl*BYP etc.)

a choice between "Upper" and "Lower" indicating
the desired case of the printout. "Upper" is the
default when the destination is the site printer;
"Lower" is the default when the destination is an
auxiliary printer.

Example:
PRINT *test, ,LOWER

Produce a hard copy printout of all screen formats
with a name starting with the string "TEST" on the
site printer and attempt to print lower case data.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER {LIBRARIAN)

Page:
Section:

1
3.34.7

MSGAR: QUIT QUIT MSGAR PROGRAM

3.34.8 QUIT MSGAR PROGRAM MSGAR: quit

This command will end the message archiver. In addition, if the
user was executing the message archiver at stack level 1 (ie: the
message archiver was NOT called from another program) then the user
will be logged off the TIP/30 system.

Syntax:

Page:
Section:

Quit

1
3.34.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RENAME SCREEN FORMAT MSGAR: RENAME

3.34.9 RENAME SCREEN FORMAT MSGAR: rename

This command will rename an existing screen format. The new name
must be a name that is not currently in use.

Syntax:

RE Name name,newname

Where:

name the name of an existing screen format

newname the desired new name for the screen format

Example:

ren testmsg,xtestmsg

Will change the name of screen format "TESTMSG"
to "XTESTMSG".

Page: CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER (LIBRARIAN) Section:

1
3.34.9

MSGAR: RESTORE
RESTORE SCREEN FORMAT

3.34.10 RESTORE SCREEN FORMAT MSGAR: restore

This command will restore a screen format that was previously
saved (by the message archiver) in an OS/3 library element. The
name of the element containing the saved screen format need not be
the same as the name of the message. If the specified screen format
already exists the user is asked whether or not the existing screen
format is to be overwritten.

Syntax:

Where:

RE Store name , f i 1 e [, e 1 t l

name the name of a single screen format (pref ix
specification not allowed)

file the logical file name of the OS/3 library

elt the name of the element in the library which
contains the saved screen format (default name is
same as message name)

Example:

REST TESTMSG,PRODSRC/XTESTMSG

Will restore (recreate) a screen format called "TESTMSG"
from library "PRODSRC" element "XTESTMSG".

Page: 1
Section: 3.34.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SAVE SCREEN FORMAT
MSGAR: SAVE

3.34.11 SAVE SCREEN FORMAT MSGAR: save

This command will save one or more screen formats in an OS/3
library. Each selected screen format will be written to an element
(default element name is the same as the screen name). The save
command is useful for taking a backup of screen formats before
undertaking extensive modifications or in preparation for
transporting screen formats to another TIP/30 system.

Syntax:

Save

Where:

*name

file

elt

*name , f i le [,elt]

the name of a single screen format or a pref ix
specification.

the logical file name of the OS/3 library

the name of the element in the library which will
be created containing the screen format. The
element name will default to the name of the
screen format that is being saved. If screen
formats are selected by pref ix the element name
must be omitted.

Example:

SAVE *TF$,BACKUP

Will save all screen formats with a name starting with
"TF$" into the OS/3 library catalogued with the logical
file name "BACKUP". Each element will be created with
the name of the screen format it contains.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER (LIBRARIAN)

Page: 1
Section: 3.34.11

MSGAR: WRITE
WRITE SCREEN FORMAT NAMES

3.34.12 WRITE SCREEN FORMAT NAMES MSGAR: write

This command will create an element in an OS/3 library which
will contain all the specified screen format names. Each "line" of
the created element will contain a single screen name. The write
command is especially useful for creating command files for a
subsequent run of the message archiver. The element created by the
write command can be edited later using the TIP/30 Text Editor
(QED) •

Syntax:

Where:

Write *name [, f i 1 e] [,elt]

*name the name of a single screen format or a name
pref ix specification.

file the logical file name of the OS/3 library (default
is "RUN")

elt the name of the element to create (default is
"MSGAR")

Example:

WR !TF$,RUN/NONTIP

Wi 11 create an element named "NONTIP" in 1 ibrary "RUN"
containing lines of message names that do NOT begin
with the string "TF$".

Page: 1
Section: 3.34.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGE DEFINITION
MSGDEF

3.35 MESSAGE DEFINITION MSG DEF

MSGDEF first prompts for the name of the screen format to be
created or modified. To create a new display, enter its NAME in the
"new" field and leave the "old" field blank. To modify an existing
display enter its name in "old" field and leave "new" blank. To
make a new display from an existing one, fill in both fields.
Although a prompt screen is provided, the user may enter these two
parameters on the initial command line, when first calling the
program.

Defining a message can involve three or four steps. Each step will
be preceded by a display describing both functions and options.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE DEFINITION

Page:
Section:

1
3.35

MSGDEF
MESSAGE DEFINITION

Step 1:

At this time the user must select various options which affect the
entire the display. Step 1 functions through a 'fill in the blanks'
style menu where options are simply selected from a list. (Some
default options are given, but may be overlaid.) Place the cursor
at the end of the screen and press transmit. The options are:

Page:
Section:

t is the character to be used in following steps to
identify characteristics of portions of the display.

\ is the character which may be used to represent a
start-of-entry (SOE) character in the display.

Enter Y if all data fields are to be unprotected.

Y Enter Y if the entire screen is to be erased before the
screen format is sent to a terminal.

01 Enter the row to which this display is to be
transmitted.

~·~ Enter the row and column where the
rest after the display is transmitted
normally compute this).

cursor is to
(MSGDEF will

nn,nn is the row and column where the cursor used to be
set (this is displayed here on old screens by MSGDEF).

~ Enter display intensity for data fields (UTS-400
typically). TN is Tab (in front of fields) and Normal
intensity. TL is Tab (in front of fields) and Low
intensity. N is no Tab and Normal intensity. L is no tab
and Low intensity.

_Enter the display intensity for heading fields (UTS-400
typically). N for normal and L for low.

_ Enter 'Y' if you want the informational messages which
are displayed between each step of MSGDEF processing.

2
3.35

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MSGDEF
MESSAGE DEFINITION

Step 2:

If a 'new screen' is being generated, step 2 will present an
entirely blank screen upon which the user designs the screen
layout; otherwise, the previous definition will appear on the CRT.
Create or modify the CRT data on the terminal until the desired
screen is complete with both field headings and data fields. Define
the data fields using the following Field Definition Codes (FDC's).
(Data fields are those which are to be filled in by a terminal
operator or program.) When this entire process is complete, place
the cursor immediately behind the last field defined on the CRT and
TRANSMIT it into MSGDEF for analysis.

FDC

u

x
E

z

9

2

I

B

0

Meaning

defines an upper case alpha-numeric
data field. Any lower case
alpha input is forced to upper case.

defines an alpha-numeric data field.

defines an ERROR field. E fields are
displayed using the TIPMSGE call.

numeric only, on output leading zeros will
be suppressed.

numeric only, right justified, zero filled

numeric only, right justified, zero filled
(not zero filled if blank)

comma to be edited into numeric field if significant

reserve room for leading minus sign

decimal point to be edited into numeric field, This
will be used to determine the number of decimal places
in the field.

edit character for numeric field

edit character for numeric field

defines an upper case alpha-numeric
data field which is to blink

defines an alpha-numeric data field,
which is to have the display turned off.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE DEFINITION

Page:
Section:

3
3.35

MSGDEF
MESSAGE DEFINITION

A defines an upper case alpha-only field.

defines an unprotected underscore heading character

Note: codes B, 0, and A are only effective if your
terminal has such capabilities (UTS-400's typically).

Note: numeric fields are zero suppressed during output (TIPMSGO)
and zero filled during input (TIPMSGI). A negative numeric field is
displayed with a leading minus (-) sign. To allow room for this
minus sign, it may be necessary to begin the field definition with
a comma, to force it one postion larger on the terminal without
affecting its size ~n the program.

Step 3:

•

At step 3, the user must indicate which portions of the designed
screen really represent data fields. MSGDEF may have taken poetic
licence during step 2's analysis of headings versus data fields.
The user does this by overlaying the Field Definition Codes with
the option character (usually ~) and TR.\NSMITing the defined screen _.-.
back in to MSGDEF again. MSGDEF will have attempted to sort out the -._,
differences automatically and will have overlaid all sequences of 2
or more " U's, E's, X's and digits " with the option character.
Check to be sure that it was not too clever and overlaid something
it should not have.

Page:
Section:

4
3.35

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGE DEFINITION
MSGDEF

Step 4: (optional)

This step will only be entered if the user indicated in step 1 that
not all data fields were unprotected. At step 4, the user must
indicate which portions of the display are to be unprotected. As in
step 3, this is done by overlaying the FDCs with the option
character and TRANSMITing the design screen back to MSGDEF. Just
before entering step 4, MSGDEF will prompt the user to request
whether the automatic option character processing should be done.
If the 'SOE t' choice is made, MSGDEF will attempt to automatically
define, by overlay, the unprotected fields. As before, MSGDEF
replaces all sequences of 2 or more " U's, E's, X's and digits "
with the option character. Check to be sure that it was not too
clever and overlaid something it should not have. Remember to
TRANSMIT the final screen back to MSGDEF for inclusion into TIP's
screen file.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE DEFINITION

Page:
Section:

5
3.35

MSGDEF
MESSAGE DEFINITION

Editing the message

For users who have older CRT's, limited in editing features, MSGDEF
implements certain hardware extensions via software with function
keys. For example,

Fl - 'insert line in display' wherever the cursor is
resting.

F2 - 'deletes line in display' where the cursor is
resting.

Many displays are of a repetitive nature with lines containing
similar data from several records from a file. On UTS-400's, the
LINE-DUP key is very helpful in defining this type of display.
Older CRT's do not have such a feature. However, even the UTS-400
will not allow duplication of a set of lines. MSGDEF therefore has
been written to provide both single and multi-line duplication
facilities for all terminal types. Function keys 3 and 4 together
provide this capability;

Page:
Section:

F3 - save line(s) - place the cursor on the last column
of the line above the line(s) to be saved and press F3.
This begins the save function by sending a SOE to the
cursor position. Then place the cursor on the 2nd last
column of the last line to be saved and press TRANSMIT.
MSGDEF will then save those line(s) and erase the SOE
character.

F4 - to recall the lines saved by F3 and TRANSMIT, place
the cursor on the last column of the line above the line
where the saved lines are to be repeated and press F4.
For multiple copies keep pressing F4.

6
3.35

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGE DEFINITION
NEGATIVE FIELDS

3.35.l MESSAGE DEFINITION Negative Fields

There are several ways to display negative numeric data fields.
You may select one of: trailing minus sign, leading minus sign,
trailing "CR", trailing "DB", or enclosed in parentheses "()".

The minus sign may be placed at either the beginning or end of a
numeric field during step 2 and then overlaid during step 3.

The letters CR or DB may be placed at the end of a numeric field
and then overlaid during step 3.

To get parentheses place a ")" at the end of the numeric field
(and leading minus sign if there is a possibility that the field
may require all available digits) and overlay during step 3.

In all cases, the negative editing is used during
the data is negative. During input processing the
receive negative data by any of the above methods
the terminal operator). ·

output only if
program will

(when keyed by

On FCC type terminals, a minus sign is the only allowable method
since TIP/30 sets up numeric fields using FCC codes.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE DEFINITION

Page:
Section:

1
3.35.l

MSGSHOW/MSGTST
MESSAGE TESTING

3.36 MESSAGE TESTING MSGSHOW/MSGTST

To test a display created by MSGDEF enter 'MSGTST name' or
'MSGSHOW name'~ where "name" is the name of your screen format.
MSGTST will prompt the user for test data and present it on the CRT
using the named screen format. MSGSHOW expects the user to fill in
the test screen and displays the data a program would receive back.
In either case, the unformatted data screen expects the test data
to be a continuous character string. A user can cycle back and
forth between screens trying various data entry options.

When the user's formatted message is displayed, intentional
errors may be introduced to check error field options. Entering a
"t" (circumflex) as the first character in a field and pressing
transmit will cause the field to blink and an error message to be
displayed.

MSGTST and MSGSHOW display the data received exactly as it would
appear in a user program input buffer. Note that no header
information or communications characters are received, and that the
number of characters sent is a function of cursor position. Numeric
fields are returned to the user right justified and zero filled.
Data characters entered into a field which are incompatible with
the field definition are replaced by blink characters (or are
blinked) by the Message Control system. The errors may be corrected tt
and data changed to try out various options available. Simply place
the cursor behind the data and TRANSMIT.

MSGTST
MSG SHOW

name [,]
name [.~J

['
['

The underscore in the second parameter is used to cause the
program to display the format with an underscore character in the
MCS-FILLER field of the MCS packet.

An optional third parameter may be supplied which will be used
as the MCS-FUNCTION value.

If further information is desired for either program, place a
question mark on the call line as the MCS-FILLER (causing an error)
and invoke the program. This will solicit a HELP screen which
details other options including the definition of the function
keys. Remember to fix the question mark when the parameter screen
is presented.

Page:
Section:

1
3.36

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPECIFY CHANGE IN USERID AT TERMINAL
NEW USER

3.37 SPECIFY CHANGE IN USERID AT TERMINAL NEWUSER

There is
(logoff) and
user-id or
transaction

of ten
start

account
has been

the necessity to terminate the current session
another session {logon) using a different

number. To simplify this process, the NEWUSER
provided.

NEWUSER enables a logged on user to logof f and logon in one
step.

Syntax:

Where:

NEWUSER user id [/password] [,account]

user id

password

account

the user name (max 8 characters) assigned to the
user by the installation administrator.

the current password associated with the userid.
The password is a maximum of 8 characters. It is
quite legal to have a password that is all blank
(omitted) but this is ill-advised since it
provides rather minimal protection against
unauthorized use.

the account number the user wishes to associate
with this session. The account number is defined
by the installation administrator and may or may
not be optional.

Example:

NEWUSER FRED/QWERTYUI,A106

Will logon a user named "FRED" who has a password
of "QWERTYUI" using the account code "A106".

Error Conditions:
The userid may not be valid, the password does not match the
current password for the userid, or the account number may not be
valid for the specified user-id. If any of these errors occur,
TIP/30 will present the user with the logon screen format (the
implied logoff will have been successful).

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPECIFY CHANGE IN USERID AT TERMINAL

Page:
Section:

1
3.37

NOTE INFORMATIONAL MESSAGE

3.38 INFORMATIONAL MESSAGE NOTE

The NOTE program allows a terminal user to send a message to the
terminal which invoked the NOTE. This command is designed for use
within DOT-IN files (See section on DOT-IN) to notify the user that
various functions being requested have been performed.

Syntax:

Where:

NOTE[,W] text

W is used to specify that the user must generate
some input from his terminal (usually a function
key or MSG-WAIT) before TIP will continue to
process the next command. The text is displayed
and the NOTE program will wait for any input.

text is the message (64 characters maximum) that is to
be displayed on the terminal.

Example:

NOTE ALL USER-IDS HAVE BEEN CATALOGUED
NOTE,W PRESS MSG-WAIT TO CONTINUE

Error Conditions:
None.

Page:
Section:

1
3.38

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ON-LINE DATA DISPLAY
ODD

3.39 ON-LINE DATA DISPLAY ODD

ODD provides the capability of performing general inquiry/update
functions on any indexed file (ISAM, !RAM, MIRAM) with a minimum
of time and effort. The TIP/30 user need only define the record
format in a COBOL style definition language and define the screen
displays with the TIP/30 Message Control System (MSGDEF). By using
MCS, the TIP/30 user is able to instruct ODD to present data the
way the end user would like to see it. The user is not restricted
by a pre-defined display style.

This program is a preliminary version of the TIP QUERY LANGUAGE
(TQL) and will be replaced by TQL. The user is advised to use this
program only if his requirements cannot be (currently) met by TQL.

The user is not required to do any programming. Instead he
defines his record layout in COBOL format followed by a few simple
ODD directives. QED is used to enter these definitions; perhaps
using some existing COBOL COPY element as a basis.

The ODD definition may be stored in a permanent OS/3 library;
however, the library/element must be placed in a QED edit buffer
when ODD is invoked. The edit buffer must be specifically named,
but may differ from the library/element name. It is mandatory to
create the edit buffer in the group "DBA" (Data Base
Administrator). Normally one individual would be designated as the
'D.B.A'. This individual would have the responsiblity of
maintaining the ODD definitions and setting naming conventions.

The reason for using an edit buffer to hold the ODD definition
is simply to enhance the speed of retrieval for the compilation.
When ODD begins execution, it takes a name from the command line
prefixes GROUP-ID of DBA and then looks for the QED buffer of that
name. When it finds the definition, it then compiles it into memory
and into a work file for the duration of the session.

Suppose a definition element of 'DDF123' exists in a library
'DDFSRC' and that users want to call it 'PAYMAST' under ODD. The
following QED command line would be used to setup the edit buffer
the first time:

QED DDFSRC/DDF123,,DBA/PAYMAST

and the end user would enter,

ODD PAYMAST or OPEN PAYMAST

If changes have to be made to this definition, the QED command
line would be:

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

1
3.39

ODD
ON-LINE DATA DISPLAY

QED ,,,DBA/PAYMAST

In either case, the editor must be terminated with the 'E' command
to leave the edit buffer intact.

Compiling the definition at execution time makes it easier for
the D.B.A to keep the definitions up to date. No batch job need be
run to implement a new definition or change an existing one.
Everything is done online at the terminal.

As mentioned earlier, in addition to the file definition, ODD
requires a few directives. These must follow each record definition
and contain"*/" in columns 7-8 (QED - Cobol mode).

ODD directives indicate:

Key field
Record-type field
Fields to be displayed
Field display sequence
MCS display name

The user may browse through indexed files using multiple record
formats; in the case of MIRAM, browse using multiple keys.

The record definition source element may begin with

INDENTIFICATION DIVISION.

Next, identify the FD of the file to be processed. This is the
logical name as defined in the TIP/30 catalogue.

FD. lfname.

If the file is not to be updated this is indicated by a statement
which contains

READ-ONLY.

If records may be not be deleted include a statement which contains

NO-DELETE.

If records may not be added you should enter a statement which

Page:
Section:

2
3.39

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

ON-LINE DATA DISPLAY

contains

NO-ADD.

When ODD is searching
normal or read ahead. If
screens of data to be
the definition.

READ-AHEAD-ON.

ODD

a file it may operate in one of two modes,
your requests usually require several

displayed you may specify the following in

If this is specified, then while you are viewing one screen of
data, ODD will read ahead in the file and collect the data for
records on the next screen. When the next complete screen has been
collected, the wait light be illuminated on a Uniscope terminal.
Pressing function key 2 will cause the data to be displayed; ODD
will continue with the next screen full. To stop the read ahead
process before wait light notification, press message waiting; then
enter your next request (which may be message waiting again to go
back to the menu of commands).

NOTE: the read ahead feature is excellent for file browsing but
becomes awkward if the intent is to update the file. Therefore, it
is recommended that this feature NOT be used if the file is to be
updated.

After ODD has compiled the specified data definition, the user may
interactively specify:

READ-AHEAD-ON

to switch to read ahead mode or:

READ-AHEAD-OFF

to switch back to normal mode. To update records, processing must
be in 'normal' mode.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

3
3.39

ODD
ON-LINE DATA DISPLAY

ODD will always prompt with a M.C.S. display format. The default
display used is named TF$0DD1. The user has the option of designing
and specifying his own prompting display. This may be useful for
providing instructions to the end user of the system. To specify
your own prompting display provide a 'MENU' statement after the
'FD' statement.

Example:

MENU IS PAYDDMNU

Comment statements may be included in the definition. Since record
and field names are used as part of the interactive search criteria
soecif ication, it is recommended that the names be 16 characters or
less in length and be easy to remember. For example:

DISPLAY MAST.-PAY IF PAY GT 24000 AND HIRE-DATE LE 68

Group names may be left in the definition, but ODD views them as
comments and does not store the identifier name.

Multiple files may be processed. However the first record
described must contain the full key of the secondary files. To
define a secondary file, include a statement such as:

FD fi le2 POINTER is field1 .
. . . record layout for secondary files ...

Following each record definition identify which fields make up the
key. This information is also placed on an ODD directive statement
(ie. */in columns 7,8).

KEY IS NUMBER NAME

If your are processing a MIRAM file which has a multiple index,
specify all of the keys. This is done as follows:

Page:
Section:

4
3.39

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ON-LINE DATA DISPLAY

KEY1 IS NUMBER
KEY2 IS NAME, CODE
KEY3 IS ADDRESS

ODD

Next, indicate how ODD may verify the record type. If all records
have the same format then this directive is not required. Several
identifying conditions per record may be specified, however, only
one condition need be satisfied for ODD to select that record.
There is a logical 'OR' relationship between the ID statements.
Note that an ID statement can not span more than 1 line.

ID IS TYPE= 'A6'
ID IS TYPE = 'A6' AND HOURS 100
ID IS TYPE= 'A6' AND HOURS >= 100
ID IS TYPE= 'BO'

Next, specify how many DATA SETS the display which you have
defined, can hold; also the field names and order in which they are
to be displayed on the screen. A DATA SET is defined as a set of
fields from one record. If no field names are given, ODD will
assume that all fields of the record are to be displayed. Example:

DISPLAY 16 (NAME ADDRESS NUMBER) USING MYMESG

In this example the fields 'NAME ADDRESS NUMBER' from 16 indexed
records will be displayed on the screen MYMESG; perhaps 16 lines of
3 columns, each under headings.

Several types of displays may be extracted
definition. To distinguish between them
preceding the keyword "DISPLAY" with a
semi-colon.

Example:

from the same record
you must name each by

LABEL, followed by a

TOTAL: DISPLAY 16 (NAME RATE HIRE-DATE) USING MYMESG

Note that it is possible to use the same display (see MYMESG in the
previous examples), but different data fields. l1. the display~
is not specified, the record name is used. Duplicate display names
are not allowed.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

5
3.39

ODD
ON-LINE DATA DISPLAY

Data Definition Examples:

Page:
Section:

IDENTIFICATION DIVISION.
FD. AROOO.
01 REC-A.

05 SORT-KEY.
10 PHONE
10 ACCT-NO
10 INV-NO
10 REC-TYPE
10 INV-DTE

05 NAME
05 ORDER-TYPE
05 CLASS
05 REF
05 PO-NO
05 AR-STATUS
05 START-DTE
05 TIMES-RAN
05 UNITS-COE
05 UNITS
05 INSER-DTE

*/ KEY IS PHONE ACCT-NO INV-NO
*/ ID IS REC-TYPE = 'A'

PIC 9(7)
PIC X(8).
PIC X(8).
PIC X.
PIC 9(6)
PI C X (52) .
PIC X.
PIC XXX.
PIC X(20).
PIC X(16).
PIC X.
PIC 9(6)
PIC 99.
PIC X.

COMP-3.

COMP-3.

COMP-3.

PIC S9(7) COMP-3.
PIC 9(10) COMP.
REC-TYPE INV-DTE

*/ DISPLAY 4 (PHONE ACCT-NO INV-DTE NAME
PO-NO

AROMSGA
*/ ORDER-TYPE CLASS REF
*/ START-DTE TIMES-RAN) USING

01 REC-B.
05 SORT-KEY.

10 PHONE
10 ACCT-NO
10 INV-NO
10 REC-TYPE
10 INV-DTE

05 PAYMNT-DATE-1
05 PAYMNT-AMNT-1
05 FILLER

*/ KEY IS PHONE ACCT-NO INV-NO
*/ ID IS REC-TYPE = 'B'

PIC 9(7)
PIC X(8).

PIC X(8).
PIC X.
PIC 9(6)

PIC 9(6)
PIC 9(7)V99

P IC X (88).
REC-TYPE INV-DTE

COMP-3.

COMP-3.
COMP-3.
COMP-3.

*/ DISPLAY 16 (PHONE ACCT-NO INV-DTE INV-NO
*/ PAYMNT-DATE-1 PAYMNT-AMNT-1) USING AROMSGB

6
3.39

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ON-LINE DATA DISPLAY

Second example:

IDENTIFICATION DIVISION.
FD. AOMOO.
READ-ONLY.

ODD

**
*** 0 R D E R M A S T E R R E C 0 R D ***
**

01 ORDER.
10 KEY.

15 ACCT
15 NO

10 STATUS
10 TYPE
10 ADJ-TYPE
10 ORIGIN
10 PROD-COE
10 BRAND-COE
10 AGT-CDE
10 TEXT
10 UNITS
10 UNITS-COE
10 SALESPER
10 PRE PR I CEO-AMT

*/ KEY IS ACCT NO
*/ DISPLAY 1 USING OASOOO
**
*/ SUMMARY: DISPLAY 19 (ACCT NO
*/ AGT-CDE

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

PIC x (8).
PIC x (8).
PIC x.
PIC x.
PIC x.
PIC xxx.
PIC xxx.
PIC x.
PIC xxx.
PIC x (20).
PIC 999.
PIC x.
PIC xxx.
PIC S9(7)V99 COMP-3.

STATUS TYPE BRAND-COE
TEXT) USING OASODD2

Page:
Section:

7
3.39

COMMAND FORMAT
ON-LINE DATA DISPLAY

3.39.1 ON-LINE DATA DISPLAY Command Format

Most of the commands follow the same syntax.

Syntax:

Where:

<cmd> <display> [IF <selection>]
[BY <KEYm>]

<crnd>

<display>

[FROM <keyvalue>l
[TO <keyvalue>l
[SUM <field>]

is the command name.
truncated to the first
enter a display name and
<display>.

Most commands may be
two letters. You may also

ODD will perform LIST

All commands are documented in the following
sections.

this is the label of the display statement in the
definition; essentially identifying the fields of
the record to be displayed and the message format
used. However, the display command will only
display one record on the screen. This is the
record which would be updated if the update
command was used next.

IF <selection> selects records based on a conditional expression.
A simple conditional expression is a comparison
between a field and some value, or one field and
another. In ODD two fields must be of the same
type and size to be compared to each other, and
the left operand must always be a field name of
the record displayed. The comparison operators may
be

Page:
Section:

1
3.39.1

EQ =

NE <>

GT >

GE >=

- equal to

- not equal to

- greater than

- greater than or equal to

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ON-LINE DATA DISPLAY

BY <KEYn>

FROM <keyvalue>

TO <keyvalue>

SUM <field>

COMMAND FORMAT

LT < - less than

LE <= - less than or equal to

Conditional expressions may be combined by
operators (AND , & , OR , I) into more
expressions.

Boolean
complex

indicates that the file is to be processed by an
alternate index. 'KEYn' may be one of the reserved
words KEYl, KEY2, KEY3, KEY4, or KEY5. 'KEYn' may
also be an actual data field name which is also a
key field, such as NUMBER.

If 'BY' is used then it must precede 'FROM' and
'TO' in order for ODD to know how to interpret the
key field.

indicates the first record to be considered for
displaying. The key may be enclosed in single or
double quotes. The key may be a period (.), which
means that the search is to continue from the last
record displayed.

indicates the last record to be considered for
displaying. The key may be enclosed in single or
double quotes.

specifies that the named 'field' is to be summed.
At the end of the display the total value of this
field for all records selected is displayed along
with the average value of the field. If you wish
to sum several fields use this clause several
times.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

2
3.39.1

ODD: ADD
ON-LINE DATA DISPLAY

3.39.2 ON-LINE DATA DISPLAY ODD: add

The ADd command allows the you to place new records in the file.
It will display an empty screen which must be filled in and
transmitted to the program.

Syntax:

Where:

Page:
Section:

ADd <display>

<display>

1
3.39.2

the screen is displayed with no data, fill it in
and press transmit.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

ODD: CLOSE
ON-LINE DATA DISPLAY

3.39.3 ON-LINE DATA DISPLAY ODD: close

The CLose command will terminate the ODD session.

Syntax:

Close

Where:
None required.

Additional Considerations:

Note: The CLose command and the ENd command are synonyms .

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

1
3.39.3

ODD: COUNT
ON-LINE DATA DISPLAY

3.39.4 ON-LINE DATA DISPLAY ODD: count

The count command will count records based on the selection
criteria, starting position, & ending position in the file.

Syntax:

count <display> [IF <selection>]

Where:

[BY <KEYn>] [FROM <keyvalue>]
[SUM <field>] [TO <keyvalue>l

Refer to command format.

Example:

Page:
Section:

COUNT REC-A IF TIMES-RAN > 5
SUM BASIC-CHRG SUM TOTAL-CHRG

1
3.39.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

----------- ~------------

ODD: DELETE
ON-LINE DATA DISPLAY

3.39.5 ON-LINE DATA DISPLAY ODD: delete

The DElete command will re-display the last record selected and
prompt for the 'YES' to delete it. If this is the record to delete
then transmit 'Y' back to the program. The record is deleted from
the file and the menu is re-displayed for the next ODD command. The
delete will only be succesful if the file was generated with the
'DELETE' parameter specified on the 'FILE' statement in the TIP/30
generation. This command must be used without READ-AHEAD.

Syntax:

DElete

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

1
3.39.5

ODD: DISPLAY
ON-LINE DATA DISPLAY

3.39.6 ON-LINE DATA DISPLAY ODD: display

The Display command will select a record based on the selection
criteria and starting position in the file.

Syntax:

Where:

Display <display> [IF <selection>]
[BY <KEYn>] [FROM <keyvalue>}
[SUM <field> J [TO <keyva lue> 1

Refer to command format.

Example:

DISPLAY SUMMARY IF TIMES > 50 AND UNITS = 9
FROM 71219348
TO 75225543

DISPLAY MAILTO IF TIMES LT 32 & UNITS NE 0
BY ADDRESS
FROM HARCOURT TO MILLVIEW

The text of latest request to ODD is saved and may be
recalled by pressing function key 3 on the terminal.

Page:
Section:

1
3.39.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ODD: LI ST
ON-LINE DATA DISPLAY

3.39.7 ON-LINE DATA DISPLAY ODD: list

The Llst command will select a screen full of records based on
the selection criteria and starting position in the file.

Syntax:

Where:

List <display> [IF <selection>]
[BY <KEYn>] [FROM <keyvalue>]
[SUM <field> l [TO <keyva 1 ue>]

Refer to command format.

Example:

LIST SUMMARY IF TIMES < 75 AND UNITS NE 9
SUM PREPAY-AMT SUM PREPICED-AMT

FROM 71219348 TO 75225543

The text of this command is saved by ODD and may be
recalled by pressing function key 3 on the terminal.

Page: CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY Section:

1
3.39.7

ODD: NEXT
ON-LINE DATA DISPLAY

3.39.8 ON-LINE DATA DISPLAY ODD: next

The NExt command continues the Display or List command from the
last record displayed.

Syntax:

NExt

Where:
No parameters required.

Page:
Section:

1
3.39.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ODD: PRINT
ON-LINE DATA DISPLAY

3.39.9 ON-LINE DATA DISPLAY ODD: print

The PRint command will build full displays of records, (as the
List command does), based on the <selection>, starting position, &
ending position in the file. When a display is collected it will be
sent to the terminal with a print command to print on the auxiliary
printer attached to the terminal. The print command will continue
to print all records from the file which satisfy the selection
criteria.

Syntax:

PRint <display> [IF <selection>]
[BY <KEYn>] [FROM <keyvalue>]
[SUM <field>] [TO <keyvalue>]

Where:
Refer to command format.

Example:

PRINT REC-A IF TIMES-RAN = 0

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page:
Section:

1
3.39.9

ODD: SHOW
ON-LINE DATA DISPLAY

3.39.10 ON-LINE DATA DISPLAY ODD: show

The SHOW command allows you to get a list of all available
display names in the current definition. Or you may get all of the
field names within a given display.

Syntax:

SHOW <display>

Where:

<display> from which you want the field names

Syntax:

SHOW

Where:
to get summary of all display names

Page: 1
Section: 3.39.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ODD: UPDATE
ON-LINE DATA DISPLAY

3.39.11 ON-LINE DATA DISPLAY ODD: update

The UPdate command will re-display the last record selected. You
may then update the information on the screen and transmit. The
updated record is written to the file and the ODD menu is displayed
for the next command. This command must be without READ-AHEAD.

Syntax:

UPdate

Function key 4 may be pressed after a record is displayed. This
wi 11 re-display the same record for update.

If you decide not to proceed with the update press MSG WAIT to
cancel the update.

-+*+-

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page: 1
Section: 3.39.11

ODD
ODD COMMAND LINE FORMAT

3.39.12 ODD COMMAND LINE FORMAT ODD

When ODD starts up it reads
specified on the command line
memory. This approach makes it
using QED.

and compiles the source element
and stores the record definition in
very easy to change definitions

You should use the editor to create and maintain the data file
definition and use the Message Control System to define the format
of the messages used by ODD to display the user's data in a format
which is useful and easy to read.

To use ODD, the definition must be stored in an edit buffer which
was created with a GROUP-ID of DBA. The ODD call uses the edit
buff er name.

For example:

ODD AOMDEF

Page: 1
Section: 3.39.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ODD
ODD FUNCTION KEYS

3.39.13 ODD FUNCTION KEYS ODD

MSG-WAIT

Fl or F5

F2 or F6

F3 or F7

F4 or FS

this always means to cancel your most recent
request. (Ie. cancel record update, stop searching
file, etc ..)

Re-display the most recent message. If a List or
Display was last entered Fl will also step
backwards through all displays given since the
original request was given.

During List or Display this will cause the next
full screen of data to be displayed.

will return to the menu and display the most
resent request.

If a record was just displayed,
re-display the record for update.

this will

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page: 1
Section: 3.39.13

ODD

3.39.14 PROGRAM LIMITATIONS

ITEM

RECORD TYPES
FIELDS PER RECORD
DISPLAYS
SEARCH CONDITIONS
VARIABLE DATA AREA
KEY SIZE
RECORD SIZE
DATA IN MESSAGE
CHARACTERS PER NAME
PROGRAM SIZE

Page: 1
Section: 3.39.14

MAXIMUM

15
230

20
40

600 BYTES
256

2560
1792

16
23500

PROGRAM LIMITATIONS

ODD

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ODD
ODD - PITFALLS TO AVOID

3.39.15 ODD - PITFALLS TO AVOID ODD

Some syntax errors may cause ODD to abort - be careful when
entering commands. It has been found that by cataloging 'ODD'
and/or 'OPEN' with EDIT=YES, some problems can be avoided.

Further limitations are:

maximum of 15 digits may be entered to be compared to a
numeric field (if this becomes a problem change the field
from PIC 9 to PIC X if not COMP or COMP-3).

maximum of 15 digits may be entered in the FROM and/or TO
clauses.

ODD truncates field names to 16 letters and does not tell
you.

ODD does not handle some field descriptions very well.
(For example SV99 should be coded as 99. ·

ODD becomes confused when DISPLAY field definitions
entered on the CRT go past column 70.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE DATA DISPLAY

Page: 1
Section: 3.39.15

PMDA
POST MORTEM DUMP ANALYSIS

3.40 POST MORTEM DUMP ANALYSIS PMDA

PMDA is a dump analysis program that enables a programmer to
interactively examine a dump from an on-line program. PMDA is
automatically invoked by TIP when a user program aborts. PMDA
creates a dynamic file containing a copy of the user program memory
areas at the time of the dump. The dynamic file is created with a
name constructed as: "userid/DUMPtttt/trid" where "userid" is the
userid of the user executing the program that aborted, "tttt" is
the ICAM terminal name of the user terminal, and "trid" is the
catalogued transaction name that invoked the program that aborted.

If the user is an application level user PMDA merely prints the
dump at the site printer and ends processing at that point.
However, if the user is a programmer level user, PMDA will allow
the user to enter commands to 'browse' through the dump at the
terminal. The programmer level user may specify that the dump file
is to be printed and/or kept. PMDA may be invoked directly from the
terminal to browse through a previously kept dump file. Another
important function of the PMDA program is to roll back any file
updates that the aborted program may have done and to release any
files that may have been assigned to the program.

PMDA is most often encountered as a result of a program aborting.
However, it is possible to execute PMDA directly as a transaction ~
to continue analysis of a previously retained dump. ~

Page:
Section:

1
3.40

TIP/30 Reference Manual
Version 2.5 (82/08/01)

PMDA
POST MORTEM DUMP ANALYSIS

To execute PMDA interactively, the command line syntax is:

Syntax:

Where:

PMDA tr id [, tt t t 1 [, user id 1

trid the name of the transaction that aborted

tttt the !CAM name of the terminal where the original
abort occurred (default is the current terminal).

user id the userid of the user that was running the
program at the time the program aborted (default
is the current userid).

CHAPTER III - ON-LINE UTILITY PROGRAMS
POST MORTEM DUMP ANALYSIS

Page:
Section:

2
3.40

PMDA
POST MORTEM DUMP ANALYSIS

PMDA recognizes the following interactively submitted commands:

Display
End
Print
Quit

display area of memory
end interaction with PMDA (retain dump file)
print hard copy dump
end interaction with PMDA (scratch dump file)

Most programmers find that it is generally advisable to print a
dump whenever a transaction program aborts. In some cases, it is
possible to browse through the dump at the terminal and discover
the cause of the dump (and therefore eliminate the need to print
the dump).
Some familiarity with assembler programming concepts is assumed in
the following discussion of PMDA commands.

Page: 3
3.40

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•

PMDA: DISPLAY
DISPLAY MEMORY CONTENTS

3.40.1 DISPLAY MEMORY CONTENTS PMDA: display

This command enables the user to display the contents of the
memory allocated to the program that aborted. The display command
has several variations (which are described below) enabling the
user to specify storage, registers etc to display.

D address

D name [,offset]

DF

D PSW

DR

Example:

D 5800

display 16 bytes in hexadecimal and graphic from
the specified address.

display 16 bytes in hexadecimal and graphic from
the start of the linkage area given by <name> plus
optional offset. The recognized names are: PIB CDA
MCS IMA OMA WORK. Offset is specified in
hexadecimal; if omitted, the offset defaults to
zero.

Display the contents of the floating point
registers.

Display the abort address and the PSW at time of
abort.

Display the contents of the general purpose
registers.

Will display 16 bytes starting at address X'5800'.

Example:

Will display 16 bytes at offset X'40' from the start of
the MCS linkage section area.

CHAPTER III - ON-LINE UTILITY PROGRAMS
POST MORTEM DUMP ANALYSIS

Page:
Section:

1
3.40.1

PMDA: END
END PMDA PROGRAM

3.40.2 END PMDA PROGRAM PMDA: end

This command will end interaction with PMDA and keep the retain
the dynamic file containing the dump for later analysis.

Syntax:

End

Where:
No parameters required.

Example:

E

Error Conditions:
None.

Page:
Section:

1
3.40.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

PMDA: PRINT
PRINT HARD COPY DUMP

3.40.3 PRINT HARD COPY DUMP PMDA: print

This command will cause PMDA to create a printed dump for
off-line analysis by the programmer. The dump will be printed to
the site printer. The dump will be formatted for ease of analysis;
major areas of storage will be identified in much the same fashion
as OS/3 SYSDUMP.

Syntax:

Print

Where:
No parameters required.

Example:

p

CHAPTER III - ON-LINE UTILITY PROGRAMS
POST MORTEM DUMP ANALYSIS

Page:
Section:

1
3.40.3

PMDA: QUIT
END PMDA AND SCRATCH DUMP FILE

3.40.4 END PMDA AND SCRATCH DUMP FILE PMDA: quit

This command will cause PMDA to scratch the temporary dump file
and end interaction with the user. This command is most useful
after issuing a PRINT command.

Syntax:

Quit

Where:
No parameters required.

Example:

Q

Error Conditions:
None.

Page:
Section:

1
3.40.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OED
TIP/30 TEXT EDITOR

3.41 TIP/30 TEXT EDITOR QED

QED is an interactive program for creating and modifying 'text',
using directives provided by a user at a terminal. The text may be
a program, a runstream, a document or perhaps data for a program.

The TIP/30 editor is patterned after 'QED' by BELL Labs. You may
also find it similar to the editors used on many mini-computers and
micro-processors~ being primarily line number independent and
string/contextually oriented.

First, a bit of terminology. In QED the text being processed is
said to be kept in 'the buffer'. Think of the buffer as a work
space, or simply as the information to be edited. In effect, the
buffer is like a piece of paper on which things are written,
changed and finally 'filed' for future reference.

The user interfaces with QED and his text via the QED command
language. Most commands consist of a single letter, which may be
typed in either upper or lower case. Generally (although not
always) each command is typed at the beginning of a new line and is
followed by a transmit. (Sometimes the command is preceded by
information about what line or lines of text are to be affected).
At the completion of each command, QED will respond by moving the
cursor to a new line and prompt with a? (question mark).

This document was developed in a tutorial style and it is
recommended that the user actually perform the examples and
exercises described in the manual. In the QED examples which
follow, the User will notice both upper and lower case letters
being used. QED accepts either, for commands or text.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

1
3.41

QED: INTRO
GETTING STARTED

3.41.l GETTING STARTED QED: intro

After logging on to TIP/30 (see USER GUIDE), activate QED by
entering

QED <elt>

to create a new element or

QED FILE/ELT

to update an existing element.

If the element to be updated is a macro (or proc) then parameter
three must be ',M' or ',P' respectively (' ,S' meaning 'source' is
assumed default).

QED proclib/macroname,M

The fourth and fifth parameters identify the group id. and edit
buff er name to QED. If the user only provides the fourth parameter
to 'name' the buffer, QED defaults to the User's group id. at LOGON
time. For example

Page:
Section:

1
3.41.1

QED FILE/ELT,,RCVNAM

or

QED FILE/ELT,,DBA/DATADEF

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

OED: INTRO
GETTING STARTED

In the event of a system crash, the buff er may be recovered by
logging back on to TIP/30 and calling QED using the same buffer
name. If no buffer name is given, QED will default the buffer name
to the element name provided. Using the examples above, the QED
calls would be

QED , , , RCVNAM

or

QED RCVNAM

or.

QED ,,,DBA/DATADEF

QED will respond by displaying the name of the edit buffer file
assigned and then prompt the user with a ?SOE sequence to indicate
its ready (command mode) state. It is preferable to start a new
program by the second method, to ensure that the edit buffer will
have a reasonable name .

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

2
3. 41.1

OED: u

OED CONTROL CHARACTER, DOUBLE QUOTE

3.41.2 QED CONTROL CHARACTER, DOUBLE QUOTE QED: "

The double quote (") is the QED control character and requires
care in its use, even when adding text. Why this is so, should
become clear later on!

Page:
Section:

1
3.41.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

OED: ERRORS
ERROR MESSAGES

3.41.3 ERROR MESSAGES QED: errors

QED will respond to user command errors by displaying a self
explanatory error message .

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

1
3.41.3

OED
LINE LENGTH

3.41.4 LINE LENGTH QED

The current version of QED copies the first 80 characters of
each record to the edit buffer. Different sizes are displayed
depending on the mode you set with the option command (OR,OC,OA):

Page:
Section:

RPG - 6 to 74
COBOL - 7 to 72
BAL - 1 to 72

1
3.41.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED: A
ADDING TEXT; THE ADD COMMAND

3.41.5 ADDING TEXT; THE ADD COMMAND QED: a

It means 'Add' (or Append) lines to the edit buffer.

To enter lines of text, just type an 'A' and transmit. QED will
prompt with an 'A' (which replaces ? while in Append mode) at the
beginning of each new line to be entered. The user may enter data a
line at a time or by the screenful. Just follow the last text line
with a "F as follows:

A
now is the time
for all good men
to come to the aid of their party.
"F

(The "Fis the QED command which says 'end Add mode'.)

After the Add mode has been ended, the edit buffer will contain
the three lines:

now is the time
for all good men
to come to the aid of their party.

Of course the 'A' and '"F' are not there, as they were not text
but QED commands.

To append text to data already in the buffer, just issue another
'A' command and continue. To append at a specific line, give its
number and follow it with an 'A'.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

1
3.41.5

OED: P
DISPLAYING LINES; THE PRINT COMMAND

3.41.6 DISPLAYING LINES; THE PRINT COMMAND QED: p

To print or display the contents of the QED buff er at the
terminal, use the print command 'P'

As follows: specify the lines where printing is to begin and
end, separated by a comma, and followed by the letter 'P'. Thus to
print the first two lines of the buffer for example,

l,2P (starting line=l, ending line=2 p)

QED will display:

now is the time
for all good men

and prompt the user for the next command.

To print all the lines in the buffer, l,3p may be used since the
exact number of lines is known. Normally this is unknown;
therefore, QED provides a shorthand symbol for 'line number of last
line in buffer' - the dollar sign $. Use it this way:

l,$P

This will print all the lines in the buffer (line 1 to last
line).

NOTE: QED will check for unsolicited input after every 14 lines
of continuous display. To end the command being serviced, press any
one of the function keys on the CRT, or the break or attention key
on other terminals. QED will then prompt for the next command.

Page:
Section:

To display the last line of the edit buffer, enter $.

To print any line, enter the line number followed by a 'P'. Thus

lP

produces the response

now is the time

which is the first line of the buffer.

It is common to use '$' in combinations such as

1
3.41.6

$-l,$P

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DISPLAYING LINES; THE PRINT COMMAND

to print the last two lines of the buffer.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

QED: P

2
3. 41. 6

QED: DOT
THE CURRENT LINE

3.41.7 THE CURRENT LINE QED: dot

Suppose the buffer still contains the three lines as above; that
the operator has just typed

l,2P

and QED has displayed lines 1 and 2. Entering

P (no line numbers)

will cause QED to return

for all good men

Although this is the second line of the buffer, it is
the line most recently processed (ie. l,2p the last line
If the 'p' command is repeated without line numbers,
continue to display line 2.

in fact
printed) .
QED will

QED maintains. a record of the last line referenced which can be
used instead of an explicit line number. This most recent line is
ref erred to by the shorthand symbol

(pronounced 'dot').

Dot is a line number, meaning more exactly, 'the current line',
or 'the line most recently processed.' It can be used in several
ways - one example is

• , $P

This will print all the lines from (including) the current
to the end of the buffer. In this case, lines 2 and 3.

Some commands change the value of dot, while others do not.
print command sets dot to the number of the last line printed.
example, after the command ".,$P" (as above), "dot" will be set
3 (the last line in the buffer).

Dot is implied when used in combinations like:

+lp

line

The
For
to

this means 'print the next line' and is a handy way to step
through a buffer. Also

-lp

Page:
Section:

1
3.41.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

OED: DOT
THE CURRENT LINE

which means 'print the line before the current line.' This
enables backward referencing. Another example of the relative line
number addressing (dot implied) is:

-3,-lp

which prints the previous three lines from dot.

Remember that Print commands change the value of dot itself. To
find the value of 'dot' enter

. (or just null XMIT)

QED will respond by displaying the dot line and/or current value
of dot, ie. latest line number.

Review of the 'P' command and dot.

Essentially 'P' can be preceeded by 0, 1, or 2 line numbers. If
there is no line number given QED displays the current line. If
there is one line number given QED displays that line and sets dot
there. If two line numbers are given QED displays all lines in the
range and sets dot to the last line displayed. If two line numbers
are specified, where the first is greater than the second (see
exercise 2), QED will logically invert the arguments before
execution of the command.

Pressing XMIT twice will cause printing of the next line - This
is ~quivalent to entering +lP •

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

2
3.41.7

OED: D

3.41.8 DELETING LINES

Suppose the edit buffer contains

now is the time
for all good men
to come to the aid of their party.
now is the time
for all good men
to come to the aid of their party.

QED: d

To remove the duplicate lines in the example use

starting line, ending line D

Either command

4,60 or 4,$D

DELETING LINES

would delete lines 4 through the end. Try this example and
verify the change by displaying the contents of the buff er using

l,$P

•

Notice that $ equals 3. Dot is set to the next line after the •
last line deleted unless the last line deleted is $, in which case
dot equals $.

Page:
Section:

1
3.41.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

OED: s
MODIFYING TEXT; THE SUBSTITUTE COMMAND

3.41.9 MODIFYING TEXT; THE SUBSTITUTE COMMAND QED: s

The substitute command 'S' is used to change text within a line
or set of lines. Suppose by a typing error line 1 reads:

now is th time

The command

lS/th/the/

would set dot to line 1 and substitute for the characters 'th'
the characters 'the'. To verify the change, issue P and see the
results. This yields

now is the time

Note that dot is set to the line where the substitution took
place, since the P command displayed that line.

In general, the format of the substitute command is

starting-line, ending-line s/change this/to this/

Whatever string of characters is between the 1st and 2nd
delimiter is replaced by whatever is between the 2nd and 3rd;
everywhere it occurs; in all the lines between the starting line
and the ending line. The rules for line numbers are the same as
those for 'P', except that dot is set to the last line changed.

Thus

l,$S/speling/spelling/

will correct a 'speling' error everywhere in the text. If no
line numbers are given, the 'S' command defaults the substitution
to line dot(ie. it changes text only on the current line). This
leads to the very common sequence

S/----/----/P

which makes a change to the current line, and prints it to
verify the change. Note that this is not the same as

SP/----/----/

which only prints a line if the substitution occured. The 'P' in
this case is a optional modifier to the 'S' command itself. (Notice
the use of multiple commands on a line in the 1st example. This is
often possible; substitute then print is the most common case.)

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page:
Section:

1
3.41.9

OED: s
MODIFYING TEXT; THE SUBSTITUTE COMMAND

Also of interest is

S/----11

which will 'change every occurrence of the first string of
characters to nothing' (ie. remove/null them). This is useful for
deleting extra words in a line or removing extra letters from
words.

Page:
Section:

2
3.41.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CONTEXT SEARCHING

3.41.10 CONTEXT SEARCHING

Suppose the buff er contains

now is the time
for all good men
to come to the aid of their party.

QED

QED

Problem: Find the line that contains 'their' to change it to
'the'. With only three lines in the buffer, it's easy to keep track
of what line the word 'their' is on. If the buffer contained
several hundred lines and many additions and deletions had been
made, it would be difficult to establish line numbers. Context
searching is simply a method of specifying the desired line,
without knowing its number. This is done by specifying data within
a line which fixes its location uniquely (hence context).

To search for a line that contains the particular string of
characters enter

/character string to locate/

For example, the QED line

/their/P

is a context search sufficient to find the desired line - it
will locate the next occurrence of the characters between /'s
('their'). It also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

'Next occurrence' means that QED starts looking for the string
at line DOT+l, searches to the end of the buffer, then continues at
line 1 and searches to line dot. (That is, the search 'wraps
around' from$ to 1.) It scans all the lines in the buffer until it
either finds the desired line, or returns to dot again. If the
given string of characters cannot be found in any line, QED
responds with an error message, Otherwise it prints the line it
found.

Both the search for the desired line and a substitution can
occur in the same command sequence as follows

I aid /sp/their/the/

which will yield

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.10

OED
CONTEXT SEARCHING

to come to the aid of the party.

There were three parts to that last command: context search for
the desired line, make the substitution, if so print the line.

The expression I aid I is a context search expression. In their
simplest form, all context search expressions are a string of
characters surrounded by delimiters. Although slash is used as the
delimiter in these examples, any other special character which does
not have significance to QED may be used (ie: apostrophe (') or
back slash (\) for example). Context searches are interchangeable
with line numbers, and may be used to find and print a desired
line, or as line numbers for some other command, like 'S'. Both
uses were shown in the examples above.

Suppose that the buff er contains

now is the time
for all good men
to come to the aid of their party.

Then the QED line numbers

I for I
I good I
I all I

are all context search expressions, and they all refer to the
same line (ie. line 2). To make a change in line 2, for example

I for IS/good/bad/

or

/good/S/good/bad/

or

I all /S/good/bad/

Would all achieve the same result. The following example would
print all three lines

/now/,/party/P

Of course, if there were only three lines in the buffer,

l,$P

Page: 2
Section: 3.41.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED
CONTEXT SEARCHING

would be acceptable but not if there were several hundred.

If a context search is preceded by a minus sign (-) then the
editor will search from the current line towards line 1 and then
wrap around to the last line, back to the current line. The search
stops when a match is found or the starting line is reached again.

If a context search is preceded by an exclamation mark (!) then
the editor will search for a line which does not contain the given
pattern. (-and ! may be used together).

Note: the search always begins from the current line.

The basic rule is: a context search expression is the same as a
line number, so it may be used whenever a line number is required.
Remember that once the line numbers are resolved, QED will test for
start number less than end number and invert them if necessary.

Example:

48,/fox/sp/a/b/
-/quick/,+1sp/x/y/

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 3
Section: 3.41.10

OED
REPEATED SEARCHING FOR THE SAME STRING

3.41.11 REPEATED SEARCHING FOR THE SAME STRING QED

QED provides a shorthand method for repeating a context search
for a previously specified string. Example, the QED line number

/string/

will find the next occurrence of 'string'. It often happens that
this is not the desired line and the search must be repeated. (ie.
there may be other occurrences of 'string' in the element so look
around with -2,.P etc.). This can be done by entering:

II

This 'shorthand' argument represents 'the most recently used
context search expression.' It can also be used as the first string
of the substitute command, as in

lstringl/S//string2/

which will find the next occurrence of 'stringl' and replace it
with 'string2'.

The substitute command may have modifiers before the 1st
delimiter. If 'S' is followed by a number (say 2) then the 2nd
occurrence of the string on a line is substituted. If 'S' is
followed immediately by 'p' then those lines matched will be
printed. If 'S' is followed by 'd' then those lines matched will be
deleted. If 'string2' is not supplied (ie. just carriage return),
then no substitution is done but only lines matched will be printed
or deleted as requested. If the 's' is preceded by ! (exclamation
mark) which means 'logical not', then all lines which do. not
contain 'stringl' will be matched; hence printed or deleted
according to the modifier.

Page: 1
Section: 3.41.11

TIPl30 Reference Manual
Version 2.5 (82IQBl01)

CHANGE AND INSERT ~D: c

3.41.12 CHANGE AND INSERT QED: c

This section discusses the change command

c

which is used to change or replace a group of one or more lines,
and the insert command

I

which is used for inserting a group of one or more lines.

'Change', written as

c
. I

is used to modify or replace a number of lines with different
lines, which are entered via the terminal. For example, to change
lines 2 through 4

2,4C
lines are displayed

2,4DI
..... enter new lines here •.••
"F

The lines entered between the 'DI' commands and the "F will take
the place of the original lines between start line and end line.
This is most useful in replacing a line or several lines which have
errors in them. It should be noted that the number of text lines
between 'sss,eeeDI' and '"F' can be varied. This means that a 'C'
function can encompass multi-line addition or deletion during the
change operation.

QED will display the lines to be changed. For convenience, a tab
stop will be set after the generated "F. On a CRT they may be
modified using the hardware editing features of the CRT and
added/inserted into the edit buffer with one XMIT.

If only one line is specified in the 'C' command, then just Dhat
line is replaced. One line may be changed to many, or many to on~,
but QED imposes a maximum limit of 1 screen page for each chan~e
command. Notice the use of "F in the add step of the 'C' and that
it must start on a new line. If "F is omitted, the user will be
left in append mode and may continue to enter further text. I! no
line number is given, line dot is assumed. The value of dot is set
to the last line added.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41~12

QED: c
CHANGE AND INSERT

'Insert' is similar to ADD - for instance

/string/I
... enter lines to be inserted here ..•
"F

Will insert the given text before the next line that contains
'string'. The text between I and "F Is inserted before the
specified line. If no line number is specified dot is used. Dot
will be set to the last line inserted.

Page: 2
Section: 3.41.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

----------~·-----------

QED: M
MOVING BLOCKS OF TEXT; MOVE

3.41.13 MOVING BLOCKS OF TEXT; MOVE QED: m

The 'M' (move) command enables rearranging sections of code or
text. Position 'dot' to the line after which the text is to be
added and specify which lines are to be moved. For example

lOp

110,140m

copies lines 110 through 140 after line 10 and deletes them from
their previous position.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.13

OED: K
COPYING BLOCKS OF TEXT; COPY

3.41.14 COPYING BLOCKS OF TEXT; COPY QED: k

The 'K' (copy) command enables duplicating sections of text.
Position 'dot' to the line after which the text is to be added and
specify which lines are to be copied. For example

lOp

110,140k

copies lines 110 through 140 after line 10.

Page: 1
Section: 3.41.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OED: G
GLOBAL COMMANDS

3.41.15 GLOBAL COMMANDS QED: g

This section discusses QED's 'global' command,

G\string\

The global command provides a way to perform one or more editing
operations on all lines in the buffer that match some specified
context search.

For example to print all lines that contain the word 'comment'.
The context search

/comment/

matches a line containing the word 'comment', and the
command 'G' is used, together with the print command
follows

G/comment/P

global
'p', as

This says 'for each line that matches the context search (for
the word 'comment'), execute all of the commands on this line' - of
which in this example, there is only one, a print. (A similar case
would be to delete all the lines containing a particular string.)

The substitute command can operate on many lines at once;
consider:

l,$SP/xxx/yyy/

This scans an entire buffer but operates line by line for
changes. This may not be desirable. But consider

G/zzz/S/xxx/yyy/P

which will perform the same substitution only on /zzz/ context
lines, and print all of the matched lines whether or not a change
occured in those lines.

This example used two commands on one line; in general, as many
commands as common sense permits may be used.

The 'G' command may be preceded by two line numbers, in which
case only the lines within this range are considered. As implied
above, if no line numbers are given, the range '1,$' is assumed. In
the following, no context criteria has been specified to limit the
'S' commands.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.15

OED: G
GLOBAL COMMANDS

G//S/xxx/yyy/S/zzz/www/

The preceding 'S' commands, given as separate commands would
incur twice the buffer scanning overhead to the computer. If the
global command is followed by a null string then it will match all
lines. Note that this is different from the usual, ie. GI/ does not
match the most recently used context expression.

Page: 2
Section: 3.41.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED: II

RE-DIRECTED QED INPUT

3.41.16 RE-DIRECTED QED INPUT QED: "<

Another way to get text into the buff er is to go into add mode
(A command) and select the input from a file in the permanent
library file system. This is a simple method by which tabulation
may be imposed onto elements not previously structured by QED. The
command:

"< bktext/elt

will read the element 'elt' from file 'bktext'. If the element
to be read is a proc then ',P' must follow the element name. For
example

"< bktest/pname,P

will read the proc 'pname' from file 'bktest'.

While in Add mode, the "< command may be used to select input
from a file/elt. In command mode, the data read from file/elt will
be interpreted as QED commands.

In this way a set of commands may be coded once and passed
against many elements to m1n1m1ze repetitive editing. The file
processed by the re-direction command is treated as if it were an
extension of the keyboard.

The file/elt .selected as re-direction input may also contain a
"< command but that is the limit for nesting.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.16

OED: R
READING TEXT FROM A FILE

3.41.17 READING TEXT FROM A FILE QED: r

The Read command normally appends (at the end of the buffer)
data from f ile/elt to the lines already in the edit buffer.

For example:

R SOURCE/STORY

will read the element 'STORY' from file 'SOURCE'. If the element
to be read is a proc then ',P' must follow the element name. For
example

R FILEX/MACRO,P

will read the proc 'MACRO' from.file 'FILEX'.

Remember, the Read command will add the text from file/elt to
the end of the edit buffer. The user may then move it around as
necessary. A more sophisticated version of the Read command is:

line R bgn,end file/elt,type

This allows specif ing a line range (bgn,end)
file/elt to be appended (at 'line') into the current
pushing e~isting data down. For example:

100 R 50,103 COPY/MODULE3

of text from
edit buffer;

would copy lines 50 through 103 of element 'MODULE3' in file
'COPY' to the edit buffer after line 100 pushing 101,$ down.

The user may create an edit buffer containing the directory of a
library by specifying a type of "D" or "F". A type "D" will include
the comments and timestamp for each element; a type "F" will omit
comments and timestamps. Each line of the edit buffer contains one
element name.

Page: 1
Section: 3.41.17

/

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
OED: w

WRITING AN EDIT BUFFER TO A FILE/ELEMENT

3.41.18 WRITING AN EDIT BUFFER TO A FILE/ELEMENT QED: w

To write out the contents of the edit buffer to a permanent
library file use the write command 'W'

W f ile/elt,type comments

This will copy the entire content of the edit buffer to the
specified file. To save the text as an element named 'PROG' to a
file named 'PRGFIL', for example, enter

W PRGFIL/PROG

If the element is to be written out as a proc, then ',P' must be
added after the element name.

If you specify the file, element and type then you may also
specify up to 20 bytes of comments. These comments are placed in
the library header record for the element. The editor will not drop
these comments on later editing sessions, therefore you need only
supply them once. Likewise the editor will also recover the type of
module from the library header record.

QED will respond with the number of lines copied after the
'write' is complete and prompt the user for the next command. It is
possible to limit the number of lines written out by providing a
line range. For example:

100,159 W COPY/MODULEl

would copy lines 100 through 159 of the edit buffer out to an
element named 'MODULEl' in the file 'COPY'. Writing an element to a
file does not delete or disturb the edit buffer. This remains
intact until a 'Quit' command is issued to end the update session
and scratch the work space. This is an important point ! QED at all
times works on a 'copy' of an element, in a fast Edit File. No
change in the contents of a library takes place until a 'W' (write)
command is issued.

If you attempt to write out an element which already exists you
will be prompted for over-write. Reply 'Y' or 'N'. To avoid this
over-write check message, use the 2 letter command 'WR' (not
generally recommended).

If you wish to write the element out, only if changes have been
made, you may use the 2 letter command WC. If nothing was changed
in the module the write is not done. This is useful when making up
execute files of QED commands.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.18

QED: w
WRITING AN EDIT BUFFER TO A FILE/ELEMENT

Since QED at initialization, saves the file/elt,type parameters,
it is possible to simply issue 'R' or 'W' commands without
re-stating 'file/elt,type'.

NOTE: Whenever another or subsequent write, or input
re-direction occurs, QED resets the default file/elt parameters.
Under these conditions, the user should always check the settings
with command '=' before executing a default I/O command.

Failure to
undesirable.

Page: 2
Section: 3.41.18

do so may produce results which are quite

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

OED: Q, E
END OF EDIT SESSION: QUIT I END

3.41.19 END OF EDIT SESSION: QUIT / END QED: q, e

Prior to QED termination, the user may save his updated text by
writing it to a permanent file using the 'W' command. To terminate
an QED run, enter

Q

or

E

'Q' scratches the buffer while 'E' does not. Each returns control
to the program which called the editor or TIP/30.

To leave QED but retain the edit buffer for later use employ
'E'nd (see 'getting started' for buffer naming).

If the user has modified any text within the
issue a warning message before deleting the work
last chance to save the session. If the user has
to a permanent file, the warning is not given •

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

buffer, QED will
space. This is the
written the text

Page: 1
Section: 3.41.19

OED: v
VERSION NUMBERS

3.41.20 VERSION NUMBERS QED: v

A version number for each line in the element is maintained by
QED to aid the user in keeping track of updates. This number
indicates when the line was last changed. Each time the element is
read into the edit buffer, the version number is incremented by 1.
For COBOL, Assembler, and text files the version number of each
line is stored in columns 72 to 74 The user may change the current
version number with the 'V' command. eg.

V4

will set the current version number to 4.

The version number is stored by QED modulo 256; that is, the
remainder when the version number is divided by 256 is the new
version number. (ie: v300 would result in version 44).

The version number and the name of the last person to update an
element is stored in the comment area of the element's header
record.

Page: 1
Section: 3.41.20

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

OED
SUPPLEMENTARY OED REFERENCE

3.41.21 SUPPLEMENTARY QED REFERENCE QED

This section describes some of the more advanced features of the
text editor.

The use of regular expressions is controlled by the options OI
(option in) and 00 (option out). In QED 00 is the default state and
the use of regular expressions is turned off. To turn 'on' regular
expressions issue an OI command. The OI command remains active
until the next 00 command.

Regular expressions allow the user of QED to perform more
complex editing, but introduce a degree of complication. For
example, most special characters can no longer be used with
complete freedom in substitute and context searches. Normally, to
search for a string of characters, it is sufficient to type

/string of characters to be found/

The expression between delimiters is referred to as a context
search expression which is, in fact, the simplest case of a regular
expression. The l's are not part of the regular expression,
although most regular expressions are written between slashes.

By definition, a regular expression specifies a set of one or
more strings of characters which satisfy a given context search; it
is a complex form of context search.

The regular expression is a mask which provides degrees of
acceptable search argument. It might specify any one of a whole set
of strings of characters that will satisfy the search, or a
particular string in a particular position on a line. A particular
regular expression 'matches' a string of characters whenever the
string contains one of the desired character strings satisfying the
match pattern.

Regular expressions are typically formed from ordinary context
searches elaborated by using special characters with specific
functional meanings. The special characters can be interpreted as
search mask operators. In fact, the discussion of regular
expressions is largely a discussion of the special characters:

~ . * $ " I % &

In 00 mode ('option special characters out'), the regular
expression meanings are off; use OI ('option in') to activate them.

The (~) is a circumflex or roof-top character on Uniscopes. This
character is typed as an up-arrow or cent sign on some terminals.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.21

QED:

Page: 2
Section: 3.41.21

MATCHING AT THE BEGINNING OF A LINE

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED:
MATCHING AT THE BEGINNING OF A LINE

3.41.22 MATCHING AT THE BEGINNING OF A LINE QED: "

It is often useful to be able to look for a line that begins
with a specific string of characters. The regular expression

/tstring/

will find the next occurence of a line that
'string'. This is a restricted context search since it
'string' if it is at the beginning of a line. Thus, for
the buffer contains:

he said,
'now is the time
for all good men
to come to
the party.'

and dot is set at line 1, then the regular expression

/tthe/p

will display

the party.'

begins with
only finds
example, if

The scan ignores 'the' in line 2 because it is not at the
beginning of the line.

A substitution for a string at the beginning of a line is a
frequently used QED command. For example, as above, suppose the
line dot contains:

the party.'

Then the commands

s/t/the aid of /p

will yield

the aid of the party.'

The substitution takes place at the beginning of the line, since
t means in effect 'the beginning of the line' (notice the space
after 'of'). It is usually easier to type t than to type sufficient
context data to uniquely identify the beginning of the line: For

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.22

OED:
MATCHING AT THE BEGINNING OF A LINE

example,

s/the/the aid of the/p

could be used but this is clumsy and long.

To modify 'the' at the front of this line for example

s/tthe/the immediate/p

would yield

the immediate aid of the party.'

The use of t makes definite which occurrence of 'the' to change;
without it, the result would be:

the immediate aid of the immediate party.'

This was not our intent.

Notice the use of regular expressions in two places, as a line
number (for a context search) and as the text to be replaced in a
substitute command. The text which is to be replaced in the
substitute command is technically a regular expression; therefore
all of the regular expression features may be used there.

Page: 2 TIP/30 Reference Manual
Version 2.5 (82/08/01) Section: 3.41.22

OED: $
MATCHING AT THE END OF A LINE

3.41.23 MATCHING AT THE END OF A LINE QED: $

Another regular expression special character is the dollar sign
($).The dollar sign in a regular expression means 'the end of the
line'. For example, the regular expression

/string$/

will find the next line that ends with 'string'. Do not confuse
this with '$' used as the last line of the buffer; the OI mode has
altered the normal meaning.

Again, '$' like circumflex, is probably most useful as part of a
substitute command, where it can be used to add characters to the
end of a line. For example, suppose the buffer contains:

the other side of the coin

Then the commands

s/$1 is a tail.Ip

produce

the other side of the coin is a tail.

Note the blank before 'is'. Leaving it out· yields:

the other side of the coin is a tail.

If the line in the buffer is

to come to

,then to change the 2nd 'to'

s/to$/immediately to/

gives,

to come immediately to

The '$' definites which word 'to' is referenced.

As an illustration of the both uses of '$', the command

/strings$/$p

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.23

OED: $
MATCHING AT THE END OF A LINE

will print all lines from the next one ending in 'string' to the
end of the buffer.

Page: 2
Section: 3.41.23

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-------~-----~-------

•

QED: %
MATCHING ANY LETTER

3.41.24 MATCHING ANY LETTER QED: %

The percent sign (%) will match any letter of the alphabet when
used in a regular expression. For example, *SP/ a% I

would print the lines containing words 'as' ,'at' ,'an' •.. etc.
not, however, 'a ','al', 'a2' ... etc ..

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.24

OED: #
MATCHING ANY DIGIT

3.41.25 MATCHING ANY DIGIT QED: #

The number sign (#) will match any digit when used in a regular
expression. For example, *SP/ a# I

would print the lines containing 'aO' ,'a3' ,'a9' •.. etc. not,
however, 'a ' , 'as' , 'at' ... etc ..

Page: 1
Section: 3.41.25

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED: 0#
DISPLAYING A COLUMN SCALE

3.41.26 DISPLAYING A COLUMN SCALE QED: 0#

When used as a command, # will cause a scale of
placed on the terminal. This is useful for
dependent data in control cards or RPG source.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

numbers
aligning

to be
column

Page: 1
Section: 3.41.26

QED: N
SAVE THE CURRENT LINE NUMBER

3.41.27 SAVE THE CURRENT LINE NUMBER QED: >n

In the > command, the modifier 'n' may be a digit from 0 to 7.
You may save 8 line numbers for use later. Generally this 1s used
in implementations of re-direction procedures, where searches are
employed to bracket block moves/copies of text.

Page: 1
Section: 3.41.27

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED: N
RECALL SAVED LINE NUMBER

3.41.28 RECALL SAVED LINE NUMBER QED: <n

n may be a digit from 0 to 7. The previously saved line number
is recalled and used within the current command. This function is
not technically a command in its own right since it is used as line
number equivalent within other commands. For example, the sequence:

<l,<3S/old/NEW/

sets the 'start,end' line range for the 'S' command to content
of the save registers 1 and 3 respectively.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.28

OED: *
OI MODE REPETITION

3.41.29 OI MODE REPETITION QED: *

The asterisk * is used to indicate an arbitrary number of
repetitions (including zero) of some string. As an example,

/ab*c/

means 'search for any one of the following:'

ac, abc, abbc, abbbc, ... etc

Notice that 'b*' includes a string of no characters~ also,
applies only to the previous character - just the 'b' is repeated.

More useful would be the expression

/'t *$/

*

which searches for a line that contains only blanks. Notice that
a blank has been typed before the '*'

'*' is most useful when used in conjunction with other special
characters, particularly the period. Examples of the use of '*'
with other special characters will follow.

Page: 1
Section: 3.41.29

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

MATCHING ANY CHARACTER

3.41.30 MATCHING ANY CHARACTER QED: .

The period'.' is another character that QED uses in
one way, with different meanings. Its use as 'dot',
line has been discussed. This section describes its use
anything' character in regular expressions.

QED: I

more than
the current
as a 'match

The precise definition of '.' in a regular expression is that it
matches any single character. Thus

/x.y/

would match any one of the lines

x=y+l
8 = x+y
if (x<y) go to 10
ab c ••• x y z

And of course it will match

x.y

combining the period with ~ gives the expression

/~ ••• the/

which matches any line that starts with 3 characters followed by
'the'. This would include any of

on the other side of the coin
to the party
another time

but not

the other side

Probably the single most important use of
with '*' ; for instance

*

I I . is in combination

means 'any string of zero or more characters on a line'. It is
usually used to save typing a long string of characters; only a
small part is typed, and the rest is expressed by '.*' So, for
example, if the buffer contains

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.30

OED: I

MATCHING ANY CHARACTER • to come to the aid of the party

then the commands

s/aid.*/party/p

will produce

to come to the party

The '.*' in this case matched all of the line after 'aid'.

Equally effective is

s/aid.*the //p

to get again

to come to the party

As a final example, the expression

/1'begin.*end$/

matches any line that starts with 'begin' and ends with 'end'. •

Page: 2
Section: 3.41.30

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OED: &
WHAT WAS JUST MATCHED

3.41.31 WHAT WAS JUST MATCHED QED: &

The ampersand '&' is another shorthand symbol, which often saves
typing. Suppose that the current line is

now is the time

and that parenthesis are required around it. One way would be to
make the substitutions

s/t/(/

s/$/}/

Another way is based on the ampersand; the following command has
exactly the same effect.

s/.*/(&)/

This example defines '&' as a shorthand symbol for 'the text
matched by the regular expression in the substitute command'.
Whatever was to be replaced (ie. whatever was matched) is available
by typing '&' in the replacement text. Consider this substitution
on the original line:

s/.*/'&'? He answered, '&' ./p

which returns

'now is the time'? He answered, 'Now is the time'.

The regular expression '.*' matched the whole line, so that is
the 'value' of '&'.

It is not necessary to match the whole line. Suppose the buff er
contains

the end of the world

A common abbreviated command sequence would be

/world/s//& is at hand/p

to produce

the end of the world is at hand

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: l
Section: 3.41.31

OED: &
WHAT WAS JUST MATCHED

Observe this example carefull¥, for it illustrates QED's
conciseness. The regular expression '/world/' found the desired
line; the shorthand '//' found the same word in the line; and '&'
saved retyping the text.

The '&' has special meaning only within the replacement text of
a substitute command. To use ampersand within the replacement text,
use two ampersands in a row. For example

sf ampersand/&&/

will convert the word 'ampersand' to the real symbol '&' in the
current line. substitute command to separate out various parts of
the string matched by the regular expression, for reference in the
second half of the substitute command. This is an idea analogous to
the '&', which represents the entire matched string.

Suppose that each line in the buffer contains a 5-character
sequence number as its last five characters. Suppose want to move
this information to the beginning of the line. This can all be
accomplished in just one command.

s/t{.}a{ ...•. }b$/ba/

Examine this carefully! The first character after the closing brace
is the label or tag for that portion of the string matched within
the braces. These tags only have this special meaning within that
substitute command and may be used any number of times.

If you do not have a full keyboard then the square brackets ("["
and "]") may be used by setting QED in upper case mode. (The upper
case command is OU).

Page: 2
Section: 3.41.31

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OED
REGULAR EXPRESSION CONSIDERATIONS

3.41.32 REGULAR EXPRESSION CONSIDERATIONS QED

If a regular expression can match several overlapping strings on
a line, it will first match the leftmost (making it as long as
possible) and will then find the next non-overlapping and longest
string, until the entire expression is satisfied. Remember that
regular expression will not match text spread over two or more
lines.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: l
Section: 3.41.32

QED
SUMMARY OF COMMANDS AND LINE NUMBERS

3.41.33 SUMMARY OF COMMANDS AND LINE NUMBERS QED

The general form of QED commands is the command name, preceded
by one or two line numbers, and perhaps followed by arguments.
Commands may follow one another directly on the same line.
Exceptions are 'that no commands may follow R or W or redirection
commands' and 'Global executes all commands on its own line'.

Page: 1
Section: 3.41.33

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED: SUMMARY
COMMAND AND FUNCTION SUMMARY

3.41.34 COMMAND and FUNCTION SUMMARY QED: summary

A ADD

C Change

D Delete

E End

= Facts

G Global

I Insert

K Kopy

M move

00 Option Out

Add lines after the specified line
dot) Adding continues until "F is
two characters on a line. Dot is set
added.

number {else
seen as first
to last line

Change the lines specified to the new lines
following the c command, up to "F. If no lines are
specified, replace line at dot. Dot is set to last
line changed.

Delete the lines specified. If none specified,
delete line dot. Dot is set to the next undeleted
line.

End the Edit session. The edit work file is saved.

Give the file name of the last R or W command.
Note that a W or R command immediately followed by
a carriage return will use the file name which is
displayed by the = command.

G/context search/ QED commands •••..•

Execute the QED commands on all lines that satisfy
the context search.

Insert lines before the specified line {or dot)
until a "F is typed on a new line. Dot is set to
the last line inserted.

Copy the specified lines after dot. Dot will point
to the last line copied in.

Move the specified lines after dot. Dot will point
to the last line moved in.

Display a number scale across the screen.

Display the next line.

Turns OFF the use of regular expressions, and
special character meanings in substitutes, context
searches and tabbing. This is the default QED
mode.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.34

OED: SUMMARY

01 Option In

OA Option ASM

OT Option ASM

OD Option ESCAPE

0# numbering

OS scroll

OX text

OR RPG

OC COBOL

Page: 2
Section: 3.41.34

COMMAND AND FUNCTION SUMMARY

Turns ON the use of regular expressions, the
inverse of 00.

Causes all lines added and written out to be
tabbed by assembler conventions. A blank is used
to separate the fields and a tabset character will
tab to column 72 for continuation.

Normal tabbing is to columns 1,10,20,39,72 and
continued lines begin in column 16. Use 00 to turn
tabbing off.

Causes all lines added and written out to be
tabbed by assembler conventions. A blank is used
to separate the fields and a tabset character will
tab to column 72 for continuation. Normal tabbing
is to columns 1,10,16,40,72 and continued lines
begin in column 16. Use 00 to turn tabbing off.

Turns OFF the system escape feature of TIP. Use
this if input lines •may begin with the same
character as the system escape character (usually
@) •

This command is a toggle; it flips the switch (ie.
1st on, 2nd off, etc.)

Turns line numbering on or off. Every
displayed to the terminal will be preceded
line number. To turn this off enter 0# a
time.

line
by its
second

This command changes the way in which terminal
output is handled. Scrolling or just carriage
returns.

QED will delete redundant blanks and permit word
overflow from one line to the next.

Sets RPG tabulation mode where columns 1-5 are not
displayed. When the element is written out columns
1-5 are sequenced and the element name is placed
in columns 75-80 as required by the RPG compiler.

Sets COBOL mode. Like "OR", only columns 1-6 are
not displayed. Note the first character you enter
on each line goes in column 7; also, in COBOL mode,
tab-set characters will cause 4 blanks to be
inserted for each tab-set entered beyond column 7.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OED: SUMMARY
COMMAND AND FUNCTION SUMMARY

OL Lower

OU Upper

ON Normal

P Print

Q Quit

R Read

"< f ile/elt

S Substitute

V Version

W Write

All alphabetic characters input from the keyboard
are changed to lower case.

All alphabetic characters input from the keyboard
are changed to upper case.

No upper/lower case conversion of characters input
from the keyboard. (What you typed is what you
get).

Display specified lines on terminal; if none
specified, print current line (dot).

Terminate the text editor program. The QED buffer
(work file) is scratched

Add text from the specified f ile/elt to the end of
the edit buffer unless otherwise specified.

Used to redirect QEDs input from a element of a
library file. QED will take its input (commands)
from the named file/element until end of file is
reached. This command must not be followed by any
other QED command on the same line on the
terminal.

Usually used in association
Elements.

S/stringl/string2/

with QED Exec

Substitute characters 'string2' for 'string!'
wherever 'stringl' occurs in specified lines. If
no line is specified, make substitution in line
dot. Dot is set to last line in which a
substitution took place. Note that the slashes can
be replaced by any character which is not QED
defined as significant.

A numeric modifier (Sl/stringl/string2/) can be
used to just change the nth occurrence of
'stringl' in a line.

Set the version number.

Write out buffer to a permanent file. A line range
may be specified to limit the transfer. In any
case, dot is changed to the last line written out.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 3
Section: 3.41.34

OED: SUMMARY

ZL Zap Lower

ZU Zap Upper

ZSnn sort

ZBnn sort

=

/----/

-/----/

!/----/

Page: 4
Section: 3.41.34

COMMAND AND FUNCTION SUMMARY

Change alphabetics in the specified lines to lower
case. The current line (dot) will be set to the
last line where a change of case was made.

Identical to ZL command except that the change is
to upper case.

Sort the specified lines into ascending sequence.

Sort the specified lines into descending sequence.

If ZS or ZB is followed immediately by a number
(nn) the sort will be done from that column of
each record to the end of the record.

Display summary of edit buffer contents
options in effect

and

Context search. Search for next line which
contains this string of characters and print it.
Dot is set to line where the string is found.

•

Search starts at DOT+l, wraps around from $ to 1,
and continues, if necessary, back to the starting
point. ~

Context search in reverse direction. Start search
at DOT-1, scan to 1, wrap around to $.

Context search for line that does NOT have this
string on it. The ! may be used in conjunction
with the reverse search direction '-' command.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

LINE NUMBERS

3.41.35 LINE NUMBERS

$

1, 2' ...

/xxxx/

-/xxxx/

*

OED

QED

Current line ("dot") - set by many commands, often
to last line changed or referenced.

Last line in the edit buffer.

Absolute line numbers in edit buffer.

Implicit context search - line number of next line
that contains the string of characters.

Implicit context search in reverse direction.

All lines in the edit buffer

Equivalent to 1,$

& Special line range for CRT terminals.

It is approximately equivalent to '.,+15' (16
1 ines).

Approximately equivalent because it may adjust
based on the specific terminal type in use •

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.35

OED: EXERCISE l
EXERCISE l: APPEND, QUIT, WRITE

3.41.36 EXERCISE 1: APPEND, QUIT, WRITE QED: Exercise 1

Enter QED and create some text using

a
... text ...
"f

Write it out using W. Then leave QED with the Q command. To
check the results call QED with the file/elt name used to write the
text out. When QED has read the elt in display the buffer contents
using P.

Page: 1
Section: 3.41.36

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

EXERCISE 2: APPEND, PRINT
QED: EXERCISE 2

3.41.37 EXERCISE 2: APPEND, PRINT QED: Exercise 2

As before, create some text using the append command and
experiment with the P command. You will find, for example, that you
can't print line 0 or a line beyond the end of the buffer and that
attempts to print a buff er in reverse order by saying

3,lp

will result in QED inverting the line arguments before execution
of the command .

CHAPTER III - ON-LINE UTILITY PROGRAMS ,
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.37

QED: EXERCISE 3
EXERCISE 3: READ, PRINT, APPEND

3.41.38 EXERCISE 3: READ, PRINT, APPEND QED: Exercise 3

Experiment with the R command - try reading and printing various
files. Try alternately reading and appending to see that they work
similarly.

Page: 1
Section: 3.41.38

TIP/30 Reference Manual
Version 2.5 (82/08/01)

EXERCISE 4: ADD, READ, PRINT, WRITE
OED: EXERCISE 4

3.41.39 EXERCISE 4: ADD, READ, PRINT, WRITE QED: Exercise 4

Experiment with A, R, W, P, and D. Understand how dot, $, and
the line numbers are used.

Try using line numbers with A, R, and W as well. Note that 'A'
will append lines after the line number that you specify (not
necessarily at the end); and that 'W' will write out exactly the
lines specified, not necessarily the whole buffer. These variations
are sometimes handy. For instance to insert an element at the
beginning of a buffer use

11
"< f ilename/eltname

and to insert lines at the beginning of the buff er use

11
.... text ...
"F

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.39

QED: EXERCISE 5
EXERCISE 5: SUBSTITUTE

3.41.40 EXERCISE 5: SUBSTITUTE QED: Exercise 5

Experiment with the substitute command. See what happens if you
substitute for some word on a line with several occurrences of that
word. For example, do this:

A
the other side of the coin
"F
S/the/on the/P

you will get

on the oon ther side of on the coin

Try it! Be sure you understand what's happening that
substitute changes all occurrences of the first string. Even
experienced users make mistakes by forgetting this.

Try other characters instead of l's to delimit the two sets of
characters in the S command. Try several S commands (or others) all
on one line.

If you recreate that same line again, but this time try

Sl:the:on the:P

you will get, instead

on the other side of the coin

Notice the 1 immediately after the S. (the were used for I
just to show it could be done.) The 1 caused QED to only carry out
the first substitute rather than all of them. In general, any_
number can be used instead of the one. It allows you to select a
particular substitution to take place rather that every one on the
line.

Page: 1
Section: 3.41.40

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
OED: EXERCISE 6

EXERCISE 6: CONTEXT SEARCHING

3.41.41 EXERCISE 6: CONTEXT SEARCHING QED: Exercise 6

Experiment with context searching. Try a body of text with
several occurrences of the same string of characters, and scan
through it using the same context search. (see section 1.9).

Try using context searches as line numbers for the substitute,
print and delete commands. (They can also be used with R, W, and
A.)

Try context searching using -/text/ instead of /text/. This
scans lines in the buffer in reverse order rather than normal:
sometimes useful if you go too far while looking for some string of
characters. It's a fast way to back up.

CHAPTER III 7 ON-LINE UTILITY PROGRAMS
TIP/30 TEXT EDITOR

Page: 1
Section: 3.41.41

OED: EXERCISE 7
EXERCISE 7: CHANGE

3.41.42 EXERCISE 7: CHANGE QED: Exercise 7

"Change" is exactly the same as a combination of delete followed
by insert. Experiment to verify that

start,end D
I
.... text
"F

is the same as

start,end C
.... text
"F

Experiment with A and I, to see that they are similar, but not
the same. You will observe that

line-number A
.... text
"F

adds after the given line, while

line-number I
.... text
"F

inserts before it. Observe that if no line number is given, 'I'
inserts before line dot, while 'A' appends after line dot.

Page: 1
Section: 3.41.42

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

RELOAD PROGRAM
RELOAD

3.42 RELOAD PROGRAM RELOAD

The first time a program is loaded from the TIPLOD library
TIP/30 will move a copy of the load module to the TIP$SWAP file.
Any subsequent requests for the load module will cause TIP to read
the load module from the swap file copy. If the programmer has
compiled the program, he may wish TIP/30 to get the new version
from the TIPLOD library. To tell TIP/30 to do this the programmer
must use the RELOAD transaction.

Syntax:

RELOAD loadm

Where:

loadm is the load module name.

Example:

RELOAD PAYUPD

Would display (for example):
PAYUPD cleared from loadr table.
PAYUPD cleared from reentrant control table.
Using PAYUPD as of 82/05/19 15:05:35 (C) ALLINSON-ROSS

Additional Considerations:

If the program is being used re-entrantly then TIP/30 must wait for
all current users of the program to stop using it before a new
version can be loaded.

RELOAD will
of a resident
initialization.

have no effect on resident programs. A new version
program can only take effect at TIP/30

CHAPTER III - ON-LINE UTILITY PROGRAMS
RELOAD PROGRAM

Page:
Section:

1
3.42

RPG
RPG EDITOR

3.43 RPG EDITOR RPG

The RPG editor is an online program which was written to aid
programmers in the creation and maintenance of programs written in
the language 'RPG'. Using RPG, a programmer no longer has to worry
about aligning fields in their columns. RPG has eight screen
formats; one for each of the form types used in writing 'RPG'
programs. The User only has to select the appropriate screen and
enter the data on titled blank fields. RPG edits and aligns the
data as if it were on a card.

In total there are 10 screen formats used in the RPG editor:

Menu

Record list

Control card format

File descriptor format

File extension format

Line counter format

Telecommunications format

Input format

Output format

Calculation format

where:

Page:
Section:

Menu All commands are issued from the menu. All the
rema1n1ng screen formats can be displayed using
commands from the basic menu

Record list Displays from one to fifteen records from the input
file in card format

Others

1
3.43

The remaining screen formats are of the eight format
types which correspond to the syntax of the 'RPG'
language. These are invoked by entering the form
type as the command in the menu; the corresponding
screen format will be displayed. Each screen format
contains the field names and data areas for the

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RPG EDITOR

corresponding form.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

RPG

2
3.43

RPG
RPG EDITOR

3.43.1 ENTERING RPG

After logging on to TIP, activate RPG by entering

RPG

to create a new element or

RPG FILE/ELT

to update an existing element.

In the event of a system crash the edit buffer can be retrieved
by entering

Page:
Section:

RPG ELT

3
3.43.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RPG EDITOR
RPG

3.44 ERROR MESSAGES

RPG will respond to command and data entry errors by displaying
a self-explanatory error message. In the case of data entry errors,
in addition to the message the fields in error are set to blink.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

4
3.44

RPG
RPG EDITOR

3.44.1 DELETE

To delete a record from the edit buffer it must be displayed on
its correct 'RPG' format screen. Once the record is displayed, it
can be deleted by pressing function key 2. The line number of all
records following the deleted record are decreased by one. The
current line is the record which immediately followed the deleted
record.

Page:
Section:

5
3.44.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RPG EDITOR
RPG

3.44.2 ADD A RECORD

The addition of records is also done from the formatted screen.
If the screen displayed at the moment is not the correct 'RPG'
format, the user must intercede by returning to the menu and
selecting the correct form type format. Once the data has been
entered, press transmit. The data is then validated. If all fields
are valid, the record is added to the edit buffer and becomes the
current line. In the case where the current line already pointed to
a record, that record and any following records would have their
line numbers increased by one.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

6
3.44.2

RPG
RPG EDITOR

3.44.3 UPDATE RECORDS

To update a record, display it on the CRT with its correct form
type screen~ make the necessary corrections to the data and press
function key 1. The data fields are then edited. If they are all
valid the old record is replaced by the new record and the user is
given update confirmation. I'f the RPG validation fails, the fields
in error are changed to blinking fields and the record is not
updated. The user may correct the fields in error and re-submit or
request another screen. Any fields which are numeric or blank only
are edited by the screen formatter. Any record in the edit buffer
can be updated as long as it is in one of the eight format
displays. There are five ways to get a record into these displays:

from the menu by entering ' ' . (current line)

from the menu by entering '$' (the last line)

from the menu by entering 'P' and the line number
(specific line)

from one of the eight format displays by pressing f 3
(next record)

from one of the eight format displays by pressing f 4
(previous record)

The current line number is not altered by updates.

Page:
Section:

7
3.44.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RPG EDITOR
RPG

3.44.4 LIST LINES

To list part of the edit file: enter 'P' as the command on the
menu and the beginning and end line numbers of the lines to be
listed. The records are listed as they would appear on cards except
that the line numbers and program identification are not shown. A
maximum of 15 lines can be viewed at once. After these lines are
listed, the next or previous 15 records may be viewed by pressing
function key 1 or 2 respectively. The current line is the last line
displayed on the terminal.

NOTE: If 'P' is entered without a line number, RPG editor assumes
that the user wants the current line displayed in its card format.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

8
3.44.4

RPG
RPG EDITOR

3.44.5 GETTING OUT OF RPG

To terminate the session enter 'X' or'Q' as the command in the
menu. Upon entering 'Q' the buffer is scratched whereas with 'X' it
is retained. Before entering this command the user may wish to save
his updated text by writing it to a permanent file using the 'W'
command.

Page:
Section:

9
3.44.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RPG EDITOR

3.45 CURRENT LINE

To display the current line in its format display, enter
(dot) as the command on the menu.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

RPG

' ' .

10
3.45

RPG
RPG EDITOR

3.45.1 LAST LINE

To display the last line in the edit file enter '$' (dollar
sign) as the command on the menu. The record will be displayed in
its corresponding format. The last line now becomes the current
line.

Page:
Section:

11
3.45.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RPG EDITOR
RPG

3.45.2 LINE NUMBER OF CURRENT LINE

By entering '=' as the command on the menu the user is informed
of the line number of the current line.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

12
3.45.2

RPG RPG EDITOR

3.45.3 WRITING TEXT TO FILE

To write the contents of the edit file to a permanent file enter
command 'W' and the 'filename/elt on the menu. A special comment
can be inserted on the file header by entering it next to the
'comment' (maximum length is 20 characters). If this entry is left
blank, your USER-ID will be used.

On a successful write to the library, the editor will respond
with the number of lines copied. The edit file does not change as a
result of the write command. It is important to remember that RPG
works only with a copy of what is in the library file. The content
of the library file does not change until the write command is
issued and confirmed positively.

Page:
Section:

13
3.45.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

START OS/3 BATCH JOB RV

3.46 START OS/3 BATCH JOB RV

To start an OS/3 batch job, the TIP user may use the SYM program
(see section on "SYM") and enter an OS/3 operator command via the
SYM program. A more direct approach is the use of the RV program.
The RV program is, in fact, a transaction-id that calls the SYM
program. The SYM program detects that it has been called with a
transaction-id of "RV" and reacts appropriately.

The RV program expects (on the command line) the parameters that
the user would normally give to the OS/3 operator "RV" command. The
user should keep in mind that OS/3 limits the length of a console
command to a maximum of 60 characters.

Syntax:

RV parameters

Where:

parameters the parameters required by the RV command.

Example:

RV COB74(FRED), ,E=TEST010

Would run a job stream named "COB74" from YJCS and
cause the job name to be changed to "FRED". The keyword
specification assigns a value to the job global "E".

'

Error Conditions:
The user may receive a security error if he does not have
sufficient security to run the "RV" program.

CHAPTER III - ON-LINE UTILITY PROGRAMS
START OS/3 BATCH JOB

Page:
Section:

1
3.46

--- ------------------

•

SCRATCH A DYNAMIC FILE
SCRATCH

3.47 SCRATCH A DYNAMIC FILE SCRATCH

The SCRATCH program is used to scratch a dynamic file that is
currently assigned to the terminal. The SCRATCH program removes the
entry for the dynamic file in the TIP/30 catalogue and releases the
space currently used by the dynamic file in the TIP$RNDM file.

Syntax:

Where:

SCRATCH[,A] aft-name

"A II option used to indicate that all
are to be scratched. Any OS/3 files
FREE'd by this option. No file
specified.

assigned files
assigned are
names need be

aft-name is the active file name of the file to be
scratched.

Example:

SCRATCH WORK1
SCRATCH,A

Error Conditions:
TIPFCS errors may be reported.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SCRATCH A DYNAMIC FILE

Page:
Section:

1
3.47

SET
SET ATTRIBUTES FOR PROCESS

3.48 SET ATTRIBUTES FOR PROCESS SET

The SET program is a utility that allows the user to change
various attributes of his own or other terminal processes.

Syntax:

SET [FOR term] [attributes]

Where:

FOR term

attributes

U200

U400

Q310

TTY

LMON

LMOFF

LOGON=YES

LOGON=NO

DISABLE

ENABLE

DEBUG SYSTEM

Page:
Section:

DEBUG OFF

TEST ON

TEST OFF

1
3.48

is the terminal name which is to be changed. If
omitted then the calling terminal is used.

any of the following parameters:

change terminal type to U200.

change terminal type to U400.

change terminal type to Q310.

change terminal type to TTY (teletype).

turn TIP/30 line monitor on.

turn TIP/30 line monitor off.

terminal requires logon.

terminal is NOT required to logon.

terminal is disabled. No transactions will be
allowed.

terminal is enabled.

all programs will run with storage protection.

inverse of "DEBUG SYSTEM".

the terminal is set in test mode. File updates
ignored.

the terminal is cleared from test mode.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

SET ATTRIBUTES FOR PROCESS

Example:

SET FOR T312 U200 LMOFF LOGON=YES.

SET U400 LOGON=NO.

Additional Considerations:

This program is intended to be used by systems programmers .

CHAPTER III - ON-LINE UTILITY PROGRAMS
SET ATTRIBUTES FOR PROCESS

Page:
Section:

SET

2
3.48

SPL
SPOOL FILE ENQUIRY

3.49 SPOOL FILE ENQUIRY SPL

The SPL program enables the user to examine sub-files in the
OS/3 spool queues. A spool sub-file may be listed at the terminal,
printed at a terminal printer, released for batch printing, or
deleted.

The SPL program is able
queues. It has no provision
sub-file.

to read sub-files in
for modification of

the OS/3 spool
data in the

The OS/3 spool file is divided into two classes of sub-file:

Held

Not Held (queued)

Sub-files that are held are the usual (default) target of the
SPL program. It is possible to direct SPL to examine sub-files that
are not held, but the user should be aware that sub-files are
queued only until the OS/3 output writer opens them for processing.
There is, therefore, a potential race condition associated with
queued files.

The OS/3 spool file is also divided (for each of the two classes
described above) into the following queues:

LOG job log.

PR local print (default queue for SPL).

PU local punch.

RDR local reader.

RDR96 local 96 column reader.

SY SLOG retained job logs.

RBPIN remote reader (if configured).

RB PPR remote print (if configured).

RBPPU remote punch (if configured).

There are 18 (2 x 9) combinations of class and queue.

To examine or manipulate a spool sub-file entry, the user must
always clearly establish both the class (default is HELD) and the
queue (default is PR) of the desired sub-file.

Page:
Section:

1
3.49

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPL
SPOOL FILE ENQUIRY

The SPL program operates only in interactive mode. It makes no
use whatsoever of command line parameters. To begin the SPL program
simply enter the transaction name:

SPL

When SPL prompts the user for commands, the general syntax is as
follows:

Sgntax:

Where:

cmnd [queue] [option] [keyword ... keyword ... keyword ... l

cmnd

queue

option

keyword

A recognized SPL program command (eg: DELETE,
PRINT, etc) as described in the next sections.

The OS/3 spool queue to be searched (default is
PR).

Optional additional information required by some
commands as documented.

Optional keywords that are used to qualify the
selection of sub-files in the specified queue.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page:
Section:

2
3.49

SPL: SECURITY
SPL SECURITY CONSIDERATIONS

3.49.1 SPL SECURITY CONSIDERATIONS SPL: security

To maintain the security of the OS/3 spool file, the SPL program
will display information from the spool queues according to the
following rules:

*

*

MASTER level users (ie: security 1 thru 9) are able to examine
any spool queue sub-file;

SYSTEM and PROGRAMMER users (ie: security 10 thru 29) are able
to examine any spool queue entry with form name "STANDl";

* Other spool sub-files can be examined by a user if and only
if:

userid, group one, group two, or terminal name (four
characters) matches one of: FORM=, CART=, REMOTE=, FILE=,
or ACCT= keyword specified.

Note that account number is the 4 character account number as
given on the JOB statement of the job that created the spool
sub-file.

Page:
Section:

1
3.49.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

SPL: KEYWORDS
SPL KEYWORDS

3.49.2 SPL KEYWORDS SPL: keywords

Following is a summary of the keywords that are recognized by
the SPL program. Most keywords provide information that is used to
specify the desired sub-file entry (ie: Jobname= etc).

Some keywords provide information to the SPL program that
changes the behaviour of the SPL program (ie: PAge=).

Upper case characters in the keyword are required characters;
lower case characters are noise characters for readability.

Acct=

Cart=

column=

FI le=

FOrm=

Hold=

Job=

JobNo=

sub-files with this job account number.

The account number is a parameter on the //JOB
statement and is restricted to 4 digits for SPL
purposes.

sub-files with this print band name.

The cartridge name is a parameter on the // LCB
statement

specify leftmost column to display.

This keyword specifies the starting column to be
used. Default is column one.

sub-files created with this LFD name.

This allows selection based on originating LFD
name.

sub-files that specify this form name.

This keyword allows selection based on orignal
form name.

held or not-held class.

Indicates the class of spool queue (held or not
held). Specified as "Y" or "N". Default "Y".

sub-files with this job name.

sub-files with this job number.

The summarize SPL command displays sub-file job
numbers that may be referenced by this keyword.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page:
Section:

1
3.49.2

SPL: KEYWORDS

Label=

Prog=

PAge=nnn

Remote=

STep=

USing=term,dvc

SPL KEYWORDS

sub-files created with this label.

This keyword allows selection based on // LBL
name.

sub-files created by this program name.

Selection by EXEC name.

specify starting page number.

The summarize SPL command displays number of pages
in the sub-file. This keyword allows user to begin
processing at a specific page number.

sub-files for this remote destination.

The destination from the // DST statement.

sub-files created by this step number.

The step number within a job.

route SPL output to alternate terminal.

SPL may be started up (asynchronously) on another
terminal (to print using an attached printer).

If term is omitted, the issuing terminal is
assumed.

If dvc is omitted, device AUXl is assumed.

To route printout to AUX2 of your terminal, for
example, USING=,AUX2 may be specified.

Several keywords may be specified to narrow the search as much
as possible.

Page:
Section:

2
3.49.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

SPL: OPERATION
SPL PROGRAM OPERATION

3.49.3 SPL PROGRAM OPERATION SPL: operation

Since the first sub-file that matches the specified criteria may
not be the intended sub-file, the SPL program always prompts the
user to determine if the found sub-file is to be processed.

When SPL finds the first sub-file (of the class and queue
specified) that matches the criteria specified by the keyword
information, it will display all known information about that
sub-file. The sub-file that is found may not be the intended one
especially if the keyword information was too vague.

SPL then prompts the user for confirmation that the sub-file
found is indeed the one wanted. If the user replies "Yes", the
command will be carried out; if the reply is "No", the search will
continue for the correct sub-file.

While a sub-file is listed at the user's terminal, the user may
press MSG-WAIT to interrupt the display. The user is then prompted
with a continuation prompt.

In response to the continuation prompt, the user may tab to the
appropriate choice and press transmit.

The user may change page number (forward or backward) and/or may
change the starting column number. To do this, specify:

>PAGE nnn [,eccl

where nnn is the page number to proceed to and ccc is the new
starting column number .

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page:
Section:

1
3.49.3

SPL: FNKEYS
SPL FUNCTION KEY USE

3.49.4 SPL FUNCTION KEY USE SPL: fnkeys

The SPL program recognizes the following use of function keys:

Page:
Section:

MSG-WAIT Interrupt display on terminal.

User will be prompted with a continuation query.

F2 Re-display last command entered (can save some
typing).

F3 Re-execute last command entered {can save some
typing) .

1
3.49.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPL: DELETE
DELETE SPOOL SUB-FILE

3.49.5 DELETE SPOOL SUB-FILE SPL: delete

This command enables the user to select spool sub-files to be
deleted.

Syntax:

Where:

DELete [queue] [, ALL 1 [... keywords ... J

queue

ALL

keywords

Optional positional parameter which specifies the
desired spool queue (default is PR).

Optional positional parameter which indicates that
ALL sub-files found that match keyword criteria
are to be processed.

see section 3.49.2

Example:

DEL ALL JOB=COB74

Would select ALL sub-files with jobname "COB74" in the held
class for possible deletion.

Error Conditions:
None.

Additional Considerations:

The SPL program will display information about each sub-file in
turn and prompt the user for delete verification.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page:
Section:

1
3.49.5

SPL: END
END SPL PROGRAM

3.49.6 END SPL PROGRAM SPL: end

This command will cause the SPL program to terminate normally.

Syntax:

End

Where:
No parameters required.

Error Conditions:
None.

Page:
Section:

1
3.49.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPL: HELP
DISPLAY SPL PROGRAM HELP

3.49.7 DISPLAY SPL PROGRAM HELP SPL: help

This command will display on the terminal a summary of SPL
program command syntax.

Syntax:

Help

Where:
No parameters requried.

Example:

HELP

Error Conditions:
The help information may not be available or may have been deleted.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page:
Section:

1
3.49.7

SPL: LI ST
LIST SPOOL FILE ON TERMINAL

3.49.8 LIST SPOOL FILE ON TERMINAL SPL: list

This command will list selected spool sub-files on the terminal.
Since print lines (for example) are usually longer than the width
of most terminals, the output from the list command may be
"folded". This means that the display may span more than one line.

Syntax:

Where:

List [queue] [,ALL] [... keywords ... J

queue

ALL

keywords

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

See section 3.49.2.

Example:

L JOB=COB74 PROG=LNKEDT

Would select for listing on the terminal any entry in the
(held) PR queue that has a job name "COB74" and a
program name "LNKEDT".

Error Conditions:
None.

Page:
Section:

1
3.49.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

SPL: LS
LIST (SPACE SUPPRESSED) SPOOL FILE

3.49.9 LIST (SPACE SUPPRESSED) SPOOL FILE SPL: ls

This command is similar to the LIST command. Multiple spaces
will be reduced to a single space, thus attempting to display more
data per line on the terminal.

Syntax:

Where:

LS [queue l [, ALL l [... keywords ... l

queue

ALL

keywords

Optional positional parameter which specifies the
spool queue to search. Default is PR.

Optional positional parameter which indicates that
ALL sub-files that match the selection criteria
are to be processed. ·

See section 3.49.2.

Example:

LS JOB=COB74 PAGE=10

Would list (with multiple space suppression) any entry in
the (held) PR queue which has a job name "COB74". The
PAGE=10 specification indicates that the listing is to
start at page 10 of the file.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page:
Section:

1
3.49.9

SPL: LT
LIST (TRUNCATED) SPOOL FILE

3.49.10 LIST (TRUNCATED) SPOOL FILE SPL: lt

This command is similar to the LIST command. Output to the
terminal will be truncated to the width of the lines on the
terminal. The keyword COL= is very useful to specify the starting
column number to display. By varying the starting column, the user
can view either the left or right side of the spool data.

Syntax:

Where:

LT [queue l [, ALL l [... keywords ... l

queue

ALL

keywords

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

See section 3.49.2.

Example:

LI JOB=COB74 COL=20

Would select for listing on the terminal any entry in the
(held) PR queue that has a job name "COB74". The listing
is to display (80) columns starting with column 20.

Error Conditions:
None.

Page: 1
Section: 3.49.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

SPL: PRINT
PRINT SPOOL FILE

3.49.11 PRINT SPOOL FILE SPL: print

This command will print selected spool sub-files on the
auxiliary printer attached to the terminal.

Syntax:

Where:

Print [queue] [,ALL] [... keywords ... l

queue

ALL

keywords

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

See section 3.49.2.

Example:

P ALL JOB=COB74

Would select for printing on the AUX1 printer sub-files in
the (held) PR queue that have job name "COB74".

Error Conditions:
None .

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page: l
Section: 3.49.11

SPL: PT
PRINT SPOOL FILE WITH TEST PAGE

3.49.12 PRINT SPOOL FILE WITH TEST PAGE SPL: pt

This command is similar to the PRINT command. A test page
(similar to the test page generated by the batch output writer)
will be sent to the auxiliary printer. The user may find that this
is preferable when printing forms that require delicate alignment.

Syntax:

Where:

PT [queue] [,ALL l [... keywords ... l

queue

ALL

keywords

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

See section 3.49.2.

Example:

PT JOB=PAYROLL FORM=CHEX

Would select for printing on the auxiliary printer sub~files
in the (held) PR queue that have job name "PAYROLL" and have
form name "CHEX". Test (alignment) pages will be produced.

Error Conditions:
None.

Page: 1
Section: 3.49.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

SPL: QUIT
END SPL PROGRAM AND LOGOFF

3.49.13 END SPL PROGRAM AND LOGOFF SPL: quit

This command will terminate the SPL program normally. If the SPL
program was executing at program stack level one (ie: not called
from another program) the user will be logged off TIP/30.

Sgntax:

Quit

Where:
No parameters required.

Example:

Q

Error Conditions:
None .

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page: 1
Section: 3.49.13

SPL: RELEASE
RELEASE SPOOL FILE

3.49.14 RELEASE SPOOL FILE SPL: release

This command will release sub-f iles(s) for batch processing.
This command is intended to be a mechanism to allow the user to
release a held sub-file that is now to be printed.

Syntax:

Release [queue} [,ALL} [... keywords ... }

Where:

queue

ALL

keywords

Example:

RE JOB=COB74

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

See section 3.49.2.

Would select for release any sub-file in the (held) PR
queue that has a job name "COB74".

Error Conditions:
None.

Page: 1
Section: 3.49.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPL: SUMMARY
SUMMARIZE SPOOL QUEUE CONTENTS

3.49.15 SUMMARIZE SPOOL QUEUE CONTENTS SPL: summary

This command will list (on the terminal) the sub-files that
exist in the specified class and queue which match the selection
keywords.

By using this command the user can browse through the spool file
to determine which spool sub-files exist.

Syntax:

Where:.

S [queue] [,ALL] [... keywords ...]

queue

ALL

keywords

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

See section 3.49.2.

Example:

S H=N

Would summarize the sub-files that are not held (queued) in
the PR queue.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page: 1
Section: 3.49.15

SPL: WRITE
WRITE SPOOL FILE TO EDIT BUFFER

3.49.16 WRITE SPOOL FILE TO EDIT BUFFER SPL: write

This command will select sub-files to be written to a TIP/30
edit buffer. The spool sub-file data will be copied to an edit
buffer with the specified name.

Syntax:

Write [queue) [,buffer) [... keywords ...)

Where:

queue

buffer

keywords

Example:

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameter which names the
output edit buffer. Default is "SPOOL".

The edit buffer will be created with a group name
equal to the user's group one specification.

See section 3.49.2.

WR ,MYCOMP JOB=COB74

Would create an edit buffer named "MYCOMP" containing the
contents of a (held) print sub-file with job name "COB74".

Error Conditions:
None.

Additional Considerations:

This command writes 80 columns to the edit buffer. The COL= keyword
may be used to some advantage.

Page: 1
Section: 3.49.16

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

SPL: WL
WRITE SPOOL FILE TO FILE/ELEMENT

3.49.17 WRITE SPOOL FILE TO FILE/ELEMENT SPL: wl

This command will write spool sub-files to a specified OS/3
library element.

Syntax:

Where:

WL [queue] [,file/elt] [... Keywords ...]

queue

f ile/elt

keywords

Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

Optional positional parameters which specify the
output library and element name.

Default is RUN/SPOOL.

See section 3.49.2.

Example:

WL ,TSTSRC/MYCOMP JOB=COB74

Would write to library TSTSRC, element MYCOMP, sub-files
in the (held) PR queue that have job name "COB74".

Error Conditions:
None.

Additional Considerations:

This command writes 128 columns to the specified element. The COL=
keyword may be used to some advantage.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SPOOL FILE ENQUIRY

Page: 1
Section: 3.49.17

STATUS
DISPLAY TIP/30 STATISTICS

3.50 DISPLAY TIP/30 STATISTICS STATUS

The transaction 'STATUS' is a standard TIP/30 utility which is
made available to the user. It is designed to give an insight into
online system performance by probing internal tables and elapsed
time counters maintained by TIP/30. By identifying disproportionate
resource utilization, STATUS gives direction for action in tuning
the system.

Syntax:

Where:

STATUS cmd
STATUS P cmd
STATUS PAUX cmd

STATUS is the catalogued transaction code for the STATUS
program.

cmd is a command for status. Acceptable commands are:

p

A - produce all statistics
B - file buffer usage
D - disk device usage
F - fast load index
I - I/0 summary
K - key holding table
R - program control tables
s - system statistics
T - terminal usage

the report is spooled to the batch
(PRNTR).

printer

PAUX the report is printed on the auxiliary printer
attached to your terminal (AUXl).

Additional Considerations:

If the STATUS program is specified as the system shutdown program
(see section on TIP system generation), the STATUS program will
perform a "P A" (print all statistics) function when TIP/30 is
ended via "EOJ".

Page:
Section:

1
3.50

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

----------~-------

e

•

STATUS: B
FILE BUFFER USAGE

3.50.1 FILE BUFFER USAGE STATUS: b

Display the current occupant of each file buffer, and the number
of swaps which have occurred.

Example:

Where:

T I p I 3 0 F I L E B u F F E R s T A T I s T I c s
BUFFER SWAPS SIZE OCCUPANT FILES I/O'S OUTPUTS
------ ----- -------- ----- - ---- ------------- ----- ---- -------- ----- ----- -------

1
2
3
4
5

BUFFER

SWAPS

SIZE

OCCUPANT

FILES

I/O'S

OUTPUTS

3 1 '792 PRNTR 4 90
1 2,048 ISAM1 13 1 '071
3 1 '792 DOC 1 1 551
1 5' 120 INITDTA 15 0
1 1,792 DD POUT 6 0

is the file buffer number.

is the number of swaps done in this buffer.

is the size of the buffer in bytes.

90
4

30
0
0

is the name of the file currently in the buffer.

is the total number of files assigned to this
buffer.

is the number of logical input/output requests
done using this buffer.

is the number of update/add requests done using
this buffer .

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY TIP/30 STATISTICS

Page:
Section:

1
3.50.1

STATUS: o
DISK DEVICE USAGE

3.50.2 DISK DEVICE USAGE STATUS: d

For each disk volume which is assigned to TIP/30, a list of file
names (LFD's) and I/0 count for the file. For each disk the sum of
I/0 requests and the actual EXCP count is displayed.

Example:

Page:
Section:

1 I 0 S U M M A R Y B Y D V C
--1/0 SUMMARY FOR REL071

TOTAL (KNOWN) 1/0 FOR DVC
EXCP'S

1/0 SUMMARY FOR ARCSPL

TOTAL (KNOWN) I/0 FOR DVC
EXCP'S

I/0 SUMMARY FOR ARCRUN

TOTAL (KNOWN) I/0 FOR DVC
EXCP'S

1
3.50.2

T1P$CAT
T1P$RNDM
SYSGEN
SAM1

TI PLOD
TSTSRC
ISAM1

TIP$SWAP
TIP
DOC
MAC
lNITDTA
DAM1

- - -

198
253

0
0

451
5,240

0
0

1 '07 1

1 '071
3,836

248
0

551
0
0
0

799
3,749

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FAST LOAD INDEX
STATUS: F

3.50.3 FAST LOAD INDEX STATUS: f

Display the programs currently in the fast load index and the
memory blocks to which each has been relocated.

The fast load index is only used for non-re-entrant transaction
programs. Its purpose is to improve the initial loading of such
programs.

Example:

T I p I 3 0 F a s t L o a d T a b 1 e
Loadm Page Size Loadm Page Size
----- ---------- ---- ---- ----- ---- ----
TT$RUN 1 1 2K TT$DOC 20 22K
TT$LIB 20 18K TT$LIB 15 18K
TT$SPL 15 18K TT$SYS 20 4K
TT$MAL 15 10K TT$IDA 13 12K

Where:

Loadm is the load module name.

Page is the page number to which to program has been
relocated.

Size is the size of the program (K=l024).

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY TIP/30 STATISTICS

Page:
Section:

1
3.50.3

STATUS: r
1/0 SUMMARY

3.50.4 I/O SUMMARY STATUS: i

Display a summary of the OS/3 files which have been used by
TIP/30; the number of programs currently assigned to a file; the
sum of logical file accesses both for input and output; the file
buffer associated with each file named.

Example:

T I p I 3 0 F I L E s u M M A R y
FILE USERS I/O'S OUTPUTS BUFFER
-------- ----- -------- -------- -------------- ----- -------- -------- ------
PRNTR 80 80 1
DOC 551 30 3
ISAM1 1 '071 4 2
-------- -------- ---------------- -------- --------
TOTAL 1 '702 114

Where:

FILE is the file name as generated into TIP/30.

USERS

I/O'S

OUTPUTS

BUFFER

is the number of programs currently using the
file.

is the number of logical input/output requests.

is the number of update/add requests. This number
is included in the I/O'S figure.

is the buffer number where the file resides.

Additional Considerations:

Files which have no current users and have zero I/0 counts are not
listed.

Page:
Section:

1
3.50.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

STATUS: K
KEY HOLDING TABLE

3.50.5 KEY HOLDING TABLE STATUS: k

Display the current contents of the key holding table within
TIP/30.

Example:

Where:

T I P I 3 0 K e y H o 1 d i n g T a b 1 e
File User-id Term Key
-------- -------- ---------------------------------- -------- ---- --------------------------
ARCUST RJNORMAN ARC2 X'C1C4C5FOF1F4FOF6'

C'ADE01406'

File is the file name.

User-id is the name of the user who has the record held
for update.

Term is the terminal name where the user is running.

Key is the key value displayed in hexadecimal and
character.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY TIP/30 STATISTICS

Page:
Section:

1
3.50.5

STATUS: R
RE-ENTRANT PROGRAM TABLE

3.50.6 RE-ENTRANT PROGRAM TABLE STATUS: r

Display the list of program control tables. The information
displayed includes program size, current number of users, total
number of times the program has been used.

Example:

T I p I 3 0 R E - E N T R A N T T A B L E
MODULE LANGUAGE TYPE PAGE SIZE SWAPS STATUS USERS USED
------ -------- ----- ------ ----- ----------- -------- ---- -- - - ---- ----- ------ ----- -----
TT$STS BAL TIP 3 16K 3 IN 1 6
TT$TCP BAL TIP 1 RES 0 50
TT$LGN BAL TIP 3 4K 1 OUT 0 4
TT$LGF BAL TIP 13 4K 2 IN 0 2
TT$WHO BAL TIP 1 RES 0 1
TT$TV2 COBOL IMS 6K 3 OUT 0 1
GETREC(SER) BAL TIP RES 0

Where:

Page:
Section:

MODULE is the load module name.

LANGUAGE is either CCBOL or BAL.

TYPE is either TIP or IMS.

PAGE is tpe page number where the program is currently
allocated.

SIZE is the size (in bytes) of the program (modulo
2K=2048).

SWAPS

STATUS

USERS

is the number of times that this load module has
been read/written to/from TIP$SWAP.

IN if the program is in memory. RES if the program
is permanently resident. OUT if the program is not
in memory at this instant.

is the number of users currently using the
program.

USED is the number of times the program has been
entered.

1
3.50.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

STATUS: s
GENERAL STATISTICS

3.50.7 GENERAL STATISTICS STATUS: s

This command will show statistics accumulated overall in two
columns. The first column is since TIP/30 was initiated. The second
column is since some more recent time period. This provides a
picture of what has happened since TIP/30 initialization and in the
most recent time period.

The statistics are then averaged on a per input message basis.
This information should present a transaction profile. ie: what
happens (on the average) every time someone presses XMIT.

Example:

T I P I 3 0 S T A T U S R E P 0 R T
--

T 0 T A L S

INPUT MESSAGES
OUTPUT MESSAGES
PROGRAM LOAD REQUESTS
ACTUAL LIBRARY LOADS
M.C.S. FORMAT REQUESTS
M.C.S. FORMAT FILE I/0
CATALOG REQUESTS
CATALOG FILE I/0
SWAP FILE I/O'S (TIP$SWAP)
DYNAMIC FILE I/O'S (TIP$RNDM)
ALL TASKS WERE BUSY
OF WAITING TERMINALS 5
OF WAITING TERMINALS 10
OF WAITING TERMINALS 15
DATA BASE OPENS FOR
DATA BASE I/O'S.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY TIP/30 STATISTICS

SINCE
82/06/04

12:22
92

449
88
10

4
2

382
196
248
253

0
0
0
0

0
0

SINCE
82/06/04

13:00
57

109
53

3
2
1

192
109
81

251
0

0

0
0

Page: 1
3.50.7 Section:

STATUS: s

Page:
Section:

- P E R I N P U T M E S S A G E -
--RESPONSE TIME
TRANSACTION SCHEDULING TIME
INPUT NOTIFICATION TIME (ICAM)
CPU TIME USED
SUPERVISOR CALLS (SVC)
TRANSIENT CALLS
EXCP'S
PROGRAM LOAD REQUESTS
M.C.S. FORMAT REQUESTS
M.C.S. FORMAT FILE I/0
CATALOG REQUESTS
CATALOG FILE I/0
SWAP FILE I/O'S (TIP$SWAP)
DYNAMIC FILE I/O'S (TIP$RNDM)
INPUT MESSAGE LENGTH .
OUTPUT MESSAGE LENGTH
LIBRARY FILE: RECORDS READ
LIBRARY FILE: RECORDS WRITTEN
DATA FILE: RECORDS READ
DATA FILE: RECORDS WRITTEN

2
3.50.7

GENERAL STATISTICS

0.834
0.531
0.447
1. 080

405.2
9.8

133.3
0.9
0.0
0.0
4. 1
2. 1
2.6
2.7

51. 4
72.9
5.6
0.3

1 1. 5
0.5

0.772
0.500
0.458

0.9
0.0
0.0
3.3
1 . 9
1. 4
4.4

76.6
194.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

STATUS: T
TERMINAL USAGE

3.50.8 TERMINAL USAGE STATUS: t

Display number of input and output messages for each terminal.

Example:

Where:

T I P I 3 0 T E R M I N A L S T A T I S T I C S
TERMINAL SESSION: INPUT OUT PUT TODAY: INPUT OUT PUT
-------- ---------------------- ---------------------------- ---------------------- --------------------

T312
T313
ARC1
ARC2
TRM1

TERMINAL

44
13

0
0
0

89
20

0
0
0

is the ICAM terminal name.

44
38

0
21

0

90
251

1
122

0

SESSION: INPUT number of input messages since the current user
logged on.

OUTPUT number of output messages since the current user
logged on.

TODAY: INPUT

OUTPUT

number of input
initialization.

number of output
initialization •

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY TIP/30 STATISTICS

messages

messages

since

since

Page:
Section:

TIP/30

TIP/30

1
3.50.8

STOP
IMMEDIATE TIP/30 SHUTDOWN

3.51 IMMEDIATE TIP/30 SHUTDOWN STOP

This command will cause TIP/30 to shut down immediately. It will
not wait for all users to log off.

Syntax:

STOP

Where:
No parameters required.

Example:

STOP

Error Conditions:
None.

Additional Considerations:

The system SHUTDOWN program will NOT be scheduled.

Under normal operating conditions, this command should only be
issued after an "EOJ" command has been entered. "EOJ" is the
preferred method of shutdown. Under certain conditions, a "STOP"
command may be necessary to force off users that are running
programs that do not recognize system shutdown requested.

Page:
Section:

1
3.51

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SYM
SCHEDULE OS/3 SYMBIONT

3.52 SCHEDULE OS/3 SYMBIONT SYM

SYM is a utility program which interfaces with the OS/3 symbiont
scheduler. It allows the user to submit requests to run symbionts
in the same manner as the OS/3 console operator. Common commands
include RV (run a program) PR (start an output writer) HO (hold an
OS/3 queue) etc. An informational message is sent to the OS/3
operator console whenever a symbiont is scheduled by SYM. The
message informs the operator that a symbiont command was issued and
also shows the user name and terminal name of the submitter.

The SYM program may be run interactively or may be given a
single command on the command line. If SYM is run interactively the
user will be prompted for each command~ if a command is provided on
the command line SYM will attempt to execute that command and then
terminate normally.

If the SYM program detects that it has been called via a
transaction name other than "SYM" then it will assume that the
transaction name is the desired command and will also assume that
the parameters on the command line are associated with the
transaction name. This composite command will be attempted and then
SYM will terminate normally.

Syntax:

command parameters

Where:

command

parameters

The two character name of the desired symbiont.
The following symbiont names are supported:

BE CA CH DE Dl ... D9 HO PD PR PU RB RU RV.

Ref er to OS/3 console operator documentation for
details concerning the use of these commands. Also
recognized are: "End" or any function key (end the
SYM program) "Quit" (end the SYM program and
logoff).

The appropriate parameters for the requested
symbiont.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SCHEDULE OS/3 SYMBIONT

Page:
Section:

1
3.52

SYM
SCHEDULE OS/3 SYMBIONT

Example:

PR BX,JOB=TIP30

This example would start a burst mode output writer to
print any print spool files with a job name of "TIP30".

Additional Considerations:

The SYM program may be called from TIP/30 native mode programs [via
the TIPSUB linkage mechanism (see TIP/30 PROGRAM MANAGEMENT
ROUTINES)].

When invoked in this manner SYM expects the command and parameters
in free format in the text area of the CDA (bytes 73 through 152).

If an error is detected, byte 73 of the CDA will be set to X'FF'
otherwise byte 73 of the CDA will not be altered. This facility is
extremely useful for submitting OS/3 commands from an on-line
program.

SYM allows the user to invoke the cancel symbiont (CA) but will not
allow any attempt to cancel the currently executing TIP30 job or
any ICAM symbiont.

The distributed version of TIP/30 includes catalogue entries for a
number of transactions that are in fact quick ways of calling SYM
to perform a single function. For example, there is a transaction
named "RV" which references the SYM load module. The existence of
this transaction means that the "RV" transaction can have a low
enough security to enable programmers to use it, but that the more
powerful SYM transaction could have a higher security level and
thus be unavailable to programmers. It is through this technique
that the use of individual symbionts may be restricted.

Page:
Section:

2
3.52

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
SYS

SYSTEM STATUS

3.53 SYSTEM STATUS SYS

SYS is a utility program which displays the current status of
batch jobs in the OS/3 environment.

Syntax:

SYS opt

Where:

opt

A

End

J

Quit

is one of the item discussed below.

Similiar to "J" (see below} except that syrnbionts
and shared code modules will also be listed.

End the SYS program normally.

Produces a list of the jobs which are currently
running in batch. It details the decimal memory
size, program, job step, job number, CPU seconds
elapsed, base key priority and free memory
regions.

End the SYS program normally and logoff TIP/30.

W At 20 second intervals execute the "J" function.

WA At 20 second intervals execute the "A" function.

Wait 'jobname'

Example:

SYS J
.SYS W COB74

Iteratively produces a list of the jobs which are
currently running in batch until the job you have
named starts and subsequently terminates.

display OS/3 job information
start background program to monitor
progress of job named "COB74".

Additional Considerations:

If SYS is run as a background program with the WAIT function (ie
.SYS W jobname}, then it will notify the initiating user with an
unsolicited message when 'jobname' has started and when 'jobname'
has terminated.

CHAPTER III - ON-LINE UTILITY PROGRAMS
SYSTEM STATUS

Page:
Section:

1
3.53

- -------------------------~

SYS
SYSTEM STATUS

This allows the user to continue with other interactive activities
SYS monitors the batch job asynchronously in the background.

When SYS is running in continuous display mode, press MSG-WAIT to
interrupt the display.

If SYS is entered with no command then it will produce the 'Jobs'
display and prompt you for another command.

Page:
Section:

2
3.53

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TCB
TASK CONTROL BLOCK DISPLAY

3.54 TASK CONTROL BLOCK DISPLAY TCB

The transaction 'TCB' is a utility program which displays task
control blocks that are attached to the OS/3 switch list. The
program details job name, memory region in hex, size in hex, type,
program executing, CPU time, account number, protect key, switch
list and scheduling priority.

Priority numbers displayed are the actual displacement from the
head of the switch list; hence the first user priority is 4. For
transients and the supervisor overlay area (SOA), the number
displayed in the account field is actually the transient, or SOA
overlay ID. and the name in the program field is the overlay name.

Syntax:

TCB [wait]

Where:

wait Will instruct
display (at 20
information.

the TCB program
second intervals)

to continuously
the OS/3 TCB

If wait is not specified, the TCB program
display the current OS/3 TCB information
terminate normally.

will
and

CHAPTER III - ON-LINE UTILITY PROGRAMS
TASK CONTROL BLOCK DISPLAY

Page:
Section:

1
3.54

TIPFLG
TIP FLAG MANIPULATION

3.55 TIP FLAG MANIPULATION TIPFLG

The TIP/30 system has 32 flag bits that are accessible by all
on-line programs. The 32 flag bits may be considered to be roughly
analagous to the OS/3 job control UPSI bytes.

The utility program TIPFLG is provided as a transaction to
interrogate or change the setting of any of the flag bits.

The flag bits may also be manipulated by an on-line native mode
program (see section on the Program Control System), or by the
console operator.

Before using this transaction in a cavalier fashion, the user is
advised to check with the installation administrator. Some of the
32 bits may be used for specific scheduling purposes and should not
be modified without careful consideration.

Syntax:

Where:

Page:
Section:

command [, bi t 1 , bi t 2 , bi t 3 , bi t 4 , bi t 5 , bi t 6 , bi t 7]

command

bitl-7

1
3.55

The TIPFLG command chosen from the following list:

"WANYS" - wait for specified bits to be on

"WALLS" - wait for all to be on

"WSETC" - wait for specified bits to be on then
set them off

"WANYC" - wait for specified bits to be off

"WCLRS" wait for specified bits to be off then
set them on

"SET " - set specified bits on

"CLEAR" - set specified bits off

"FLAGS" - display current flag bit status

Optional parameters where the user may specify up
to 7 bits that are to be acted upon by the
specified command.

Bits are numbered 0 through 31.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

e
TIP FLAG MANIPULATION

TIPFLG

Example:

TI PF LG FLAGS display current bits status

TI PF LG CLEAR 0' 1'2 turn of bi ts 0, 1, and 2

TI PF LG WANYS wait for any bit to be set

Additional Considerations:

The TIPFLG program is NOT an interactive program. The required
parameters are entered on the command line.

CHAPTER III - ON-LINE UTILITY PROGRAMS
TIP FLAG MANIPULATION

Page:
Section:

2
3.55

TLIB
ON-LINE LIBRARIAN

3.56 ON-LINE LIBRARIAN TLIB

TLIB is a
facilities. The
buffers, and
printer).

utility program that provides on-line librarian
user may manipulate OS/3 library elements, QED edit
terminal auxiliary devices (cassette, diskette,

TLIB will not create an edit buffer - but it will allow the user
to specify an edit buffer as an input. TLIB will manipulate library
elements that are type source (S) or macro (M) or proc (P); object
modules and load modules may NOT be accessed via TLIB.

For certain commands, TLIB recognizes two pseudo types:
directory "D" and fast directory "F". Directory implies the library
header information including module name, module type, comments,
date and time stamp (similar to a LIBS table of contents listing)
whereas fast directory implies just the module name and module
type.

Page:
Section:

TLIB recognizes the. following commands:

BACK

COPY

DELETE

END

HELP

JOB

LIST

PRINT

PUNCH

QUIT

1
3.56

- re-activate the previous version of an element

- copy an element or edit buffer to an element

- delete a library element

- end TLIB interaction

- display help information on terminal

- submit an element or edit buffer to the
remote batch reader queue

- list (on the terminal) an element or edit buffer

- print a listing of an element or edit buffer

- punch an element or edit buffer

- end TLIB interaction and logoff

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TLIB
ON-LINE LIBRARIAN

TLIB may be used interactively or may be given a single command
on the command line. If a single command is given on the command
line TLIB will attempt only that command and terminate. When used
interactively, TLIB will prompt the user for each command.

If TLIB detects that it has been called with a transaction name
other than "TLIB", it will assume that the transaction code IS the
command and not treat the first parameter as a command.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

Page:
Section:

2
3.56

TLIB: BACK
RE-ACTIVATE PREVIOUS VERSION

3.56.1 RE-ACTIVATE PREVIOUS VERSION TLIB: back

When an element of an OS/3 library is deleted, the module is not
physically removed - the index entry for it is merely marked as
logically deleted. The BACK command simply marks the currently
active element as removed and finds the previous version and
re-activates its directory entry. Elements that are marked as
logically deleted are physically removed during a library pack
operation. The BACK command may be issued several times in
succession to go back a number of versions (if they still exist).
If there is not a current active version of an element (for
example, the user inadvertently deleted an element) then the user
must first create a (dummy) current version before using a BACK
command.

Syntax:

Where:

Back file.element [,type]

file the catalogued logical file name of the OS/3
library

element the name of the desired element

type the type of the element (Source, Macro or Proc)
default S

Example:

BACK JCS/MY JOB

Wi 11 delete the current active element named "MYJOB" in
the library "JCS" and re-activate the most recent previous
version of that element.

Error Conditions:
The specified element may not currently exist or the file name may
be invalid or it may not be possible to locate a "previous" version
of the element.

Page:
Section:

1
3.56.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TLIB: COPY
COPY ELEMENT

3.56.2 COPY ELEMENT TLIB: copy

This command will copy an existing library element or edit
buffer to a specified output library element or auxiliary device.
The number of lines copied is reported upon completion of the copy
command.

Syntax:

Where:

Copy f i 1 e [, e 1 t J [, type J , out - f i 1 e [, out -e 1 t J [, out - type J

file the catalogued
library file or
device.

logical file name of the input
edit buffer name or auxiliary

elt the input element name (not required if an edit
buffer)

type

out-file

out-elt

out-type

the type of input element [default is source (S)]~
must be "E" for edit buff er

the catalogued logical file name of the output
library file or an auxiliary device id (eg: AUX3
etc)

the name of the output element (default is same as
the input element name)

the output element type (default is same as input
type)

Example:

COPY JCS/TIP30, ,TEST/TIP30BAK

This example illustrates copying the jcl for TIP/30 from
the system YJCS library (assumed to be catalogued with
a logical file name of "JCS") to a test 1 ibrary under the
name "TIP30BAK".

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

Page:
Section:

1
3.56.2

TL IB: COPY
COPY ELEMENT

Example:

COPY JCS/TIP30, ,AUX3

This example illustrates copying the jcl for TIP/30 to
the issuing terminal AUX3 device (presumably a cassette
or diskette style device).

Error Conditions:
The input file/element or edit buffer may not be found or the
output file may not be available for use.

Additional Considerations:

Note that the output "file" may be an auxiliary device or may be an
OS/3 queue such as "RDR" "RDR96" or "RBPIN". If the output file is
specified as one of these queues, the output element name is taken
as the LBL name of the queue element that is created. It is not
possible to specify the same OS/3 library as both input and output.

Page:
Section:

2
3.56.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TLIB: DELETE
DELETE ELEMENT

3.56.3 DELETE ELEMENT TLIB: delete

This command will delete an element from an OS/3 library. The
element is marked "deleted" in the directory of the library: it is
not physically removed from the file until such time as a pack
operation is performed by the batch OS/3 librarian (LIBS). TLIB
does not provide a facility for deleting edit buffers.

Syntax:

Where:

DELete file,element [,type]

file the catalogued logical file name of the OS/3
library

element the name of the element to be deleted

type the type of the selected element [default is
source ("S")]

Example:

DELETE JCS/MYJOB

W i l l de l e t e e l eme n t 11 MY JOB 11 f r om l i bra r y 11 JC s 11

•

Error Conditions:
The specified element may not exist or the file cannot be accessed.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

Page:
Section:

1
3.56.3

TLIB: END
END TLIB PROGRAM

3.56.4 END TLIB PROGRAM TLIB: end

This command will cause TLIB to terminate normally.

Syntax:

End

Where:
No parameters required.

Error Conditions:
None.

Page:
Section:

1
3.56.4

TIP/30 Reference Manual.
Version 2.5 (82/08/01)

•

TLIB: HELP
DISPLAY HELP INFORMATION

3.56.5 DISPLAY HELP INFORMATION TLIB: help

This command will summarize the commands that are recognized by
TLIB and the required parameter syntax.

Syntax:

Help

Where:
No parameters required.

Error Conditions:
The help information may be unavailable .

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

Page:
Section:

1
3.56.5

TLIB: JOB
SUBMIT REMOTE BATCH JOB

3.56.6 SUBMIT REMOTE BATCH JOB TLIB: job

This command will submit a library element or edit buffer to the
remote batch reader queue. This command should only. be issued if
the OS/3 supervisor has been generated with support for remote
spooling. If such is not the case, unpredictable results may occur
(including the possibility of an unrecoverable HPR). After the
element or edit buffer has been written in the remote batch reader
queue TLIB will automatically call the "RB" symbiont to start the
remote reader.

Syntax:

Where:

Job file [,element] [,type]

file

element

type

the catalogued logical file name of the library or
the name of an edit buffer

the name of a library element [not required if
type is specified as edit buffer ("E")]

the type of input [default is source ("S")]

Example:

J RUN/QUIKJOB,s

Will submit a source element named "QUIKJOB" from
library "RUN" to the remote batch reader and invoke
the RB symbiont to process it.

Error Conditions:
The named element or edit buffer may not exist or the file cannot
be accessed or the type may be invalid.

Page:
Section:

1
3.56.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TLIB: LIST
LIST ELEMENT ON TERMINAL

3.56.7 LIST ELEMENT ON TERMINAL TLIB: list

This command will list a library element or edit buffer at the
terminal. The listing will be produced in "burst" mode; that is, it
will continue as quickly as possible until completed or until the
user presses the MSG WAIT key. If the user presses MSG WAIT, he
will be notified that the listing has been halted and asked whether
or not to continue listing. All 80 "columns" of the element or edit
buffer will be displayed on the terminal.

Syntax:

L i st f i le [, element] [, type l

Where:

file

element

type

Example:

LIST JCS,,D

the catalogued logical file name of a library or
the name of an edit buffer.

the name of an element in the library {may be
omitted ·if type is specified as Edit buffer or
Directory or Fast Directory).

the type of input [default is source {"S")]; other
choices include directory ("D") or fast directory
("F") of a library.

Will list the directory of the file catalogued with logical
f i l e name " JCS " .

Error Conditions:
The named element may not exist or the file cannot be ac~essed or
the type may be incorrect.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

Page:
Section:

1
3.56.7

TLIB: PRINT
PRINT HARD COPY LISTING

3.56.8 PRINT HARD COPY LISTING TLIB: print

This command will create a hard copy printout of a library
element or edit buffer or library directory at the site printer or
an auxiliary print device. TLIB is aware of the declared format of
a library element (ie: COBOL or Assembler or RPG etc) and will
recognize COBOL page skip statements (a "/" in column 7) and
assembler eject statements and the like and produce a printout that
is somewhat more presentable than a simple list of the lines.
Unless TLIB is advised otherwise, print files sent ot the site
printer are preceded by a separator page to facilitate
identification of the printout. Each TLIB print request to the site
printer is breakpointed by TIP and may be printed by starting a
burst mode output writer (ie: OS/3 operator command
"PR BX,JOB=TIP30").

Syntax:

Where:

Page:
Section:

Print file [,element] [,type] [,printer] [,header] [,easel

file

element

type

printer

the catalogued logical file name of the library or
the name of an edit buffer

the name of a library element (must be omitted if
type is edit buffer or directory or fast
directory)

the type of input [default is source ("S")]

the destination printer [default is
printer (PRNTR)] other possibilities
example) AUXl or AUXl*BYP etc.

the site
are (for

header YES/NO choice of a header (separator) page.
Default is "N" if the destination is an AUX
printer, otherwise default is "Y".

case the choice of upper or lower case printing .
. Default is upper case ("U") if printer is the site
printer otherwise default is lower case ("L").

1
3.56.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TLIB: PRINT
PRINT HARD COPY LISTING

Example:
7. ->-·-.

PR jcs/tip30, ,aux1,n,U
-.,

Will print source element named "TIP30" from the library
with catalogued logical file name "JCS" on the terminal
auxiliary printer without a separator page (too noisy!)
and with all alphabetic characters translated to upper case.

Error Conditions:
The specified element or edit buffer was not found or the file
could not be accessed or the type is invalid.

-Jr c_ !
--- .._; } ; l

I I -

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

J -·~

Page:
Section:

2
3.56.8

TLIB: PUNCH
PUNCH ELEMENT

3.56.9 PUNCH ELEMENT TLIB: punch

This command will create a PUNCH file from a library element or
edit buffer or library directory at the site punch.

Syntax:

Where:

PUnch file [,element] [,type] [,punch]

file the catalogued logical file name of the library or
the name of an edit buffer

element the name of a library element (must be omitted if
type is edit buffer or directory or fast
directory)

type the type of input [default is source ("S")]

punch the destination punch [default is the site punch
(PUNCH)].

Example:

PUN jcs/tip30

Will punch source element named "TIP30" from the library
with catalogued logical file name "JCS" to the site punch.

Error Conditions:
The specified element or edit buffer was not found or the file
could not be accessed or the type is invalid.

Page:
Section:

1
3.56.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TLIB: QUIT
QUIT TLIB PROGRAM

3.56.10 QUIT TLIB PROGRAM TLIB: quit

This command will cause the TLIB program to discontinue
prompting the user for more commands and will terminate the TLIB
program normally. If the TLIB program was executing at stack level
one (ie: TLIB was NOT called by another program) the user will be
logged off the TIP/30 system.

Syntax:

Quit

Where:
No parameters required.

Error Conditions:
None.

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON-LINE LIBRARIAN

Page: 1
Section: 3.56.10

UTSASM
ON-LINE 8080 CROSS ASSEMBLER

3.57 ON-LINE 8080 CROSS ASSEMBLER UT SA SM

UTSASM is an assembler that accepts the the INTEL 8080 assembler
language as input. The UNIVAC MAC80 language is the same with the
exception that macros have not yet been implemented in UTSASM.

The COPY psuedo-op has been added to enable the programmer to
include other source modules.

The format of the 'COPY' statement follows:

COPY FILE/ELT

The program will prompt you for the input source file name and
the output object file name; if no object file name is given then
none is produced. The assembly listing is spooled out to the PRNTR
file.

Note:

Page:
Section:

To use the online 8080 cross assembler, you must specify
a maximum program size of at least 32000 in the TIP/30
generation (ie: MAXPROG=32000).

1
3.57

TIP/30 Reference Manual
Version 2.5 (82/08/01)

VTOC
DISK VOLUME TABLE OF CONTENTS

3.58 DISK VOLUME TABLE OF CONTENTS VTOC

VTOC is a utility program that will display the volume table of
contents of a disk. The selected disk must be one that is assigned
to TIP/30 via job control; that is, the VTOC program cannot access
any physical disk that is not allocated to the TIP/30 job. VTOC
will also compute the available free space on a volume and indicate
the size of the largest contiguous free area.

VTOC recognizes the following commands:

Display
End
Free
Help
List
Print
Quit
Sort
Volumes
Write

display detailed file information
end VTOC program
display available free space
display command help information
list files on volume
print vtoc listing
end VTOC program and logof f
display command (sorted by filename)
display volumes allocated to TIP/30 job
create library element of JCL statements

The VTOC program may be used interactively or may be given a single·
command on the command line. If used interactively, VTOC will
prompt the user for each command. If a single command is entered on
the command line, VTOC will attempt that command and then terminate
normally.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page:
Section:

1
3.58

VTOC: DISPLAY
DISPLAY FILE INFORMATION

3.58.1 DISPLAY FILE INFORMATION VTOC: display

This command will display (on the terminal) detailed information
about selected files. The information includes record count,
allocation, file type etc.

Syntax:

Display

Where:

volume

pref ix

volume [,pref ix]

the volume serial number of the selected disk (six
characters).

optional prefix of file names to select. If
omitted all filenames will qualify.

Example:

D ARCRES, ! Y

Will display the files on the volume "ARCRES" that have
a filename that does NOT begin with "Y".

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job or there may not be any files found matching the
specified file name pref ix.

Page:
Section:

1
3.58.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

VTOC: END
END VTOC PROGRAM

3.58.2 END VTOC PROGRAM VTOC: end

This conunand will end interaction with the VTOC program and
terminate the VTOC program normally.

Syntax:

End

Where:
no parameters required.

Example:

E

Error Conditions:
no error conditions known.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page:
Section:

1
3.58.2

VTOC: FREE
FREE SPACE ON VOLUME

3.58.3 FREE SPACE ON VOLUME VTOC: free

This command will display (on the terminal) the free space
available on a disk volume. The total free space and the size of
the largest available contiguous area is given.

Syntax:

Where:

Free volume

volume the volume serial number of the desired disk. (six
characters).

Example:

F ARCRES
Will display the disk type of disk volume "ARCRES",
the total available free space on the volume,
and also display the size of the largest available
contiguous area.

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job.

Page:
Section:

1
3.58.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DISPLAY HELP INFORMATION
VTOC: HELP

3.58.4 DISPLAY HELP INFORMATION VTOC: help

This command will display (on the terminal) help information
which will summarize the command syntax recognized by the VTOC
program.

Syntax:

Help

Where:
no parameters required.

Example:

HELP

Error Conditions:
No known error conditions.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page:
Section:

1
3.58.4

VTOC: LIST
LIST FILES ON VOLUME

3.58.5 LIST FILES ON VOLUME VTOC: list

The list command displays (on the terminal) a summary of
information about the files on a selected disk. The information
includes the LBL name of the file, the file organization, the block
size and record size, the number of records etc. All files on a
volume may be selected or a pref ix may be given to select files by
a 1 to 7 character pref ix.

Syntax:

Where:

List volume [,prefix]

volume

pref ix

the volume serial number of the selected disk.
{six characters).

optional pref ix to select file names. If omitted,
all file names will qualify.

Example:

L ARCRES,*SG$

Wi 11 list information about files with names beginning with
the prefix 11 SG$" from the volume "ARCRES 11

•

Error Conditions:
The specified volume may not
the TIP/30 job or there may
specified pref ix.

Page:
Section:

1
3.58.5

be mounted or may not be allocated to
not be any files that match the

TIP/30 Reference Manual
Version 2.5 (82/08/01)

VTOC: PRINT
PRINT VTOC

3.58.6 PRINT VTOC VTOC: print

This command will produce a printed VTOC listing. The VTOC
information printed is similar to the information given by the LIST
command, but the output may be directed to the site printer or a
terminal auxiliary printer.

Syntax:

Where:

Print volume [,prefix l [,printer]

volume

pref ix

printer

the volume serial number of the selected disk (six
characters).

optional file name pref ix to select filenames by a
1 to 7 character pref ix. If omitted, all files
will qualify.

name of the printer to receive the output. Default
is the site printer (PRNTR); other possibilities
include: "AUXl" or "AUXl*BYP" etc.

Example:

PR ARCSPL, ,AUX1

Will produce a VTOC listing on the executing terminal
auxiliary printer of all files on the volume "ARCSPL".

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job. The specified printer may not be available or no
files exist which match the pref ix specification.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page:
Section:

1
3.58.6

VTOC: QUIT
END VTOC PROGRAM AND LOGOFF

3.58.7 END VTOC PROGRAM AND LOGOFF VTOC: quit

This command will end interaction with the VTOC program and, if
the VTOC program is being executed at stack level one (ie: VTOC was
NOT called by another program) the user will be logged off the
TIP/30 system.

Syntax:

Quit

Where:
no parameters required.

Example:

Q

Error Conditions:
No error conditions known.

Page:
Section:

1
3.58.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

VTOC: SORT
SORTED VTOC DISPLAY

3.58.8 SORTED VTOC DISPLAY VTOC: sort

This command will produce the same output as the "Display"
command in sequence by file name.

Syntax:

Where:

Sort volume [,prefix]

volume

pref ix

the volume serial number of the selected disk.
(six characters).

optional file name pref ix. If omitted, all file
names on the selected disk will qualify.

Example:

Error
The
the
the

S ARCRUN, !YRUN

Will produce (at the terminal) a display of VTOC information
in file name sequence of all files on disk "ARCRUN" that do
NOT begin with the prefix "YRUN".

Conditions:
specified volume may not be mounted or may not be allocated to

TIP/30 job. There may not be any files on the volume that match
specified pref ix.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page:
Section:

1
3.58.8

VTOC: VOLUMES

3.58.9 LIST VOLUMES

This command will
system. The display is
operator command "MI
the device address, and
JCL) to the TIP/30 job.

Syntax:

Volume

Where:
no parameters required.

Example:

v

LIST VOLUMES

VTOC: volumes

list the volumes currently mounted on the
similar to the display generated by the OS/3

VI". The display will show the volume name,
whether or not the volume is allocated (via

Will display the volumes currently mounted on the OS/3
system.

Error Conditions:
No known error conditions.

Page:
Section:

1
3.58.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

91

VTOC: WRITE
CREATE JCL FOR FILES ON VOLUME

3.58.10 CREATE JCL FOR FILES ON VOLUME VTOC: write

This command will create an OS/3 library element containing the
JCL corresponding to the files selected on a disk volume. The
element created will have an element name the same as the volume
name and will be written to the TIP/30 YRUN library (catalogued
logical file name "RUN"). The JCL written for each file includes
DVC, VOL, EXT, LBL, SCR, and LFD statements. Once this element has
been created, the user may use the TIP/30 editor (QED) to edit the
JCL to suit his requirements. This process is very useful for
creating backup/restore job control streams or for creating a job
control stream to catalogue (in the OS/3 catalogue) selected files
on a selected disk volume.

Syntax:

Where:

Write volume [,pref ix]

volume

pref ix

the volume serial number of the selected disk.
(six characters)

optional file name prefix to select files on the
disk by pref ix. If omitted, all files on the
volume specified will qualify.

Example:

WR ARCRES, !Y

W i 1 l create RUN/ ARCRES (e 1 emen t 11 ARCRES 11 in 1 i brary 11 RUN 11
)

containing job control statements for all files on that
volume that do not have a filename beginning with the
prefix 11 Y 11

•

Error Conditions:
The specified volume
job or there may
filenames that match

may not be mounted or allocated to the TIP/30
not be any files on the volume which have
the specified prefix.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page: 1
Section: 3.58.10

WHOSON
DISPLAY ACTIVE USERS

3.59 DISPLAY ACTIVE USERS WHO SON

The WHOSON utility displays on the terminal a list of active
TIP/30 terminals and associated information.

Syntax:

Where:

WHOSON/[qual]

qual An optional qualifier. The qualifier may be one
of: a terminal name, user-id, or active file name.
The qualifier may also follow standard prefix
nota~ion (ie. *AR).

If the qualifier is omitted then a list of all
active terminals is produced.

Example:

User-Id

GEORGE
MARY

Where:

Page:
Section:

WHOSON/*TRM

Terminal

TRM1
TRM2

User-id

Terminal

Program

1
3.59

Program Lvl In Out Resp Uns
-------- ------ ------ -------------- --- ------ ------ ------ ---
WHO SON 3 7 16 .852 0
VTOC 1 12 17 .652 1

is the user currently using the terminal.

If an asterisk ("*")
terminal is in use
(LOGON=NO) .

precedes
without

the user-id, the
a user logged on

Is the terminal name. This may be followed by
'/DN' if the terminal is marked down by ICAM.

is the transaction code of the program currently
running on that terminal.

If preceded by an asterisk ("*") the program is
currently not in memory (swapped out).

TIP/30 Reference Manual
Version 2.5 {82/08/01)

WHOSON
DISPLAY ACTIVE USERS

Lvl is the program execution stack level.

In is the number of input messages since logon.

Out is the number of output messages since logon.

Resp average response time (seconds) observed at that
terminal.

CPU CPU time (seconds) consumed at that terminal.

Uns

Error Conditions:
None.

(Not available on release 7 and above).

number of
waiting.

outstanding unsolicited

Additional Considerations:

messages

All columns are displayed for master level users. Other users
receive a truncated display.

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISPLAY ACTIVE USERS

Page:
Section:

2
3.59

WMI
DISPLAY USER INFORMATION

3.60 DISPLAY USER INFORMATION WMI

The WM! (who am I?) program displays information on the terminal
showing the user-id of the user logged on the terminal, the
terminal name (as defined to the system), the current date and
time, the version of both TIP/30 and OS/3 that is in use, and the
features of TIP/30 that are configured.

The WM! program requires no parameters. The user need only enter
the transaction code ("WMI").

Example:
The following is sample output:

Page:
Section:

He 11 o GEORGE on terminal T313 at site ABC-CORP

Date: 82/06/18 Time: 14:13:39 TIP/30 Version: 2.5
ICAM network: NET1 OS/3: 7.1.0

Attributes: SYSTEM/SO COM DBMS OPEN OMS

1
3.60

TIP/30 Reference Manual
Version 2.5 (82/08/01)

-----------------------------~·-------

--------------------- TTTTTTTTTTT --
--------------------- TTTTTTTTTTT --
------------------------- TTT --------
------------------------- TTT --------
------------------------- TTT --------
------------------------- TTT --------
------------------------- TTT --------
------------------------- TTT ------
------------------------- TTT ------

I I I I I I I
IIIIIII

III
I I I
I I I
I I I
I I I

I I I I II I
I II I II I

ppppppppp
pppppppppp
PPPP PPP
PPPP PPP
pppppppppp
ppppppppp
PPP
PPP
PPP

---------------------- 333333333333333 -------- 000000
---------------------- 33333333333333 ------- 0000000000
---------------------- 3333333333333 ------- 000000000000
---------------------- 3333333 ------- 00000 00000
-------------------------- 3333333 ------- 000000 000000
------------------------- 3333333 -------- 000000 000000
------------------------ 333333333 ------- 000000 000000
----------------------- 333333333333 ------ 000000 000000
---------------------- 33333333 000000 000000
------------------------------ 3333333 000000 000000
------------------------------ 3333333 000000 000000
--------------------- 333 33333333 000000 000000
--------------------- 333333333333333 ----- 00000000000000
--------------------- 3333333333333 --------- 00000000000
----------------------- 333333333 ------------ 00000000

TQL REFERENCE MANUAL

VERSION 2.5Rl (83/06/01)

TD$TQL

A Product of:

Allinson-Ross Corporation
First Rexdale Place,
155 Rexdale Boulevard, Suite 906
REXDALE, Ontario
Canada M9W SZ8
TEL: (416) 746-3388
TWX: (610) 491-1772

*** tit
** **
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

A
A A

AAAAA
A A
A A

RRRR
R R
RRRR
R R
R R

CCC
c
c
c

CCC

L
L
L
L
LLLLL

000
0 0
0 0
0 0

000

000
0 0
0 0
0 0

000

L
L
L
L
LLLLL

ssss
s

SSS
s

ssss
pp pp
p p
pp pp
p
p

II II I
I
I
I

II I I I

ssss
s

SSS
s

ssss
y y

y y
y
y
y

N N
NN N
N N N
N NN
N N

CCC
c
c
c

CCC

ssss
s

SSS
s

ssss

000
0 0
0 0
0 0

N N
NN N
N N N
N NN
N N

000
0 0
0 0
0 0

000

000

RRRR
R R
RRRR
R R
R R

pp pp
p p
pp pp
p
p

=====

RRRR
R R
RRRR
R R

I II I I
I

GGG
G G
G

H H
H H
HHHHH
H H
H H

TTTTT
T

I
I

R R I I I I I
G GG

GGGG

T
T
T

**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

** (C) 1975,1976,1977,1978,1979,1980,1981,1982 **
** Allinson-Ross Corporation reserves the right to modify or revise **
** the content of this document. Except where a Software Usage **
** Agreement has been executed, no contractual obligation between **
** Allinson-Ross Corporation and the recipient is either expressed **
** or implied. It is agreed and understood that the information con- **
** tained herein is proprietary and confidential and that the recip- **
** ient shall take all necessary precautions to ensure the conf iden- **
** tiality thereof. This document, in whole or in part, may not be **
** copied or transmitted, in any form or by any means, electronic, **
** mechanical, photocopying, or otherwise, without the prior written **
** permission of: **
**
**
**
**
**
**
**

Allinson-Ross Corporation,
155 Rexdale Blvd, Suite 906,
Rexdale, Ontario,
Canada M9W 5Z8
Tel: (416) 746-3388

**
**
**
**
**
**
**

**
**

THIS DOCUMENT WAS PRODUCED USING THE
ALLINSON-ROSS CORPORATION DOCUMENT GENERATOR.

**
**

CHAPTER I - INTRODUCTION

• 1. CHAPTER I - INTRODUCTION

•

1.1 PREFACE

This document is the reference manual for TIP/30 (Transaction
Interface Processor), a software product developed by Allinson-Ross
Corporation.

The names TIP and TIP/30 are used interchangeably in this
manual.

Please direct any inquiries or requests for further information
to:

Allinson-Ross Corporation
First Rexdale Place
155 Rexdale Blvd., Suite 906
Rexdale, Ontario
Canada M9W 5Z8
Tel. (416) 746-3388
TWX. (610) 491-1772

CHAPTER I - INTRODUCTION
PREFACE

Page:
Section:

1
1.1

r 1 •

•

L....

--~----==--

TABLE OF CONTENTS

tit 1.2 TABLE OF CONTENTS

1. CHAPTER I - INTRODUCTION
1.1 PREFACE
1.2 TABLE OF CONTENTS
1.3 THE TIP/30 QUERY LANGUAGE
1.3.1 TQL EXPRESSIONS
1.3.2 FILE DEFINITION
1.3.3 RECORD DEFINITION

- 1 -

1.3.4 ALLOWING RECORDS/FIELDS TO CHANGE
1.3.5 FIELDS WHICH MUST BE ADDED
1.3.6 RECORD SELECTION
1.3.7 FIE~D VERIFICATION
1.3.8 SYSTEM FIELDS
1.3.9 TQL PROGRAM STRUCTURE
1.3.10 IDENTIFICATION DIVISION
1.3.11 DATA DIVISION
1.3.12 WORKING STORAGE SECTION
1.3.13 DECLARATIVES SECTION
1.3.14 DISPLAY DIVISION
1.3.15 REPORT DIVISION
1.4 MAINTAINING THE TQL DICTIONARY
1.4.1 COMPILE FILE/RECORD
1.4.2 COMPILE PROGRAM
1.4.3 DELETE FILE/RECORD
1.4.4 DELETE PROGRAM
1.4.5 END TQLMON PROGRAM
1.4.6 DISPLAY HELP INFORMATION
1.4.7 LIST FILE/RECORD
1.4.8 LIST PROGRAM
1.4.9 CREATE SCREEN FORMATS
1.4.10 DEFINE NEW RECORD
1.4.11 DEFINE NEW FILE
1.4.12 DEFINE NEW PROGRAM
1.4.13 PRINT FILE/RECORD
1.4.14 PRINT PROGRAM
1.4.15 PURGE PROTOTYPE FILE
1.4.16 EDIT RECORD DEFINITION
1.4.17 EDIT TQL PROGRAM
1.4.18 RUN PROGRAM
1.4.19 SUMMARIZE FILE/RECORD
1.4.20 SUMMARIZE PROGRAMS
1.4.21 UPDATE RECORD DEFINITION
1.4.22 UPDATE CONTROL HEADER
1.4.23 UPDATE FILE DEFINITION
1.4.24 UPDATE PROGRAM

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

.1..

TOC

TOC
TQL
TQL: expr
TQL: file
TQL: record
TQL: allow
TQL: must add
TQL: id
TQL: verify
TQL: fields
TQL: program
TQL: id division
TQL: data divisio
TQL: work fields
TQL: declaratives
TQL: display
TQL: report
TQLMON
TQLMON: c
TQLMON: comp; cp
TQLMON: delete
TQLMON: dp
TQLMON: end
TQLMON: help
TQLMON: list
TQLMON: lp
TQLMON: mes
TQLMON: n
TQLMON: nf
TQLMON: np
TQLMON: print
TQLMON: pp
TQLMON: purge
TQLMON: q
TQLMON: qp
TQLMON: run, open
TQLMON: s
TQLMON: sp
TQLMON: u
TQLMON: UC
TQLMON: uf
TQLMON: up

TDC

Page: 1
Section: Contents

TDC

1.4.25 WRITE FILE/RECORD
1.4.26 WRITE PROGRAM TO LIBRARY
1.5 THE TQL TEXT EDITOR
1.5.1 ADD LINES
1.5.2 COPY LINES
1.5.3 DELETE LINES
1.5.4 END TQL EDITOR
1.5.5 HELP FOR TQL EDITOR
1.5.6 MOVE LINES
1.5.7 PRINT (DISPLAY) LINES
1.5.8 QUIT TQL EDITOR
1. 5. 9 TQL EDITOR FUNCTION KEYS
1.6 RUNNING A TQL PROGRAM
1.6.l TQL PROGRAM EXECUTION
1.6.2 PREDEFINED DATA DISPLAY
1.6.3 ADD RECORD
1.6.4 COUNT RECORDS
1.6.5 DELETE RECORD
1.6.6 ENTER RECORDS
1.6.7 END SESSION
1.6.8 TQL HELP
1.6.9 FREE FORMAT LIST
1.6.10 DISPLAY NEXT SCREENFULL
1.6.11 OPEN NEW PROGRAM
1.6.12 PRINT A REPORT
1.6.13 FREE FORMAT PRINT
1.6.14 SHOW FIELD NAMES
1.6.15 UPDATE RECORD
1.6.16 USE OF FUNCTION KEYS
1.7 CALLING TQL FROM TIP PROGRAM
1.8 RESERVED WORDS
1.9 INITIALIZING TQL DICTIONARY
1.10 LISTING THE TQL DICTIONARY FILE
1.11 REORGANIZING THE TQL DICTIONARY
1.12 TQL PROTOTYPING
1.13 TQL EXAMPLE

- 2 -

2. KWIC INDEX

Page: 2
Section: Contents

FILE

TABLE OF CONTENTS

TQLMON: write
TQLMON: wp
TQLEDT
TQLEDT: ad
TQLEDT: co
TQLEDT: de
TQLEDT: en
TQLEDT: he
TQLEDT: mo
TQLEDT: pr
TQLEDT: qu
TQLEDT: f keys
TQL: open
TQL: open
TQL: display
TQL: add
TQL: count
TQL: delete
TQL: enter
TQL: end/close
TQL: help
TQL: list
TQL: next
TQL: open
TQL: print
TQL: print
TQL: show
TQL: update
TQL: f n keys
TQL: call tql
TQL: words
TQLINT
QB$LST
QB$DMP
TQL$PRO
TQL Example

INDEX

TQL Reference Manual
Version 2.5Rl (83/06/01)

e

1.3

TQL
THE TIP/30 QUERY LANGUAGE

THE TIP/30 QUERY LANGUAGE TQL

The TIP/30 Query Language (TQL) is an interactive facility that
allows the user to create flexible and powerful 'query' programs.
These programs have the capability to display, modify, enter, and
report data from on-line files. The TQL system also allows the user
to enter unstructured or 'ad hoc' requests. Ad hoc commands enable
the user to request the retrieval of data in ways that may not have
been explicitly anticipated by the programmer.

TQL allows access to standard Data Management files that are
either direct access (DA) or indexed (ISAM, IRAM, MIRAM). In
addition, the programmer may choose to make use of a very powerful
facility: prototype files. A prototype file is a 'virtual' file
that is maintained internally by TQL. The actual file is simulated
by TQL. The programmer may alter the size and number of the fields
within a record; all such changes take effect as soon as the TQL
program is recompiled. The use of a prototype program mechanism
allows the programmer to completely design, test and (if desired)
implement an application without creating real files. The structure
of the files (including any indices) may be altered as testing
proceeds and new ideas materialize. When the application is
completed, the application users can use the TQL programs until
such time as a proper TIP native mode system can be written.
Indeed, in some cases, it may be quite justifiable to leave certain
limited applications in production although they are actually
implemented using prototype files.

TQL programs are written in a language that is based on a subset
of the COBOL-74 syntax with the addition of a number of extensions
for use by TQL. The TQL program is compiled on-line and the output
of the compiler is stored for later "execution" by the TQL run-time
interpreter. The run-time interpreter provides an interface between
the user and the TQL program. Ad hoc commands are interpreted and
executed by the run-time interpreter - the TQL program need not
concern itself with any aspect of such unstructured requests for
data.

Page:
Section:

1
1.3

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL
THE TIP/30 QUERY LANGUAGE

The TQL system is organized around a centralized data dictionary
(or contol file). This control file is assumed to have the logical
file name TQL$CTL. This file is initialized as part of the
installation of TIP/30. The control file contains:

the source for all existing TQL programs:

the run-unit code (pseudo-object code) for all compiled
TQL programs

ANY pre-compiled record layouts

ALL file descriptions and definitions

From this list of contents, we can draw
conclusions:

the following

the source for TQL programs is stored in the TQL control
file: other copies of this source may, of course, exist
in normal OS/3 libraries:

the 'executable' output of the TQL compiler is stored in
the control file:

record layouts MAY be pre-compiled and used (in common)
by a number of TQL programs that need to access such
records. This is a significant extension of the idea of
using COPY books.

all files that are to be accessed by TQL programs must be
described (compiled) in the control file. The definition
of a file (as will be shown) is a simple matter. This
seemingly redundant definition of file characteristics is
required to enable an implementation of a future batch
interface to TQL.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

2
1.3

TQL
THE TIP/30 QUERY LANGUAGE

The steps required to create a working TQL application are:

ensure that all on-line files that are to be accessed are
both generated into the TIP/30 system (unless they are
prototype files) AND their characteristics have been
compiled (defined) to TQL;

Page:

either pre-compile record
accessed OR include the
(explicitly) in the program;

layouts for the files to be
record layouts in-line

write and compile a TQL
and record layouts
application AND defines
available to the user.

program that declares which files
are needed for the particular
displays and reports that are

The following sections of this chapter describe:

the rules of syntax for the specification of FILES,
RECORDS, and PROGRAMS;

the commands and use of the TQL Monitor Program (TQLMON)
- a development environment for the TQL programmer;

The commands and facilities available at run time to the
~ of a TQL program.

Section:
3

1.3
TQL Reference Manual

Version 2.5Rl (83/06/01)

TQL: EXPR
TQL EXPRESSIONS

1. 3 .1 TQL EXPRESSIONS TQL: expr

TQL allows the programmer or run-time user to make use of
arithmetic and relational expressions. These expressions may be
used either as part of the TQL program proper or as part of a
run-time command (eg: in the run-time "IF" command).

This section describes the syntax of the general TQL expression
and contains several example expressions.

Syntax:

field oper field) [connector] field oper field) •••
or

value

Where:

or
value

or
value

or
value

() The use of parentheses may be necessary to force a
specific order of evaluation of the expression or
to nest expressions.

field

value

If parentheses are not used, standard operator
precedence rules apply (multiplication and
division before addition and subtraction etc).

The name of a field that is defined in
program. A list of available field names
found (at run-time) by using the "SHOW"
(documented in a following section).

the TQL
can be
command

A numeric or character value. Character values are
normally enclosed in quotes. (Eg: 38 or
'JANUARY').

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

l
1.3.1

TQL: EXPR
TQL EXPRESSIONS

oper A relational or arithmetic operator (arithmetic
operators may only be applied to numeric fields!).
TQL supports the following operators:

OPERATOR
ALTERNATIVE

NOTATION DESCRIPTION
===
EQ
NE
GT
LT
GE
LE
BEGINS WITH

= equal
not equal
greater than
less than
greater than or equal
less than or equal
begins with

DOES NOT BEGIN WITH
CONTAINS

<>
>
<
>=
<=
=*
=!
=:

does not begin with
contains

DOES NOT CONTAIN
+

does not contain
arithmetic addition
arithmetic subtraction
arithmetic multiplication
arithmetic division
arithmetic remainder

*
I
%

connector A (standard) logical connector. TQL supports the
following connectors:

"AND" or "&" - logical "and" function

"OR" or ":" - logical "or" function

"NOT" - logical negative

MOVE INVENTORY-COUNT - 1 TO WORK-COUNT.

IF (JOB-DESCRIPTION CONTAINS 'DEPUTY') AND GROSS-SAL > 25000
AND GROSS-SAL <= 50000

}

IF (NOT JOB-DESCRIPTION=: 'DEPUTY')

IF 0 = TOTAL-COUNT % 2

Page:
Section:

2
1.3.1

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: EXPR
TQL EXPRESSIONS

Additional Considerations:

Note that the field name "GROSS-SAL" had to be repeated for the
comparison with 50000. This illustrates that TQL does not allow the
subject of a comparison to be omitted (unlike COBOL-74).

Numeric fields must be entered without comma separators. (eg:
25000 rather than 25,000).

The remainder operator ("%") implies division, but the result is
the remainder rather than the quotient. The example above compares
0 with the remainder when TOTAL-COUNT is divided by 2. If the
remainder is zero, it implies that the field is evenly divisible by
2.

The result of a relational test (ie: A >= B) is considered to be
equivalent to numeric 1 if the test was TRUE otherwise the value is
0 if FALSE. Such implied numeric values may be used in further
computations if required.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

-+*+-

Page:
Section:

3
1.3.1

TQL: FILE
FILE DEFINITION

e 1.3.2 FILE DEFINITION TQL: file

•

The programmer must define all required on-line files to TQL. In
order to do this, it is necessary to create a source module [either
using the standard TIP/30 text editor (QED) or by using the TQL
source editor (described later)]. The source module may contain one
or more FILE definitions. This source module is then compiled by
TQL (the compilation process will be described in detail in a later
section).

The definition of a FILE is similar to the specifications that are
used in the TIP/30 generation process. The syntactical requirements
are:

Syntax:

FILE filename,filetype
ACCESS=
BLKSIZE=
DELETE=
INDSIZE=

Where:

Page:
Section:

IORTN=
KEYLEN=
KEYLOC=
KEYl=
KEY2=
KEY3=
KEY4=
KEY5=
RECFORM=
RECSIZE=
. (period --> end the file definition)

filename

f iletype

ACCESS•opt

BLKSIZE=n

1
1.3.2

the logical file name as specified in the TIP/30
catalogue.

the type of file. Choose one of ISAM, HIRAM, DAM,
DMIRAM, or PROTOTYPE.

the access option as ~escribed in the 'data
management manual. Default is EXCR.

the block size of the file.

TQL Reference Manual
Version 2.5Rl (83/06/01)

FILE DEFINITION

DELETE=n

INDSIZE=n

IORTN=name

KEYLEN=n

KEYLOC=n

KEYl=

KEY2=

KEY3=

KEY4=

TQL: FILE

the zero relative offset of the delete byte in the It
record. This is currently ignored by TQL (since
TQL utilizes the TIP/30 file system) but may be
required by a future batch interface to TQL.

is the INDEX AREA SIZE for this file. Default=256.

'name' is the name of a user written I/O routine
which is to be called by TQL to do all I/O for
this file. This routine must be specified as a
resident TIP/30 SUBPROGRAM. The name, therefore,
must be the LOADM name of the suprogram.

TQL will call this routine via 'TIPSUBP' and pass
the same parameters which would have been passed
to 'TIPFCS'.

the length of the key for the file.

is the zero relative location of the key in the
record. Default=O.

KEYLEN and KEYLOC do not have to be specified if
the key information is provided by one or more of
the keywords KEYl= thru KEYS=.

(size,loc,NDUP,NCHG)

defines index 1.

'size' is the key length.

'loc' is the zero relative key location.

Note that TIP/30 does not allow KEYl of a MIRAM
file to change or have duplicates.

(size,loc,DuP:NDUP,CHG:NcHG)

defines index 2

(size,loc,DuP:NDUP,CHG:NcHG)

defines index 3

(size,loc,DUPlNDUP,CHGlNCHG)

defines index 4

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

2
1.3.2

TQL: FILE

Page:
Section:

KEYS=

RE CF ORM=

RECSIZE=n

3
1.3.2

(size,loc,DuP:NDUP,CHG:NcHG)

defines index 5

FILE DEFINITION

record format. Choose either FIXBLK or VARBLK.
Default=FIXBLK.

Note that the first halfword of a variable length
record is the record length. This field is
available to the TQL program and the record
definition must account for these two bytes (PIC
9(4) COMP-4). During an ADD of a record TQL will
set the maximum record length.

is the length of the records in the file.

the end of a file definition must be marked by a
period. Other file definitions may follow in the
same source module.

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: RECORD
RECORD DEFINITION

1.3.3 RECORD DEFINITION TQL: record

The programmer has several methods of handling record layouts:

pre-compile the record definition and reference it by
name in TQL programs that need to access such records;

Use the COPY clause to include the record layout in (each
of) the TQL programs that access the record;

explicitly code the record definition in (each of) the
TQL programs that access the record.

The first method (pre-compilation) is the most efficient and is
highly recommended. Use of the COPY clause is clearly better than
explicitly coding the record layout. The latter two methods are
inferior. Pre-compilation ensures that all TQL programs use the
same record layout and will be the basis for any future support of
data dictionary schemes.

The record definition follows standard COBOL-74 record
description conventions with the following exceptions:

The COBOL special names: SPACES, ZEROES, HIGH-VALUES,
LOW-VALUES are not recognized by TQL.

COMPUTATIONAL-! and COMPUTATIONAL-2 fields (short and 49
long format floating point) are NOT supported by TQL.

66 level items (COBOL-74 RENAMES) are ignored.

77 level items are ignored.

88 level items are ignored.

VALUE clauses are ignored.

Only one level of subscripting is supported by TQL; that
is, arrays may have only one dimension.

The record layout must be preceded by the (optional) "FOR"
clause if it is to be separately pre-compiled. If the record is
described explicitly in the program, record definitions immediately
follow the associated FILE statement.

The COBOL record layout may contain or be followed by ALLOW
CHANGE clauses, VERIFY clauses, ID clauses, ALLOW DELETE clause,
ALLOW ADD clause.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

1
1.3.3 •

TQL: RECORD
RECORD DEFINITION

Records are not allowed to change or be deleted unless such
permission is explicitly granted through the appropriate clauses.

Example:

[FOR filename.]
RECORD PAYMST.
01 PAYMST.

05 KEY.
10 DEPT
10 NUMB

05 NAME
05 ADDRESS.

10 LINE-1
10 LINE-2

05 SALARY
05 JOBS OCCURS 4

10 LOCATION
10 NUMBER

ID IS DEPT > O.
ALLOW CHANGE ALL.
NO CHANGE DEPT NUMB.
VERIFY SALARY 6000 THRU

Additional Considerations:

TIMES.

32000.

PIC 99.
PIC 9(5) COMP-3.
PIC X(20).

PIC X(20).
PIC X(20).
PIC 9(4)V99.

PIC X(8).
PIC 9(4).

The definition of the key field is critical to the operation of TQL
at run time. The first definition of the key f ield(s) is taken as
the way the key will be entered at the terminal when selecting
records. This is a problem if the key is actually made up of
several smaller fields. For example, if the key is defined as three
(3) small fields then any key value must be entered at execution
time as 3 separate items of the correct type. Numeric data is
entered as a number, but alpha-numeric data must be entered in
quotes('). If you prefer to enter the key data as one big field but
still want to reference the sub-fields then code the record layout
with one single field and then redefine it as the sub-fields. Since
the single field definition would appear first, TQL would expect
the key to to be entered as a single data item.

Page:
Section:

2
1.3.3

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: ALLOW
ALLOWING RECORDS/FIELDS TO CHANGE

1. 3. 4 ALLOWING RECORDS/FIELDS TO CHANGE TQL: allow

Records are not allowed to be added, changed or deleted unless
explicit permission is given in the TQL program. Fields within
records cannot change unless permission is explicitly given. The
ALLOW clause enables the programmer to specify what actions are
permitted. The ALLOW clause may appear within a pre-compiled record
layout, or within the DATA DIVISION of the TQL program. The program
may specify multiple ALLOW clauses for a record.

Sgntax:

ALLOW ADD.
ALLOW DELETE.
ALLOW CHANGE field-names.
ALLOW CHANGE ALL.

Where:

NO CHANGE field-names.
NO CHANGE ALL.

ALLOW ADD

ALLOW DELETE

Indicates that records may be added to the file.

Indicates that records may be deleted from the
file.

ALLOW CHANGE

field-names

ALL

NO CHANGE

Example:

defines which fields of the record may be changed
when records are being updated.

A list of field names involved. The names may be
separated by commas or spaces and the statement
should be terminated with a period.

Indicates that all fields are implied.

Defines fields which may not change.

ALLOW CHANGE ALL.
NO CHANGE SIN.
ALLOW CHANGE SALARY DEDUCTIONS.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY.LANGUAGE

-+*+-

Page:
Section:

1
1.3.4

TQL: MUST ADD

• 1.3.5

FIELDS WHICH MUST BE ADDED

FIELDS WHICH MUST BE ADDED TQL: must add

If there are fields which MUST be entered, that is, the field
may not have a value of zero if it is numeric or may not have a
value of spaces if it is alpha-numeric the programmer may specify
the following statements after the record definition. If this
clause is not present for a record TQL assumes that the user may or
may not enter a value for each field.

Syntax:

MUST ADD field-names.
MUST ADD ALL.

Where:

MUST ADD

field-names

ALL

Example:

MUST ADD ALL.

defines which fields of the record may not be
omitted when a record is added or changed.

is a list of field names involved. The names may
be separated by commas or spaces and the statement
should be terminated with a period.

implies all field names.

MUST ADD SALARY, DEDUCTIONS.

Page:
Section:

1
1.3.5

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: ID
RECORD SELECTION

1. 3. 6 RECORD SELECTION TQL: id

Files often contain many different record types. Records may be
selected by specifying the ID clause. The ID clause specifies to
TQL which record types are to be selected.

Sgntax:

. ID IS <express ion>

Where:

expression

Example:

A relational expression which is a test for the
inclusion of a record. TQL will evaluate the
expression on every read or write of the record to
determine whether the record is of the correct
type.

ID IS REC-TYPE = 'HD'.
ID IS REC-TYPE NE 'HD' AND SAL > 25000.

Additional Considerations:

•

In the first example, the programmer has specified that the field ~
"REC-TYPE" must be equal to the literal "HD". The second example
requires that the field "REC-TYPE" is NOT equal to the literal "HD"
and the field "SAL" must be greater than 25,000. If a record is
read that does not satisfy the condition TQL will ignore that
record and proceed to the next record.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

-+*+-

Page:
Section:

1
1.3.6

TQL: VERIFY
FIELD VERIFICATION

• 1.3.7 FIELD VERIFICATION TQL: verify

. -

Whenever a record is added or updated, field verification is
done by TQL as the data fields are moved from the screen display
area to the record build area. Fields may be verified by specifying
a list of possible values for each field to be verified. Such
statements must follow the appropriate record definition.

Syntax:

VERIFY field
VERIFY field
VERIFY field
VERIFY field
VERIFY field
VERIFY field

Where:

field

'string'

number

THRU

Example:

'string' THRU 'string'.
'string', 'string'.
'string'.
number THRO number.
number, number.
number.

is the name of the data field to be verified.

is some alpha-numeric value

is some numeric value

is used to define a range check.

VERIFY SALARY 10000, 20000, 30000 THRU 55000.
VERIFY TITLE 'V.P.', 'MANAGER', 'GO-FOR'.

Additional Considerations:

A field may be tested for specific values and/or range(s) of
values.

If the value of a field is found to not meet the required
verification TQL will send back an error message which consists of
the field name followed by question mark (?).The terminal operator
must correct the field in error and continue.

Page:
Section:

1
1.3.7

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: FIELDS
SYSTEM FIELDS

1.3.8 SYSTEM FIELDS TQL: fields

There are several system data fields that are maintained by TQL
that are available to the TQL program. They may be used in the same
manner as record fields with the exception that ONLY the ERRCODE$
field may be assigned a value.

Field I Format

==============
AUTHOR$ X(8}

DD$ 9(2)

DESC$ X(30)

DMY$ 9(6)

ERRCODE$ X(l}

HH$ 9(2)

HHMM$ 9(4)

JUL$ 9(5)

LINE$ 9(3)

MIN$ 9(2)

MON$ 9(2)

PAGE$ 9(5)

SITE$ X(l2)

TID$ X(4}

TIME$ 9(6)

UID$ X(8)

YMD$ 9(6)

YY$ 9(2)

Definition

====================================
user-id of person who wrote the program.

current day.

description of program from PROGRAM-ID clause.

current date in DDMMYY format

a status field [may be set by user].

current hour.

current time of day in HHMM format.

current date in YYDDD (Julian} format.

current line number (of report}.

current minute.

current month.

current page number (of report}.

site name from TIP/30.

terminal name running the TQL program.

time of day in HHMMSS format.

user-id of user running TQL program.

current date in YYMMDD format.

current year.

-+*+-

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

1
1.3.8

TQL: PROGRAM
TQL PROGRAM STRUCTURE

e 1.3.9 TQL PROGRAM STRUCTURE TQL: program

•

•

The general syntax of a TQL program is as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID.

DATA DIVISION.

FILE <file-name-1>.
RECORD <record-name-1>.

[ALLOW CHANGE, NO CHANGE, VERIFY, ID, clauses]

*

[ALLOW DELETE.] [NO DELETE.]
[ALLOW ADD.] [NO ADD.]

RECORD <record-name-n>. • •• etc •••

FILE <f ile-name-n>.
RECORD <record-name-n>.

[WORKING-STORAGE SECTION.]

[DECLARATIVES SECTION.]

. .. etc . ..

* comments may be entered anywhere
* by entering an asterisk (*} in column 7
* [DISPLAY DIVISION.]

[REPORT DIVISION.]

A program may specify as many files and records as are needed for
the application. TQL programs may have any number of defined
displays and/or reports. There should be at least one display or
report in a TQL program.

Page:
Section:

1
1.3.9

-+*+-

TQL Reference Manual
Version 2.SRl (83/06/01}

TQL: ID DIVISION
IDENTIFICATION DIVISION

1.3.10 IDENTIFICATION DIVISION TQL: id division

The IDENTIFICATION DIVISION of a TQL program must appear first
and is required in all TQL programs. This division names the TQL
program, may provide an informative description of the program and
may restrict run-time access of the program to specific TIP/30
users.

Example:

IDENTIFICATION DIVISION.
PROGRAM-ID. progname

Where:

progname

'comments'

['comments']
[GROUP=id]
[PASSWORD PROTECT]
• (period indicates end of this DIVISION)

Up to eight characters (the first of which must be
alphabetic) which uniquely identifies the program.

Up to thirty
quotes) which
program.

characters
provide

(enclosed in
a description

single
of the

This is the character string returned as the
system field 'DESC$' (see previous section "SYSTEM
FIELDS").

id An id that specifies which set of users may use
the program. A user may use the program if this id
matches either their user-id, a group to which
they belong or their terminal name.

If no GROUP= clause is specified the program may
be run by any user that has access to TQL.

PASSWORD PROTECT If this clause is specified, the programmer will
be asked (at TQL compile-time) to supply a
password. Whatever password is assigned by the
programmer must be supplied by any user who
attempts to run the TQL program. The only way to
change the password is to recompile the program.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

-+*+-

Page:
Section:

1
1.3.10

TQL: DATA DIVISION
DATA DIVISION

tt 1.3.11 DATA DIVISION TQL: data division

The DATA DIVISION of a TQL program is required and must follow
the IDENTIFICATION DIVISION. The first section of the data division
identifies the files and records that are required by the program.
Subsequent (optional) sections define program work fields
(WORKING-STORAGE SECTION) and exceptional event processing
(DECLARATIVES SECTION).

Syntax:

DATA DIVISION.

FILE file-name.

[RECORD rec-name.]
[ALLOW, VERIFY, ID, clause(s)]

[01 name.]
[02 . • •]
[]
[ALLOW, VERIFY, ID, clause(s)]

Where:

file-name name of a pre-compiled file description.

rec-name name of a pre-compiled record description.

name record name of an explicitly defined record that
is coded in-line.

Additional Considerations:

Records may be defined by either referring to the name of a
pre-compiled record (that is the "RECORD rec-name" clause), or by
actually coding the record description in place of the RECORD
clause.

More than one record may be specified for a file; more than one
file may be specified in a TQL program.

The "ALLOW, VERIFY, and ID" clauses may be specified
pre-compiled record description, after the RECORD clause, or
the in-line record description.

in a
after

Page:
Section:

1
1.3.11

TQL Reference Manual
Version 2.5Rl (83/06/01)

DATA DIVISION

Example:

DATA DIVISION.

FILE PAYMAST.
RECORD PAY-HOR.
RECORD PAY-DETL.

FILE PAYTRANS.
RECORD PAYTRHDR.

01 PAYTRAN.
05 FILLER PIC X(4).
05 PAYTRAN-ID PIC X(2).
05 PAYTRAN-DATA OCCURS 12 TIMES.

10 PAYTRAN-AMOUNT PIC S9(7)V9(2).

ALLOW CHANGE ALL.
ALLOW DELETE. ALLOW ADD.
VERI.FY PAYTRAN-ID 'B3'.
MUST ADD PAYTRAN-AMOUNT.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

-+*+-

TQL: DATA DIVISION

Page:
Section:

2
1.3.11

TQL: WORK FIELDS
WORKING STORAGE SECTION

• 1.3.12 WORKING STORAGE SECTION TQL: work fields

•

The WORKING-STORAGE SECTION of the DATA DIVISION of a TQL
program is an optional section that may be included by the
programmer to define work-fields that are used in computations or
other data manipulations. The section must contain only a single 01
level. All fields must be subordinate to this group item. Since
VALUE clauses are ignored by TQL, the fields are initialized by TQL
to zero or spaces (as appropriate) upon each initial use of a
display or report.

Example:

WORKING-STORAGE SECTION.

01 WORK-FIELDS.

Page:
Section:

05 GRAND-TOTAL

05 SUB-TOTAL

05 FULL-ADDRESS.

10 FULL-ADDRESS-1
10 FULL-ADDRESS-2
10 FULL-ADDRESS-3

1
1.3.12

PIC S9(7)V99

PIC S9(7)V99

PIC X(40).
PIC X(40).
PIC X(20).

-+*+-

COMP-3.

COMP-3.

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: DECLARATIVES
DECLARATIVES SECTION

1.3.13 DECLARATIVES SECTION TQL: declaratives

The DECLARATIVES SECTION of the DATA DIVISION of a TQL program
is an optional section that may be included by the programmer to
define special processing that is to occur after a specified record
is read or immediately before a specified record is written or
added.

For example, the programmer may wish to timestamp all records
which are written to a file. Rather than have the user enter the
current date and time for each record (a tedious and error-prone
procedure), the program could accomplish this by specifying the
appropriate move statements in the declaratives section. The
general syntax of the Declaratives Section is as follows:

Syntax:

DECLARATIVES SECTION.

[ON READ OF
[ON WRITE OF
[ON ADD OF

Where:

<record-name>
<record-name>
<record-name>

statements.]
statements.]
statements.]

•

ON READ OF clause indicating that the statements which follow •
are to be executed immediately AFTER any read of

ON WRITE OF

ON ADD OF

the specified record name.

An 'ON READ' clause for one record may contain
'READ' statements to get other records. This is
the only way to select records (by using an IF
clause at run time) based on the value of data in
supplementary records.

clause indicating that the statements which follow
are to be executed immediately BEFORE any write of
the specified record name.

clause indicating that the statements which follow
are to be executed immediately before any new
record is added to the file.

If both 'ON WRITE' and 'ON ADD' clauses exist for
the same record, TQL will only execute the 'ON
ADD' clause for added records. The 'ON WRITE'
clause will then only be used when a record is
updated (re-written).

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

1
1.3.13

TQL: DECLARATIVES
DECLARATIVES SECTION

<record-name> specifies the record name associated with this·
clause.

statements One or more statements which are to be executed at
the indicated point in time.

The expression may contain a number of TQL
statements (including (but not limited to) READ
statements, MOVE, COMPUTE etc).

Valid statements for use in the DECLARATIVES SECTION are
described as follows:

Syntax:

statement-list •

<-- statement-list is one or more of the following -->

(statement~list)
number (statement-list)
ADD expression TO field
COMPUTE field = expression
ERROR 'string'
IF (expression) (statement-list)
IF (expression) (statement-list) ELSE (statement-list)
MOVE expression TO field
NEXT RECORD
ON ERROR 'string'
READ record FROM field
READ record VIA field
SUBTRACT expression FROM field
WHILE expression (statement-list)

Where:

number(statement-list) indicates that the instructions appearing
inside the parentheses are to be repeated the
specified number of times. This is the
simplest way to display more than one record.
The "loop" will be exited early if a READ
statement fails to retrieve a record from the
file.

Page:
Section:

expression

2
1.3.13

A standard TQL expression (see section 1.3.1).

TQL Reference Manual
Version 2.5Rl (83/06/01)

DECLARATIVES SECTION
TOL: DECLARATIVES

ADD the arithmetic expression is evaluated, added t9
to the value of the 'field' and the result
stored in the 'field'. Note that result fields

COMPUTE

ERROR

as well as fields in the expression may be
subscripted when appropirate by either a
constant or subscript field.

the arithmetic expression is evaluated, and
the result stored in the 'field'.

The specified string will be used as an error
message and the system field "ERRCODE$" will
be set to a non-blank value to indicate an
error has occurred.

This clause may be used to signal an error
condition

Eg: IF (COUNT LT 10) (ERROR 'not enough
stock')

IF the relational expression immediately
following the IF is evaluated. If it is found
to be true then the code inside the
parentheses will be executed. If it is found

MOVE

NEXT RECORD

ON ERROR

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

to be false then the code in parentheses ~
following the ELSE will be executed. If no ~
ELSE clause was given TQL continues with the
next statement after the IF clause. Nested IF
clauses are supported to a depth of 10.

It may be necessary to enclose the expression
in parentheses to avoid confusion with
subscripting.

The expression is evaluated, and the result is
stored in the 'field'.

this will move an "S" to the field ERRCORD$,
indicating that the current record is to be
by-passed.

This clause may be used following a read
statement to specify a string which will be
displayed if an error occurred on the read.
Expression usually is a literal (eg: ON ERROR
'No part info')

Page:
Section:

3
1.3.13

TQL: DECLARATIVES

Page:
Section:

READ record

VIA field

FROM field

SUBTRACT

4
1.3.13

WHILE

DECLARATIVES SECTION

Directs TQL to read the specified record at
this point in the generation of the display.

'field' is the name of a field which contains
the key of the record to be read.

If the READ is being done because a record is
about to be ADDed or UPDATEd then the READ is
actually a read for update ('GETUP') and the
record will be updated back to the file.

'field' is the name of field holding (part of)
the key for the secondary record. The file is
read sequentially until this first portion of
the key in the record no longer matches the
value in 'field'.

the arithmetic expression is evaluated,
subtracted from the value of the 'field' and
the result is stored in the field.

the relational expression immediately
following the WHILE is evaluated. If it
evaluates to be true, the code inside the
parentheses will be executed. The code is
executed repeatedly until the expression
evaluates to be false.

each ON statement list must be ended with a
period.

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: DECLARATIVES
DECLARATIVES SECTION

Example:

DECLARATIVES SECTION.

ON READ OF PAYMAST ADD PAYMAST-SALARY TO WS-TOTAL-SALARY
ADD 1 TO WS-PAYMAST-COUNT.

ON WRITE OF PAYMAST MOVE TIME$ TO PAYMAST-TIME-WRITTEN
MOVE YMD$ TO PAYMAST-DATE-WRITTEN.

In this example, every time a record named 'PAYMAST' is read,
TQL will automatically execute the two ADD statements (which
presumably modify some WORKING-STORAGE fields for later use).

Immediately before all writes of records named 'PAYMAST.', TQL
will automatically execute the two move statements (which take
advantage of the system fields to move the current date and time to
corresponding fields in the PAYMAST record).

Additional Considerations:

The statements that may be specified in the 'ON READ' or 'ON WRITE'
statement can be arbitrarily complex and may include (for example)
the usual 'IF' statements etc.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

-+*+-

Page:
Section:

5
1.3.13

TQL: DISPLAY
DISPLAY DIVISION

tit 1.3.14 DISPLAY DIVISION TQL: display

The DISPLAY DIVISION of a TQL program is a division that
represents a TQL extension to standard COBOL-74. This division
defines the display sets that are available at execution time. Each
display set contains statements that specify the fields that are to
be displayed. In addition, the display set contains VERBS that
specify (to TQL) exactly which records to read. At execution time,
the user of the TQL program uses the name of a display set to
request the display of data according to the specifications of the
display set.

Syntax:

name : display-list USING msg-name •

<-- display-list is one or more of the following -->

field

Where:

Page:
Section:

(display-list)
number (display-list)
ADD expression TO field
COMPUTE field = expression
IF (expression) (display-list)
IF (expression) (display-list) ELSE (display-list)
MORE$
MOVE expression TO field
NL$
READ record
READ record FROM field
READ record VIA field
SUBTRACT expression FROM field
WHILE expression (display-list)

name

-~sg-name

1
1.3.14

field

is the display name. This name is required and
must be unique within a TQL program. This name
is used at execution time by the TQL user to
request a particular display format.

This is the name of-the TIP/30 screen format
which is to be used to control the display
format of the data.

is the name of a data field. If the field is
part of an OCCURS clause, it may be followed
by the occurrence number such as PART-NUM(3).
If no occurrence number is given then the
first occurrence is assumed.

TQL Reference Manual
Version 2.5Rl {83/06/01)

DISPLAY DIVISION

number (display-list)

expression

ADD

COMPUTE

IF

MORE$

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

TQL: DISPLAY

The field name may be subscripted by either a tf
literal or another field. A field used as a
subscript must be a binary halfword (ie. PIC
9(4) COMP-4). A subscript field may be part of
a record structure or a working-storage field.

If the field
subfields are
subscripting.

named is a
processed

group item all
with appropriate

indicates that the instructions appearing
inside the parentheses are to be repeated the
specified number of times. This is the
simplest way to display more than one record.
The "loop" will be exited early if a READ
statement fails to retrieve a record from the
file.

A standard TQL expression (see section 1.3.1).

the arithmetic expression is evaluated, added
to the value of the 'field' and the result
stored in the 'field'. Note that result fields
as well as fields in the expression may be
subscripted when appropirate by either a
constant or subscript field.

the arithmetic expression is evaluated, and
the result stored in the 'field'.

the relational expression immediately
following the IF is evaluated. If it is found
to be true then the code inside the
parentheses will be executed. If it is found
to be false then the code in parentheses
following the ELSE will be executed. If no
ELSE clause was given TQL continues with the
next statement after the IF clause. Nested IF
clauses are supported to a depth of 10.

It may be necessary to enclose the expression
in parentheses to avoid confusion with
subscripting.

Marks the point from which the display is to
be continued when more detail records are
requested at execution-time. The TQL user can
request "more" records by entering the "MORE"
run-time command or by pressing function key
9.

Page:
Section:

2
1.3.14

•

TQL: DISPLAY

Page:
Section:

MOVE

NL$

READ record

VIA field

FROM field

SUBTRACT

WHILE

3
1.3.14

DISPLAY DIVISION

See following section "Executing TQL
programs".

The expression is evaluated, and the result is
stored in the 'field'.

This notation may be inserted to indicate (to
the automatic screen generation process) that
the screen format is to force a new line on
the screen at this point. This NL$
specification has no other effect.

Directs TQL to read the specified record at
this point in the generation of the display.

'field' is the name of a field which contains
the key of the record to be read.

If no record could be read on a 'READ VIA'
then TQL will skip to the end of the current
repeat loop ('number (display-list)') or the
to end of the display, whichever comes first.

If more information is to be displayed even if
the READ VIA fails, then it would be necessary
to include a (dummy) repeat loop such as: 'l
(READ fileb VIA field)'.

'field' is the name of field holding (part of)
the key for the secondary record. The file is
read sequentially until this first portion of
the key in the record no longer matches the
value in 'field'.

the arithmetic expression is evaluated,
subtracted from the value of the 'field' and
the result is stored in the field.

the relational expression immediately
following the WHILE is evaluated. If it
evaluates to be true, the code inside the
parentheses will be executed. The code is
executed repeatedly until the expression
evaluates to be false.

each display must be ended with a period.

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: DISPLAY
DISPLAY DIVISION

Example:

DEPLST: READ DEPT-REC, DEPT-NUM, DEPT-NAME,
MOVE 0 TO TOT-SAL,

MORE$ 19 (READ PAYREC FROM DEPT-NUM,
NAME, SIN, SALARY, NL$

ADD SALARY TO TOT-SAL,
TOT-SAL USING PAYSCRN.

In the above example, TQL does the following for each display:

read a department record (DEPT-REC) and display the
fields DEPT-NUM and DEPT-NAME.

collect up to 19 payroll records (PAYREC) which
the selected department. The payroll file
department number as the first part of the key
record.

are
has

of

in
the
the

for each PAYREC the fields NAME, SIN, and SALARY are
displayed.

SALARY is accumulated in the field TOT-SAL.

TOT-SAL is the last field displayed on the screen

The Message Control System (MCS) screen
PAYSCRN. Note that the inclusion of
forces the automatic screen generator to
in the screen format at that point.

format name is
the NL$ notation
begin a new line

If more the 19 payroll records exist then the
operator may ask for more by pressing function
the terminal (or entering the run-time command
TQL will continue from the point marked by
"MORE$".

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

terminal
key 9 on
"MORE").
the tag:

4
1.3.14

•

•

•

TQL: DISPLAY
DISPLAY DIVISION

Example:

DEPSUM: 20 (READ PAY-REC, READ DEPT-REC VIA DEPT-NUM,
NAME, SIN, SALARY, DEPT-NAME NL$

) USING PAYDEPT.

In the above example, TQL does the following for each display:

read a payroll record (PAY-REC)

Page:
Section:

then read from the department file (DEPT-REC) by using
the field DEPT-NUM as a key. DEPT-NUM must be a field in
the PAY-REC record.

for each PAY-REC the fields NAME, SIN, SALARY, and
DEPT-NAME (from department record) are displayed.

The Message Control System (MCS) screen format name is
PAYDEPT.

Repeat up to 20 times (20 reads of PAY-REC).

5
1.3.14

-+*+-

TQL Reference Manual
Version 2.SRl (83/06/01)

TQL: REPORT
REPORT DIVISION

1.3.15 REPORT DIVISION TQL: report

The REPORT DIVISION of a TQL program is a division that is a TQL
extension to standard COBOL. This division defines one or more
reports that are available at run-time to the TQL user. Each report
has an assigned name that is used by the user to select the report.
The report defines the contents of a "logical page" of the physical
report. A logical page may consist of more than one physical page.
The run-time TQL interpreter will generate the report by repeatedly
generating the "logical page" until no more records are available.

The default destination of the report may be either the site
printer (EG: PRNTR) or an auxiliary printer. The printout is
actually routed by TQL via the TIP/30 printing facility (TIPPRINT).

The user may override the destination of the report at the time
the report is requested.

Syntax:

name : report-list ON print-file [AT END report-list] •

<--- report-list is one or more of the following --->

field-names
(report-list)
number (report-list)
ADD expression TO field
COMPUTE field = expression
HOME$
IF (expression) (report-list)
IF (expression) (report-list) ELSE (report-list)
MOVE expression TO field
NL$
READ record
READ record FROM field
READ record VIA field
SUBTRACT expression FROM field
SKIP$(number)
TAB$(number)
WHILE expression (report-list)

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

l
1.3.15

----------------------------------- -·-····--··-······-------

TQL: REPORT

Where:

name

print-file

field

number (report-list)

Page:
Section:

expression

ADD

COMPUTE

2
1.3.15

REPORT DIVISION

The report name. This must be unique within a
TQL program. At execution time the user will
request the production of this report by
referring to this report name.

The default report destination. This may be
the site printer which is called 'PRNTR', a
communications printer such as 'AUXl' or even
the name of a printer that data processing has
generated into TIP/30 (eg: PRNTR2).

the name of a data field. If the field is part
of an OCCURS clause it may be followed by the
occurrence number such as PART-NUM(3). If no
occurrence number is given then the first
occurrence is assumed. The field name may also
be subscripted by some other field. A field
used as a subscript must be a binary halfword
(ie. PIC 9(4) COMP-4). A subscript field may
be part of a record structure or
working-storage field.

If the field
subfields are
subscripting.

named is a
processed

group item all
with appropriate

indicates that the instructions coded inside
the parentheses are to be repeated the
specified number of times. This is the
simplest way to process several records. The
"loop" will be exited early if a READ
statement fails to retrieve a record from the
file.

A standard TQL expression (see section 1.3.1).

The arithmetic expression is evaluated, added
to the value of the 'field' and the result is
stored in the 'field'. Note that result fields
as well as field involved in the expression
may be subscripted (when appropriate) by
either a number or subscript field.

The arithmetic expression is evaluated, and
the result stored in the 'field'.

TQL Reference Manual
Version 2.5Rl (83/06/01)

REPORT DIVISION

HOME$

IF

MOVE

NL$

READ record

VIA field

FROM field

SUBTRACT

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

TQL: REPORT

Force a skip to a new page (top of form). The tt
system field "PAGE$" is incremented by one and
the the system field "LINE$" is set to zero.

The relational expression immediately
following the IF statement is evaluated. If
the expression evaluates "TRUE" the code which
follows in parentheses will be executed. If
the expression evaluates "FALSE" the code in
parentheses which follows the word "ELSE" will
be executed. If no ELSE clause was given TQL
continues with the next statement after the IF
clause. Nested IF clauses are supported to a
maximum depth of 10.

The arithmetic expression is evaluated and the
result is stored in the 'field'.

Force a new line. The current contents of the
print line are printed. The system field
"LINE$" is incremented by one.

Read the specified record name.

'field' is the name of the field containing
the key of the desired record.

If a record cannot be read on a 'READ VIA'
statement TQL will skip to the end of the
current repeat loop ('number (report-list)')
or to the end of the report, which ever comes
first.

If more information is to be reported even
though the READ VIA fails, then it would be
necessary to include a (dummy) repeat loop
such as: 'l (READ file VIA field)'.

'field' is the name of the field containing
(part of) the key for the secondary record.
The file is read sequentially until this first
portion of the key in the record no longer
matches the value in 'field'.

The arithmetic expression is evaluated,
subtracted from the value of the 'field' and
the result stored in the 'field'.

Page:
Section:

3
1.3.15

TQL: REPORT

Page:
Section:

TAB$(number)

SKIP$(number)

WHILE

AT END

4
1.3.15

REPORT DIVISION

TQL will position the output pointer into the
print line to the exact column specifed by
'number' •

This statement may position the output pointer
after the current column location OR before
the current column location. The user is
responsible for the results of overlapped
fields.

TQL will advance the output pointer
(horizontally) to the right by the number of
columns indicated.

The statements in parentheses following the
"WHILE" will be executed repeatedly until the
relational expression is false.

When all records have been processed the
coding following the words "AT END" will be
executed. This provides the capability to
generate final totals or summary information
of whatever kind.

This clause must appear as the last clause in
a report definition.

each report must be ended with a period.

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: REPORT
REPORT DIVISION

Example:

REPORT DIVISION.

QOH: HOME$
TAB$(15) 'PART - QUANTITY ON HAND' TAB$(70) 'PAGE' PAGE$ NL$
'PART NUMBER' TAB$(20) 'DESCRIPTION' TAB$(50) 'QUANTITY' NL$

50 (READ PARTFIL,
PM-NUM TAB$(20)

) ON AUXl.
PM-DESC TAB$(50) PM-QTY NL$

For each logical page of this report the following is done:

a new page is forced (HOME$)

a two line page title is printed.

up to 50 PARTFIL records are read.

for each record the fields PM-NUM, PM-DESC and PM-QTY are
printed on a separate line (note the NL$)

the default destination of the report is AUXl. This may tit
be overridden at execution time by the TQL user.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

-+*+-

Page:
Section:

5
1.3.15

TQLMON
MAINTAINING THE TQL DICTIONARY

~ 1.4 MAINTAINING THE TQL DICTIONARY TQLMON

•

The TQL monitor program (TQLMON) is a supplied utility that
enables the PROGRAMMER to maintain the contents of the TQL
dictionary (or control) file. TQLMON provides sub-functions which
allow the programmer to create, edit or compile file or record
definitions or TQL programs.

The programmer may use the standard TIP/30 system editor (QED)
to create and maintain the source for file, record or program
definitions. TQLMON also provides a screen-format oriented editor
that is specifically designed for editing TQL source elements.

Each of the commands of the TQL monitor is described in the
following sections. The TQLMON program is not normally used by
non-programmers (users).

TQLMON COMMAND SUMMARY

c
COMP
CP
Delete
DP
End
Help
List
LP
Mes
N
NF
NP
Print
pp
PURGE
Q
QP
Run
Summary
SP
Update
UC
UF
UP
Write
WP

- Compile file and record definitions
- Compile program (from dictionary)
- Compile program (from library or edit buffer)
- Delete files and/or records
- Delete program from dictionary
- End TQL monitor
- Display help information
- List file and/or record compilation on terminal
- List program compilation on terminal
- Generate MCS screen format(s) for a program
- enter a new record definition
- enter a new file definition
- call editor to enter a new program
- Print files and records on printer
- Print program on printer
- delete all records in a PROTOTYPE file
- call QED then compile record definition
- call QED then compile program
- execute a TQL program (same as OPEN •••)
- Summary of files and records
- Summary of programs
- Update then compile record definition
- Update control record
- Update file characteristics

Update then compile program
- Write records to library
- Write program to library

Page: 1
1.4

TQL Reference Manual
Version 2.SRl (83/06/01) Section:

TQLMON: c
COMPILE FILE/RECORD

1.4.1 COMPILE FILE/RECORD TQLMON: c

Syntax:

C file [,elt]

Where:

Example:

file The catalogued file name of a library file or the
name of an edit buffer.

elt The name of the desired element from the file.
This parameter should be omitted if the file or
record is to be compiled from an edit buffer.

C SOURCE/PAYREC

Additional Considerations:

•

The input to this command. (either an element of a library or an
edit buffer) may contain one or more file definitions or record II
definitions.

Error Conditions:
Record already exists: <record-name>

the record already exists and a new one with the same
name is not allowed. The existing record must be deleted
beforehand (see description of DELETE command following).

<file> not found <record-name> not posted.

the file named for this record does not exist.

CHAPTER I - .INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

-----------------------·--··-

1
1.4.1

TQLMON: COMP; CP

e 1.4.2

COMPILE PROGRAM

COMPILE PROGRAM TQLMON: comp; cp

The COMP command causes a TQL program to be compiled directly
from the TQL dictionary file (as opposed to compilation from a
library element or edit buffer). This command is most often used
when a record definition (or file definition) has been changed and
all programs that refer to the record have to be recompiled.

The CP command compiles a TQL program from either an edit buffer
or a library element.

Sgntax:

COMP program

CP file [,elt]

Where:

program

file

element

Example:

COMP TQLTSP

CP TIP/TQLTSP

Error Conditions:

The name of the TQL program to be recompiled. The
program must already be in the control file. A
programmer may wish to do this if some record or
file definition which the program uses has
changed.

the catalogued name of the library containing the
source for the program or the name of an edit
buffer.

the name of the element within the library. This
parameter should be omitted if the compilation is
from an edit buffer.

DUPLICATE DISPLAY NAME: <name>

Page:
Section:

a display set of that name is already defined in the
program.

1
1.4.2

TQL Reference Manual
Version 2.5Rl (83/06/01)

....__ ___________ --~--- ~----

COMPILE PROGRAM
TQLMON: COMP; CP

DUPLICATE REPORT NAME: <name>

a report of that name is already defined in the program.

File not found: <name>

the requested file does not exist.

Record not found: <name>

the requested record does not exist.

EXPR: MISSING')'

a required right parenthesis is missing in an expression.

EXPR: INCOMPATIBLE DATA FIELDS

attempting to compare. numeric to non-numeric data or
attempting arithmetic operations on non-numeric data.

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

2
1.4.2

TQLMON: DELETE
DELETE FILE/RECORD

e 1.4.3 DELETE FILE/RECORD TQLMON: delete

The Delete command will delete a single record or single file
definition from the TQL dictionary file.

Syntax:

Delete file [,record]

Where:

file

record

Example:

the name of a file defined in the TQL dictionary.

the name of a record of that file.

If 'record' is omitted the file definition is
deleted.

Del PAYMST/PAYREC

Error Conditions:
A file definition cannot be deleted until all associated record
definitions have been deleted.

Page:
Section:

1
1.4.3

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: DP
DELETE PROGRAM

1.4 .4 DELETE PROGRAM TQLMON: dp

The DP command will delete a single program from the TQL
dictionary. The executable code will be deleted as well as the
source for the program. Note that there is no recovery from this
command (unless a backup copy of the source of the program has been
stored in an element of a library).

Syntax:

DP progname

Where:

progname

Example:

DP PAYINQ

the name of a program defined in the dictionary.

Note that the name of the program is determined by
the PROGRAM-ID clause in the TQL program.

-+*+-

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

Page:
Section:

1
1.4.4

TQLMON: END
END TQLMON PROGRAM

e 1.4.S END TQLMON PROGRAM TQLMON: end

The E command will terminate interaction with the TQL monitor
program and return to the calling program or the TIP command line
(whichever is appropriate).

Syntax:

End

Page:
Section:

l
1.4.5

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: HELP
DISPLAY HELP INFORMATION

1. 4. 6 DISPLAY HELP INFORMATION TQLMON: help

The help command will display help information for the TQL
monitor or will display help information for specific commands.

Syntax:

Help [command]

Where:

command the specific command for which help is required.
If this is omitted, the help command will display
a list of all available commands.

-+*+-

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

Page:
Section:

1
1.4.6

TQLMON: LIST

e 1.4.7

LI ST F I LE/RE CORD

LIST FILE/RECORD TQLMON: list

The LIST command will display (at the terminal) the compilation
listing of a file or record definition. The listing may be
interrupted by pressing the MSG-WAIT key on the terminal.

Syntax:

List file [,record]

Where:

file

record

Example:

L PAYMST *P

the name of a file defined in the dictionary. This
may be specified using standard prefix notation.

the name of a record defined for the named file.
This may be specified using standard prefix
notation. If this parameter is omitted, only the
file specified will be listed.

This example will list the compilation output for file
"PAYMST" and all records with names beginning with "P".

Page:
Section:

1
1.4.7

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: LP
LIST PROGRAM

1.4.8 LIST PROGRAM TQLMON: lp

The LP command (list program) will display (at the terminal) the
compilation output for a program. The listing may be interrupted by
pressing the MSG-WAIT key at the terminal.

Sgntax:

LP progname

Where:

progname

Example:

LP PAYINQ

the name
This may
notation.

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

of a program defined in the dictionary.
be specified using standard prefix

-+*+-

Page:
Section:

1
1.4.8

•

•

TQLMON: MCS

e 1.4.9

CREATE SCREEN FORMATS

CREATE SCREEN FORMATS TQLMON: mes

The MCS command will direct TQL to ~enerate screen formats for
the indicated display definitions in a named TQL program. The
generated screen formats will have names as specified in the USING
clause in the DISPLAY DIVISION of the TQL program.

The user may wish to later
generated screen formats by
MSGDEF.

make enhancements to the machine
using the standard TIP/30 utility

Syntax:

Mes program [,display-name]

Where:

program

display-name

Example:

M PAYINQ *P

the name of a program defined in
This may be specified using
notation.

the dictionary.
standard pref ix

the name of the
format(s) which
is omitted, all
parameter may
notation.

display which describes the screen
are to be built. If this parameter
screen formats will be built. This
be specified using standard prefix

Note that this name is NOT the name specified in
the USING clause in the DISPLAY DIVISION.

This will build all message formaats for the displays that begin
with the letter 'P' in the program 'PAYINQ'.

Page:
Section:

1
1.4.9

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: N
DEFINE NEW RECORD

1.4.10 DEFINE NEW RECORD TQLMON: n

The N command (new record) allows the user to define a new
record definition using the TQL Editor. The TQL Editor is described
in detail in the following section.

When the N command is processed, TQLMON will call the TQL Editor
to allow the user to complete the record definition process. The
initial contents of the edit workspace includes a skeleton record
format.

When the user ends the editor, TQLMON will automatically compile
the record definition composed by the user.

Syntax:

N [file] [,record]

Where:

file name of the file which is
record. If omitted, the
appropriate "FOR" clause
subsequently prepared.

associated with the
user must include the

in the text that is

record The name of
given, the TQL
the name of
record layout.

the record. If this parameter is
Editor will automatically use it as
the 01 level item in the skeleton

Example:

N PAYROLL,PAYREC

Error Conditions:
If errors occur during the compilation of the record, the user may
return to editing the record definition by simply issuing the N
command again (with the same parameters).

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+~

Page:
Section:

1
1.4.10

TQLMON: NF
DEFINE NEW FILE

tt 1.4.11 DEFINE NEW FILE TQLMON: nf

, e

The NF command (new file) will cause the TQL monitor to display
a screen format which may be used to define the characteristics of
a file. This method may be preferable to defining a file using
keywords in a library element (as described in the previous
sect ion).

Sgntax:

NF [filename]

Where:

Page:
Section:

filename

1
1.4.11

The catalogued name of the file to be
TQL. If this parameter is provided
copy it (as the first field) into
format which is to be displayed.

defined to
TQLMON will
the screen

TQL Reference Manual
Version 2.SRl (83/06/01)

TQLMON: NF
DEFINE NEW FILE

TQLMON will display the following screen format. The user is
then able to fill in the information requested and press transmit
(XMIT) to cause the file definition to be compiled. If the user
does not press XMIT, (for example, presses MSG-WAIT), the new file
definition process will be cancelled.

/(TF$TOLFL) T Q L File Definition

File Name: File Type: Access:
Block Size: Delete flag: Index Size:

I/O routine: Record Format: Record Size:

Key Information:
Location Duplicates? Changes?

Length rel to 0 (Y/N) (Y/N)
------ -------- ----------- --------

Key 1: - -- - -Key 2: - -- - -Key 3: - -- - -Key 4: - -- - -Key 5: - -- - -
Leave cursor here and press XMIT (_)

J

Where:
The values that may be specified in the screen format are identical
to those described in the previous section ("FILE DEFINITION").

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

.2
1.4.11

TQLMON: NP
DEFINE NEW PROGRAM

tt 1.4.12 DEFINE NEW PROGRAM TQLMON: np

The NP command (new program) will cause the TQL monitor to call
the TQL Editor to enable the user to enter the source for a new TQL
program. This method may be used as an alternative to the standard
TIP/30 text editor (QED). The TQL Editor will begin with a skeleton
definition of a TQL program which may be modified by the user. When
the TQL Editor is ended, the TQLMON program will automatically
compile the program. The mechanics of the TQL Editor are described
in the next section of this manual.

Syntax:

NP [progname]

Where:

progname

Example:

NP TESTPRO

The name of the new TQL program that is to be
created. If this parameter is provided, it will
appear as the PROGRAM-ID of the skeleton program
that is used as the starting point for editing.

Will create a skeleton program with PROGRAM-ID "TESTPRO".

Additional Considerations:

If errors are encountered when the program is compiled, the user
may correct the errors merely by issuing the NP command again (with
the appropriate program name). The TQL Editor will retrieve the
source (as it was at compile time) and allow the user to resume
editing.

Page:
Section:

1
1.4.12

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: PRINT
PRINT FILE/RECORD

1.4.13 PRINT FILE/RECORD TQLMON: print

The PRINT command will generate a printed copy of the
compilation output of a file or record definition. The printout may
be routed to the site printer or an auxiliary print device. The
printout is generated using TIPPRINT (the standard TIP/30 printing
interface).

Syntax:

Print file [,record] [,dest]

Where:

Example:

file the name of a file defined in the dictionary. This
may be specified using standard pref ix notation.

record

de st

the name of the record to be printed. This may be
specified using standard prefix notation.

If record name is omitted,
compilation will be printed.

only the file

The desired destination of the printout. Default
is PRNTR (the site printer). Other possibilities
include: AUXl etc.

P PAYMST *

This will print all record defninitions for the file PAYMST.

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

1
1.4.13

TQLMON: PP
PRINT PROGRAM

e 1. 4 .14 PRINT PROGRAM TQLMON: pp

•

The PP command (print program) will generate a printed copy of
the compilation output of a TQL program. The printout may be routed
to the site printer or to an auxiliary printer. The printout is
generated using the facilities of TIPPRINT (the standard TIP/30
printing interface).

Syntax:

pp program

Where:

program

de st

Example:

[, ,dest]

the name of a program defined in
This may be specified using
notation.

the dictionary.
standard pref ix

The desired print destination. Default is PRNTR
(the site printer). Other possibilities include:
AUXl etc.

Note that "dest" is the third parameter to the PP
command. The second (omitted) parameter is
reserved for future use and should normally be
omitted •

PP PAYINQ, ,AUXl

Page:
Section:

1
1.4.14

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: PURGE
PURGE PROTOTYPE FILE

1.4.15 PURGE PROTOTYPE FILE TQLMON: purge

The PURGE command (purge prototype file) may be used to delete
all records that are contained in a PROTOTYPE . file. This command
will only operate on PROTOTYPE files.

Syntax:

PURGE filename

Where:

filename

Example:

PURGE TESTFILE

The name of the prototype file that is to be
purged.

This delete all prototype record for the prototype file known as
TESTFILE.

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

l
1.4.15

•

•

TQLMON: Q
EDIT RECORD DEFINITION

tit 1.4.16 EDIT RECORD DEFINITION TQLMON: q

The Q command (QED record) allows the programmer to use the
standard TIP/30 text editor (QED) to modify an existing record
definition. TQLMON will call the text editor (QED) to enable
editing of the record definition. When the user ends the
interaction with QED with the QED "E" command, TQLMON will
automatically recompile the record definition.

Syntax:

Q filename,record

Where:

filename

record

Error Conditions:

name of the file with which the record is
associated.

name of the record which is to be edited.

If errors occur in the compilation of the record definition, the
user may resume editing the record definition simply by issuing the
Q command again (with the same parameters).

Page:
Section:

1
1.4.16

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: QP
EDIT TQL PROGRAM

1.4.17 EDIT TQL PROGRAM TQLMON: qp

The QP command (QED program) allows the programmer to use the
standard TIP/30 text editor (QED) to modify the source of an
existing TQL program. TQLMON will call the text editor (QED) to
allow editing of the program source. When the user ends the
interaction with QED with the QED "E" command, TQLMON will
automatically recompile the TQL program.

Syntax:

QP progname

Where:

progname The name of the TQL program to be edited.

Error Conditions:
If errors occur in the compilation of the program, the programmer
need only re-enter the QP command to resume editing the program
source.

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

l
1.4.17

TQLMON: RUN, OPEN
RUN PROGRAM

e 1.4.18 RUN PROGRAM TQLMON: run, open

•

The Run command (run program) allows the programmer to execute a
TQL program. This command is provided only to eliminate .the need to
end the TQL monitor and then use the OPEN transaction.

When the TQL program completes, control will return to the TQL
monitor (TQLMON) program.

Syntax:

Run program
OPEN program

Where:

program

Example:

R

Page:
Section:

PARTINQ

1
1.4.18

The name of a TQL program defined
dictionary.

-+*+-

in the

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: s
SUMMARIZE FILE/RECORD

1.4.19 SUMMARIZE FILE/RECORD TQLMON: s

The Summarize command will display a list of
and/or record definitions that are presently in the
File and/or record names may be selected by pref ix.
be interrupted by pressing MSG-WAIT.

Syntax:

S file [,record]

Where:

existing file
TQL dictionary.
The listing may

file the name of a file defined in the dictionary. This
may be specified using standard prefix notation.

record the record name to be listed. This may be
specified using standard prefix notation. If
omitted, only file entries will be listed.

Example:

S PAYMST *

Summarize all records for the file "PAYMST".

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

1
1.4.19

TQLMON: SP
SUMMARIZE PROGRAMS

4lt 1.4.20 SUMMARIZE PROGRAMS TQLMON: sp

The SP command (summarize programs) will display a list of
program names that are presently in the TQL dictionary. The listing
may be interrupted by pressing MSG-WAIT.

Syntax:

SP

Where:
There are no parameters to this command.

Example:

SP

Additional Considerations:

The programs that are in the dictionary are listed (along with
their program description). The list is in the order that the
programs were entered into the dictionary (chronological).

Page:
Section:

1
1.4.20

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: u
UPDATE RECORD DEFINITION

1.4.21 UPDATE RECORD DEFINITION TQLMON: u

The u command (update record) allows the user to change a record
definition using the TQL Editor. The TQL Editor is described in
detail in the following section.

When the U command is processed, TQLMON will call the TQL Editor
to allow the user to modify the record definition. When the user
ends the editor, TQLMON will automatically compile the modified
record definition.

Syntax:

U file,record

Where:

file Name of the file which is associated with the
record.

record Name of the record.

Example:

N PAYROLL,PAYREC

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

1
1.4.21

TQLMON: UC
UPDATE CONTROL HEADER

- 1 • 4 • 2 2 UPDATE CONTROL HEADER TQLMON: UC

This command is used to maintain the control record in the TQL
dictionary. The control record contains (an optional) READ and/or
WRITE password to control dictionary access and a list of TIP/30
user-ids. The user-ids in the list are authorized to make changes
to the contents of the TQL dictionary (ie: compile, delete etc).

Syntax:

UC

Where:
no parameters.

Example:

UC

Page:
Section:

1
1.4.22

TQL Reference Manual
Version 2.5Rl (83/06/01)

UPDATE CONTROL HEADER

TQLMON will display the screen format shown below.
alter the list of user-ids in the fields provided and
effect the change. Pressing MSG-WAIT will abort the
with no changes to the control record.

TQLMON: UC

The user may
press XMIT to
"UC" command

r==~
TIP/30 TOL DEFINITION FILE CONTROL RECORD (TF$0LC)
==

Free Chain: --> __ _
Fi le Chain: --> __ _

Session Chain: --> __ _
Directory Chain: --> __ _

Next Available Block:

Control Record Created: __ ! __ ! __ at ____ __ Read Password [___ l
Update Password [J

Users:

--- --- --- --- -

-+*+-

Page: CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY Section:

J

2
1.4.22

•

•

TQLMON: UF
UPDATE FILE DEFINITION

tit 1.4.23 UPDATE FILE DEFINITION TQLMON: uf

The UF command (update file) will cause the TQL monitor to
display a screen format which may be used to change the definition
of a file. This method may be preferable to defining a file using
keywords in a library element (as described in the previous
section).

Syntax:

UF filename

Where:

Page:
Section:

filename

1
1.4.23

The name of the file which is to be changed.

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: UF
UPDATE FILE DEFINITION

TQLMON will display the following screen format. The user is
then able to alter the information shown and press transmit (XMIT)
to cause the file definition to be compiled. If the user does not
press XMIT, (for example, presses MSG-WAIT), the file change
process will be cancelled.

(TF$TQLFL) T Q L File Definition

File Name: File Type: Access:
Block Size: Delete flag: Index Size:

I/O routine: Record Format: Record Size:

Key Information:
Location Duplicates? Changes?

Length rel to 0 (Y/N) (Y/N)
------ -------- ----------- --------

Key 1 : - -- - -Key 2: - -- - -Key 3: - -- - -Key 4: - -- - -
Key 5: - -- - -

Leave cursor here and press XMIT (_)

Where:
The values that may be specified in the screen format are identical
to those described in the previous section ("FILE DEFINITION").

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

2
1.4.23

TQLMON: UP
UPDATE PROGRAM

tit 1.4.24 UPDATE PROGRAM TQLMON: up

The UP command (update program) will cause the TQL monitor to
call the TQL Editor to enable the user to modify the source for an
existing TQL program. This method may be used as an alternative to
the standard TIP/30 text editor (QED). When the TQL Editor is
ended, the TQLMON program will compile the program. The mechanics
of the TQL Editor are described in the next section of this manual.

Syntax:

UP progname

Where:

progname

Example:

UP TESTPRO

Page:
Section:

1
1.4.24

Name of the TQL program that is to be updated.

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLMON: WRITE
WRITE FILE/RECORD

1.4.25 WRITE FILE/RECORD TQLMON: write

The WRITE command directs TQL to write the source (which is
stored in the TQL dictionary) for a file or record to an OS/3
library element. This function may be performed as part of a backup
scheme or to facilitate transporting TQL file or record definitions
to other sites.

Syntax:

Write file [,record] lib elt

Where:

file

record

lib

elt

Example:

the name of a file defined in the dictionary.

the name of a record defined for the specified
file. If omitted, only the file definition will be
written.

the output library file name.

the output library element name.

W PAYMST,PAYREC,SOURCE,SVREC

This example will write the source for record "PAYREC" of file
"PAYMST" from the TQL dictionary to the library/element:
SOURCE/SVREC

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

-+*+-

Page:
Section:

1
1.4.25

TQLMON: WP
WRITE PROGRAM TO LIBRARY

e 1. 4. 26 WRITE PROGRAM TO LIBRARY TQLMON: wp

This command will copy the source statements of a TQL program to
a specified OS/3 library element. This function may be done as part
of a backup scheme or to facilitate transporting TQL programs to
other sites.

Syntax:

WP program lib elt

Where:

program

lib

elt

Example:

the name of a program defined in the dictionary.

the output library file name.

the output library element name.

WP PAYINQ SOURCE SVINQ

This example will copy the source for the TQL program "PAYINQ"
to the library element SOURCE/SVINQ.

Page:
Section:

1
1.4.26

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQLEDT
THE TQL TEXT EDITOR

1.5 THE TQL TEXT EDITOR TQLEDT

The TQL editor is a screen format oriented editor which has been
designed specifically for use with TQL. TQLEDT will display a full
screen of text (approx 17 lines). The user may directly alter the
text which is displayed or may enter commands to display other
portions of text or to move or copy text.

The command repertoire of TQLEDT
standard TIP/30 text editor, but
requirements.

is less extensive than the
is sufficient for TQL editing

There are no search or substite commands in the TQL editor.
Searching is accomplished by using the "Forward Page" and the
"Backward Page" function keys. Substitution is merely a matter of
entering the desired text in place of the original text.

Lines in the edit work area are displayed with line numbers that
are used as reference points by the various commands.

TQL Editor Commands

ADd
COpy
DElete
ENd
HElp
MOve
PR int
QUit

Fl/FS
F2/F6
F3/F7

- ADD lines
- COPY lines
- DELETE lines
- END editing (and cause automatic compilation by TQLMON)
- HELP please!
- MOVE lines
- PRINT (display) lines on screen
- QUIT editing (and suppress automatic compilation)

- refresh screen display
- display next screen (Forward Page)

display previous screen (Backward Page)

MSGWAIT - same as QUIT command

CHAPTER I - INTRODUCTION
THE TQL TEXT EDITOR

Page:
Section:

1
1.5

TQLEDT
THE TQL TEXT EDITOR

TQLEDT (initially) displays the screen format shown below (the
lines will contain the first 1'7 lines of text). The user may enter
explicit commands or simply modify the text that is displayed and
press XMIT from the first cursor resting location.

Note that there is a field for entering a command, a starting
line number, ending line number, or an "after" .line number. Each
command has specific requirements which are described in the
following sections.

<<<TQL Editor>>> ' . 7. 10 20 30 40 50 60 70 ...
: : -- : : -- : : -- : : -- : : -- : : -- : : -- : : -- : : -- : : - : : -- : : -- : : -- : : -- : : -- : : -- [_] : : -- : 7. 10 20 30 40 50 60 70 .. :

.,Enter command: Start 1 ine: End 1 ine: After 1 ine: - -- -- --
Text:

[_]

\. _.,

Page: 2 TQL Reference Manual
Section: 1.5 Version 2.5Rl (83/06/01)

TQLEDT: ~o
ADD LINES

1.5.1 ADD LINES TQLEDT: ad

The ADd command allows the user to add new lines of text after a
specific line number. The user should enter "AD" as the command and
specify an "after" line number.

If the text to be added is two lines or less the user may enter
them directly in the "Text" fields of the screen format and press
transmit from the second cursor resting location.

If more than two lines are to be added, the user should leave
the "Text" fields blank and simply specify the "after" line number.
TQLEDT will respond by re-displaying the screen with the first line
containing the contents of the specified "after" line (protected).
The user may then enter any desired text below the first line and
press transmit at the first cursor resting location.

Trailing lines which are entirely blank will not be added.

The "start line" and "end line" fields are ignored by the ADD
command.

Pressing MSG-WAIT while in ADD mode will cancel the ADD command.

-+*+-

CHAPTER I - INTRODUCTION
THE TQL TEXT EDITOR

Page:
Section:

1
1.5.1

•

TQLEDT: co

e 1.5.2

COPY LINES

COPY LINES TQLEDT: co

The COpy command allows the user to copy a range of lines from
one part of the edit work area to a point which is "after" another
line.

The user should enter "CO" as the command and provide the
starting line and ending line to be copied as well as the number of
the line which is ahead of the desired location of the copied text.

For example, to copy lines 1 through 8 after line 17, the user
would specify the command as "CO", the starting line as "l", the
ending line as "8" and the after line as "17". TQLEDT will copy the
lines after line 17 and ahead of the line which was line 18. The
lines originally at lines 1 through 8 would remain unchanged.

-+*+-

Page: 1
1.5.2

TQL Reference Manual
Version 2.5Rl (83/06/01) Section:

TQLEDT: DE
DELETE LINES

1.5.3 DELETE LINES TQLEDT: de

The DElete command allows the user to delete a range of lines.
As a precaution against fumble-finger syndrome, TQLEDT will not
allow the deleting of lines that are not currently displayed in the
upper portion of the display.

The user must enter "DE"
number and the ending line
lines from the starting line
INCLUSIVELY.

as the command, the starting line
number. The TQL Editor will delete the

number to the ending line number

If the range of lines specified is not contained entirely within
the lines displayed in the upper portion of the display an error
message will be displayed and the delete request will not be
honoured.

-+*+-

CHAPTER I - INTRODUCTION
THE TQL TEXT EDITOR

Page:
Section:

l
1.5.3

TQLEDT: EN

e 1.5.4

END TQL EDITOR

END TQL EDITOR TQLEDT: en

The ENd command signals the TQL Editor that the user has
completed all desired editing. The TQL Editor will terminate
normally. The program which called the TQL Editor (normally the TQL
Monitor - TQLMON) will (by default) immediately begin compiling the
contents of the edit workspace. (See previous section on the TQL
Monitor - in particular the description of the N, NP, U, UP
commands).

If errors occur during that compilation process, the user can
simply re-enter the appropriate TQLMON command and correct the
errors.

-+*+-

Page: l
1.5.4

TQL Reference Manual
Version 2.5Rl (83/06/01) Section:

TQLEDT: HE
HELP FOR TQL EDITOR

1. 5. 5 HELP FOR TQL EDITOR · TQLEDT: he

The HElp command will display a screen containing the current
help information for the TQL Editor. The following screen format is
representative of what is displayed:

r T I P I 3 O Q u e r y L a n g u a g e E d i t o r

Command Function
======= ===

AD
co
OE
EN
MO
PR
OU
RE
WR

add text after 'Start line'
copy 'Start line' thru 'End line' after 'To line'.
delete 'Start line' thru 'End line'.
end this editor. (Module will then be compiled)
move 'Start line' thru 'End line' after 'To line'
display from 'Start line'
quit this editor. (Module will not be compiled)
read an element in at 'Start line' (default is last line)
write 'Start line' thru 'End line' to an element

Press XMIT to continue:

-+*+-

Page: CHAPTER I - INTRODUCTION
THE TQL TEXT EDITOR Section:

1
1.5.5

TQLEDT: MO

e 1.5.6

MOVE LINES

MOVE LINES TQLEDT: mo

The MOve command is identical to the COPY command (see previous
section) with the exception that the moved lines are NOT left in
their previous location.

The move command requires the starting, ending and after line
numbers be specified.

-+*+-

Page: 1
1.5.6

TQL Reference Manual
Version 2.5Rl (83/06/01) Section:

TQLEDT: PR
PRINT (DISPLAY> LINES

1.5.7 PRINT (DISPLAY) LINES TQLEDT: pr

The PRint command will display a range of line numbers in the
upper portion of the screen. The user must enter the "PR" command
in the command field and then must specify a starting line number.

If an ending line number is not specified the TQL editor will
display as many lines as possible (to a maximum of 17) starting
with the specified starting line number.

-+*+-

CHAPTER I - INTRODUCTION
THE TQL TEXT EDITOR

Page:
Section:

1
1.5.7 •

TQLEDT: QU

e 1.5.8

QUIT TQL EDITOR

QUIT TQL EDITOR TQLEDT: qu

The QUit command causes the TQL editor to abort the editing
session. The calling. program (normally TQLMON) will NOT attempt an
automatic compilation of the contents of the edit workspace. The
contents of the work space will be lost.

If changes had been made to the contents of the workspace, the
TQL editor will warn the user and ask for confirmation of the QUIT
command.

The QUIT command is normally used only if the contents have been
damaged by a poor choice of previous commands.

-+*+-

Page: 1
1.5.8

TQL Reference Manual
Version 2.5Rl (83/06/01) Section:

TQLEDT: FKEYS
TQL EDITOR FUNCTION KEYS

1. 5. 9 TQL EDITOR FUNCTION KEYS TQLEDT: fkeys

The TQL Editor recognizes certain function
commands. Invalid function keys will result in an
displayed on the screen.

keys as special
error message

Fl I FS

F2 I F6

F3 I F7

MSG-WAIT

Function key 1 (or 5) causes TQLEDT to resend the
last output screen. This can be necessary if the
screen display was altered unintentionally or by
the recpetion of an unsolicited message.

Function key 2 (or 6) is the "Forward Page" key.
When this function key is pressed TQLEDT will
display the next set of source lines. This is
equivalent to advancing the display by 17 lines.

Function key 3 (or 7) is the "Backward Page" key.
When this function key is pressed TQLEDT will
display the previous set of source lines. This is
equivalent to displaying the previous 17 lines.

Pressing MSG-WAIT will signal the
that the user wishes to abort
(equivalent to the QUIT command).
been made, the user will receive
given a chance to reconsider.

-+*+-

TQLEDT program
the edit session
If changes had
a warning and be

CHAPTER I - INTRODUCTION
THE TQL TEXT EDITOR

Page:
Section:

1
1.5.9

TQL: OPEN

e 1.6

RUNNING A TQL PROGRAM

RUNNING A TQL PROGRAM TQL: open

The supplied transaction code "OPEN" is used to begin execution
of a TQL program. The TQL user.may choose to OPEN a particular
(TQL) program or may choose to view a menu of available TQL
programs and make a selection from the menu. In either case, once a
particular program has been selected, TQL will display a standard
TQL command screen.

The commands available include capabilities to:

request the generation of a pre-defined report

request the display of data using a pre-defined display
format

list selected fields (at the terminal using a free-format
display)

print selected fields (at the site printer or an
auxiliary printer)

display or report data according to constraints (IF field
= •••)

The user may select certain subsets of the available data by
including in his command certain conditions that must be met before
data is to be displayed.

To specify the conditions the user would normally use the "IF"
statement. The "IF" statement contains field comparisons and/or
other constraints that the data must meet before being included in
a particular display.

The following sections describe the initial execution of a TQL
program and the various commands that are available to the TQL
user.

Page:
Section:

1
1.6

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: OPEN
TQL PROGRAM EXECUTION

1. 6 .1 TQL PROGRAM EXECUTION TQL: open

The OPEN transaction causes the TQL interpreter to "execute" a
TQL program. All TQL programs operate interactively to allow the
user to enter commands which are processed by the TQL program.

Syntax:

OPEN [progname [,initial command]]

Where:

progname Name of the TQL program to run. If this program
name is not specified, TQL will react by
displaying a menu of available programs. The user
may enter the selection number desired and press
transmit (XMIT) or press MSG-WAIT to terminate the
OPEN transaction.

r TIP/30 Query Language --- Summary of available programs {TF$TQMNU} '

Enter selection number : (-) - [Function key 2 for next group]
and press XMIT [MSG WAIT to end program]

Selection Name Description

-
-
-
-
-
-

-
-
-
-

-
-

J

-

CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.1

TQL: OPEN
TQL PROGRAM EXECUTION

command This optional initial command may be specified if
the user wishes to execute ONLY this one command.
The inclusion of this initial command merely
bypasses the display of the standard TQL command
screen (since the command is already known). When
this command is completed (successfully) the OPEN
transaction will terminate normally.

If the program selection is valid the following menu screen is
displayed. This screen format is used to enter all interactive TQL
commands.

r TIP/30 Query Language \

Available displays:

Available reports:
Summary of commands: ADD, END, UPDATE, etc ..

Please enter your commands on the following 3 1 ines: .,.

- + -

-+*+-

-

Page: 2 TQL Reference Manual
Section: 1.6.l Version 2.5Rl (83/06/01)

TQL: DISPLAY
PREDEFINED DATA DISPLAY

1.6.2 PREDEFINED DATA DISPLAY TQL: display

The TQL
pre-defined
name which
effectively
format of
must enter

user may request that data be displayed according to a
display format. Each pre-defined display format has a

was assigned by the programmer. The display format
describes which fields will be displayed and the visual
the display. To request a particular display, the user

a command of the following format.

Syntax:

display-name [IF expr
[BY field
[FROM key
[TO key

]

Where:

displayname

IF expr

BY field

FROM key

TO key

[SUM field

]
]
]
field . . .]

The name of the desired pre-defined display. A
list of available display names that have been
programmed is given at the top of the TQL command
screen.

The IF clause may be included to qualify the data
to be displayed. The expression which follows the ~
word "IF" may include field comparisons (Eg: IF ~
PRICE > 500) and/or computations (Eg: PRICE *
QUANTITY< 100000).

The complete description of TQL expressions is
described in section 1.3.1.

Indicates that the display is to be produced in
ascending order by the specified field name. The
field name specified must be defined as a "key"
for the file that is being accessed.

If this clause is included, it must precede any
use of the "FROM" or "TO" clauses.

Indicates that the display is to begin with the
first record which has a key greater than or equal
to the key given.

Indicates that the display is not to go beyond
records which have a key greater than or equal to
the specified key.

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

Page:
Section:

1
1.6.2

TQL: DISPLAY

SUM field

Example:

PREDEFINED DATA DISPLAY

Specifies one (or more) fields which are to be
summed by TQL. At the end of the display (or upon
returning prematurely to the TQL command screen)
the total, average and count of each specified
field will be shown. Fields specified must be
numeric fields.

DISPl IF INVOICE-TOTAL > 5000 SUM INVOICE-AMT UNIT-PRICE

This example would request a pre-defined display named "DISPl".
The display would only be produced if the field "INVOICE-TOTAL" has
a value greater than 5,000. At the end of displaying all data, the
total and average of both "INVOICE-AMT" and "UNIT-PRICE" will be
displayed. The count of the number of items that was used to
compute the average will also be shown. Note that the total of
UNIT-PRICE might be rather meaningless in practice, but the average
may be very interesting.

Page:
Section:

2
1.6.2

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: ADD
ADD RECORD

1. 6. 3 ADD RECORD TQL: add

The ADD command allows the user to place new records in the
file. It will display an empty screen which must be filled in and
transmitted to the program.

Syntax:

ADD <display-name>

Where:

display-name name of display statment in program.

Additional Considerations:

The screen is displayed with no initial data; the user must enter
the appropriate data and press XMIT.

When TQL receives the data it will verify it
VERIFY clauses and ON ADD/ON WRITE clauses. If
the terminal operator will be notified. The
should correct the data in error and try again.

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

according to any
errors are detected

terminal operator

Page:
Section:

1
1.6.3

TQL: COUNT

COUNT RECORDS

e 1.6.4 COUNT RECORDS TQL: count

The COUNT command will count records based on the <expr>,
starting position, and ending position in the file.

Syntax:

COUNT record-name [IF <expr>]
[BY keyn] [FROM key] [TO key]
[SUM field]

Where:
Parameters are the same as previously described.

Example:

COUNT PAY-REC IF TIMES-RUN > 5
SUM BASIC-CHRG TOTAL-CHRG

Page:
Section:

1
1.6.4

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: DELETE
DELETE RECORD

1. 6. 5 DELETE RECORD TQL: delete

The DELETE command will display the selected record. The
informational message "Press F2 to delete record" will also appear
on the screen. The terminal operator should verify that the
displayed record is indeed the record to be deleted. To delete the
displayed record Function key 2 (F2) must be pressed. If any other
key is pressed, TQL will NOT delete the displayed record and return
the user to the main prompt screen.

Syntax:

DELETE display-name key

Where:
Same parameters as before.

Example:

DELETE COST 'AEI00020'

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

Page:
Section:

1
1.6.5

•

TQL: ENTER

-- 1.6.6

ENTER RECORDS

ENTER RECORDS TQL: enter

The ENTER command is equivalent to multiple uses of the ADD
command. TQL will repeatedly display the specified display-name so
that the terminal operator may enter new records to the file. To
terminate the ENTER command, the terminal operator must press
MSG-WAIT. This causes TQL to return to the main prompt screen. The
message "record not added" signals that the ENTER operation has
been completed (the last screen - at the time of MSG-WAIT - was not
added to the file).

Syntax:

ENTER <display-name>

Where:

display-name name of display statment in program.

Additional Considerations:

The screen is displayed with no initial data. The user must enter
the data and press transmit.

When TQL receives the data it will verify it according to any
VERIFY clauses and ON ADD/ON WRITE coding. If errors are detected
the terminal operator will be notified. The terminal operator
should correct the data in error and try again.

Page:
Section:

1
1.6.6

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: END/CLOSE
END SESSION

1.6.7 END SESSION TQL: end/close

The END command terminates the current session. The optional
'CLOSE' command is equivalent.

Syntax:

CLOSE
END

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

Page:
Section:

1
1.6.7

TQL: HELP
TQL HELP

1.6.8 TQL HELP TQL: help

The HELP command will display a screen with a summary of
available commands.

Syntax:

HELP <session-name>

Where:
The following screen is displayed.

TIP/30 Query Language ... run time commands

display-name [IF expression] [FROM key] [TO key] [BY field]
[SUM fields]

ADD display-name : add new record
DELETE display-name : delete record
END : end program
HELP : display this screen
OPEN program-name : open new TQL program
PRINT report-name [ON file] : print report
SHOW display-name : display field names
UPDATE display-name key : update a record

Current program:
Available displays:

Available reports:

Enter your command and press XMIT •

\.

Page:
Section:

1
1.6.8

-+*+-

used

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: LIST
FREE FORMAT LIST

1. 6. 9 FREE FORMAT LIST TQL: list

The LIST command may be used to produce an ad
selecting records based on the <expr>, starting
ending position in the file. The selected records are
groups of 4 on the terminal. The listing will be
necessary) at 80 columns.

hoc display
position, and
displayed in
truncated (if

Syntax:

LIST (field-names) [IF <expr>]

Where:

[BY keyn] [FROM key] [TO key]
[SUM field]

(field-names) a list of field names
separated by either
field name is used to
be read.

Example:

LIST (CUST-NAME CUST-DATE CUST-DUE)
IF TIMES-RUN = 0

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

enclosed in parentheses and
commas or spaces. The first

determine which record is to

Page:
Section:

1
1.6.9

TQL: NEXT

DISPLAY NEXT SCREENFULL

4lt 1.6.10 DISPLAY NEXT SCREENFULL TQL: next

The NEXT command continues displaying records from the file from
the last record displayed. Function key 2 (F2) equivalent to the
NEXT command.

Syntax:

NEXT

Page:
Section:

1
1.6.10

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: OPEN
OPEN NEW PROGRAM

1.6.11 OPEN NEW PROGRAM TQL: open

The OPEN command will END the current TQL program and execute
the TQL program specified as a parameter to the OPEN command.

Syntax:

OPEN <program-name>

Where:

program-name The name of the TQL program to execute.

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

Page:
Section:

1
1.6.11

TQL: PRINT

tt 1.6.12 PRINT A REPORT

The PRINT command will
be selected based on the
position position in the
all records from the file
overide the default print

Syntax:

PRINT A REPORT

TQL: print

generate the pre-defined report. Data may
<expr>, starting position, and ending
file. This command will continue to print
which satisfy the <expr>. The user may
destination by using the "ON" clause.

PRINT report-name [IF <expr>]
[BY keyn] [FROM key] [TO key] [ON file]

Where:
Parameters are the same as previously described.

ON file

Example:

a valid printer file name. This may be the name of
a printer generated into the TIP/30 system, PRNTR
or AUXl.

PRINT REC-A IF TIMES-RUN = 0 ON AUXl

Page:
Section:

1
1.6.12

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: PRINT
FREE FORMAT PRINT

1.6.13 FREE FORMAT PRINT TQL: print

The PRINT command may also be used to produce an ad hoc report
selecting records based on the <expr>, starting position, and
ending position in the file. The user specifies which fields are to
be printed (instead of specifying a pre-defined report name). The
report will continue with all records that satisfy the given
expression. The destination of the printed report may be changed
(from the default of the site printer) by using the "ON" clause.

Syntax:

PRINT (field-names) [IF <expr>]

Where:

[BY keyn] [FROM key] [TO key] [ON file]
[SUM field]

(field-names) A list of field names enclosed in parentheses and
separated by either commas or spaces. The printed
fields must be able to fit on one print line (132
characters) otherwise truncation will occur. The
first field named is used to determine which
record is read.

ON file a valid printer file name. This may be the name of a 1

a printer generated into the TIP/30 system, PRNTR ~
or AUXl.

Example:

PRINT (CUST-NAME CUST-DUE CUST-DATE)
IF TIMES-RUN = 0 ON AUXl

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

Page:
Section:

1
1.6.13

TQL: SHOW
SHOW FIELD NAMES

~ 1.6.14 SHOW FIELD NAMES TQL: show

The SHOW command allows the user to get a list of all field
names in a given display.

Sgntax:

SHOW display-name

Where:

display-name

Page:
Section:

1
1.6.14

The name of a pre-defined display. The names of
the fields that are referenced by this display
will be shown. Field names that have the suffix
":9" are numeric fields (the ":9" is not part of
the field name - merely a notation).

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01}

TQL: UPDATE
UPDATE RECORD

1.6.15 UPDATE RECORD TQL: update

The UPDATE command will display the record selected. The user
may then update the information on the screen and transmit. The
updated record is then written to the file and the main prompt
screen is displayed for the next command.

Syntax:

UPDATE <display-name> [<from-clause>] [IF <expression>]

Where:
Same parameters as before.

Example:

UPDATE CUST IF AMOUNT-DUE > 5000
UPDATE CUST FROM 'AEI00020'
UPDATE CUST 'AEI00020'

Additional Considerations:

Function key 4 (F4) may be pressed after a record is displayed.
This will re-display the same record for update.

If you decide not to proceed with the update press MSG-WAIT to t9
cancel the update.

CHAPTER I - INTRODUCTION
RUNNING A TQL PROGRAM

-+*+-

Page:
Section:

l
1.6.15

TQL: FN KEYS
USE OF FUNCTION KEYS

tt 1.6.16 USE OF FUNCTION KEYS TQL: fn keys

Page:
Section:

Fl,

F2,

1
1.6.16

FS

F6

F3

F4

F9

will re-display the current screen.

will proceed to the next screen of data.

will return to the menu screen

will prepare to update the last displayed record.

get more detail records.

-+*+-

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL: CALL TQL
CALLING TQL FROM TIP PROGRAM

1. 7 CALLING TQL FROM TIP PROGRAM TQL: call tql

A TQL program may be invoked by another transaction program by
using the TIPSUB or TIPXCTL subroutine to transfer control to the
transaction code "TQL".

TQL expects the CDA to contain the following information (the
structure of the CDA is assumed to be that described by the copy
book "TC-CDA" in library "TIP" - refer to the description of this
layout in the PCS section of this manual):

CDA-PARAM (1)

CDA-TEXT

Example:

MOVE 'TQL'

MOVE SPACES

MOVE 'PARTINQ'

CALL 'TIPSUB'.

The name of the TQL program to execute

(optional) single initial TQL command

Eg: REPl IF PART-NO = '123XV'

TO PIB-TRID.

TO CDA.

TO CDA-PARAM (1).

IF NOT PIB-GOOD
GO TO ERROR-CALLING-TQL.

CHAPTER I - INTRODUCTION
CALLING TQL FROM TIP PROGRAM

Page:
Section:

1
1.7

-!

I

TQL: WORDS
RESERVED WORDS

- 1.8 RESERVED WORDS TQL: words

e

The folowing words have reserved meaning to TQL and may not be
used as data field names.

ACCEPT
ALLOW

BY

CALL
CLOSE

DATA
DELETE
DECLARATIVES

ELSE
ENTER

FILE

GIVING

HIGH-VALUE

ID
IN
IS

KEY

LESS

MINUS
MORE$

Page:
Section:

1
1.8

ADD
AND

CASE
COMPUTE

DATE
DISPLAY

END
ERROR

FOR

GO

HIGH-VALUES

IDENTIFICATION
INSPECT

LIST

MOVE

ADD
AT

CASEOF
COPY

DAY
DIVIDE

EQUAL
EXIT

FROM

GOTO

HOME$

IDENTIFIER
INTO

LOW-VALUE

MULTIPLY

ALL

CHANGE
COUNT

DEFAULT
DIVISION

EQUALS

GREATER

IF
INVOKE

LOW-VALUES

MUST

TQL Reference Manual
Version 2.5Rl (83/06/01)

RESERVED WORDS

NEGATIVE NEXT
NOT NUMERIC

OF ON

PERFORM PLUS
PRINT

QUOTE QUOTES

RANGE READ
REPLACING REPORT

SEARCH SECTION
SENTENCE SET
SPACE SPACES

TAB$ THAN
THRU TIME

UNTIL UP

VARYING VERIFY

WHEN WHERE

ZERO ZEROES

CHAPTER I - INTRODUCTION
RESERVED WORDS

NL$

OPEN

POSITIVE

RECORD
RETURN

SECURITY
SHOW
SUBTRACT

THEN
TIMES

UPON

VIA

WRITE

ZEROS

TQL: WORDS

NO

OR

PROCEDURE

REMAINDER
ROUNDED

SELECT
SKIP$
SUM

THROUGH
TO

USING

Page:
Section:

2
1.8

-

TQLINT

e 1.9 INITIALIZING TQL DICTIONARY

This section
(control) file.
programmer.

describes
It is of

INITIALIZING TQL DICTIONARY

TQLINT

the maintenance of the TQL dictionary
interest primarily to the systems

The dictionary file is known by the logical file name TQL$CTL.
It is a direct access file. It may be created by the user as DAM,
or direct MIRAM (DMIRAM). It should be allocated at least 5
cylinders with a three cylinder increment. This file is generated
into TIP/30 as follows.

FILE TQL$CTL,DMIRAM BLKSIZE=512 RECSIZE=512 HOLD=UP.

The file is formatted using an online program called TQLINT.
This program should be catalogued for master use only. It will
prompt for a password to control access to the file. If a password
is supplied, the password is then required whenever the dictionary
file is updated (compilation etc .•.).

The user who initializes the control file (by executing the
transaction TQLINT) is entered as the only user who may update the
control file. If other users (programmers) are to be allowed to
modify the control file, then the TQL monitor program (TQLMON) "UC"
command may be used by the initializing user to add other user-ids
to the list of those authorized to modify the control file.

If TQL is to be heavily used you may wish to make the file
resident to reduce TIP/30 swapping load.

One technique for testing new TQL programs is to have a second
control file catalogued in the programming group:

In TIPGEN:

FILE TQL$TST,DMIRAM BLKSIZE=512 RECSIZE=512 HOLD=UP.

In TIP Catalogue:

Page:
Section:

FILE TQL$CTL LFD=TQL$TST SECUR=PROG GROUP=EDP.

1
1.9

TQL Reference Manual
Version 2.5Rl (83/06/01)

QB$LST
LISTING THE TQL DICTIONARY FILE

1.10 LISTING THE TQL DICTIONARY FILE QB$LST

The TQL dictionary file (TQL$CTL) may be listed by a batch
utility program supplied by Allinson-Ross. This batch program is
capable of listing record definitions, file definitions, and TQL
programs.

The program accepts control stream options that may be used to
select programs by group affiliation or records by file membership.

If no control stream options are specified the program assumes
that the entire TQL dictionary is to be listed.

If control stream options are given dictionary information will
be listed only for the specified group(s) or file name(s).

Syntax:

II JOB TQLPRINT,,COOO
II TIPFILES
II LBL TIP$TQL
II DD ACCESS=SRD
II LFD TQL$CTL
II EXEC QB$LST,TIP
1$

I*
I&

Where:

GROUPS=grp(s)
FILES=file(s)

grp(s)

file(s)

A list of group names (separated by a comma). If
this keyword is used only programs which may be
accessed by one of these groups will be listed.

Standard pref ix notation may be employed to
specify a group name. Eg: *P means all groups with
names starting with "P".

A list of file names (separated by a comma). If
this keyword is used record and file definitions
will be listed only for the files specified.

Standard pref ix notation may be employed to
specify a file name.

CHAPTER I - INTRODUCTION
LISTING THE TQL DICTIONARY FILE

Page:
Section:

l
1.10

QB$LST
LISTING THE TQL DICTIONARY FILE

Example:

GROUPS=ARC,EDP

This group specification directs the QB$LST program to list only
programs that are available to groups "ARC" and/or "EDP".

Page:
Section:

2
1.10

TQL Reference Manual
Version 2.5Rl (83/06/01)

REORGANIZING THE TQL DICTIONARY FILE
QB$DMP

1.11 REORGANIZING THE TQL DICTIONARY FILE QB$DMP

The TQL dictionary file (TQL$CTL) may be reorganized by using
the supplied utility program QB$DMP. This program can "dump" the
TQL dictionary file to either tape or disk and perform the
corresponding "restore" operation. The "restore" operation will
have the effect of condensing the TQL dictionary file.

For a DUMP operation, the program requires an output file with
an LFD name of "TQL$DMP". This file may be either tape or disk
(sequential or non-indexed MIRAM).

For a RESTORE operation, the file "TQL$DMP" (that was produced
by a prior DUMP operation) becomes the input.

The type of operation (DUMP or RESTORE) and the type of device
used for the TQL$DMP file must be specified by control stream
parameters.

Syntax:

II
II
II
II
II
II
II
II
II
II
II
II
1$

I*
I&

Where:

JOB
GBL
TIPFILES
LBL
DD
LFD
DVC
VOL
LBL
LFD
OPTION
EXEC

TQLREORG, , 10000
TYPE,MEDIUM

TQL$CTL
ACCESS=EXCR
TQL$CTL
90
??????
TQL$DMP
TQL$DMP
SCAN,SUB
QB$DMP,TIP

TYPE=&TYPE
MEDIUM=&MEDIUM

&type The type of operation to be performed. Choose
either "DUMP" or "RESTORE". Eg: TYPE=DUMP.

This keyword is required.

CHAPTER I - INTRODUCTION
REORGANIZING THE TQL DICTIONARY FILE

Page:
Section:

1
1.11

•

QB$DMP

&medium

REORGANIZING THE TQL DICTIONARY FILE

The device type of the TQL$DMP file. Choose either
"TAPE" or "DISK". Eg: MEDIUM=TAPE.

This keyword is required.

Additional Considerations:

The job log for the program gives the count of each type of
dictionary record that has been processed. There may be
discrepancies between the number input and output for a given type
of record (on a DUMP operation). Unless there are explicit error
messages, such discrepancies are not a problem. The TQL$DMP file is
a sequential file.

Page:
Section:

2
1.11

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL$PRO
TOL PROTOTYPING

1.12 TQL PROTOTYPING TQL$PRO

File prototyping is a feature provided by TQL to facilitate the
design of new applications. TQL allows the programmer to define
files with a~pe "PROTOTYPE". Such a file is mapped into a real
file, known by logical file name TQL$PRO. One TQL$PRO file may
contain many logical prototype files. All data is stored in an
internal format. This allows the programmer to change the size or
position of data fields without affecting the logical file or the
data already stored in a logical file.

Once the file design is complete the programmer may then
allocate disk space for the file, define the file to TIPGEN, and
update the TIP/30 JCL for the new file(s). Then update the file
definition in TQL changing the type to MIRAM or ISAM as
appropriate. Now re-compile any TQL programs developed using the
COMP command of TQLMON. Your existing TQL program will now work on
the real file.

There is no interface between user written COBOL programs and
TQL prototype files.

To remove data from a prototype file there
available in TQLMON. Enter 'PURGE filename'. You
if it is OK to proceed. When you reply YES all
prototype file is deleted from TQL$PRO. Note
periodically un-load and re-load TQL$PRO to
deleted records.

is a command PURGE
will be prompted
data for the named
that you should

recover space from

Just as one TQL$PRO file may contain many logical prototype
files, so your system may have several TQL$PRO files by taking
advantage of the TIP/30 catalogue.

The TQL$PRO file must be generated in your TIP system as
follows:

FILE TQL$PRO,MIRAM BLKSIZE=2048 RECSIZE=2047

CHAPTER I - INTRODUCTION
TQL PROTOTYPING

INDSIZE=768 DELETE=RCB
KEY1=(49,001,NDUP,NCHG)
KEY2=(49,050,DUP,CHG)
KEY3=(49,099,DUP,CHG)
KEY4=(49,148,DUP,CHG)
KEY5=(49,197,DUP,CHG).

JOURNAL= NO
HOLD= UP

Page:
Section:

1
1.12

TQL EXAMPLE
TQL EXAMPLE

~ 1.13 TQL EXAMPLE TQL Example

This section illustrates many of the features of TQL. The
example shows the file and record definitions for a simple
inventory file and associated order file. The programs illustrated
provide the capability to maintain the inventory file (INV) and the
order file (ORD) and to enter orders, change orders, display
orders, print orders etc, while keeping track of inventory.

The inventory file has a logical file name of "INV" in the
TIP/30 catalogue and has the following characteristics (obtainable
from the TIP/30 generation parameters):

FILE INV,MIRAM BLKSIZE=500
RECSIZE=50

[l] KEY1=(4,0,NDUP,NCHG)

[2]

KEY2=(16,4,DUP,CHG)
KEY3=(2,20,DUP,CHG)
ACCESS=EXCR.

RECORD INVREC
01 INVREC.

05 INV-PART
05 INV-DESC
05 INV-LOC
05 INV-QOH
05 INV-PRICE

ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

PICTURE 9(4).
PICTURE X(l6).
PICTURE 99.
PICTURE 9(5).
PICTURE 9(5)V99.

[l] The primary key of a MIRAM file must not allow
duplicates or changes (TIP/30 restriction).

[2] The primary key is the inventory part number.

Page: 1
1.13

TQL Reference Manual
Version 2.5Rl (83/06/01) Section:

TQL EXAMPLE
TQL EXAMPLE

[1]

This example system also makes use of an order file (logical
file name "ORD") which has the following characteristics:

FILE ORD,MIRAM BLKSIZE=lOOO
RECSIZE=lOO
KEY1=(16,0,NDUP,NCHG)
ACCESS=EXCR.

The order file contains two types of records. The first type is
a header record (one per order). The second type is a detail record
(one or more per order - representing items ordered):

RECORD ORDHDR
01 ORDHDR.

05 HOR-KEY.
10 HOR-ORD.

15 HDR-CUST
15 HDR-NUM

10 HOR-LINE
05 HDR-PO-NUM
05 HOR-LAST-LINE

ID IS HOR-LINE = 0.
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

PICTURE X(8).
PICTURE 9(4).
PICTURE 9(4).
PICTURE X(8).
PICTURE 9(4).

[l] A header record is distinguished by the field
HOR-LINE equal to zero.

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

2
1.13

TQL EXAMPLE

[1]

RECORD ORDDTL
01 ORDDTL.

05 ORD-KEY.
10 ORD-CUST
10 ORD-NUM
10 ORD-LINE

05 ORD-PART
05 ORD-QTY

ID IS ORD-LINE > 0.
MUST ADD ORD-QTY.
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

PICTURE X(8).
PICTURE 9(4).
PICTURE 9(4).
PICTURE 9(4).
PICTURE 9(4).

TQL EXAMPLE

[l] A detail order record (representing on item
ordered) is distinguished by the field ORD-LINE
greater than O. The field is incremented by one
for each item in the order (items 1 through last
i tern).

Page: 3
1.13

TQL Reference Manual
Version 2.5Rl (83/06/01) Section:

TQL EXAMPLE
TQL EXAMPLE

The following TQL program was written to provide maintenance
capabilities for the inventory file. Two pre-defined displays are
defined by the program:

"PART " display (all fields} in a single inventory
(part} record

"PARTS" - display (all fields} in 5 inventory records.

The screen formats "DEMOINVl" and "DEMOINV2" are shown following
the program source.

IDENTIFICATION DIVISION.
PROGRAM-ID. INV 'INVENTORY UPDATE'.

DATA DIVISION.

FILE INV.
RECORD INVREC.

DISPLAY DIVISION.

PART: READ INVREC
INVREC

USING DEMOINVl.

PARTS: 5 (READ INVREC
INVREC}

USING DEMOINV2.

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

4
1.13

TQL EXAMPLE
TQL EXAMPLE

/'DEMOINV1
INV-PART INV-DESC INV-LDC INV-OOH INV-PRICE

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

Page:
Section:

5
1.13

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL EXAMPLE
TQL EXAMPLE

f oEMOINV2 ' INV-PART INV-DE SC INV-LDC INV-OOH INV-PRICE

-- - -- ---
-- - -- ---
-- - -- ---
-- - -- ---
-- - -- --- -

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

\.

CHAPTER I - INTRODUCTION Page: 6
TQL EXAMPLE Section: 1.13

TQL EXAMPLE
TQL EXAMPLE

The main processing program (shown following) is used to enter
new orders, perform maintenance operations on existing orders and
(in all cases) adjust the quantity on hand in the inventory file
according to the number of items ordered or returned.

IDENTIFICATION DIVISION.
PROGRAM-ID. ORD.

DATA DIVISION.

FILE ORD.
RECORD ORDHDR.
RECORD ORDDTL.

FILE INV.
RECORD INVREC.

FILE TSPFILE.
RECORD TQLTSPR.

WORKING-STORAGE SECTION.
01 WORK-AREA.

Page:
Section:

05 TOT-PRICE PIC 9(5)V99.
05 PREV-QTY PIC 9(4).

7
1.13

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL EXAMPLE

DECLARATIVES SECTION.

ON READ OF ORDHDR
READ TQLTSPR VIA HDR-CUST.

[l] ON READ OF ORDDTL
MOVE ORD-QTY TO PREV-QTY
READ INVREC VIA ORD-PART.

ON WRITE OF ORDHDR
READ TQLTSPR VIA HDR-CUST

ON ERROR 'INVALID CUSTOMER #'.

[2] ON WRITE OF ORDDTL
READ INVREC VIA ORD-PART

ON ERROR 'BAD PART NUM'
READ TQLTSPR VIA ORD-CUST

ON ERROR 'INVALID CUST #'
MOVE ORD-CUST TO HDR-CUST
MOVE ORD-NUM TO HDR-NUM
MOVE 0 TO HOR-LINE
READ ORDHDR VIA HDR-KEY

ON ERROR 'MISSING HEADER RECORD'
IF INV-QOH < ORD-QTY

ERROR 'NOT ENOUGH GOODS'
COMPUTE INV-QOH = INV-QOH + PREV-QTY - ORD-QTY
MOVE ORD-LINE TO HDR-LAST-LINE.

CHAPTER I - INTRODUCTION
TQL EXAMPLE

TQL EXAMPLE

Page:
Section:

8
1.13

TQL EXAMPLE
TQL EXAMPLE

DISPLAY DIVISION.

[3] NEWORDER: READ ORDHDR

[4] ORDER:

HDR-CUST HDR-NUM HDR-PO-NUM
USING DEMOORDl ON ENTER ORDER.

MOVE HDR-CUST
MOVE HDR-NUM
MOVE HDR-LAST-LINE +
READ ORDDTL

ORDDTL
USING DEMOORD2.

TO ORD-CUST
TO ORD-NUM

1 TO ORD-LINE

[5] ORDDISP: READ ORDHDR

Page:
Section:

HDR-CUST HDR-NUM HDR-PO-NUM CM-COMPANY NL$
8 (READ ORDDTL FROM HDR-ORD

ORD-LINE ORD-PART INV-DESC ORD-QTY INV-PRICE
COMPUTE TOT-PRICE = INV-PRICE * ORD-QTY
TOT-PRICE NL$

) USING DEMOORD3.

9
1.13

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL EXAMPLE
TQL EXAMPLE

Notes to "ORD" program:

[l] Whenever an order detail record is read, the
number of items ordered (ORD-QTY) is saved in
working-storage field "PREV-QTY". This is done so
that the quantity on hand in inventory can be
recomputed if the detail item is updated (or
deleted).

[2] Whenever an order detail record is written this
coding validates the part number and the cutomer
number according to the data in other files.

[3]

It also verifies that there is an existing header
record for this detail record.

If the quantity-on-hand in the INV file (INV-QOH)
is not sufficient an error message is produced
("NOT ENOUGH GOODS")

Finally, the inventory quantity on hand is
recomputed and the inventory file is updated too • .
The display "NEWORDER" is used to enter a new A
order. The "ON ENTER" clause specifies that when ~
the user has entered the data in screen "DEMOORDl"
he/she is to be taken (in data entry mode) to
pre-defined display "ORDER".

The display "ORDER" therefore, is chained to the
entry of a new order.

[4] The display "ORDER" is used as described above (as
a secondary activity of order entry). It may also
be used directly to perform maintenance activities
on order detail records.

[5] The display "ORDDISP" displays the header
information for an order and displays (on the same
screen) up to 8 order detail records.

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

10
1.13

TQL EXAMPLE
TQL EXAMPLE

rDEMOORD1 \
HDR-CUST HDR-NUM HDR-PO-NUM

-- -

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

""
,

Page: 11 TQL Reference Manual
Section: 1.13 Version 2.5Rl (83/06/01)

-vc

TQL EXAMPLE
TQL EXAMPLE

1DEMOORD2 \
ORD-CUST ORD-NUM ORD-LINE ORD-PART ORD-QTY

-- -- -- -- -

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

.J

CHAPTER I - INTRODUCTION Page: 12
TQL EXAMPLE Section: 1.13

TQL EXAMPLE
TQL EXAMPLE

f'DEMOOR03 ' HDR-CUST HDR-NUM HDR-PO-NUM CM-COMPANY

ORD-LINE ORO-=P°ART INV-DE SC ORD-QTY INV-PRICE TOT-PRICE

-- -- -- --- ---
-- -- -- --- ---
-- -- -- --- ---
-- -- -- --- ----- -- -- --- ---
-- -- -- --- ---
-- -- -- --- ----- -- -- --- ---

-

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

Page: 13 TQL Reference Manual
Section: 1.13 Version 2.5Rl (83/06/01)

0,
"

TQL EXAMPLE
TQL EXAMPLE

The following TQL program was written to generate invoices from
the orders in the order file. A number of sample invoices produced
by this program (using test data) are shown following the program
source.

IDENTIFICATION DIVISION.
PROGRAM-ID. INVOICE.

DATA DIVISION.
FILE ORD.
RECORD ORDHDR.
RECORD ORDDTL.

FILE INV.
RECORD INVREC.

FILE TSPFILE.
RECORD TQLTSPR.

WORKING-STORAGE SECTION.
01 WORK-AREA.

05 TOT-PRICE PIC 9(5)V99.
05 GRAND PIC 9(6)V99.
05 TAX PIC 9(6)V99.
05 FINAL PIC 9(6)V99.
05 SUM-TAX PIC 9(7)V99.
05 SUM-DUE PIC 9(7)V99.
05 SUM-GOODS PIC 9(7)V99.

DECLARATIVES SECTION.
ON READ OF ORDHDR

READ TQLTSPR VIA HDR-CUST.

ON READ OF ORDDTL
READ INVREC VIA ORD-PART.

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

14
1.13

TQL EXAMPLE

REPORT DIVISION.

INVOICE: READ ORDHDR HOME$
TAB$(10) 'SAMPLE ORDER INVOICE'

SKIP$(4) YY$'/'MON$'/'DD$ NL$ NL$
'CUST # ORD# P.O.# COMPANY NAME' NL$

TQL EXAMPLE

HDR-CUST I I HDR-NUM ' I HDR-PO-NUM ' ' CM-COMPANY
NL$ NL$

Page:
Section:

' LINE PART# DESCRIPTION'
TAB$(34) 'QUANTITY PRICE

NL$ 50 (READ ORDDTL FROM HDR-ORD
ORD-LINE ' '
ORD-PART I I

INV-DESC I I

ORD-QTY ' '
INV-PRICE '

TOTAL'

COMPUTE TOT-PRICE = INV-PRICE * ORD-QTY
TOT-PRICE
ADD TOT-PRICE TO GRAND NL$) NL$

COMPUTE TAX = GRAND * 0.07
COMPUTE FINAL = GRAND + TAX
TAB$(41) 'TOTAL PRICE ' GRAND NL$
TAB$(41) I SALES TAX I TAX NL$
TAB$(41) ' AMOUNT DUE ' FINAL NL$
ADD TAX TO SUM-TAX
ADD FINAL TO SUM-DUE
ADD GRAND TO SUM-GOODS
ON PRNTR

AT END HOME$ NL$ NL$
'TOTAL VALUE OF GOODS SOLD' SUM-GOODS NL$
' TOTAL TAX DUE GOVERNMENT' SUM-TAX NL$

TOTAL AMOUNT TO COLLECT' SUM-DUE NL$.

15
1.13

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL EXAMPLE
TQL EXAMPLE

The following report was produced by the program INVOICE.

SAMPLE ORDER INVOICE 83/06/01

CUST # ORD# P.O.# COMPANY NAME
COAOOOOO 1 BILL CITY OF ARVADA

LINE PART# DESCRIPTION QUANTITY PRICE
1 3 RED SHIRT 4 22.50
2 1 WHITE SHIRT 1 11.95
3 3 RED SHIRT 4 22.50
4 7 THIN TIE 3 2.00
5 11 NEHRU JACKETS 3 1.95

TOTAL PRICE

CHAPTER I - INTRODUCTION
TQL EXAMPLE

SALES TAX
AMOUNT DUE

TOTAL
90.00
11.95
90.00

6.00
5.85

203.80
14.27

218.07

Page:
Section:

16
1.13

TQL EXAMPLE TQL EXAMPLE

SAMPLE ORDER INVOICE 83/06/01

CUST # ORD# P.O.#
GLOOOOOO 1 DAVID

COMPANY NAME
GENERAL LAND OFFICE

LINE
1
2
3

Page:
Section:

PART#
3
5
7

DESCRIPTION
RED SHIRT
WIDE TIE
THIN TIE

17
1.13

QUANTITY
5
8
3

PRICE
22.50

6.50
2.00

TOTAL PRICE
SALES TAX

AMOUNT DUE

TOTAL
112.50

52.00
6.00

374.30
26.20

400.50

TQL Reference Manual
Version 2.5Rl (83/06/01)

TQL EXAMPLE

SAMPLE ORDER INVOICE 83/06/01

CUST # ORD# P.O.#
GLOOOOOO 56 XYZ

COMPANY NAME
GENERAL LAND OFFICE

LINE
1
2

PART#
5
1

DESCRIPTION
WIDE TIE
WHITE SHIRT

CHAPTER I - INTRODUCTION
TQL EXAMPLE

QUANTITY
4
7

PRICE
6.50

11.95

TOTAL PRICE
SALES TAX

AMOUNT DUE

TQL EXAMPLE

TOTAL
26.00
83.65

483.95
33.88

517.83

Page:
Section:

18
1.13

•
TQL EXAMPLE

TOTAL VALUE OF GOODS SOLD
TOTAL TAX DUE GOVERNMENT

TOTAL AMOUNT TO COLLECT

Page:
Section:

19
1.13

DE** FORMS=ALROSl,END;

1062.05
74.35

1136.40

TQL EXAMPLE

TQL Reference Manual
Version 2.5Rl (83/06/01)

INDEX

2. KWIC INDEX

- A -

ad, ADD LINES TQLEDT:
add, ADD RECORD TQL:
add, FIELDS WHICH MUST BE ADDED TQL: must
allow, ALLOWING RECORDS/FIELDS TO CHANGE TQL:
ADD LINES TQLEDT: ad
ADD RECORD TQL: add
ADDED TQL: must add, FIELDS WHICH MUST BE
ALLOWING RECORDS/FIELDS TO CHANGE TQL: allow

- B -

BE ADDED TQL: must add, FIELDS WHICH MUST

- c -

call tql, CALLING TQL FROM TIP PROGRAM TQL:
co, COPY LINES TQLEDT:
comp; cp, COMPILE PROGRAM TQLMON:
count, COUNT RECORDS TQL:
cp, COMPILE PROGRAM TQLMON: comp;
CALLING TQL FROM TIP PROGRAM TQL: call tql
CHANGE TQL: allow, ALLOWING RECORDS/FIELDS TO
CHAPTER I - INTRODUCTION
COMPILE FILE/RECORD TQLMON: c
COMPILE PROGRAM TQLMON: comp; cp
CONTENTS TOC, TABLE OF
CONTROL HEADER TQLMON: uc, UPDATE
COPY LINES TQLEDT: co
COUNT RECORDS TQL: count
CREATE SCREEN FORMATS TQLMON: mes

(DISPLAY) LINES TQLEDT: pr, PRINT
data division, DATA DIVISION TQL:
de, DELETE LINES TQLEDT:

- D -

declaratives, DECLARATIVES SECTION TQL:
delete, DELETE FILE/RECORD TQLMON:
delete, DELETE RECORD TQL:
display, DISPLAY DIVISION TQL:

KWIC INDEX

KWIC INDEX

INDEX

Page:
Section:

1.5.1
1.6.3
1.3.5
1.3.4
1.5.1
1.6.3
1.3.5
1.3.4

1.3.5

1.7
1.5.2
1.4.2
1.6.4
1.4.2

1.7
1.3.4

1.
1.4.1
1.4.2

1.2
1.4.22
1.5.2
1.6.4
1.4.9

1.5.7
1.3.11
1.5.3

1.3.13
1.4.3
1.6.5

1.3.14

1
Index

INDEX

display, PREDEFINED DATA DISPLAY TQL:
division, DATA DIVISION TQL: data
division, IDENTIFICATION DIVISION TQL: id
dp, DELETE PROGRAM TQLMON:
DATA DISPLAY TQL: display, PREDEFINED
DATA DIVISION TQL: data division
DECLARATIVES SECTION TQL: declaratives
DEFINE NEW FILE TQLMON: nf
DEFINE NEW PROGRAM TQLMON: np
DEFINE NEW RECORD TQLMON: n
DEFINITION TQL: file, FILE
DEFINITION TQL: record, RECORD
DEFINITION TQLMON: q, EDIT RECORD
DEFINITION TQLMON: u, UPDATE RECORD
DEFINITION TQLMON: uf, UPDATE FILE
DELETE FILE/RECORD TQLMON: delete
DELETE LINES TQLEDT: de
DELETE PROGRAM TQLMON: dp
DELETE RECORD TQL: delete
DICTIONARY FILE QB$DMP, REORGANIZING THE TQL
DICTIONARY FILE QB$LST, LISTING THE TQL
DICTIONARY TQLINT, INITIALIZING TQL
DICTIONARY TQLMON, MAINTAINING THE TQL
DISPLAY DIVISION TQL: display
DISPLAY HELP INFORMATION TQLMON: help
DISPLAY NEXT SCREENFULL TQL: next
DISPLAY TQL: display, PREDEFINED DATA
DIVISION TQL: data division, DATA
DIVISION TQL: display, DISPLAY
DIVISION TQL: id division, IDENTIFICATION
DIVISION TQL: report, REPORT

en, END TQL EDITOR TQLEDT:
end/close, END SESSION TQL:
end, END TQLMON PROGRAM TQLMON:
enter, ENTE~ RECORDS TQL:
expr, TQL EXPRESSIONS TQL:
Example, TQL EXAMPLE TQL
EDIT RECORD DEFINITION TQLMON: q
EDIT TQL PROGRAM TQLMON: qp

- E -

EDITOR FUNCTION KEYS TQLEDT: fkeys, TQL
EDITOR TQLEDT, THE TQL TEXT
EDITOR TQLEDT: en, END TQL
EDITOR TQLEDT: he, HELP FOR TQL
EDITOR TQLEDT: qu, QUIT TQL
END SESSION TQL: end/close
END TQL EDITOR TQLEDT: en

Page:
Section:

2
Index

KWIC INDEX

1.6.2
1.3.11
1.3.10
1.4.4
1.6.2

1.3.11
1.3.13
1.4.11
1.4.12
1.4.10
1.3.2
1.3.3

1.4.16
1.4.21
1.4.23
1.4.3
1.5.3
1.4.4
1.6.5

1.11
1.10
1.9
1.4

1.3.14
1.4.6

1.6.10
1.6.2

1.3.11
1.3.14
1.3.10
1.3.15

1.5.4
1.6.7
1.4.5
1.6.6
1.3.1
1.13

1.4.16
1.4.17
1.5.9

1.5
1.5.4
1.5.5
1. 5. 8
1.6.7
1.5.4

TQL Reference Manual
Version 2.5Rl (83/06/01)

KWIC INDEX

END TQLMON PROGRAM TQLMON: end
ENTER RECORDS TQL: enter
EXAMPLE TQL Example, TQL
EXECUTION TQL: open, TQL PROGRAM
EXPRESSIONS TQL: expr, TQL

- F -

fields, SYSTEM FIELDS TQL:
fields, WORKING STORAGE SECTION TQL: work
file, FILE DEFINITION TQL:
fkeys, TQL EDITOR FUNCTION KEYS TQLEDT:
fn keys, USE OF FUNCTION KEYS TQL:
FIELD NAMES TQL: show, SHOW
FIELD VERIFICATION TQL: verify
FIELDS TQL: fields, SYSTEM
FIELDS WHICH MUST BE ADDED TQL: must add
FILE DEFINITION TQL: file
FILE DEFINITION TQLMON: uf, UPDATE
FILE QB$DMP, REORGANIZING THE TQL DICTIONARY
FILE QB$LST, LISTING THE TQL DICTIONARY
FILE TQLMON: nf, DEFINE NEW
FILE TQLMON: purge, PURGE PROTOTYPE
FILE/RECORD TQLMON: c, COMPILE
FILE/RECORD TQLMON: delete, DELETE
FILE/RECORD TQLMON: list, LIST
FILE/RECORD TQLMON: print, PRINT
FILE/RECORD TQLMON: s, SUMMARIZE
FILE/RECORD TQLMON: write, WRITE
FORMAT LIST TQL: list, FREE
FORMAT PRINT TQL: print, FREE
FORMATS TQLMON: mes, CREATE SCREEN
FREE FORMAT LIST TQL: list
FREE FORMAT PRINT TQL: print
FROM TIP PROGRAM TQL: call tql, CALLING TQL
FUNCTION KEYS TQL: fn keys, USE OF
FUNCTION KEYS TQLEDT: fkeys, TQL EDITOR

- H -

he, HELP FOR TQL EDITOR TQLEDT:
help, DISPLAY HELP INFORMATION TQLMON:
help, .TQL HELP TQL:
HEADER TQLMON: uc, UPDATE CONTROL
HELP FOR TQL EDITOR TQLEDT: he
HELP INFORMATION TQLMON: help, DISPLAY
HELP TQL: help, TQL

KWIC INDEX Page:
Section:

INDEX

1.4.5 e
1.6.6

1.13
1.6.1
1.3.1

1.3.8
1.3.12
1.3.2
1.5.9

1.6.16
1.6.14
1.3.7
1.3.8
1.3.5
1.3.2

1.4.23
1.11
1.10

1.4.11
1.4.15
1.4.1
1.4.3
1.4.7

1.4.13
1.4.19
1.4.25
1.6.9

1.6.13
1.4.9
1.6.9

1.6.13
1.7

1.6.16
1.5.9

1.5.5
1.4.6
1.6.8

1.4.22
1.5.5
1.4.6
1.6.8

3
Index

INDEX

- I -

id division, IDENTIFICATION DIVISION TQL:
id, RECORD SELECTION TQL:
IDENTIFICATION DIVISION TQL: id division
INDEX INDEX, KWIC
INDEX, KWIC INDEX
INFORMATION TQLMON: help, DISPLAY HELP
INITIALIZING TQL DICTIONARY TQLINT
INTRODUCTION, CHAPTER I -

- K -

keys, USE OF FUNCTION KEYS TQL: fn
KEYS TQL: fn keys, USE OF FUNCTION
KEYS TQLEDT: fkeys, TQL EDITOR FUNCTION
KWIC INDEX INDEX

list, FREE FORMAT LIST TQL:
list, LIST FILE/RECORD TQLMON:
lp, LIST PROGRAM TQLMON:

- L -

LANGUAGE TQL, THE TIP/30 QUERY
LIBRARY TQLMON: wp, WRITE PROGRAM TO
LINES TQLEDT: ad, ADD
LINES TQLEDT: co, COPY
LINES TQLEDT: de, DELETE
LINES TQLEDT: mo, MOVE
LINES TQLEDT: pr, PRINT (DISPLAY)
LIST FILE/RECORD TQLMON: list
LIST PROGRAM TQLMON: lp
LIST TQL: list, FREE FORMAT
LISTING THE TQL DICTIONARY FILE QB$LST

- M -

mes, CREATE SCREEN FORMATS TQLMON:
mo, MOVE LINES TQLEDT:
must add, FIELDS WHICH MUST BE ADDED TQL:
MAINTAINING THE TQL DICTIONARY TQLMON
MOVE LINES TQLEDT: mo
MUST BE ADDED TQL: must add, FIELDS WHICH

Page:
Section:

4
Index

KWIC INDEX

1.3.10
1.3.6

1.3.10
2.
2.

1.4.6
1.9
1.

1.6.16
1.6.16
1.5.9

2.

1.6.9
1.4.7
1.4.8

1.3
1.4.26
1.5.1
1.5.2
1.5.3
1.5.6
1.5.7
1.4.7
1.4.8
1.6.9

1.10

1.4.9
1.5.6
1.3.5

1.4
1.5.6
1.3.5

TQL Reference Manual
Version 2.5Rl (83/06/01)

KWI C INDEX

- N -

next, DISPLAY NEXT SCREENFULL TQL:
nf, DEFINE NEW FILE TQLMON:
np, DEFINE NEW PROGRAM TQLMON:
NAMES TQL: show, SHOW FIELD
NEW FILE TQLMON: nf, DEFINE
NEW PROGRAM TQL: open, OPEN
NEW PROGRAM TQLMON: np, DEFINE
NEW RECORD TQLMON: n, DEFINE
NEXT SCREENFULL TQL: next, DISPLAY

open, OPEN NEW PROGRAM TQL:
open, RUN PROGRAM TQLMON: run,
open, RUNNING A TQL PROGRAM TQL:
open, TQL PROGRAM EXECUTION TQL:
OPEN NEW PROGRAM TQL: open

pp, PRINT PROGRAM TQLMON:
pr, PRINT (DISPLAY) LINES TQLEDT:
print, FREE FORMAT PRINT TQL:
print, PRINT A REPORT TQL:

- 0 -

- p -

print, PRINT FILE/RECORD TQLMON:
program, TQL PROGRAM STRUCTURE TQL:
purge, PURGE PROTOTYPE FILE TQLMON:
PREDEFINED DATA DISPLAY TQL: display
PREFACE
PRINT (DISPLAY) LINES TQLEDT: pr
PRINT A REPORT TQL: print
PRINT FILE/RECORD TQLMON: print
PRINT PROGRAM TQLMON: pp
PRINT TQL: print, FREE FORMAT
PROGRAM EXECUTION TQL: open, TQL
PROGRAM STRUCTURE TQL: program, TQL
PROGRAM TO LIBRARY TQLMON: wp, WRITE
PROGRAM TQL: call tql, CALLING TQL FROM
PROGRAM TQL: open, OPEN NEW
PROGRAM TQL: open, RUNNING A TQL
PROGRAM TQLMON: comp; cp, COMPILE
PROGRAM TQLMON: dp, DELETE
PROGRAM TQLMON: end, END TQLMON
PROGRAM TQLMON: lp, LIST
PROGRAM TQLMON: np, DEFINE NEW
PROGRAM TQLMON: pp, PRINT

KWIC INDEX

TIP

Page:
Section:

INDEX

1.6.10
1.4.11
1.4.12
1.6.14
1.4.11
1.6.11
1.4.12
1.4.10
1.6.10

1.6.11
1.4.18

1.6
1.6.1

1.6.11

1.4.14
1.5.7

1.6.13
1.6.12
1.4.13
1.3.9

1.4.15
1.6.2

1.1
1.5.7

1.6.12
1.4.13
1.4.14
1.6.13
1.6.1
1.3.9

1.4.26
1.7

1.6.11
1.6

1.4.2
1.4.4
1.4.5
1.4.8

1.4.12
1.4.14

5
Index

e

e

INDEX

PROGRAM TQLMON: qp, EDIT TQL
PROGRAM TQLMON: run, open, RUN
PROGRAM TQLMON: up, UPDATE
PROGRAMS TQLMON: sp, SUMMARIZE
PROTOTYPE FILE TQLMON: purge, PURGE
PROTOTYPING TQL$PRO, TQL
PURGE PROTOTYPE FILE TQLMON: purge

qp, EDIT TQL PROGRAM TQLMON:
qu, QUIT TQL EDITOR TQLEDT:

- Q -

QB$DMP, REORGANIZING THE TQL DICTIONARY FILE
QB$LST, LISTING THE TQL DICTIONARY FILE
QUERY LANGUAGE TQL, THE TIP/30
QUIT TQL EDITOR TQLEDT: qu

record, RECORD DEFINITION TQL:
report, REPORT DIVISION TQL:
run, open, RUN PROGRAM TQLMON:

- R -

RECORD DEFINITION TQL: record
RECORD DEFINITION TQLMON: q, EDIT
RECORD DEFINITION TQLMON: u, UPDATE
RECORD SELECTION TQL: id
RECORD TQL: add, ADD
RECORD TQL: delete, DELETE
RECORD TQL: update, UPDATE
RECORD TQLMON: n, DEFINE NEW
RECORDS TQL: count, COUNT
RECORDS TQL: enter, ENTER
RECORDS/FIELDS TO CHANGE TQL: allow, ALLOWING
REORGANIZING THE TQL DICTIONARY FILE QB$DMP
REPORT DIVISION TQL: report
REPORT TQL: print, PRINT A
RESERVED WORDS TQL: words
RUN PROGRAM TQLMON: run, open
RUNNING A TQL PROGRAM TQL: open

show, SHOW FIELD NAMES TQL:
sp, SUMMARIZE PROGRAMS TQLMON:

- s -

SCREEN FORMATS TQLMON: mes, CREATE
SCREENFULL TQL: next, DISPLAY NEXT
SECTION TQL: declaratives, DECLARATIVES

Page:
Section:

6
Index

KWIC INDEX

1.4.17
1.4.18
1.4.24
1.4.20
1.4.15

1.12
1.4.15

1.4.17
1.5.8

1.11
1.10
1.3

1.5.8

1.3.3
1.3.15
1.4.18
1.3.3

1.4.16
1.4.21
1.3.6
1.6.3
1.6.5

1.6.15
1.4.10
1.6.4
1.6.6
1.3.4

1.11
1.3.15
1.6.12

1.8
1.4.18

1.6

1.6.14
1.4.20
1.4.9

1.6.10
1.3.13

TQL Reference Manual
Version 2.5Rl (83/06/01)

KWIC INDEX

SECTION TQL: work fields, WORKING STORAGE
SELECTION TQL: id, RECORD
SESSION TQL: end/close, END
SHOW FIELD NAMES TQL: show
STORAGE SECTION TQL: work fields, WORKING
STRUCTURE TQL: program, TQL PROGRAM
SUMMARIZE FILE/RECORD TQLMON: s
SUMMARIZE PROGRAMS TQLMON: sp
SYSTEM FIELDS TQL: fields

- T -

tql, CALLING TQL FROM TIP PROGRAM TQL: call
TABLE OF CONTENTS TOC
TEXT EDITOR TQLEDT, THE TQL
THE TIP/30 QUERY LANGUAGE TQL
THE TQL TEXT EDITOR TQLEDT
TOC, TABLE OF CONTENTS
TQL DICTIONARY FILE QB$DMP, REORGANIZING THE
TQL DICTIONARY FILE QB$LST, LISTING THE
TQL DICTIONARY TQLINT, INITIALIZING
TQL DICTIONARY TQLMON, MAINTAINING THE
TQL Example, TQL EXAMPLE
TQL EDITOR FUNCTION KEYS TQLEDT: f keys
TQL EDITOR TQLEDT: en, END
TQL EDITOR TQLEDT: he, HELP FOR
TQL EDITOR TQLEDT: qu, QUIT
TQL EXAMPLE TQL Example
TQL EXPRESSIONS TQL: expr
TQL FROM TIP PROGRAM TQL: call tql, CALLING
TQL HELP TQL: help
TQL PROGRAM EXECUTION TQL: open
TQL PROGRAM STRUCTURE TQL: program
TQL PROGRAM TQL: open, RUNNING A
TQL PROGRAM TQLMON: qp, EDIT
TQL PROTOTYPING TQL$PRO
TQL TEXT EDITOR TQLEDT, THE
TQL$PRO, TQL PROTOTYPING
TQL, THE TIP/30 QUERY LANGUAGE
TQL: add, ADD RECORD
TQL: allow, ALLOWING RECORDS/FIELDS TO CHANGE
TQL: call tql, CALLING TQL FROM TIP PROGRAM
TQL: count, COUNT RECORDS
TQL: data division, DATA DIVISION
TQL: declaratives, DECLARATIVES SECTION
TQL: delete, DELETE RECORD
TQL: display, DISPLAY DIVISION
TQL: display, PREDEFINED DATA DISPLAY
TQL: end/close, END SESSION

KWIC INDEX Page:
Section:

INDEX

1.3.12 e
1.3.6
1.6.7

1.6.14
1.3.12
1.3.9

1.4.19
1.4.20
1.3.8

1.7
1.2
1.5
1.3
1.5
1.2

1.11
1.10
1.9
1.4

1.13
1.5.9
1.5.4
1.5.5
1.5.8

1.13
1.3.1

1.7
1.6.8
1.6.1
1.3.9

1.6
1.4.17

1.12
1.5

1.12
1.3

1.6.3
1.3.4

1.7
1.6.4

1.3.11
1.3.13
1.6.5

1.3.14
1.6.2
1.6.7

7
Index

e

-

INDEX

TQL: enter, ENTER RECORDS
TQL: expr, TQL EXPRESSIONS
TQL: fields, SYSTEM FIELDS
TQL: file, FILE DEFINITION
TQL: fn keys, USE OF FUNCTION KEYS
TQL: help, TQL HELP
TQL: id division, IDENTIFICATION DIVISION
TQL: id, RECORD SELECTION
TQL: list, FREE FORMAT LIST
TQL: must add, FIELDS WHICH MUST BE ADDED
TQL: next, DISPLAY NEXT SCREENFULL
TQL: open, OPEN NEW PROGRAM
TQL: open, RUNNING A TQL PROGRAM
TQL: open, TQL PROGRAM EXECUTION
TQL: print, FREE FORMAT PRINT
TQL: print, PRINT A REPORT
TQL: program, TQL PROGRAM STRUCTURE
TQL: record, RECORD DEFINITION
TQL: report, REPORT DIVISION
TQL: show, SHOW FIELD NAMES
TQL: update, UPDATE RECORD
TQL: verify, FIELD VERIFICATION
TQL: words, RESERVED WORDS
TQL: work fields, WORKING STORAGE SECTION
TQLEDT, THE TQL TEXT EDITOR
TQLEDT: ad, ADD LINES
TQLEDT: co, COPY LINES
TQLEDT: de, DELETE LINES
TQLEDT: en, END TQL EDITOR
TQLEDT: fkeys, TQL EDITOR FUNCTION KEYS
TQLEDT: he, HELP FOR TQL EDITOR
TQLEDT: mo, MOVE LINES
TQLEDT: pr, PRINT (DISPLAY) LINES
TQLEDT: qu, QUIT TQL EDITOR
TQLINT, INITIALIZING TQL DICTIONARY
TQLMON PROGRAM TQLMON: end, END
TQLMON, MAINTAINING THE TQL DICTIONARY
TQLMON: c, COMPILE FILE/RECORD
TQLMON: comp: cp, COMPILE PROGRAM
TQLMON: delete, DELETE FILE/RECORD
TQLMON: dp, DELETE PROGRAM
TQLMON: end, END TQLMON PROGRAM
TQLMON: help, DISPLAY HELP INFORMATION
TQLMON: list, LIST FILE/RECORD
TQLMON: lp, LIST PROGRAM
TQLMON: mes, CREATE SCREEN FORMATS
TQLMON: n, DEFINE NEW RECORD
TQLMON: nf, DEFINE NEW FILE
TQLMON: np, DEFINE NEW PROGRAM
TQLMON: pp, PRINT PROGRAM

Page:
Section:

8
Index

KWIC INDEX

1.6.6
1.3.1
1.3.8
1.3.2

1.6.16
1.6.8

1.3.10
1.3.6
1.6.9
1.3.5

1.6.10
1.6.11

1.6
1. 6.1

1.6.13
1.6.12
1.3.9
1.3.3

1.3.15
1.6.14
1.6.15
1.3.7

1.8
1.3.12

1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.9
1.5.5
1.5.6
1.5.7
1.5.8

1.9
1.4.5

1.4
1.4.1

. 1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9

1.4.10
1.4.11
1.4.12
1.4.14

TQL Reference Manual
Version 2.SRl (83/06/01)

KWIC INDEX

TQLMON: print, PRINT FILE/RECORD
TQLMON: purge, PURGE PROTOTYPE FILE
TQLMON: q, EDIT RECORD DEFINITION
TQLMON: qp, EDIT TQL PROGRAM
TQLMON: run, open, RUN PROGRAM
TQLMON: s, SUMMARIZE FILE/RECORD
TQLMON: sp, SUMMARIZE PROGRAMS
TQLMON: u, UPDATE RECORD DEFINITION
TQLMON: uc, UPDATE CONTROL HEADER
TQLMON: uf, UPDATE FILE DEFINITION
TQLMON: up, UPDATE PROGRAM
TQLMON: wp, WRITE PROGRAM TO LIBRARY
TQLMON: write, WRITE FILE/RECORD

- u -

uc, UPDATE CONTROL HEADER TQLMON:
uf, UPDATE FILE DEFINITION TQLMON:
up, UPDATE PROGRAM TQLMON:
update, UPDATE RECORD TQL:
UPDATE CONTROL HEADER TQLMON: uc
UPDATE FILE DEFINITION TQLMON: uf
UPDATE PROGRAM TQLMON: up
UPDATE RECORD DEFINITION TQLMON: u
UPDATE RECORD TQL: update
USE OF FUNCTION KEYS TQL: fn keys

- v -

verify, FIELD VERIFICATION TQL:
VERIFICATION TQL: verify, FIELD

- w -

words, RESERVED WORDS TQL:
work fields, WORKING STORAGE SECTION TQL:
wp, WRITE PROGRAM TO LIBRARY TQLMON:
write, WRITE FILE/RECORD TQLMON:
WHICH MUST BE ADDED TQL: must add, FIELDS
WORDS TQL: words, RESERVED
WORKING STORAGE SECTION TQL: work fields
WRITE FILE/RECORD TQLMON: write
WRITE PROGRAM TO LIBRARY TQLMON: wp

KWIC INDEX Page:
Section:

INDEX

1.4.13 •
1.4.15
1.4.16
1.4.17
1.4.18
1.4.19
1.4.20
1.4.21
1.4.22
1.4.23
1.4.24
1.4.26
1.4.25

1.4.22
1.4.23
1.4.24
1.6.15
1.4.22
1.4.23
1.4.24
1.4.21
1.6.15
1.6.16

1.3.7
1.3.7

1.8
1.3.12
1.4.26
1.4.25
1.3.5

1.8
1.3.12
1.4.25
1.4.26

9
Index

INDEX

•

Page:
Section:

10
Index

- E n d 0 f

KWIC INDEX

D o c u m e n t -

TQL Reference Manual
Version 2.5Rl (83/06/01)

•

PCS
CHAPTER V - PROGRAM CONTROL SYSTEM

5. CHAPTER V - PROGRAM CONTROL SYSTEM PCS

This chapter of the TIP/30 reference manual describes the
facilities of the Program Control System (PCS).

PCS is the component of TIP/30
functions for transaction programs. All
executed under the control of PCS.

PCS provides such services as:

inter-program linkage

timer facilities

run-time debugging facilities.

CHAPTER V - PROGRAM CONTROL SYSTEM

that provides monitor-level
transaction programs are

Page:
Section:

1
5

PCS

5.1

PROGRAM CONTROL SYSTEM

PROGRAM CONTROL SYSTEM PCS

TIP/30 provides the following methods of transferring control
between programs:

TIPSUB - "CALL" another program

TIPSUBP - "CALL" a subroutine

TIPXCTL - "GOTO" another program

TIPFORK - create asynchronous process

The "TIPSUB" facility allows a program to "perform" another program
and receive control when that program is finished.

The "TIPSUBP" facility allows a program to "call" a resident
subroutine and receive control when that subroutine is finished.

The "TIPXCTL" facility allows a program to "GO TO" another program
with no return of control.

The "TIPFORK" facility allows a program to "start up" another
program as an asynchronous task, and thus create an independently
executing program.

These facilities allow the programmer writing on-line programs to
use control structures that are familiar and indeed taken for
granted in typical batch programs. All TIP/30 programs
(irrespective of the manner in which they were actually invoked)
return control to the calling program by issuing a call to the
subroutine "TIPRTN". This standardized return mechanism means that
all TIP/30 programs may be treated either as a subtask or as a main
task without the need for special code in the program.

Page:
Section:

1
5.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•
ON-LINE PROGRAM STRUCTURE

PCS

5 .1.1 ON-LINE PROGRAM STRUCTURE PCS

On-line programs that operate in TIP/30 native mode must be
aware of the parameters that are automatically passed by TIP/30.
All transaction programs are called either by TIP/30 (if executed
from the command line) or another program (if called via the TIPSUB
mechanism for example).

The following discussion illustrates the general structure of a
TIP/30 native mode program. For convenience, the example is
illustrated using COBOL74 syntax.

TIP/30 passes a transaction program up to five parameters (in
the following fixed order!):

"PIB" - Process Information Block

"CDA" - Continuity Data Area

"MCS" - Message Control System workarea

"WORK" - Workarea

"GDA" - Global Data Area [TIP generation option]

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM CONTROL SYSTEM

Page:
Section:

1
5.1.1

PCS: PIB
PROCESS INFORMATION BLOCK

5 .1. 2 PROCESS INFORMATION BLOCK PCS: pib

The PIB is a fixed size and fixed format area that contains
information about the transaction that is executing. The layout of
the PIB is given by the COBOL copy book "TC-PIB" supplied in the
TIP library:

000001*
000002* TIP/30 PROCESS INFORMATION BLOCK
000003*
000004 05 PIB-TRID PICTURE x (8).
000005 05 PIB-UID PICTURE X(8).
000006 05 PIB-TID PICTURE x (4).
000007 05 PIB-STATUS PICTURE x.
000008**
000009* THE FOLLOWING 88-LEVEL DATA ITEMS ARE SET BY TIPFCS *
000010* FCS ERROR RETURN CODES *
000011**
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027

Page:
Section:

88 PIS-GOOD VALUE I I

88 PIS-DUP-AFT-NAME VALUE 'C'.
88 PIB-DUP-KEY VALUE ID I •

88 PIS-EOF VALUE IE I.
88 PIB-ACTIVE VALUE IHI.

88 PIB-IO-ERROR VALUE IF I •

88 PIS-FUNCTION VALUE 'G'.
88 PIS-LOCKED VALUE IL I.
88 PIS-NOT-FOUND VALUE IN I •

88 PIS-NOT-HELD VALUE Ix I•

88 PIS-SECURITY VALUE I KI.
88 PIS-HELD VALUE I y I•
88 PIS-WRONG-MODE VALUE 'W'.
88 PIB-PROG-ASEND VALUE I A I •

05 PIS-SYSTEM PICTURE X.
88

PIB-TRID

1
5.1.2

PIB-EOJ-PENDING VA.LUE IE I.

This eight byte field contains the transaction
name that is currently executing. The program may
interrogate this field to determine the
transaction name by which the program was called.

Certain TIP/30 subroutine calls (eg: TIPSUB) may
require information moved into this field.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

e

•
PROCESS INFORMATION BLOCK PCS: PIB

PIB-UID

PIB-TID

PIB-STATUS

PIB-SYSTEM

This eight byte field contains the user-id of the
user that is executing the program. This field
will contain "TP" if the user had not logged on
TIP/30.

This field will contain "BACK$nnn"
represents 3 digits] if the program
executed in the background.

[where nnn
is being

This field will contain "tttt*BYP" if the program
is executing on a "bypass" terminal [where tttt is
the terminal name of the originating terminal].

This four byte field is set to the name of the
executing terminal (as known to ICAM). The program
may interrogate this field to determine the name
of the terminal running the program.

Certain TIP/30 subroutine calls (eg: TIPFORK) may
require information moved into this field.

This one byte field contains the status returned
as a result of any call to a TIP/30 subroutine. A
number of 88 level items are defined in the copy
book for the convenience of the programmer. The
programmer MUST interrogate this status field
after every call to a TIP/30 subroutine (eg:
TIPFCS, TIPSUB, etc).

A value of PIB-GOOD indicates that the subroutine
call was successful as far as TIP/30 is concerned.
Any other value is an error.

This one byte field is set to the
'PIB-EOJ-PENDING' value if and only if TIP/30 has
been given a shutdown command (EOJ). This
mechanism allows TIP/30 native mode programs to
detect that an EOJ is requested. When a program
detects this condition, it should attempt to issue
a call to the TIPRTN subroutine as soon as
practical.

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM CONTROL SYSTEM

Page:
Section:

2
5.1.2

PCS: CDA
CONTINUITY DATA AREA

5 .1. 3 CONTINUITY DATA AREA PCS: cda

The continuity data area is an area of storage that is provided
by TIP/30 for transaction programs. It is the only area that is
copied to and from programs during inter-program linkage. The size
and format of this area is determined by the programmer. The size
of the area is given in the TIP/30 catalogue entry for the
transaction.

If a transaction program is called from the TIP/30 command line
and the transaction was catalogued with CML=YES in the TIP/30
catalogue, TIP/30 will parameterize the command line information
into the CDA. The COBOL copy book TC-CDA in the TIP library
provides the format for this particular use of the CDA:

000001*
000002*
000003*
000004
000005
000006
000007
000008
000009
000010

Page:
Section:

TIP/30 COMMAND LINE FORMAT OF CDA

05 CDA-PARAMETERS.
10 CDA-PARAM OCCURS 8 TIMES PICTURE x (8).

05 CDA-OPTIONS.
10 CDA-OPTION OCCURS 8 TIMES PICTURE x.

05 CDA-TEXT PICTURE x (80).

CDA-PARAMS

CDA-OPTIONS

1
5.1.3

Up to eight command line parameters will be
parameterized into these fields. Strictly numeric
parameters will be right justified and leading
zero filled. Non-numeric parameters will be left
justified and trailing blank filled.

This field
information
transaction
transaction

will contain the command line option
(the options immediately follow the

name and are separated from the
name by a comma or a slash).

If no options were given, this field contains
spaces.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

e

•

•

CONTINUITY DATA AREA

CDA-TEXT

PCS: CDA

This field contains the command line parameters in
the same format they were entered (ie: not
parameterized).

If the program was not called from the command line, the layout
and contents of the CDA are entirely at the discretion of the
programmer .

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM CONTROL SYSTEM

Page:
Section:

2
5.1.3

PCS: MCS
MESSAGE CONTROL SYSTEM WORKAREA

5.1.4 MESSAGE CONTROL SYSTEM WORKAREA PCS: mes

The MCS area is an optional area that will be reserved by TIP/30
for the transaction program. This area is normally used by the
transaction program as a screen format I/O area. The size of this
area must be given in the TIP/30 catalogue entry for the
transaction program.

The MCS area is initially set to low values (X'OO') by TIP/30.

The COBOL copy book TC-MCS defines the layout of
prefix that is required to interface with the
System. This pref ix is described in the section of
manual describing the Message Control System (MCS).

the MCS packet
Message Control

the reference

000001*
000002*
000003*
000004
000005

I 000006
000007*
000008*
000009*
000010*
000011*
000012*
000013*
000014*
000015*
000016*
000017
000018*
000019*
000020*
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035

Page:
Section:

02
02
02

02

02
02

TIP/30 MESSAGE CONTROL SYSTEM PACKET

MCS-NAME
MCS-TERM
MCS-FUNCTION

PICTURE X(8).
PICTURE X(4).
PICTURE X.

'A' - READ FULL SCREEN ON TIPMSGI
'D' - SEND DATA ONLY (NO HEADlNGS DATA)

- LOW VALUE FIELDS ARE NOT SENT
'M' - SEND MESSAGE AS UNSOLICTED
'P' - CAUSE TERMINAL TO PRINT NON-TRANSPARENT
'R' - CAUSE TIPMSGE TO REFRESH ALL FCC'S
'S' - STOP SENDING HEADING DATA

WHEN MCS-COUNT REACHES ZERO

MCS-HOLD PICTURE X.

'H' - TIPMSGI NOT TO RELEASE RECORD LOCK(S)

MCS-SIZE
MCS-STATUS
88 MCS-GOOD
88 MCS-XMIT
88 MCS-MSG-WAIT
88 MCS-FKEY1
88 MCS-FKEY2
88 MCS-FKEY3
88 MCS-FKEY4
88 MCS-FKEY5
88 MCS-FKEY6
88 MCS-FKEY7
88 MCS-FKEY8
88 MCS-FKEY9
88 MCS-FKEY10

PICTURE
PICTURE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

S9(4) COMP-4 SYNC.
x.
I I

I I

I 0 I'
I 1 I •

I 2''
I 31 •
I 41 •
'5'.
'6'.
I 7 I•
'8'.
'9'.
I A I.

l
5.1.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGE CONTROL SYSTEM WORKAREA PCS: MCS

000036 88 MCS-FKEY11 VALUE I BI.
000037 88 MCS-FKEY12 VALUE 'C'.
000038 88 MCS-FKEY13 VALUE ID'.

000039 88 MCS-FKEY14 VALUE IE I.
000040 88 MCS-FKEY15 VALUE IF I •

000041 88 MCS-FKEY16 VALUE 'G'.
000042 88 MCS-FKEY17 VALUE IHI •

000043 88 MCS-FKEY18 VALUE I I I •

000044 88 MCS-FKEY19 VALUE I JI •
000045 88 MCS-FKEY20 VALUE I KI.
000046 88 MCS-FKEY21 VALUE IL I.
000047 88 MCS-FKEY22 VALUE 'M'.
000048 88 MCS-F-REBUILD VALUE I 1 I '5'.
000049 88 MCS-F-NEXT VALUE '2' '6'.
000050 88 MCS-F-UPDATE VALUE '4' '8'.
000051 02 MCS-FILLER PICTURE x.
000052*
000053* VALID FILLER VALUES ARE I I I

I OR I* I

- ' 000054*
000055 02
000056/

MCS-COUNT PICTURE S9(4) COMP-4 SYNC.

000057 02 MCS-DATA.
000058*
000059* USER SUPPLIED RECORD LAYOUT FOR MCS SCREEN FOLLOWS HERE
000060*

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM CONTROL SYSTEM

Page:
Section:

2
5.1.4

PCS: WORKAREA

5.1.5

WORK AREA

WORK AREA PCS: workarea

The WORKAREA is an optional area that will be reserved by TIP/30
for the transaction program. The size and layout of the workarea is
entirely at the discretion of the programmer. The size of the
workarea must be given in the TIP/30 catalogue entry for the
transaction program.

The workarea is used by native mode programs as an area
containing fields which are modified during execution. The
modification of any field in the COBOL WORKING-STORAGE section is
not allowed by the COBOL compiler when the program is compiled with
IMSCOD=YES option.

The workarea is also the proper place for the various record
areas for files that are manipulated on-line.

The workarea is set to low values (X'OO') by TIP/30 before the
transaction program is called.

Page: 1
5.1.5

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•
GLOBAL DATA AREA

PCS: GDA

5.1.6 GLOBAL DATA AREA PCS: gda

The GLOBAL
when TIP/30
system, it is
to all TIP/30

DATA AREA is an optional area that may be specified
is generated. If the GDA is generated in the TIP/30
an area of fixed (specified) size that is available
programs.

The first word of the GDA is set to the length (in bytes) of the
GDA by TIP/30 initialization; the remainder of the GDA is cleared
to low values (X'OO').

One use of the GDA might be (for example) the storage of a
common table that is referenced by many on-line programs. Instead
of having each program that needs to reference the table read the
table into the program's work area, the GDA could be initialized by
a system startup program. Thereafter, all programs that need to
refer to the table could reference it in the GDA.

The GDA is a serial
involve race conditions.
TIPFLAG subroutine) may
the contents of the GDA.

resource; modification of this area might
The TIP/30 f iags (see discussion of
be useful in queueing requests to modify

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM CONTROL SYSTEM

Page:
Section:

1
5.1.6

TIPABRT
USER PROGRAM ABORT TRAP

5.2 USER PROGRAM ABORT TRAP TIPABRT

Normally when a user program aborts, TIP/30 will react by
calling the Post Mortem Dump Analysis program (PMDA) on behalf of
the program in error. If the user wants to get control in his
program when an abort condition occurs, the program must issue a
call to TIPABRT to set up an abnormal termination entry point
(island code) in the user program. (This facility is normally used
by assembler language programs.

Syntax:

CALL TIPABRT,(savearea)

Where:

Example:

savearea The first parameter on the call is the location in
which the PSW and registers are stored after an
abnormal condition has occured. TIP/30 will enter
the program at the first location beyond the
psw/register save area. Upon entry register 15
contains the address of the first instruction to
be executed, and can be used as the cover register
for the abort routine. Once the abort routine has
been entered, any further abnormal conditions will
result in loading PMDA unless the user program
calls TIPABRT again to re-establish the abnormal
termination entry point.

CALL TIPABRT, (ABTERMl SETUP ABTERM ENTRY POINT

ABTERM
AB REGS

*

DC
DC
USING

Error Conditions:

D'O'
16F'O'
*,R15

. PSW AT TIME OF ERROR

. REG 0-15 AT TIME OF ERROR

ABNORMAL TERMINATION ROUTINE ENTRY POINT

The save area must be fullword aligned.

Page:
Section:

1
5.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•
CONVERT 32 BYTES TO 32 BITS

TIPBITS

5.2.1 CONVERT 32 BYTES TO 32 BITS

This subroutine is supplied as an
programmers that are manipulating the
section on TIPFLAG following).

TI PB ITS

aid for COBOL language
TIP/30 Flag bits. (see

This subroutine will convert a string of 32 bytes (each
containing a "0" or "l" value) into a fullword [S9(6) COMP-4 SYNC]
with the corresponding bits in the fullword set to a zero or one.

Note that the bits in a fullword are numbered from 0 to 31 from
right to left.

Syntax:

CALL 'TIPBITS' USING BIT-SWITCHES, BYTE-SWITCHES

Where:

BIT-SWITCHES

BYTE-SWITCHES

The receiving field defined as PIC S9(6) COMP-4
SYNCHRONIZED.

The values to set the bits in the receiving field.

Each byte must contain a zero or one (X'FO' or
X'Fl').

Additional Considerations:

A copy element named: TIP/TC-BITS is provided which contains the
required definition of the two parameters in the above syntax
description. See section on TIPFLAG subroutine.

CHAPTER V - PROGRAM CONTROL SYSTEM
USER PROGRAM ABORT TRAP

Page:
Section:

1
5.2.1

TIPBYTES
CONVERT 32 BITS TO 32 BYTES

5.2.2 CONVERT 32 BITS TO 32 BYTES

This subroutine is supplied as an
programmers that are manipulating the
section on TIPFLAG following).

TIPBYTES

aid for COBOL language
TIP/30 Flag bits. (see

This subroutine will convert a fullword [S9(6) COMP-4 SYNC] into
a string of 32 bytes with each byte containing a 0 or 1 depending
on the value in the corresponding bits in the fullword.

Note that the bits in a fullword are numbered from 0 to 31 from
right to left.

Syntax:

CALL 'TIPBYTES' USING BIT-SWITCHES, BYTE-SWITCHES

Where:

BIT-SWITCHES

BYTE-SWITCHES

The fullword field defined as PIC S9(6) COMP-4
SYNCHRONIZED.

The bytes to be set to a one or zero corresponding
to the setting of each bit in the field
BIT-SWITCHES.

Additional Considerations:

A copy element named: TIP/TC-BITS is provided which contains the
required definition of the two parameters in the above syntax
description. See section on TIPFLAG subroutine.

Page:
Section:

1
5.2.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TODAY'S DATE TIPDATE

5.3 TODAY'S DATE TIPDATE

This routine returns the current date in the format 'DAY MONTH
DD 19YY'.

Syntax:

CALL 'TIPDATE' USING DATE-AREA

Where:

DATE-AREA is a 30 character field to receive the date.

Eg: "WEDNESDAY AUGUST 18 1982 "

Example:

05 TODAYS-DATE PIC X(30).

CALL 'TIPDATE' USING TODAYS-DATE.

Error Conditions:
None.

CHAPTER V - PROGRAM CONTROL SYSTEM
TODAY'S DATE

Page:
Section:

1
5.3

TIPDUMP
FORCE PROGRAM DUMP

5.4 FORCE PROGRAM DUMP TIPDUMP

This subroutine may be called to force a program dump at a
specific point in the processing.

Syntax:

CALL 'TIPDUMP'

Where:
No parameters.

Error Conditions:
None.

Additional Considerations:

The dump is caused by executing an illegal machine instruction.
(X'OODEADOO'). Program register 14 will hold the address of the
call to TIPDUMP.

Page:
Section:

1
5.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FILE ERROR EDIT TIPFCER

5.5 FILE ERROR EDIT TIPFCER

This subroutine provides the user with a standard method of
converting the error code returned in the FCS file name packet (9th
byte) into a literal error message. The error message built by this
routine has the following format:

FCS Error=A, File=logical, Meaning='description of error'.

Syntax:

CALL 'TIPFCER' USING FILE-NAME, ERROR-LINE.

Where:

FILE-NAME is the file name packet which was used when the
error was detected.

ERROR-LINE is an 80 character field to receive the literal
error message.

Example:

05 PAYMASTER.
10 AFT-NAME
10 FILE-STATUS

05 ERROR-LINE

PIC X(8).
PIC X.

PIC X(80).

CALL 'TIPFCER' USING PAYMASTER, ERROR-LINE

Error Conditions:
None.

CHAPTER V - PROGRAM CONTROL SYSTEM
FILE ERROR EDIT

Page:
Section:

1
5.5

TIPFLAG

5.6

FLAG SERVICES

FLAG SERVICES TIPFLAG

TIP/30 flag services provides user programs with the ability to
test and set 32 binary switches. These switches or flags are stored
as bits of a fullword within TIP/30 and may be accessed by any user
program and the console operator.

Syntax:

CALL 'TIPFLAG' USING FUNCTION, MASK [, RESULT).

Where:

FUNCTION is a character code representing the function to
be performed by TIPFLAG:

0 wait for any of the flags in the mask to be
set.

1 wait for all of the flags in the mask to be
set.

2 wait for any of the flags in the mask to be
set then clear the flags indicated by the mask.

3 wait for all of the flags in the mask to be
set then clear the flags indicated by the mask.

4 wait for any of the flags in the mask to be
clear.

5 wait for all of the flags in the mask to be
clear.

6 wait for any of the flags in the mask to be
clear then set the flags indicated by the mask.

7 wait for all of the flags in the mask to be
clear then set the flags indicated by the mask.

8 - set the flags indicated by the mask.

9 - clear the flags indicated by the mask.

Page:
Section:

1
5.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FLAG SERVICES
TIPFLAG

MASK is the fullword used to identify those flags to be
acted upon by flag services (each bit represents a
flag).

RESULT is used to receive the flag word after the
indicated function has been performed (the result
field is only used for function codes 8 and 9).

Example:

77 FLAG-BIT-THREE VALUE 4 PIC 9(7) COMP-4 SYNC.

CALL 'TIPFLAG' WAIT-ALL-CLEAR-SET, FLAG-BIT-THREE.

Error Conditions:
None.

Additional Considerations:

The COBOL copy element (TC-FLAG) provides a complete set of TIPFLAG
function codes:

000001**
000002* USED AS FUNCTION CODES TO DIRECT TIP FLAG SERVICES *
000003**
000004 05 WAIT-ANY-SET
000005 05 WAIT-ALL-SET
000006 05 WAIT-ANY-SET-CLEAR
000007 05 WAIT-ALL-SET-CLEAR
000008 05 WAIT-ANY-CLEAR
000009 05 WAIT-ALL-CLEAR
000010 05 WAIT-ANY-CLEAR-SET
000011 05 WAIT-ALL-CLEAR-SET
000012 05 SET-ON
000013 05 SET-OFF

CHAPTER V - PROGRAM CONTROL SYSTEM
FLAG SERVICES

PICTURE X VALUE 'O'.
PICTURE x VALUE I 1'.
PICTURE X VALUE '2'.
PICTURE X VALUE '3'.
PICTURE X VALUE '4'.
PICTURE X VALUE '5'.
PICTURE X VALUE '6'.
PICTURE X VALUE '7'.
PICTURE X VALUE '8'.
PICTURE X VALUE '9'.

Page:
Section:

2
5.6

TIPFLAG
FLAG SERVICES

The COBOL copy element TIP/TC-BITS describes work areas that may
be useful to the COBOL programmer that is manipulating TIPFLAGs.

This copy book is used in conjunction with the subroutines
"TIPBITS" and "TIPBYTES" (as described earlier).

000001*****************************~************************************
000002* DEFINE THE 32 SWITCHES USED BY TIPFLAG *
000003**
000004*
000005 05 BIT-SWITCHES PICTURE 9(6)
000006 COMPUTATIONAL-4 SYNCHRONIZED.
000007*
000008 05 BYTE-SWITCHES.
000009 10 SWITCH-31 PICTURE 9.
000010 88 SWITCH-31-0FF VALUE I 0 I•
000011 88 SWITCH-31-0N VALUE I 1 I •

000012 10 SWITCH-30 PICTURE 9.
000013 88 SWITCH-30-0FF VALUE I 0 I'
000014 88 SWITCH-30-0N VALUE I 1 I '

000015 10 SWITCH-29 PICTURE 9.
000016 88 SWITCH-29-0FF VALUE I 0 I•
000017 88 SWITCH-29-0N VALUE I 1 I •

000018 10 SWITCH-28 PICTURE 9.
000019 88 SWITCH-28-0FF VALUE I 0 I •

000020 88 SWITCH-28-0N VALUE I 1 I '

000021 10 SWITCH-27 PICTURE 9.
000022 88 SWITCH-27-0FF VALUE I 0 I'
000023 88 SWITCH-27-0N VALUE I 1 I '

000024 10 SWITCH-26 PICTURE 9.
000025 88 SWITCH-26-0FF VALUE I 0 I'
000026 88 SWITCH-26-0N VALUE I 1 I '

I 000027 10 SWITCH-25 PICTURE 9.
000028 88 SWITCH-25-0FF VALUE I 0 I'
000029 88 SWITCH-25-0N VALUE I 1 I •

000030 10 SWITCH-24 PICTURE 9.
000031 88 SWITCH-24-0FF VALUE I 0 I•

000032 88 SWITCH-24-0N VALUE I 1 I •

000033 10 SWITCH-23 PICTURE 9.
000034 88 SWITCH-23-0FF VALUE I 0 I•

000035 88 SWITCH-23-0N VALUE I 1 I •

000036 10 SWITCH-22 PICTURE 9.
000037 88 SWITCH-22-0FF VALUE I 0 I'
000038 88 SWITCH-22-0N VALUE I 1 I •

000039 10 SWITCH-21 PICTURE 9.
000040 88 SWITCH-21-0FF VALUE I 0 I•
000041 88 SWITCH-21-0N VALUE I 1 I •

000042 10 SWITCH-20 PICTURE 9.

Page: 3 TIP/30 Reference Manual
Section: 5.6 Version 2.5 (82/08/01)

•

FLAG SERVICES
TIPFLAG

000043 88 SWITCH-20-0FF VALUE 'O'.
000044 8B SWITCH-20-0N VALUE I 1 I •

000045 10 SWITCH-19 PICTURE 9.
000046 8B SWITCH-19-0FF VALUE 'O'.
000047 8B SWITCH-19-0N VALUE '1'.
00004B 10 SWITCH-18 PICTURE 9.
000049 88 SWITCH-18-0FF VALUE 'O'.
000050 BB SWITCH-18-0N VALUE I 1 I •

000051 10 SWITCH-17 PICTURE 9.
000052 BB SWITCH-17-0FF VALUE 'O'.
000053 88 SWITCH-17-0N VALUE '1 I.
000054 10 SWITCH-16 PICTURE 9.
000055 88 SWITCH-16-0FF VALUE I 0 I.
000056 8B SWITCH-16-0N VALUE I 1 I •

000057 10 SWITCH-15 PICTURE 9.
00005B 88 SWITCH-15-0FF VALUE 'O'.
000059 B8 SWITCH-15-0N VALUE '1'.
000060 10 SWITCH-14 PICTURE 9.
000061 88 SWITCH-14-0FF VALUE 'O'.
000062 88 SWITCH-14-0N VALUE '1'.
000063 10 SWITCH-13 PICTURE 9.
000064 8B SWITCH-13-0FF VALUE I 0 I•
000065 8B SWITCH-13-0N VALUE I 1 I •

000066 10 SWITCH-12 PICTURE 9.
000067 88 SWITCH-12-0FF VALUE 1 0 1

•

000068 88 SWITCH-12-0N VALUE I 1 I •

000069 10 SWITCH-11 PICTURE 9.
000070 8B SWITCH-11-0FF VALUE 'O'.
000071 88 SWITCH-11-0N VALUE '1'.
000072 10 SWITCH-10 PICTURE 9.
000073 B8 SWITCH-10-0FF VALUE 'O'.
000074 B8 SWITCH-10-0N VALUE I 1'.
000075 10 SWITCH-09 PICTURE 9.
000076 8B SWITCH-09-0FF VALUE I 0 I.
000077 BB SvJI TCH-09-0N VALUE I 1 I •

00007B 10 SWITCH-OB PICTURE 9.
0-00079 BB SWITCH-OB-OFF VALUE 1 0 1

•

OOOOBO BB SWITCH-OB-ON VALUE I 1 I.
OOOOB1 10 SWITCH-07 PICTURE 9.
000082 8B SWITCH-07-0FF VALUE 'O'.
000083 88 SWITCH-07-0N VALUE I 1 I •

000084 10 SWITCH-06 PICTURE 9.
000085 8B SWITCH-06-0FF VALUE I 0 I.
000086 88 SWITCH-06-0N VALUE I 1 I •

000087 10 SWITCH-05 PICTURE 9.
000088 88 SWITCH-05-0FF VALUE I 0 I.
000089 8B SWITCH-05-0N VALUE I 1 I •

000090 10 SWITCH-04 PICTURE 9.
000091 B8 SWITCH-04-0FF VALUE I 0 I.
000092 88 SWITCH-04-0N VALUE I 1 I •

CHAPTER V - PROGRAM CONTROL SYSTEM Page: 4
FLAG SERVICES Section: 5.6

TIPFLAG

000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105*

10 SWITCH-03
88 SWITCH-03-0FF
88 SWITCH-03-0N

10 SWITCH-02
88 SWITCH-02-0FF
88 SWITCH-02-0N

10 SWITCH-01
88 SWITCH-01-0FF
88 SWITCH-01-0N

10 SWITCH-DO
88 SWITCH-OD-OFF
88 SWITCH-OD-ON

PICTURE 9.
VALUE '0'.
VALUE '1'.
PICTURE 9.
VALUE I 0 I.
VALUE '1'.
PICTURE 9.
VALUE '0'.
VALUE '1'.
PICTURE 9.
VALUE '0'.
VALUE I 1 I •

FLAG SERVICES

000106**
000107* TO COMPRESS BYTE-SWITCHES INTO BIT-SWITCHES FOR TIPFLAG. *
000108* *
000109* CALL 'TIPBITS' USING BIT-SWITCHES, BYTE-SWITCHES. *
000110* *
000111**
000112* TO EXPAND BIT-SWITCHES TO BYTE-SWITCHES FOR PROGRAM USE. *
000113* *
000114* CALL 'TIPBYTES' USING BIT-SWITCHES, BYTE-SWITCHES. *
000115* *
000116**

Page:
Section:

5
5.6

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPFORK
CREATE AN ASYNCHRONOUS PROCESS

5.7 CREATE AN ASYNCHRONOUS PROCESS TIPFORK

This call is used to start a program as an asynchronous process.
After this call is issued, the calling program will continue to
execute while the called program begins execution. This call may be
used to start a background process.

As a background process the program may perform
functions except solicit input from a terminal.
process may be useful for time consuming file
operations, for which the user does not require
response.

all TIP/30
A background

processing
an immediate

This call may also be used to start a program running
interactively on another terminal.

To use this facility, the user must move the transaction-id of
the program to be called to the field PIB-TRID and then issue the
call. The CDA is copied to the called program.

Syntax:

CALL 'TIPFORK'

Where:
No parameters required.

If you wish to start up a new process, but attached directly to
another terminal (ie. not as background), you should set PIB-TID to
the destination terminal before calling TIPFORK.

For instance the destination terminal could be '*BYP' to start a
new process running directly on the bypass terminal. Such a process
may receive input messages from the bypass terminal.

Example:

MOVE 'PRINTQ' TO PIB-TRID.
MOVE 'TRMP' TO PIB-TID.
CALL 'TIPFORK'.
IF NOT PIB-GOOD

PERFORM REPORT-ERROR.

CHAPTER V - PROGRAM CONTROL SYSTEM
CREATE AN ASYNCHRONOUS PROCESS

Page:
Section:

1
5.7

TIPFORK

Error Conditions:

PIB-NOT-FOUND

PIB-LOCKED

PIB-SECURITY

Page:
Section:

2
5.7

CREATE AN ASYNCHRONOUS PROCESS

the program is not catalogued, or the load module
could not be loaded.

there is
terminal.

already a program running on the

the user running the initiating program does not
have a high enough security to run the requested
program or the requested program is locked due to
time of day.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

e

END ONLINE PROGRAM
TIPRTN

5.8 END ONLINE PROGRAM TIPRTN

This call is used to terminate a user program. When a program is
terminated, control will resume in the calling program. IE. control
returns to the previous level on the program stack.

Syntax:

CALL 'TIPRTN'

Where:
No parameters.

Error Conditions:
None.

Additional Considerations:

The CDA will be copied back to the calling program .

CHAPTER V - PROGRAM CONTROL SYSTEM
END ONLINE PROGRAM

Page:
Section:

1
5.8

TIPSNAP
SNAP MEMORY

5.9 SNAP MEMORY TIPSNAP

This is a method for a program to produce snap dumps of various
sections of memory.

Syntax:

CALL 'TIPSNAP' USING bgn-1,end-1, ... bgn-n,end-n.

Where:
each parameter pair represents the start and ending location of an
area of memory which is to be snap dumped.

Example:

CALL 'TIPSNAP' USING WORK-AREA, END-WORK,
MCS, END-MCS.

Error Conditions:
None.

Additional Considerations:

This may be useful when debugging programs but you should remove
such calls when placing program in production. Excessive number of
calls to TIPSNAP will degrade TIP/30 performance.

Page:
Section:

1
5.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

PROGRAM LINKAGE
TIPSUB

5.10 PROGRAM LINKAGE TIPSUB

The calling program is suspended while the called program
executes. The called program may call another program, and so on,
to a maximum of 64 nested calls. When a called program terminates,
control returns to the calling program. To use this facility, the
calling program must move the catalogued transaction-id of the
program to be called to PIB-TRID. The CDA is copied to the called
program.

Syntax:

CALL 'TIPSUB'

Where:
No parameters.

Example:

MOVE 'ADDLNE' TO PIB-TRID.
CALL 'TIPSUB'.
IF NOT PIS-GOOD

PERFORM ERR-ON-SUB.

Error Conditions:

PIB-NOT-FOUND

PIB-SECURITY

PIB-PROG-ABEND

the program is not catalogued,
could not be loaded or the size
and required areas (CDA, WORD,
large.

the load module
of the load module
MCS etc) is too

the user running the initiating program does not
have a high enough security to run the. requested
program or the requested program is locked due to
the time of day.

the sub program aborted (program checked) during
execution. In this case, PMDA would have been
called on behalf of the sub program and PMDA would
return control to the calling program with this
error status.

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM LINKAGE

Page:
Section:

1
5.10

TIPSUBP
SUB-ROUTINE LINKAGE

5.11 SUB-ROUTINE LINKAGE TIPSUBP

This is a method for calling user written sub-routines which
have been separately compiled and linked. Only parameters given by
the calling program are passed to the sub-routine. The calling
program must move the 'load module' name to PIB-TRID to identify
the desired subroutine.

Syntax:

CALL 'TIPSUBP' USING param-1 ... param-n

Where:
The parameters depend on the requirements of the subroutine. TIP/30
does NOT pass any parameters other than those identified on the
CALL statement.

Example:

MOVE 'CHKDGTOO' TO PIB-TRID.

CALL 'TIPSUBP' USING PART-NUM, DIGIT.

IF NOT PIB-GOOD
PERFORM ERROR-ON-SUBP-CALL.

Error Conditions:

PIB-NOT-FOUND the sub-routine is not resident.

Additional Considerations:

If the sub-routine is not written as re-entrant assembly language
then it must be cataloged as USAGE=REUSE.

A sub-routine may do most TIP/30 calls with the exception of
TIPSUB, TIPSUBP, TIPXCTL.

If the calling program is native mode the sub-routine may only do
file I/O.by calling TIPFCS.

If the calling program is an emulated IMS/90 program the
sub-routine may only do IMS/90 style file I/O calls.

COBOL subprograms should end by using the "EXIT PROGRAM" statement.

Page:
Section:

1
5.11

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

TIPSUBP
SUB-ROUTINE LINKAGE

Assembler subprograms should end by using the "RETURN" macro.

All sub-routines MUST be made resident via the TIP/30 job control
stream.

5.12 TIMER SERVICES TIPTIMER

This function allows the user program to pause for a specific
length of time. This is useful when a program must wait as in the
case where an STS-HELD status has been received. Queue driven
programs would normally call TIPTIMER when their input work queue
was empty.

Syntax:

CALL 'TIPTIMER' USING TIME [,TIME-STATUS [,PREVIEW]]

Where:

TIME

TIME-STATUS

PREVIEW

a fullword holding the time is seconds that the
program is to be suspended.

The program will be re-activated when the time has
elapsed, or an input message is available.

is a one byte status code which will receive the
reason TIP/30 re-scheduled the program.

'M' indicates that a message is available although
the requested time has not elapsed.

'T' indicates that the time period has elapsed or
that the computer operator has requested TIP/30 to
shut down.

is a 12-byte field into which TIP/30 will place a
preview of the input message •

CHAPTER V - PROGRAM CONTROL SYSTEM
SUB-ROUTINE LINKAGE

Page:
Section:

1
5.12

TIPTIMER

Example:

05 TIMER
05 STATUS
05 PREVIEW

MOVE 60 TO TIMER.

PIC 9(7) COMP-4 SYNC.
PIC X.
PIC X(12).

TIMER SERVICES

CALL 'TIPTIMER' USING TIMER, STATUS, PREVIEW.

In the example, TIP/30 will suspend execution of the program for 60
seconds or until an input message is available. If a message had
arrived, STATUS would hold 'M' and PREVIEW would hold the first 12
text characters {in upper case) of the input message.

Page:
Section:

2
5.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TRANSFER CONTROL
TIPXCTL

5.13 TRANSFER CONTROL TIPXCTL

This call is used to transfer control explicitly to another
program on the same program stack level. The calling program must
move the catalogued transaction-id to PIB-TRID.

Syntax:

CALL 'TIPXCTL'

Where:
No parameters.

Example:

MOVE 'NXTSTP' TO PIB-TRID.
CALL 'TIPXCTL'.
IF NOT PIB-GOOD

PERFORM ERR-ON-XCTL.

Error Conditions:

PIB-NOT-FOUND the program is not catalogued, or the load module
could not be loaded.

PIB-SECURITY the user running the initiating program does not
have a high enough security to run the requested
program or the requested program is locked due to
time of day.

Additional Considerations:

The CDA will be copied to the next program.

CHAPTER V - PROGRAM CONTROL SYSTEM
TRANSFER CONTROL

Page:
Section:

l
5.13

FCS
CHAPTER VI - FILE CONTROL SYSTEM

6. CHAPTER VI - FILE CONTROL SYSTEM FCS

This chapter of the TIP/30 reference manual describes the
facilities provided by the TIP File Control System (FCS).

FCS is the component of TIP/30 that provides the interface
between transaction programs and data files.

This file interface allows transaction programs to access
standard OS/3 files, standard OS/3 libraries, TIP/30 dynamic files
(temporary scratch-pad type files) and, TIP/30 edit buffers.

The interface is implemented at the subroutine call level~ that
is, all requests for file services are provided by calling a
supplied subroutine with appropriate parameters describing the
required information.

CHAPTER VI - FILE CONTROL SYSTEM Page:
Section:

1
6

FCS

6.1

FILE CONTROL SYSTEM

FILE CONTROL SYSTEM FCS

The TIP/30 File Control System (FCS) is the interface between
transaction programs and on-line files. FCS provides services at
the program "CALL" level.

Programs call one subroutine (TIPFCS), and provide parameters
which select the desired function to be performed and relevant file
and record information.

Programs refer to files by referencing a Logical File Name
(LFN). This LFN is the name by which the file is known to the
system. The LFN need not be the same as the actual physical file
name (LFD) as supplied in the Job Control for TIP/30.

The LFN is connected to the actual physical file by an entry in
the TIP/30 catalogue. All on-line files must have an entry in the
TIP/30 catalogue.

Each file entry in the TIP/30 catalogue specifies the group
ownership of the file and the required security level to access the
file.

Programs may access a file only if it has been assigned to the.
program (either by an explicit OPEN request to FCS or an implicit
OPEN requested in the program's catalogue entry).

Once a file is assigned to a program, an entry for it is placed
in the Active File Table (AFT) for the terminal. Files which have
entries in the terminal AFT are available (by reference to the LFN)
to all programs that are run at the terminal until they are
unassigned.

The following file organizations are fully supported by the
TIP/30 File Control System:

ISAM:
DAM:

IRAM:
SAM:

MIRAM:

Indexed Sequential Access Method
Direct Access Method
Indexed Random Access Method
Sequential Access Method
Multiple Indexed Random Access Method

TIP/30 FCS provides the ability to access OS/3 library elements,
the capability of creating (on demand) TIP/30 Dynamic Files, and
the ability to access Edit Buffers (a specific type of dynamic
file) that are manipulated by the TIP/30 text editor (QED).

Page:
Section:

1
6.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FILE CONTROL SYSTEM
FCS

File integrity is maintained by the record locking feature.
Records that are to be updated are locked when read. Records that
are locked are unavailable to other processes until released.

A generalized resource locking facility is provided which
enables a program to enter (or remove) a value in a key-holding
table. Once a given value has been entered in the table, any
process which attempts to enter the same value will be given a
"locked" status. This essentially provides a generalized queueing
mechanism that may be used to prevent concurrent access to any
resource (ie: a file, a group of records etc).

By exercising a TIP/30 generation option, on-line files may be
journalled. This facility allows either before images or after
images (or both) to be written to the TIP/30 journal file.

"Before" images can be used to roll-back updates that were not
completed due to a hardware or software failure.

"After" images can be used as audit trail info~mation or applied
to backu~ files to reprocess updates in the event of a hardware or
software failure.

Dynamic files are direct-access files that are managed by TIP/30
(and are in fact subsets of the TIP/30 file "TIP$RNDM"). Dynamic
files may be created and erased as needed, by programs. Many
applications require temporary auxiliary storage and can make use
of this facility.

CHAPTER VI - FILE CONTROL SYSTEM
FILE CONTROL SYSTEM

Page:
Section:

2
6.1

FCS

6.2

TIPFCS AND THE TIP/30 CATALOGUE

TIPFCS AND THE TIP/30 CATALOGUE FCS

The files that a transaction program accesses may be specified
in the program entry in the TIP/30 catalogue. This technique is
highly recommended.

By utilizing this feature of the TIP/30 catalogue, the program
does not need to explicitly open or close such files.

Ref er to the section on the TIP/30 catalogue manager program
(CAT) for detailed information.

Page:
Section:

1
6.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS
RECORD AND FILE LOCKING

6.3 RECORD AND FILE LOCKING FCS

It is generally accepted that two JOBS should not update the
same file at the same time. Similarly, two online users, although
they may be processing the same file should be protected from
updating the same record at the same time.

To illustrate the problem, assume that JOE and TOM
at different terminals updating FILEX and there
locking capability.

are working
is no record

JOE displays record 500 intending to update it.

JOE is interrupted for a moment and TOM reads record 500,
changes it at his terminal and re-writes the record in
the file.

JOE then changes the record and re-writes it in the file,
overlaying TOM's update and perhaps causing problems
which may not appear until much later.

With the record locking capability provided by FCS,
situation cannot occur; the updating process is assured that
logical integrity will be_maintained.

this
its

CHAPTER VI - FILE CONTROL SYSTEM
RECORD AND FILE LOCKING

Page:
Section:

1
6.3

HOLD= YES
SIMPLE RECORD HOLDING

6.3.l SIMPLE RECORD HOLDING HOLD= YES

To lock a record the user program issues a CALL TIPFCS using the
PCS-GETUP function code and supplies the KEY of the record. The
function status of every CALL TIPFCS is stored in the ninth byte of
the file-pkt (Logical File Name Packet) and in the PIB-STATUS field
of the program information block. This status must be checked after
each call. ·

When a record is being held for update, the key of the record is
stored in a key holding table. If the function status after an
PCS-GETUP is PIB-HELD then another user has the record held and all
other records held for the program which just received the PIB-HELD
are automatically released and must be re-acquired before updating.

If a user program receives a function status of PIB-HELD in
response to an PCS-GETUP, meaning the record is locked for someone
else then FCS automatically pauses the caller for one second. The
program may try the GETUP again or CALL TIPTIMER to wait a little
longer.

If the program issues an FCS-PUT without locking the record via
an FCS-GETUP then the function status will be PIB-NOT-HELD and the
FCS-PUT will be ignored.

To enter a value in the Key Holding Table, which could be used
for locking a file or a section of a file, use PCS-HOLD and
PCS-RELEASE.

Page: 1
6.3.1

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•
HOLD= TR

RECORD HOLDING FOR THE TRANSACTION

6.3.2 RECORD HOLDING FOR THE TRANSACTION HOLD= TR

TIP/30 defines a transaction as the events which take place from
the time an input message arrives until the request for the next
input message is issued by the program.

Files may be defined with HOLD=TR. This means that updates are
are to be held for the entire transaction. This is different from
HOLD=YES where records are only held until they are updated and
then removed from the holding table.

For programs which will access the same records of a file at the
same time, option HOLD=TR requires more processing than HOLD=YES;
however, the BEFORE images of all updated records are saved in the
Journal file (or the Before file) and will be automatically rolled
back by PMDA (Post Mortem Dump Analyzer) if the program aborts
before the transaction completes.

A user program itself, may issue the CALL PCS-BACK to roll back
updates on a file basis for HOLD=TR files.

To prevent deadlock situations for HOLD=TR files, programs which
hold a record from several files should always acquire the records
in the same order. (ie. File-A, File-B, File-C etc). If the program
decides to roll back updates, it should issue FCS-BACK to the files
in the reverse order in which the records where held.

For HOLD=YES, deadlock can never occur because the programs are
allowed to re-try their PCS-GETUP.

CHAPTER VI - FILE CONTROL SYSTEM
RECORD AND FILE LOCKING

Page:
Section:

1
6.3.2

HOLD= UP
RECORD HOLDING FOR THE UPDATE

6.3.3 RECORD HOLDING FOR THE UPDATE HOLD= UP

You may also specify HOLD=UP. Which allows the program to hold
several records within one file until the record is updated. This
does not provide for online roll-back or 'QUICK' recovery facility.

Page:
Section:

1
6.3.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

RECORD HOLDING SUMMARY
FCS

6.3.4 RECORD HOLDING SUMMARY FCS

ROLL BACK MULTI HELD RECORDS RLSED RELEASE POSSIBLE
GEN PARAM CAPABILITY PER FILE UPDT OR TREN ON HELD DEADLOCK

HOLD=YES NO NO UPDT or GETUP YES NO

HOLD= TR YES YES TREN NO YES

HOLD=UP NO YES UPDT NO YES

CHAPTER VI - FILE CONTROL SYSTEM
RECORD AND FILE LOCKING

Page:
Section:

1
6.3.4

FCS

6.3.5

FCS DEADLOCK CONSIDERATIONS

FCS DEADLOCK CONSIDERATIONS FCS

Different user programs may be sharing the same memory region
within TIP/30. It is therefore very important to remember not to
lock a record and solicit terminal input, (ie. TIPMSGI or T@GET)
since you may be swapped out leaving the record locked and the
other program is loaded and may be trying to access the same
record.

Similarly, do not set an indexed file in sequential mode and
solicit terminal input. An indexed file set in sequential mode (via
FCS-SETL) is effectively locked to all other users of the file. If
terminal input is solicited, any other users of the file must wait
at least until the input message is received. This causes
unnecessary deJay and overhead, and may seriously degrade the
performance of the system.

Always set an indexed file that is in sequential mode back to
random mode (via FCS-ESETL) before doing any terminal I/O.

Page: 1
6.3.5

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

SUMMARY OF FCS CALLS
FCS: SUMMARY

6.4 SUMMARY OF FCS CALLS FCS: summary

All file processing requests are issued in the form of a call to
the subroutine TIPFCS with an appropriate function code and
associated parameters.

Following is a summary of the CALLS to the File Control System:

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

'TIPFCS' USING FCS-ACCESS,
'TIPFCS' USING FCS-ADD,
'TIPFCS' USING FCS-ASSIGN,
'TIPFCS' USING FCS-BACK,
'TIPFCS' USING FCS-CLOSE,
'TIPFCS' USING FCS-CREATE,
'TIPFCS' USING FCS-DELETE,
'TIPFCS' USING FCS-ESETL,
'TIPFCS' USING FCS-FLUSH,
'TIPFCS' USING FCS-GET,
'TIPFCS' USING FCS-GETUP,
'TIPFCS' USING FCS-HOLD,
'TIPFCS' USING FCS-JOURNAL,
'TIPFCS' USING FCS-NEXT,
'TIPFCS' USING FCS-NOUP,
'TIPFCS' USING FCS-OPEN,
'TIPFCS' USING FCS-PUT,
'TIPFCS' USING FCS-RELEASE,
'TIPFCS' USING FCS-SCRATCH,
'TIPFCS' USING FCS-SETL,
'TIPFCS' USING FCS-TREN,

f i 1 e-pk t ,
f i 1 e-pk t ,
f i 1 e-pk t,
f i 1 e-pk t .
f i le-pkt.
f i 1 e-pk t ,
f i 1 e-pk t ,
f i 1 e-pk t .
f i 1 e-pk t.
f i 1 e-pk t,
file-pkt,
file-pkt,
file-pkt,
f i 1 e-pk t ,
f i 1 e-pk t
f i 1 e-pk t,
f i 1 e-pk t,
f i le-pkt,
file-pkt,
f i le-pkt,
file-pkt.

FILE-DESCRIPTOR.
WORK, KEY.
FILE-DESCRIPTOR.

FILE-DESCRIPTOR.
WORK, KEY.

WORK [, KEY] .
WORK [, KEY) .
KEY.
WORK.
WORK.
[, KEY] .
FILE-DESCRIPTOR.
WORK [, KEY] .
KEY.
FILE-DESCRIPTOR.
KEY.

* This function supported for FCS DYNAMIC FILES only.

CHAPTER VI - FILE CONTROL SYSTEM
SUMMARY OF FCS CALLS

Page:
Section:

*

*

*

*

1
6.4

FCS: TYPES
SUPPORTED FILE TYPES

6.5 SUPPORTED FILE TYPES

Many files types are supported by
Certain file organizations are
equivalents.

FCS: types

the File
considered

Control
to be

Supported file types are summarized below:

System.
generic

ISAM

MI RAM

Indexed Sequential Access (one index)

Similiar to ISAM but allows up to 5 indices.

DAM Direct MIRAM, memory, FCS dynamic files.

SAM Sequential MIRAM, PRNTR, PUNCH, TAPE.

All printer files have the same format. The output records must
be standard variable length format and the first byte of data is
taken to be the spacing control character. Refer to your data
management manual for the 'device independent' (DI) printer spacing
control codes.

Page:
Section:

1
6.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

e

TIPFCS: PARAMS
CALL TIPFCS - COMMON PARAMETERS

6.6 CALL TIPFCS - COMMON PARAMETERS TIPFCS: params

Most calls to TIPFCS have the following format:

Syntax:

CALL 'TIPFCS' USING function,

Where:

function

file-pkt

record-area

key-value

index-num

f i 1 e-pk t ,
[record-area],
[key-value],
[index-num]

i~ the TIPFCS function code. (Eg. FCS-GET).

is the logical file name packet. This holds the
logical name of the file (as it appears in the
active file table).

is a record work area. This will contain the
record contents after a successful input request.
This must also hold the record for output
functions.

This record layout must define the record format
as it is stored in the file.

For an indexed file this will hold the record key.

May be omitted (as documented) for some function
codes.

For . a direct file this is a binary fullword which
holds the relative record number (ie. PIC 9(6)
COMP-4 SYNC) •

For multi-indexed files such as MIRAM, this will
hodl the index number. It must be a binary
halfword. (ie. PIC 9 COMP-4 SYNC).

If omitted, index 1 will be assumed.

CHAPTER VI - FILE CONTROL SYSTEM
CALL TIPFCS - COMMON PARAMETERS

Page:
Section:

1
6.6

FILE CONTROL SYSTEM INTERFACE PACKETS

6.7 FILE CONTROL SYSTEM INTERFACE PACKETS

There are two packets which are used to control processing of
files through FCS:

Page:
Section:

LOGICAL FILE NAME PACKET

FILE DESCRIPTOR PACKET

1
6.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

LOGICAL FILE NAME PACKET

6.7.1 LOGICAL FILE NAME PACKET FCS: file-pkt

This is the primary control packet used for processing files. It
consists of two fields.

The first is the 8-byte Logical File Name assigned to the file
for the program in use. Each file in use by a program must have a
name unique to the associated terminal.

The second field in the File Name packet is a 1-byte status
field where FCS stores the completion status of every file
processing request made for the file.

The status codes are the same as those returned in the PIB.

This field is required to maintain downward compatability with
earlier releases of TIP/30.

It is recommended that users reference the status as returned in
the field PIB-STATUS.

Example:

05 PART-FILE.
10 FILE-NAME
10 PART-FILE-STATUS

CHAPTER VI - FILE CONTROL SYSTEM
FILE CONTROL SYSTEM INTERFACE PACKETS

PICTURE X(8).
PICTURE X .

Page:
Section:

1
6.7.1

FCS: DESCRIPTOR
FILE DESCRIPTOR PACKET

6.7.2 FILE DESCRIPTOR PACKET FCS: descriptor

This packet is used during a call to FCS using the OPEN function
code. It establishes the relationship between a logical file name
(LFN) and the real file to which I/O is to be done.

If opening a data management file with the logical file name the
same as the real file name this packet may be omitted from the open
request to TIPFCS.

02 FILE-DESCRIPTOR. COPY TC-FDES OF TIP.
000001*
000002*

TC$FDES COPY ELEMENT FOR TIP/30 FILE CONTROL INTERFACE

000003**
000004* THE FOLLOWING DATA ITEMS ARE REFERRED TO AS *
000005* THE FCS FILE DESCRIPTOR PACKET *
000006**
000007 05 FDES-USER-ID PICTURE X(8).
000008 05 FOES-CATALOG PICTURE X(8).
000009 05 FDES-FILE-NAME PICTURE x (8).
000010 05 FOES-PASSWORD PICTURE x (8).
000011 05 FDES-FCS-CLASS PICTURE x.
000012 05 FDES-FCS-TYPE PICTURE x.
000013 05 FDES-FCS-PERM PICTURE x.
000014 05 FDES-FCS-LOCK PICTURE x.

Where:

FDES-USER-ID may contai~ the USER-ID or Group name to which the
file belongs. If opened for read a complete search
of the catalogue is done. If opened for output the
specified value is used. If creating a dynamic
file, this will be set to the callers USER-ID.

FDES-CATALOG

FOES-FILE-NAME

Page:
Section:

1
6.7.2

additional level of naming provided for dynamic
files. If left as spaces this will be set to the
FDES-FILE-NAME.

file name for dynamic files. The catalogued
logical file name of data management files. If
left as spaces, this is set to the logical file
name.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FILE DESCRIPTOR PACKET

FOES-PASSWORD

FDES-FCS-CLASS

FDES-FCS-TYPE

FDES-FCS-PERM

FDES-FCS-LOCK

FCS: DESCRIPTOR

this field is no longer used and may be left as
spaces.

class of file to be opened. If left as a space
TIPFCS will open the first file that it can find
in the catalog with the supplied name.

'E' is an Editor dynamic file.

'P' is a permanent dynamic file.

'S' is a data management file.

'T' is a temporary dynamic file.

designates type of file (or element) wanted

'C' - create new file

'E' - open existing file

' ' (space) access if it exists or create if it
does not exist (dynamic files)

designates type of file access

'R' - read only

'W' - write only

'U' - input file with PUT allowed for updating
(ie. SAM)

' ' - read/write

Is exclusive use of file wanted?

'Y' obtain exclusive use
status is returned if any other
file in use.

of file. A LOCKED
process has the

CHAPTER VI - FILE CONTROL SYSTEM Page: 2
6.7.2 FILE CONTROL SYSTEM INTERFACE PACKETS Section:

FCS: INDEXED

6.8

'TIPFCS' FOR INDEXED FILES

'TIPFCS' FOR INDEXED FILES FCS: indexed

Indexed files include ISAM, single index MIRAM, and multi index
MIRAM. IRAM files are handled as single index MIRAM.

MULTI-INDEXED FILES

MIRAM files may be accessed by user programs via any index. The
philosophy taken is that the program may read a MIRAM file by any
index but all updates should be done via index one (l)~
furthermore, the primary index (1) should not allow duplicate keys.

To process the file by a secondary
parameter on the TIPFCS call with a halfword
the index number.

Example:

05 INDEX-NUM PIC 9 SYNC COMP-4.

index follow the KEY
parameter specifying

Summary of TIPFCS calls using the index number.

CALL 'TIPFCS' USING FCS-GET, file-pkt, record, key, index-num.
CALL 'TIPFCS' USING FCS-SETL, file-pkt, key, index-nurn.
CALL 'TIPFCS' USING FCS-NEXT, file-pkt, record, key, index-num.

If the INDEX-NUM parameter is omitted the the primary index is
assumed. Once the file is put in sequential mode all GET's until an
ESETL would be via the INDEX-NUM supplied on the SETL.

Page:
Section:

1
6.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS: INDEXED
'TIPFCS' FOR INDEXED FILES

MIRAM AND DUPLICATE KEYS

MIRAM allows a file to contain duplicate keys. This may present
a problem when you want to display several records from a file via
some secondary index which contains duplicates.

After the ESETL, the next SETL will restart at the beginning of
the set of duplicates.

A recommended approach is to save the primary key of the last
record processed (ie: displayed on the terminal). If continuation
is requested, issue the SETL again and skip over records until you
get to the one with the primary key that was saved and continue
from that point.

When you design your MIRAM file always define the primary index
as "no duplicates" (NDUP). This index may then reliably be used to
uniquely identify records in the file~

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

2
6.8

FCS-ADD
INDEXED: ADD RECORD TO FILE

6.8.1 INDEXED: ADD RECORD TO FILE FCS-ADD

This function code will add a new record to a file.

Syntax:

CALL 'TIPFCS' USING FCS-ADD, file-pkt, record [,key]

Where:

FCS-ADD function code from the TC-FCS copy book.

file-pkt logical file name packet.

record record area containing new record data.

key Key of the record. If omitted the key will be
taken from the record area.

Example:

CALL 'TIPFCS' USING FCS-ADD, MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIB-DUP-KEY

FIB-FUNCTION

PIB-10-ERROR

Page:
Section:

1
6.8.1

a record with the same key already exists.

the file is not assigned to the program.

some 1/0 error occurred on the disk.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS-BACK
INDEXED: ROLL BACK UPDATES

6.8.2 INDEXED: ROLL BACK UPDATES FCS-BACK

For files generated as HOLD=TR, all updates since the last
transaction end are rolled back. A transaction end is marked by an
input message arrival, prior use of FCS-BACK, or use of FCS-TREN.

Syntax:

CALL 'TIPFCS' USING FCS-BACK, file-pkt.

Where:

FCS-BACK function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-BACK, MSTR-FILE.

Error Conditions:

PIB-FUNCTION the file is not assigned to the program.

• Additional Considerations:

Use of this function will force the file to random access mode.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.2

FCS-CLOSE

6.8.3

INDEXED: CLOSE FILE

INDEXED: CLOSE FILE FCS-CLOSE

Remove the file from use by programs at the associated terminal.
The entry is removed from the Active File Table. If there are no
other users of the file AND the file was generated with OPEN=NO,
FCS will issue the CLOSE imperative macro to Data Management.

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE, file-pkt.

Where:

FCS-CLOSE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-CLOSE, PAYFILE.

Error Conditions:

PIB-FUNCTION file is not assigned to the program.

Additional Considerations:

This function should only be issued for files which were opened by
issuing and FCS-OPEN function code.

Page:
Section:

1
6.8.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-DELETE
INDEXED: DELETE RECORD

6.8.4 INDEXED: DELETE RECORD FCS-DELETE

Flag a record with the delete code as specified for the file
when TIP/30 was generated. For MIRAM files with DELETE=RCB the
record will be marked deleted using the MIRAM delete facility; for
non-RCB delete schemes, the record will be appropriately flagged.

Syntax:

CALL 'TIPFCS' USING FCS-DELETE, file-pkt, record [,key].

Where:

FCS-DELETE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record record area.

key record key. If omitted the key will be taken from
the record area.

Example:

CALL 'TIPFCS' USING FCS-DELETE, MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIB-FUNCTION the file is not assigned to the program.

PIB-IO-ERROR some I/0 error occurred on the disk.

PIB-NOT-HELD an FCS-GETUP was not successfully done for this
record or the record hold has been released.

Additional Considerations:

Note that records are not physically deleted but flagged with a
known value. Record space is never re-used by data management. You
should periodically re-organize files which have had a lot of
delete/add activity.

Records that have been flagged as deleted (except MIRAM RCB
deleted) are actually returned to the user record area on a GET
function. The status is set to PIB-NOT-FOUND, but the record
contents are available in the specified record area. A previously
deleted record could be reincarnated by turning off the delete flag
and issuing an FCS-ADD function.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.4

FCS-ESETL

Page:
Section:

2
6.8.4

INDEXED: END SEQUENTIAL PROCESSING

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-ESETL
INDEXED: END SEQUENTIAL PROCESSING

6.8.5 INDEXED: END SEQUENTIAL PROCESSING FCS-ESETL

Set the file back to random processing mode. When an indexed
file is in sequential mode, it is effectively locked. Other user
programs must wait for the file to be released before they may
access it.

It is important that the file be set back to random mode prior
to soliciting any terminal input, since failure to do so locks the
file while your program is awaiting terminal input.

Syntax:

CALL 'TIPFCS' USING FCS-ESETL, file-pkt.

Where:

FCS-ESETL function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-ESETL, MST-FILE.

Error Conditions:

PIB-FUNCTION the file is not assigned to the program.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.5

FCS-FLUSH

6.8.6

INDEXED: FLUSH FILE

INDEXED: FLUSH FILE FCS-FLUSH

Causes the file buffers to be written to disk and the file to be
physically closed then immediately re-opened.

This function is used primarily to force the VTOC end-of-data
pointers to be updated after records have been added to a file.

The FCS-FLUSH should be used with discretion since it is a
relatively time consuming operation that makes the file
inaccessible to everyone for a few seconds.

Syntax:

CALL 'TIPFCS' USING FCS-FLUSH, file-pkt.

Where:

FCS-FLUSH function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-FLUSH, MASTR-FILE.

Error Conditions:

FIB-FUNCTION

PIB-IO-ERROR

Page:
Section:

1
6.8.6

the file is not assigned to the program.

some I/O error occurred on the disk.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-GET
INDEXED: READ RECORD

6.8.7 INDEXED: READ RECORD FCS-GET

Read the record with the specified key from the file.

To get the next sequential record from an indexed file the file
must have been previously set to sequential mode via an FCS-SETL
call.

Using FCS-GET means that the record is not held for update.

Syntax:

CALL 'TIPFCS' USING FCS-GET,

Where:

FCS-GET

file-pkt

record

key

index-num

Example:

file-pkt, record
[,key [, index-num]

function code from the TC-FCS copy book.

Logical file name packet.

Record area

record key. If omitted the key will be taken from
the record area. If the file is in sequential mode
then the key is not required.

binary halfword holding the index number. If
omitted then index 1 is assumed.

CALL 'TIPfCS' USING FCS-GET, MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-EOF

PIB-NOT-FOUND

the file is not assigned to the program.

some I/O error occurred on the disk.

end of file was
processing

reached during sequential

the record does not exist or it has been flagged
deleted.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.7

FCS-GET
INDEXED: READ RECORD

Additional Considerations:

If the file was set in sequential mode on a secondary index the
FCS-GET will process the file sequentially via that index.

Page:
Section:

2
6.8.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS-GETUP
INDEXED: READ RECORD AND LOCK

6.8.8 INDEXED: READ RECORD AND LOCK FCS-GETUP

Read the record with the specified key with intent to update.
The record is HELD for update.

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GETUP,
f i le-pkt,
record
[,key [, index-num)

FCS-GETUP function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record Record area

key record key.· If omitted the key will be taken from
the record area.

index-num binary halfword holding the index number. If
omitted then index 1 is assumed.

Example:

CALL 'TIPFCS' USING FCS-GETUP MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIB-FUNCTION

PIB-10-ERROR

PIB-NOT-FOUND

PIB-HELD

PIB-WRONG

the file is not assigned to the program.

some I/0 error occurred on the disk.

the record does not exist or it has been flagged
deleted.

the record is currently being updated by some
other program. Try again later if you like.

you have issued an FCS-GETUP to a file which is
not set for random processing .

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.8

FCS-GETUP
INDEXED: READ RECORD AND LOCK

Additional Considerations:

If the GETUP is done via a secondary index, the key of primary
index is placed in the key holding table.

Page:
Section:

2
6.8.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-HOLD
INDEXED: HOLD RESOURCE

6.8.9 INDEXED: HOLD RESOURCE FCS-HOLD

Place a user defined value in the key holding table. Programming
conventions may be adopted to use this function to lock all or some
portion of a file instead of just one record.

Syntax:

CALL 'TIPFCS' USING FCS-HOLD, file-pkt, value.

Where:

FCS-HOLD function code from the TC-FCS copy book.

file-pkt Logical file name packet.

value this must be a four character field.

Example:

CALL 'TIPFCS' USING FCS-HOLD, MST-FILE, WE-AGREE.

Error Conditions:

PIB-FUNCTION the file is not assigned to the program.

PIB-HELD the key value is currently held by some other
program. Try again later if you like.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.9

FCS-NEXT
INDEXED: GET NEXT RECORD

6.8.10 INDEXED: GET NEXT RECORD FCS-NEXT

This function code does the equivalent of FCS-SETL, FCS-GET and
FCS-ESETL. FCS-NEXT should be used when only one record is required
at a time.

Syntax:

CALL 'TIPFCS' USING FCS-NEXT,
f i le-pkt,
record

Where:

FCS-NEXT

file-pkt

record

key

index-num

Example:

[,key [,index-num]

function code from the TC-FCS copy book.

Logical file name packet.

record area

record key. If omitted the key will be taken from
the record area.

binary halfword holding the index number. If
omitted then index 1 is assumed.

CALL 'TIPFCS' USING FCS-NEXT MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIE-FUNCTION

PIB-IO-ERROR

PIB-NOT-FOUND

Page:
Section:

PIB-WRONG

1
6.8.10

the file is not assigned to the program.

some I/O error occurred on the disk.

the next record does not exist.

you have issued an FCS-NEXT to a file which is not
set for random processing.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-NEXT
INDEXED: GET NEXT RECORD

Additional Considerations:

This function is time consuming. If the intent is to read several
records before outputing a display to the terminal then it would be
better to issue SETL, GET, GET, .•. , ESETL.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

2
6.8.10

FCS-NOUP
INDEXED: CANCEL UPDATE

6.8.11 INDEXED: CANCEL UPDATE FCS-NOUP

Release the record previously held for update. The program
should avoid locking a record until it is certain the record will
be updated. This limits the time the record is unavailable to other
users.

A record that has been held for update via an FCS-GETUP call is
automatically released when the record is updated (FCS-PUT).

If the held record will not be updated it should be released by
issuing an FCS-NOUP.

Syntax:

CALL 'TIPFCS' USING FCS-NOUP, file-pkt, [,Key].

Where:

FCS-NOUP function code from the TC-FCS copy book.

file-pkt Logical file name packet.

key Record key. If omitted all records held for this
file are released.

Example:

CALL 'TIPFCS' USING FCS-NOUP, MST-FILE.

Error Conditions:

PIE-FUNCTION

PIB-NOT-HELD

Page:
Section:

PIB-WRONG

1
6.8.11

the file is not assigned to the program.

the record was not held.

you have issued an FCS-NOUP to a file which is not
set for random processing.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-OPEN
INDEXED: OPEN FILE

6.8.12 INDEXED: OPEN FILE FCS-OPEN

Make the specified file available for processing by programs at
the calling terminal. An entry is made in the Active File Table for
the file. If there are no other users of the file and the file was
generated with OPEN=NO, TIPFCS will issue the Data Management OPEN.
Set FOES-FILENAME of FILE-DESCRIPTOR to the catalogued logical file
name. Set FILE-NAME of file-pkt to the logical file name to be
used.

The optional fourth parameter is used to change the logical file
name (as known to the operating system) before opening the file.

Sgntax:

CALL 'TIPFCS' USING FCS-OPEN,
file-pkt

Where:
OP~rJ

FCS-GE'PUP

file-pkt

f ile-desc

alt-lfd

Example:

[, f i 1 e -des c [, a 1 t - lf d] l

function code from the TC-FCS copy book.

Logical file name packet.

file descriptor packet. See the TC-FDES copy book.
If omitted the name in the file-pkt will be used
to build a file descriptor.

Optional eight character field used to permanently
change the LFD name associated with this file.

CALL 'TIPFCS' USING FCS-OPEN, MST-FILE.

Error Conditions:

PIB-IO-ERROR

PIB-DUP-AFT-NAME

some I/O error occurred while opening the file.

a file with the same name given in file-pkt is
already assigned to the terminal.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.12

FCS-PUT
INDEXED: UPDATE RECORD

6.8.13 INDEXED: UPDATE RECORD FCS-PUT

Rewrite a record that was obtained by a previous PCS-GETUP.

Syntax:

CALL 'TIPFCS' USING FCS-PUT, file-pkt, record [,key].

Where:

FCS-PUT function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record record area

key Record key. If omitted the key will be taken from
the record area.

Example:

CALL 'TIPFCS' USING FCS-PUT MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIB-FUNCTION

PIB-10-ERROR

PIB-NOT-HELD

Page:
Section:

1
6.8.13

the file is not assigned to the program.

some I/O error occurred on the disk.

the record was not held and therefore can not be
updated.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-RELEASE
INDEXED: RELEASE RESOURCE

6.8.14 INDEXED: RELEASE RESOURCE FCS-RELEASE

Release an entry previously held by FCS-HOLD.

Syntax:

CALL 'TIPFCS' USING FCS-RELEASE, file-pkt, key.

Where:

FCS-RELEASE

Example:

file-pkt

key

function code from the TC-FCS copy book.

Logical file name packet.

this can only be a four character field.

CALL 'TIPFCS' USING FCS-RELEASE, MST-FILE, WE-AGREE.

Error Conditions:

FIB-FUNCTION the file is not assigned to the program.

PIB-NOT-HELD the key value was not held.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.14

FCS-SETL
INDEXED: SET SEQUENTIAL MODE

6.8.15 INDEXED: SET SEQUENTIAL MODE FCS-SETL

This will set the file for sequential processing beginning with
the next record with a key greater than or equal to that given.

If the file is currently in sequential mode for another user
TIPFCS will queue the request until the file is set back to random
mode before issuing the SETL.

Care should be taken to insure that an ESETL is issued to the
file prior to requesting any input from the terminal otherwise
programs may be locked in the process.

Syntax:

CALL 'TIPFCS' USING FCS-SETL, file-pkt, [,key [, index-num]]

Where:

FCS-SETL

file-pkt

key

index-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

Record key. If omitted then processing begins with
the first record in the file.

binary halfword holding the index number. If
omitted then index 1 is assumed.

CALL 'TIPFCS' USING FCS-SETL, MST-FILE, MST-ACCT.

Error Conditions:

FIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-FOUND

Page:
Section:

PIB-EOF

1
6.8.15

the file is not assigned to the program.

some I/0 error occurred on the disk.

the record does not exist or it has been flagged
deleted.

end of file reached.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-SETL-EO
INDEXED: SET SEQUENTIAL MODE

6.8.16 INDEXED: SET SEQUENTIAL MODE FCS-SETL-EQ

This will set the file for sequential processing beginning with
the record with a key equal to that given.

This function code will be treated as FCS-SETL for ISAM files.

If the file is currently in sequential mode for another user
TIPFCS will queue the request until the file is set back to random
mode before issuing the SETL.

Care should be taken to ensure that an ESETL is issued to the
file prior to requesting any input from the terminal otherwise
programs may be locked in the process.

Syntax:

CALL 'TIPFCS' USING FCS-SETL-EQ, file-pkt, [,key [, index-num]]

Where:

FCS-SETL-EQ

file-pkt

key

index-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

Record key. If omitted then processing begins with
the first record in the file.

binary halfword holding the index number. If
omitted then index 1 is assumed.

CALL 'TIPFCS' USING FCS-SETL-EQ, MST~FILE, MST-ACCT.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-FOUND

PIB-EOF

the file is not assigned to the program.

some I/O error occurred on the disk.

the record does not exist or it has been flagged
deleted.

end of file reached.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.16

FCS-SETL-GT
INDEXED: SET SEQUENTIAL MODE

6.8.17 INDEXED: SET SEQUENTIAL MODE FCS-SETL-GT

This will set the file for sequential processing beginning with
the next record with a key greater than that given. If the file is
currently in sequential mode for another user TIPFCS will queue the
request until the file is set back to random mode before issuing
the SETL. Care should be taken to insure that an ESETL is issued to
the file prior to requesting any input from the terminal otherwise
programs may be locked in the process.

Syntax:

CALL 'TIPFCS' USING FCS-SETL-GT, file-pkt, [,key[,index-num]].

Where:

FCS-SETL-GT

file-pkt

key

index-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

Record key. If omitted then processing begins with
the first record in the file.

binary halfword holding the index number. If
omitted then index 1 is assumed.

CALL 'TIPFCS 1 USING FCS-SETL-GT, MST-FILE, MST-ACCT.

Error Conditions:

PIS-FUNCTION

PIB-IO-ERROR

PIB-NOT-FOUND

Page:
Section:

PIB-EOF

1
6.8.17

the file is not assigned to the program.

some I/O error occurred on the disk.

the record does not exist or it has been flagged
deleted.

end of file reached.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-TREN
INDEXED: MARK TRANSACTION END

6.8.18 INDEXED: MARK TRANSACTION END FCS-TREN

If a file was generated with 'hold for transaction' (HOLD=TR},
then TIP/30 will automatically roll back any updates if the program
aborts. If a program has updated record(s) and wants to signal
transaction end, thus preventing rollback if a subsequent abort
occurs, the program would use the FCS-TREN function.

Syntax:

CALL 'TIPFCS' USING FCS-TREN, file-pkt.

Where:

FCS-TREN function code from the TC-FCS copy book.

file-pkt Logical file name packet.

This may be any file currently used by the
program.

Example:

CALL 'TIPFCS' USING FCS-TREN, DUMMY.

Error Conditions:
None.

Additional Considerations:

If the program has updated records an automatic FCS-TREN is issued
when the program calls TIPMSGI or TIPTERM with a get function.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR INDEXED FILES

Page:
Section:

1
6.8.18

FCS: DIRECT

6.9

'TIPFCS' FOR DIRECT ACCESS FILES

'TIPFCS' FOR DIRECT ACCESS FILES FCS: direct

Direct access files include DAM, and direct MIRAM. Direct IRAM
is handled by direct MIRAM.

All records are processed by the relative record number. Record
number 1 is the first record in the file and so on.

In the case of DAM, the relative record number is also the block
number.

Direct MIRAM does support blocked files. The reading of a
relative record may result in an entire block of records being read
into memory by data management.

In all cases the key passed to 'TIPFCS' is a binary fullword
holding the relative record number of the record to be processed.

Example:

Page:

05 REC-NUM PICTURE 9(6) COMP-4 SYNC ..

MOVE 14 TO REC-NUM.
CALL 'TIPFCS' USING FCS-GET, DETL-FILE, DETL-REC, REC-NUM.
IF NOT PIB-GOOD

PERFORM CHECK-ERROR.

Section:
1

6.9
TIP/30 Reference Manual

Version 2.5 (82/08/01)

FCS-ADD
DIRECT: ADD RECORD

6.9.1 DIRECT: ADD RECORD FCS-ADD

This could be used to add new records to the end of a direct
access file or to add a new record to the file in the place of one
which had been logically flagged de+eted.

Syntax:

CALL 'TIPFCS' USING FCS-ADD, file-pkt, record, rec-num.

Where:

FCS-ADD function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record record area

rec-num binary fullword
number.

holding the relative record

Example:

CALL 'TIPFCS' USING FCS-ADD, DTL-FILE, DTL-REC, DTL-NUM.

Error Conditions:

FIB-FUNCTION the file is not assigned to the program.

PIB-IO-ERROR some I/O error occurred on the disk.

Additional Considerations:

If the record number given is greater than the number of records in
the file, the record will be added at end of file and its relative
record number will be passed back in 'rec-num'.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

Page:
Section:

1
6.9.l

FCS-BACK
DIRECT: ROLL BACK UPDATES

6.9.2 DIRECT: ROLL BACK UPDATES FCS-BACK

For files generated as HOLD=TR, all updates since the last
transaction end are rolled back. A transaction end is marked by an
input message arrival, prior use of FCS-BACK, or use of FCS-TREN.

Syntax:

CALL 'TIPFCS' USING FCS-BACK, file-pkt.

Where:

FCS-BACK function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-BACK, MSTR-FILE.

Error Conditions:

PIB-FUNCTION the file is not assigned to the program.

Additional Considerations:

Use of this function will force the file to random access mode.

Page:
Section:

1
6.9.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS-CLOSE
DIRECT: CLOSE FILE

6.9.3 DIRECT: CLOSE FILE FCS-CLOSE

Remove the file from use by programs at the associated terminal.
The entry is removed from the Active File Table. If there are no
other users of the file and the file was generated with OPEN=NO,
FCS will issue the CLOSE imperative macro to Data Management.

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE, file-pkt.

Where:

FCS-CLOSE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-CLOSE, PAYFILE.

Error Conditions:

PIB-FUNCTION file is not assigned to the program.

Additional Considerations:

An PCS-CLOSE should only be issued to files which the program did
an PCS-OPEN.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

Page:
Section:

1
6.9.3

FCS-DELETE

6.9.4

DIRECT: DELETE RECORD

DIRECT: DELETE RECORD FCS-DELETE

Flag a record with the delete code as specified for the file
when TIP/30 was generated.

Syntax:

CALL 'TIPFCS' USING FCS-DELETE, file-pkt, record, rec-num.

Where:

FCS-DELETE

file-pkt

record

rec-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

record area

binary fullword
number.

holding the relative record

CALL 'TIPFCS' USING FCS-DELETE, DTL-FILE, DTL-REC, DTL-NUM.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-HELD

the file is not assigned to the program.

some I/O error occurred on the disk.

an FCS-GETUP was not successfully done for this
record or the record hold has been released.

Additional Considerations:

Note that the record is not physically deleted but flagged with a
known value. The record space is never re-used by data management.
You should periodically re-organize files which have had a lot of
delete/add activity.

Logically deleted records are still returned to user programs
(when read) with a status of PIB-NOT-FOUND.

Page:
Section:

1
6.9.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DIRECT: FLUSH FILE

6.9.5 DIRECT: FLUSH FILE

Causes the file buffers to be written
physically closed then immediately
primarily to update the VTOC end-of-data
should be used with discretion since it
operation making the file inaccessible
seconds.

Syntax:

FCS-FLUSH

FCS-FLUSH

to disk and the file to be
re-opened. This is used
pointers. The FCS-FLUSH
is quite a time consuming
to everyone for a few

CALL 'TIPFCS' USING FCS-FLUSH, file-pkt.

Where:

FCS-FLUSH function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-FLUSH, MASTR-FILE.

Error Conditions:

PIB-FUNCTION the file is not assigned to the program.

PIB-IO-ERROR some.I/O error occurred on the disk.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

-+*+-

Page:
Section:

1
6.9.5

FCS-GET
DIRECT: READ RECORD

6.9.6 DIRECT: READ RECORD FCS-GET

Read the specified record from the file. The relative record
number of the desired record must be supplied.

The record is not held for update.

Syntax:

CALL 'TIPFCS' USING FCS-GET, file-pkt, record, rec-num.

Where:

FCS-GET

file-pkt

record

rec-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

record area

binary fullword
number.

holding the relative record

CALL 'TIPFCS' USING FCS-GET, MST-FILE, MST-REC, MST-KEY.

Error Conditions:

PIE-FUNCTION

PIE-IO-ERROR

PIB-EOF

PIE-NOT-FOUND

Page:
Section:

1
6.9.6

the file is not assigned to the program.

some I/O error occurred on the disk.

end of file was
processing

reached during sequential

the record does not exist or it has been flagged
deleted.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-GETUP
DIRECT: READ RECORD AND LOCK

6.9.7 DIRECT: READ RECORD AND LOCK FCS-GETUP

Read the relative record with intent to update. The record is
HELD for update.

Syntax:

CALL 'TIPFCS' USING FCS-GETUP, file-pkt, record, rec-num.

Where:

FCS-GETUP

file-pkt

record

rec-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

record area

binary fullword
number.

holding the relative record

CALL 'TIPFCS' USING FCS-GETUP, DTL-FILE, DTL-REC, DTL-NUM.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-NOT-FOUND

PIB-HELD

PIB-WRONG

the file is not assigned to the program.

some I/O error occurred on the disk.

the record does not exist or it has been flagged
deleted.

the record is currently being updated by some
other program. Try again later if you like.

you have issued an FCS-GETUP to a file which is
not set for random processing.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

Page:
Section:

1
6.9.7

FCS-HOLD
DIRECT: HOLD RESOURCE

6.9.8 DIRECT: HOLD RESOURCE FCS-HOLD

Place a user defined value in the key holding table. Programming
conventions may be adopted to use this function to secure all or
some portion of a file instead of just one record.

Syntax:

CALL 'TIPFCS' USING FCS-HOLD, file-pkt, key.

Where:

Example:

FCS-HOLD

file-pkt

key

function code from the TC-FCS copy book.

Logical file name packet.

this can only be a four character field.

CALL 'TIPFCS' USING FCS-HOLD, MST-FILE, WE-AGREE.

Error Conditions:

PIB-FUNCTION

Page:
Section:

PIB-HELD

1
6.9.8

the file is not assigned to the program.

the key value is currently held by some other
program. Try again later if you like.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-NOUP
DIRECT: CANCEL UPDATE

6.9.9 DIRECT: CANCEL UPDATE FCS-NOUP

Release the record held for update. The program should avoid
locking a record until it is certain the record will be updated.
This limits the time the record is unavailable to other users. A
record that has been held for update via an FCS-GETUP call is
automatically released when the record is updated (FCS-PUT). If the
held record will not be updated it should be released by issuing an
FCS-NOUP call.

Syntax:

CALL 'TIPFCS' USING FCS-NOUP, file-pkt, [,rec-num].

Where:

FCS-NOUP function code from the TC-FCS copy book.

file-pkt Logical file name packet.

rec-num binary fullword holding the relative record number

Example:

CALL 'TIPFCS' USING FCS-NOUP, DTT-FILE.

Error Conditions:

PIB-FUNCTION

PIB-NOT-HELD

the file is not assigned to the program.

the record was not held.

PIB-WRONG you have issued an FCS-NOUP to a file which is not
set for random processing.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

Page:
Section:

1
6.9.9

--- ---------------------------------------

FCS-OPEN
DIRECT: OPEN FILE

6.9.10 DIRECT: OPEN FILE FCS-OPEN

Make the specified file available for processing by programs at
the calling terminal. An entry is made in the Active File Table for
the file. If there are no other users of the file and the file was
generated with OPEN=NO, TIPFCS will issue the Data Management OPEN.
Set FDES-FILENAME of FILE-DESCRIPTOR to cataloged logical file
name. Set FILE-NAME of file-pkt to the logical file name to be
used.

The optional fourth parameter is used to change the logical file
name (as known to the operating system) before opening the file.

Syntax:

CALL 'TIPFCS' USING FCS-OPEN, file-pkt [,file-desc
[, al t - lf d l J •

Where:

FCS-OPEN

file-pkt

f ile-desc

alt-lfd

Example:

function code from the TC~Fcs copy book.

Logical file name packet.

file descriptor packet. See the TC-FDES copy book.
If omitted the name in the file-pkt will be used
to build a file description.

Optional eight character field used to permanently
change the LFD name used by this file.

CALL 'TIPFCS' USING FCS-OPEN, MST-FILE.

Error Conditions:

PIB-IO-ERROR

PIB-DUP-AFT-NAME

Page:
Section:

1
6.9.10

some I/O error occurred while opening the file.

a file of with the same name given in file-pkt is
already assigned to the terminal.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

FCS-PUT
DIRECT: UPDATE RECORD

6.9.11 DIRECT: UPDATE RECORD FCS-PUT

The program must have previously issued an FCS-GETUP to lock the
record to be written.

Syntax:

CALL 'TIPFCS' USING FCS-PUT, file-pkt, record, rec-num.

Where:

FCS-PUT

file-pkt

record

rec-num

Example:

function code from the TC-FCS copy book.

Logical file name packet.

record area

binary fullword
number.

holding the relative record

CALL 'TIPFCS' USING FCS-PUT, DTL-FILE, DTL-REC, DTL-NUM.

.. Error Conditions: •

•

PIB-FUNCTION

PIB-10-ERROR

PIB-NOT-HELD

the file is not assigned to the program.

some I/O error occurred on the disk.

the record was not held and therefore can not be
updated .

CHAPTER. VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

Page:
Section:

1
6.9.11

FCS-RELEASE
DIRECT: RELEASE RESOURCE

6.9.12 DIRECT: RELEASE RESOURCE FCS-RELEASE

Release an entry previously held by FCS-HOLD.

Syntax:

CALL 'TIPFCS' USING FCS-RELEASE, file-pkt, key.

Where:

FCS-RELEASE

Example:

file-pkt

key

function code from the TC-FCS copy book.

Logical file name packet.

this can only be a four character field.

CALL 'TIPFCS' USING FCS-RELEASE, MST-FILE, WE-AGREE.

Error Conditions:

PIB-FUNCTION

PIB-NOT-HELD

Page:
Section:

1
6.9.12

the file is not assigned to the program.

the key value was not held.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS-TREN
DIRECT: MARK TRANSACTION END

6.9.13 DIRECT: MARK TRANSACTION END FCS-TREN

If a file was generated with 'hold for transaction' (HOLD=TR),
then TIP/30 will automatically rollback any updates when a user
program has aborted. If a program has updated record(s) and wants
to signal transaction end, thus preventing rollback if a subsequent
abort should occur, then the program would issue the FCS-TREN
function code to TIPFCS.

Syntax:

CALL 'TIPFCS' USING FCS-TREN, file-pkt.

Where:

FCS-TREN function code from the TC-FCS copy book.

file-pkt Logical file name packet. This may be any file
used by the program.

Example:

CALL 'TIPFCS' USING FCS-TREN, DUMMY .

Error Conditions:
None.

Additional Considerations:

If the program has updated records an automatic FCS-TREN is issued
when the program calls TIPMSGI or TIPTERM USING GET.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR DIRECT ACCESS FILES

Page:
Section:

1
6.9.13

FCS: SEQUENTIAL
'TIPFCS' FOR SEQUENTIAL FILES

6.10 'TIPFCS' FOR SEQUENTIAL FILES FCS: sequential

Sequential files include SAM, sequential MIRAM, TAPE, PUNCH
(cards), and printers. Sequential IRAM files are handled as
sequential MIRAM.

Printer files all follow the standard variable length record
format with device independent carriage control as documented in
the Univac data management guide. You may wish to refer to the
section on TIPPRINT for more information regarding printer files.

Page:
Section:

1
6.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-CLOSE
SEO: CLOSE FILE

6.10.1 SEQ: CLOSE FILE FCS-CLOSE

Remove the file from use by programs at the associated terminal.
The entry is removed from the Active File Table. If there are no
other users of the file and the file was generated with OPEN=NO,
FCS will issue the CLOSE imperative macro to Data Management.

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE, file-pkt.

Where:

FCS-CLOSE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-CLOSE, PAYFILE.

Error Conditions:

PIB-FUNCTION file is not assigned to the program.

Additional Considerations:

An FCS-CLOSE should only be issued for files which were opened via
an FCS-OPEN.

In the case of printer and punch file a breakpoint will be
issued at CLOSE time.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR SEQUENTIAL FILES

Page:
Section:

1
6.10.1

FCS-GET
SEO: READ RECORD

6.10.2 SEQ: READ RECORD FCS-GET

Read the next record from the file.

Syntax:

CALL 'TIPFCS' USING FCS-GET, fi le-pKt, record.

Where:

FCS-GET function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record record area

Example:

CALL 'TIPFCS' USING FCS-GET, MST-FILE, MST-REC.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

Page:
Section:

PIB-EOF

PIB-WRONG

1
6.10.2

the file is not assigned to the program.

some I/O error occurred on the disk.

end of file was reached during sequential
processing

the file was not defined for input processing.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-OPEN
SEO: OPEN FILE

6.10.3 SEQ: OPEN FILE FCS-OPEN

Make the specified file available for processing by programs at
the calling terminal. An entry is made in the Active File Table for
the file. If there are no other users of the file and the file was
generated with OPEN=NO, TIPFCS will issue the Data Management OPEN.
Set FDES-FILENAME of FILE-DESCRIPTOR to cataloged logical file
name. Set FILE-NAME of file-pkt to the logical file name to be
used.

The optional fourth parameter is used to change the logical file
name (as known to the operating system) before opening the file.

Syntax:

·cALL 'TIPFCS' USING FCS-OPEN, file-pkt [,f i le-desc
[, al t - lf d l l .

Where:

FCS-OPEN

file-pkt

f ile-desc

alt-lfd

Example:

function code from the TC-FCS copy book.

Logical file name packet.

file descriptor packet. See the TC-FOES copy book.
If omitted the name in the file-pkt will be used
to build a file description.

an eight character field used to permanently
change the LFD name used by this file.

CALL 'TIPFCS' USING FCS-OPEN, MST-FILE.

Error Conditions:

PIB-IO-ERROR

PIB-DUP-AFT-NAME

some I/0 error occurred while opening the file.

a file of with the same name given in file-pkt is
already assigned to the terminal.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR SEQUENTIAL FILES

Page:
Section:

1
6.10.3

FCS-PUT
SEO: OUTPUT RECORD

6.10.4 SEQ: OUTPUT RECORD FCS-PUT

The record is appended to the sequential output file.

Syntax:

CALL 'TIPFCS' USING FCS-PUT, file-pkt, record.

Where:

FCS-PUT

file-pkt

record

Example:

function code from the TC-FCS copy book.

Logical file name packet.

record area

CALL 'TIPFCS' USING FCS-PUT, MST-FILE, MST-REC.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

Page:
Section:

PIB-EOF

1
6.10.4

the file is not assigned to the program.

some I/O error occurred on the disk.

the file is full.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

FCS: DYNAMIC
DYNAMIC FCS FILES

6.11 DYNAMIC FCS FILES FCS: dynamic

Each Dynamic FCS file may be processed by several users at the
same time. Within the application program, FCS files have a
complete description as mapped out by a FILE-DESCRIPTOR packet.

Associated with each active file is a Logical File Name which is
defined when the file is accessed or created. The following are the
functions that may be used to process FCS Dynamic files:

FCS-ACCESS
FCS-ASSIGN
FCS-CLOSE
FCS-CREATE
FCS-GET
FCS-PUT
FCS-SCRATCH

NOTE:

open an existing file
open the file, if not there create it
close a file
create a new file
read a record(s) from the file
write a record(s) to the file
scratch a file

The size of the I/O work area must always be a multiple
of 512 bytes (the physical block size of dynamic files)
and must always be fullword aligned.

CHAPTER VI - FILE CONTROL SYSTEM
DYNAMIC FCS FILES

Page:
Section:

1
6.11

FCS-ACCESS
DYN: ACCESS FILE

6.11.1 DYN: ACCESS FILE FCS-ACCESS

Before an application program can perform I/O to an existing
file, the file must be allocated to the program. FCS-ACCESS is the
function to use when opening a Dynamic file. Set USER-ID, CATALOG
and file-pkt of FILE-DESCRIPTOR to the appropriate values. Also,
any security data that was specified when the file was created may
be required.

Syntax:

CALL 'TIPFCS' USING FCS-ACCESS, file-pkt, file-desc.

Where:

FCS-ACCESS function code from the TC-FCS copy book.

file-pkt File descriptor packet.

f ile-desc File descriptor packet. See the TC-FDES copy book.

Example:

CALL 'TIPFCS' USING FCS-ACCESS, BATCH-FILE, BATCH-FDES.

Error Conditions:

PIB-DUP-AFT

PIB-NOT-FOUND

Page:
Section:

1
6.11.1

a file of the name given in the file-pkt is
already assigned to the terminal.

the requested file does not exist.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

FCS-ASSIGN
DYN: ASSIGN FILE

6.11.2 DYN: ASSIGN FILE FCS-ASSIGN

This FCS call will open an existing Dynamic file for use by the
calling program. If the file does not exist FCS will automatically
CREATE a new file according to the specifications given in the
FILE-DESCRIPTOR packet.

Syntax:

CALL 'TIPFCS' USING FCS-ASSIGN, file-pkt, file-desc.

Where:

FCS-ASSIGN function code from the TC-FCS copy book.

file-pkt File descriptor packet.

f ile-desc File descriptor packet. See the TC-FDES copy book.

Example:

CALL 'TIPFCS' USING FCS-ASSIGN, BATCH-FILE, BATCH-FOES.

Error Conditions:

PIB-DUP-AFT a file of the name given in the file-pkt is
already assigned to the terminal.

PIB-NOT-FOUND the requested file does not exist.

CHAPTER VI - FILE CONTROL SYSTEM
DYNAMIC FCS FILES

Page:
Section:

1
6.11.2

FCS-CLOSE
DYN: CLOSE FILE

6.11.3 DYN: CLOSE FILE FCS-CLOSE

When an application program is finished with a file it should
remove the file from the Active File Table by issuing an FCS-CLOSE.

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE, file-pkt.

Where:

FCS-CLOSE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-CLOSE, BATCH-FILE.

Error Conditions:

FIB-FUNCTION

Page:
Section:

1
6.11.3

the file is not assigned to the program.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-CREATE
DYN: CREATE FILE

6.11.4 DYN: CREATE FILE FCS-CREATE

This function is used to create new files, either temporary or
permanent. The application program must set up FILE-DESCRIPTOR and
file-pkt with the correct values. If PDES-USER-ID is SPACES, then
FCS will use the USER-ID that was given when the user logged on to
TIP/30. If FDES-CATALOG is SPACES, PCS will build a unique name
from the terminal-id and program stack level.

Set FDES-FCS-TYPE to PCS-TYPE-NEW. Set FDES-FILE-CLASS to
FCS-CLASS-PERM or FCS-CLASS-TEMP to create a permanent or temporary
file. Set PDES-PCS-LOCK to PCS-LOCK-YES if you wish to have
exclusive use of the file. If FILE-LOCK is equal to 'Y' then no
other application will be allowed to access the file.

.
PCS will create a new file as specified if no errors were

detected. The user program should check the status field of the
file-pkt packet after every TIPPCS call.

Syntax:

CALL 'TIPFCS' USING FCS-CREATE, file-pkt, fi le-desc.

Where:

FCS-CREATE

file-pkt

function code from the TC-FCS copy book.

File descriptor packet.

f ile-desc File descriptor packet. See the TC-FDES copy book.

Example:

CALL 'TIPFCS' WSING FCS-CREATE, BATCH-FILE, BATCH-FOES.

Error Conditions:

PIB-DUP-AFT a file of the name given in the file-pkt is
already assigned to the terminal.

PIB-NOT-FOUND the requested file does not exist.

CHAPTER VI - FILE CONTROL SYSTEM
DYNAMIC FCS FILES

Page:
Section:

1.
6.11.4

FCS-GET
DYN: READ RECORD(S)

6.11.5 DYN: READ RECORD(S) FCS-GET

FCS Dynamic files are direct
must place the relative record
optional parameter RECORD-COUNT
512 byte record into WORK.

access type files. The user program
number in RECORD-NUMBER. If the
is not specified, FCS will read one

Both RECORD-NUMBER and RECORD-COUNT must be fullword aligned and
contain fullword binary values. [ie: 9(6) COMP-4, SYNC.]

Syntax:

Where:

CALL 'TIPFCS' USING FCS-GET, file-pkt, record, rec-num,
[,rec-count]

FCS-GET

file-pkt

record

rec-num

rec-count

function code from the TC-FCS copy book.

logical file name packet.

(512 x rec-count) byte record area. (Fullword
aligned).

Block number to be read. (Fullword aligned).

Optional parameter which specifies how many blocks
are to be read. Default is one.

Example:

Page:
Section:

CALL 'TIPFCS' USING FCS-GET, BATCH-FLE, REC-WRK, REC-NUM.

1
6 .11. 5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS-OPEN
DYN: OPEN FILE

6.11.6 DYN: OPEN FILE FCS-OPEN

This function may be used to open any file. The file descriptor
and any existing catalogue record are used to determine what type
of file is to be opened. This function may create new files
either temporary or permanent. The application program must set up
FILE-DESCRIPTOR and file-pkt with the correct values. If
FDES-USER-ID is SPACES, then FCS will use the USER-ID that was
given when the user logged on to TIP/30. If FDES-CATALOG is SPACES,
FCS will build a unique name from the terminal-id and program stack
level.

To open an existing file set FDES-FCS-TYPE to FCS-TYPE-OLD. To
create a new file set FDES-FCS-TYPE to FCS-TYPE-NEW. If the
FDES-FCS-TYPE is left as a space and the file exists then it will
be accessed. If the file did not exist then it would be created.
Thus, depending on the values set in the file descriptor, FCS-OPEN
can perform the same functions as FCS-ACCESS, FCS-ASSIGN and
PCS-CREATE. Set FDES-FILE-CLASS to FCS-CLASS-PERM or FCS-CLASS-TEMP
for permanent or temporary file. Set FDES-FCS-LOCK to FCS-LOCK-YES
if you wish to have exclusive use of the file. If FILE-LOCK is
equal to 'Y' then no other application will be allowed to access
the file.

Syntax:

CALL 'TIPFCS' USING FCS-OPEN, file-pkt, file-desc.

Where:

FCS-OPEN function code from the TC-FCS copy book.

file-pkt Logical file name packet.

f ile-desc file description packet. See the TC-FDES copy
book.

Example:

CALL 'TIPFCS' USING FCS-OPEN, BATCH-FILE, BATCH-FOES.

CHAPTER VI - FILE CONTROL SYSTEM
DYNAMIC FCS FILES

Page:
Section:

1
6.11.6

FCS-OPEN

Error Conditions:

PIB-DUP-AFT

PIB-NOT-FOUND

Page:
Section:

2
6.11.6

DYN: OPEN FILE

a file of the name given in the file-pkt is
already assigned to the terminal.

the requested file does not exist.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

•

FCS-PUT
DYN: WRITE RECORD(S)

6.11.7 DYN: WRITE RECORD(S) FCS-PUT

Dynamic file records
RECORD-NUMBER is given (in
end limit of the file,
record.

are a fixed size of 512 bytes. If a
an FCS-PUT) which is beyond the current

FCS will expand the file to accept that

An exception occurs if the new RECORD-NUMBER is beyond the
maximum file size.

Expansion may occur until the dynamic file upper boundary size
is reached; approximately 48 increments of 40 blocks, each 512
bytes.

Sgntax:

Where:

CALL 'TIPFCS' USING FCS-PUT, file-pkt, record, rec-num
[,rec-count]

FCS-PUT

file-pkt

record

rec-num

rec-count

function code from the TC-FCS copy book.

File name descriptor.

512 character record area. (Fullword alligned)

is the block number to be read.

is an optional parameter which specifies how many
blocks are to be read. (default: one block).

Example:

CALL 'TIPFCS' USING FCS-PUT, BATCH-FLE, REC-WRK, REC-NUM .

CHAPTER VI - FILE CONTROL SYSTEM
DYNAMIC FCS FILES

Page:
Section:

1
6.11.7

FCS-SCRATCH
DYN: SCRATCH FILE

6.11.8 DYN: SCRATCH FILE FCS-SCRATCH

This deletes a Dynamic file from the FCS system. Temporary or
Permanent Dynamic files may be scratched.

A file must be assigned to scratch it. Temporary Dynamic files
are automatically scratched if TIP/30 terminates abnormally.

Syntax:

CALL 'TIPFCS' USING FCS-SCRATCH, file-pkt.

Where:

FCS-SCRATCH function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-SCRATCH, BATCH-FILE.

Error Conditions:

FIB-FUNCTION

Page:
Section:

1
6.11.8

the file is not assigned to the program.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

e

TIPPRINT
OUTPUT TO PRINT A FILE

6.12 OUTPUT TO PRINT A FILE TIPPRINT

TIPPRINT is a re-entrant subroutine that can be called by a user
program to perform printing functions. The print output can be
directed to either a central site printer (via the OS/3 spooling
system), or a communications printer.

The user interface with TIPPRINT is similar to that used in the
TIPFCS calls (ie function-code, file-name, record). With TIPPRINT,
however, the fourth parameter is always the name of a user supplied
buffer which is used by TIPPRINT as a work area. The file-name (2nd
parameter) is used to inform TIPPRINT of the destination of the
print file (either batch or communications).

TIPPRINT uses variable length records, which contain a DI
(device independent carriage control) code (see OS/3 Basic Data
Management publication regarding 'DTFPR CTLCHR=DI').

If the user intends to write to the main-site printer then
simply call TIPFCS with a file-name of 'PRNTR', since this is a
standard file generated into every TIP system. Using TIPPRINT will
cause a 3500 byte module (TI$PRINT) to be included in your program.

Syntax:

CALL 'TIPPRINT' USING FCS-OPEN, FILE-PKT, INFO, BUFFER.
CALL 'TIPPRINT' USING FCS-PUT, FILE-PKT, LINE, BUFFER.
CALL 'TIPPRINT' USING FCS-FLUSH, FILE-PKT, LINE, BUFFER.
CALL 'TIPPRINT' USING FCS-CLOSE, FILE-PKT, LINE, BUFFER.

Where:

Param 1 function code from the TC-FCS copy book.

FCS-OPEN open the file

FCS-PUT write a record to the file

FCS-FLUSH force the buffer to be written

FCS-CLOSE close the file

file-pkt file name packet:

CHAPTER VI - FILE CONTROL SYSTEM
OUTPUT TO PRINT A FILE

Page:
Section:

1
6.12

TI PPR INT

Page:
Section:

FILE-NAME

FILE-STATUS

2
6.12

OUTPUT TO PRINT A FILE

05 PRINT-FILE-NAME.
10 FILE-NAME
10 FILE-STATUS

PIC X(B).
PIC X.

is the name of the print file that is to be used
by TIPPRINT.

If the first three characters of FILE-NAME are
'COP' or 'AUX' then TIPPRINT will route the output
data directly to the auxiliary printer. In this
case, the fourth character of the file name is
used to specify the auxiliary device number (1-9),
with the default being device number 1.

The remaining four characters of the file name may
be used to specify a destination terminal name.
The terminal name specified identifies the
terminal that is to be used for the data transfer.
The default destination is the terminal being used
by the program calling TIPPRINT.

The terminal name may also be '*BYP' to direct the
output to the bypass terminal of the associated
terminal cluster. (See TIP SYSTEM GENERATION).

this will contain an 'O' to indicate a page
overflow condition has occurred.

This may contain a 'B', to indicate that the print
output has been interrupted. This could
the output message could not be delivered
printer (ie: printer error) or if the
operator pressed the 'Message Waiting'
replied 'NO' to the BREAK prompt.

The BREAK prompt is displayed as follows:

Break - Continue? >YES >NO

occur if
to the

terminal
key and

If any I/O error occurs on the auxiliary device, a
message is sent to the error reporting terminal
(as specified in the 'open information packet').
This message will identify the error and the name
of the terminal associated with the error. The
message that is sent to the error reporting

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPPRINT
OUTPUT TO PRINT A FILE

terminal is as follows:

PRINT ERROR AT __ , ERROR =

Param 3

If this condition occurs, a status code of "B" is
returned to the calling routine to indicate that
the printed output has been broken.

information packet or record area

If the function code of FCS-OPEN is used, then
parameter 3 is used to supply some general
information to TIPPRINT.

The format of the information packet is defined by
the supplied copy book TC-PRINT:

05
000001*
000002**
000003*
000004
000005
000006
000007
000008
000009
000010
000011

TIPPRINT-INFORMATION-PKT COPY TC-PRINT OF TIP.

COPY ELEMENT FOR TIPPRINT INFORMATION PACKET

10
10
10
10
10
10
10
10

Where:

PI-BUFF-LEN

PI-PAGE-LEN

PRINT-BUF-LEN PICTURE 9(4) COMP-4.
PRINT-PAG-LEN PICTURE 9(4) COMP-4.
PRINT-ERR-TERM PICTURE x (4).
PRINT-TOP-OF-FORM PICTURE x.
PRINT-LINE-FEED PICTURE x.
PRINT-NOW-PRINTING PICTURE x.
PRINT-UPPER-CASE PICTURE x.
PRINT-RESERVED PICTURE x (4).

1s used to specify the length of the buff er that
the user program is supplying. The minimum length
is 512 bytes.

is used to specify the page length. Whenever a
number of lines equal to this value has been
output, TIPPRINT will return an 'O' (overflow)
status to the calling program.

CHAPTER VI - FILE CONTROL SYSTEM
OUTPUT TO PRINT A FILE

Page:
Section:

3
6.12

TIPPRINT

PI-ERROR-TERM

PI-TOP-OF-FORM

PI-LINE-FEED

PI-NOW-PRINTING

PI-UPPER-CASE

Page:
Section:

line

4
6.12

OUTPUT TO PRINT A FILE

is used to specify the name of a terminal that is
to receive the error message if an error condition
occurs. The value specified may be the name of a
valid communications terminal in the network, or
the value '*CON' to indicate the central site
operator's console, or a value of '*RET' to
indicate that no error message is to be sent. In
the case of '*RET', TIPPRINT will simply return to
the calling program with a status of 'B' and the
specific ICAM error code will be located in the
third byte of the buff er area.

is used to select an optional skip to top of form
before the first page is output. If the skip is
required, this location should be set to 'Y',
otherwise a value of 'N' is used. The default
value is 'N'.

is used to select an optional line feed at the end
of every communications output message. This is
required by some types of communications printers
as they do not perform a line feed sequence
automatically with every message. If this option
is required, this location should be set to 'Y',
otherwise a value of 'N' is used. The default
value is 'N' •

is used to suppress the 'Now Printing' message
which is displayed when the output is being routed
to a batch print file. To select this option, this
location should be set to 'N'. The default value
is 'Y'.

is used to select upper case only output. The
default is 'Y' for batch print files (ie: PRNTR)
and 'N' for communications print files (ie: AUXl).

print line. If the function code of FCS-PUT is
used, then paramter 3 is used to specify the
record area (print line). The record used is of
variable length and carriage control is performed
by the use of a DI character (byte 5 of the
record). The format of a record used with TIPPRINT
is as follows:

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OUTPUT TO PRINT A FILE

05 PRINT-LINE.
10 LI-LENGTH
10 FILLER

TI PPR INT

PICTURE 9(4) COMP-4.
PICTURE XX.

10 LI-DI-CONTROL
10 LI-DATA

PICTURE X.
PICTURE X(??).

Where:

PRINT-LINE

LI-LENGTH

LI-DI-CODE

LI-DATA

is a variable length record containing length
field, a DI code (for carriage control), and the
data to be printed.

is used to specify the length of the print line.
Note that the length specified includes the length
of the the record header (5 bytes).

These codes are described in the OS/3 data
management manual in the section describing the
printer I/O structures.

Standard FORTRAN spacing codes may be used if the
output is being sent to an auxiliary device. It is
best to use the DI codes as documented in the Data
Management User Guide.

I I

I 0 I

I _ I

I 1 I

single space
double space
triple space
skip to the top of a new page

TIPPRINT recognizes a special DI-code "V" (ignored
if the output is a batch printer). This code
instructs TIPPRINT to output the contents of the
associated print line with NO modifcation or
translation.

This allows the user to send arbitrary codes to an
auxiliary device.

This is the data to be printed.

CHAPTER VI - FILE CONTROL SYSTEM
OUTPUT TO PRINT A FILE

Page:
Section:

5
6.12

TIPPRINT

Param 4

OUTPUT TO PRINT A FILE

work area buffer. This parameter is used to
identify a buffer that is used by TIPPRINT. This
buff er must be at least 512 bytes in size and
should be full-word aligned (SYNC). The only
information stored in this buffer that is of any
interest to the calling program is the ICAM
delivery status, which is located in the third
byte of the buffer. The format of the buffer would
be as follows:

05 TIPPRINT-BUFFER.
10 BU-LEN
10 BU-ICAM-STATUS
10 FILLER

PICTURE 9(4) COMP-4.
PICTURE X.
PICTURE X(????).

Additional Considerations:

All auxiliary device messages are sent to the MEDIUM terminal
queue.

ICAM should be generated with FEATURES=(OPCOM,OUTDELV).

There is a COBOL copy book supplied which contains some commonly
used carriage control codes. This copy book should be copied into
the WORKING-STORAGE SECTION. The format follows:

000001*
000002*
000003*
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018

Page:
Section:

01 PRINTER-CODES. COPY TC-DI OF TIP.

DEFINE CODE TO BE USED FOR PRINTER CARRIAGE CONTROL

05 TC-DI-1
COMPUTATIONAL-4 VALUE 9985.

05 TC-FILLER1 REDEFINES TC-DI-1.
10 TC-DI-HOME
10 TC-DI-PRINT-SPACE1

05 TC-DI-2
COMPUTATIONAL-4 VALUE 515.

05 TC-FILLER2 REDEFINES TC-DI-2.
10 TC-DI-PRINT-SPACE2
10 TC-DI-PRINT-SPACE3

05 TC-DI-3
COMPUTATIONAL-4 VALUE 1029.

05 TC-FILLER3 REDEFINES TC-DI-3.

6
6.12

PICTURE 9(4)

PICTURE X.
PICTURE X.

PICTURE 9(4)

PICTURE X.
PICTURE X.

PICTURE 9(4)

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•
OUTPUT TO PRINT A FILE

000019 10 TC-DI-PRINT-SPACE4
000020 10 TC-DI-PRINT-SPACE5
000021
000022 05 TC-DI-4
000023 COMPUTATIONAL-4 VALUE 1543.
000024 05 TC-FILLER4 REDEFINES TC-DI-4.
000025 10 TC-DI-PRINT-SPACES
000026 10 TC-DI-PRINT-SPACE7
000027
000028 05 TC-DI-5
000029 COMPUTATIONAL-4 VALUE 2057.
000030 05 TC-FILLER5 REDEFINES TC-DI-5.
000031 10 TC-DI-PRINT-SPACES
000032 10 TC-DI-PRINT-SPACE9
000033
000034 05 TC-DI-6
000035 COMPUTATIONAL-4 VALUE 2576.
000036 05 TC-FILLER6 REDEFINES TC-DI-6.
000037 10 TC-DI-PRINT-SPACE10
000038 10 TC-DI-PRINT-NO-SPACE

CHAPTER VI - FILE CONTROL SYSTEM
OUTPUT TO PRINT A FILE

PICTURE
PICTURE

PICTURE

PICTURE
PICTURE

PICTURE

PICTURE
PICTURE

PICTURE

PICTURE
PICTURE

x.
x.
9(4)

x.
x.
9(4)

x.
x.
9(4)

x.
x.

Page:
Section:

TIPPRINT

7
6.12

TC-FCS
FCS COBOL COPY ELEMENT

6.13 FCS COBOL COPY ELEMENT TC-FCS

This copy book must always be placed in the WORKING-STORAGE
SECTION.

01 FCS-CODES. COPY TC-FCS OF TIP.
000001* TC$FCS COPY ELEMENT FOR TIP/30 FILE CONTROL INTERFACE
000002*
000003**
000004* THE FOLLOWING 05-LEVEL DATA ITEMS ARE USED AS *
000005* FCS FUNCTION CODES *
000006**
000007 05 FCS-ACCESS VALUE I A I PICTURE X.
000008 05 FCS-ADD VALUE '9' PICTURE X.
000009 05 FCS-ASSIGN VALUE I> I PICTURE X.
000010 05 FCS-BACK VALUE I BI PICTURE x.
000011 05 FCS-CLOSE VALUE ID' PICTURE x.
000012 05 FCS-CREATE VALUE IN' PICTURE x.
000013 05 FCS-DELETE VALUE I< I PICTURE x.
000014 05 FCS-ESETL VALUE '6' PICTURE x.
000015 05 FCS-FLUSH VALUE IF I PICTURE x.
000016 05 FCS-GET VALUE 'G' PICTURE x.
000017 05 FCS-GETUP VALUE I 0 I PICTURE x.
000018 05 FCS-HOLD VALUE I H' PICTURE x.
000019 05 FCS-JOURNAL VALUE IT I PICTURE x.
000020 05 FCS-NEXT VALUE I x I PICTURE x.
000021 05 FCS-NOUP VALUE I 2 I PICTURE x.
000022 05 FCS-OPEN VALUE 'O' PICTURE x.
000023 05 FCS-PUT VALUE Ip I PICTURE x.
000024 05 FCS-RELEASE VALUE IR I PICTURE x.
000025 05 FCS-SCRATCH VALUE 'Q' PICTURE x.
000026 05 FCS-SETL VALUE '5' PICTURE x.
000027 05 FCS-SETL-EQ VALUE IE I PICTURE x.
000028 05 FCS-SETL-GT VALUE I z I PICTURE x.
000029 05 FCS-TREN VALUE I* I PICTURE x.
000030*
000031**
000032* THE FOLLOWING 05-LEVEL DATA ITEMS ARE USED AS *
000033* FCS DYNAMIC FILE, CLASSES *
000034**
000035 05 FCS-CLASS-PERM VALUE Ip I PICTURE X.
000036 05 FCS-CLASS-TEMP VALUE IT I PICTURE X.
000037 05 FCS-CLASS-QED VALUE IE I PICTURE X.
000038*
000039**
000040* THE FOLLOWING 05-LEVEL DATA ITEMS ARE USED AS * 000041* FCS DYNAMIC FILE, TYPES *
000042**
000043

Page:
Section:

05 FCS-TYPE-NEW

1
6.13

VALUE I c I PICTURE X.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS COBOL COPY ELEMENT

000044
000045*

05 FCS-TYPE-OLD

TC-FCS

VALUE 'E' PICTURE X.

000046**
000047* THE FOLLOWING 05-LEVEL DATA ITEMS ARE USED AS *
000048* FCS FILE PERMISSIONS *
000049**
000050 05 FCS-PERM-READONLY VALUE 'R' PICTURE X.
000051 05 FCS-PERM-WRITEONLY VALUE 'W' PICTURE X.
000052 05 FCS-PERM-UPDATE VALUE 'U' PICTURE X.
000053*
000054**
000055* THE FOLLOWING 05-LEVEL DATA ITEMS ARE USED AS *
000056* FCS LOCK OPTIONS *
000057**
000058 05 FCS-LOCK-YES VALUE 'Y' PICTURE X.
000059 05 FCS-LOCK-NO VALUE 'N' PICTURE X.

Page: CHAPTER VI - FILE CONTROL SYSTEM
FCS COBOL COPY ELEMENT Section:

2
6.13

COMMON TIPFCS FUNCTIONS AND STATUS CODES

6.14 COMMON TIPFCS FUNCTIONS AND STATUS CODES

FUNCTION POSSIBLE STATUS CODE

FCS-OPEN PIS-DUP-AFT
PIS-FUNCTION

FCS-CLOSE PIS-FUNCTION

FCS-DELETE PIB-NOT-HELD
PIB-NOT-FOUND
PIB-WRONG-MODE

FCS-NEXT PIB-WRONG-MODE
PIB-EOF

FCS-GET PIB-WRONG-MODE

PIB-EOF

FCS-GETUP PIS-RECORD

FCS-ADD PIB-DUP-KEY

FCS-HOLD PIB-HELD

FCS-RELEASE PIB-NOT-HELD

FCS-NOUP PIB-NOT-HELD

FCS-PUT PIS-WRONG-MODE
PIS-NOT-HELD

FCS-SETL PIS-EDF

Page: 1
Section: 6.14

EXPLANATION

dup in AFT
no DVC VOL LFD
DM error on OPEN
undefined file
AFT exhausted

undefined file

delete request ignored

not ISAM file or wrong mode

not in sequential mode or
no DVC VOL LFD

key out of range

another user has record held
or table full. Try again.

duplicate key exists

another user has key held or
table is full. Try again.

FCS-HOLD or FCS-GETUP not
issued.

FCS-HOLD or FCS-GETUP not
issued.

file not DAM, ISAM wrong mode
FCS-GETUP not issued

key out of range

TIP/30 Reference Manual
Version 2.5 (82/08/01)

ASSEMBLER FCS FUNCTIONS AND STATUS CODES

6.15 ASSEMBLER FCS FUNCTIONS AND STATUS CODES

The macro TP$BEGIN will generate 1 byte function codes as
constants (F@xxx) and status code equates (F#xxx).

COBOL

FCS-OPEN
FCS-CLOSE
FCS-DELETE
FCS-NEXT
FCS-GET
FCS-GETUP
FCS-ADD
FCS-HOLD
FCS-RELEASE
FCS-NOUP
FCS-PUT
FCS-FLUSH
FCS-SETL
FCS-ESETL
FCS-BACK

COBOL

STS-GOOD
STS-DUP-AFT-NAME
STS-DUP-KEY
STS-EOF
STS-ACTIVE
STS-10-ERROR
STS-FUNCTION
STS-LOCKED
STS-NOT-FOUND
STS-SECURITY
STS-HELD
STS-NOT-HELD
STS-WRONG-MODE

ASSEMBLER FUNCTION

F@OPEN
F@CLOSE
F@DELETE
F@GETNX
F@GET
F@GETUP
F@ADD
F@HOLD
F@RLSE
F@NOUP
F@PUT
F@FLUSH
F@SETL
F@ESETL
F@BACK

ASSEMBLER STATUS

F#OK
F#DUPF
F#DUPK
F#EOF
F#ACT
F#FATAL
F#BAD
F#LCK
F#NOF
F#PAS
F#HELD
F#NHLD
F#TYP

CHAPTER VI - FILE CONTROL SYSTEM
ASSEMBLER FCS FUNCTIONS AND STATUS CODES

Page:
Section:

1
6.15

FCS: LIBRARIES
'FCS' FOR LIBRARY FILES

6.16 'FCS' FOR LIBRARY FILES FCS: libraries

Operating system (source) libraries may be accessed by user
programs.

Opening a library file is similar to opening a data file. The
FILE-DESCRIPTOR packet for library files has several additional
fields.

The PIB status will be set to PIB-DUP-KEY on an FCS-OPEN with
FDES-FCS-PERM set to 'W', if a module of the same name already
exists in the library.

The following function codes are used to process library files:

Page:
Section:

FCS-OPEN
FCS-GET
FCS-PUT
FCS-CLOSE -

FCS-NOUP

1
6.16

open file/element
get next input record
put next output record
close file,
if reading then de-access file
if writing then the old module is flagged

as deleted
close file,
if reading then de-access file
if writing then the old module is not

flagged deleted.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

FCS: LIBRARIES
LIBRARY FILE DESCRIPTOR

6.16.1 LIBRARY FILE DESCRIPTOR FCS: libraries

The layout of the extended FILE-DESCRIPTOR packet for library
files is as follows:

02 LIB-FOES.
05 FOES-USER-ID PICTURE x (8).
05 FOES-CATALOG PICTURE x (8).
05 FOES-FILE-NAME PICTURE x (8).
05 FOES-PASSWORD PICTURE x (8).
05 FDES-FCS-CLASS PICTURE x.
05 FDES-FCS-TYPE PICTURE x.
05 FDES-FCS-PERM PICTURE x.
05 FDES-FCS-LOCK PICTURE x.
05 FOES-ELEMENT PICTURE x (8).
05 FOES-COMMENTS PICTURE x (30).
05 FOES-DATE PICTURE x (8).
05 FOES-TIME PICTURE x (5).

02 LIB-RECORD PICTURE X(128).

Where:

FOES-FILE-NAME library file name, as specified in TIP catalogue.

FDES-FCS-TYPE

FDES-FCS-PERM

FOES-ELEMENT

the following
FDES-FCS-TYPE.

values

'S' - source module

'M' - macro or proc

may be used for

'I' - read internal symbol dictionary for load
module

'D' - read full directory of file

'F' - read directory of file (without comments)

Specified when
if reading; 'W'

the element is opened. Set to 'R'
if writing.

element {module) name within library.

CHAPTER VI - FILE CONTROL SYSTEM
'FCS' FOR LIBRARY FILES

Page:
Section:

1
6.16.1

FCS: LIBRARIES

FDES-COMMENTS

Page:
Section:

FDES-DATE

FDES-TIME

LIB-RECORD

2
6.16.1

LIBRARY FILE DESCRIPTOR

comments from header record

date module was created, YY/MM/DD

time module was created, HH:MM

element record I/0 area. The record area is a
fixed length of 128 bytes which should be cleared
to spaces.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

FCS-CLOSE
LIB: CLOSE LIBRARY

6.16.2 LIB: CLOSE LIBRARY FCS-CLOSE

Remove the file from use by programs at the associated terminal.
The entry is removed from the Active File Table. Library files are
always physically closed by TIP/30. They are not allowed to remain
open.

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE, file-pkt.

Where:

FCS-CLOSE

file-pkt

function code from the TC-FCS copy book.

Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-CLOSE, PAYFILE.

Error Conditions:

PIB-FUNCTION file is not assigned to the program.

CHAPTER VI - FILE CONTROL SYSTEM
'FCS' FOR LIBRARY FILES

Page:
Section:

1
6.16.2

FCS-GET
LIB: READ RECORD

6.16.3 LIB: READ RECORD FCS-GET

Read the next record from the opened element.

Syntax:

CALL 'TIPFCS' USING FCS-GET, file-pkt, record.

Where:

FCS-GET function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record 128 character record area.

Example:

CALL 'TIPFCS' USING FCS-GET, SRC-FILE, SRC-REC.

Error Conditions:

FIB-FUNCTION

FIB-IO-ERROR

Page:
Section:

PIB-EOF

PIB-WRONG

l
6.16.3

the file is not assigned to the program.

some I/O error occurred on the disk.

end of file was
processing

reached during sequential

the file was not defined for input processing.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-NOUP
LIB: CLOSE LIBRARY; ABORT OUTPUT

6.16.4 LIB: CLOSE LIBRARY~ ABORT OUTPUT FCS-NOUP

Remove the file from use by programs at the associated terminal.
The entry is removed from the Active File Table. Library files are
always physically closed by TIP/30.

This call will result in the current output element not being
activated in the library directory.

Syntax:

CALL 'TIPFCS' USING FCS-NOUP, file-pkt.

Where:

FCS-NOUP

file-pkt

function code from the TC-FCS copy book.

Logical file name packet.

Example:

CALL 'TIPFCS' USING FCS-NOUP, SRCFILE.

Error Conditions:

PIB-FUNCTION file is not assigned to the program.

CHAPTER VI - FILE CONTROL SYSTEM
'FCS' FOR LIBRARY FILES

Page:
Section:

·1
6.16.4

-- ------------ -----------------------------

FCS-OPEN
LIB: OPEN LIBRARY

6.16.5 LIB: OPEN LIBRARY FCS-OPEN

Make the specified file available for processing by programs at
the calling terminal. An entry is made in the Active File Table for
the file.

TIPFCS will issue a Data Management OPEN for the library and
make the specified element available.

Syntax:

CALL 'TIPFCS' USING FCS-OPEN, file-pkt ,file-desc.

Where:

FCS-GETUP function code from the TC-FCS copy book.

file-pkt Logical file name packet.

f ile-desc file descriptor packet (extended).

Example:

CALL 'TIPFCS' USING FCS-OPEN, MST-FILE.

Error Conditions:

PIB-IO-ERROR

PIB-DUP-AFT-NAME

Page:
Section:

PIB-DUP-KEY

PIB-LOCKED

1
6.16.5

some I/O error occurred while opening the file.

a file of with the same name given in file-pkt is
already assigned to the terminal.

an element of _that name already
library. The program may wish
error.

exists in the
to ignore this

the file is currently locked either by some other
TIP/30 application program or by some batch job.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

LIB: WRITE RECORD

6.16.6 LIB: WRITE RECORD FCS-PUT

The record is appended to the output element.

Syntax:

CALL 'TIPFCS' USING FCS-PUT, file-pkt, record.

Where:

FCS-PUT function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record 128 character record area.

Example:

CALL 'TIPFCS' USING FCS-PUT, SRC-FILE, SRC-REC.

Error Conditions:

PIB-FUNCTION

PIB-IO-ERROR

PIB-EOF

the file is not assigned to the program.

some I/O error occurred on the disk.

the file is full.

FCS-PUT

PIB-WRONG the file was not opened for output processing.

CHAPTER VI - FILE CONTROL SYSTEM
'FCS' FOR LIBRARY FILES

Page:
Section:

1
6.16.6

FCS: EDIT
'TIPFCS' FOR EDIT BUFFERS

6.17 'TIPFCS' FOR EDIT BUFFERS FCS: edit

The text editor supplied with TIP/30 does all of the actual
editing in an FCS dynamic work file. When all updates are finished
the user may request that the module be written to a library
element.

The file structure used by the editor is maintained by FCS. An
edit file consists of a control block (block 1), several index
blocks, and data blocks.

Each data block holds up to six records. A record is 85
characters. The first 80 characters are the data from the library.
The 8lst character is a version number. Characters 82 to 85 are
unused.

Records in the file may be accessed by a relative line number.
If a record is deleted all following records move up. If a record
is added all following records move down.

An edit file may be created by setting FDES-FCS-CLASS to
FCS-CLASS-QED and FDES-FCS-TYPE to FCS-TYPE-NEW.

Page:
Section:

1
6.17

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FCS-ADD
EDIT: ADD

6.17.1 EDIT: ADD FCS-ADD

This function is used to add/insert a new record to an edit
buffer.

Syntax:

CALL 'TIPFCS' USING FCS-ADD, file-pkt, RECORD, LINE-NUM.
02 RECORD PIC X(85).
02 LINE-NUM PIC 9(7) COMP-4 SYNC.

Where:

FCS-ADD function code from the TC-FCS copy book.

file-pkt

record

line-num

Logical file name packet.

record area.

binary fullword holding the
number.

Additional Considerations:

relative record

The record is written
records at that position
position. The records
changed to reflect their

to the file at the specified position. Any
or higher are shifted to the next higher
are not actually moved, but the index is
new logical position in the file.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR EDIT BUFFERS

Page:
Section:

1
6.17.1

FCS-CLOSE
EDIT: CLOSE

6.17.2 EDIT: CLOSE FCS-CLOSE

Syntax:

CALL 'TIPFCS' USING FCS-CLOSE, file-pkt.

Where:

FCS-CLOSE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Additional Considerations:

The file is closed. You should use PCS-FLUSH to flush out any
updated blocks from the I/O buffers beforehand.

Page:
Section:

1
6.17.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

FCS-DELETE
EDIT: DELETE

6.17.3 EDIT: DELETE FCS-DELETE

Syntax:

CALL 'TIPFCS' USING FCS-DELETE, file-pkt, RECORD, LINE-NUM.

02 RECORD
02 LINE-NUM

Where:

PI C X (85) .
PIC 9(7) COMP-4 SYNC.

FCS-DELETE function code from the TC-FCS copy book.

file-pkt Logical file name packet.

record record area. Not actually used but must
provided as a place holder.

be

line-num binary fullword holding the relative record number
which is to be deleted.

Additional Considerations:

The record at the specified position is deleted from
records at that position or higher are shifted to
position. The records are not actually moved, but
chang~d to reflect their new logical position in the

the file. Any
the next lower
the index is
file.

Page: CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR EDIT BUFFERS Section:

1
6.17.3

FCS-FLUSH
EDIT: FLUSH

6.17.4 EDIT: FLUSH FCS-FLUSH

Syntax:

CALL 'TIPFCS' USING FCS-FLUSH, file-pkt.

Where:

FCS-FLUSH function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Additional Considerations:

Updated blocks are not written to disk unless FCS determines that
they need to be written to make space in the buffer.

To force out all updated blocks use this function code. This
should be done before closing the file.

Page:
Section:

1
6.17.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

EDIT: GET

6.17.5 EDIT: GET FCS-GET

Syntax:

CALL 'TIPFCS' USING FCS-GET, file-pkt. record, 1 ine-num.

02 RECORD
02 LINE-NUM

Where:

FCS-GET

file-pkt

record

PIC X(85l.
PIC 9(7) COMP-4 SYNC.

function code from the TC-FCS copy book.

Logical file name packet.

record area

FCS-GET

line-num binary fullword
number.

holding the relative record

Error Conditions:

PIB-EOF the record number is out of bounds.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR EDIT BUFFERS

Page:
Section:

1
6.17.5

FCS-OPEN
EDIT: OPEN

6.17.6 EDIT: OPEN FCS-OPEN

Syntax:

CALL 1 TIPFCS' USING FCS-OPEN, file-pkt, file-desc,
. IO-BUFFER, [NUM-BUFS].

Where:

Page:
Section:

FCS-OPEN

file-pkt

f ile-desc

IO-BUFFER

NUM-BUFS

1
6.17.6

function code from the TC-FCS copy book.

Logical file name packet.

file description packet.

An I/O buff er to be used with the file. This
buffer must be at least 1536 bytes.

This buffer must be fullword aligned.

If the file is being processed randomly more
buffers will improve throughput. For sequential
access 1536 is good enough. If this parameter is
omitted FCS will allocate 1536 bytes from free
memory.

is a halfword (PIC 9 COMP-4 SYNC) whicp indicates
the number of I/O buffers in IO-BUFFER. The first
512 bytes of IO-BUFFER holds the control block.
NUM-BUFS is the number of I/O buffers following
the control block. Minimum is 2. Maximum is 12.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

e.

EDIT: PUT FCS-PUT

6.17.7 EDIT: PUT FCS-PUT

This function is used to replace a record in the edit buffer.

Syntax:

CALL 'TIPFCS' USING FCS-PUT, file-pkt, RECORD, LINE-NUM.

02 RECORD
02 LINE-NUM

Where:

FCS-PUT

file-pkt

record

PIC X(85).
PIC 9(7) COMP-4 SYNC.

function code from the TC-FCS copy book.

Logical file name packet.

record area.

line-num binary fullword holding the relative record number

Error Conditions:

PIB-EOF the line number is out of bounds.

CHAPTER VI - FILE CONTROL SYSTEM
'TIPFCS' FOR EDIT BUFFERS

Page:
Section:

1
6.17.7

FCS-SCRATCH
EDIT: SCRATCH

6.17.8 EDIT: SCRATCH FCS-SCRATCH

Syntax:

CALL 'TIPFCS' USING FCS-SCRATCH, file-pkt.

Where:

FCS-SCRATCH function code from the TC-FCS copy book.

file-pkt Logical file name packet.

Additional Considerations:

The file will be scratched. All edit files are created as permanent
and must be scratched to get rid of them.

Page:
Section:

1
6.17.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TOTAL DATA BASE FCS: TOTAL

6.18 TOTAL DATA BASE FCS: total

TIP/30 provides an interface to TOTAL, a Data Base developed and
marketed by CINCOM Systems. The user should refer to documentation
supplied by CINCOM for the programming conventions required to use
TOTAL.

To use TOTAL online with TIP/30 the user must specify the
DBMS=(TTL,n) parameter in the TIP/30 System Generation, where n is
the amount of memory required to load TOTAL/7 and your DBMOD.

The calling sequence to use TOTAL from a batch program is:

CALL DATBAS USING param-1, param-2, etc.

The calling sequence to use TOTAL online with TIP/30 is:

CALL TOTAL USING param-1, param-2, etc.

The same parameters as provided in a batch program are used in the
online CALL.

The online programs have two additional function codes to TOTAL
which are handled by the Allinson-Ross interface module.

CALL TOTAL USING FREEF,status,file,end

All records held by this user for the specified file will be
released.

CALL TOTAL USING FREEX,status,f i le,end

All records held for all files by the user will be released.

If an online program must add a variable record to a master record
when there are none in the chain, then it must use the ADDVC
function. ADDVA and ADDVB both require that the program have
previously read some other record in the chain in order to hold it.

CHAPTER VI - FILE CONTROL SYSTEM
TOTAL DATA BASE

Page:
Section:

1
6.18

FCS: TOTAL TOTAL DATA BASE

CALL TOTAL USING ADDVC,status,file, .etc ..

6.19 DATA BASE MANAGEMENT INTERFACE FCS: dbms

This is the interface between the online application program and
the data base system generated into TIP/30 The user has the choice
of TOTAL/7, DMS/90, DBS/90, or his own home grown.

But

Page:
Section:

only one

CALL

TOTAL
XR7DMS
IXF???
TIPDBMS

1
6.19

may be chosen.

DATA BASE

TOTAL/7
DMS/90
DBS/90
Home grown

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

DMS/90 - XR7DMS
FCS: DMS/90

6.19.1 DMS/90 - XR7DMS FCS: dms/90

Online programs must be processed by the DMS/90 DML
pre-processor just as batch programs are. Online programs follow
the sequence of IMPART, BIND, I/0, UNBIND, ... BIND, I/0 , UNBIND,
DEPART.

An online program must always UNBIND before transfering control to
any other program or ending. (ie. UNBIND before TIPRTN, TIPXCTL,
TIPSUB, etc ..) .

CHAPTER VI - FILE CONTROL SYSTEM
DATA BASE MANAGEMENT INTERFACE

Page:
Section:

1
6.19.1

FCS: DBS/90
DBS/90 - IXF???

6.19.2 DBS/90 - IXF??? FCS: dbs/90

Most users access DBS/90 through the UNIS/90 I/O interface,
although the direct interface is available.

IMS/90 programs may be catalogued as re-usable but not re-entrant,
as the standard IXOIO module is not re-entrant. Also access to
DBS/90 will not work properly if the programs are re-useable and
keep the data base open across internal succession. This is a
problem because the activation record may move and DBS/90 will not
allow it to move] IMS/90 programs accessing DBS/90 must either be
cataloged as non re-entrant and non-reusable or they must not keep
the data base open during internal succession (ie. only do delayed
internal]).

Native TIP/30 COBOL programs accessing DBS/90 may be catalogued as
either re-entrant or not re-entrant but not as re-useable.

For native TIP/30 programs the user must link-edit with the modules
TI$IXOIO and TI$DBSIF. TI$IXOIO contains entry points for IXFOPN
and IXOIO. TI$DBSIF contains entry points for OPEN, CLOSE, RDKEY,
etc ...

Page:
Section:

1
6.19.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

JOURNAL FILE PROCESSING
FCS: JOURNAL

6.20 JOURNAL FILE PROCESSING FCS: journal

FCS creates journal file records for each update of a user
online file as selected in the TIP/30 generation. User programs may
also write records to the journal file. In this way user statistics
may be collected for billing, to audit performance and throughput
etc.

Syntax:

Where:

05

CALL 'TIPFCS' USING FCS-JOURNAL, file-pkt, JRN-RECORD.

file-pkt Logical file name packet. The name used here is
ignored.

JRN-RECORD journal record, halfword aligned in the following
format.

JRN-RECORD.
10 RECORD-LENGTH PIC 9(4) COMP-4 VALUE ? .
10 FILLER PIC X(2).
10 TYPE PIC x (4).
10 USER-ID PIC X(8).
10 PROG-ID PIC X(8).
10 FILE-PKT PIC X(8).
10 DATE PIC 9(6) COMP-3.
10 TIME PIC 9(6) COMP-3.
10 TERM-ID PIC X(4).
10 KEY PIC X(4).
10 FILLER PIC x (8).
10 USER-DATA.

The journal file holds variable length records. The first two
bytes of the record (ie. RECORD-LENGTH) contains the length of the
journal record to be written.

CHAPTER VI - FILE CONTROL SYSTEM
JOURNAL FILE PROCESSING

Page:
Section:

1
6.20

---,

FCS: JOURNAL
JOURNAL FILE PROCESSING

Where:

TYPE BEFR - BEFORE IMAGE OF RECORD

Page:
Section:

USER-ID

PROG-ID

file-pkt

DATE

TIME

TERM-ID

KEY

FILLER

2
6.20

AFTR - AFTER IMAGE OF RECORD

NEW - NEW RECORD ADDED TO FILE

CKPT - FILE WAS CLOSED AT THIS TIME

USER - USER SUPPLIED JOURNAL RECORD

LGON - LOGON RECORD

LGOF - LOGOFF RECORD

TREN - TRANSACTION END (CHECKPOINT)

PRST - PROGRAM START

PREN - PROGRAM END

STAT - STATUS

user who created the journal record

name of program in use by USER-ID.

file pkt for the file.

date created.

time created.

terminal name used by USER-ID.

block number for a DAM file

not used

TIP/30 Reference Manual
Version 2.5 (82/08/01)

'LGOF' JOURNAL RECORD FORMAT

6.20.1 'LGOF' JOURNAL RECORD FORMAT

02 USER-DATA.
05 FILLER
05 TIME-LGON-HR
05 TIME-LGON-MM
05 TIME-LGON-SS
05 TIME-WALL-MSEC
05 TIME-CPU-MSEC
05 TIME-MSGIN
05 TIME-MSGOUT
05 TIME-DATE-ON
05 TIME-TIME-ON
05 TIME-DATE-OFF
05 TIME-TIME-OFF
05 TIME-RESPONSE

x (2).
9(2) COMP-3.
9(2) COMP-3.
9(2) COMP-3.
9(7) COMP-4.
9(7) COMP-4.
9(4) COMP-4.
9(4) COMP-4.
9(6) COMP-3.
9(6) COMP-3.
9(6) COMP-3.
9(6) COMP-3.
9(7) COMP-4.

CHAPTER VI - FILE CONTROL SYSTEM
JOURNAL FILE PROCESSING

FCS: JOURNAL

FCS: journal

Page:
Section:

1
6.20.1

FCS: JOURNAL
BATCH JOURNAL FILE READ

6.20.2 BATCH JOURNAL FILE READ FCS: journal

There is an object module called TI$JRN which may be used in a
batch program to read the TIP$JRN file. It will fetch module TB$JDK
and/or TB$JMT which are also in the TIP/30 release library. The
programs must be in the same library you execute your batch program
from.

Three entry points are available:

CALL TI$JRNOP

will open the file TIP$JRN.

CALL TI$JRNCL

will close the file TIP$JRN.

CALL TI$JRNGT USING RECORD.

will return a variable length journal file record in the
format described above. End of file is signaled by
returning a zero length record.

Page:
Section:

1
6.20.2

TIP/30 Reference Manual
Version 2.5 {82/08/01)

MCS
CHAPTER VII - MESSAGE CONTROL SYSTEM

7. CHAPTER VII - MESSAGE CONTROL SYSTEM MCS

This chapter of the TIP/30 reference manual documents the TIP/30
facilities that are available to handle input and output from
terminals.

There are three levels of interface provided:

Message Control System (MCS)

Line-oriented I/O

Direct Communications I/O (DCIO)

The MCS interface is a high level interface~ that is,
application programmers may develop screen formats (templates) and
use them in the on-line program. By using this interface, the
programmer achieves a high degree of hardware independence.

The Line-oriented I/O interface consists of a number of supplied
subroutines that facilitate the interactive use of the terminal on
a line by line basis. The user can issue prompts and retrieve
replies in a simple fashion.

The DCIO interface is provided as a means to achieve more direct
control over the activity of the terminal. It is a low level
interface that requires the application programmer to supply the
control codes to be sent to the terminal.

This interface is intended primarily for assembly language
applications and should only be-used when the facilities of the
high level interface (MCS) cannot achieve the desired results.

CHAPTER VII - MESSAGE CONTROL SYSTEM Page:
Section:

1
7

MCS

7.1

MESSAGE CONTROL SYSTEM

MESSAGE CONTROL SYSTEM MCS

The Message Control System provides the user with the capability
of creating and testing displays to be used in online systems. The
displays are not defined in the programs which use them. The user
program sends and receives only relevant data to and from the CRT.
The Message Control System handles all Communications Codes (DICE)
and display heading information.

There are four major sections to MCS. Three are utility programs
as follows:

MSGDEF - for MCS display definition
MSGTST - for MCS display testing
MSGAR - the MCS Librarian

The fourth is MSGFMT, the Message Formatter, which is an
internal part of TIP/30 and interfaces the displays defined by
MSGDEF and the user data to be displayed. MSGFMT is the TIP/30
display handler. It merges user data given in the MCS interface
packet with a display and sends it to a terminal. On input, MSGFMT
removes the user data from a display and stores it in the MCS
interface packet. The user data area of the MCS interface packet a.
has a layout similar to a fixed-length data record. There are no ..,
fields for tab stops or cursor co-ordinates. These are defined in
the message format by MSGDEF and handled completely by MSGFMT at
user program execution time.

The Message Formatter optimizes all output messages. For
example, when it is more efficient, a series of blanks is replaced
by a cursor positioning sequence. The user should therefore select
the 'erase before display' option when defining displays using
MSGDEF.

MCS optimization can make a significant improvement in
communication throughput~ especially over Common Carrier lines.

Once a display is defined it may be called by any user program
which supplies its eight-character name. Furthermore, the user may
change heading information in display formats without changing the
programs which use them. User programs need only process the data
since all communications control characters and heading information
is handled by the Message Formatter in TIP.

These features greatly reduce programming effort and development
time required to get online programs up and running.

Page:

e
Section:

1
7.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

MCS SPECIAL TERMINAL NAMES
*MST/*BYP

7.2 MCS SPECIAL TERMINAL NAMES *MST/*BYP

Normally messages are sent back to the terminal which originated
the transaction. When TIP/30 is generated, the user may define
terminal clusters. This capability is quite useful since most newer
terminal systems are designed as clusters. If the program sends a
message to the terminal *MST, TIP/30 will direct it to the master
terminal of the cluster to which the originating terminal belongs.

Similarly *BYP directs the message to the terminal defined as
BYPASS, If there was no cluster definition or no bypass/master
terminal given, the message is sent to the originating terminal.

The *BYP name may also be used by TIPFORK to start up a program
on the 'bypass' terminal. This technique js used to queue print
requests .

CHAPTER VII - MESSAGE CONTROL SYSTEM
MCS SPECIAL TERMINAL NAMES

Page:
Section:

1
7.2

MCS: DLL

7.3

DOWN LINE LOADED DISPLAY MANAGEMENT

DOWN LINE LOADED DISPLAY MANAGEMENT MCS: dll

Another advantage of the clustering concept is that the
controlling or master terminal is programmable. The user may use
this feature to improve terminal I/O throughput. DLL is a program
used to down line load display formats into terminal clusters.

When a set of displays are down line loaded MCS keeps track of
their names. There is a table of display names maintained for each
defined cluster. Whenever a user program requests an MCS display to
be sent to a terminal the display table is checked to determine if
the display has been down line loaded. If so then TIP will
automatically use it.

This technique greatly reduces transmit time. The user may
change the set of displays at any time via DLL and all subsequent
terminal I/0 adjusts accordingly.

Currently only UTS-400's which have some user programmable
memory may use this facility.

Page:
Section:

1
7.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MCS INTERFACE PACKET
TC-MCS

7.4 MCS INTERFACE PACKET TC-MCS

The COBOL copy element TC-MCS defines the MCS interface packet
(see example following). If several different displays are used in
one program the user may re-define the MCS-DATA part of the packet
to provide for the different screen layouts.

MCS-NAME, MCS-COUNT, MCS-FUNCTION etc. may be changed during
program execution. Thus it is not normally necessary to have more
than one MCS Interface Packet in each program.

01 MCS-AREA. COPY TC-MCS OF TIP.

02
02
02

02

TIP/30 MESSAGE CONTROL SYSTEM PACKET

MCS-NAME
MCS-TERM
MCS-FUNCTION

PICTURE X(8).
PICTURE X(4).
PICTURE X.

'A' - READ FULL SCREEN ON TIPMSGI
'D' - SEND DATA ONLY (NO HEADINGS DATA)

- LOW VALUE FIELDS ARE NOT SENT
'M' - SEND MESSAGE AS UNSOLICTED
'P' - CAUSE TERMINAL TO PRINT NON-TRANSPARENT
'R' - CAUSE TIPMSGE TO REFRESH ALL FCC'S
'S' - STOP SENDING HEADING DATA

WHEN MCS-COUNT REACHES ZERO

MCS-HOLD PICTURE X.

'H' - TIPMSGI NOT TO RELEASE RECORD LOCK(S)

000001*
000002*
000003*
000004
000005
000006
000007*
000008*
000009*
000010*
000011*
000012*
000013*
000014*
000015*
000016*
000017
000018*
000019*
000020*
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037

02
02

MCS-SIZE
MCS-STATUS
88 MCS-GOOD
88 MCS-XMIT

PICTURE
PICTURE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

S9(4) COMP-4 SYNC.
x.

88 MCS-MSG-WAIT
88 MCS-FKEY1
88 MCS-FKEY2
88 MCS-FKEY3
88 MCS-FKEY4
88 MCS-FKEY5
88 MCS-FKEY6
88 MCS-FKEY7
88 MCS-FKEY8
88 MCS-FKEY9
88 MCS-FKEY10
88 MCS-FKEY11
88 MCS-FKEY12

CHAPTER VII - MESSAGE CONTROL SYSTEM
MCS INTERFACE PACKET

I I

I I

I 0 I•
I 1 I •

'2'.
I 31 •
'4'.
'5'.
'6 I•

I 71 •
'8'.
'9'.
I A'.
I BI.
'C'.

Page:
Section:

1
7.4

TC-MCS

000038
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
000052*
000053*
000054*
000055
000056/
000057
000058*
000059*
000060*

Where:

88 MCS-FKEY13
88 MCS-FKEY14
88 MCS-FKEY15
88 MCS-FKEY16
88 MCS-FKEY17
88 MCS-FKEY18
88 MCS-FKEY19
88 MCS-FKEY20
88 MCS-FKEY21
88 MCS-FKEY22
88 MCS-F-REBUILD
88 MCS-F-NEXT
88 MCS-F-UPDATE

02 MCS-FILLER

VALID FILLER VALUES ARE I I

02 MCS-COUNT

02 MCS-DATA.

MCS INTERFACE PACKET

VALUE 'D'.
VALUE 'E'.
VALUE IF I.
VALUE 'G'.
VALUE 'H'.
VALUE 'I'.
VALUE 'J'.
VALUE 'K'.
VALUE 'L'.
VALUE 'M'.
VALUE '1' '5'.
VALUE '2' '6'.
VALUE '4' '8'.

PICTURE X.

I I OR I* I

- '

PICTURE S9(4) COMP-4 SYNC.

USER SUPPLIED RECORD LAYOUT FOR MCS SCREEN FOLLOWS HERE

MCS-NAME is the name of an MCS display created using the
message definition program (MSGDEF).

MCS-TERM alternate destination terminal.. If blank the
message goes to the current terminal.

MCS-FUNCTION normally this field is set to blank but the
following codes cause special functions to be
performed.

Page:
Section:

2
7.4

'P' on TIPMSGO will cause the cursor to move to
the bottom right hand corner of the screen and
print the screen non-transparent to auxiliary
device 1 of the terminal.

'R' on TIPMSGE will cause all FCC's to be sent to
the terminal. This should reset any left from a
previous call to TIPMSGE.

'D' on TIPMSGO will result in only the data being

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MCS INTERFACE PACKET

MCS-HOLD

MCS-SIZE

MCS-STATUS

TC-MCS

sent to terminal. It is assumed that the heading
information is already displayed on the terminal
from some previous operation. Data fields which
have been set to LOW-VALUES will not be
transmitted.

A data only transmission will also clear the error
fields to spaces. When the MCS-COUNT of data is
processed the remaining data fields will be set to
the filler character.

'M' on TIPMSGO will
unsolicited. The sona
message displayed when
presses MSG-WAIT key.

send
alert

the

the message as
will sound and the

terminal operator

'A' on TIPMSGI will guarantee that the entire
display is received. If the count of the input
received is less than the maximum size of the
format then a small message is sent to pull the
entire display in and re-format the input message.

'A' NOTE: This doubles the traffic on the line and
should be used with discretion.

'S' forces a short transmission. When all data has
been processed (MCS-COUNT), no more heading
information will be sent to the terminal.

setting this field to an 'H' will prevent records
held by TIPFCS GETUP from being released during
TIPMSGI processing.

maximum number of user data characters in the
packet. (IE. the size of the MCS-DATA area.)
MSGDEF displays this value as the last step of the
definition. Also MSGAR will give this value when
the displays are printed. This value is not used
during output and is set by MCS on input. By
comparing this field with the MCS-COUNT field, the
user can determine if a complete input was
received.

This field will be set after an input message. The
contents indicate what type of input was received.
Observe the supplied 88-level items in the
illustrated copy book.

After output this field will be set to 'M' if an
unsolicited input message is waiting. The user

CHAPTER VII - MESSAGE CONTROL SYSTEM
MCS INTERFACE PACKET

Page:
Section:

3
7.4

TC-MCS

Page:
Section:

MCS-FILLER

MCS-COUNT

MCS-DATA

4
7.4

program must read
Terminal Management
ROLL, etc.

MCS INTERFACE PACKET

this message via TIPMSGI or a
Subroutine: PARAM, BREAK,

If printing had been requested with TIPMSGO this
field will contain the delivery status. See the
section on 'Auxiliary device I/O' for a list of
the possible status codes.

this field may be set to a blank, an underscore
('')or an asterisk('*').

Leading spaces in numeric fields will be set to
the filler character during TIPMSGO. Trailing
spaces in alpha-numeric fields will be set to the
filler character during TIPMSGO.

No filler characters will be used in protected
data fields.

All filler characters received from the terminal
during TIPMSGI will be removed.

the number of data characters to be output. If
less than the display total the Message Formatter
will blank fill (or MCS-FILLER) the remainder of
the user fields on the display. On input, the
number of data characters received is stored in
MCS-COUNT. The input count will always be less
than or equal to the value stored in the MCS-SIZE
field and will always include the size of the last
field entered (ie. if only the first character of
a ten character field was entered as the last
field of the display, then the count would
indicate that the entire field was entered).
MCS-COUNT is set to zero after a CALL TIPMSGE.

Holds the users data for/from the message. The
order in which the data fields appear in memory
MUST correspond to the order in which they appear
in the display. The fields in this area must
consist of display type fields (ie: COMP
specification not allowed).

Note that terminals transmit unprotected data from
the CRT only when the transmit key is pressed. The
user is advised to establish that MCS-XMIT was
received in the MCS-STATUS field before examining
any data fields. An excellent rule of thumb is to
check first for MSG-WAIT or other function keys

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TC-MCS
MCS INTERFACE PACKET

7.5

(even if the program is designed to ignore them).

READ A MESSAGE FROM A TERMINAL TIPMSGI

Receive and process an MCS display from a terminal. This call is
normally used at points in the user program where input is expected
from the terminal (ie. after a CALL TIPMSGO or TIPMSGE).

The program should normally specify the same display name in
MCS-NAME for both output and input functions.

IF the input message was caused by the user pressing the
transmit key at the terminal (ie: NOT as a result of MSG-WAIT or
some other function key), data fields in the input message will be
extracted from the input message by TIP/30 and placed in the
appropriate fields in MCS-DATA area.

Syntax:

CALL 'TIPMSGI' USING mcs-pKt.

Where:

mes-pkt message control system packet.·

Error Conditions:
None.

CHAPTER VII - MESSAGE CONTROL SYSTEM
MCS INTERFACE PACKET

Page:
Section:

1
7.5

TIPMSGE
SEND AN ERROR MESSAGE

7.6 SEND AN ERROR MESSAGE TIPMSGE

After
received.
and CALL
TIPMSGI.

a TIPMSGI, the user program normally validates the data
To highlight fields in error, move HIGH-VALUES to them

TIPMSGE using the same MCS packet which was used for the

Ensure that the field MCS-COUNT contains the input data count
from the CALL TIPMSGI, since TIPMSGE uses that value to determine
how far to scan through MCS-DATA for the HIGH-VALUE fields.

On UTS-400 style terminals the fields in error will blink. On
other terminals a start-of-blink character is sent to the position
immediately in front of the data field.

An optional error message may be sent to the fields that were
defined as error fields (using the "E" field descriptor code). Note
that MCS-COUNT will be set to zero after a CALL TIPMSGE.

Syntax:

Where:

CALL 'TIPMSGE' USING mes-pkt [,error-msg]

mes-pkt

error-msg

message control system packet.

a field holding the text to be sent to the fields
defined as error f ield(s) on the display. If not
specified, the error fields are set to spaces.

The length of this field should be equal to the
sum of the sizes of all error fields in the
display.

Example:

Page:

05 ERROR-DATA PIC X(30).

MOVE 'INVALID ACCNT NUMB' TO ERROR-DATA.
CALL 'TIPMSGE' USING MCS-AREA, ERROR-DATA.

Section:
1

7.6
TIP/30 Reference Manual

Version 2.5 (82/08/01)

•

•

SEND AN ERROR MESSAGE
TIPMSGE

7.7

Error Conditions:
None.

OUTPUT A MESSAGE TO A TERMINAL TIPMSGO

Send an MCS display to a terminal. The number of data characters
specified by MCS-COUNT is taken from MCS-DATA, merged with the
display named in MCS-NAME and sent to MCS-TERM.

If MCS-TERM is SPACES, the message is delivered to the
originating terminal.

Syntax:

Where:

CALL 'TIPMSGO' USING mes-pkt [,fee-mods]

mes-pkt

f ec-mods

message control system packet.

Optional table of two byte entries for modifying
the FCC (field control character) characteristics
of each data field.

Each entry consists of two characters which will
be useo as the 'M' and 'N' characters to use in
the construction of the FCC sequence [as described
in UTS-400 Programmer Reference (UP-8359): FCC
Sequence From Host Processor].

This facility is applicable to FCC style terminals
such as UTS-400, UTS-20, UTS-40, and
plug-compatibile UTS-400 terminals (ie: Q310).

If either character is an asterisk('*') then the
cursor will rest over the corresponding data field
when the message is sent to the terminal.

CHAPTER VII - MESSAGE CONTROL SYSTEM
SEND AN ERROR MESSAGE

Page:
Section:

1
7.7

TIPMSGO
OUTPUT A MESSAGE TO A TERMINAL

A copy book named TC-FCC is supplied:

FCC MODIFICATION EQUATES
000001*
000002* TIP/30
000003*
000004*

(FOR USE ON OPTIONAL PARAMETER TWO, OF
'TIPMSGO' CALL.)

000005
000006***** FOLLOWING VALUES ARE USED FOR THE
000007 05 FCC-M-TAB-NRM-CHG
000008 05 FCC-M-TAB-OFF-CHG
000009 05 FCC-M-TAB-LOW-CHG
000010 05 FCC-M-TAB-BLK-CHG
000011 05 FCC-M-TAB-NRM
000012 05 FCC-M-TAB-OFF
000013 05 FCC-M-TAB-LOW
000014 05 FCC-M-TAB-BLK
000015 05 FCC-M-NRM-CHG
000016 05 FCC-M-OFF-CHG
000017 05 FCC-M-LOW-CHG
000018 05 FCC-M-BLK-CHG
000019 05 FCC-M-NRM
000020 05 FCC-M-OFF
000021 05 FCC-M-LOW
000022 05 FCC-M-BLK
000023*
000024
000025***** FOLLOWING VALUES ARE USED FOR THE
000026 05 FCC-N-ANY
000027 05 FCC-N-ALPHA
000028 05 FCC-N-NUMERIC
000029 05 FCC-N-PROTECT
000030 05 FCC-N-ANY-RIGHT
000031 05 FCC-N-ALPHA-RIGHT
000032 05 FCC-N-NUMERIC-RIGHT

Error Conditions:
None.

Page:
Section:

2
7.7

FCC 'M 1 FIELD
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE x VALUE I. I

PICTURE x VALUE I; I
PICTURE X VALUE
PICTURE X VALUE 1

-
1

PICTURE X VALUE '>'.

I 0 I•

I 1 I •

I 21 •
I 3 I •

141.
151.
151.
I 7 I•

131.
191.

I< I•

PICTURE X VALUE

FCC 'N' FIELD
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE
PICTURE X VALUE

I? I

I 0' •
I 1 I •

121.
I 31 •
141.
'5'.
151.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CURSOR TO LAST POSITION & TRANSMIT
TIPMSGRV

7.8 CURSOR TO LAST POSITION & TRANSMIT TIPMSGRV

On most CRT type terminals, the data between HOME or the last
SOE and the CURSOR is transmitted to the host when the TRANSMIT or
ENTER key is pressed.

The operator may (by mistake) send only a partial screen instead
of the whole screen, meaning that some data may be lost. The
application program can ensure that the entire screen is sent by
using the TIPMSGRV function.

After a call to TIPMSGI, MCS sets the field MCS-COUNT to the
number of characters of data received. The program can compare this
value with the value in MCS-SIZE (which is the total of the sizes
of all data fields in the screen format). If MCS-COUNT is less than
MCS-SIZE, then the operator did not have the cursor past the last
data field when XMIT was pressed.

The program can choose to ignore this operator error by calling
TIPMSGRV. The TIPMSGRV subroutine will position the cursor at the
bottom right corner of the CRT and cause an auto-transmit to occur.
After the call to TIPMSGRV all data fields from the screen will be
in the data area of the MCS packet.

Syntax:

CALL 'TIPMSGRV' USING mes-pkt.

Where:

mes-pkt message control system packet.

Error Conditions:
None.

Additional Considerations:

Use of this function will double the traffic on a communications
line and should be used with discretion. It may be preferable to
send the terminal operator an error message (eg: Cursor Incorrectly
Placed!) and instruct the operator to reposition the. cursor and
re-transmit.

CHAPTER VII - MESSAGE CONTROL SYSTEM
CURSOR TO LAST POSITION & TRANSMIT

Page:
Section:

1
7.8

LINE I/O

7.9

LINE - ORIENTED TERMINAL I/O

LINE - ORIENTED TERMINAL I/O LINE I/O

The following subroutines provide terminal I/O handling
capabilities that may be used to interact with the user on a line
by line basis.

The examples are shown using COBOL-74 syntax.

A native mode program may use these subroutines to facilitate
direct control of terminal input and output in situations that
require low volume interaction with the user.

Page:
Section:

1
7.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BREAK
CHECK FOR OPERATOR BREAK

7.9.1 CHECK FOR OPERATOR BREAK BREAK

Subroutine BREAK will check for unsolicited input from the
terminal. If there has been input, BREAK will prompt the user for a
reply. The reply will be parameterized into PARAM-AREA. If no input
is available, control returns to the user program.

BREAK is a convenient way to enable the terminal operator to
control pauses in continuous displays.

Syntax:

Where:

CALL 'BREAK' USING PARAM-AREA.

PARAM-AREA Area (64 bytes) to receive the reply to the
continuation query if there was an unsolicited
interrupt.

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.1

PARAM

7.9.2

PARAMETERIZE AN INPUT MESSAGE

PARAMETERIZE AN INPUT MESSAGE PARAM

Input to this subroutine is either from a terminal or a data
area. PARAM breaks the input into as many as eight fields (each 8
bytes) using the characters "," "/" and space(s) as field
delimiters. If the optional second parameter is given, the input is
from the named data area~ otherwise, input will be solicited from
the terminal.

Alphanumeric sub-fields are left-justified and space filled,
while numeric sub-fields are right-justified and zero filled. The
MSG-WAIT key is received as the character string F#OO. Function
keys one through 22 are received as the character string "F#Ol"
through "F#22" in the first 4 bytes of PARAM-AREA.

Syntax:

Where:

CALL 'PARAM' USING PARAM-AREA [,TEXT-AREA].

PARAM-AREA

TEXT-AREA

The name of a 64 byte area to receive the
parameterized data.

Optional input to the parameterization routine. If
supplied, defines a 64 byte field to be
parameterized. If omitted, 64 characters of input
will be solicited from the terminal and
parameterized into "param-area".

Example:

Page:
Section:

05 PARAM-AREA.
10 PARAM OCCURS 8 TIMES

05 TEXT-AREA

1
7.9.2

PIC X(8)

PI C X (64) .

TIP/30 Reference Manual
Version 2.5 (82/08/01)

PROMPT THE USER FOR A REPLY PROMPT

7.9.3 PROMPT THE USER FOR A REPLY PROMPT

PROMPT will display the program name, stack level and a SOE
character on the bottom line of the terminal and then solicit
input. The terminal operator response will be parameterized into
PARAM-AREA.

Syntax:

Where:

CALL 'PROMPT' USING PARAM-AREA.

PARAM-AREA The 64 byte area where the parameterized terminal
input will be placed.

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.3

PROMPTX
PROMPT THE USER FOR TEXT

7.9.4 PROMPT THE USER FOR TEXT PROMPTX

PROMPTX will display the program name, stack level, and a SOE
character on the last line of the terminal. The first 64 bytes of
the next input message will be stored in TEXT-AREA without
parameterization.

Syntax:

Where:

Page:
Section:

CALL 'PROMPTX' USING TEXT-AREA.

TEXT-AREA

1
7.9.4

The 64 byte area where the unparameterized
terminal input is placed.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

PROMPT THE USER FOR TEXT PROMPTXB

7.9.5 PROMPT THE USER FOR TEXT PROMPTX8

PROMPTX8 will display the program name, stack level, and a SOE
character on the bottom line of the terminal. The first 80 bytes of
the next input message will be stored (without parameterization) in
TEXT-AREA.

Syntax:

CALL 'PROMPTXS' USING TEXT-AREA.

Where:

TEXT-AREA The 80 byte area where the input data will be
placed .

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.5

ROLL

7.9.6

SEND ONE LINE AND ROLL SCREEN

SEND ONE LINE AND ROLL SCREEN ROLL

ROLL will scroll the screen up one line and send one 80 byte
line from TEXT-AREA to the bottom line of the terminal. If the
optional second parameter is specified, ROLL will automatically
call the subroutine "BREAK" (see description earlier) after each
line is sent.

Syntax:

Where:

CALL 'ROLL' USING LINE [,PARAM-AREA].

LINE An 80 byte text area to be rolled on the terminal.

PARAM-AREA Optional field used to return result from call to
"BREAK" subroutine.

Example:

Page:
Section:

05 LINE
VALUE "Please enter option:".

1
7.9.6

PIC X(80)

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SET TERMINAL ROLL POINT
ROLLPT

7.9.7 SET TERMINAL ROLL POINT ROLL PT

The subroutines ROLL, PROMPT, PROMPTX and BREAK all scroll the
terminal display from bottom to top. (ie. the top lines will roll
off the screen as new lines appear at the bottom.)

The default is to scroll the entire display. To retain a portion
of the display on the screen, call this routine to define the the
roll point.

Syntax:

CALL 'ROLLPT' USING ROLL-POINT.

Where:

ROLL-POINT

Example:

77 ROLL-POINT

The new roll point for the terminal. This field
must be a binary halfwprd representing the number
of lines to "freeze" at the top of the CRT.

PIC 9(3) COMP-4 SYNC VALUE 4.

Using a value of 4 (as in the example above) will cause the top
four lines of the display to remain on the screen while the lower
lines are rolled as necessary.

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.7

TEXT GET ONE LINE FROM TERMINAL

7.9.8 GET ONE LINE FROM TERMINAL TEXT

The TEXT subroutine will retreive an input message of up to 64
characters without parameterization.

Syntax:

Where:

CALL I TEXT I USING TEXT-AREA.

TEXT-AREA The 64 byte area where the terminal input is to be
placed.

Example:

Page:
Section:

05 TEXT-AREA

1
7.9.8

PIC X(64).

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TEXTS
GET ONE LINE FROM TERMINAL

7.9.9 GET ONE LINE FROM TERMINAL TEXTS

TEXTS is similar to PARAM, except that a single 80 character
field is retrieved and no parameterization is performed.

Syntax:

CALL 'TEXT8' USING TEXT-AREA.

Where:

TEXT-AREA The area where the 80 bytes of terminal input is
to be placed (without parameterization).

Example:.

05 TEXT-AREA

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

PIC X(80).

Page:
Section:

1
7.9.9

TIPATTCH
ATTACH AN ALTERNATE TERMINAL

7.9.10 ATTACH AN ALTERNATE TERMINAL TIPATTCH

When a program is loaded, TIP assumes that the terminal that
requested the program will be the source of input for the program
and the recipient of any messages sent from the program (ie. the
original or primary terminal).

The TIPATTCH subroutine allows the program to select another
terminal as its primary input device. The selected terminal must be
in an idle state (no user logged on) before it can be selected as
an alternate terminal. The attach function does not immediately use
the alternate terminal (see TIPUALT), but reserves it for later use
by the calling program.

Upon completion of this call the user should check the contents
of the parameter field. If the call was rejected, this field will
contain the value "NTRM" which indicates that the terminal name is
not valid, or that the terminal is currently not idle.

Syntax:

CALL 'TIPATTCH' USING TERM, WORKAREA.

Where:

TERM

WORKAREA

Example:

77 TERM
05 WORKAREA

10 FILLER

Page:
Section:

1
7.9.10

The four character terminal name of the desired
alternate terminal.

A four fullword workarea available to the TIPATTCH
subroutine. This field must be fullword aligned.

PIC X(4)
PIC 9(6)
PIC X(12).

VALUE 'TRM7'.
COMP-4 SYNC.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPCOP
SEND PRINT CODE TO AUX PRINTER

7.9.11 SEND PRINT CODE TO AUX PRINTER TIPCOP

To simplify the handling of an auxiliary printer the user may
call TIPCOP to send the PRINT command to the selected terminal.
TIPCOP places the cursor at the last column of the row specified in
the call. A second optional parameter is the terminal name to be
used. Default values are the last row and the calling terminal.

Syntax:

Where:

CALL 'TIPCOP' USING ROW [,TERM-NAME].

ROW The line number of the last line to be printed on
the auxiliary printer.

TERM-NAME Optional name of the destination terminal. Default
is the terminal that ran the program.

Example:

05 ROW PIC 9(4) COMP-4 SYNC VALUE 16.
05 TERM-NAME PIC X(4) VALUE 'T309'.

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.11

TIPCPAGE
SET UTS-400 CONTROL PAGE

7.9.12 SET UTS-400 CONTROL PAGE TIPCPAGE

The user program may set the Transmit Field of a UTS-400 Control
Page by calling this subroutine with the choice of transmit option.

Syntax:

CALL 'TIPCPAGE' USING CPAGE-OPTION.

Where:

CPAGE-OPTION

Example:

A four character field indicating the desired
transmit option.

"ALL" - transmit all data

"VAR " - transmit variable (data only)

"CHAN" - transmit only changed data

05 CPAGE-OPTION PIC X(4) VALUE "VAR".

Page:
Section:

1
7.9.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

•

DETACH ALTERNATE TERMINAL
TIPDETCH

7.9.13 DETACH ALTERNATE TERMINAL TIPDETCH

This function allows the user program to detach a terminal that
was previously attached via TIPATTCH. This will free the detached
terminal from the program allowing it to be used as a normal
terminal. The detach function will reset the programs original
state if a TIPUORG call had not been done.

Syntax:

CALL 'TIPDETCH' USING WORKAREA.

Where:

WORKAREA A four fullword workarea for use by the TIPDETCH
subroutine. This field must be fullword aligned .

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.13

TIPSCAN
SCAN PARAMETERS FROM STRING

7.9.14 SCAN PARAMETERS FROM STRING TIPSCAN

This subroutine is very useful for parsing (scanning) fields
from a string of characters. It utilizes delimiters which are
specified by the calling routine. The following example would place
the first field (found in !STRING) which is 8 bytes or less long
and ending with any of the specified delimiters (",/ ") into
OSTRING-TXT.

IPTR will be set to the zero relative offset into !STRING of the
next character after the delimiter.

Repeated calls to TIPSCAN will scan out all such fields. The
user must check the value of IPTR to determine when the end of
!STRING is reached.

Syntax:

CALL 'TIPSCAN' USING ISTRING, IPTR, OSTRING, DELIMS.

Example:

01

01

01

01

Page:
Section:

I STRING

IPTR

OSTRING.
02 OSTRING-LL
02 OSTRING-TXT

DELI MS.
02 DEL-LL
02 FILLER

1
7.9.14

PIC

PIC

PIC
PIC

PIC
PIC

-+*+-

x (??) .

9 (3) VALUE 0 COMP-4.

9(3) VALUE 8 COMP-4.
X(8).

9(4) VALUE 3 COMP-4.
X(3) VALUE I 'I I

TIP/30 Reference Manual
Version 2.5 (82/08/01)

USE ALTERNATE TERMINAL
TIPUALT

7.9.15 USE ALTERNATE TERMINAL TIPUALT

If an alternate terminal has not been reserved by a prior call
to the TIPATTCH subroutine this call will be ignored. After calling
TIPUALT all further input requested by the program will be
solicited from the alternate terminal.

Similarly, all output messages will be sent to the alternate
terminal unless specifically directed to another terminal.

Syntax:

CALL 'TIPUALT' USING WORKAREA.

Where:

WORKAREA A four fullword workarea for use by the TIPUALT
subroutine. This field must be fullword aligned.

CHAPTER VII - MESSAGE CONTROL SYSTEM
LINE - ORIENTED TERMINAL I/0

Page:
Section:

1
7.9.15

TIPUORG
USE ORIGINAL TERMINAL

7.9.16 USE ORIGINAL TERMINAL TIPUORG

This function allows the program to switch back to the original
terminal. After calling TIPUORG all subsequent terminal input will
be solicited from the original terminal. Similarly, all output
messages will be sent to the original terminal unless specifically
directed to another terminal.

Syntax:

Where:

Page:
Section:

CALL 'TIPUORG' USING WORKAREA.

WORKAREA

1
7.9.16

A four fullword workarea for the TIPUORG
subroutine; This field must be fullword aligned.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DIRECT COMMUNICATIONS I/O
DIRECT 1/0

7.10 DIRECT COMMUNICATIONS I/O Direct I/O

TIP/30 provides facilities that a user program may use to
directly interface with the communications sub-system. This Direct
Communication I/O interface is at a primitive level - that is, the
user assumes the responsibility for generating the proper control
information for the devices being manipulated.

With Direct Communications I/O, the user program interfaces with
ICAM (the operating system communications control code) via calls
to a TIP subroutine named "TIPTERM".

The user program is responsible for issuing messages that
conform to ICAM specifications and which will produce the desired
effect at the destined terminal. It is also the responsibility of
the user program to decode all input messages and filtering user
data from imbedded terminal-dependent control codes.

Direct Communications 1/0 is normally used in BAL programs. A
complete set of macros for display programming is provided for the
BAL programmer. It should be noted that all the message processing
features of the TIP Message Control System (MCS) are available to
BAL programs.

COBOL applications should take advantage of the extensive
display handling capabilities of the Message Control System (MCS).

The documentation in this section of the manual requires a
pre-requisite knowledge of the facilities of OS/3 ICAM and a
familiarity with assembly-language programming. The examples are
given in standard assembly language format.

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page:
Section:

1
7.10

DC I 0: p REF Ix
INPUT AND OUTPUT MESSAGE FORMAT

7.10.1 INPUT AND OUTPUT MESSAGE FORMAT DCIO: pref ix

All input and output messages must be preceded by a fixed format
message prefix. Two BAL macros ("TIPIMP" and "TIPOMP") are provided
to generate these prefixes.

Each macro generates a standard message pref ix as documented in
the Communications Manuals (ICAM) supplied by the manufacturer with
one exception. An extra word is added at the beginning of each
pref ix and is used only by TIP, the remainder of the prefix is in
fact the normal ICAM message pref ix.

The label field is used to name the message and is referenced in
the CALL TIPTERM instruction. It may be 1 to 7 characters in
length.

The first parameter is used to reference the end of the message~
this is required to generate the correct length value within the
pref ix. The length field (halfword) within the prefix may be
referenced in a user program by affixing the suffix "L" to the
label.

The output message pref ix has an optional keyword parameter that
is used to indicate that the message is to be printed on an
auxiliary device when it is sent to a terminal.

The keyword parameter is coded as "PRINT=YES". The ·codes
generated in the output pref ix are for regular print
(non-transparent) on auxiliary device one (AUXl).

Example:

Page:
Section:

*
* * *
* INMSG
IMA
INMGE
*
* * *
* OUTMSG
OMA
OUTMGE

1
7.10.1

INPUT MESSAGE PREFIX * * *
TI PIMP
DS
EQU

OUTPUT

TI POMP
DC
EQU

INMGE
CL100 INPUT MESSAGE AREA
*

MESSAGE PREFIX * * *
OUTMGE,PRINT=YES
C'This is my output message'
*

TIP/30 Reference Manual
Version 2.5 (82/08/01)

AUXILIARY DEVICE I/O DELIVERY STATUS
DCIO: STATUS

7.10.2 AUXILIARY DEVICE I/O DELIVERY STATUS DCIO: status

For all output messages sent to auxiliary devices, the sending
user program is not re-scheduled until the message has been
delivered.

For Direct I/O (CALL TIPTERM), the delivery status is returned
in the first byte of the TIPOMP packet.

All messages sent to auxiliary devices are sent on the LOW
priority communications queue, while messages sent to the main
terminal are sent on the MEDIUM priority queue. This allows you to
send an informational message to the terminal operator if the
auxiliary device encounters an error. The delivery status codes are
tabled below:

STATUS CODE

BLANK
B
c
D
E
F
G
0
1
2
3
4

DESCRIPTION

Good deli very
Line Down
Terminal Down
Invalid Destination
No available buffers
DisK I/O error
Invalid output message length
Auxiliary device down
Read/Write inoperative
Printer out of paper
End of cassette
No response

In all cases (other than "good delivery") the message involved with
the error is deleted and the application program must take some
recovery action.

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page:
Section:

1
7.10.2

DCIO: CARRET
GENERATE CARRIAGE RETURN

7.10.3 GENERATE CARRIAGE RETURN DCIO: carret

This macro generates the control codes to "leave" a specified
number of lines at this point in the output message.

Syntax:

Where:

CARRET (row.col) [,SOE]

(row,col) Optional number of rows to leave and number of
columns of spaces to generate at the beginning of
the next row. If omitted, no blank lines or spaces
will be generated.

SOE Optionally generate an SOE character at the
begining of the next line.

Example:

Page:
Section:

CARRET (2,0) ,SOE

1
7.10.3

- leave two blank lines and put an
SOE at the start of next line

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CURSOR POSITIONING
DCIO: CURSOR

7.10.4 CURSOR POSITIONING DCIO: cursor

This macro will generate the control codes needed to position
the CRT cursor.

Syntax:

CURSOR

Where:

location

SOE

1 oca t ion [, SOE l

The desired cursor location. The character string
"HOME" is recognized as meaning the top left
corner of the CRT. This parameter may also be
coded as: "(row,col)" where row and col specify
the desired row and column location (in decimal).

Optional parameter indicating by its inclusion
that an SOE (start of entry) character is to be
generated at the specified location. Coded as
"SOE".

Example:

move cursor to home position

move cursor to row 3 column 54

CURSOR HOME

CURSOR (3,54)

CURSOR HOME.SOE move cursor to home location and generate
an SOE character.

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page:
Section:

1
7.10.4

DCIO: DELETE
DELETE FUNCTION

7.10.5 DELETE FUNCTION DCIO: delete

This macro generates the control codes to delete a line. It may
also be used to generate a delete character in the line or in the
display with wraparound. (ie: UTS400 key DELETE IN DISP or DELETE
IN LINE) .

. Sgntax:

Where:

DELETE type [,(row.col) J

type

(row,col)

The type of delete desired:

"LINE" - delete an entire line in the display.
Note that all lines below the deleted line will be
shifted up.

"INLINE" delete a character in the line and
shift all characters following in the line right
one position.

"INDISP" - delete a character in the display and
shift all characters following in the display left
one position.

Optional row and column where the cursor is to be
placed before performing the delete function. If
omitted the cursor will remain wherever it was.

Example:

Page:
Section:

DELETE LINE, (5,6)

l
7.10.5

- go to row 5 col 6 and issue a
delete line function. Note the
cursor would remain at (5,6)
and lines 6 to end would be rolled
up one line.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DCIO: ERASE
ERASE FUNCTION

7.10.6 ERASE FUNCTION DCIO: erase

This macro will generate the control codes to erase a line,
field or the entire display.

Syntax:

Where:

ERASE type [, (row,col),SOE]

type

(row,col)

SOE

The type of erase to be performed:

"DISPLAY" erase the screen from the row,col
specified in parameter two to the end of the
screen. If parameter two was not coded, assume
entire screen. This command erases unprotected
areas of the screen.

"PROTECTED" the same as DISPLAY (described
above) with the exception that both protected and
unprotected portions of the screen will be erased.

"FIELD" - erase unprotected field at the location
given by parameter two. If parameter two is
omitted, the current field will be erased.

"LINE" - erase to end of line at the
given by parameter two. . If parameter
omitted, the current line is erased.

location
two is

Optional row and column location to place the
cursor before the specified erase operation takes
place.

Optionally place an SOE character at the location
given by the (row,col) parameter before performing
the erase function.

Example:

ERASE DISPLAY, (4,1) ,SOE - place SOE at (4,1) and erase
(unprotected) to end of screen.

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page:
Section:

1
7.10.6

DCIO: FCC
GENERATE FIELD CONTROL CHARACTERS

7.10.7 GENERATE FIELD CONTROL CHARACTERS DCIO: fee

This macro is used to generate Field Control Characters for use
with the UTS-400 style terminal (including UTS20, UTS40, Q310,
DELTA 2400 etc).

Syntax:

FCC (rovJ,col) ,[Normal l ,
[Low l
[B 1 ink]
[Off]

Skip
Tab
Alpha
Numeric

, [Unprotected
[Protected

, [Right]

Where:

(row,col)

Example:

Required parameter indicating the row and column
of the FCC.

FCC (1, 1) ,B,NUM,UNP set up a blinking, numeric,
unprotected field at row 1, col 1.

Additional Considerations:

Positional parameters 2 through 5 are as described in the UTS400
manual. If any or all of those parameters are omitted the defaults
used are: NORMAL,SKIP,UNPROTECTED.

Only the first character of positional parameters 2 through 5 is
checked by the macro.

Page:
Section:

1
7.10.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DCIO: INSERT
INSERT FUNCTION

7.10.8 INSERT FUNCTION DCIO: insert

This macro will generate the control codes to perform the INSERT
function. It may be used to insert a line in the display (thus
pushing down all lines below) or to insert a character in the line
or in the display (ie: UTS400 key INSERT IN LINE or INSERT IN
DISP).

Syntax:

Where:

iNSERT type [,(row.col) l

type The type of insert function to perform:

(row,col)

"LINE" - insert a line in the display.

"INLINE" insert
characters in the
space inserted will
no wraparound.

a space in the line. All
line and to the right of the

be shifted to the right with

"INDISP" - insert a space in the display. All
characters in the display after the inserted space
will be shifted to the right with wraparound.

Optional row and column to position the cursor
before the insert function is performed.

Example:

INSERT INLINE, (9, 12) - go to row 9, col 12 and insert a
space inline.

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page:
Section:

1
7.10.8

DCIO: ROLL
ROLL THE SCREEN

7.10.9 ROLL THE SCREEN DCIO: roll

This macro generates the control codes to ROLL the screen up or
down a number of lines from a given co-ordinate location.

To roll the screen up, a suitable number of "delete line"
commands is generated; to roll down, "insert 1 ine" commands are
generated.

Syntax:

ROLL direction [,lines, (row.col) ,SOE)

Where:

direction

lines

(row,col)

SOE

Example:

Page:
Section:

ROLL UP,5

1
7.10.9

The string "UP" or "DOWN" indicating the direction
to roll the display.

Optional number of lines to roll. Default is 1.

Optional location of the roll to occur. Default is
the home position (1,1).

The string "SOE" indicating that an SOE character
is to be placed in the begining of the next line.

- roll display up 5 lines

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

DCIO: SCAN
SCAN FUNCTION

7.10.10 SCAN FUNCTION DCIO: scan

This macro will generate the control codes to move the cursor a
specified number of positions in any direction (up, down, left,
right) .

Syntax:

SCAN direction [,n]

Where:

direction The direction to move the cursor:

"UP" move the cursor up from its current
location;

"DOWN" - move the cursor down from its current
location;

"RIGHT" - move the cursor to the right of its
current location;

"LEFT" - move the cursor to the left of its
current location;

Example:

SCAN LEFT,40 - move the cursor to the left 40 positions.

Additional Considerations:

If the cursor crosses a screen boundary (ie: top, bottom, leftside,
rightside) while 'scanning', it will behave exactly as the arrow
keys on the keyboard. For example, if you scan "UP" and hit the top
of the screen, the cursor goes to the bottom and continues moving
upward.

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page: 1
Section: 7.10.10

DCIO: TAB
TAB FUNCTIONS

7.10.ll TAB FUNCTIONS DCIO: tab

This macro will generate control codes to set tab stops on the
screen or position the cursor at the next tab stop on the screen.

Syntax:

TAB type [, (row,col)]

Where:

type

(row,col)

Example:

A choice of "SET" or "MOVE" indicating
tab is to be set at the location
parameter two or whether to move to the
position.

whether
given
next

a
by

tab

Optional specification of a row and column to move
the cursor before the tab operation is performed.

TAB SET, (24, 1) - set a tab at row 24, column 1.

Additional Considerations:

If a move operation is specified when there are no tab stops on the
screen, the cursor will go to the home position.

Page: l
Section: 7.10.11

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

DCIO: XMIT
TRANSMIT FUNCTION

7.10.12 TRANSMIT FUNCTION DCIO: xmit

This macro generates the control codes to simulate pressing the
transmit key (auto-transmit).

Syntax:

TRANSMIT

Where:

PROTECTED

Example:

[PROTECTED]

Optionally indicates that only protected data is
to be transmitted. If omitted, all data will be
transmitted.

TRANSMIT PROTECTED - will generate an auto-transmit
of protected data.

DCIO: yes/no"

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page: 1
Section: 7.10.12

YES/NO FUNCTION

7.10.13 YES/NO FUNCTION

This macro will generate the control codes for a common terminal
prompt; namely, a YES or NO query. The prompt may be issued with
"YES" as the default reply or "NO" as the default reply.

Syntax:

YES NO
or NOYES

Where:
No parameters required.

Example:

YESNO

Will generate the following sequence:

>YES. >NO.

NOYES

Will generate the following sequence:

>NO. >YES.

Where the 11 >11 represents an SOE character, the " " shows
the cursor resting location and the 11 11 is a TAB-STOP.

Additional Considerations:

This usually would be the last part of the text of an output
message.

Page: 1
Section: 7.10.13

TIP/30 Reference Manual
Version 2.5 (82/08/01)

----------------------- -

DCIO: TIPTERM
TIPTERM FUNCTIONS

7.10.14 TIPTERM FUNCTIONS DCIO: tipterm

User programs may request direct terminal I/O
calling the supplied subroutine "TIPTERM" with
indicating the desired function and (optionally for some
the appropriate input or output message area.

services by
parameters
functions)

The input and output message areas are defined using the TIPOMP
and TIPIMP macros described elsewhere.

Following is a summary of the function codes available (they
represent equated symbols generated by the TP$BEGIN macro):

T@CNTRL
T@FREE
T@GET
T@PHONE
T@PUT
T@TEST
T@UN

CONTROL TERMINAL INPUT
ALLOW FREE TERMINAL INPUT
GET A MESSAGE FROM A TERMINAL
CHANGE DIAL-UP LINE TEL NUMBER
PUT A MESSAGE TO A TERMINAL
TEST FOR UNSOLICITED TERMINAL INPUT
SEND AN UNSOLICITED TERMINAL MESSAGE

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page: 1
Section: 7.10.14

TIPTERM: CNTRL
CONTROL TERMINAL INPUT

7.10.15 CONTROL TERMINAL INPUT TIPTERM: cntrl

This function allows the program to control input from a
terminal. The normal mode of operation of a terminal is
"controlled". This means that every input message to the system
must be answered by at least one output. This call is usually given
at a point in the program after a T@FREE has been used.

Syntax:

CALL TIPTERM,(T@CNTRL)

Where:
No other parameters required.

Page: 1
Section: 7.10.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DISCONNECT DIAL-UP LINE
TIPTERM: DISC

7.10.16 DISCONNECT DIAL-UP LINE TIPTERM: disc

This function allows the program to disconnect a dial-up line
connection.

Syntax:

CALL TIPTERM, (T@DISC,DISMSG)
* DISMSG TIPOMP OISE

DC CL4'????' !CAM LINE NAME HERE
OISE EQU *

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page: 1
Section: 7.10.16

TIPTERM: FREE

7.10.17 ALLOW FREE TERMINAL INPUT

This function allows the
messages from a terminal
message after each input.

ALLOW FREE TERMINAL INPUT

TIPTERM: free

program to retrieve several input
without having to reply with an output

This function is the logical opposite of the controlled mode
(see TIPTERM: cntrl). It is called once to set the mode of
operation of the terminal. It is used for file transfers from
Bi-sync devices (eg.IBM 2780).

All batch mode terminals such as the IBM 3741 and 2780 are
automatically set to free input at TIP startup.

Syntax:

CALL TIPTERM, (T@FREE)

Where:
No other parameters required.

Page: 1
Section: 7.10.17

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPTERM: GET
GET AN INPUT MESSAGE

7.10.18 GET AN INPUT MESSAGE TIPTERM: get

This function is used to get input from the terminal. It is
normally issued after a T@PUT. Although the input message may not
be available immediately, (ie. the operator may be entering data in
a display), TIP knows that a request for input has been made and
when it is available from the associated terminal TIP will move the
message to the input message area of the specified TIPIMP and
re-activate the program at the instruction after the call to
TIPTERM.

Syntax:

CALL TIPTERM, (T@GET,INMSG)

TIPIMP INMSGE INMSG
INMSGTXT
INMSGE

DC CLBO I I

EQU *
This application will accept up to
80 input characters

Where:
No other parameters are required.

Additional Considerations:

After the above call is performed, and the response is received,
the program may determine the status of the input message by
'checking the first byte of the Input Message Prefix (TIPIMP).

STATUS DESCRIPTION

T$ERR
T$0K
T$FUNC

Truncated input. Input Message Area is too small.
Input message received ok.
Function key received

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page: 1
Section: 7.10.18

TIPTERM: PHONE
CHANGE DIAL-UP LINE TELEPHONE NUMBER

7.10.19 CHANGE DIAL-UP LINE TELEPHONE NUMBER TIPTERM: phone

This function allows the user to change the telephone number of
a dial-up line.

Sgntax:

* PHNMSG

PHNE

CALL TIPTERM, (T@PHONE,PHNMSG)

TI POMP
DC
DC
EQU

PHNE
CL4'line name'
C'phone number'
*

Page: 1
Section: 7.10.19

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPTERM: PUT
OUTPUT A MESSAGE

7.10.20 OUTPUT A MESSAGE TIPTERM: put

*

This function is used when the user program wants to output a
message to a terminal. The message should contain terminal control
codes to format the display at the destination terminal. The
message must be set up in the output message area of a TIPOMP.

Syntax:

CALL TIPTERM, (T@PUT,OUTMSG)

Where:
No other parameters required.

Example:

The following output message might be used (as illustrated
above) to home the cursor and clear the screen.

OUT MSG TIPOMP DUTE
CURSOR HOME
ERASE PROTECTED
EQU * DUTE

generate cursor to home
and erase display

Page: 1 CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0 Section: 7.10.20

TIPTERM: TEST
TEST FOR INPUT

7.10.21 TEST FOR INPUT TIPTERM: test

This function allows the user to determine if any unsolicited
input has occurred. This is frequently used as a 'break' function
in programs which generate continuous output. For example, a
program to display an item master file may generate many lines of
output (rolling the screen). By testing for input after every 'n'
lines of output the program could determine if input had been
generated (ie. operator pressed Message Waiting) and send a message
to the operator to ask if continuation is desired.

Syntax:

CALL TIPTERM, (T@TEST,INMSG)

Additional Considerations:

After the above call is completed, the program must check the first
byte of the input message pref ix (TIPIMP) to determine if a message
has been received.

STATUS

T$ERR
T$0K
T$FUNC

Page: 1
Section: 7.10.21

DESCRIPTION

No input available.
Input message·received.
Function key received

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPTERM: UN
SEND AN UNSOLICITED MESSAGE

7.10.22 SEND AN UNSOLICITED MESSAGE TIPTERM: un

This call allows a program to send an unsolicited output message
to a terminal. An unsolicited message is one that is not expected
by the receiving terminal.

TIP will send the message on the low priority message queue. In
addition, TIP will send a sona-alert message on the high priority
message queue (causing the Message-Waiting alarm to sound at the
terminal).

The message will not be displayed until the terminal operator
presses Message Wait. The terminal operator should position the
cursor to an unused line on the CRT prior to pressing Message Wait.

Syntax:

CALL TIPTERM,(T@UN,OUTMSG)

CHAPTER VII - MESSAGE CONTROL SYSTEM
DIRECT COMMUNICATIONS I/0

Page: 1
Section: 7.10.22

- -- --~- ---------------------

TIPGEN
CHAPTER VIII - SYSTEM MAINTENANCE

8. CHAPTER VIII - SYSTEM MAINTENANCE TIPGEN

This chapter of the TIP/30 reference manual contains information
that is needed by system programming personnel for the maintenance
and operati~n of the TIP/30 system.

To make effective use of the information in this chapter, the
reader should be familiar with the operating system (OS/3) and the
communications interface (!CAM).

Familiarity with assembly language programming would be an
asset.

CHAPTER VIII - SYSTEM MAINTENANCE Page:
Section:

1
8

TIP/30 LIBRARY FILE REQUIREMENTS

8.1 TIP/30 LIBRARY FILE REQUIREMENTS

There are two OS/3 libraries that are required by TIP/30. The
first library (// LFD TIP) is used to hold the TIP/30 release
system. This file is also used in the generation of TIP/30, as the
PROC library during assemblies, as the ALIB library during a
link-edit, and as a copy library for COBOL 74 compiles.

The user must NOT put any of his own modules in this library.
This will simplify loading a new release of TIP/30.

The second file (// LFD TIPLOD) must contain the TIP/30 load
modules, TIP support programs and TIP utilities as well as all
user-written transaction programs. When the user load modules are
copied into this library, they may be written in block load format
(LIBS BLK Command). This procedure improves library searching and
reduces initial program load times to a minimum when running
TIP/30.

Note: All Y system files are automatically assigned to TIP/30.
(Example: YJCS, YLOD etc).

Page:
Section:

1
8.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

WORK FILES
EXECUTION TIME WORK FILES

8.2 EXECUTION TIME WORK FILES workf iles

TIP requires three additional disc files during execution. The
first is the TIP Catalogue File (SAT) and is used to hold MCS
Display formats, USER-IDs, logical program names and FCS Dynamic
file header records. This file should be about 8 to 12 cylinders.

TIP uses several SAT (System Access Technique) files.
files are NOT library files. They cannot be copied or listed
LIBS. Attempting to use any function of LIBS with these files
destroy the files! The program "DMPRST" may be used to move
files.

These
with

could
these

The second file is the TIP Random File (SAT) and is used for the
allocation of Dynamic FCS files, and edit buffers. Each FCS random
file begins at 40 blocks of 512 bytes each and grows in units of
this size as required. The size of this file varies according to
the requirements of dynamic files and edit buffers. A typical
starting value is about 10 to 16 cylinders.

The third required file. is the TIP Swapping File (SAT) and is
used for high speed physical I/O swapping storage. It must be large
enough to hold a copy of each user program for each terminal in the
system, ie. ((terminals * largest prgm * 2) I cyl capacity) + 4.
Part of the Swap File is used by TIP/30 as the storage for the TIP
Transients. Try about 16 cylinders to start. If a mix of sectored
and non-sectored discs are available, this file is best placed on
the non-sectored units.

CHAPTER VIII - SYSTEM MAINTENANCE
EXECUTION TIME WORK FILES

Page:
Section:

1
8.2

WORK FILES
EXECUTION TIME WORK FILES

SUMMARY OF FILES REQUIRED BY TIP/30

FILE

TIP CATALOGUE

RANDOM FILE

SWAPPING FILE

Page:
Section:

2
8.2

REQUIRED
LFD-NAME

TIP$CAT

TIP$RNDM

TIP$SWAP

TYPE

SAT

SAT

SAT

COMMENTS

- Catalogue entries for
user-ids, programs and
files.

- MCS screen formats.

contains FCS dynamic
files and Edit Buffers

Swapping storage for
Programs, Work Areas
and File buffers.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TIPGEN
TIP/30 SYSTEM GENERATION

8.3 TIP/30 SYSTEM GENERATION

To generate a TIP/30 system
stream similar in concept
generation streams.

TIPGEN

the user must prepare
to the OS/3 Supervisor

an
and

input
!CAM

This input stream, containing generation control statements,
parameters, keywords and options is read and interpreted by a batch
program called TB$GEN.

TB$GEN creates a JCL element containing the correct ASSEMBLER
statements to generate a TIP/30 system. The responsibility of
conforming to Assembler coding conventions is assumed by TB$GEN.

The user prepares free format statements defining the TIP/30
requirements of the site.

There are three basic types of generation control statements:

TIPGEN
FILE
CLUSTER

defines the TIP/30 Control Area
defines all on-line files
defines on-line terminals

These generation control statements have required parameters and
optional keywords which specify variable information. The following
sections will describe the generation control statements and the
parameter and keyword requirements.

Many of the keywords described have short forms. The keywords
are illustrated as a mix of upper and lower case letters.

The short form of a keyword is the sequence of upper case
letters. The lower case letters may be omitted.

To avoid confusion, it is recommended that the user specify
keywords even if the default value is satisfactory; new releases of
TIP/30 may result in a change in the default value for a keyword
and thus cause some grief for unwary system programmers.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

1
8.3

TIPGEN

8.3.1

TIPGEN DEFINITION

TIPGEN DEFINITION TIPGEN

The TIPGEN control statement begins the definition of the
characteristics of the TIP/30 Monitor for your site.

The information and tables constructed by this part of the
generation are known as the TIP/30 Control Area (TCA). The TIP/30
monitor is released as one load module (TB$TIP).

When TB$TIP (or the TCA name) is executed it loads in the TCA
whose name is given in the job control data set and modifies
internal tables with information supplied in the TCA.

The TCA name must be at least 3 characters long, and the first 3
characters must be unique if several TCA's are being generated.

Page: 1
8.3.1

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

TIPGEN DEFINITION

Syntax:

TIPGEN tcaname
AFT=
BaCK=
B4=
CATPooL=
CDM=
DBMS=
DECIMAL=
DM=

ESCape=
FaSTLoaD=
FCSxtent=
FiLeBufs=
FREEm=
GDA=
JOB=
JouRNaL=
KeYTaBLe=
LIST=
LOG=
LoGoN=
MaXPRoG=
MAXTiMe=
MSGPooL=
NeTWoRK=
PRSTEN=
ReaDYmsg=
shutDowN=
StartUP=
SITE id=
STatS=
TCP=
TeRMS=
TeRMSiZe=
TeRMTYPe=
TIMeoff=
TIMeouT=
TIPFILES=
WORK1=
WORK2=
XMIT=
XmitALL=
Xm i tCHan=

Description
--required positional parameter

Number of active files/termjnal
Number of background programs
Before image file YES or NO
Number of catalog buffers
Consolidated Data Mngmnt
Data Base to be used
Define European decimal point
shared data management used?

System escape character
Fastload index size
FCS Dynamic file auto increment
Number of file buffers
Additional free memory needed
Global data area size
JOB name of next gen step
Disk journaling YES or NO
Key holding table
Generation list option
Tape logging YES or NO
logon is required
Maximum program size
Maximum time before calling TIP
Message pooling (number.size)
ICAM network (CCA,TCIPWD)
Journal 'PRST' and 'PREN'
send ready message at startup
Automatic shutdown program
Automatic startup program
Site identification
Statistics interval
Command processor name
Number of on-line terminals
Terminal screen size
Type of terminal
Time to auto logoff (minutes)
External succession timeout
JPROC to be called by job
ASM work file 1
ASM work file 2
UTS400 control page option
UTS400 Fn key to XMIT ALL
UTS400 Fn key to XMIT CHAN

Default

MAX
2
NO
6
NO
NO
DECIMAL

TIPGEN

Rev 6: NOSHARE
Rev 7: SHARE
@

(25,50)
40
3
2560
0
TJ$GEN
NO
(0 ' 0)
NO
NO
YES
30000
30 sec.
(3,500)
(TIPC,TIPPWD)
NO
NO
I I

I I

'TIP30'
(10,60)
'TCP'
<required>
(24,80)
UNI SCOPE
5 min.
540 min.
TI PF ILES
RES
RUN

Page: CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION Section:

2
8.3.1

TIPGEN

XmitVAR=

Where:

tcaname

AFT=n

BACK=n

CATPOOL=n

CDM=

DBMS=name,size

Page:
Section:

3
8.3.1

TIPGEN DEFINITION

. UTS400 Fn key to XMIT VAR

is the name of the TIP/30 Control Area.

This name is used as the name of the TIP/30
Generation and must be specified as the first
parameter of the TIPGEN control statement.

The TCANAME is given in the TIP/30 Job Control to
identify the TCA to TB$TIP. This may also be
directly executed(// EXEC tcaname).

is the average number of active files expected per
terminal. This parameter is used to pre-allocate
memory for storage of 'Active File Tables'. If
omitted TIP will insure that there is enough room
for every terminal to have every file open at the
same time.

is the maximum number of background programs which
may be running at any one time. Default=2.

defines a separate 'before image file' to be used
by TIP/30 for automatic rollback of data files.
This parameter can be used with disk journaling
(JRNL=YES) or with tape logging (LOG=YES).
Whenever records of files defined as HOLD=TR are
read for update a copy of the record before update
is stored in the TIP$B4 file until the transaction
successfully terminates. Default=NO.

is the number of catalogue buffers. Increasing
this value may improve performance. Each buffer is
256 bytes. Def ault=6.

Whether or not Consolidated Data Management is to
be used by TIP/30.

Default is NO implies use of Basic Data
Management (DTF's).

'name' is the name of the Data Base Management
interface module to be used. The object module
must be in the TIP library and be called
TS$' name'. With entry points of TS$'name' for I/O,
TS$'name'OP for OPEN routine, and TS$'name'CL for
CLOSE routine. Supplied interface modules include
TSTTL, TSDMS, TS$DBS.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIPGEN DEFINITION

DBMS=DMS

DBMS=DMT,n

DBMS= DBS

DBMS=TTL,n

DECIMAL=COMMA

DM=SHARE

ESCAPE=X

FASTLOAD=(m,n}

FCSXTENT=n

TIPGEN

'size' is the number of bytes to be reserved for
the Data Base interface as a work area. For
example TOTAL (TS$TTL) needs storage to hold the
DBMOD and TOTAL/7.

interface to single thread DMS/90.

interface to multi thread DMS/90, where 'n' is the
number of threads.

interface to single thread DBS/90.

interface to TOTAL/7, where 'n' is the amount of
memory to be reserved for the DBMOD and all needed
TOTAL modules. and TOTAL/7. If this memory is too
small TIP/30 may abort.

reverses the meaning of '.' and ',' in M.C.S.
editing of numeric fields. ',' becomes the decimal
point. Default=DECIMAL.

causes the TCA to be generated to allow the use of
shared data management. This may reduce memory
requirements. If this option is used then the user
must EXECute the TCA instead of 'TB$TIP'. This
must be done to have the OS/3 supervisor setup the
shared code linkages. Default is NOSHARE for OS/3
6.x. Default is SHARE for OS/3 7.x and up.

defines the system escape character which when
encountered by TIP/30 as the first character of an
input message will 'escape' the current program to
the TIP/30 Command Processor and increment the
program stack. Default=@.

'm' is the number of fastload index entries kept
for memory relocated programs. 'n' is the number
of f astload index entries for disc addresses of
programs in the TIP$SWAP file. Default is (25,50).

This table is only used
programs.

for non-re-entrant

is the size of one dynamic file extent. A dynamic
file may have a maximum of 48 extents. If this
value must be changed after TIP has been running,
it will be necessary to insure that there are no
dynamic files in existence. Default=40.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

4
8.3.1

TIPGEN

FILEBUFS=n

FREEM=n

GDA=

TIPGEN DEFINITION

is the number of buffers to be reserved for
loading DTFs at execution time. Each buffer is
individually sized to the largest DTF residing in
that buffer. Some attempt should be made to group
non-conflicting FILEBUFS (DTF's) by size. The
absolute size includes the DTF, IOAREA, INDEX AREA
and one work area the size of one record.
Default=3.

'n' is the amount of extra memory to be reserved
for additional functions. For example an OS/3
spool work area used by SPL and BCP programs is
1200 bytes. TIP/30 will always reserve at least 3K
bytes; anything specified here is in addition to
the basic 3K. Default=2560.

The SPL program and ODD and QED make use of free
memory.

The size in bytes of the optional Global Data
Area. Default is zero.

JOB= is the element and job name used when the output
of the generation program is written to YJCS. ~
Default=TJ$GEN. ..,

~ updates are to be written to TIP$JRN. A recovery
~ module will be generated for use by the file

recovery program TB$RCV.

Default=NO.

KEYTABLE=(m,n) 'm' is the maximum number of records to be held
for update at any one time.

Page:
Section:

LIST=YES

LOG=YES

5
8.3.1

'n' is the size in bytes of the largest key used.
If nothing is specified the generation program
will generate the table with 2 entries for each
file, and will determine the largest key used
automatically. Default (0,0).

the generated code for the TIP system generation
is to be listed. Default=NO.

Indicates that file updates are to be written
(logged) to the TIP/30 log tape (TIP$LOG). A
recovery module will be generated for use by the
file recovery program TB$RCV. Default=NO.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
TIPGEN DEFINITION

LOGON=NO

MAXPROG=n

MAXTIME=n

MSGPOOL=(n,m)

NETWORK=(cca,pwd)

READYMSG=YES

SHUTDOWN=trid

TIPGEN

specf ies that all terminals do not require users
to log on to TIP/30 before running transactions.
Def ault=YES.

'n' is the maximum size program in bytes, TIP/30
expects to load. TIP/30 will insure that a memory
region of 'n' bytes is available. Default=30000.

the maximum wall time to be elapsed by a program
without calling some TIP/30 function. TIP/30 will
abort the program on the assumption that it is
looping. Default=30.

'n' is the number of message file buffers to be
allocated and 'm' is the size of the buffers. This
parameter becomes important if you have a 'high
transaction' volume and your application programs
use several different messages in a cycle.
Messages larger than 'm' are not pooled.
Default=(3,500).

'cca' is the ICAM CCA name. 'pwd' is the ICAM CCA
password. Default=(TIPC,TIPPWD).

NETWORK may be changed by job control parameters.

specf ies that the statistcal journ.al record 'PRST'
(program start) and 'PREN' (program end) are to be
written. If these records are of no real interest
to you then leave this parameter as 'NO' and
reduce journal I/O's. Default=NO.

this will cause TIP/30 to send
short 'TIP/30 READY' message
starts up. Default=NO.

all terminals a
when the system

You may in addition (via job control) specify
Bannerl='stringl' and Banner2='string2'.

is the name of a program that is to be started as
a background program automatically when TIP/30
goes to end of job via the EOJ command. Default is
I I

This program must be catalogued in the TIPSY$
group.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

6
8.3.1

TIPGEN

SITEID=siteid

STARTUP=trid

STATS= g, cnsl)

TCP=

TERMS=n

TERMSIZE=(m,n)

TERMTYPE=type

Page:
Section:

TIMEOFF=n

7
8.3.1

TIPGEN DEFINITION

is the name of the company or site where TIP/30
will be run. This appears in console messages from
TB$TIP. It should be a single word of 12
characters or less in length or enclosed in
quotes. Default=TIP30.

is the name of a program that is to be started as
a background program automatically when TIP/30
starts up. Default is ''.

This program must be catalogued in the TIPY
group.

'jrn' specifies the time interval
the writing of journal 'STAT'
specifies the time interval used
display of the system statistics
console. Both values represent a
minutes. Short form STS. Default

used to control
records. 'ens 1'

to control the
on the operator's
time interval in
is {10,60).

The name of a non-standard Tip Command Processor
to be used.

This parameter should
specific instructions
personnel.

only be
from

specified on
Allinson-Ross

number of terminals in the system. 'n' must be
greater than or equal to the number of TERM
statements specified in the ICAM generation.
Required keyword.

'm' is the number of rows on the screen and 'n' is
the number of columns. Ie. the screen size of
TERMTYPE. Default=(24,80).

the most common type of on-line terminal in the
network. Default=UNISCOPE~ acceptable values are:
UNISCOPE, UTS400, UlOO, U200, U400, UTS20 and
UTS400F.

UTS400F is a UTS400 with the character protect
feature installed.

is the time in minutes which must elapse before
TIP/30 will automatically log a user off the
system. This timer is only in effect when the user
is not in any application program. Default=5.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TIPGEN DEFINITION

TIMEOUT=n

TIPFILES=jproc

WORKl=vol[,dvc]

WORK2=vol[,dvc]

XMIT=M

XMITALL=

XMITCHAN=

lrnITVAR=

TIPGEN

is the maximum time which an IMS/90 program may
stay in external succession. Default is 540
minutes (also the maximum allowed value).

is an alternate JPROC to be called by the output
job. This is useful for bringing up a new releases
of TIP/30 while leaving the currently running
release in production. Default=TIPFILES.

'vol' is the disk volume which is to be used for
the ASM WORKl file. (This could be RES or RUN)
'dvc' is the device number to be used (omit if
specifying RES or RUN).

'vol' is the disk volume which is to be
the ASM WORK2 file. (This could be RES
'dvc' is the device number to be used
specifying RES or RUN).

used for
or RUN)
(omit if

Defines the default control page XMIT setting for
UTS400 type terminals.

Default is "do not alter control page". If one of
"VAR", "ALL", "CHAN" is specified, the terminals
will have the transmit setting of the control page
set automatically at logon time.

Specifies the number of a function key which will
be interpreted by the TIP system as if it was a
request to place the cursor in the bottom right
corner of the CRT followed by a TRANSMIT ALL
sequence.

EG: XMITALL=22 will cause function key 22 to
behave in the manner described above.

Similar to <XMITALL>, except that only changed
data will be transmitted.

Similar to <XMITALL>, except that only data fields
will be transmitted.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

8
8.3.1

FILE

8.3.2

FILE DEFINITION

FILE DEFINITION FILE

To access files via the TIP/30 File Control System, Data
Management control tables must be generated for each file the user
wishes to access on-line.

The generation control statement FILE is used to specify file
names and their characteristics.

Syntax:

FILE lfd,filetype
ACCess=
AFTER=
AUTO IO=
BEFoRe=
BLKsiZe=
BUFfer=
CLOSE=
DeLeTe=
FILesiZe=
HoLD=
INDsiZe=
IO=
JouRNaL=
KeYLeN=
KeYLoC=
KEY1=
KEY2=
KEY3=
KEY4=
KEY5=
OPEN=
OPTioNal=
PCYLof l=
RCB=
ReCForM=
RECsiZe=
RESident=
USEFiLe=
VSEC=

lfd,filetype

required positional
access
After images journaled
COM file, force I/O
Before images journaled
block size (required)
DTF buffer number
inhibit file to be opend
delete flag
max. number of records
key holding for this file
index size
type of file
updates journalized
Key length
Key location
MIRAM Key1
MIRAM Key2
MIRAM Key3
MIRAM Key4
MIRAM Key5
Keep file open
optional file
percent ·cyl overflow
MIRAM Rec. Cntrl. byte
record format
record size (required)
file is resident
same as other FILE
variable sector size

EXCR
YES
NO
NO

NO
(x I FF I '0)

YES
256 .
INOUT
NO

0

YES
NO

NO
FIXBLK

NO

256

'lfd' is the LFD name of the file as specified in
the TIP/30 JCL.

'filetype' is the type of file. These are required
parameters and must be specified as the first
operands of the FILE gen control statement.

Page: 1
8.3.2

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•
FILE DEFINITION

ACCESS= opt

AUTOIO=YES

BLKSIZE=n

BUFFER=n

CLOSE= YES

DELETE={byte,loc)

DELETE=RCB

FILE

Valid file types are ISAM, DAM, SAM, TAPE, MIRAM,
DMIRAM, SMIRAM, PRINT, LIB, PUNCH.

is the access option as described in the data
management manual. Default is EXCR.

Specifies that the image of records after update
is not to be done. Default is YES.

Specifies that (for Consolidated data management)
I/O be automatically performed irrespective of the
contents of a file buffer.

Specifies that the image of records before update
is to be done. Default=NO.

'N' is the true block size required by the DTF.

is the file buffer to which this file is to be
assigned. This keyword gives the flexibility of
assigning files to specific buffers. If the file
must be swapped it will be swapped to and from
buffer 'n'. Default is "assigned by FCS".

will mark the file as not available for on-line
use. The file may be made available with main site
console command of OPEN. See the section on
operator communication. Default=NO.

'byte' is the logical record delete flag and 'loc'
is the zero-relative offset of the flag into the
record. The value for 'byte' may be specified as
X' ' or C' '.

Default value for 'byte' is X'FF' (HIGH VALUES).

Default value for 'loc' is the first data position
in the record that is NOT part of a key field.

is only valid for MIRAM files which have been
initially loaded with the Record Control Byte
option activated (// DD RCB=YES). When this
keyword is specified, TIP/30 issues a MIRAM
imperative macro which marks the record as deleted
from the file.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

2
8.3.2

FILE

FILESIZE=n

r _ _!JOLD=u!)

INDSIZE=n

IO= type

FILE DEFINITION

is the maximum number of records in the file. This
parameter is only meaningful for memory files.

means that file updates will be held for the
duration of the transaction. Transaction time is
defined as the interval between terminal inputs to
the program processing the file. Valid for indexed
and direct files. If the transaction aborts before
completing all updates are rolled back. To use
this option, the TIPGEN parameter B4=YES must be
specified.

means that file records will be held after a GETUP
until the update is made. There is no prov1s1on
for on-line roll back. Multiple records may be
held per file. ·

means that file records will be held after a GETUP
until the update is made or another GETUP is made
to the same file. Only one record per file.may be
held at any one time.

is the INDEX AREA SIZE for this file. Default=256.

type is the I/0 type of file. Ie. INPUT, OUTPUT or
INOUT. Default=INOUT.

~~ Specifies that journaling is to be done for this
~ file. Default=NO.

Page:
Section:

KEYLEN=n

KEYLOC=n

KEYl=

KEY2=

3
8.3.2

is the length of the key for the file.

This keyword should be omitted for indexed MIRAM.

is the zero relative location of the key in the
record. Default=O.

This keyword should be omitted for indexed MIRAM.

(size,loc,NDUP,CHG/NCHG)

defines MIRAM index 1

(size,loc,DUP/NDUP,CHG/NCHG)

defines MIRAM index 2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

FILE DEFINITION

KEY3=

KEY4=

KEYS=

OPEN=NO

OPTIONAL=YES

PCYLOFL=n

RCB=YES

RECFORM=n

RECSIZE=n

RESIDENT=YES

USEFILE=f ile

VSEC=n

FILE

(size,loc,DUP/NDUP,CHG/NCHG)

defines MIRAM index 3

(size,loc,DUP/NDUP,CHG/NCHG)

defines MIRAM index 4

(size,loc,DUP/NDUP,CHG/NCHG)

defines MIRAM index 5

marks file to be not kept OPEN when no program is
using it. Unless you have a specific reason you
should always specify OPEN=YES.

Specifies that this file is optional. It may not
have been specified in the JCL. When input is
requested, an end-of-file status will be returned.
When output is attempted, it will be ignored and
no error status will be presented. Default is NO.

is the percentage of cylinder overflow for ISAM.

the file has been loaded with the RCB activated.
TIP/30 will support it and keyword DELETE=RCB
could be used.

is the record format. Acceptable values -are
FIXBLK, VARBLK, FIXUNB, VARUNB. Default=FIXBLK.

is the size of records in the file.

Makes the file's DTF,index,work ... etc. resident.
(remains in memory at ·all times). Default=NO.

Specifies that this file definition is the same as
a preceeding FILE definition defined by 'file'.
All parameters must be specified and must be
exactly the same as the alternately named FILE
definition. This parameter is used to reduce TCA
compilation time when many 'characteristicly
identical' files are being defined.

For MIRAM files, defines the variable sector index
buffer size (see OS/3 Data Mngt.). Default is 256.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

4
8.3.2

CLUSTER

8.3.3 CLUSTER DEFINITION

TERMTYPE and TERMSIZE of
the most common terminal in
statement allows the user
terminals of uncommon type or

CLUSTER DEFINITION

CLUSTER

the TIPGEN control statement indicate
the network. The CLUSTER control

to define logical clusters or sets of
characteristic.

This is most useful if there are UTS-400 terminals, since it is
important for TIP/30 to know the bypass terminal names associated
with master and slave units.

Information generated in these CLUSTER tables is used by TIP/30
to modify internal tables; so that the messages produced for the
different terminal types will be of the correct format and size.

All terminal names that are specified in CLUSTER statements
(master, slaves) must reference TERM names as specified in the ICAM
generation used by TIP/30.

NOTE: These cluster definitions represent logical groupings of
terminals with similar characteristics. They have no particular
physical significance.

Syntax:

CLUSTER master
BYpass=
LoGoN=
ReaDYmsg=
SiZe=
Slaves=
TCP=

required positional parameter

Where:

Page:
Section:

TY Pe=
XMIT=

master

1
8.3.3

name of UTS400 cluster bypass terminal
is logon required (YES or NO)
send ready message when TIP/30 starts
screen size of the terminals in cluster
up to 8 slave terminal names
alternative TCP program for cluster
cluster terminal type
default control page XMIT value

is required and must be
(positional) parameter
statement. This defines
the group of terminals.

specified as the first
of the CLUSTER control

the primary terminal of

Programs running at terminals in this cluster can
refer to this terminal by the reserved terminal
name "*MST".

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CLUSTER DEFINITION

BYPASS=name

LOGON=Y/N

READYMSG=NO

SIZE=(m,n)

SLAVES=(a,b,c ...)

TCP= name

TYPE= type

XMIT=value

CLUSTER

is the name of the bypass terminal of the cluster.

Programs running at terminals in this cluster can
ref er to this terminal by the reserved terminal
name "*BYP".

NO does not require the user of any terminal in
the cluster to logon TIP/30.

YES will require the user of any terminal in the
cluster to logon TIP/30.

Specifies that a ready message is not to be sent
to terminals in this cluster.

'm' is the number of rows on the screen and 'n' is
the number of columns (ie. the screen size).

Default =(24,80).

a,b,c ... are the names of up to 8 other terminals
in the cluster.

These terminals have similar characteristics.

The name of a non-standard TCP program for this
cluster of terminals.

is the terminal type of all terminals in the
cluster.

Choices: UNISCOPE, UlOO, U200, UTS400,
UTS400F, U400F, UTSlO, UTS20, UTS-20,
UTS-40, TTY, Q310, HAZEL.

Def ault=UNISCOPE.

U400,
UTS40,

is the control page XMIT value to be sent to this
cluster at logon time: VAR, ALL, CHAN.

Default is TIPGEN specification.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

2
8.3.3

TIP/30 GENERATION KEYWORD SUMMARY

8.3.4 TIP/30 GENERATION KEYWORD SUMMARY

Some generation control statements have certain constraints and
some keywords may only be specified for certain control statements.

The following tables provide a cross reference of gen control
statements, limits and keywords.

CONTROL
TIPGEN

CLUSTER

Page:
Section:

PARM/KYWRD
TCANAME
84
OM
FILEBUFS
JOURNAL
LOG
MAXPROG
LOG ON
TYPE

MASTER
BYPASS
LOGON
SIZE
SLAVE
TYPE

1
8.3.4

OPT

x
x
x
x
x
x
x
x

x
x
x
x
x

REQ
x

x

SPECIFICATIONS

YES or NO
SHARE or NOSHARE
1 to 25
YES or NO
YES or NO
20000' 160000
YES or NO
UNISCOPE U100 U200 U400
UTS400 UTS400F TTY 0310

Positional parameter

YES or NO

(see TIPGEN:TYPE list)

U400F
UTS20

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TIP/30 GENERATION KEYWORD SUMMARY

TIP/30 GENERATION KEYWORD SUMMARY

MIRAM ACCESS x EXC EXCR SRDO SRO
AFTER x YES NO
BEFORE x YES NO
BLKSIZE x
BUFFER x 1'25
HOLD x YES UP TR
JOURNAL x YES NO
KEYLOC x
KEY LEN x
RECFORM x FIXBLK FIXUNB VARBLK
RECSIZE x
RESIDENT x YES NO
IO x INPUT OUTPUT INOUT

* Direct access MIRAM
DMIRAM ACCESS x EXC EXCR SRDO SRD

AFTER x YES NO
BEFORE x YES NO
BLKSIZE x
BUFFER x 1'25
HOLD x YES UP TR
JOURNAL x YES NO
RECSIZE x
RESIDENT x YES NO
IO x INPUT OUTPUT INOUT

* Sequential access MIRAM
SM I RAM ACCESS x EXC EXCR SRDO SRO

AFTER x YES NO
BEFORE x YES NO
BLKSIZE x
BUFFER x 1'25
JOURNAL x YES NO
RECSIZE x
RESIDENT x YES NO
IO x INPUT OUTPUT

MEM FILESIZE x
HOLD x YES UP
RECSIZE x

LIB BUFFER x 1'25

PRINT BUFFER x 1'25

PUNCH BUFFER x 1'25
* Sequential access TAPE
TAPE AFTER x YES NO

BEFORE x YES NO
BLKSIZE x

Page: 3 TIP/30 Reference Manual
Section: 8.3.4 Version 2.5 (82/08/01)

•

TIP/30 GENERATION KEYWORD SUMMARY

BUFFER
RECSIZE
RESIDENT
IO

x
x
x

x

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

1'25

YES NO
INPUT OUTPUT

-+*+-

Page:
Section:

4
8.3.4

TIP/30 GENERATION JCL EXAMPLE

8.3.5 TIP/30 GENERATION JCL EXAMPLE

TB$GEN will generate a job control stream called 'TJ$GEN'.

II JOB MY$GEN, ,COOO,DOOO
II WORK1
II TIPFILES
II OPTION JOBDUMP
II EXEC TB$GEN,TIP
1$
* ** TIPl30 GENERATION FOR ACE CARD COMPANY
* TIPGEN TIPACE TERMS=12 TERMTYPE=U400 SITEID=ACE-TEST

MSGPOOL=(5, 1024) JOURNAL=YES FILEBUFS=4
* ** DEFINE ONLINE LIBRARY FILES
* FILE ACESRC,LIB
FILE TSTSRC,LIB
I
** DEFINE INVENTORY MASTER FILE
* FILE INVMST,ISAM BLKSIZE=303 RECSIZE=296

KEYLEN=16 PCYLOFL=20 RESIDENT=YES
* ** DEFINE PAYROLL MASTER AND INDEX FILES
* FILE PAYMST,MIRAM BLKSIZE=1024 RECSIZE=300

KEY1=(8,2,NDUP,NCHG)
KEY2=(12,14,NDUP,CHG)

FILE PAYIND,DMIRAM BLKSIZE=512 RECSIZE=128
* ** DEFINE TERMINAL CLUSTERS
* CLUSTER PAY1

I*
I&

Page:
Section:

1
8.3.5

TYPE=UTS400,SIZE=(24,80) SLAVE=(PAY2,PAY3)
SLAVE=(PAY4,PAY5)

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TJ$PARAM
TIP/30 GENERATION PARAMETER RUN

8.3.6 TIP/30 GENERATION PARAMETER RUN TJ$PARAM

This supplied job stream will execute the TB$GEN program. Global
parameters are supplied to enable the user to specify the library
and element name of the generation parameter stream.

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
I&
II

JOB
GBL
TIPFILES
USERFILE
EXEC
PA RAM
PARAM
PA RAM
PARAM
PA RAM
PARAM
PARAM
PARAM
WORK1
EXEC
PA RAM
PARAM

FIN

TJ$PARAM, ,COOO
RUN=AUTO,F=SYSGEN,TCA=BOOTCA

WRTBIG
I TIPl30 GEN'
I PARAMETERS'
I FOR &TCA'
'DAT$'
I TIPl30 GEN'
I PARAMETERS'
I FOR &TCA'
'DAT$'

TB$GEN,TIP
&RUN.RUN
IN=&Fl&TCA

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 SYSTEM GENERATION

Page:
Section:

l
8.3.6

TJ$PARAM: OPTIONS

8.3.7

PARAM OPTIONS FOR TJ$PARAM

PARAH OPTIONS FOR TJ$PARAM TJ$PARAM: options

The TIP/30 generation statements may be placed in an element in
an OS/3 library. To direct the generation procedure to it, include
the following in the JCL which runs the TB$GEN program:

II PARAM IN=filelelt

If the assembly and link edit is to be automatically scheduled
(if no errors are detected), include the following:

II PARAM AUTORUN

If the assembly and link edit is not to be automatically
scheduled include the following:

II PARAM NORUN

Page: 1
8.3.7

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

TIP: EXEC
RUN TIME JOB CONTROL OPTIONS

8.4 RUN TIME JOB CONTROL OPTIONS TIP: exec

There are several options the user may specify when TIP/30 is
executed. These options are entered on run control statements which
are free format (similar to the generation control statements).

The information specified on these control statements is used to
modify internal tables in TIP/30 and override parameters which were
defined by the TIP system generation.

This provides
parameters may be
Generation.

a certain degree of flexibility in that numerous
changed without having to do a TIP System

CHAPTER VIII - SYSTEM MAINTENANCE
RUN TIME JOB CONTROL OPTIONS

Page:
Section:

1
8.4

TIP: EXEC
RUN TIME JOB CONTROL OPTIONS

SAMPLE TIP/30 EXECUTION JOB STREAM (BOOTSTRAP SYSTEM)

II
II
II

JOB
GBL
JNOTE

T J$ TIP 30, , 20000, 30000, 10, SUP, P, TIP, 2X2, BOTH, NOH DR
TCA=BOOTCA,NET=(TIPC,TIPPWD),ICAM=C1,RCV=NO
'TIP30 WILL LOAD ICAM &ICAM AUTOMATICALLY.'

II cc &ICAM
II OPR '***'
II OPR I * *'
II QPR '* T I P I 3 0 V E R S I 0 N 2 . 5 *'
II
II

QPR
QPR

I * * I
'***'

II QPR
II QPR
II QPR
II TIPFILES
II DATAFILE
II ICAMFILE

'TI01
'TI02
'TI03

USING
USING
USING

TCA=&TCA'
NET=&NET'
ICAM=&ICAM'

II NOP &$LBL TIP$B4 'IF B4 FILE IS TO BE USED'
II
II
II
II
II
1$

I*

USERFILE
IF
WORK1
EXEC
PA RAM

QUICK;

('&RCV' EQ 'NO')NORCV

TB$RCV,TIP,1
&TCA

llNORCV &$LBL TIP$CAT
II NOP &$LBL TIP$JRN 'IF JOURNAL=YES SPECIFIED'
II &$LBL TIP$RNDM
II &$LBL TIP$SWAP
II &$LBL TIP$TQL
II OPTION SUB,JOBDUMP,NSRCH
II EXEC &TCA,TIPLOD,1
1$
&TCA
NETWORK=&NET
IMS= YES
BANNER1='* BOOT STRAP *'
BANNER2='* SYSTEM *'
I*
I&
II FIN

Page:
Section:

2
8.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

TIP: EXEC
RUN TIME JOB CONTROL OPTIONS

The following run-time control statements may be specified as
parameter cards to TIP/30 (Upper case letters in keywords are
required; lower case letters may be omitted):

Where:

Banner1=
Banner2=
CLoSe=
ESCape=
IMS=
LNEREQ=
Network=
RESident=
RESMOD=
shutDowN=
SITE=
startUP=
TeRMSize=
TeRMType=

Bannerl='48 char'

Banner2='48 char'

CLoSe=(a, ... ,z)

ESCape=c

banner line 1, for ready message
banner line 2, for ready message
files are not available until opened
system escape character
'Y' if using IMS/90 emulation
list of lines to open
!CAM CCA network name, and password
programs made resident at initializtion
specify resident TIP internal modules
background program for shutdown
site name
background program for startup
terminal screen size rows.columns
general terminal type

up to 48 character message which is displayed as
part of the message sent to terminals when TIP
begins execution.

up to 48 character message which is displayed as
part of the message sent to terminals when TIP
begins execution.

a, ... ,z are the LFD names of on-line files which
are to be unavailable to the on-line network until
an OPEN request is made for the file. Up to 10
files may be specified.

is the system escape character to be used.

Default is the commercial at sign (@).

IMS= "Y" if standard IMS/90 emulation is to be used.

May be specified as the name of a local IMS
emulator •

CHAPTER VIII - SYSTEM MAINTENANCE
RUN TIME JOB CONTROL OPTIONS

Page:
Section:

3
8.4

TIP: EXEC
RUN TIME JOB CONTROL OPTIONS

LNEREQ=(line ... names) up to 30 line names which are generated in ICAM.

Network=(m,n)

RESident=(a,b,c ...)

RESMOD=TB$SCT

shutDowN=trid

Page:
Section:

4
8.4

If this parameter is not specified, TIP/30 will
instruct ICAM to open the entire network. However,
if any line cannot be opened, ICAM will not open
any lines.

By specifying the line names explicitly, TIP will
instruct ICAM to ooen the named lines
individually. If an error.occurs on one line it
will not affect the opening of others.

(This is quite useful for System/80's with local
work stations.)

'm' is the CCA name of the ICAM which TIP will use
and 'n' is the CCA PASSWORD.

a,b,c are the names of transaction programs that
are to be made permanently resident when TIP is
initialized.

These programs will be loaded once from the TIPLOD
library and may not be reloaded while TIP is
executing.

A maximum of 90 programs may be made resident.

asks for a fast
with the swap
used for sector
8418, and 8419.

I/O routine to be loaded for use
file (TIP$SWAP). This can only be

style disks such as 8416, 8417,

If this option is selected, the SWAP file
(TIP$SWAP) must be one (1) contiguous extent with
no secondary allocation.

For optimal performance,
assignments within the swap
avoided.

alternate track
file should be

The TB$SCT routine has been found to reduce the
swap time of a 40K program from 125 ms to 70 ms (a
40% reduction).

The catalogued name of a background program which
is automatically started before TIP goes to end of
job.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TIP: EXEC
RUN TIME JOB CONTROL OPTIONS

startUP=trid

SITE=siteid

TeRMSize=(m,n)

TeRMType=trmtype

The catalogued name of a background program which
is to be automatically started when TIP is
initialized.

Site name (up to 12 characters. Enclosed in single
quotes if imbedded blanks are present.

'm' is the number of rows and 'n' is the number of
columns of TERMTYPE. Eg: the screen size.

trmtype is most common type of terminal in the
on-line network. See CLUSTER statement in TIPGEN
section for valid entries.

CHAPTER VIII - SYSTEM MAINTENANCE
RUN TIME JOB CONTROL OPTIONS

Page:
Section:

5
8.4

TB$RCV

8.5

FILE RECOVERY

FILE RECOVERY TB$RCV

This program is capable of undoing certain updates made to files
(roll backward) and re-doing updates (roll forward).

To roll a file forward it should be restored from the
appropriate backup and then the TIP recovery may be run.

TB$RCV gets commands from control stream card images.

The commands are entered in columns 1 to 70 of the card.

All commands must begin with the word ROLL or QUICK and end with
a semi-colon (";").

The first card in the control stream must be a II PARAM card
identifying the TCA used when TIP was executed.

Syntax:

II PARAM tea
1$
ROLL func lfd [FOR clause] [FROM clause] [TO clause];
QUICK;
I*

Where:

tea The name of the TIP CONTROL AREA which was in use
when TIP was running.

function The direction to roll. Choose one of "FORWARD" or
"BACKWARD".

lfd

FOR clause

Page:

The 'LFD' name of the file this command refers to,
or '*ALL' if it refers to all files.

the word 'FOR' is required if this clause is used.

USER=name, only process updates done by this user.

TRAN=prog, only process updates done by the
identified TIP program.

TERM= term, only process updates done at the
identified terminal.

Section:
1

8.5
TIP/30 Reference Manual

Version 2.5 (82/08101)

TB$RCV
FILE RECOVERY

FROM clause the word 'FROM' is required if this clause is
used.

FROM YY/MM/DD HH:MN

only process updates done after this date and
time.

TO clause the word 'TO' is required

TO YY/MM/DD HH:MN

only process updates done before this date and
time.

As many commands as required may be entered. TB$RCV makes 2
passes on the data to roll a file backward.

A quick
image file)
had active
failure.

recovery will do a scan of the journal file (or before
and create recovery requests for all files which TIP

and was logging at the time of a system crash or power

A quick recovery will also cause updates done by transactions in
progress (at the time of the crash) to be rolled back to the state
of the record before the transaction started. A quick recovery
could be performed every time TIP is executed. This is possible
because no file updates will have been lost if TIP terminated
normally and closed all files. Quick recovery should only be used
after a crash where TIP could not terminate normally. If specified,
this option must be stated first in the control stream, but it may
be followed by other 'ROLL' requests.

CHAPTER VIII - SYSTEM MAINTENANCE
FILE RECOVERY

Page:
Section:

2
8.5

TB$RCV

II
II
II
II
II
II
II
II
1$

I*
I&

FILE RECOVERY

The following is an example of a recovery runstream.

JOB AR$RCV, , FOOO, 1 FOOO
TIPFILES
DVC 76 II VOL SMP333 II LBL ARC$ISAM1 II LFD ISAM1,, ACCEPT
DVC 76 II VOL SMP333 II LBL ARC$IRAM1 II LFD IRAM1,, ACCEPT
DVC 76 II VOL SMP333 II LBL TIP$JRN II LFD TIP$JRN, ,ACCEPT
WORK1
EXEC
PA RAM

TB$RCV,TIP
TIPTST

ROLL FORWARD ISAM1;
ROLL BACKWARD IRAM1 FOR USER=RJNORMAN

FROM 79108123 18:00
TO 79108123 24:00;

If TIP/30 was creating a tape log then the recovery job control
should assign the tape using an LFD name of TIP$LOG.

When doing a QUICK recovery from the before image file, the user
may assign the before image file (in place of the journal file)
with an LFD name of TIP$B4.

Page:
Section:

3
8.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TIP: BATCH JOBS
TIP/30 BATCH PROGRAMS

8.6 TIP/30 BATCH PROGRAMS TIP: batch jobs

This section of the manual documents the available batch job
streams that are supplied to support the on-line TIP/30 system.

There are job streams illustrated to:

list the TIP/30 catalogue

list the TIP/30 journal file

run the batch document generator

compile and link a COBOL 74 TIP program

The illustrated job streams are representative of the JCL that
is required. Minor modification may be necessary (and may have been
made) to suit individual site requirements .

CHAPTER VIII - SYSTEM MAINTENANCE
TIP/30 BATCH PROGRAMS

Page:
Section:

1
8.6

TB$INT

8.7

TIP FILE INITIALIZATION

TIP FILE INITIALIZATION TB$INT

The user is supplied a batch program (Load Module: TB$INT) which
is capable of initializing TIP/30 required workfiles and creating
catalogue records for USER-IDs, FILES and PROGRAMS from free format
style control cards.

There are four control statements used by TB$INT.

COPY
USER
PROG
FILE

collect input from fi le/elt
define a USER-ID
catalogue a program
catalogue a file

TB$INT must be used to format the work files used by TIP. The
program will scan the Job Control Statements used at execution time
and only format those files which are assigned.

If the file TIP$CAT (catalogue) is assigned for formatting,
TB$INT will ask for confirmation to INIT the catalogue. Reply with
one of the following:

YES

NO ·

CAT

continue file catalogue initialization.

do not INIT the catalogue, TB$INT will format any
remaining files specified.

INIT the catalogue part only (ie. leave all message
formats in the message partition of TIP$CAT).

If the catalogue is to be initialized you will be asked for a
password. Enter a password of "TIP/30" at this time.

Page:

The file names used must be from the following set:

TIP$RNDM Random file. Formatted as a SAT file with 512 byte
block size.

Section:
1

8.7
TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

TB$INT
TIP FILE INITIALIZATION

TIP$SWAP

TIP$JRN

TIP$B4

TIP$CAT

OLDCAT

2 partition SAT file. Formatted for use
swapping storage.

as

Journal file. Formatted as a SAT file with 512
byte block size.

The user may use the DATA utility to back up this
file to another tape or disk, and then re-format
it.

Each time TIP is run the file is extended The only
way to INIT it is to re-format.

Before image file. Formatted as a SAT file with
512 byte block size. There is no need to back up
this file since it is re-used each time TIP starts
up.

It must initialized by TB$INT before executing
TIP.

TIP/30 Catalogue.

2 partition SAT file, partition 1 holds the
catalogue, partition 2 holds the message formats •

You will get a message asking if you really want
to INIT the catalogue.

If so, reply "Y" and then "TIP/30" to the password
request prompt.

An existing TIP catalogue file which is to be
moved to TIP$CAT.

The catalogue file is a hashed file and access to
the file slows as the file grows.

To re-organize the catalogue: allocate a larger
disk file and use the TB$INT program to copy
OLDCAT to TIP$CAT.

TIP$RNDM and TIP$JRN may be copied with DATA utility for backup.

TIP$CAT may be copied by TB$INT
combination) to backup the catalogue.

(with OLDCAT/TIP$CAT

TIP$SWAP contains no information of interest when TIP is down~
there is no need to back it up.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP FILE INITIALIZATION

Page:
Section:

2
8.7

TB$INT
TIP FILE INITIALIZATION

Although TIP$CAT and TIP$SWAP are SAT files they are definitely
NOT library files. Do NOT try to copy them or look at them using
QED, TLIB, or LIBS.

Unless specifically noted herein, TIP files should only be moved
about with the DMPRST utility (recommendation is to use the "FILE"
mode too).

The following sections describe the catalogue control statements
and valid operands, keywords and options.

Page:
Section:

3
8.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TB$1NT: COPY
COPY IN STATEMENTS

8.7.1 COPY IN STATEMENTS TB$INT: copy

The COPY statement is used to read statements that are stored in
a library element.

Syntax:

Where:

COPY FILE/ELT

file The library
element.

file name (LFD) containing the

elt The name of the element to copy at this point.

Additional Considerations:

A module called TIP/TC$CATLG is supplied. It contains statements to
catalogue all supplied TIP utility programs and standard files.

CHAPTER VIII - SYSTEM MAINTENANCE
TIP FILE INITIALIZATION

Page:
Section:

1
8.7.1

TB$INT: CAT

8.7.2

USER, PROGRAM, FILE COMMANDS

USER, PROGRAM, FILE COMMANDS TB$INT: cat

The format of the catalogue commands for TB$INT (ie: USER,
PROGRAM, and FILE) is identical to the corresponding commands used
by online catalogue manager.

Ref er to the documentation of the on-line Catalogue Manager
Program (CAT) for the syntax and requirements of these commands.

Page: 1
8.7.2

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

TB$lNT: SAMPLE
CATALOGUE INITIALIZATION SAMPLE

8.7.3 CATALOGUE INITIALIZATION SAMPLE

II JOB ACEINT, ,AOOO,COOO
II DVC 20 II LFD PRNTR

TB$INT: sample

II DVC 50 II VOL ACEOOO II LBL $LOK30.TIP$LIB II LFD TIP
II DVC 50 II VOL ACEOOO II LBL TIP$CATFILE II LFD TIP$CAT
II DVC 50 II VOL ACEOOO II LBL TIP$SWAP II LFD TIP$SWAP
II DVC 50 II VOL ACEOOO II LBL TIP$RNDM II LFD TIP$RNDM
II OPTION JOBDUMP
II EXEC TB$INT,TIP
1$
* * USER-IDS FOLLOW
* USER MASTER
COPY TIPITC$CATLG
USER MARYJANE
*

TYPE=MASTER PWD=ACE.

PWD=A TYPE=APPL GRP=COMP.

* STANDARD ONLINE PROGRAM NAMES
* PROG DBGGD,TT$GD
PROG ED,TT$QED
PROG QED,TT$QED
PROG TCP,TT$TCP
PROG TCSED,TT$QED

DEBUG= IDA.
MCS=1200,WORK=4096,USAGE=RNT.
MCS=1200,WORK=6000,USAGE=RNT.
WORK=1536,CDA=64,USAGE=RNT.
MCS=1200,WORK=2048,USAGE=RNT,GRP=COMP.

* * FILES USED BY SYSTEM
* FILE TCSCNTRL,TCSCL GRP=COMP
I*
I&

CHAPTER VIII - SYSTEM MAINTENANCE
TIP FILE INITIALIZATION

Page:
Section:

1
8.7.3

TB$INT: JOBS

8.7.4

TIP FILE INITALIZATION JOBS

TIP FILE INITALIZATION JOBS TB$ INT: jobs

The TIP/30 release library (TIP) contains a number of job
streams that are used to initialize files during the installation
of TIP.

These jobs are merely specific executions of the TB$INT program.

Following is a summary of the supplied jobs and their purpose.

TJ$B4

TJ$CAT

TJSCATB

TJ$COP

TJ$CRBAK

TJ$CRRST

TJ$HST

TJ$ICAM

TJ$JRN

Allocate and format the (optional) TIP/30 Before
Image file (TIP$B4).

Create JPROC "TIP$B4".

Allocate and initialize the TIP/30 Catalogue File
(TIP$CAT).

Create JPROC "TIP$CAT".

Allocate and initialize the TIP/30
Backup File (TIP$CATB).

Catalogue

Create JPROC "TIP$CATB".

Copy all the TIP load modules from the TIP release
library (TIP) to'the TIP load library (TIPLOD).

Copy TIP$CAT to TIP$CATB, then dump TIP$CATB and
TIP$RNDM to tape.

Restore TIP$CATB and TIP$RNDM from tape, then copy
TIP$CATB to TIP$CAT.

Allocate and initialize the (optional) TIP/30
journal history file (TIP$HST).

Create JPROC "TIP$HST".

Allocate ICAM discfiles. (Eg: TCIDTF, DQUEUEl
etc).

Create JPROC "ICAMFILE".

Allocate and initialize the (optional) TIP/30
journal file (TIP$JRN).

Create JPROC "TIP$JRN".

Page: 1
8.7.4

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

TB$1NT: JOBS
TIP FILE INITALIZATION JOBS

TJ$LOD Allocate the TIP/30 load library.

Create JPROC "TIPFILES".

TJ$RNDM Allocate and intialize the TIP/30 Random file
(TIP$RNDM).

Create JPROC "TIP$RNDM"

TJ$SWAP Allocate and initialize the TIP/30 Swap file.
(TIP$SWAP) .

TJ$TQL Allocate the TIP Query Language dictionary

Create JPROC TIP$TQL

TJ$USER Create JPROC "USERFILE".

CHAPTER VIII - SYSTEM MAINTENANCE
TIP FILE INITIALIZATION

Page:
Section:

2
8.7.4

TB$JRN

8.8

JOURNAL FILE COPY AND INITIALIZATION

JOURNAL FILE COPY AND INITIALIZATION TB$JRN

Although TB$INT will initialize the TIP journal file, another
batch program (TB$JRN) is provided for the specific purpose of
journal file maintenance plus initialization.

This program will copy the execution journal file (TIP$JRN) to a
journal history file (called TIP$HST) and upon completion of the
copy, the execution journal file will be initialized.

It is recommended that the execution journal file be initialized
before every execution of TIP.

The history file (TIP$HST) is extended by the TB$JRN program and
may be backed up with DATA utilities.

If the history file is not allocated (ie: // LFD TIP$HST does
not appear in the JCL) when TB$JRN is executed, the TB$JRN program
will simply initialize the journal file.

The history journal file could be initialized by assigning it
with an LFD of TIP$JRN and executing TB$JRN.

Since the history journal file and the execution journal file
are the same format, the journal file list program (TB$LST) and the
file recovery program (TB$RCV) can be executed from either file.

In the case of file recovery, a 'QUICK' recovery should NOT be
done from the history file.

The following is a sample execution of the journal file copy
program.

II JOB JRNINT, ,6000
II TIPFILES
II DVC 50 II VOL ACEOOO II LBL TIP$JRN II LFD TIP$JRN
II DVC 51 II VOL ACE001 II LBL TIPJRNHISTORY II LFD TIP$HST
II OPTION JOBDUMP
II EXEC TB$JRN,TIP
I&

Page:
Section:

1
8.8

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TJ$COB68
COMPILE COBOL-68 TIP PROGRAM

8.9 COMPILE COBOL-68 TIP PROGRAM TJ$COB68

This supplied job stream compiles and links (into TIPLOD) a
TIP/30 native mode program that is written in COBOL-68.

Global parameters are provided to allow the user to specify the
source program library and element name.

II
II
II
II
II
II
II
//EOK
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
//ERROR
II
//OK
II
II
II
II
/$

/*
II
II
//ERROR
II

JOB
GBL
IF
JNOTE
JNOTE
OPTION
GO
&TF
USERFILE
EXEC
PAR AM
PARAM
PA RAM
PAR AM
PA RAM
PAR AM
PA RAM
PA RAM
WORK1
WORK2
WORK3
EXEC
PA RAM
PARAM
PARAM
PAR AM
SKIP
SKIP
QPR
SKIP
OPTION
WORK1
EXEC
PARAM
PARAM

TJ$COB68, ,D000,10000
TF=TIPFILES,E,F=SYSGEN
(I &EI NE I I) EOK
'E PARAMETER MISSING, COMPILE IGNORED.'
'SPECIFY E=PROGRAM NAME'
TEST
END

WRTBIG
'TIP COMPILE'
'OF &E'
'FROM &F'
'DAT$'
'TIP COMPILE'
'OF &E'
'FROM &F'
'DAT$'

COBOL
IN=&E/&F
LIN=TIP
OUT=(M)
LST=(C,D 1 E,L,M,P,S,X)
ERROR, 11
OK
'ERRORS COMPILING &E, LINK BYPASSED.'
END
SUB

LNKEDT
ZRO,ALIB=TIP,OUT=YRUN
CMT='&E - ONLINE TIP PROGRAM'

LO ADM &E

SKIP
SKIP
QPR
SKIP

ERROR,11
OK
'ERRORS LINKING &E, MODULE NOT REPLACED.'
END

CHAPTER VIII - SYSTEM MAINTENANCE
COMPILE COBOL-68 TIP PROGRAM

Page:
Section:

1
8.9

TJ$COB68

//OK
II
/$

I*
//END
!&
II

Page:
Section:

OPTION
EXEC

FIL
COP

NOP

FIN

2
8.9

SUB
LIBS

D1=YRUN,D2=TIPLOD
01 ,L,&E,02

COMPILE COBOL-68 TIP PROGRAM

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

TJ$COB74
COMPILE COBOL-74 TIP PROGRAM

8.10 COMPILE COBOL-74 TIP PROGRAM TJ$COB74

This supplied job stream compiles and links (into TIPLOD) a
TIP/30 native mode program that is written in COBOL-74.

Global parameters are provided to allow the user to specify the
source program library and element name.

II
II
II
II
II
II
II
//EOK
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
//ERROR
II
//OK
II
II
II
II
/$

C@@MSI
/*
II

JOB
GBL
IF
JNOTE
JNOTE
OPTION
GO
&TF
USERFILE
EXEC
PA RAM
PARAM
PARAM
PARAM
PA RAM
PA RAM
PARAM
PARAM
WORK1
WORK2
WORK3
EXEC
PA RAM
PARAM
PA RAM
PA RAM
PARAM
SKIP
SKIP
QPR
SKIP
OPTION
WORK1
EXEC
PARAM
PA RAM

LOADM
INCLUDE
EQU

SKIP

TJ$COB74, ,D000,10000
TF=TIPFILES,E,F=SYSGEN
(I &EI NE I I) EOK
'E PARAMETER MISSING, COMPILE IGNORED.'
'SPECIFY E=PROGRAM NAME'
TEST
END

WRTBIG
'TIP COMPILE'
'OF &E'
'FROM &F'
'DAT$'
'TIP COMPILE'
'OF &E'
'FROM &F'
'DAT$'

COBL74
IN=&E/&F
LIN=&F
IMSCOD=YES,PROVER=YES
MXREF=YES,LSTREF=NO
AXREF=YES,AXNON=YES
ERROR,11
OK
'ERRORS COMPILING &E, LINK BYPASSED.'
END
SUB

LNKEDT
ZRO,ALIB=TIP,OUT=YRUN
CMT='&E - ONLINE TIP PROGRAM'

&E
&E,YRUN
1

ERROR, 11

Page: CHAPTER VIII - SYSTEM MAINTENANCE
COMPILE COBOL-74 TIP PROGRAM Section:

1
8.10

TJ$COB74

II
//ERROR
II
//OK
II
/$

/*
//END
/&
II

Page:
Section:

SKIP
QPR
SKIP
OPTION
EXEC

FIL
COP

NOP

FIN

2
8.10

COMPILE COBOL-74 TIP PROGRAM

OK
'ERRORS
END

LINKING &E, MODULE NOT REPLACED.'

SUB
LIBS

D1=YRUN,D2=TIPLOD
D1,L,&E,D2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TJ$DOCS
THE BATCH DOCUMENT GENERATOR

8.11 THE BATCH DOCUMENT GENERATOR TJ$DOCS

II
II
II
II
II
II
II
II
II
II
I&
II

Input to the Document Generator may be either in 80 column
card-images or in source elements in a disc library file (in which
case only cols 1 - 72 are used).

If the input is a source module, a II PARAM statement must
contain the name of the source module and the LFD name of the file
containing the input source module.

If the input is in a card deck, no PARAM statement is necessary.
The usual start-of-data ("1$") and end-of-data ("I*") statements
are required.

The minimum memory specification (JOB card parameter three) must
be specified when executing the Document Generator. The minimum
storage required for the Document Generator is X'llOOO' (68K).

JOB
GBL
TIPFILES
USERFILE
WORK1
TEMP1
QPR
EXEC
PARAM
PARAM

FIN

T J$DOCS, , 11000
C=UPPER,F=SYSGEN,E=DOCINP

'GENERATION OF THE DOCUMENT &E FROM &F'
TB$DOC,TIP
CASE=&C
IN=&Fl&E

CHAPTER VIII - SYSTEM MAINTENANCE
THE BATCH DOCUMENT GENERATOR

Page:
Section:

1
8.11

TJ$DOCS: PARAM
TJ$DOCS PARAM CARD FORMAT

8.11.1 TJ$DOCS PARAM CARD FORMAT TJ$DOCS: param

The param card formats are as follows:

II PARAM IN=filelelement

This parameter defines the source element that is to be
used as input to the Document Generator. This element
must be contained in a standard OSl3 library file.

II PARAM VER=xxx

This parameter specifies the version (xxx) of the input
element. This version number may be referenced by calling
macro @33. Default is "2.5".

II PARAM REV=nn

This parameter specifies the revision number of the input
element. This version number may be referenced by calling
macro @39. Default is zero or the version number of the
element if the element has been edited by the TIPl30 text
editor (QED).

II PARAM CASE=UPPER

This parameter specifies that all alphabetics in the
output document are to be forced to upper case regardless
of the actual case of the input oata.

II PARAM FLAG=c

This defines the margin flagging character. Default is
the vertical bar character ("i").

II PARAM TAPE=YES

Page:
Section:

This will cause the program to create an output tape in
addition to the normal printed output. TAPE LFD name must
be "DOCTAPE". Tape will be variable length blocked 7680.

1
8.11.1

TIPl30 Reference Manual
Version 2.5 (82108101)

TJ$LC
CATALOGUE FILE LISTING

8.12 CATALOGUE FILE LISTING TJ$LC

This batch job will list the TIP/30 catalogue file. Parameters
are available to also generate a cross reference listing of load
module names, directory of MCS screen formats (which are stored in
a separate partition of the catalogue file), and user passwords.

II
II
II
II
II
II
II
II
II
II
II
II
II
llDM01
llDM02
II
II
1$
II

JOB
GBL
&TF
EXEC
PAR AM
PARAM
PAR AM
PARAM
PA RAM
PARAM
PA RAM
PA RAM
&$LBL
WORK1
WORK2
OPTION
EXEC

TJ$LC, ,BOOO,DOOO
TF=TIPFILES,MCS=YES,XREF=YES,USER

WRTBIG
I LISTING OF I

TIPl30
CATALOG

'DAT$'
I LISTING OF I

TIPl30
CATALOG

'DAT$'
TIP$CAT
BLK=1280
BLK=1280
SCAN,SUB
TB$LC,TIPLOD

IF ('&USER' EQ II)NOUSER
USER=&USER

llNOUSER NOP

I*
I&

MCS=&MCS,XREF=&XREF ..

II FIN

CHAPTER VIII - SYSTEM MAINTENANCE
CATALOGUE FILE LISTING

Page:
Section:

1
8.12

TJ$LC: PARAMS
CATALOGUE LIST PROGRAM PARAMETERS

8.12.1 CATALOGUE LIST PROGRAM PARAMETERS TJ$LC: params

The batch catalogue list program expects a card image input
stream containing free form keyword parameters as described below.
The keywords may appear in any order. The last keyword should be
terminated with a period.

USER=

GRP=(gl, ... ,98)

XREF=NO

MCS=NO

BLK=YES

. (period)

Identifies a user-id and password of a valid user
of the TIP/30 system. If the entire catalogue is
to be processed, then the user-id specified must
be of security level 1 (TECH). If a user-id with a
security level numerically greater than 1 is
given, then only those records to which the
specified user-id has access are processed. This
keyword must be given.

User passwords are displayed ONLY if a level 1
userid and password is given.

Identifies a list of up to eight gro~p names that
are to be processed. These name may be. pref ix
names (ie. *PAY =all groups starting with PAY)
Default is all groups to which the given user has
access, or, in the case of a level 1 user, all
groups.

Indicates the suppression of cross
listings. XREF=YES is the default.

reference

Indicates that a directory of MCS screen formats
is not desired. MCS=YES is the default.

Indicates that the physical block numbers for the
catalogue records are to be printed. BLK=NO is the
default.

Required delimiter after the
keyword.

last specified

If the keyword parameters are not specified in the JCL, then the
program will prompt the user at the OS/3 operator console for
keyword entries until the user terminates a keyword with a period
(".").

Page:
Section:

1
8.12.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•
TJ$LST

LIST JOURNAL FILE

8.13 LIST JOURNAL FILE TJ$LST

The TJ$LST job will read the TIP/30 journal file (tape or disk)
and will sort the information and produce a summary report.
Parameter cards are used to specify the type of summary desired.

II
II
II
II
II
llDM01
llDM02
II
II
I&
II

JOB
GBL
&TF
&$LBL
QPR
WORK1
WORK2
EXEC
PA RAM

FIN

T J$LST, , DODO, 10000
TF=TIPFILES,LIST=ALL,F=TIP$JRN

&F
'LISTING TIPl30 JOURNAL FILE &F'

TB$LST,TIP
LIST=&LIST

CHAPTER VIII - SYSTEM MAINTENANCE
LIST JOURNAL FILE

Page:
Section:

1
8.13

TJ$LST
LIST JOURNAL FILE

Syntax:

II PARAM option

Where:

"option" may be chosen from the following:

LIST=SUMMARY Produce summary level total information only.

LIST=ALL

ACCT= name

FILE=name

PROG=name

TERM= name

TYPE=name

USER= name

list
program
record
more of
version

name is

name is

name is

name is

name is

name is

Additional Considerations:

all journal records and summarize. The
will list the first 50 bytes of your data
in character format. If you wish to see
the data record you must write your own
of the TB$LST program.

a logon account to be selected

a file name to be selected

a transaction code to be selected

a terminal name to be selected

a record type to select (Eg: LGOF)

a USER-ID to be selected

A maximum of 20 of each of ACCT, FILE, PROG, TERM, TYPE, and USER
specifications may be present. Only one LIST option is meaningful.

Specification of LIST=SUMMARY causes the list program to ignore all
other qualifiers (eg: USER= FILE= etc).

Refer to the section of the manual describing access to the TIP/30
Journal file (FCS) for the layout and content of journal file
records.

Page:
Section:

2
8.13

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QPR COMMANDS
OS/3 CONSOLE OPERATION

8.14 OS/3 CONSOLE OPERATION opr commands

The operator should never change the system date or time while
TIP/30 is running. Changing the date (or time) could result in
critical journal information being written incorrectly.
Furthermore, user programs may be dependent on the date and time
for scheduling activity etc.

TIP/30 is critically dependent on OS/3 timer services. If the
time of day is changed while TIP/30 is running TIP may go into a
continuous wait state for several hours!!

DO NOT CHANGE THE TIME OF DAY WHILE TIP IS RUNNING!!

If TIP is (inadvertently) executed
correct, it is recommended that you
quickly as reasonable, correct the
TIP/30.

when the TIME or DATE is not
shutdown TIP/30 gracefully as
date and time and· restart

The following commands may be presented to TIP/30 as unsolicited
operator keyins. As unsolicited commands, the TIP/30 job slot
number must precede the command (ie: 10 WHOSON).

APB ••• text ...

APB/ALL ... text ...

CLOSE lfd

Send the specified text to all users who are
logged on.

send the message to all terminals in the network.

Flags the file called 'lfd' unavailable for use by
TIP/30 user programs and physically closes it. A
message is sent to the operator's console
indicating the number of current users accessing
the file. No new program is allowed to access the
file from this point until an OPEN is issued. Any
program trying to access such a file is returned
an error (LOCKED). Programs currently using the
file are allowed to continue until they DE-ACCESS
the file. When no program is using the file, it is
CLOSED and a message is sent to the console
operator.

This feature is useful when the operator wants to
run a batch program against a file which is being
used by the online system and later return the use

CHAPTER VIII - SYSTEM MAINTENANCE
OS/3 CONSOLE OPERATION

Page:
Section:

1
8.14

OPR COMMANDS

CRASH

DATE

DIE/user [/term]

Page:
Section:

DOWN line

DOWN term

EOJ

FILES

FLAGS

LMOFF/term

LMON/term

2
8.14

OS/3 CONSOLE OPERATION

of the file to the online system.

A number of lfd names may be specified (separated
by commas).

Cancels TIP and gives a memory dump.

Will display the current date and time in English.

Eg: WEDNESDAY AUGUST 18 1982

causes the program running under USER
be cancelled with a memory dump.
necessary to press MSG-WAIT (or some
on the user's terminal to cause TIP
this action.

on
It

such

TERM to
may be

input)
to recognize

will set down the named line. If this is a work
station then the terminal is available to
interactive services again.

will set down the line of the named terminal. If
this is a work station then the terminal is
available to interactive services again.

Sets a TIP/30 flag which prevents users from
executing other programs once their current
program terminates~ then when all users have
finished initiates an orderly and normal end of
job.

Produce an I/O summary report of active OS/3 files
assigned to TIP/30.

Display the current status of the 32 TIP flags.

Turn off software line monitor.

To obtain the line monitor printout, first
breakpoint the print queue for the active TIP30
job (BR ACT,PRT,JOB=TIP30) then start a burst mode
output writer (PR BX,JOB=TIP30).

Turn on the software line monitor. A display of
all input and output messages (plus delivery
notification from !CAM) for the specified terminal
will be dumped to the site printer.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

OS/3 CONSOLE OPERATION

MSG/term ••• text •••

MSG/user .•• text .••

OFF,Fl, ••• Fn

ON,Fl, ••• Fn

OPEN lfd

QCLEAR term,q-id

STATS

STOP

TERMS

UP line

UP term

OPR COMMANDS

the message is sent to a specf ic terminal.

the message is sent to a specific

Cause the named flags to be placed in THE 'OFF'
STATE. The values of Fl through Fn may be 0 to 31.

Cause the named flags to be placed in THE 'ON'
STATE. The values of Fl through Fn may be 0 to 31.

Make the file lfd (as it was defined in the TIP/30
generation) available for use by TIP/30 programs.
This is only to be done if it was previously
CLOSED.

Several lfd names may be specified (separated by
commas).

This command will cause TIP/30 to issue a real
Data Management OPEN for the files.

forces ICAM to flush out it's queues after an
output delivery notification loss to a terminal.
Only one 'q-id' value may be given at a time and
must be 'H' for high, 'M' for medium or 'L' for
low.

Produce a statistical report of the TIP/30 system
at the operator's console.

Forces TIP into an immediate, but normal, end of
job.

List all terminals in the ICAM network, their
status (up/down) and USER-ID of current User.

will mark up the named line. If a 'ready messge'
is to be sent then it will be sent to the first
terminal on the line. (This is useful for
System/BO workstations).

will mark up the line of the named terminal. If a
'ready messge' is to be sent then it will be sent
to this terminal. (This is useful for System/BO
workstations.)

CHAPTER VIII - SYSTEM MAINTENANCE
OS/3 CONSOLE OPERATION

Page:
Section:

3
8.14

OPR COMMANDS

WHO SON

OS/3 CONSOLE OPERATION

Gives a list of the USER-IDs and the associated
terminal names.

8.15 CONSOLE MESSAGES messages .

Following is a list of TIP/30 console messages that may occur
and any corresponding actions to be taken.

In the examples of message text, underscores represent data in
the message that will be supplied by TIP/30.

Note that messages emanating from TIP/30 are prefixed by the
string "TI#nnn" where "nnn" represents the internal message number.

TI#Ol TIP/30 INITIALIZATION ALLINSON-ROSS CORPORATION

Informational: TIP/30 has
initialization has begun.

been loaded and the

TI#02 ~/~/~ - ~=~=~ TIP/30 READY FOR

Informational: TIP/30 initialization completed at the
date and time specified. The SITE-ID is also indicated.

TI#03 UNABLE TO LOAD "TB$JCS"

Tables required for
which are supplied
missing.

processing run control statements
as parameters in the TIP/30 JCL are

TI#04 UNKNOWN OPERATOR REQUEST - CONSULT MANUAL

The operator has entered an unknown command to TIP/30

TI#OS ERROR OCCURED ATTACHING "SCHEDULING"

Page:
Section:

1
8.15

TIP/30 Reference Manual
Version 2.5 {82/08/01)

MESSAGES
CONSOLE MESSAGES

An error occurred when the main TIP/30 task tried to
'ATTACH' the subtask that performs all program
scheduling. This error usually indicates that an
insufficient number of TCBs was requested on the JOB
card. (Number of TCBs must be greater than 3). TIP/30
will terminate when this error occurs.

TI#06 ERROR OCCURED ATTACHING "COMMUNICATIONS"

An error occurred when the main TIP/30 task tried to
'ATTACH' the subtask that handles all network
communications (VIA ICAM). This error usually indicates
.that an insufficient number of TCBs was specified on the
JOB card.

Tl#07 ERROR OPENING !CAM ~~/~~~~), CODE=~~~~-

An error occurred when TIP/30 tried to open the
communications network (VIA !CAM MOPEN MACRO). This error
usually indicates that either the CCA name or password
are incorrect. This error may also occur if the disk
queue files are not contiguously allocated, or if the
ICAM network has more terminals defined than was
generated into TIP/30 (see TERMS= parameter of TIPGEN
macro). TIP/30 will terminate when this error occurs.

The error codes are listed at the back of the OS/3 System
Messages handbook (Table A-1, Category 'AA').

TI#08 UNABLE TO LOAD CONTROL MODULE

TIP is unable to load the users TCA module which is
produced by the TIPGEN procedure. TIP/30 will terminate.

TI#09 TIP/30 CATALOGUE IS NOT INITIALIZED

An error occurred when TIP/30 tried read the root record
of the catalogue. This error usually indicates that the
user has not run the job TB$INT which processes
parameters and creates Catalogue file entries for
USER-IDs, online files and programs. TIP/30 will
terminate when this error occurs.

TI#lO TIP/30 TERMINATED

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

2
8.15

MESSAGES

TI#ll

This message appears when TIP
unrecoverable error.

PAGES OF MEMORY FOR PROGRAMS

has

CONSOLE MESSAGES

encounters an

Indicates the size of the user program region (working
storage) of TIP/30. This size is specified as a number of
2K pages of memory, exclusive of resident programs. The
size of this area determines how many user programs may
reside in memory concurrently.

TI#12 INSUFFICIENT MEMORY TO EXECUTE TIP/30

The user program region (working storage) of TIP/30 is
too small. The minimum amount of storage required is that
specified by the 'MAXPROG= ' keyword of the TIPGEN. This
error usually indicates that an insufficient amount of
memory was specified on the 'JOB' card for the TIP/30
execution. TIP/30 will terminate when this error occurs.

TI#l3 FATAL INITIALIZATION ERROR -- TIP/30 ABORTED

A previous error has occurred and the execution of TIP/30
cannot continue.

TI#14 INVALID OPTION SELECTED AT

TI#l5

TI#l6

TI#l7

Page:
Section:

An invalid option was selected in the run control
statements provided in the TIP JCL.

IS NOW AVAILABLE FOR ONLINE USE

Confirmation that a closed file has been successfully
re-opened at the operator's request.

HAS USERS. "CLOSE HELD PENDING"

Warning that requested close of a file is being delayed
by activity

3
8.15

IS CLOSED & NOT AVAILABLE FOR ONLINE USE

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

MESSAGES
CONSOLE MESSAGES

TI#l8 FILE

Confirmation that online file has been closed for batch
use.

DOES NOT EXIST

Warning that requested file was not found (possible
spelling error)

TI#l9 UNABLE TO LOAD PMDA

There is insufficient free memory to load the TIP/30 Post
Mortem Dump Analysis (PMDA) program for the indicated
user and transaction. TIP/30 continues running, but the
indicated user will not receive a dump.

TI#20 SWAPPING STORAGE FILE NOT ASSIGNED

The required TIP Swap file has not been assigned to the
TIP/30 job. The job control stream should be updated to
include the required file (LFD = TIP$SWAP).

TI#21 UNABLE TO LOAD RESIDENT PROGRAM:

The program named, which is specified on a RESIDENT job
control statement, cannot be loaded.

TI#22 % OF CATALOGUE FILE USED

Informational: Percentage of catalogue file (TIP$CAT)
used.

TI#23 % OF MESSAGE FILE USED

Informational: Percentage of Message file (TIP$CAT) used.

TI#24 BLOCKS OF DYNAMIC FILE USED

Informational: Number of blocks of the Dynamic file
(TIP$RNDM) used.

TI#25 SWAPPING STORAGE EXHAUSTED

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

4
8.15

MESSAGES
CONSOLE MESSAGES

The TIP Swap file (TIP$SWAP) has become full. The user
must scratch and reallocate the file to increase its
size. When this file is reallocated, it must be
reformatted using the TB$INT program.

TI#26 SWAPPING STORAGE FILE - I/0 ERROR - DM

An unrecoverable hardware I/O error occurred on the
TIP$SWAP file. As a temporary solution, try moving the
file to another location or disk drive. The Univac
customer engineer should by made aware of any persistent
problem such as this. TIP/30 will terminate when this
error occurs.

TI#27 MEMORY MANAGEMENT ERROR - JOB CANCELLED

An error as occurred which has corrupted TIP memory
management. Possibly a rogue user.program has destroyed
part of the TIP region. TIP/30 will terminate when this
error occurs.

TI#28 PROGRAM EXCEPTION; PSW=

An error has occurred within TIP/30. If the error cannot
be traced to rogue user programs, then the memory dump
produced by this condition should be forwarded to
Allinson-Ross Corporation with as much supporting
information as possible. TIP/30 will terminate when this
error occurs.

TI#29 TIP/30 INTERNAL SOFTWARE FAILURE

TIP has d~tected an unrecoverable error (internal tables
have been modified in error). If the error cannot be
traced to rogue user programs, then the memory dump
produced by this condition should be forwarded to
Allinson-Ross Corporation with as much supportive
information as possible. TIP/30 will terminate when this
error occurs.

TI#30 UNABLE TO ATTACH USER TASK

Page:
Section:

TIP was unable to ATTACH a new User. This error usually
results from an insufficient number on TCBs being
specified on the JOB card.

5
8.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGES
CONSOLE MESSAGES

TI#31 ICAM NOTE ON

TIP was informed by ICAM that an error, as noted,
occurred on the line indicated. This may be a warning;
consult the appropriate ICAM error message description.

TI#32 ICAM ERROR ___ , FROM __ =

An ICAM error occurred when TIP issued a request to the
specified terminal.

TI#33 TIP/30 SYSTEM UNSTABLE - ADVISE CANCEL

TI#34
TI#35
TI#36
TI#37
TI#38
TI#39
TI#40
TI#41

TI#42

TI#43

TIP has determined that internal tables or code has been
altered erroneously and suggests that TIP/30 should be
cancelled.

**** TIP/30 VERSION

MSG IN= TOTAL LEN=
MSG OUT= TOTAL LEN=
NUMBER OF SWAPPING STORAGE

SLOW PROGRAM LOADS
AVERAGE RESPONSE TIME IS
TIP/30 BEGAN EXECUTION AT

- STATISTICS
AT . . --AVG=

AVG= _F_I_L_E_I.....,/,_O_S_=

FOR ---- REQUESTS
SECONDS

ON_/_/_ ---

This set of information and statistics is displayed as
part of the TIP/30 shutdown procedure, in response to the
STATS unsolicited command, or on a regular basis (at a
frequency specified in the TIP/30 GEN).

IS NOT LOGGED ON

An invalid USER-ID has been specified as a parameter in
an unsolicited command to TIP/30.

IS AN INVALID TERMINAL NAME

an invalid TERM-ID has been specified an a parameter in
an unsolicited command to TIP/30.

TI#44 USER-ID TERMINAL SEC PROGRAM LEVEL
TI#45

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

6
8.15

MESSAGES
CONSOLE MESSAGES

These heading lines are displayed in response to the
WHOSON console operator command.

FLAG - STATE FLAG - STATE FLAG - STATE FLAG - STATE

These heading lines are displayed in response to the
FLAGS console operator command.

TI#48 FILE #I/O'S OUTPUT #USERS OPEN
TI#49

These heading lines are displayed in response to the
FILES operator command. Indicated is the file name, the
total number of I/O requests issued to this file; the
number of I/O requests which were outputs; the number of
current users of the file and whether the file is
currently open.

TI#SO YOU NEED AT LEAST 4 TASK CONTROL BLOCKS
TI#Sl NO MORE THAN 12 TASKS ARE REQUIRED

These headings are displayed when TIP/30 determines that
an insufficient number of task control blocks have been
specified on the TIP/30 JOB card.

TI#52 NO MEMORY TO LOGON

The memory manager in TIP/30 is unable to acquire enough
free memory to logon the user at the named terminal.

TI#53 UNABLE TO LOAD FOR

TIP/30 was unable to load the specified program. The
program does exist in the TIPLOD file but an I/O error
occurred during the load. The program should be re-linked
and placed back into the TIPLOD file. (The TIPLOD library
may be compromisedt)

TI#54 NO MEMORY TO FOR

Page:
Section:

The memory manager in TIP/30 is unable to acquire enough
free memory to complete the indicated function for the
user.

7
8.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGES
CONSOLE MESSAGES

TI#SS

This is a message to the operator from the user and
terminal indicated.

TI#56 <<<KEY HOLDING TABLE IS FULL>>>

This message is displayed whenever TIP/30 detects that
the key holding table is FULL. Any requests to hold a
record when the table is full, will receive a "record
held" status. This should be brought to the attention of
the systems programmer.

TI#57 *** NOT USED ***

This message is not used in this version of TIP/30.

TI#58 UNAUTHORIZED USER ATTEMPTED LOGON AT

The operator is
attempt to logon
terminal.

being informed that
has been detected at

an unsuccessful
the indicated

TI#59 DLL: LOAD OF __ , SIZE = BYTES

The named UTS-400 terminal has been down line loaded with
a module of the size indicated.

TI#60 DLL: STATUS FROM = " "

TI#61

TI#62

The status of the down line load to the named terminal is
given.

DISK I/O'S FOR MCS FORMAT REQUESTS ----
Informational: The number of disk I/Os to the MCS Display
library which were required for the number of request for
MCS formats. This ratio may give the user some insight
into whether MSGPOOLing could be adjusted to gain more
advantage.

CATALOGUE FILE I/O'S

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

8
8.15

MESSAGES

TI#63

CONSOLE MESSAGES

Informational: The number of I/Os to the TIP/30 Catalogue
File (TIP$CAT).

DYNAMIC FILE I/O'S

Informational: The number of I/Os to the TIP/30 Random
File (TIP$RNDM).

Tl#64 ALL TASKS WERE BUSY TIMES!

The number of times all tasks were busy. If this number
is very high then the number of Task Control Blocks on
the TIP/30 JOB card should be increased (minimum TCB's is
4 and maximum is 12).

TI#65 TIP$RNDM ERROR DM_ FOR

TI#66

TI#67 BCP:

TI#68 BCP:

TI#69 BCP:

TI#70 BCP:

An I/O error has occurred on this file, check OS/3 System
Message handbook for description of the error.

): ___ _ ABENDED~ PMDA SCHEDULED

Reports the USER-ID(terminal):program name, which has
aborted. The TIP/30 Post Mortem Dump Analysis program has
been automatically loaded for the user.

LOGGED ON

This message reports that a BCP user has logged on TIP/30
at the indicated terminal.

LOGGED OFF

This message reports that a BCP user has logged off
TIP/30 at the indicated terminal.

ERROR ON

Informational: Console note of BCP status.

TRANSMITTING FILE

Page:
Section:

9
8.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGES
CONSOLE MESSAGES

Tl#71 BCP:

Tl#72 BCP:

TI#73 BCP:

Tl#74 BCP:

TI#75 BCP:

TI#76 BCP:

TI#77 BCP:

This message advises the operator that the indicated BCP
user is transmitting the specified file from the terminal
to the host.

RECEIVING FILE

This message advises the operator that the BCP user
indicated is receiving the specified file from the host.

RECORDS TRANSFERRED

This message advises the operator of the count of records
transferred via BCP.

BATCH JOB SCHEDULED

The BCP user indicated has submitted a batch job for
scheduling.

RESERVED

This message is reserved for future use.

RESERVED

This message is reserved for future use.

RESERVED

This message is reserved for future use.

RESERVED

This message is reserved for future use.

TI#78 NO BACKGROUND TABLES FOR

TIP/30 is unable to honour a request to start a
background process from the specified terminal due to
insufficient background table entries. The maximum number
of concurrent background tasks is a TIPGEN option (BACK=)
and may need to be modified.

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

10
8.15

MESSAGES

TI#79

TI#80

CONSOLE MESSAGES

BLOCKS OF JOURNAL FILE USED

Informational: The number of blocks of the journal file
which have been used to date. This file should be
initialized periodically with TB$INT.

FILE NOT ASSIGNED

The file is not assigned in TIP job control for a TIP
gen'd function. Execution will continue without that
function.

TI#81 JOURNAL FILE ERROR DM

1/0 error on journal file. Consult OS/3 error messages
book for description of error codes of the class 'DMnn'.

TI#82 SIGNED OFF TOTAL/7 FOR ____ , STATUS= __

TIP has done an automatic SINOF to TOTAL/7.

Tl#83 LIBRARY ERROR ON . " " ----· --------
TIP/30 has detected an error of the indicated type on a
library.

TI#84 ABNORMAL TERMINATION; ERROR CODE:

TIP has been cancelled e~ther internally or by the
operator; a DUMP will be produced.

TI#85 LOST DELIVERY NOTICE FOR

TI#86

Page:
Section:

A message, destined for an auxiliary device of the named
TERM-ID, has been reported lost by !CAM.

The USER-ID(TERM-ID) has scheduled an OS/3 symbiont via
the SYM program. This fact is reported to the operator
and will also be placed in the console log.

11
8.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

--------------------------------------·-··~·· ·-··------~

•
MESSAGES

CONSOLE MESSAGES

TI#87

TI#88

TI#89

TI#90

TI#91

): DATA BASE NOT ACCESSED

IMS type access not allowed in DMCL.

): DATA BASE TERMINATED

DBMS has died and the user noted has been cancelled.

): DATA BASE RNT LIMIT EXCEEDED

This occurs when a user program's bind has more than 30
parameters and is catalogued as re-entrant.

): DATA BASE IMPART UNSUCCESSFUL

This occurs because DMS/90 is not loaded or active.

): DATA BASE NOT BOUND

A DML verb has been issued while imparted but not bound.

TI#92 ____ (__): DATA BASE INVALID REQUEST

TI#93

TI#94

TI#95

TI#96

The DML request is not defined under DMS/90.

): DATA BASE BIND UNSUCCESSFUL

DMS/90 has returned an error during the bind function.

): DATA BASE DEPART REQUIRED

This warning indicates that an impart for a new user has
occurred while a previous user was still imparted.

) : DATA BASE

This message is reserved for future use.

) : DATA BASE

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

12
8.15

MESSAGES
CONSOLE MESSAGES

This message is reserved for future use.

TI#97) : DATA BASE

This message is reserved for future use.

TI#98 TIP/30 HAS EXPIRED; CONTACT A.R.C.

TI#99

This message is reserved for future use.

) : ROLLED BACK

The USER-ID(TERM-ID) using program named has caused a
record roll back on the file named.

TI#lOO GEN PARAMETERS VALIDATED - START ? (Y/N)

The TIP/30 parameterization procedure has successfully
completed and is asking whether the named generation job
should be scheduled.

TI#lOl TIP/30 FILE FORMATTER VERSION

TI#102

This is a heading note indicating that program TB$INT is
beginning execution.

FORMATTED, BLOCKS =

The named file has been formatted to the specified
capacity.

TI#103 OLDCAT SUCCESSFULLY COPIED TO TIP$CAT

A previous TIP/30 catalogue has been successfully copied
to the current catalogue 'TIP$CAT'.

TI#l04 INITIALIZE THE TIP/30 CATALOGUE? (Y/N/CAT)

Page:
Section:

Program TB$INT is asking for confirmation to .initialize
the TIP catalogue (Do you really want to do this ???).
Answering 'N' will prevent it; 'Y' will init it
completely including the MCS screen partition; 'CAT' will

13
8.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MESSAGES
CONSOLE MESSAGES

allow continuation but protects the screen partition.

TI#lOS ENTER PASSWORD TO INITIALIZE CATALOGUE

Program TB$INT is requesting a password authorization
before initialization of the catalogue. Be absolutely
sure you know what you are doing, or be prepared to
update your resume!

TI#l06 TIP$CAT WILL HOLD CATALOGUE RECORDS

The TIP catalogue file has been initialized and has a
remaining CAT capacity in partition one as specified.

TI#l07 TIP$CAT WILL HOLD MESSAGE FORMATS

The TIP catalogue file has been initialized and has a
remaining MCS capacity in partition two as specified.

TI#l08 INVALID USER-ID/PASSWORD - CATALOGUE NOT PROCESSED

The operator has not specified the correct password for
TIP$CAT initialization and the function will not to done.

TI#l09 ENTER CATALOGUE LIST OPTIONS?

The batch catalogue listing program has found that there
is insufficient data in the job control and is prompting
the user at the OS/3 console ~or display options. Refer
to batch job documentation for replies. A response ending
in a period (".") will discontinue prompting.

TI#llO I/O ERROR ON "WORKl", DM_

The system scratch file has had an occurence of a Data
Management error as specified. See the OS/3 System
Messages handbook for the explanation.

TI#lll NO FILES ASSIGNED IN RECOVERY JCL

The TIP Recovery module being executed has not been able
to read any legitimate LFD's from its job control stream.
Check the spelling of the LFD's against the DTF names in

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

14
8.15

MESSAGES
CONSOLE MESSAGES

the TIP generation.

TI#ll2 INSUFFICIENT MEMORY TO LOAD TCA

The TCA specified in the TIP job stream will not fit in
the memory space specified on the JOB card. More memory
must be allocated for this TCA.

TI#ll3 RECOVERY MODULE (TCA) NOT FOUND

The TCA specified does not exist (or TIP was not
generated with journaling) or is incorrectly spelled.
Check generation options and recovery job JCL to resolve
problem.

TI#ll4 TIP RECOVERY IN PROGRESS VERSION

Informational: The TIP Recovery module is being executed.

TI#ll5 SYNTAX ERROR; CORRECT AND TRY AGAIN

The parameters specified are incorrect for this job. Look
them up and fix them!

TI#ll6 MISSING SEMI-COLON; - CONTINUE? (Y/N)

TI#ll7

The recovery program has detected a syntax error in the
control stream. It wants to know whether the user wishes
to continue.

IS NOT DEFINED (NO DVC-LFD SEQUENCE)

The JCL for the file named is missing or incorrectly
spelled.

TI#ll8 TOO MANY ERRORS; RECOVERY TERMINATED

TI#ll9

Page:
Section:

The recovery program has detected too many syntax errors
and is terminating automatically.

15
8.15

JOURNAL RECORDS READ

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CONSOLE MESSAGES MESSAGES

TI#l20

Informational: Statement of the number of journal records
processed in forward recovery.

JOURNAL RECORDS READ FOR BACKWARD RECOVERY

Informational: Statement of the number of journal records
processed in backward recovery.

TI#l21 BEGINNING SCAN FOR QUICK RECOVERY

Informational: Recovery program is running.

TI#l22 TIP/30 FILE RECOVERY COMPLETED

Informational: Normal job termination.

TI#l23 RCVD ON _!_!_

Informational: Number of records recovered either forward
or backward for the named file as of the indicated date
and time •.

CHAPTER VIII - SYSTEM MAINTENANCE
CONSOLE MESSAGES

Page:
Section:

16
8.15

CHAPTER IX - APPENDICES

9. CHAPTER IX - APPENDICES

9.1 DIRECTORY OF COBOL COPY BOOKS COPY BOOKS

This appendix lists the COBOL language copy books that are
supplied with the TIP/30 system. These copy books (except where
noted) are for use in the Data Division of a TIP/30 native mode
program.

The copy books are contained in the TIP release library
(normally catalogued with the logical file name "TIP").

Listings of the copy books are expanded elsewhere in this
reference manual in the sections where their use is recommended.

To obtain a listing of a copy book, the user may run the
following transaction:

>TLIB PRINT TIP/TC-?????

????? is the suffix of the desired copy book.

CHAPTER IX - APPENDICES Page: 1
9.1 Section:

COPY BOOKS

Page:
Section:

DIRECTORY OF COBOL COPY BOOKS

Copy Book element name and description.

--

TC-BITS

TC-CDA

TC-DI

TC-FCC

TC-FCS

TC-FD ES

TC-FLAG

TC-LFN

TC-LIBS

TC-MCS

TC-PIB

TC-PRINT

TC-STS

2
9.1

Layout of workf ields for "TIPBITS" and "TIPBYTES"
subroutines.

Layout of Command Line format of the Continuity
Data Area.

Values of popular Device-independent
(DI-codes) for UNIVAC printers.

codes

Values used for optional FCC modification when
using the TIPMSGO subroutine.

Values containing function codes used by TIPFCS
subroutine.

Layout of the FCS file descriptor packet.

Values that may be used as function codes for use
with TIPFLAG subroutine.

Layout of logical file name packet.

Layout of extended file descriptor packet for
library files (including record area).

Layout of MCS work area (parameter passed to TIP
native mode programs}.

Layout of TIP/30 Process Information Block
(parameter passed to TIP native mode programs).

Layout of
subroutine.

information packet for TIPPRINT

Values of status codes in 9th byte of logical file
name packet (LFN).

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

BASIC COMPILER-INTERPRETER
TIP/BASIC

9.2 Basic Compiler-Interpreter TIP/BASIC

This appendix describes the Allinson-Ross Corporation 'Basic'
system (TIP/BASIC). It consists of four subsystems: the monitor,
the compiler, the map printer, and the run-time interpreter.

The monitor processes input commands and
scheduling the compiler, the interpreter,
librarian, and the catalogue manager.

is responsible for
the text editor, the

The compiler reads an QED file containing the TIP/BASIC source
program, performs syntax checks, and if it encounters no errors,
produces a dynamic file which contains the the object module. If
errors are encountered the compiler outputs a dynamic file which
contains the error messages.

The map printer is called by the compiler to produce a
diagnostic report, source code list, and object map.

The interpreter loads the object module from the dynamic file
and begins executing it.

TIP/BASIC is intended to be used in the interactive
crt or teletype terminal. It includes most features of
ANSI standard Basic (1) as well as extensive string
capabilities.

mode with a
the proposed
manipulation

Section 2 of this manual describes the language elements.
Section 3 provides operating instructions for TIP/BASIC. Section ~
describes internal structures of the compiler and interpreter as
well a memory requirements. The appendices list compiler and
run-time error messages .

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2

9.2.1

DESCRIPTION OF THE TIP/BASIC LANGUAGE

DESCRIPTION OF THE TIP/BASIC LANGUAGE

Elements of TIP/BASIC are listed in alphabetical order in this
section of the manual. The syntax of the element is shown, followed
by a description and examples of its use. The intent is to provide
a reference to the features of TIP/BASIC and not to teach the Basic
language.

A program consists of one or more properly formed TIP/BASIC
statements. An END statement, if present, terminates the program,
and additional statements are ignored.

In this section the "Syntax" presents the general form of the
element. Square brackets [] denote an optional feature while braces
{} indicate that the enclosed section may be repeated zero or more
times. Terms enclosed in <> are either non-terminal elements of the
language, which are further defined in this section, or terminal
symbols. All special characters and capitalized words are terminal
symbols.

Page: 1
9.2.1

TIP/30 Reference Manual
Version 2.5 (82/08/01) Section:

•

ABS PREDEFINED FUNCTION
ABS

9.2.2 ABS Predefined Function ABS

Syntax:

ABS (<expression>

Where:

The ABS function returns the absolute value of the <expression>.
The argument must evaluate to a floating point number.

Example:

ABS(X)
ABS(X*Y-7**2)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.2

ASC
ASC PREDEFINED FUNCTION

9.2.3 ASC Predefined Function ASC

Syntax:

ASC (<expression>

Where:

The ASC function returns the EBCDIC numeric value of the first
character of the <expression>. The argument must evaluate to a
string. If the length of the string is zero (null string) an error
will occur.

Example:

ASC(A$)
ASC (II x II)
ASC(RIGHT$(A$,7))

Additional Considerations:

This function is provided for compatibility with other versions of
Basic. It is identical to the EBC predefined function.

Page:
Section:

1
9.2.3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

ATN PREDEFINED FUNCTION
ATN

9.2.4 ATN Predefined Function ATN

Syntax:

ATN (<expression>

Where:

The ATN function returns the arctangent of the <expression>. The
argument must evaluate to a floating point number.

Example:

ATN(X)
ATN(SQR(SIN(X)))

Additional Considerations:

All other inverse trigonometric functions may be computed from the
arctangent using simple indentities.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.4

CALL

9.2.S CALL Statment

Syntax:

<line number> l CALL <expression>
Where:

CALL STATMENT

CALL

The CALL statement is used to call a TIP/BASIC program. When the
called program terminates control is passed to the statement
following the CALL statement.

Example:

10 CALL "FOOTBALL"
CALL PROGRAM$

Page:
Section:

1
9.2.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

CBRT PREDEFINED FUNCTION

9.2.6 CBRT Predefined Function

Syntax:

CBRT (<expression>
Where:

CBRT

CBRT

The CBRT function returns the cube root of the expression. The
expression must evaluate to a floating point number.

Example:

CBRT(X)
CBRT(27)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.6

CHAIN

9.2.7 CHAIN Statement

Syntax:

<line number> 1 CHAIN <expression>
Where:

CHAIN STATEMENT

CHAIN

CHAIN is a function which will transfer control to another program.
The other program must have already been compiled.

Example:

10 CHAIN "CALC3"
CHAIN "CALC" + STR$(NUMBER)

Page:
Section:

1
9.2.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

•

CHR$ PREDEFINED FUNCTION
CHR$

9.2.8 CHR$ Predefined Function CHR$

Syntax:

CHR$ (<expression>

Where:

The CHR$ function returns a character string of length 1 consisting
of the character whose EBCDIC equivalent is the <expression>
converted to an integer modulo 256. The argument must evaluate to a
floating point number.

Example:

CHR$(A)
CHR$(28)
CHR$((A+B/C)*SIN(X))

Additional Considerations:

CHR$ can be used to send control characters such as a linefeed to
the output device. The following statement would accomplish this:
print CHR${10)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.8

CLK$
CLK$ PREDEFINED FUNCTION

9.2.9 CLK$ Predefined Function CLK$

Syntax:

CLK$

Where:

The CLK$ function returns an eight byte character string containing
the time of day in HH:MM:SS format.

Example:

CLK$
PR I NT 11 The t i me i s 11

; CL K $

Page:
Section:

1
9.2.9

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CLOSE STATEMENT
CLOSE

9.2.10 CLOSE Statement CLOSE

Sgntax:

<line number> l CLOSE #<expression> {; #<expression> }

Where:

The CLOSE statement causes the file specified by each <expression>
to be closed. Before the file may be referenced again it must be
reopened using a FILE statement. An error occurs if the specified
file has not previously appeared in a FILE statement.

Example:

CLOSE #1
150 CLOSE #I; #K; #L*M-N

Additional Considerations:

On normal completion of a program all open files are automatically
closed by the interpreter. If the program terminates abnormally it
is possible that files created by the program will be lost.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.10

CONSTANT

9.2.11 <constant> <constant>

Syntax:

[<sign>] <integer>. [<integer> l [e [<sign> l <exp>]
["] <character string> [" l

Where:

CONSTANT

A <constant> may be either a numeric constant or a string constant.
All numeric constants are stored as floating point numbers. Strings
may contain any EBCDIC character except a carriage return (X'OD').

Numeric constants may be either signed or unsigned integer,
decimal numbers (or expressed in scientific notation). Numbers up
to 15 characters in length are accepted but the floating point
representation of the number maintains approximately seven
significant digits (1 part in 16,000,000). The largest magnitude
that can be represented is approximately 3.6 times ten to the 38th
power. The smallest non-zero magnitude that can be represented is
approximately 2.7 times ten to the minus 39th power.

String constants may be up to 255 characters in length. Strings
entered from the terminal, or read from a disk file may be either tit
enclosed in quotation marks or delimited by a comma. Strings used
as constants in the program must be enclosed in quotation marks.

Example:

10
-100.75639e-19
"This is the answer"

Page:
Section:

1
9.2.11

TIP/30 Reference Manual
Version 2.5 (82/08/01)

COS PREDEFINED FUNCTION

9.2.12 COS Predefined Function

Syntax:

COS (<expression>
Where:

cos

cos

COS is a function which returns the cosine of the <expression>. The
argument must evaluate to a floating point number expressed in
radians.

Example:

COS(B)
COS(SQR(X-Y))

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

-+*+-

Page:.
Section:

1
9.2.12

COSH

9.2.13 COSH Predefined Function

Syntax:

COSH (<expression>
Where:

COSH is a function which returns
<expression>. The argument must
number.

Example:

COSH(X)
COSH(X*2+Y*2)

Page:
Section:

1
9.2.13

COSH PREDEFINED FUNCTION

COSH

the hyperbolic cosine of the
evaluate to a floating point

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
DAT$ PREDEFINED FUNCTION

9.2.14 DAT$ Predefined Function

Syntax:

DAT$
Where:

DAT$

DAT$

The DAT$ function returns an eight byte character string containing
the date in YY/MM/DD format.

Example:

DAT$
PRINT "The date is ";DAT$

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.14

DATA

9.2.15 DATA Statement

Syntax:

<line number>] DATA <constant> {, <constant> }
Where:

DATA STATEMENT

DATA

DATA statements define string and floating point constants which
are assigned to variables via a read statement. Any number of DATA
statements may occur in a program.

Strings must be enclosed in quotation marks.

Example:

10 DATA 10.0,11.72,100
DATA "XYZ" ,11. ,"this is a string"

Page:
Section:

1
9.2.15

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

DIM STATEMENT

9.2.16 DIM Statement

Syntax:

[<line number>
{ , < i dent i f i er>

Where:

DIM <identifier>
<subscript 1 is t>

DIM

<subscript list>)
}

DIM

The dimension statement dynamically allocates space for floating
point or string arrays. String array elements may be of any length
up to 255 bytes and change in length dynamically as they assume
different values.

Initially, all floating point arrays are set to zero and all
string arrays are null strings. An array must be dimensioned
explicitly; no default options are provided. Arrays are stored in
row major order.

Expressions in subscript lists are evaluated as integers when
determining the size of the array. All subscripts have an implied
lower bound of 1. When array elements are referenced a check is
made to ensure the element resides in the referenced array.

Example:

DIM A(10,20), B(10)
150 DIM 8$(2,5, 10)

Additional Considerations:

A <DIM statement> must be placed before the first reference to the
array it describes .

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.16

EBC

9.2.17 EBC Predefined Function

Syntax:

EBC (<expression>
Where:

EBC PREDEFINED FUNCTION

EBC

The EBC function returns the EBCDIC numeric value of The first
character of the <expression>. The argument must evaluate to a
string. If the length of the string is zero (null string) an error
will occur.

Example:

EBC(A$)
EBC (II X")
EBC(RIGHT$(A$,7))

Page:
Section:

1
9.2.17

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

END STATEMENT

9.2.18 END Statement

Syntax:

<line number>] END
Where:

END

END

An END statement indicates the end of the source program. It is
optional and, if present, it terminates reading of the source
program. If any statments follow the END statement they are
ignored.

Example:

10 END
END

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.18

END IF

9.2.19 ENDIF Statement

Syntax:

<line number>] ENDIF
Where:

ENDIF STATEMENT

END IF

An ENDIF statement is used to indicate the end of a nested IF
statement list.

Example:

IF A EQ B
IF C NE D

LET x
ELSE

LET x
END IF
PRINT x

ELSE
LET Y = 4
PRINT y

Page:
Section:

1
9.2.19

=

= 2

\
\
\
\
\
\
\
\
\

-+*+-

TIP/30 Reference Manual
Version 2.5 (82/08/01)

EXITFOR STATEMENT

9.2.20 EXITFOR Statement

Syntax:

<line number> 1 EXITFOR
Where:

EXITFOR

EXITFOR

The EXITFOR statement is used to transfer control out of a FOR-NEXT
loop. Control is passed to the statement immediately following the
NEXT statement of the current FOR-NEXT loop.

Example:

FOR I = 1 TO 10

NEXT

IF TABLE(I) = 0 THEN EXITFOR
PRINT TABLE(I)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.20

EXP

9.2.21 EXP Predefined Function

Syntax:

EXP (<expression>
Where:

The EXP function returns 'e' raised to
<expression>. The argument must evaluate
number. Note: e = 2.71828

Example:

EXP(X)
EXP(X*LDG(N))

Page:
Section:

1
9.2.21

EXP PREDEFINED FUNCTION

EXP

the power of the
to a floating point

TIP/30 Reference Manual
Version 2.5 (82/08/01)

EXPRESSION
EXPRESSION

9.2.22 <expression> <expression>

Syntax:

Where:

Expressions consist of algebraic combinations of variables,
constants, and operators. The hierarchy of operators is:

1) ()
2) A or** exponentiation
3) *, I
4) +, -, concat (+), unary+, unary -
5) re 1 at i ona 1 ops <, < = , > , > = , = , < >

6) NOT
7) ·AND
8) OR, XOR

LT, LE, GT, GE, EQ, NE

Relational operators result in a 0 if false and 1 if true. NOT,
AND, OR, and XOR are performed on 32 bit two's complement binary
representation of the integer portion of the variable. The result
is then converted to a floating point number. String variables may
be operated on by relational operators and concatenation only.
Mixed string and numeric operations are not permitted.

Example:

x + y
A$ + 8$
(A <= Bl OR (C$ > 0$) I (A - A AND D)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

-+*+-

Page:
Section:

1
9.2.22

FILE

9.2.23 FILE Statement

Syntax:

[<line number> l FILE #<expression> , <expression>
{; #<expression> , <expression> }

Where:

FILE STATEMENT

FILE

A FILE statement opens files used by the program. The first
expression must evaluate to a number between 1 and 16, inclusive.
This value is used on PRINT and READ statements to perform I/O to
the correct file.

The second expression must be of type string and is used to
inform TIP/30's file control system of the file to be opened.
Library, edit, and sequential files are supported, in input, update
or output mode. The first three parameters are used to identify the
file to be opened, the fourth governs access mode.

There may be any number of FILE statements in a program, but
only 16 files may concurrently be open.

Example:

Library files:
11 f i le/el t , s, R 11

11 fi le/elt,S,W 11

11 file/elt,M,W 11

11 file/elt,M,W 11

Edit buffers:
"buffer, ,E,R 11

"buffer, ,E,W 11

Sequential files:
11 l f n, , , R 11

11 l fn,,, W11

"l fn, , , U"

- read a source module
- write a source module
- read a macro
- write a macro

- read an edit buffer
- write an edit buffer

- read a sequential file
- write a sequential file
- update a sequential file

100 FILE #2, 11 TIP/DATA,S,R 11

FILE #6,"SAMFILE,, ,W"; #8,"BUFFER, ,E,R 11

FILE #B+C,INPUT$; #D,OUTPUT$

Page:
Section:

1
9.2.23

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
FOR STATEMENT

9.2.24 FOR Statement FOR

Syntax:

<line number> l FOR <index>= <expression> TO <expression>
STEP <expression> l
Where:

FOR

Execution of all statements between the FOR statement and its
corresponding NEXT statement is repeated until the indexing
variable, which is incremented by the STEP <expression> after each
iteration, reaches the exit criteria. If the step is positive, the
loop exit criteria is that the index exceeds the value of the TO
<expression>. If the step is negative the index must be less than
the TO <expression> for the exit criteria to be met.

The <index> must be an unsubscripted numeric variable and is
initally set to the value of the first <expression>. Both the TO
and STEP expressions are evaluated on each cycle, and all variables
associated with the FOR statement may change within the loop. If a
STEP clause is omitted a value of 1 is assumed. A STEP of zero will
loop indefinitely.

• Example:

FOR I = 1 TO 10
FOR I = N TO 2 STEP -1

110 FOR INDEX= J + K * 6 TOW - X STEP D

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.24

GO SUB

9.2.25 GOSUB Statement

Syntax:

<line number>

<line number>
Where:

GOSUB <line number>

GO SUB <line number>

GOSUB STATEMENT

GO SUB

The address of the next sequential instruction is saved on the
run-time stack, and control is transferred to the subroutine
labeled with the <line number> following the GOSUB or GO SUB.

Example:

10 GOSUB 300
GO SUB 100

Additional Considerations:

The max depth of GOSUB calls allowed is controlled by the size of
the run-time stack which is currently set at 32.

Page:
Section:

1
9.2.25

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

GOTO STATEMENT

9.2.26 GOTO Statement

Syntax:

<line number>

<line number>
Where:

GOTO <line number>

GO TO <line number>

GOTO

GOTO

Execution continues at the statement labeled with the <line number>
following the GOTO or GO TO.

Example:

100 GOTO 50
GO TO 10

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page!
Section:

1
9.2.26

IDENTIFIER

9.2.27 <identifier>

Sgntax:

<letter> { <letter> or <number> or . } [$]
Where:

IDENTIFIER

<identifier>

An identifier begins with an alphabetic character followed by any
number of alphanumeric characters, or periods. Only the first 10
characters are considered unique. If the last character is a dollar
sign the associated variable is of type string, otherwise it is of
type floating point.

Example:

A
STRING$
XYZ.ABC
PAY.RECORD

Additional Considerations:

All lowercase letters appearing in an <identifier> are converted to ·
uppercase.

Page:
Section:

1
9.2.27

TIP/30 Reference Manual
Version 2.5 (82/08/01)

IF STATEMENT

9.2.28 IF Statement IF

Syntax:

<line number> IF <expression> THEN <line number>

<line number> IF <expression> THEN <statement list>

[ENDIF]

[<line number> l IF <expression> THEN <statement list>

ELSE <statement list> [ENDIF]

Additional Considerations:

IF

If the value of the <expression> is not zero the statements which
make up the <statement list> are executed. Otherwise the ·<statement
list> following the ELSE is executed, if present, or the statement
following the ENDIF is executed, if present, or the next sequential
statement is executed.

In the first form of the statement if the <expression> is not
equal to zero, an unconditional branch to the label occurs.

Example:

IF (A$<B$)
AND (C OR D)

THEN 300

IF B THEN X = 3.0

IF J
AND K

GO TO 11
ELSE

GO TO 12

GOTO 200

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

\
\

\
\
\
\

Page:
Section:

1
9.2.28

IF END

9.2.29 IF END Statement

Syntax:

[<line number> l IF END #<expression> THEN <line
number>

Where:

IF END STATEMENT

IF END

The IF END statement sets up an end of file pointer associated with
the specified file number. If during a read to the file specified
by the <expression>, an end of file is detected, control is
transferred to the statement labeled with the line number following
the THE~ .

Example:

IF END # 1 THEN 100
10 IF END# FILE.NUM - INDEX THEN 700

Additional Considerations:

After declaring an input file with the FILE statement an IF END
statement should be executed for the specified file before
processing it with a READ statement. An IF END statement does not
have to be issued after each READ statement.

Page:
Section:

1
9.2.29

TIP/30 Reference Manual
Version 2.5 (82/08/01)

19
INPUT STATEMENT

9.2.30 INPUT Statement INPUT

Syntax:

<line number> l INPUT [<prompt string>; l <variable>

{, <variable>}
Where:

INPUT

The <prompt string>, if present, is displayed on the terminal. A
line of input data is read from the terminal and assigned to the
variables as they appear in the variable list. The data items are
separated by commas and/or blanks and terminated by a carriage
return. Strings may optionally be enclosed in quotation marks.

If a string is not enclosed by quotes, the first comma
terminates the string. If insuff icent data is entered, the prompt
is redisplayed, and additional input is read until all variables in
the list have been filled. If non-numeric data is entered to a
numeric field, an error message is displayed. Input is then read
from the terminal and assigned to the variables, starting with the
field in error.

Example:

10 INPUT A,B
INPUT "size of array?"; N
INPUT "values?"; A(I),B(I),C(A(I))

Additional Considerations:

Trailing blanks in the <prompt string> are ignored.

One blank is always supplied by the system.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.30

INT

9.2.31 INT Predefined Function

Syntax:

INT (<expression>
Where:

INT PREDEFINED FUNCTION

INT

The INT function returns the largest integer less than or equal to
the value of the <expression>. The argument must evaluate to a
floating point number.

Example:

INT (amount I 100)
INT(3 * x * SIN(y))

Page:
Section:

1
9.2.31

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

LEFT$ PREDEFINED FUNCTION

9.2.32 LEFT$ Predefined Function

Syntax:

LEFT$ (<expression> , <expression>
Where:

LEFT$

LEFT$

The LEFT$ function returns the 'n' leftmost characters of the first
<expression>, where 'n' is equal to the integer portion of the
second <expression>. An error occurs if 'n' is zero or negative. If
'n' is greater than the length of the first <expression> then the
entire expression is returned. The first argument must evaluate to
a string and. the second to a floating point number.

Example:

LEFT$ (A$,3)
LEFT$(C$+D$,I-J)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.32

LEN

9.2.33 LEN Predefined Function

Sgntax:

LEN (<expression>
Where:

LEN PREDEFINED FUNCTION

LEN

The LEN function returns the length of the string <expression>
passed as an argument. Zero is returned if the argument is the null
string.

Example:

LEN(A$)
LEN(C$ + B$)
LEN(LASTNAME$ + II II

Page:
Section:

l
9.2.33

+ FIRSTNAME$)

-+*+-

TIP/30 Reference Manual
Version 2.5 (82/08/01)

LET STATEMENT

9.2.34 LET Statement

Syntax:

<line number> l [LET l <variable>= <expression>
Where:

LET

LET

The <expression> is evaluated and assigned to the <variable>
appearing on the left side of the equal sign. The type of the
<expression>, either floating point or string, must match the type
of the <variable>.

Example:

100 LET
LET

LET

A = B + C
X(3,A) = 7.32 * Y + X(2,3)
W = (A<B) OR C$>D$)
AMOUNT$ = DOLLARS$ + " " + CENTS$

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.34

LINE NUMBER

9.2.35 <line number>

Syntax:

<digit> { <digit> }
Where:

LINE NUMBER

<line number>

<line numbers> are optional on all statements and are ignored by
the compiler except when they appear in a GOTO, GOSUB, or ON
statement. In these cases, the <line number> must appear as the
label of one and only one <statement> in the program.

<line numbers> may contain any number of digits but only the
first 10 are considered significant by the compiler.

Example:

100
1234567890

Page:
Section:

1
9.2.35

TIP/30 Reference Manual
Version 2.5 (82/08/01)

LOG PREDEFINED FUNCTION

9.2.36 LOG Predefined Function

Syntax:

LOG (<expression>
Where:

LOG

LOG

The LOG function returns the natural logarithm of the absolute
value of the <expression>. The argument must evaluate to a non-zero
floating point number.

Example:

LOG (X)
LOG((A + B)/D)
LOGTEN = LOG(X)/LOG(10)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.36

LOGlO

9.2.37 LOGlO Predefined Function

Syntax:

LOG10 (<expression>
Where:

LOGlO PREDEFINED FUNCTION

LOGlO

The LOGlO function returns the base 10 logarithm of the absolute
value of the <expression>. The argument must evaluate to a non-zero
floating point number.

Example:

LOG10(X)
LOG10((A+ B)/D)
LOGTEN = LOG10(X)/LOG10(10)

Page:
Section:

1
9.2.37

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MID$ PREDEFINED FUNCTION

9.2.38 MID$ Predefined Function

Syntax:

MID$ (<expression> , <expression> , <expression>
Where:

MID$

MID$

The MID$ function returns a string consisting of the 'n' characters
of the first <expression> starting at the mth character. The value
of 'm' is equal to the integer portion of the second <expression>
while 'n' is the integer portion of the third <expression>. The
first argument must evaluate to a string, and the second and third
arguments must be floating point numbers. If 'n' is greater thary
the number of characters left in the string all the characters from
the mth character are returned. An error occurs if 'm' or 'n' is
zero or negative, or if 'm' is greater than the length of the first
<expression>.

Example:

MID$(A$,l,J)
MID$(B$+C$,5,LENGTH)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.38

NEXT
NEXT STATEMENT

9.2.39 NEXT Statement NEXT

Syntax:

<line number> l NEXT <identifier> { ,<identifier> }
Where:

A NEXT statement denotes the end of the closest unpaired FOR
statement. The identifier must match the index variable of the
paired FOR statement being terminated. Multiple identifiers allow
for pairing multiple FOR statements.

Example:

10 NEXT I
NEXT I,J
NEXT K

Page:
Section:

1
9.2.39

TIP/30 Reference Manual
Version 2.5 (82/08/01)

NEXTFOR STATEMENT

9.2.40 NEXTFOR Statement

Syntax:

<line number> J NEXTFOR
Where:

NEXTFOR

NEXTFOR

The NEXTFOR statement transfers control to the NEXT statement of
the current loop.

Example:

FOR I = 1 TO 10
IF TABLE(l) = 2 THEN NEXTFOR
LET TABLE(I) =BALANCE

NEXT I

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.40

ON
ON STATEMENT

9.2.41 ON Statement ON

(1)

(2)

(3)

(4)

Syntax:

[<line number> l ON <expression> GOTO

<line number> { ' <line number> }

[<line number> l ON <expression> GO TO

<line number> {, <line number> }

[<line number> l ON <expression> GOSUB

<line number> { ' <line number> }

[<line number> l ON <expression> GO SUB

<line number> { ' <line number> }
Where:

The <expression>, rounded to the nearest integer value, is used to
select the <line number> at which execution will continue. If the
<expression> evaluates to 1 the first <line number> is selected and
so forth. In the case of an ON ... GOSUB statement the address of
the next instruction becomes the return address. The next
instruction is executed if the <expression> after rounding is less
than one or greater than the number of <line numbers> in the list.

Example:

10 ON I GOTO 10, 20, 30, 40
ON J*K-M GO SUB 10, 1, 1, 10

Page:
Section:

1
9.2.41

TIP/30 Reference Manual
Version 2.5 (82/08/01)

POS PREDEFINED FUNCTION

9.2.42 POS Predefined Function

Syntax:

POS
Where:

POS

POS

The POS function returns the current position of the output line
buffer pointer. This value will range from 1 to the print buffer
size.

Example:

PRINT TAB(POS + 3);X

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.42

PRINT
PRINT STATEMENT

9.2.43 PRINT Statement PRINT

Syntax:

(1) [<line number> J PRINT #<expression> , <expression> ;

<expression> {, <expression> }

(2) [<line number> l PRINT #<expression> ;

<expression> {, <expression> }

(3) [<line number> l PRINT <expression> <delim>

{ <expression> <delim> }
Where:

A PRINT statement sends the value
expression list to either a disk file
terminal (type (3)).

of the
(type(l)

expressions in the
and (2)) or the

A type (1) PRINT statement
the second <expression> to
<expression>. An error occurs
record for all values.

sends a random record specified by
the disk file specified by the first

if there is insufficient space in the

A type (2) PRINT statement outputs the next sequential record to
the file specified by the <expression> following the #.

A type (3) PRINT statement outputs the value of each
<expression> to the terminal. A space is appended to all numeric
values and if the numeric item exceeds the right margin then the
print buffer is dumped before the item is printed. The <delim>
between the <expressions> may be either a comma or a semicolon.

The comma causes automatic spacing to the next tab position
(14,28,42,56). If the current print position is greater than 56
then the print buffer is printed and the print position is set to
zero. A semicolon indicates no spacing between the printed values.
If the last <expression> is not followed by a <delim> the print
buffer is dumped and the print position set equal to zero. The
buffer is automatically printed anytime the print position exceeds
71.

Page:
Section:

1
9.2.43

TIP/30 Reference Manual
Version 2.5 (82/08/01)

PRINT STATEMENT

Example:

100 PRINT #1,KEY; A,C,A$+"*"
PRINT #FILE; A I B,D,"end"
PRINT A, B, "the answer is"; X

Error Conditions:
Type 1 PRINT statement is currently not implemented.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

PRINT

2
9.2.43

RANDOMIZE

9.2.44 RANDOMIZE Statement

Sgntax:

<line number>] RANDOMIZE
Where:

RANDOMIZE STATEMENT

RANDOMIZE

A RANDOMIZE statement initializes the random number generator.

Example:

10 RANDOMIZE
RANDOMIZE

Page:
Section:

1
9.2.44

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
READ STATEMENT

9.2.45 READ Statement READ

Syntax:

(1) [<line number> J READ #<expression> , <expression> ;

<variable> {, <variable> }

(2) [<line number> 1 READ #<expression>;

<variable> {, <variable> }

(3) [<line number> J READ <variable> {, <variable> }
Where:

READ

A READ statement assigns values to variables in the variable list
from either a file (type (1) and (2)) or from a data statement
(type (3)).

Type (1) reads a random record specified by the second
expression from the disk file specified by the first expression and
assigns the fields in the record to the variables in the variable
list. Fields may be floating point or string constants and are
delimited by a blank or comma. Strings may optionally be enclosed
in quotes. An error occurs if there are more variables than fields
in the record.

The type (2) READ statement reads the next sequential record
from the file specified by the expression and assigns the fields to
variables as described above.

A type (3) READ statement assigns values from data statements to
the variables in the list. Data statements are processed
sequentially as they appear in the program. An attempt to read past
the end of the last data statement produces an error.

Example:

100 READ# 1,I; PAY.REG,PAY.OT,HOURS.REG,HOURS.OT
READ # FILE; NAME$,ADDRESS$,PHONE$,ZIP

READ A,B,C$

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.45

READ
READ STATEMENT

Error Conditions:
Type 1 READ statement is currently not implemented.

Page:
Section:

2
9.2.45

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

REM STATEMENT

9.2.46 REM Statement

Syntax:

<line number>
<line number>
Where:

REM [<remark>]
REMARK [<remark>

REM

REM

A REM statement is ignored by the compiler and compilation
continues with the statement following the next carriage return.
The REM statement may be used to document a program. REM statements
do not affect the size of a program that may be compiled or
executed. An unlabeled REM statement may follow any statement on
the same line, and the <line number> may occur in a GOTO, GOSUB or
ON statement.

Example:

10 REM this is a remark
REMARK this is also a remark
LET X = OREM initial value of X

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.46

RESERVED WORD LIST

9.2.47 Reserved Word List

Syntax:

<letter> { <letter> } [$ l
Where:

RESERVED WORD LIST

Reserved Word List

The following words are reserved by TIP/BASIC and may not be used
as <identifiers>:

ABS
CBRT
cos
EBC
EXITFOR
GO
INPUT
LET
MOD
ON
READ
RIGHT$
SINH
SUB
TO

AND
CHAIN
COSH
ELSE
EXP
GO SUB
INT
LOG
NE
OR
REM
RND
SQR
SYSTEM
TRM$

ASC
CHR$
DAT$
END
FILE
GOTO
LE
LOG10
NEXT
POS
RESTORE
SEQ$
STEP
TAB
USR$

ATN
CLK$
DATA
ENDIF
FOR
GT
LEFT$
LT
NEXT FOR
PRINT
RET
SGN
STOP
TAN
VAL

CALL
CLOSE
DIM
EQ
GE
IF
LEN
MID$
NOT
RANDOMIZE
RETURN
SIN
STR$
THEN
XOR

Reserved words must be preceded and followed by either a special
character or a space. Spaces may not be embedded within reserved
words. Lowercase letters are converted to uppercase prior to
checking to see if an <identifier> is a reserved word.

Page:
Section:

1
9.2.47

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

RESTORE STATEMENT

9.2.48 RESTORE Statement

Syntax:

<line number> J RESTORE
Where:

RESTORE

RESTORE

A RESTORE statement repositions the pointer into the data area so
that the next value read with a read statement will be the first
item in the first data statement. The effect of a RESTORE statement
is to allow re-reading the data statements.

Example:

RESTORE
10 RESTORE

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.48

RETURN

9.2.49 RETURN Statement

Syntax:

<line number> l RETURN
Where:

RETURN STATEMENT

RETURN

Control is returned from a subroutine to the calling routine.
Subroutines may be nested up to sixteen levels deep. An error will
occur if a RETURN is issued without the corresponding GOSUB.

Example:

130 RETURN
RETURN

Page:
Section:

1
9.2.49

TIP/30 Reference Manual
Version 2.5 {82/08/01)

RIGHT$ PREDEFINED FUNCTION

9.2.50 RIGHT$ Predefined Function

Syntax:

RIGHT$ (<expression> , <expression>
Where:

RIGHT$

RIGHT$

The RIGHT$ function returns the 'n' rightmost characters of the
first <expression>. The value of 'n' is equal to the integer
portion of the second <expression>. If 'n' is zero or negative an
error occurs; if 'n' is greater than the length of the first
<expression> then the entire <expression> is returned. The first
argument must produce a string and the second must produce a
floating point number.

Example:

RIGHT$(X$,1)
RIGHT$(NAME$,LNG.LAST)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.50

RND
RND PREDEFINED FUNCTION

9.2.51 RND Predefined Function RND

RND

RND

Syntax:

Where:

The RND function generates a uniformly distributed random number in
the range 0 < n < 1.

Example:

Page:
Section:

1
9.2.51

TIP/30 Reference Manual
Version 2.5 (82/08/01)

I e

•

SEG$ PREDEFINED FUNCTION

9.2.52 SEG$ Predefined Function

Syntax:

SEG$ (<expression> , <expression> , <expression>)
Where:

SEG$

SEG$

The SEG$ function returns a string consisting of the 'n' characters
of the first <expression> starting at the mth character. The value
of 'm' is equal to the integer portion of the second <expression>
while 'n' is the integer portion of the third <expression>. The
first argument must evaluate to a string, and the second and third
arguments must be floating point numbers. If 'n' is greater than
the number of characters left in the string all the characters from
the mth character are returned. An error occurs if 'm' or 'n' is
zero or negative or if 'm' is greater than the length of the first
<expression>.

Example:

SEG$(A$,I,J)
SEG$(B$+C$,5,LENGTH)

Additional Considerations:

This function is provided for compatability with other versions of
Basic. It is identical to the MID$ function.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.52

SGN

9.2.53 SGN Predefined Function

Syntax:

SGN (<expression>
Where:

SGN PREDEFINED FUNCTION

SGN

The SGN function returns 1 if the value of the <expression> is
greater than 0, -1 if the value is less than 0 and 0 if the value
of the <expression> is 0. The argument must evaluate to a floating
point number.

Example:

SGN(X)
SGN(A - B + C)

Page:
Section:

1
9.2.53

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

SIN PREDEFINED FUNCTION

9.2.54 SIN Predefined Function

Syntax:

SIN (<expression>
Where:

SIN

SIN

SIN is a predefined function which returns the sine of the
<expression>. The argument must evaluate to a floating point number
in radians.

Example:

X = SIN(Y)
SIN(A - B/C)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.54

SINH

9.2.55 SINH Predefined Function

Syntax:

SINH (<expression>
Where:

SINH is a function
<expression>. The
number.

Example:

SINH(Y)
SINH(B<C)

Page:
Section:

1
9.2.55

which returns
argument must

SINH PREDEFINED FUNCTION

SINH

the hyperbolic
evaluate to a

sine of the
floating point

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

SPECIAL CHARACTERS

9.2.56 Special Characters

Syntax:

Special Characters
Where:

SPECIAL CHARACTERS

Special Characters

The following special characters are used by TIP/BASIC:

/\ circumflex
open parenthesis
closed parenthesis

* asterisk
+ plus

minus
I slant

colon
semicolon

< less-than
> greater-than
= equal
number-sign

comma
quote

er carriage return
\ back.slant

Any special character in the EBCDIC character set may appear in a
string. Special characters other than those listed above, if they
appear outside a string, will generate an error.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

-+*+-

Page:
Section:

1
9.2.56

- --------------------------------,

SOR
SOR PREDEFINED FUNCTION

9.2.57 SQR Predefined Function SQR

Syntax:

SQR (<expression>
Where:

SQR returns
<expression>.
number.

Example:

SQR (Y)
SQR (X'"2 + Y"2)

Page:
Section:

1
9.2.57

the square root of
The argument must

the absolute value of the
evaluate to a floating point

TIP/30 Reference Manual
Version 2.5 (82/08/01)

STATEMENT
STATEMENT

9.2.58 <statement> <statement>

Syntax:

<line number> <statement list> <er>

<line number> IF statement <er>

<line number> END statement <er>

Where:

All TIP/BASIC statements are terminated by line end or carriage
return (<er>).

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.58

STATEMENT LIST
STATEMENT LIST

9.2.59 <statement list> <statement list>

Syntax:

<simple statement> {: <simple statement> }
Where a <simple statement> is one of the following:

CALL statement
CHAIN statement
CLOSE statement
DATA statement
DIM statement
EXITFOR statement
FILE statement
FOR statement
GOSUB statement
GOTO statment
INPUT statement
LET statement
NEXT statement
NEXTFOR statement
ON statement
PRINT statement
RANDOMIZE statement
READ statement
RESTORE statement
RETURN statement
STOP statement
SYSTEM statement
<empty> statement

Where:

A <statement list> allows more than one <statement> to occur on a
single line.

Page:
Section:

1
9.2.59

TIP/30 Reference Manual
Version 2.5 (82/08/01)

STATEMENT LI ST

Example:

LET i = 0 : LET j = 0 : LET k = 0
X = Y+Z/W : RETURN
::::::PRINT "This is OK too"

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

-+:t+-

STATEMENT LIST

Page:
Section:

2
9.2.59

STOP

9.2.60 STOP Statement

Syntax:

<line number>] STOP
Where:

STOP STATEMENT

STOP

Upon encountering a <STOP statement> program execution terminates
and all open files are closed. The print buffer is emptied and
control returns to the host system. Any number of STOP statements
may appear in a program.

A STOP statement is appended to all programs by the compiler.

Example:

10 STOP
STOP

Page:
Section:

1
9.2.60

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

STR$ PREDEFINED FUNCTION

9.2.61 STR$ Predefined Function

Sgntax:

STR$ (<expression>
Where:

STR$

STR$

The STR$ function returns the EBCDIC string which represents the
value of the <expression>. The argument must evaluate to a floating
point number.

Example:

STR$(X)
STR$(3.141617)

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.61

SUBSCRIPT LIST

9.2.62 <subscript list>

Syntax:

<expression> {, <expression> }
Where:

SUBSCRIPT LI ST

<subscript list>

A <subscript list> may be used as part of a <DIM statement> to
specify the number of dimensions and extent of each dimension of
the array being declared or as part of a <subscripted variable> to
indicate which element of an array is being referenced.

There may be up to eight expressions but each must evaluate to a
floating point number. A <subscript list> as part of a DIM
statement may not contain a reference to the array being
dimensioned.

Example:

X(10,20,20)
Y$ (i , j)
COST(AMT(l),PRICE(I))

Page:
Section:

1
9.2.62

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SYSTEM STATEMENT

9.2.63 SYSTEM Statement

Syntax:

<line number>] SYSTEM <expression>
Where:

SYSTEM

The SYSTEM statement is used to call system routines.

Example:

100 SYSTEM "TLIB,PRINT ,JCS/MYJOB, ,AUX1"
SYSTEM "WHOSON"

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

SYSTEM

1
9.2.63

TAB

9.2.64 TAB Predefined Function

Syntax:

TAB (<expression>
Where:

TAB PREDEFINED FUNCTION

TAB

The TAB function positions the output buffer pointer to the
position specified by the integer value of the <expression> rounded
to the nearest integer modulo 80. If the value of the rounded
expression is less than or equal to the current print position, the
print buff er is dumped and the buff er pointer is set as described
above. The TAB function may occur only in print statements.

Example:

TAB(10)
TAB(I + 1)

Page:
Section:

1
9.2.64

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TAN PREDEFINED FUNCTION

9.2.65 TAN Predefined Function

Syntax:

TAN (<expression>
Where:

TAN

TAN

TAN is a function which returns the tangent of the expression. The
argument must be in radians.

An error occurs if the <expression> is a multiple of pi/2
radians.

Example:

10 TAN(A)
TAN(X - 3*COS(Y))

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.65

THEN

9.2.66 THEN Statement

Syntax:

<line number>] THEN <line number>
Where:

THEN STATEMENT

THEN

Execution continues at the statement labeled with the line number
following the THEN.

Example:

IF A = B THEN 200
110 THEN 220

Page:
Section:

1
9.2.66

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

TRM$ PREDEFINED FUNCTION

9.2.67 TRM$ Predefined Function

Syntax:

TRM$
Where:

TRM$

TRM$

TRM$ is a function which returns a four byte string containing the
terminal name on which the program is running.

Example:

PRINT "You are logged on terminal ";TRM$
100 LET TERMNAME$ = TRM$

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.67

USR$

9.2.68 USR$ Predefined Function

Syntax:

USR$
Where:

USR$ PREDEFINED FUNCTION

USR$

USR$ is a function which returns the userid of the person running
the program.

Example:

PRINT "Hello ";USR$
235 LET USERID$ = USR$

Page:
Section:

1
9.2.68

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

•

VAL PREDEFINED FUNCTION

9.2.69 VAL Predefined Function

Syntax:

VAL (<expression>
Where:

The VAL function converts the
parameter into a floating point
evaluate to a string.

number
number.

VAL

in EBCDIC passed
The <expression>

VAL

as a
must

Conversion continues until a character is encountered that is
not part of a valid number or until the end of the string is
encountered.

Example:

VAL(A$)
VAL("3. 789" + "e-07" + "This is ignored")

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.69

VARIABLE

9.2.70 <variable>

Syntax:

<identifier> [(<subscript list>) l
Where:

VARIABLE

<variable>

A <variable> in TIP/BASIC may either represent a floating point
number or a string depending on the type of the <identifier>.
Subscripted variables must appear in a DIM statement before being
used as a <variable>.

Example:

x
y$(3,10)
BAS.AMT(x(i) ,y(i) ,s(i-1))

Page:
Section:

1
9.2.70

TIP/30 Reference Manual
Version 2.5 {82/08/01)

•
SAMPLE PROGRAM

SAMPLE TIP/BASIC PROGRAM

9.2.71 SAMPLE TIP/BASIC PROGRAM Sample Program

The following is a sample program listing.

* * Guess the random number that the computer .has chosen.
* * Hint: If you use a binary search technique you wi 11
* always get the answer in seven or less guesses.
* 100 PRINT "I have a number from 1 to 100"

PRINT "You must try and guess it."
LET ANSWER = INT (RND * 100) + 1
LET GUESSES = 0

200 INPUT "Your guess please";GUESS
LET GUESSES = GUESSES + 1

IF GUESS EQ ANSWER
PRINT "You got the answer in ";GUESSES;" guesses. "·
IF GUESSES GT 7

IF GUESSES LT 10
PRINT "(You could have done better)"

ELSE
PRINT "(You could have done much better)"

END IF
ELSE

PR I NT "We 11 done!"
END IF
INPUT "Another game";YESNO$
IF YESNO$ EQ "Y"

GO TO 100
ELSE

STOP

IF GUESS LT ANSWER
PRINT "Sorry but you are low"

ELSE
PRINT "Sorry but you are high"

GO TO 200

END

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Figure 1

Page:
Section:

\
\
\

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

1
9.2.71

BCOMP

Page: 2
Section: 9.2.71

COMPILER STRUCTURE (BCOMP)

TIP/30 Reference Manual
Version 2.5 (82/08/01)

BCOMP
COMPILER STRUCTURE (BCOMP)

9.2.72 COMPILER STRUCTURE (BCOMP) BCOMP

The compiler structure consists of a table-driven parser which
makes one pass over the input, checking statements for correct
syntax, while concurrently generating code for the Interpreter to
execute.

Floating point numbers are represented in standard OS/3 short
format, 32 bits with one sign bit, a 7 bit exponent, and
twenty-four bits of fraction. This provides slightly more than
seven decimal digits of significance.

Variable length strings and n dimensional arrays are both
dynamically allocated at run time.

The TIP/BASIC compiler requires lOk of memory for its code and a
minimum of 12k of working storage assigned via the WORK.SIZE
parameter of the catalogue manager (CAT). The working storage is
divided into six dynamic partitions managed by memory routines
using a base/displacement concept for each region. Figure 3
illustrates this memory design. The first partition is of fixed
size and is used to hold I/O buffers, address, counters, etc. The
second region is used to hold the reserved word table and is also
of fixed size. Partition three holds the program symbol table. It
is actually an extension to the reserved word table as they are
identical in format. Regions four and five hold object code and
constants respectively. Partition six holds pointers used by the
READ function. Regions three through six expand dynamically as
required.

If the compiler terminates because of insufficient memory,
memory can be added by simply re-cataloguing the compiler with a
larger WORK.SIZE value.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.72

BCOMP

Page:
Section:

2
9.2.72

COMPILER STRUCTURE (BCOMP)

Compiler Memory Map

TIP/BASIC COMPILER

I
I
I
I

v

COMPILER WORK AREA

RESERVED WORD TABLE

USER'S SYMBOL TABLE

GENERATED OBJECT CODE

CONSTANTS

DATA POINTERS

Figure 2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
BINT

INTERPRETER STRUCTURE (BINT)

9.2.73 INTERPRETER STRUCTURE (BINT) BINT

The TIP/BASIC interpreter simulates a zero address stack
computer with up to 32k of memory.

The interpreter requires 19k of memory for its code and requires
free memory to hold the object module, and to build dimensions
strings. The interpreter will display an error message
terminate if free memory becomes exhausted. The interpreter
then be re-catalogued with more work area.

and
and

must

Free memory is divided into five partitions. Figure 4
illustrates the interpreter's memory regions. Partition one is used
by the interpreter to hold I/O buffers, addresses, the stack, etc.
It is a fixed size. Partition two is used to hold the object code
generated by the compiler. This region is dynamically allocated at
run time. Partition three, allocated at run time, is used to hold
constants. Partition four is used to hold data pointers (used by
READ statements) and is also of dynamic size. The remaining free
memory is allocated to partition five where it is managed by a
memory manager using the boundary tag allocation scheme. It is this
region that can get exhausted at run time.

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

1
9.2.73

BINT

Page:
Section:

2
9.2.73

INTERPRETER STRUCTURE (BINT)

Interpreter Memory Map

TIP/BASIC INTERPRETER

f\

I
I
I
I

v

INTERPRETER'S WORK AREA

OBJECT CODE

CONSTANTS

DATA POINTERS

DYNAMIC DATA REGION

Figure 3

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

•

RUN-TIME MONITOR ERROR MESSAGES

9.2.74 RUN-TIME MONITOR ERROR MESSAGES errors

81#01 Line

81#02 Line

81#03 Line

81#04 Line

81#05 Line

81#06 Line

8I#07 Line

8I#08 Line

8I#09 Line

8I#10 Line

8I#11 Line

8I#12 Line

8I#13 Line

81#14 Line

8I#15 Line

BI#16 Line

8I#17 Line

8I#18 Line

8I#19 Line

8I#20 Line

8I#21 Line

81#22 Line

8I#23 Line

Open routine detected invalid file number

Attempt to open a previously opened file

Fcs error during file open routine

Close routine detected invalid file number

Attempt to close a closed file

Fcs error during file close routine

Invalid file number on read function

Attempt to read an unopened file

End of file reached. No if end statement

I/0 error during read function

Invalid file number on print function

Attempt to write to an unopened file

I/0 error during print function

Attempt to read past end of record

Invalid file number on if statement

Insufficient memory

Unable to find object file

Invalid data, re-enter

Array index out of bounds

Attempt to read beyond available data

Attempt to read wrong data type

Return issued before a gosub

Invalid length for RIGHT$ function

CHAPTER IX - APPENDICES
Basic Compiler-Interpreter

Page:
Section:

ERRORS

1
9.2.74

ERRORS

8I#24 Line

8I#25 Line

8I#26 Line

Page:
Section:

2
9.2.74

RUN-TIME MONITOR ERROR MESSAGES

Invalid length for LEFT$ function

Invalid length for MID$ function

Invalid displacement for MID$ function

TIP/30 Reference Manual
Version 2.5 (82/08/01)

INDEX

10. KWIC INDEX

ack/nak, BCP STATUS MESSAGES BCP:
add, ADD RECORD TQL:
add, ON-LINE DATA DISPLAY ODD:

- A -

all, DISPLAY ALL OS/3 JOB QUEUES JBQ:
ABNORMAL TIP/30 SHUTDOWN CRASH
ABORT A PROGRAM DIE
ABORT OUTPUT FCS-NOUP, LIB: CLOSE LIBRARY;
ABORT TRAP TIPABRT, USER PROGRAM
ABS Predefined Function ABS
ABS, ABS Predefined Function
ABSOLUTE COLUMN DOC: @Ann, SPACE TO
ACCESS A FILE ACCESS
ACCESS FILE FCS-ACCESS, DYN:
ACCESS FILES FCS: direct, 'TIPFCS' FOR DIRECT
ACCESS, ACCESS A FILE
ACTIVE FILE TABLE AFT, DISPLAY
ACTIVE USERS WHOSON, DISPLAY
ADD A RECORD
ADD COMMAND QED: a, ADDING TEXT; THE
ADD FCS'-ADD, EDIT: .
ADD RECORD FCS-ADD, DIRECT:
ADD RECORD TO FILE FCS-ADD, INDEXED:
ADD RECORD TQL: add

INDEX

KWIC INDEX

3.6.4
4.5.7

3.39.2
3.26.1

3.10
3.15

6.16.4
5.2

9.2.2
9.2.2

3.18.14
3.1

6 .11.1
6.9
3.1
3.2

3.59
3.44.2
3. 41. 5
6.17.1
6.9.1
6.8.1
4.5.7

ADD, READ, PRINT, WRITE QED: Exercise 4, EXERCISE 4: 3.41.39
3. 41. 5
3.18.2

3.2
3.25

3.8
3.26.1

3.3
7.10.17

ADDING TEXT; THE ADD COMMAND QED: a
ADDITIONAL CONSIDERATIONS DOC
AFT, DISPLAY A~TIVE FILE TABLE
AID IDA, INTERACTIVE DEBUG
AID) CC, COBOL REFORMATTER (CONVERSION
ALL OS/3 JOB QUEUES JBQ: all, DISPLAY
ALL POINTS BULLETIN APB
ALLOW FREE TERMINAL INPUT TIPTERM: free
ALLOWING FIELDS TO CHANGE TQL
ALTERNATE TERMINAL TIPATTCH, ATTACH AN
ALTERNATE TERMINAL TIPDETCH, DETACH
ALTERNATE TERMINAL TIPUALT, USE
ANALYSIS PMDA, POST MORTEM DUMP
APB, ALL POINTS BULLETIN
APPEND QED: Exercise 3, EXERCISE 3: READ, PRINT,
APPEND, PRINT QED: Exercise 2, EXERCISE 2:
APPEND, QUIT, WRITE QED: Exercise 1, EXERCISE 1:
APPENDICES, CHAPTER IX -
APPLICATIONS DEVELOPMENT SYSTEMS TQL, CHAPTER IV -

KWIC INDEX Page:
Section:

4.2.3
7.9.10
7.9.13
7.9.15

3.40
3.3

3.41.38
3.41.37
3.41.36

9.
4.

1
Index

INDEX

ARCHIVER (LIBRARIAN) MSGAR, MESSAGE
ARCHIVER MSGAR: end, END MESSAGE
AREA DISPLAY CCA, COMMUNICATIONS CONTROL
AREA PCS: cda, CONTINUITY DATA
AREA PCS: gda, GLOBAL DATA
AREA PCS: workarea, WORK
ASC Predefined Function ASC
ASC, ASC Predefined Function
ASG, ASSIGN A FILE
ASSEMBLER FCS FUNCTIONS AND STATUS CODES
ASSEMBLER UTSASM, ON-LINE 8080 CROSS
ASSIGN A FILE ASG
ASSIGN FILE FCS-ASSIGN, DYN:
ASYNCHRONOUS PROCESS TIPFORK, CREATE AN
AT-SIGN DOC: @@, GENERATE LITERAL
ATN Predefined Function ATN
ATN, ATN Predefined Function
ATTACH AN ALTERNATE TERMINAL TIPATTCH
ATTRIBUTES FOR PROCESS SET, SET
AUX PRINTER TIPCOP, SEND PRINT CODE TO
AUXILIARY DEVICE I/0 DELIVERY STATUS DCIO: status
AVOID ODD, ODD - PITFALLS TO

- B -

(BCOMP) BCOMP, COMPILER STRUCTURE
(BINT) BINT, INTERPRETER STRUCTURE
back, RE-ACTIVATE PREVIOUS VERSION TLIB:
batch jobs, TIP/30 BATCH PROGRAMS TIP:
bye, TERMINATE MONITOR BASIC:
Basic Compiler-Interpreter TIP/BASIC
BACK UPDATES FCS-BACK, DIRECT: ROLL
BACK UPDATES FCS-BACK, INDEXED: ROLL
BACKGROUND PROGRAMS BCP: fork
BASE FCS: total, TOTAL DATA
BASE MANAGEMENT INTERFACE FCS: dbms, DATA
BASIC INTERPRETER - COMPILER BASIC, TIP/30
BASIC MONITOR BASIC: end, TERMINATE THE
BASIC MONITOR BASIC: quit, TERMINATE
BASIC OBJECT FILE BASIC: delete, DELETE
BASIC PROGRAM BASIC: compile, COMPILE
BASIC PROGRAM BASIC: new, EDIT A NEW
BASIC PROGRAM BASIC: old, EDIT EXISTING
BASIC PROGRAM BASIC: run, RUN A

KWIC INDEX

3.34
3.34.4
3.8.1
5 .1. 3
5 .1. 6
5.1.5
9.2.3
9.2.3

3.4
6.15
3.57
3.4

6.11.2
5.7

3.18.12
9.2.4
9.2.4

7.9.10
3.48

7.9.11
7.10.2

3.39.15

9.2.72
9.2.73
3.56.1

8.6
3.5.1

9.2
6.9.2
6.8.2
3.6.8

6.18
6 .19
3.5

3.5.5
3.5.13
3.5.4
3.5.2

3.5.10
3.5.11
3.5.14

BASIC PROGRAM HELP INFORMATION BASIC: help, DISPLAY
BASIC PROGRAM LISTING BASIC: print, PRINT

3.5.6
3.5.12
3.5.7
3.5.3

3.5.15

BASIC PROGRAM ON TERMINAL BASIC: list, LIST
BASIC PROGRAM WITH LISTING BASIC: cp, COMPILE
BASIC PROGRAMS BASIC: run, DIRECT EXECUTION OF

Page:
Section:

2
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

-------·-·--------

•

KWIC INDEX

BASIC PROGRAMS IN TIP CATALOGUE BASIC: le, LIST
BASIC, TIP/30 BASIC INTERPRETER - COMPILER
BASIC: bye, TERMINATE MONITOR
BASIC: compile, COMPILE BASIC PROGRAM
BASIC: cp, COMPILE BASIC PROGRAM WITH LISTING
BASIC: delete, DELETE BASIC OBJECT FILE
BASIC: end, TERMINATE THE BASIC MONITOR
BASIC: help, DISPLAY BASIC PROGRAM HELP INFORMATION
BASIC: le, LIST BASIC PROGRAMS IN TIP CATALOGUE
BASIC: list, LIST BASIC PROGRAM ON TERMINAL
BASIC: mode, CHANGE SCREEN ROLL MODE
BASIC: new, EDIT A NEW BASIC PROGRAM
BASIC: old, EDIT EXISTING BASIC PROGRAM
BASIC: print, PRINT BASIC PROGRAM LISTING
BASIC: quit, TERMINATE BASIC MONITOR
BASIC: run, DIRECT EXECUTION OF BASIC PROGRAMS
BASIC: run, RUN A BASIC PROGRAM
BASIC: save, SAVE A PROGRAM IN A LIBRARY
BATCH DOCUMENT GENERATOR TJ$DOCS, THE
BATCH JOB BCP: run, RUN
BATCH JOB BCP: submit, SUBMIT REMOTE
BATCH JOB RV, START OS/3
BATCH JOB TLIB: job, SUBMIT REMOTE
BATCH JOURNAL FILE READ FCS: journal
BATCH PROGRAMS TIP: batch jobs, TIP/30
BATCH TERMINAL COMMAND PROCESSOR BCP
BCOMP, COMPILER STRUCTURE (BCOMP)
BCP BCP: fin, TERMINATING
BCP COMMAND LANGUAGE BCP
BCP COMMANDS BCP, SUMMARY OF
BCP INTERACTIVELY BCP, USING
BCP KEYWORD SHORTFORMS BCP
BCP STATUS MESSAGES BCP: ack/nak
BCP, BATCH TERMINAL COMMAND PROCESSOR
BCP, BCP COMMAND LANGUAGE
BCP, BCP KEYWORD SHORTFORMS
BCP, SUMMARY OF BCP COMMANDS
BCP, USING BCP INTERACTIVELY
BCP: ack/nak, BCP STATUS MESSAGES
BCP: call, USER PROGRAM EXECUTION
BCP: delete, DELETING PRINT FILE
BCP: fin, TERMINATING BCP
BCP: fork, BACKGROUND PROGRAMS
BCP: icam, !CAM GENERATION CONSIDERATIONS
BCP: icam, SAMPLE ICAM
BCP: in, CREATE INPUT READER SPOOL
BCP: logon, USER LOG-ON PROCEDURE
BCP: mode, MODES OF OPERATION
BCP: msg, SEND COMPUTER OPERATOR A MESSAGE
BCP: print, TRANSMIT PRINT FILE

KWIC INDEX Page:
Section:

INDEX

3.5.8
3.5

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.8
3.5.7
3.5.9

3.5.10
3.5.11
3.5.12
3.5.13
3.5.15
3.5.14
3.5.16

8.11
3.6.17
3.6.19

3.46
3.56.6
6.20.2

8.6
3.6

9.2.72
3.6.7
3.6.3
3.6.1

3.6.20
3.6.2
3.6.4

3.6
3.6.3
3.6.2
3.6.1

3.6.20
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8

3.6.21
3.6.22
3.6.9

3.6.10
3.6.11
3.6.12
3.6.13

3
Index

INDEX

BCP: punch, TRANSMIT PUNCH FILE
BCP: queue, DISPLAYING PRINT FILE QUEUE
BCP: receive, SEND DATA FILE TO HOST
BCP: run, RUN BATCH JOB
BCP: send, SEND DATA FILE TO TERMINAL
BCP: submit, SUBMIT REMOTE BATCH JOB
BE DISPLAYED DD, DDU, SPECIFYING A RECORD TO
BEGINNING OF A LINE QED: t, MATCHING AT THE
BINT, INTERPRETER STRUCTURE (BINT)
BITS TIPBITS, CONVERT 32 BYTES TO 32
BITS TO 32 BYTES TIPBYTES, CONVERT 32
BLOCK DISPLAY TCB, TASK CONTROL
BLOCK PCS: pib, PROCESS INFORMATION
BLOCKS OF TEXT; COPY QED: k, COPYING
BLOCKS OF TEXT; MOVE QED: m, MOVING
BOOKS COPY BOOKS, DIRECTORY OF COBOL COPY
BOOKS, DIRECTORY OF COBOL COPY BOOKS COPY
BREAK BREAK, CHECK FOR OPERATOR
BREAK, CHECK FOR OPERATOR BREAK
BUFFER SPL: write, WRITE SPOOL FILE TO EDIT
BUFFER TO A FILE/ELEMENT QED: w, WRITING AN EDIT
BUFFER USAGE STATUS: b, FILE
BUFFERS FCS: edit, 'TIPFCS' FOR EDIT
BULLETIN APB, ALL POINTS
BYTES TIPBYTES, CONVERT 32 BITS TO 32
BYTES TO 32 BITS TIPBITS, CONVERT 32

<constant> <constant>
<constant>, <constant>

- c -

(CONVERSION AID) CC, COBOL REFORMATTER
call, USER PROGRAM EXECUTION BCP:
carret, GENERATE CARRIAGE RETURN DCIO:
cat, USER, PROGRAM, FILE COMMANDS TB$INT:
cda, CONTINUITY DATA AREA PCS:
close, ON-LINE DATA DISPLAY ODD:
cntrl, CONTROL TERMINAL INPUT TIPTERM:
commands, EXECUTING A TQL PROGRAM TQL:
commands, IDA COMMANDS IDA:
commands, OS/3 CONSOLE OPERATION opr
compile, COMPILE BASIC PROGRAM BASIC:
copy, COPY ELEMENT TLIB:
copy, COPY IN STATEMENTS TB$INT:
count, COUNT RECORDS TQL:
count, ON-LINE DATA DISPLAY ODD:
cp, COMPILE BASIC PROGRAM WITH LISTING BASIC:
cp, COMPILE PROGRAM TQLMON:
cursor, CURSOR POSITIONING DCIO:

Page:
Section:

4
Index

KWIC INDEX

3.6.14
3.6.15
3.6.16
3.6.17
3.6.18
3.6.19
3.12.2

3.41.22
9.2.73
5.2.1
5.2.2

3.54
5.1.2

3.41.14
3.41.13

9.1
9.1

7.9.1
7.9.1

3.49.16
3. 4L 18
3.50.1

6.17
3.3

5.2.2
5.2.1

9.2.11
9.2.11

3.8
3.6.5

7.10.3
8.7.2
5.1.3

3.39.3
7.10.15

4.5
3.25.1

8.14
3.5.2

3.56.2
8.7.1
4.5.2

3.39.4
3.5.3
4.4.2

7.10.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

cursor, CURSOR RESTING LOCATION MSGAR:
Characters Special Characters, Special
Characters, Special Characters Special
Command Format, ON-LINE DATA DISPLAY
Compiler-Interpreter TIP/BASIC, Basic
CALL MACRO DOC: @Knn, INCREMENT AND
CALL Statment CALL
CALL TIPFCS - COMMON PARAMETERS TIPFCS: params
CALL, CALL Statment
CALLING MACROS DOC: @nn
CALLS FCS: summary, SUMMARY OF FCS
CANCEL UPDATE FCS-NOUP, DIRECT:
CANCEL UPDATE FCS-NOUP, INDEXED:
CARD FORMAT TJ$DOCS: param, TJ$DOCS PARAM
CARRIAGE RETURN DCIO: carret, GENERATE
CAT, CATALOGUE HINTS FOR TESTING PROGRAMS
CAT, CATALOGUE STATEMENT CONTINUATION
CAT, ON-LINE CATALOGUE MANAGER
CAT, TIP/30 CATALOGUE MANAGEMENT
CAT, UPDATING CATALOGUE RECORDS
CAT: file, CATALOGUING A FILE
CAT: list, LISTING CATALOGUE ENTRIES
CAT: prog, CATALOGUING A TRANSACTION
CAT: security, DEFINITION OF CATALOGUE GROUPS
CAT: security, SECURITY LEVEL SPECIFICATION
CAT: user, CATALOGUING A USER-ID
CATALOGUE BASIC: le, LIST BASIC PROGRAMS IN TIP
CATALOGUE ENTRIES CAT: list, LISTING
CATALOGUE FCS, TIPFCS AND THE TIP/30
CATALOGUE FILE LISTING TJ$LC
CATALOGUE GROUPS CAT: security, DEFINITION OF
CATALOGUE HINTS FOR TESTING PROGRAMS CAT
CATALOGUE INITIALIZATION SAMPLE TB$INT: sample
CATALOGUE LIST PROGRAM PARAMETERS TJ$LC: params
CATALOGUE MANAGEMENT CAT, TIP/30
CATALOGUE MANAGER CAT, ON-LINE
CATALOGUE RECORDS CAT, UPDATING
CATALOGUE STATEMENT CONTINUATION CAT
CATALOGUING A FILE CAT: file
CATALOGUING A TRANSACTION CAT: prog
CATALOGUING A USER-ID CAT: user
CBRT Predefined Function CBRT
CBRT, CBRT Predefined Function
CC, COBOL REFORMATTER (CONVERSION AID)
CCA, COMMUNICATIONS CONTROL AREA DISPLAY
CENTRE) DOC: @Cnn, END OF LINE (QUAD
CHAIN Statement CHAIN
CHAIN, CHAIN Statement
CHANGE AND INSERT QED: c
CHANGE COMMAND DELIMITER DOC: @-c

KWIC INDEX Page:
Section:

INDEX

3.34.1
9.2.56
9.2.56
3.39.1

9.2
3.18.23

9.2.5
6.6

9.2.5
3.18.13

6.4
6.9.9

6.8.11
8.11.1
7.10.3
3.7.7
3.7.9
3.7.1

3.7
3.7.8
3.7.6

3.7.10
3.7.5
3.7.3
3.7.2
3.7.4
3.5.8

3.7.10
6.2

8.12
3. 7. 3
3.7.7
8.7.3

8.12.1
3.7

3.7.1
3.7.8
3.7.9
3.7.6
3.7.5
3.7.4
9.2.6
9.2.6

3.8
3.8.1

3.18.16
9.2.7
9.2.7

3.41.12
3.18.8

5
Index

INDEX

CHANGE DIAL-UP LINE TELEPHONE NUMBER TIPTERM: phone
CHANGE IN USERID AT TERMINAL NEWUSER, SPECIFY
CHANGE QED: Exercise 7, EXERCISE 7:
CHANGE SCREEN ROLL MODE BASIC: mode
CHANGE TQL, ALLOWING FIELDS TO
CHAPTER I - INTRODUCTION
CHAPTER II - FUNDAMENTAL CONCEPTS CONCEPTS
CHAPTER III - ON-LINE UTILITY PROGRAMS UTILITIES
CHAPTER IV - APPLICATIONS DEVELOPMENT SYSTEMS TQL
CHAPTER IX - APPENDICES
CHAPTER V - PROGRAM CONTROL SYSTEM PCS
CHAPTER VI - FILE CONTROL SYSTEM FCS
CHAPTER VII - MESSAGE CONTROL SYSTEM MCS
CHAPTER VIII - SYSTEM MAINTENANCE TIPGEN
CHARACTER DISPLAY DD, DDU, UPDATING A
CHARACTER QED: ., MATCHING ANY
CHARACTER, DOUBLE QUOTE QED: ", QED CONTROL
CHARACTERS DCIO: fee, GENERATE FIELD CONTROL
CHECK FOR OPERATOR BREAK BREAK
CHR$ Predefined Function CHR$
CHR$, CHR$ Predefined Function
CLK$ Predefined Function CLK$
CLK$, CLK$ Predefined Function
CLOSE FCS-CLOSE, EDIT:
CLOSE FILE FCS-CLOSE, DIRECT:
CLOSE FILE FCS-CLOSE, DYN:
CLOSE FILE FCS-CLOSE, INDEXED:
CLOSE FILE FCS-CLOSE, SEQ:
CLOSE LIBRARY FCS-CLOSE, LIB: .
CLOSE LIBRARY; ABORT OUTPUT FCS-NOUP, LIB:
CLOSE ON-LINE FILE FCLOSE, PHYSICALLY
CLOSE Statement CLOSE
CLOSE, CLOSE Statement
CLUSTER DEFINITION CLUSTER
CLUSTER, CLUSTER DEFINITION
COBOL COPY BOOKS COPY BOOKS, DIRECTORY OF
COBOL COPY ELEMENT TC-FCS, FCS
COBOL REFORMATTER (CONVERSION AID) CC
COBOL-68 TIP PROGRAM TJ$COB68, COMPILE
COBOL-74 TIP PROGRAM TJ$COB74, COMPILE
CODE TO AUX PRINTER TIPCOP, SEND PRINT
CODES, ASSEMBLER FCS FUNCTIONS AND STATUS
CODES, COMMON TIPFCS FUNCTIONS AND STATUS
COLUMN DOC: @Ann, SPACE TO ABSOLUTE
COLUMN SCALE QED: 0#, DISPLAYING A
COMMAND and FUNCTION SUMMARY QED: summary
COMMAND DELIMITER DOC: @-c, CHANGE
COMMAND EXAMPLES IDA: exrnaples, IDA
COMMAND LANGUAGE BCP, BCP
COMMAND LINE COMMAND LINE, TIP/30

KWIC INDEX

7.10.19
3.37

3.41.42
3.5.9
4.2.3

1.
2.
3.
4.
9.
5.
6.
7.
8.

3.12.9
3.41.30
3.41.2
7.10.7
7.9.1
9.2.8
9.2.8
9.2.9
9.2.9

6.17.2
6.9.3

6.11.3
6.8.3

6.10.1
6.16.2
6.16.4

3.20
9.2.10
9.2.10
8.3.3
8.3.3

9.1
6.13
3.8
8.9

8.10
7.9.11

6.15
6.14

3.18.14
3.41.26
3.41.34
3.18.8
3.25.2
3.6.3

2.3

Page:
Section:

6
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

KWIC INDEX

COMMAND LINE FORMAT ODD, ODD
COMMAND LINE, TIP/30 COMMAND LINE
COMMAND PROCESSOR BCP, BATCH TERMINAL
COMMAND QED: a, ADDING TEXT; THE ADD
COMMAND QED: p, DISPLAYING LINES; THE PRINT
COMMAND QED: s, MODIFYING TEXT; THE SUBSTITUTE
COMMANDS AND LINE NUMBERS QED, SUMMARY OF
COMMANDS BCP, SUMMARY OF BCP
COMMANDS DOC, SUMMARY OF IMBEDDED
COMMANDS IDA: commands, IDA
COMMANDS QED: g, GLOBAL
COMMANDS TB$INT: cat, USER, PROGRAM, FILE
COMMON PARAMETERS TIPFCS: params, CALL TIPFCS -
COMMON TIPFCS FUNCTIONS AND STATUS CODES
COMMUNICATIONS CONTROL AREA DISPLAY CCA
COMMUNICATIONS I/0 Direct I/0, DIRECT
COMPILE BASIC PROGRAM BASIC: compile
COMPILE BASIC PROGRAM WITH LISTING BASIC: cp
COMPILE COBOL-68 TIP PROGRAM TJ$COB68
COMPILE COBOL-74 TIP PROGRAM TJ$COB74
COMPILE FILE/RECORD TQLMON: c
COMPILE PROGRAM TQLMON: cp
COMPILER BASIC, TIP/30 BASIC INTERPRETER -
COMPILER STRUCTURE (BCOMP) BCOMP
COMPOSITION STATUS DOC: @U, SAVE
COMPOSITION STATUS DOC: @V, RESTORE
COMPUTER OPERATOR A MESSAGE BCP: msg, SEND
CONCEPTS CONCEPTS, CHAPTER II - FUNDAMENTAL
CONCEPTS GLOSSARY, TIP/30 GLOSSARY OF TERMS AND
CONCEPTS, CHAPTER II - FUNDAMENTAL CONCEPTS
CONSIDERATIONS BCP: icam, !CAM GENERATION
CONSIDERATIONS DOC, ADDITIONAL
CONSIDERATIONS FCS, FCS DEADLOCK
CONSIDERATIONS QED, REGULAR EXPRESSION
CONSIDERATIONS SPL: security, SPL SECURITY
CONSOLE MESSAGES messages
CONSOLE OPERATION opr commands, OS/3
CONTENTS DOC: @Qnn •.. ", DEFINING MACRO
CONTENTS DOC: @Y, LOG LINE IN TABLE OF
CONTENTS DOC: @z, SEQUENTIAL TABLE OF
CONTENTS PMDA: display, DISPLAY MEMORY
CONTENTS SPL: summary, SUMMARIZE SPOOL QUEUE
CONTENTS TOC, TABLE OF
CONTENTS VTOC, DISK VOLUME TABLE OF
CONTEXT SEARCHING QED
CONTEXT SEARCHING QED: Exercise 6, EXERCISE 6:
CONTINUATION CAT, CATALOGUE STATEMENT
CONTINUITY DATA AREA PCS: cda
CONTROL AREA DISPLAY CCA, COMMUNICATIONS
CONTROL BLOCK DISPLAY TCB, TASK

KWIC INDEX Page:
Section:

INDEX

3.39.12
2.3
3.6

3. 41. 5
3. 41. 6
3. 41. 9

3.41.33
3.6.1

3.18.3
3.25.1

3.41.15
8.7.2

6.6
6.14

3.8.1
7.10

3.5.2
3.5.3

8.9
8.10

4.4.1
4.4.2

3.5
9.2.72

3.18.32
3.18.33
3.6.12

2.
1. 5

2.
3.6.21
3.18.2
6.3.5

3.41_.32
3.49.1

8.15
8.14

3.18.28
3.18.36
3.18.37
3.40.1

3.49.15
1.4

3.58
3.41.10
3.41.41

3.7.9
5 .1. 3
3.8.1
3.54

7
Index

- --~---------~----------------------------------

INDEX

CONTROL CHARACTER, DOUBLE QUOTE QED: ", QED
CONTROL CHARACTERS DCIO: fee, GENERATE FIELD
CONTROL FILE HEADER TQLMON: u, UPDATE
CONTROL OPTIONS TIP: exec, RUN TIME JOB
CONTROL PAGE CPAGE, SET U400
CONTROL PAGE TIPCPAGE, SET UTS-400
CONTROL SUBMITTOR JCL, INTERACTIVE JOB
CONTROL SYSTEM FCS, CHAPTER VI - FILE
CONTROL SYSTEM FCS, FILE
CONTROL SYSTEM INTERFACE PACKETS, FILE
CONTROL SYSTEM MCS, CHAPTER VII - MESSAGE
CONTROL SYSTEM MCS, MESSAGE
CONTROL SYSTEM MCS400, UTS-400 MESSAGE
CONTROL SYSTEM OVERVIEW, FILE
CONTROL SYSTEM OVERVIEW, MESSAGE
CONTROL SYSTEM PCS, CHAPTER V - PROGRAM
CONTROL SYSTEM PCS, PROGRAM
CONTROL SYSTEM WORKAREA PCS: mes, MESSAGE
CONTROL TERMINAL INPUT TIPTERM: cntrl
CONTROL TIPXCTL, TRANSFER
CONVERT 32 BITS TO 32 BYTES TIPBYTES
CONVERT 32 BYTES TO 32 BITS TIPBITS
COPY AND INITIALIZATION TB$JRN, JOURNAL FILE
COPY BOOKS COPY BOOKS, DIRECTORY OF COBOL
COPY BOOKS, DIRECTORY OF COBOL COPY BOOKS
COPY DUMP PMDA: print, PRINT HARD
COPY ELEMENT TC-FCS, FCS COBOL
COPY ELEMENT TLIB: copy
COPY IN STATEMENTS TB$INT: copy
COPY LISTING TLIB: print, PRINT HARD
COPY QED: k, COPYING BLOCKS OF TEXT;
COPYING BLOCKS OF TEXT; COPY QED: k
COS Predefined Function COS
COS, COS Predefined Function
COSH Predefined Function COSH
COSH, COSH Predefined Function
COUNT RECORDS TQL: count
CPAGE, SET U400 CONTROL PAGE
CRASH, ABNORMAL TIP/30 SHUTDOWN
CREATE A DYNAMIC FILE CREATE
CREATE AN ASYNCHRONOUS PROCESS TIPFORK
CREATE FILE PCS-CREATE, DYN:
CREATE.INPUT READER SPOOL BCP: in
CREATE JCL FOR FILES ON VOLUME VTOC: write
CREATE SCREEN FORMATS TQLMON: m
CREATE, CREATE A DYNAMIC FILE
CROSS ASSEMBLER UTSASM, ON-LINE 8080
CURRENT LINE
CURRENT LINE NUMBER QED: >n, SAVE THE
CURRENT LINE QED: dot, THE

Page:
Section:

8
Index

KWIC INDEX

3.41.2
7.10.7
4.4.12

8.4
3.9

7.9.12
3.27

6.
6.1
6.7

7.
7.1

3.17
1.6.2
1.6.1

5.
5.1

5.1.4
7.10.15

5.13
5.2.2
5.2.1

8.8
9.1
9.1

3.40.3
6.13

3.56.2
8.7.1

3.56.8
3.41.14
3.41.14
9.2.12
9.2.12
9.2.13
9.2.13
4.5.2

3.9
3.10
3.11
5.7

6.11.4
3.6.9

3.58.10
4.4.7

3.11
3.57
3.45

3.41.27
3.41.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

KWIC INDEX

CURRENT LINE, LINE NUMBER OF
CURRENT PAGE NUMBER DOC: @P, RETRIEVE
CURRENT RECORD DD, DDU, PAGING THROUGH THE
CURRENTLY DISPLAYED DD, DDU, UPDATING THE RECORD
CURSOR POSITIONING DCIO: cursor
CURSOR RESTING LOCATION MSGAR: cursor
CURSOR TO LAST POSITION & TRANSMIT TIPMSGRV

- D -

dbms, DATA BASE MANAGEMENT INTERFACE FCS:
dbs/90, DBS/90 - IXF??? FCS:
delete, DELETE BASIC OBJECT FILE BASIC:
delete, DELETE ELEMENT TLIB:
delete, DELETE FUNCTION DCIO:
delete, DELETE RECORD TQL:
delete, DELETE SCREEN FORMAT MSGAR:
delete, DELETE SPOOL SUB-FILE SPL:
delete, DELETING PRINT FILE BCP:
delete, ON-LINE DATA DISPLAY ODD:
descriptor, FILE DESCRIPTOR PACKET FCS:
direct, 'TIPFCS' FOR DIRECT ACCESS FILES FCS:
directory, DIRECTORY OF SCREEN FORMATS MSGAR:
disc, DISCONNECT DIAL-UP LINE TIPTERM:
display, DISPLAY DEFINITION TQL:
display, DISPLAY FILE INFORMATION VTOC:
display, DISPLAY MEMORY CONTENTS PMDA:
display, ON-LINE DATA DISPLAY ODD:
display, PRODUCE A DISPLAY TQL:
dll, DOWN LINE LOADED DISPLAY MANAGEMENT MCS:
dms/90, DMS/90 - XR7DMS FCS:
dot, THE CURRENT LINE QED:
dp, DELETE PROGRAM TQLMON:
dynamic, DYNAMIC FCS FILES FCS:
Direct I/0, DIRECT COMMUNICATIONS I/0
DAT$ Predefined Function DAT$
DAT$, DAT$ Predefined Function
DATA AREA PCS: cda, CONTINUITY
DATA AREA PCS: gda, GLOBAL
DATA BASE FCS: total, TOTAL
DATA BASE MANAGEMENT INTERFACE FCS: dbms
DATA DISPLAY Command Format, ON-LINE
DATA DISPLAY ODD, ON-LINE
DATA DISPLAY ODD: add, ON-LINE
DATA DISPLAY ODD: close, ON-LINE
DATA DISPLAY ODD: count, ON-LINE
DATA DISPLAY ODD: delete, ON-LINE
DATA DISPLAY ODD: display, ON-LINE
DATA DISPLAY ODD: list, ON-LINE

KWIC INDEX Page:
Section:

INDEX

3.45.2
3.18.27
3.12.6
3.12.8
7.10.4
3.34.1

7.8

6.19
6.19.2
3.5.4

3.56.3
7.10.5
4.5.6

3.34.2
3.49.5
3.6.6

3.39.5
6.7.2

6.9
3.34.3

7.10.16
4.2.8

3.58.1
3.40.1
3.39.6
4.5.1

7.3
6.19.1
3.41.7
4.4.4

6.11
7.10

9.2.14
9.2.14
5.1.3
5.1.6

6.18
6.19

3.39.1
3.39

3.39.2
3.39.3
3.39.4
3.39.5
3.39.6
3.39.7

9
Index

INDEX

DATA DISPLAY ODD: next, ON-LINE
DATA DISPLAY ODD: print, ON-LINE
DATA DISPLAY ODD: show, ON-LINE
DATA DISPLAY ODD: update, ON-LINE
DATA FILE TO HOST BCP: receive, SEND
DATA FILE TO TERMINAL BCP: send, SEND
DATA Statement DATA
DATA, DATA Statement
DATE TIPDATE, TODAY'S
DBS/90 - IXF??? FCS: dbs/90
DCIO: carret, GENERATE CARRIAGE RETURN
DCIO: cursor, CURSOR POSITIONING
DCIO: delete, DELETE FUNCTION
DCIO: erase, ERASE FUNCTION
DCIO: fee, GENERATE FIELD CONTROL CHARACTERS
DCIO: insert, INSERT FUNCTION
DCIO: pref ix, INPUT AND OUTPUT MESSAGE FORMAT
DCIO: roll, ROLL THE SCREEN
DCIO: scan, SCAN FUNCTION
DCIO: status, AUXILIARY DEVICE I/0 DELIVERY STATUS
DCIO: tab, TAB FUNCTIONS
DCIO: tipterm, TIPTERM FUNCTIONS
DCIO: xmit, TRANSMIT FUNCTION
DD & DDU DD, DDU, INTERACTION WITH
DD & DDU DD, DDU, TERMINATING
DD, DDU, FUNCTION KEY USAGE
DD, DDU, INTERACTION WITH DD & DDU
DD, DDU, ON-LINE DISK DISPLAY AND UPDATE
DD, DDU, PAGING THROUGH THE CURRENT RECORD
DD, DDU, POTENTIAL PROBLEMS
DD, DDU, RECORD PROTECTION
DD, DDU, SPECIFYING A RECORD OF A NON-INDEXED FILE
DD, DDU, SPECIFYING A RECORD OF AN INDEXED FILE
DD, DDU, SPECIFYING A RECORD TO BE DISPLAYED
DD, DDU, SPECIFYING DISPLAY MODES
DD, DDU, TERMINATING DD & DDU
DD, DDU, UPDATING A CHARACTER DISPLAY
DD, DDU, UPDATING A HEX DISPLAY
DD, DDU, UPDATING A MIXED DISPLAY
DD, DDU, UPDATING THE RECORD CURRENTLY DISPLAYED
DDU DD, DDU, INTERACTION WITH DD &
DDU DD, DDU, TERMINATING DD &
DDU, FUNCTION KEY USAGE DD,
DDU, INTERACTION WITH DD & DDU DD,
DDU, ON-LINE DISK DISPLAY AND UPDATE DD,
DDU, PAGING THROUGH THE CURRENT RECORD DD,
DDU, POTENTIAL PROBLEMS DD,
DDU, RECORD PROTECTION DD,
DDU, SPECIFYING A RECORD OF A NON-INDEXED FILE DD,
DDU, SPECIFYING A RECORD OF AN INDEXED FILE DD,

KWIC INDEX

3.39.8
3.39.9

3.39.10
3.39.11
3.6.16
3.6.18
9.2.15
9.2.15

5.3
6.19.2
7.10.3
7.10.4
7.10.5
7.10.6
7.10.7
7.10.8
7.10.1
7.10.9

7.10.10
7.10.2

7.10.11
7.10.14
7.10.12
3.12.1
3.12.7

3.12.13
3.12.1

3.12
3.12.6

3.12.14
3.12.12
3.12.4
3.12.3
3.12.2
3.12.5
3.12.7
3.12.9

3.12.10
3.12.11
3.12.8
3.12.1
3.12.7

3.12.13
3.12.l

3.12
3.12.6

3.12.14
3.12.12
3.12.4
3.12.3

Page:
Section:

10
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
KWIC INDEX

DDU, SPECIFYING A RECORD TO BE DISPLAYED DD,
DDU, SPECIFYING DISPLAY MODES DD,
DDU, TERMINATING DD & DDU DD,
DDU, UPDATING A CHARACTER DISPLAY DD,
DDU, UPDATING A HEX DISPLAY DD,
DDU, UPDATING A MIXED DISPLAY DD,
DDU, UPDATING THE RECORD CURRENTLY DISPLAYED DD,
DEACCESS A FILE FREE
DEADLOCK CONSIDERATIONS FCS, FCS
DEBUG AID IDA, INTERACTIVE
DEBUG, SET FILE IN TEST MODE
DEBUGGING OVERVIEW, PROGRAM TESTING AND
DEFINE FUNCTION KEYS DEFKEY
DEFINING A TQL PROGRAM TQL: program
DEFINING MACRO CONTENTS DOC: @Qnn ... "
DEFINITION CLUSTER, CLUSTER
DEFINITION DOC, EXAMPLE OF MACRO USE AND
DEFINITION FILE, FILE
DEFINITION MSGDEF, MESSAGE
DEFINITION Negative Fields, MESSAGE
DEFINITION.OF CATALOGUE GROUPS CAT: security
DEFINITION TIPGEN, TIPGEN
DEFINITION TQL: display, DISPLAY
DEFINITION TQL: file, FILE
DEFINITION TQL: record, RECORD
DEFINITION TQL: report, REPORT
DEFKEY, DEFINE FUNCTION KEYS
DELETE
DELETE BASIC OBJECT FILE BASIC: delete
DELETE ELEMENT TLIB: delete
DELETE PCS-DELETE, EDIT:
DELETE FILE/RECORD TQLMON: d
DELETE FUNCTION DCIO: delete
DELETE PROGRAM TQLMON: dp
DELETE RECORD PCS-DELETE, DIRECT:
DELETE RECORD FCS-DELETE, INDEXED:
DELETE RECORD TQL: delete
DELETE SCREEN FORMAT MSGAR: delete
DELETE SPOOL SUB-FILE SPL: delete
DELETING LINES QED: d
DELETING PRINT FILE BCP: delete
DELIMITER DOC: @-c, CHANGE COMMAND
DELIVERY STATUS DCIO: status, AUXILIARY DEVICE I/0
DESCRIPTION OF THE TIP/BASIC LANGUAGE
DESCRIPTOR FCS: libraries, LIBRARY FILE
DESCRIPTOR PACKET FCS: descriptor, FILE
DETACH ALTERNATE TERMINAL TIPDETCH
DEVELOPMENT SYSTEMS TQL, CHAPTER IV - APPLICATIONS
DEVICE I/0 DELIVERY STATUS DCIO: status, AUXILIARY
DEVICE USAGE STATUS: d, DISK

KWIC INDEX Page:
Section:

INDEX

3.12.2
3.12.5
3.12.7
3.12.9

3.12.10
3.12.11
3.12.8

3.23
6.3.5

3.25
3.13

1.6.7
3.14

4.2.10
3.18.28

8.3.3
3.18.38

8.3.2
3.35

3.35.1
3.7.3
8.3.1
4.2.8
4.2.1
4.2.2
4.2.9

3.14
3.44.1
3.5.4

3.56.3
6.17.3
4.4.3

7.10.5
4.4.4
6.9.4
6.8.4
4.5.6

3.34.2
3.49.5
3.41.8
3.6.6

3.18.8
7.10.2
9.2.1

6.16.1
6.7.2

7.9.13
4.

7.10.2
3.50.2

11
Index

INDEX

DIAL-UP LINE TELEPHONE NUMBER TIPTERM: phone, CHANGE
DIAL-UP LINE TIPTERM: disc, DISCONNECT
DICTIONARY TQLINT, INITIALIZING TQL
DICTIONARY TQLMON, MAINTAINING TQL
DIE, ABORT A PROGRAM
DIGIT QED: #, MATCHING ANY
DIM Statement DIM
DIM, DIM Statement
DIRECT ACCESS FILES FCS: direct, 'TIPFCS' FOR
DIRECT COMMUNICATIONS I/0 Direct I/0
DIRECT EXECUTION OF BASIC PROGRAMS BASIC: run
DIRECT: ADD RECORD FCS-ADD
DIRECT: CANCEL UPDATE FCS-NOUP
DIRECT: CLOSE FILE FCS-CLOSE
DIRECT: DELETE RECORD FCS-DELETE
DIRECT: FLUSH FILE FCS-FLUSH
DIRECT: HOLD RESOURCE FCS-HOLD
DIRECT: MARK TRANSACTION END FCS-TREN
DIRECT: OPEN FILE FCS-OPEN
DIRECT: READ RECORD AND LOCK FCS-GETUP
DIRECT: READ RECORD FCS-GET
DIRECT: RELEASE RESOURCE FCS-RELEASE
DIRECT: ROLL BACK UPDATES FCS-BACK
DIRECT: UPDATE RECORD FCS-PUT
DIRECTORY OF COBOL COPY BOOKS COPY BOOKS
DIRECTORY OF SCREEN FORMATS MSGAR: directory
DISCONNECT DIAL-UP LINE TIPTERM: disc
DISK DEVICE USAGE STATUS: d
DISK DISPLAY AND UPDATE DD, DDU, ON-LINE
DISK VOLUME TABLE OF CONTENTS VTOC
DISPLAY ACTIVE FILE TABLE AFT
DISPLAY ACTIVE USERS WHOSON
DISPLAY ALL OS/3 JOB QUEUES JBQ: all
DISPLAY AND UPDATE DD, DDU, ON-LINE DISK
DISPLAY BASIC PROGRAM HELP INFORMATION BASIC: help
DISPLAY Command Format, ON-LINE DATA
DISPLAY CCA, COMMUNICATIONS CONTROL AREA
DISPLAY DD, DDU, UPDATING A CHARACTER
DISPLAY DD, DDU, UPDATING A HEX
DISPLAY DD, DDU, UPDATING A MIXED
DISPLAY DEFINITION TQL: display
DISPLAY FILE INFORMATION VTOC: display
DISPLAY FORMAT PREPARATION OVERVIEW
DISPLAY HELP INFORMATION ON TERMINAL JBQ: help
DISPLAY HELP INFORMATION TLIB: help
DISPLAY HELP INFORMATION VTOC: help
DISPLAY HIGH PRIORITY JOB QUEUE JBQ: high
DISPLAY MANAGEMENT MCS: dll, DOWN LINE LOADED
DISPLAY MEM, OS/3 MEMORY
DISPLAY MEMORY CONTENTS PMDA: display

KWIC INDEX

7.10.19
7.10.16

4.3
4.4

3.15
3.41.25
9.2.16
9.2.16

6.9
7.10

3.5.15
6.9.1
6.9.9
6.9.3
6.9.4
6.9.5
6.9.8

6.9.13
6.9.10
6.9.7
6.9.6

6.9.12
6.9.2

6.9.11
9.1

3.34.3
7.10.16
3.50.2

3.12
3.58
3.2

3.59
3.26.1

3.12
3.5.6

3.39.1
3.8.1

3.12.9
3.12.10
3.12.11

4.2.8
3.58.1
1.6.6

3.26.3
3.56.5
3.58.4
3.26.4

7.3
3.31

3.40.1

Page:
Section:

12
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

---------------------------------,~-''''''''"'"' _____ _

KWIC INDEX

DISPLAY MODES DD, DDU, SPECIFYING
DISPLAY NAMES TQL: show, SHOW SUMMARY OF
DISPLAY NEXT SCREENFULL TQL: next
DISPLAY NORMAL PRIORITY JOB QUEUE JBQ: normal
DISPLAY ODD, ON-LINE DATA
DISPLAY ODD: add, ON-LINE DATA
DISPLAY ODD: close, ON-LINE DATA
DISPLAY ODD: count, ON-LINE DATA
DISPLAY ODD: delete, ON-LINE DATA
DISPLAY ODD: display, ON-LINE DATA
DISPLAY ODD: list, ON-LINE DATA
DISPLAY ODD: next, ON-LINE DATA
DISPLAY ODD: print, ON-LINE DATA
DISPLAY ODD: show, ON-LINE DATA
DISPLAY ODD: update, ON-LINE DATA
DISPLAY OS/3 JOB QUEUE INFORMATION JBQ
DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE JBQ: pre-emptive
DISPLAY SPL PROGRAM HELP SPL: help
DISPLAY TCB, TASK CONTROL BLOCK
DISPLAY TIP/30 STATISTICS STATUS
DISPLAY TQL: display, PRODUCE A
DISPLAY USER HELP INFORMATION HELP
DISPLAY USER INFORMATION WMI
DISPLAY VTOC: sort, SORTED VTOC
DISPLAYED DD, DDU, SPECIFYING A RECORD TO BE
DISPLAYED DD, DDU, UPDATING THE RECORD CURRENTLY
DISPLAYING A COLUMN SCALE QED: 0#
DISPLAYING LINES; THE PRINT COMMAND QED: p
DISPLAYING PRINT FILE QUEUE BCP: queue
DLL, DOWN LINE LOAD UTILITY
DMS/90 - XR7DMS FCS: dms/90
DOC, ADDITIONAL CONSIDERATIONS
DOC, DOCUMENT GENERATOR
DOC, EXAMPLE OF MACRO USE AND DEFINITION
DOC, LIBRARY ERRORS
DOC, SUMMARY OF IMBEDDED COMMANDS
DOC: online, ONLINE DOCUMENT GENERATOR
DOC: @., PHYSICAL FORM FEED
DOC: @(, START MARGIN FLAGGING
DOC: @!n ; @Jn, SAVE PARAGRAPH NUMBER
DOC: @), STOP MARGIN FLAGGING
DOC: @-c, CHANGE COMMAND DELIMITER
DOC: @%f ile/elt, SWITCH INPUT TO FILE/ELEMENT
DOC: @_, START/STOP UNDERLINING
DOC: @?n, RECALL PARAGRAPH NUMBER
DOC: @nn, CALLING MACROS
DOC: @Ann, SPACE TO ABSOLUTE COLUMN
DOC: @B, GENERATE DOCUMENT INDEX
DOC: @Cnn, END OF LINE (QUAD CENTRE)
DOC: @Enn,mm, EJECT TO NEW PAGE

KWIC INDEX Page:
Section:

INDEX

3.12.5
4.5.8
4.5.4

3.26.6
3.39

3.39.2
3.39.3
3.39.4
3.39.5
3.39.6
3.39.7
3.39.8
3.39.9

3.39.10
3.39.11

3.26
3.26.7
3.49.7

3.54
3.50

4.5.1
3.24
3.60

3.58.8
3.12.2
3.12.8

3.41.26
3.41.6
3.6.15

3.16
6.19.1
3.18.2

3.18
3.18.38
3.18.40
3.18.3
3.18.1
3.18.4
3.18.5
3.18.6
3.18.7
3.18.8
3.18.9

3.18.10
3.18.11
3.18.13
3.18.14
3.18.15
3.18.16
3.18.17

13
Index

INDEX

DOC: @Fe, FLUSH LINE
DOC: @Gnn, SET PAGE LENGTH
DOC: @Hnn, HORIZONTAL SPACE
DOC: @Inn, SET INDENTATION (LEFT)
DOC: @J, JUSTIFY MODE
DOC: @Knn, INCREMENT AND CALL MACRO
DOC: @Lnn, END OF LINE (QUAD LEFT)
DOC: @Nnn, NOTATION (HANGING INDENT)
DOC: @O, START ODD OR EVEN PAGE
DOC: @P, RETRIEVE CURRENT PAGE NUMBER
DOC: @Qnn ... ", DEFINING MACRO CONTENTS
DOC: @Rnn, END OF LINE (QUAD RIGHT)
DOC: @Snn, SET LINE SPACING
DOC: @T, UNJUSTIFIED MODE
DOC: @U, SAVE COMPOSITION STATUS
DOC: @V, RESTORE COMPOSITION STATUS
DOC: @Wnn, SET LINE WIDTH
DOC: @Xn, INCREMENT PARAGRAPH NUMBER
DOC: @Y, LOG LINE IN TABLE OF CONTENTS
DOC: @Z, SEQUENTIAL TABLE OF CONTENTS
DOC: @0-@39, PREDEFINED MACROS 0-39
DOC: @@, GENERATE LITERAL AT-SIGN
DOCUMENT GENERATOR DOC
DOCUMENT GENERATOR DOC: online, ONLINE
DOCUMENT GENERATOR TJ$DOCS, THE BATCH
DOCUMENT INDEX DOC: @B, GENERATE
DOCUMENT PREPARATION OVERVIEW
DOUBLE QUOTE QED: ", QED CONTROL CHARACTER,
DOWN LINE LOAD UTILITY DLL
DOWN LINE LOADED DISPLAY MANAGEMENT MCS: dll
DUMP ANALYSIS PMDA, POST MORTEM
DUMP FILE PMDA: quit, END PMDA AND SCRATCH
DUMP PMDA: print, PRINT HARD COPY
DUMP TIPDUMP, FORCE PROGRAM
DYN: ACCESS FILE FCS-ACCESS
DYN: ASSIGN FILE PCS-ASSIGN
DYN: CLOSE FILE FCS-CLOSE
DYN: CREATE FILE PCS-CREATE
DYN: OPEN FILE FCS-OPEN
DYN: READ RECORD{S) FCS-GET
DYN: SCRATCH FILE FCS-SCRATCH
DYN: WRITE RECORD(S) FCS-PUT
DYNAMIC FCS FILES FCS: dynamic
DYNAMIC FILE CREATE, CREATE A
DYNAMIC FILE SCRATCH, SCRATCH A

Page:
Section:

14
Index

KWIC INDEX

3.18.18
3.18.19
3.18.20
3.18.21
3.18.22
3.18.23
3.18.24
3.18.25
3.18.26
3.18.27
3.18.28
3.18.29
3.18.30
3.18.31
3.18.32
3.18.33
3.18.34
3.18.35
3.18.36
3.18.37
3.18.39
3.18.12

3.18
3.18.1

8.11
3.18.15

1.6.8
3.41.2

3.16
7.3

3.40
3.40.4
3.40.3

5.4
6.11.1
6.11.2
6.11.3
6.11.4
6.11.6
6.11.5
6.11.8
6.11.7

6.11
3.11
3.47

TIP/30 Reference Manual
Version 2.5 {82/08/01)

KWIC INDEX

<expression> <expression>
<expression>, <expression>

- E -

edit, 'TIPFCS' FOR EDIT BUFFERS FCS:
end, END INTERACTION WITH JBQ PROGRAM JBQ:
end, END MESSAGE ARCHIVER MSGAR:
end, END PMDA PROGRAM PMDA:
end, END SESSION TQL:
end, END SPL PROGRAM SPL:
end, END TLIB PROGRAM TLIB:
end, END VTOC PROGRAM VTOC:
end, TERMINATE THE BASIC MONITOR BASIC:
erase, ERASE FUNCTION DCIO:
errors, ERROR MESSAGES QED:
errors, RUN-TIME MONITOR ERROR MESSAGES
exec, RUN TIME JOB CONTROL OPTIONS TIP:
exmaples, IDA COMMAND EXAMPLES IDA:
Exercise 1, EXERCISE 1: APPEND, QUIT, WRITE QED:
Exercise 2, EXERCISE 2: APPEND, PRINT QED:
Exercise 3, EXERCISE 3: READ, PRINT, APPEND QED:
Exercise 4, EXERCISE 4: ADD, READ, PRINT, WRITE QED:
Exercise 5, EXERCISE 5: SUBSTITUTE QED:
Exercise 6, EXERCISE 6: CONTEXT SEARCHING QED:
Exercise 7, EXERCISE 7: CHANGE QED:
EBC Predefined Function EBC
EBC, EBC Predefined Function
EDIT A NEW BASIC PROGRAM BASIC: new
EDIT BUFFER SPL: write, WRITE SPOOL FILE TO
EDIT BUFFER TO A FILE/ELEMENT QED: w, WRITING AN
EDIT BUFFERS FCS: edit, 'TIPFCS' FOR
EDIT EXISTING BASIC PROGRAM BASIC: old
EDIT SESSION: QUIT / END QED: q, e, END OF
EDIT TIPFCER, FILE ERROR
EDIT: ADD FCS-ADD
EDIT: CLOSE FCS-CLOSE
EDIT: DELETE FCS-DELETE
EDIT: FLUSH FCS-FLUSH
EDIT: GET FCS-GET
EDIT: OPEN FCS-OPEN
EDIT: PUT FCS-PUT
EDIT: SCRATCH FCS-SCRATCH
EDITOR QED, TIP/30 TEXT
EDITOR RPG, RPG
EJECT TO NEW PAGE DOC: @Enn,mm
ELEMENT ON TERMINAL TLIB: list, LIST
ELEMENT TC-FCS, FCS COBOL COPY
ELEMENT TLIB: copy, COPY
ELEMENT TLIB: delete, DELETE
ELEMENT TLIB: punch, PUNCH

KWIC INDEX Page:
Section:

INDEX

9.2.22
9.2.22

6.17
3.26.2
3.34.4
3.40.2
4.5.10
3.49.6
3.56.4
3.58.2
3.5.5

7.10.6
3. 41. 3
9.2.74

8.4
3.25.2

3.41.36
3.41.37
3.41.38
3.41.39
3.41.40
3.41.41
3.41.42
9.2.17
9.2.17
3.5.10

3.49.16
3.41.18

6.17
3.5.11

3.41.19
5.5

6.17.1
6.17.2
6.17.3
6.17.4
6.17.5
6.17.6
6.17.7
6.17.8

3.41
3.43

3.18.17
3.56.7

6.13
3.56.2
3.56.3
3.56.9

15
Index

INDEX

END FCS-TREN, DIRECT: MARK TRANSACTION
END FCS-TREN, INDEXED: MARK TRANSACTION
END INTERACTION WITH JBQ JBQ: quit
END INTERACTION WITH JBQ PROGRAM JBQ: end
END MESSAGE ARCHIVER MSGAR: end
END OF A LINE QED: $, MATCHING AT THE
END OF EDIT SESSION: QUIT I END QED: q, e
END OF LINE (QUAD CENTRE) DOC: @Cnn
END OF LINE (QUAD LEFT) DOC: @Lnn
END OF LINE (QUAD RIGHT) DOC: @Rnn
END ONLINE PROGRAM TIPRTN
END PMDA AND SCRATCH DUMP FILE PMDA: quit
END PMDA PROGRAM PMDA: end
END QED: q, e, END OF EDIT SESSION: QUIT I
END Statement END
END Statement IF END, IF
END SEQUENTIAL PROCESSING FCS-ESETL, INDEXED:
END SESSION TQL: end
END SPL PROGRAM AND LOGOFF SPL: quit
END SPL PROGRAM SPL: end
END TLIB PROGRAM TLIB: end
END VTOC PROGRAM AND LOGOFF VTOC: quit
END VTOC PROGRAM VTOC: end
END, END Statement
END, IF END Statement IF
ENDIF Statement ENDIF
ENDIF, ENDIF Statement
ENQUIRY SPL, SPOOL FILE
ENTERING RPG
ENTRIES CAT: list, LISTING CATALOGUE
EOJ, NORMAL TIP/30 SHUTDOWN
ERASE FUNCTION DCIO: erase
ERROR EDIT TIPFCER, FILE
ERROR MESSAGE TIPMSGE, SEND AN
ERROR MESSAGES
ERROR MESSAGES errors, RUN-TIME MONITOR
ERROR MESSAGES QED: errors
ERRORS DOC, LIBRARY
EVEN PAGE DOC: @0, START ODD OR
EXAMPLE OF MACRO USE AND DEFINITION DOC
EXAMPLE, TIP/30 GENERATION JCL
EXAMPLES IDA: exmaples, IDA COMMAND
EXECUTING A TQL PROGRAM TQL: commands
EXECUTION BCP: call, USER PROGRAM
EXECUTION OF BASIC PROGRAMS BASIC: run, DIRECT
EXECUTION TIME WORK FILES workf iles
EXERCISE 1: APPEND, QUIT, WRITE QED: Exercise 1
EXERCISE 2: APPEND, PRINT QED: Exercise 2

KWIC INDEX

6.9.13
6.8.18
3.26.8
3.26.2
3.34.4

3.41.23
3.41.19
3.18.16
3.18.24
3.18.29

5.8
3.40.4
3.40.2

3.41.19
9.2.18
9.2.29
6.8.5

4.5.10
3.49.13
3.49.6
3.56.4
3.58.7
3.58.2
9.2.18
9.2.29
9.2.19
9.2.19

3.49
3.43.1
3.7.10

3.19
7.10.6

5.5
7.6

3.44
9.2.74
3.41.3

3.18.40
3.18.26
3.18.38

8.3.5
3.25.2

4.5
3.6.5

3.5.15

EXERCISE 3: READ, PRINT, APPEND QED: Exercise 3
EXERCISE 4: ADD, READ, PRINT, WRITE QED: Exercise 4

8.2
3.41.36
3.41.37
3.41.38
3.41.39

Page:
Section:

16
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

EXERCISE 5: SUBSTITUTE QED: Exercise 5
EXERCISE 6: CONTEXT SEARCHING QED: Exercise 6
EXERCISE 7: CHANGE QED: Exercise 7
EXISTING BASIC PROGRAM BASIC: old, EDIT
EXITFOR Statement EXITFOR
EXITFOR, EXITFOR Statement
EXP Predefined Function EXP
EXP, EXP Predefined Function
EXPRESSION CONSIDERATIONS QED, REGULAR

- F -

'FCS' FOR LIBRARY FILES FCS: libraries
fee, GENERATE FIELD CONTROL CHARACTERS DCIO:
file-pkt, LOGICAL FILE NAME PACKET FCS:
file, CATALOGUING A FILE CAT:
file, FILE DEFINITION TQL:
fin, TERMINATING BCP BCP:
fnkeys, SPL FUNCTION KEY USE SPL:
fork, BACKGROUND PROGRAMS BCP:
free, ALLOW FREE TERMINAL INPUT TIPTERM:
free, FREE SPACE ON VOLUME VTOC:
function keys, USE OF FUNCTION KEYS TQL:
Fields, MESSAGE DEFINITION Negative
Format, ON-LINE DATA DISPLAY Command
Function ABS, ABS Predefined
Function ASC, ASC Predefined
Function ATN, ATN Predefined
Function CBRT, CBRT Predefined
Function CHR$, CHR$ Predefined
Function CLK$, CLK$ Predefined
Function COS, COS Predefined
Function COSH, COSH Predefined
Function DAT$, DAT$ Predefined
Function EBC, EBC Predefined
Function EXP, EXP Predefined
Function INT, INT Predefined
Function LEFT$, LEFT$ Predefined
Function LEN, LEN Predefined
Function LOG, LOG Predefined
Function LOGlO, LOGlO Predefined
Function MID$, MID$ Predefined
Function POS, POS Predefined
Function RIGHT$, RIGHT$ Predefined
Function RND, RND Predefined
Function SEG$, SEG$ Predefined
Function SGN, SGN Predefined
Function SIN, SIN Predefined
Function SINH, SINH Predefined

KWIC INDEX Page:
Section:

INDEX

3.41.40
3.41.41
3.41.42
3.5.11
9.2.20
9.2.20
9.2.21
9.2.21

3.41.32

6.16
7.10.7
6.7.1
3.7.6
4.2.1
3.6.7

3.49.4
3.6.8

7.10.17
3.58.3
4.5.12
3.35.1
3.39.1
9.2.2
9.2.3
9.2.4
9.2.6
9.2.8
9.2.9

9.2.12
9.2.13
9.2.14
9.2.17
9.2.21
9.2.31
9.2.32
9.2.33
9.2.36
9.2.37
9.2.38
9.2.42
9.2.50
9.2.51
9.2.52
9.2.53
9.2.54
9.2.55

17
Index

INDEX

Function SQR, SQR Predefined
Function STR$, STR$ Predefined
Function TAB, TAB Predefined
Function TAN, TAN Predefined
Function TRM$, TRM$ Predefined
Function USR$, USR$ Predefined
Function VAL, VAL Predefined
FAST LOAD INDEX STATUS: f
FCLOSE, PHYSICALLY CLOSE ON-LINE FILE
FCS CALLS FCS: summary, SUMMARY OF
FCS COBOL COPY ELEMENT TC-FCS
FCS DEADLOCK CONSIDERATIONS FCS
FCS FILES FCS: dynamic, DYNAMIC
FCS FUNCTIONS AND STATUS CODES, ASSEMBLER
FCS-ACCESS, DYN; ACCESS FILE
FCS-ADD, DIRECT: ADD RECORD
FCS-ADD, EDIT: ADD
FCS-ADD, INDEXED: ADD RECORD TO FILE
FCS-ASSIGN, DYN: ASSIGN FILE
FCS-BACK, DIRECT: ROLL BACK UPDATES.
FCS-BACK, INDEXED: ROLL BACK UPDATES
FCS-CLOSE, DIRECT: CLOSE FILE
FCS-CLOSE, DYN: CLOSE FILE
FCS-CLOSE, EDIT: CLOSE
FCS-CLOSE, INDEXED: CLOSE FILE
FCS-CLOSE, LIB: CLOSE LIBRARY
FCS-CLOSE, SEQ: CLOSE FILE
FCS-CREATE, DYN: CREATE FILE
FCS-DELETE, DIRECT: DELETE RECORD
FCS-DELETE, EDIT: DELETE
FCS-DELETE, INDEXED: DELETE RECORD
FCS-ESETL, INDEXED: END SEQUENTIAL PROCESSING
FCS-FLUSH, DIRECT: FLUSH FILE
FCS-FLUSH, EDIT: ~LUSH
FCS-FLUSH, INDEXED: FLUSH FILE
FCS-GET, DIRECT: READ RECORD
FCS-GET , DYN": READ RECORD (S)
FCS-GET, EDIT: GET
FCS-GET, INDEXED: READ RECORD
FCS-GET, LIB: READ RECORD
FCS-GET, SEQ: READ RECORD
FCS-GETUP, DIRECT: READ RECORD AND LOCK
FCS-GETUP, INDEXED: READ RECORD AND LOCK
FCS-HOLD, DIRECT: HOLD RESOURCE
FCS-HOLD, INDEXED: HOLD RESOURCE
FCS-NEXT, INDEXED: GET NEXT RECORD
FCS-NOUP, DIRECT: CANCEL UPDATE
FCS-NOUP, INDEXED: CANCEL UPDATE
FCS-NOUP, LIB: CLOSE LIBRARY; ABORT OUTPUT
FCS-OPEN, DIRECT: OPEN FILE

Page:
Section:

18
Index

KWIC INDEX

9.2.57
9.2.61
9.2.64
9.2.65
9.2.67
9.2.68
9.2.69
3.50.3

3.20
6.4

6.13
6.3.5

6.11
6.15

6.11.l
6.9.1

6.17.1
6.8.1

6.11.2
6.9.2
6.8.2
6.9.3

6.11.3
6.17.2
6.8.3

6.16.2
6.10.l
6.11.4
6.9.4

6.17.3
6.8.4
6.8.5
6.9.5

6.17.4
6.8.6
6.9.6

6.11.5
6.17.5
6.8.7

6.16.3
6.10.2
6.9.7
6.8.8
6.9.8
6.8.9

6.8.10
6.9.9

6.8.11
6.16.4
6.9.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

FCS-OPEN, DYN: OPEN FILE
FCS-OPEN, EDIT: OPEN
FCS-OPEN, INDEXED: OPEN FILE
FCS-OPEN, LIB: OPEN LIBRARY
FCS-OPEN, SEQ: OPEN FILE
FCS-PUT, DIRECT: UPDATE RECORD
FCS-PUT, DYN: WRITE RECORD(S)
FCS-PUT, EDIT: PUT
FCS-PUT, INDEXED: UPDATE RECORD
FCS-PUT, LIB: WRITE RECORD
FCS-PUT, SEQ: OUTPUT RECORD
FCS-RELEASE, DIRECT: RELEASE RESOURCE
FCS-RELEASE, INDEXED: RELEASE RESOURCE
FCS-SCRATCH, DYN: SCRATCH FILE
FCS-SCRATCH, EDIT: SCRATCH
FCS-SETL-EQ, INDEXED: SET SEQUENTIAL MODE
FCS-SETL-GT, INDEXED: SET SEQUENTIAL MODE
FCS-SETL, INDEXED: SET SEQUENTIAL MODE
FCS-TREN, DIRECT: MARK TRANSACTION END
FCS-TREN, INDEXED: MARK TRANSACTION END
FCS, CHAPTER VI - FILE CONTROL SYSTEM
FCS, FCS DEADLOCK CONSIDERATIONS
FCS, FILE CONTROL SYSTEM
FCS, RECORD AND FILE LOCKING
FCS, RECORD HOLDING SUMMARY
FCS, TIPFCS AND THE TIP/30 CATALOGUE
FCS: dbms, DATA BASE MANAGEMENT INTERFACE
FCS: dbs/90, DBS/90 - IXF???
FCS: descriptor, FILE DESCRIPTOR PACKET
FCS: direct, 'TIPFCS' FOR DIRECT ACCESS FILES
FCS: dms/90, DMS/90 - XR7DMS
FCS: dynamic, DYNAMIC FCS FILES
FCS: edit, 'TIPFCS' FOR EDIT BUFFERS
FCS: file-pkt, LOGICAL FILE NAME PACKET
FCS: indexed, 'TIPFCS' FOR INDEXED FILES
FCS: journal, 'LGOF' JOURNAL RECORD FORMAT
FCS: journal, BATCH JOURNAL FILE READ
FCS: journal, JOURNAL FILE PROCESSING
FCS: libraries, 'FCS' FOR LIBRARY FILES
FCS: libraries, LIBRARY FILE DESCRIPTOR
FCS: sequential, 'TIPFCS' FOR SEQUENTIAL FILES
FCS: summary, SUMMARY OF FCS CALLS
FCS: total, TOTAL DATA BASE
FCS: types, SUPPORTED FILE TYPES
FEED DOC: @., PHYSICAL FORM
FIELD CONTROL CHARACTERS DCIO: fee, GENERATE
FIELD NAMES TQL: show, SHOW SUMMARY OF
FIELD VERIFICATION TQL: verify
FIELDS TO CHANGE TQL, ALLOWING
FIELDS TQL, PREDEFINED

KWIC INDEX Page:
Section:

INDEX

6.11.6
6.17.6
6.8.12
6.16.5
6.10.3
6.9.11
6.11.7
6.17.7
6.8.13
6.16.6
6.10.4
6.9.12
6.8.14
6.11.8
6.17.8
6.8.16
6.8.17
6.8.15
6.9.13
6.8.18

6.
6.3.5

6.1
6.3

6.3.4
6.2

6.19
6.19.2
6.7.2

6.9
6.19.1

6.11
6.17

6.7.1
6.8

6.20.1
6.20.2

6.20
6.16

6.16.1
6.10
6.4

6.18
6.5

3.18.4
7.10.7
4.5.9
4.2.5
4.2.3
4.2.6

19
Index

INDEX

FILE ACCESS, ACCESS A
FILE ASG, ASSIGN A
FILE BASIC: delete, DELETE BASIC OBJECT
FILE BCP: delete, DELETING PRINT
FILE BCP: print, TRANSMIT PRINT
FILE BCP: punch, TRANSMIT PUN'H
FILE BUFFER USAGE STATUS: b
FILE CAT: file, CATALOGUING A
FILE COMMANDS TB$INT: cat, USER, PROGRAM,
FILE CONTROL SYSTEM FCS
FILE CONTROL SYSTEM FCS, CHAPTER VI -
FILE CONTROL SYSTEM INTERFACE PACKETS
FILE CONTROL SYSTEM OVERVIEW
FILE COPY AND INITIALIZATION TB$JRN, JOURNAL
FILE CREATE, CREATE A DYNAMIC
FILE DD, DDU, SPECIFYING A RECORD OF A NON-INDEXED
FILE DD, DDU, SPECIFYING A RECORD OF AN INDEXED
FILE DEFINITION FILE
FILE DEFINITION TQL: file
FILE DESCRIPTOR FCS: libraries, LIBRARY
FILE DESCRIPTOR PACKET FCS: descriptor
FILE ENQUIRY SPL, SPOOL
FILE ERROR EDIT TIPFCER
FILE FCLOSE, PHYSICALLY CLOSE ON-LINE
FILE PCS-ACCESS, DYN: ACCESS
FILE FCS-ADD, INDEXED: ADD RECORD TO
FILE PCS-ASSIGN, DYN: ASSIGN
FILE PCS-CLOSE, DIRECT: CLOSE
FILE PCS-CLOSE, DYN: CLOSE
FILE FCS-CLOSE, INDEXED: CLOSE
FILE FCS-CLOSE, SEQ: CLOSE
FILE FCS-CREATE, DYN: CREATE
FILE FCS-FLUSH, DIRECT: FLUSH
FILE FCS-FLUSH, INDEXED: FLUSH
FILE FCS-OPEN, DIRECT: OPEN
FILE FCS-OPEN, DYN: OPEN
FILE FCS-OPEN, INDEXED: OPEN
FILE FCS-OPEN, SEQ: OPEN
FILE PCS-SCRATCH, DYN: SCRATCH
FILE FOPEN, PHYSICALLY OPEN ON-LINE
FILE FREE, DEACCESS A
FILE HEADER TQLMON: u, UPDATE CONTROL
FILE IN TEST MODE DEBUG, SET
FILE INFORMATION VTOC: display, DISPLAY
FILE INITALIZATION JOBS TB$INT: jobs, TIP
FILE INITIALIZATION TB$INT, TIP
FILE LISTING TJ$LC, CATALOGUE
FILE LOCKING FCS, RECORD AND
FILE NAME PACKET FCS: file-pkt, LOGICAL
FILE ON TERMINAL SPL: list, LIST SPOOL

KWIC INDEX

3.1
3.4

3.5.4
3.6.6

3.6.13
3.6.14
3.50.1
3.7.6
8. 7. 2

6.1
6.

6.7
1. 6. 2

8.8
3.11

3.12.4
3.12.3
8.3.2
4.2.1

6.16.1
6.7.2

3.49
5.5

3.20
6.11.1
6.8.1

6.11.2
6.9.3

6.11.3
6.8.3

6.10.1
6.11.4
6.9.5
6.8.6

6.9.10
6.11.6
6.8.12
6.10.3
6.11.8

3.22
3.23

4.4.12
3.13

3.58.1
8.7.4

8.7
8.12

6.3
6.7.1

3.49.8

Page:
Section:

20
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

KWIC INDEX

FILE PMDA: quit, END PMDA AND SCRATCH DUMP
FILE PROCESSING FCS: journal, JOURNAL
FILE QED: r, READING TEXT FROM A
FILE QUEUE BCP: queue, DISPLAYING PRINT
FILE READ FCS: journal, BATCH JOURNAL
FILE RECOVERY TB$RCV
FILE REQUIREMENTS, TIP/30 LIBRARY
FILE Statement FILE
FILE SCRATCH, SCRATCH A DYNAMIC
FILE SPL: ls, LIST (SPACE SUPPRESSED) SPOOL
FILE SPL: lt, LIST (TRUNCATED) SPOOL
FILE SPL: print, PRINT SPOOL
FILE SPL: release, RELEASE SPOOL
FILE TABLE AFT, DISPLAY ACTIVE
FILE TIPPRINT, OUTPUJ TO PRINT A
FILE TJ$LST, LIST JOURNAL
FILE TO EDIT BUFFER SPL: write, WRITE SPOOL
FILE TO FILE/ELEMENT SPL: wl, WRITE SPOOL
FILE TO HOST BCP: receive, SEND DATA
FILE TO TERMINAL BCP: send, SEND DATA
FILE TYPES FCS: types, SUPPORTED
FILE WITH TEST PAGE SPL: pt, PRINT SPOOL
FILE/ELEMENT DOC: @%f ile/elt, SWITCH INPUT TO
FILE/ELEMENT QED: w, WRITING AN EDIT BUFFER TO A
FILE/ELEMENT SPL: wl, WRITE SPOOL FILE TO
FILE/RECORD TQLMON: c, COMPILE
FILE/RECORD TQLMON: d, DELETE
FILE/RECORD TQLMON: 1, LIST
FILE/RECORD TQLMON: p, PRINT
FILE/RECORD TQLMON: s, SUMMARY OF
FILE/RECORD TQLMON: w, WRITE
FILE, FILE DEFINITION
FILE, FILE Statement
FILE, WRITING TEXT TO
FILES workf iles, EXECUTION TIME WORK
FILES FCS: direct, 'TIPFCS' FOR DIRECT ACCESS
FILES FCS: dynamic, DYNAMIC FCS
FILES FCS: indexed, 'TIPFCS' FOR INDEXED
FILES FCS: libraries, 'FCS' FOR LIBRARY
FILES FCS: sequential, 'TIPFCS' FOR SEQUENTIAL
FILES ON VOLUME VTOC: list, LIST
FILES ON VOLUME VTOC: write, CREATE JCL FOR
FIN, LOGOFF TIP/30
FLAG MANIPULATION TIPFLG, TIP
FLAG SERVICES TIPFLAG
FLAGGING DOC: @(, START MARGIN
FLAGGING DOC: @),STOP MARGIN
FLUSH FCS-FLUSH, EDIT:
FLUSH FILE FCS-FLUSH, DIRECT:
FLUSH FILE PCS-FLUSH, INDEXED:

KWIC INDEX Page:
Section:

INDEX

3.40.4
6.20

3.41.17
3.6.15
6.20.2

8.5
8.1

9.2.23
3.47

3.49.9
3.49.10
3.49.11
3.49.14

3.2
6.12
8.13

3.49.16
3.49.17
3.6.16
3.6.18

6.5
3.49.12
3.18.9

3.41.18
3.49.17

4.4.1
4.4.3
4.4.5
4.4.8

4.4.10
4.4.13
8.3.2

9.2.23
3.45.3

8.2
6.9

6.11
6.8

6.16
6.10

3.58.5
3.58.10

3.21
3.55
5.6

3.18.5
3.18.7
6.17.4
6.9.5
6.8.6

21
Index

INDEX

FLUSH LINE DOC: @Fe
FOPEN, PHYSICALLY OPEN ON-LINE FILE
FOR Statement FOR
FORCE PROGRAM DUMP TIPDUMP
FORM FEED DOC: @.,PHYSICAL
FORMAT DCIO: pref ix, INPUT AND OUTPUT MESSAGE
FORMAT FCS: journal, 'LGOF' JOURNAL RECORD
FORMAT INFORMATION MSGAR: list, LIST SCREEN
FORMAT MSGAR: delete, DELETE SCREEN
FORMAT MSGAR: print, PRINT SCREEN
FORMAT MSGAR: rename, RENAME SCREEN
FORMAT MSGAR: restore, RESTORE SCREEN
FORMAT MSGAR: save, SAVE SCREEN
FORMAT NAMES MSGAR: write, WRITE SCREEN
FORMAT ODD, ODD COMMAND LINE
FORMAT PREPARATION OVERVIEW, DISPLAY
FORMAT TJ$DOCS: param, TJ$DOCS PARAM CARD
FORMATS MSGAR: directory, DIRECTORY OF SCREEN
FORMATS TQLMON: m, CREATE SCREEN
FREE SPACE ON VOLUME VTOC: free
FREE TERMINAL INPUT TIPTERM: free, ALLOW
FREE, DEACCESS A FILE
FROM A FILE QED: r, READING TEXT
FROM A TERMINAL TIPMSGI, READ A MESSAGE
FROM STRING TIPSCAN, SCAN PARAMETERS
FROM TERMINAL TEXT, GET ONE LINE
FROM TERMINAL TEXTS, GET ONE LINE
FUNCTION DCIO: delete, DELETE
FUNCTION DCIO: erase, ERASE
FUNCTION DCIO: insert, INSERT
FUNCTION DCIO: scan, SCAN
FUNCTION DCIO: xmit, TRANSMIT
FUNCTION KEY USAGE DD, DDU
FUNCTION KEY USE SPL: fnkeys, SPL
FUNCTION KEYS DEFKEY, DEFINE
FUNCTION KEYS ODD, ODD
FUNCTION KEYS TQL: function keys, USE OF
FUNCTION SUMMARY QED: summary, COMMAND and
FUNCTION, YES/NO
FUNCTIONS AND STATUS CODES, ASSEMBLER FCS
FUNCTIONS AND STATUS CODES, COMMON TIPFCS
FUNCTIONS DCIO: tab, TAB
FUNCTIONS DCIO: tipterm, TIPTERM
FUNDAMENTAL CONCEPTS CONCEPTS, CHAPTER II -

- G -

gda, GLOBAL DATA AREA PCS:
get, GET AN INPUT MESSAGE TIPTERM:

Page:
Section:

22
Index

KWIC INDEX

3.18.18
3.22

9.2.24
5.4

3.18.4
7.10.1
6.20.1
3.34.6
3.34.2
3.34.7
3.34.9

3.34.10
3.34.11
3.34.12
3.39.12

1.6.6
8.11.l
3.34.3
4.4.7

3.58.3
7.10.17

3.23
3.41.17

7.5
7.9.14
7.9.8
7.9.9

7.10.5
7.10.6
7.10.8

7.10.10
7.10.12
3.12.13
3.49.4

3.14
3.39.13

4.5.12
3.41.34
7.10.13

6.15
6.14

7.10.11
7.10.14

2.

5.1.6
7.10.18

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

•

KWIC INDEX

GENERAL STATISTICS STATUS: s
GENERATE CARRIAGE RETURN DCIO: carret
GENERATE DOCUMENT INDEX DOC: @B
GENERATE FIELD CONTROL CHARACTERS DCIO: f cc
GENERATE LITERAL AT-SIGN DOC: @@
GENERATION CONSIDERATIONS BCP: icam, ICAM
GENERATION JCL EXAMPLE, TIP/30
GENERATION KEYWORD SUMMARY, TIP/30
GENERATION PARAMETER RUN TJ$PARAM, TIP/30
GENERATION TIPGEN, TIP/30 SYSTEM
GENERATOR DOC, DOCUMENT
GENERATOR DOC: online, ONLINE DOCUMENT
GENERATOR TJ$DOCS, THE BATCH DOCUMENT
GET AN INPUT MESSAGE TIPTERM: get
GET FCS-GET, EDIT:
GET NEXT RECORD FCS-NEXT, INDEXED:
GET ONE LINE FROM TERMINAL TEXT
GET ONE LINE FROM TERMINAL TEXTS
GETTING OUT OF RPG
GETTING STARTED QED: intro
GLOBAL COMMANDS QED: g
GLOBAL DATA AREA PCS: gda
GLOSSARY OF TERMS AND CONCEPTS GLOSSARY, TIP/30
GLOSSARY, TIP/30 GLOSSARY OF TERMS AND CONCEPTS
GOSUB Statement GOSUB
GOSUB, GOSUB Statement
GOTO Statement GOTO
GOTO, GOTO Statement
GROUPS CAT: security, DEFINITION OF CATALOGUE

- H -

(HANGING INDENT) DOC: @Nnn, NOTATION
help, DISPLAY BASIC PROGRAM HELP INFORMATION BASIC:
help, DISPLAY HELP INFORMATION ON TERMINAL JBQ:
help, DISPLAY HELP INFORMATION TLIB:
help, DISPLAY HELP INFORMATION VTOC:
help, DISPLAY SPL PROGRAM HELP SPL:
help, HELP INFORMATION MSGAR:
high, DISPLAY HIGH PRIORITY JOB QUEUE JBQ:
HARD COPY DUMP PMDA: print, PRINT
HARD COPY LISTING TLIB: print, PRINT
HEADER TQLMON: u, UPDATE CONTROL FILE
HELP INFORMATION BASIC: help, DISPLAY BASIC PROGRAM
HELP INFORMATION HELP, DISPLAY USER
HELP INFORMATION MSGAR: help
HELP INFORMATION ON TERMINAL JBQ: help, DISPLAY
HELP INFORMATION TLIB: help, DISPLAY
HELP INFORMATION VTOC: help, DISPLAY

KWIC INDEX Page:
Section:

INDEX

3.50.7
7.10.3

3.18.15
7.10.7

3.18.12
3.6.21
8.3.5
8.3.4
8.3.6

8.3
3.18

3.18.1
8.11

7.10.18
6.17.5
6.8.10
7.9.8
7.9.9

3.44.5
3.41.1

3.41.15
5.1.6

1. 5
1. 5

9.2.25
9.2.25
9.2.26
9.2.26
3.7.3

3.18.25
3.5.6

3.26.3
3.56.5
3.58.4
3.49.7
3.34.5
3.26.4
3.40.3
3.56.8
4.4.12
3.5.6

3.24
3.34.5
3.26.3
3.56.5
3.58.4

23
Index

INDEX

HELP SPL: help, DISPLAY SPL PROGRAM
HELP, DISPLAY USER HELP INFORMATION
HEX DISPLAY DD, DDU, UPDATING A
HIGH PRIORITY JOB QUEUE JBQ: high, DISPLAY
HINTS FOR TESTING PROGRAMS CAT, CATALOGUE
HOLD RESOURCE FCS-HOLD, DIRECT:
HOLD RESOURCE FCS-HOLD, INDEXED:
HOLD=TR, RECORD HOLDING FOR THE TRANSACTION
HOLD=UP, RECORD HOLDING FOR THE UPDATE
HOLD=YES, SIMPLE RECORD HOLDING
HOLDING FOR THE TRANSACTION HOLD=TR, RECORD
HOLDING FOR THE UPDATE HOLD=UP, RECORD
HOLDING HOLD=YES, SIMPLE RECORD
HOLDING SUMMARY FCS, RECORD
HOLDING TABLE STATUS: k, KEY
HORIZONTAL SPACE DOC: @Hnn
HOST BCP: receive, SEND DATA FILE TO
HOW TO USE THIS REFERENCE MANUAL HOW TO USE

<identifier> <identifier>
<identifier>, <identifier>

...: I -

icam, !CAM GENERATION CONSIDERATIONS BCP:
icam, SAMPLE !CAM BCP:
id, RECORD IDENTIFICATION TQL:
indexed, 'TIPFCS' FOR INDEXED FILES FCS:
insert, INSERT FUNCTION DCIO:
intro, GETTING STARTED QED:
I/O Direct 1/0, DIRECT COMMUNICATIONS

KWIC INDEX

3.49.7
3.24

3.12.10
3.26.4
3.7.7
6.9.8
6.8.9
6.3.2
6.3.3
6.3.1
6.3.2
6.3.3
6.3.1
6.3.4

3.50.5
3 .18 :20
3.6.16

1.2

9.2.27
9.2.27
3.6.21
3.6.22

I/0 DELIVERY STATUS DCIO: status, AUXILIARY DEVICE
I/0 LINE I/O, LINE - ORIENTED TERMINAL

4.2.4
6.8

7.10.8
3.41.1

7.10
7.10.2

7.9
3.50.4

7.10
7.9

3.6.22
3.6.21

2.1

1/0 SUMMARY STATUS: i
1 1/0, DIRECT COMMUNICATIONS I/0 Direct

I/O, LINE - ORIENTED TERMINAL I/0 LINE
ICAM BCP: icam, SAMPLE
ICAM GENERATION CONSIDERATIONS BCP: icam
ID, USER IDENTIFICATION AND PASSWORDS USER
IDA COMMAND EXAMPLES IDA: exmaples
IDA COMMANDS IDA: commands
IDA, INTERACTIVE DEBUG AID
IDA: commands, IDA COMMANDS
IDA: exmaples, IDA COMMAND EXAMPLES
IDENTIFICATION AND PASSWORDS USER ID, USER
IDENTIFICATION TQL: id, RECORD
IF END Statement IF END
IF END, IF END Statement
IF Statement IF
IF, IF Statement

Page:
Section:

24
Index

3.25.2
3.25.1

3.25
3.25.1
3.25.2

2.1
4.2.4

9.2.29
9.2.29
9.2.28
9.2.28

TIP/30 Reference Manual
Version 2.5 (82/08/01}

•

•

KWIC INDEX

IMBEDDED COMMANDS DOC, SUMMARY OF
IMMEDIATE TIP/30 SHUTDOWN STOP
INCREMENT AND CALL MACRO DOC: @Knn
INCREMENT PARAGRAPH NUMBER DOC: @Xn
INDENT) DOC: @Nnn, NOTATION (HANGING
INDENTATION (LEFT) DOC: @Inn, SET
INDEX DOC: @B, GENERATE DOCUMENT
INDEX INDEX, KWIC
INDEX STATUS: f, FAST LOAD
INDEX, KWIC INDEX
INDEXED FILE DD, DDU, SPECIFYING A RECORD OF AN
INDEXED FILES FCS: indexed, 'TIPFCS' FOR
INDEXED: ADD RECORD TO FILE FCS-ADD
INDEXED: CANCEL UPDATE FCS-NOUP
INDEXED: CLOSE FILE FCS-CLOSE
INDEXED: DELETE RECORD FCS-DELETE
INDEXED: END SEQUENTIAL PROCESSING FCS-ESETL
INDEXED: FLUSH FILE FCS-FLUSH
INDEXED: GET NEXT RECORD FCS-NEXT
INDEXED: HOLD RESOURCE FCS-HOLD
INDEXED: MARK TRANSACTION END FCS-TREN
INDEXED: OPEN FILE FCS-OPEN
INDEXED: READ RECORD AND LOCK FCS-GETUP
INDEXED: READ RECORD FCS-GET
INDEXED: RELEASE RESOURCE FCS-RELEASE
INDEXED: ROLL BACK UPDATES FCS-BACK
INDEXED: SET SEQUENTIAL MODE FCS-SETL
INDEXED: SET SEQUENTIAL MODE FCS-SETL-EQ
INDEXED: SET SEQUENTIAL MODE FCS-SETL-GT
INDEXED: UPDATE RECORD FCS-PUT
INFORMATION BASIC: help, DISPLAY BASIC PROGRAM HELP
INFORMATION BLOCK PCS: pib, PROCESS
INFORMATION HELP, DISPLAY USER HELP
INFORMATION JBQ, DISPLAY OS/3 JOB QUEUE
INFORMATION JBQ: list, LIST JOB STEP
INFORMATION MSGAR: help, HELP
INFORMATION MSGAR: list, LIST SCREEN FORMAT
INFORMATION ON TERMINAL JBQ: help, DISPLAY HELP
INFORMATION TLIB: help, DISPLAY HELP
INFORMATION VTOC: display, DISPLAY FILE
INFORMATION VTOC: help, DISPLAY HELP
INFORMATION WMI, DISPLAY USER
INFORMATIONAL MESSAGE NOTE
INITALIZATION JOBS TB$INT: jobs, TIP FILE
INITIALIZATION SAMPLE TB$INT: sample, CATALOGUE
INITIALIZATION TB$INT, TIP FILE
INITIALIZATION TB$JRN, JOURNAL FILE COPY AND
INITIALIZING TQL DICTIONARY TQLINT
INPUT AND OUTPUT MESSAGE FORMAT DCIO: pref ix
INPUT M~SSAGE PARAM, PARAMETERIZE AN

KWIC INDEX Page:
Section:

INDEX

3.18.3
3.51

3.18.23
3.18.35
3.18.25
3.18.21
3.18.15

10.
3.50.3

10.
3.12.3

6.8
6.8.1

6.8.11
6.8.3
6.8.4
6.8.5
6.8.6

6.8.10
6.8.9

6.8.18
6.8.12
6.8.8
6.8.7

6.8.14
6.8.2

6.8.15
6.8.16
6.8.17
6.8.13
3.5.6
5.1.2

3.24
3.26

3.26.5
3.34.5
3.34.6
3.26.3
3.56.5
3.58.1
3.58.4

3.60
3.38

8.7.4
8.7.3

8.7
8.8
4.3

7.10.1
7.9.2

25
Index

INDEX

INPUT MESSAGE TIPTERM: get, GET AN
INPUT QED: "<, RE-DIRECTED QED
INPUT READER SPOOL BCP: in, CREATE
INPUT Statement INPUT
INPUT TIPTERM: cntrl, CONTROL TERMINAL
INPUT TIPTERM: free, ALLOW FREE TERMINAL
INPUT TIPTERM: test, TEST FOR
INPUT TO FILE/ELEMENT DOC: @%f ile/elt, SWITCH
INPUT, INPUT Statement
INSERT FUNCTION DCIO: insert
INSERT QED: c, CHANGE AND
INT Predefined Function INT
INT, INT Predefined Function
INTERACTION WITH DD & DDU DD, DDU
INTERACTION WITH JBQ JBQ: quit, END
INTERACTION WITH JBQ PROGRAM JBQ: end, END
INTERACTIVE DEBUG AID IDA
INTERACTIVE JOB CONTROL SUBMITTOR JCL
INTERACTIVE UTILITIES OVERVIEW
INTERACTIVELY BCP, USING BCP
INTERFACE FCS: dbms, DATA BASE MANAGEMENT
INTERFACE PACKET TC-MCS, MCS
INTERFACE PACKETS, FILE CONTROL SYSTEM
INTERPRETER - COMPILER BASIC, TIP/30 BASIC
INTERPRETER STRUCTURE (BINT) BINT
INTRODUCTION TO TIP/30 QUERY LANGUAGE TQL
INTRODUCTION, CHAPTER I -
IXF??? FCS: dbs/90, DBS/90 -

- J -

job, SUBMIT REMOTE BATCH JOB TLIB:
jobs, TIP FILE INITALIZATION JOBS TB$INT:
jobs, TIP/30 BATCH PROGRAMS TIP: batch
journal, 'LGOF' JOURNAL RECORD FORMAT FCS:
journal, BATCH JOURNAL FILE READ FCS:
journal, JOURNAL FILE PROCESSING FCS:
JBQ JBQ: quit, END INTERACTION WITH
JBQ PROGRAM JBQ: end, END INTERACTION WITH
JBQ, DISPLAY OS/3 JOB QUEUE INFORMATION
JBQ: all, DISPLAY ALL OS/3 JOB QUEUES
JBQ: end, END INTERACTION WITH JBQ PROGRAM
JBQ: help, DISPLAY HELP INFORMATION ON TERMINAL
JBQ: high, DISPLAY HIGH PRIORITY JOB QUEUE
JBQ: list, LIST JOB STEP INFORMATION
JBQ: normal, DISPLAY NORMAL PRIORITY JOB QUEUE

KWIC INDEX

7.10.18
3.41.16

3.6.9
9.2.30

7.10.15
7.10.17
7.10.21
3.18.9
9.2.30
7.10.8

3.41.12
9.2.31
9.2.31
3.12.1
3.26.8
3.26.2

3.25
3.27

1. 6. 4
3.6.20

6.19
7.4
6.7
3.5

9.2.73
4.1
1.

6.19.2

3.56.6
8.7.4

8.6
6.20.1
6.20.2

6.20
3.26.8
3.26.2

JBQ: pre-emptive, DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE
JBQ: quit, END INTERACTION WITH JBQ

3.26
3.26.1
3.26.2
3.26.3
3.26.4
3.26.5
3.26.6
3.26.7
3.26.8

.• 8.3.5 JCL EXAMPLE, TIP/30 GENERATION

Page:
Section:

26
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

KWIC INDEX

JCL FOR FILES ON VOLUME VTOC: write, CREATE
JCL, INTERACTIVE JOB CONTROL SUBMITTOR
JOB BCP: run, RUN BATCH
JOB BCP: submit, SUBMIT REMOTE BATCH
JOB CONTROL OPTIONS TIP: exec, RUN TIME
JOB CONTROL SUBMITTOR JCL, INTERACTIVE
JOB QUEUE INFORMATION JBQ, DISPLAY OS/3
JOB QUEUE JBQ: high, DISPLAY HIGH PRIORITY
JOB QUEUE JBQ: normal, DISPLAY NORMAL PRIORITY
JOB QUEUE JBQ: pre-emptive, DISPLAY PRE-EMPTIVE PRIORITY
JOB QUEUES JBQ: all, DISPLAY ALL OS/3
JOB RV, START OS/3 BATCH
JOB STEP INFORMATION JBQ: list, LIST
JOB TLIB: job, SUBMIT REMOTE BATCH
JOBS TB$INT: jobs, TIP FILE INITALIZATION
JOURNAL FILE COPY AND INITIALIZATION TB$JRN
JOURNAL FILE PROCESSING FCS: journal
JOURNAL FILE READ FCS: journal, BATCH
JOURNAL FILE TJ$LST, LIST
JOURNAL RECORD FORMAT FCS: journal, 'LGOF'
JUST MATCHED QED: &, WHAT WAS
JUSTIFY MODE DOC: @J

- K -

keys, USE OF FUNCTION KEYS.TQL: function
keywords, SPL KEYWORDS SPL:
KEY HOLDING TABLE STATUS: k
KEY USAGE DD, DDU, FUNCTION
KEY USE SPL: fnkeys, SPL FUNCTION
KEYS DEFKEY, DEFINE FUNCTION
KEYS ODD, ODD FUNCTION
KEYS TQL: function keys, USE OF FqNCTION
KEYWORD SHORTFORMS BCP, BCP
KEYWORD SUMMARY, TIP/30 GENERATION
KEYWORDS SPL: keywords, SPL
KWIC INDEX INDEX

- L -

<line number> <line number>
<line number>, <line number>
(LEFT) DOC: @Inn, SET INDENTATION
(LIBRARIAN) MSGAR, MESSAGE ARCHIVER
'LGOF' JOURNAL RECORD FORMAT FCS: journal
le, LIST BASIC PROGRAMS IN TIP CATALOGUE BASIC:
libraries, 'FCS' FOR LIBRARY FILES FCS:
libraries, LIBRARY FILE DESCRIPTOR FCS:

KWIC INDEX Page:
Section:

INDEX

3.58.10
3.27

3.6.17
3.6.19

8.4
3.27
3.26

3.26.4
3.26.6
3.26.7
3.26.1

3.46
3.26.5
3.56.6
8.7.4

8.8
6.20

6.20.2
8.13

6.20.1
3.41.31
3.18.22

4.5.12
3.49.2
3.50.5

3.12.13
3.49.4

3.14
3.39.13
4.5.12
3.6.2
8.3.4

3.49.2
10.

9.2.35
9.2.35

3.18.21
3.34

6.20.1
3.5.8
6.16

6.16.1

27
Index

INDEX

list, LIST BASIC PROGRAM ON TERMINAL BASIC:
list, LIST ELEMENT ON TERMINAL TLIB:
list, LIST FILES ON VOLUME VTOC:
list, LIST JOB STEP INFORMATION JBQ:
list, LIST SCREEN FORMAT INFORMATION MSGAR:
list, LIST SPOOL FILE ON TERMINAL SPL:
list, LISTING CATALOGUE ENTRIES CAT:
list, ON-LINE DATA DISPLAY ODD:
list> <statement list>, <statement
list> <subscript list>, <subscript
list>, <statement list> <statement
list>, <subscript list> <subscript
logon, USER LOG-ON PROCEDURE BCP:
lp, LIST PROGRAM TQLMON:
ls, LIST (SPACE SUPPRESSED) SPOOL FILE SPL:
lt, LIST (TRUNCATED) SPOOL FILE SPL:
List Reserved Word List, Reserved Word
List, Reserved Word List Reserved Word
LANGUAGE BCP, BCP COMMAND
LANGUAGE TQL, INTRODUCTION TO TIP/30 QUERY
LANGUAGE, DESCRIPTION OF THE TIP/BASIC
LAST LINE
LAST POSITION & TRANSMIT TIPMSGRV, CURSOR TO
LEFT$ Predefined Function LEFT$
LEFT$, LEFT$ Predefined Function
LEFT) DOC: @Lnn, END OF LINE (QUAD
LEN Predefined Function LEN
LEN, LEN Predefined Function
LENGTH DOC: @Gnn, SET PAGE
LENGTH QED, LINE
LET Statement LET
LET, LET Statement
LETTER QED: %, MATCHING ANY
LEVEL SPECIFICATION CAT: security, SECURITY

I LIB: CLOSE LIBRARY FCS-CLOSE
LIB: CLOSE LIBRARY; ABORT OUTPUT FCS-NOUP
LIB: OPEN LIBRARY FCS-OPEN
LIB: READ RECORD FCS-GET
LIB: WRITE RECORD FCS-PUT
LIBRARIAN TLIB, ON-LINE
LIBRARY BASIC: save, SAVE A PROGRAM IN A
LIBRARY ERRORS DOC
LIBRARY FCS-CLOSE, LIB: CLOSE
LIBRARY FCS-OPEN, LIB: OPEN
LIBRARY FILE DESCRIPTOR FCS: libraries
LIBRARY FILE REQUIREMENTS, TIP/30
LIBRARY FILES FCS: libraries, 'FCS' FOR
LIBRARY TQLMON: wp, WRITE TQL PROGRAM TO
LIBRARY; ABORT OUTPUT FCS-NOUP, LIB: CLOSE
LIMITATIONS ODD, PROGRAM

Page:
Section:

28
Index

KWIC INDEX

3.5.7
3.56.7
3.58.5
3.26.5
3.34.6
3.49.8
3.7.10
3.39.7
9.2.59
9.2.62
9.2.59
9.2.62
3.6.10
4.4.6

3.49.9
3.49.10
9.2.47
9.2.47
3.6.3

4.1
9.2.1

3.45.1
7.8

9.2.32
9.2.32

3.18.24
9.2.33
9.2.33

3.18.19
3.41.4
9.2.34
9.2.34

3.41.24
3.7.2

6.16.2
6.16.4
6.16.5
6.16.3
6.16.6

3.56
3.5.16

3.18.40
6.16.2
6.16.5
6.16.1

8.1
6.16

4.4.14
6.16.4

3.39.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

--~~~~~---~-~~~~~

KWIC INDEX

LINE (QUAD CENTRE) DOC: @Cnn, END OF
LINE (QUAD LEFT) DOC: @Lnn, END OF
LINE (QUAD RIGHT) DOC: @Rnn, END OF
LINE - ORIENTED TERMINAL I/0 LINE I/0
LINE AND ROLL SCREEN ROLL, SEND ONE
LINE COMMAND LINE, TIP/30 COMMAND
LINE DOC: @Fe, FLUSH
LINE FORMAT ODD, ODD COMMAND
LINE FROM TERMINAL TEXT, GET ONE
LINE FROM TERMINAL TEXTS, GET ONE
LINE I/0, LINE - ORIENTED TERMINAL I/0
LINE IN TABLE OF CONTENTS DOC: @Y, LOG
LINE LENGTH QED
LINE LOAD UTILITY DLL, DOWN
LINE LOADED DISPLAY MANAGEMENT MCS: dll, DOWN
LINE NUMBER OF CURRENT LINE
LINE NUMBER QED: <n, RECALL SAVED
LINE NUMBER QED: >n, SAVE THE CURRENT
LINE NUMBERS QED
LINE NUMBERS QED, SUMMARY OF COMMANDS AND
LINE QED: $, MATCHING AT THE END OF A
LINE QED: t, MATCHING AT THE BEGINNING OF A
LINE QED: dot, THE CURRENT
LINE SPACING DOC: @Snn, SET
LINE TELEPHONE NUMBER TIPTERM: phone, CHANGE DIAL-UP
LINE TIPTERM: disc, DISCONNECT DIAL-UP
LINE WIDTH DOC: @Wnn, SET
LINE, CURRENT
LIN~, LAST
LINE, LINE NUMBER OF CURRENT
LINE, TIP/30 COMMAND LINE COMMAND
LINES QED: d, DELETING
LINES; THE PRINT COMMAND QED: p, DISPLAYING
LINES, LIST
LINKAGE TIPSUB, PROGRAM
LINKAGE TIPSUBP, SUB-ROUTINE
LIST (SPACE SUPPRESSED) SPOOL FILE SPL: ls
LIST (TRUNCATED) SPOOL FILE SPL: lt
LIST BASIC PROGRAM ON TERMINAL BASIC: list
LIST BASIC PROGRAMS IN TIP CATALOGUE BASIC: le
LIST ELEMENT ON TERMINAL TLIB: list
LIST FILE/RECORD TQLMON: 1
LIST FILES ON VOLUME VTOC: list
LIST JOB STEP INFORMATION JBQ: list
LIST JOURNAL FILE TJ$LST
LIST LINES
LIST PROGRAM PARAMETERS TJ$LC: params, CATALOGUE
LIST PROGRAM TQLMON: lp
LIST SCREEN FORMAT INFORMATION MSGAR: list
LIST SPOOL FILE ON TERMINAL SPL: list

KWIC INDEX Page:
Section:

INDEX

3.18.16
3.18.24
3.18.29

7.9
7.9.6

2.3
3.18.18
3.39.12

7.9.8
7.9.9

7.9
3.18.36

3. 41. 4
3.16

7.3
3.45.2

3.41.28
3.41.27
3.41.35
3.41.33
3.41.23
3.41.22

3. 41. 7
3.18.30
7.10.19
7.10.16
3.18.34

3.45
3.45.1
3.45.2

2.3
3. 41. 8
3. 41. 6
3.44.4

5.10
5.11

3.49.9
3.49.10

3.5.7
3.5.8

3.56.7
4.4.5

3.58.5
3.26.5

8.13
3.44.4
8.12.1
4.4.6

3.34.6
3.49.8

29
Index

INDEX

LIST VOLUMES VTOC: volumes
LISTING BASIC: cp, COMPILE BASIC PROGRAM WITH
LISTING BASIC: print, PRINT BASIC PROGRAM
LISTING CATALOGUE ENTRIES CAT: list
LISTING TJ$LC, CATALOGUE FILE
LISTING TLIB: print, PRINT HARD COPY
LITERAL AT-SIGN DOC: @@, GENERATE
LOAD INDEX STATUS: f, FAST
LOAD UTILITY DLL, DOWN LINE
LOADED DISPLAY MANAGEMENT MCS: dll, DOWN LINE
LOCATION MSGAR: cursor, CURSOR RESTING
LOCK FCS-GETUP, DIRECT: READ RECORD AND
LOCK FCS-GETUP, INDEXED: READ RECORD AND
LOCKING FCS, RECORD AND FILE
LOG LINE IN TABLE OF CONTENTS DOC: @Y
LOG OFF TIP/30 LOGOFF
LOG ON TIP/30 SYSTEM LOGON
LOG Predefined Function LOG
LOG-ON PROCEDURE BCP: logon, USER
LOG, LOG Predefined Function
LOGICAL FILE NAME PACKET FCS: file-pkt
LOGOFF PROCEDURES LOGON/LOGOFF, LOGON AND
LOGOFF SPL: quit, END SPL PROGRAM AND
LOGOFF TIP/30 FIN
LOGOFF VTOC: quit, END VTOC PROGRAM AND
LOGOFF, LOG OFF TIP/30
LOGON AND LOGOFF PROCEDURES LOGON/LOGOFF
LOGON/LOGOFF, LOGON AND LOGOFF PROCEDURES
LOGON, LOG ON TIP/30 SYSTEM
LOGlO Predefined Function LOGlO
LOGlO, LOGlO Predefined Function

- M -

*MST/*BYP, MCS SPECIAL TERMINAL NAMES
mes, MESSAGE CONTROL SYSTEM WORK.AREA PCS:
messages, CONSOLE MESSAGES
mode, CHANGE SCREEN ROLL MODE BASIC:
mode, MODES OF OPERATION BCP:
msg, SEND COMPUTER OPERATOR A MESSAGE BCP:
MACRO CONTENTS DOC: @Qnn ••. ", DEFINING
MACRO DOC: @Knn, INCREMENT AND CALL
MACRO USE AND DEFINITION DOC, EXAMPLE OF
MACROS DOC: @nn, CALLING
MACROS 0-39 DOC: @0-@39, PREDEFINED
MAIL SYSTEM MAIL, TIP
MAIL, TIP MAIL SYSTEM
MAINTAINING TQL DICTIONARY TQLMON
MAINTENANCE TIPGEN, CHAPTER VIII - SYSTEM

Page:
Section:

30
Index

KWIC INDEX

3.58.9
3.5.3

3.5.12
3.7.10

8.12
3.56.8

3.18.12
3.50.3

3.16
7.3

3.34.1
6.9.7
6.8.8

6.3
3.18.36

3.28
3.29

9.2.36
3.6.10
9.2.36
6.7.1

2.2
3.49.13

3.21
3.58.7

3.28
2.2
2.2

3.29
9.2.37
9.2.37

7.2
5.1.4
8.15

3.5.9
3.6.11
3.6.12

3.18.28
3.18.23
3.18.38
3.18.13
3.18.39

3.30
3.30
4.4
8.

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

MANAGEMENT CAT, TIP/30 CATALOGUE
MANAGEMENT INTERFACE FCS: dbms, DATA BASE
MANAGEMENT MCS: dll, DOWN LINE LOADED DISPLAY
MANAGER CAT, ON-LINE CATALOGUE
MANIPULATION TIPFLG, TIP FLAG
MANUAL HOW TO USE, HOW TO USE THIS REFERENCE
MANUAL STRUCTURE STRUCTURE, REFERENCE
MARGIN FLAGGING DOC: @(, START
MARGIN FLAGGING DOC: @), STOP
MARK TRANSACTION END FCS-TREN, DIRECT:
MARK TRANSACTION END FCS-TREN, INDEXED:
MATCHED QED: &, WHAT WAS JUST
MATCHING ANY CHARACTER QED: .
MATCHING ANY DIGIT QED: #
MATCHING ANY LETTER QED: %
MATCHING AT THE BEGINNING OF A LINE QED: ~

MATCHING AT THE END OF A LINE QED: $
MCS INTERFACE PACKET TC-MCS
MCS SPECIAL TERMINAL NAMES *MST/*BYP
MCS, CHAPTER VIi - MESSAGE CONTROL SYSTEM
MCS, MESSAGE CONTROL SYSTEM
MCS: dll, DOWN LINE LOADED DISPLAY MANAGEMENT
MCS400, UTS-400 MESSAGE CONTROL SYSTEM
MEM, OS/3 MEMORY DISPLAY
MEMORY CONTENTS PMDA: display, DISPLAY
MEMORY DISPLAY MEM, OS/3
MEMORY TIPSNAP, SNAP
MESSAGE ARCHIVER (LIBRARIAN) MSGAR
MESSAGE ARCHIVER MSGAR: end, END
MESSAGE BCP: msg, SEND COMPUTER OPERATOR A
MESSAGE CONTROL SYSTEM MCS
MESSAGE CONTROL SYSTEM MCS, CHAPTER VII -
MESSAGE CONTROL SYSTEM MCS400, UTS-400
MESSAGE CONTROL SYSTEM OVERVIEW
MESSAGE CONTROL SYSTEM WORKAREA PCS: mes
MESSAGE DEFINITION MSGDEF
MESSAGE DEFINITION Negative Fields
MESSAGE FORMAT DCIO: pref ix, INPUT AND OUTPUT
MESSAGE FROM A TERMINAL TIPMSGI, READ A
MESSAGE MSG, SENDING A
MESSAGE NOTE, INFORMATIONAL
MESSAGE PARAM, PARAMETERIZE AN INPUT
MESSAGE TESTING MSGSHOW/MSGTST
MESSAGE TIPMSGE, SEND AN ERROR
MESSAGE TIPTERM: get, GET AN INPUT
MESSAGE TIPTERM: put, OUTPUT A
MESSAGE TIPTERM: un, SEND AN UNSOLICITED
MESSAGE TO A TERMINAL TIPMSGO, OUTPUT A
MESSAGES errors, RUN-TIME MONITOR ERROR
MESSAGES messages, CONSOLE

KWIC INDEX Page:
Section:

INDEX

3.7
6.19
7.3

3.7.1
3.55
1.2
1.3

3.18.5
3.18.7
6.9.13
6.8.18

3.41.31
3.41.30
3.41.25
3.41.24
3.41.22
3.41.23

7.4
7.2

7.
7.1
7.3

3.17
3.31

3.40.1
3.31
5.9

3.34
3.34.4
3.6.12

7.1
7.

3.17
1.6.1
5.1.4

3.35
3.35.1
7.10.1

7.5
3.33
3.38

7.9.2
3.36
7.6

7.10.18
7.10.20
7.10.22

7.7
9.2.74

8.15

31
Index

INDEX

MESSAGES BCP: ack/nak, BCP STATUS
MESSAGES QED: errors, ERROR
MESSAGES, ERROR
MID$ Predefined Function MID$
MID$, MID$ Predefined Function
MIXED DISPLAY DD, DDU, UPDATING A
MODE BASIC: mode, CHANGE SCREEN ROLL
MODE DEBUG, SET FILE IN TEST
MODE DOC: @J, JUSTIFY
MODE DOC: @T, UNJUSTIFIED
MODE FCS-SETL-EQ, INDEXED: SET SEQUENTIAL
MODE FCS-SETL-GT, INDEXED: SET SEQUENTIAL
MODE FCS-SETL, INDEXED: SET SEQUENTIAL
MODE OF OPERATION MODE, SPECIFY
MODE REPETITION QED: *, OI
MODE, SPECIFY MODE OF OPERATION
MODES DD, DOU, SPECIFYING DISPLAY
MODES OF OPERATION BCP: mode
MODIFYING TEXT; THE SUBSTITUTE COMMAND QED: s
MONITOR BASIC: bye, TERMINATE
MONITOR BASIC: end, TERMINATE THE BASIC
MONITOR BASIC: quit, TERMINATE BASIC
MONITOR ERROR MESSAGES errors, RUN-TIME
MORTEM DUMP ANALYSIS PMDA, POST
MOVE QED: m, MOVING BLOCKS OF TEXT;
MOVING BLOCKS OF TEXT; MOVE QED: m
MSG, SENDING A MESSAGE
MSGAR PROGRAM MSGAR: quit, QUIT
MSGAR, MESSAGE ARCHIVER (LIBRARIAN)
MSGAR: cursor, CURSOR RESTING LOCATION
MSGAR: delete, DELETE SCREEN FORMAT
MSGAR: directory, DIRECTORY OF SCREEN FORMATS
MSGAR: end, END MESSAGE ARCHIVER
MSGAR: help, HELP INFORMATION
MSGAR: list, LIST SCREEN FORMAT INFORMATION
MSGAR: print, PRINT SCREEN FORMAT
MSGAR: quit, QUIT MSGAR PROGRAM
MSGAR: rename, RENAME SCREEN FORMAT
MSGAR: restore, RESTORE SCREEN FORMAT
MSGAR: save, SAVE SCREEN FORMAT
MSGAR: write, WRITE SCREEN FORMAT NAMES
MSGDEF, MESSAGE DEFINITION
MSGSHOW/MSGTST, MESSAGE TESTING

- N -

<n, RECALL SAVED LINE NUMBER QED:
>n, SAVE THE CURRENT LINE NUMBER QED:
new, EDIT A NEW BASIC PROGRAM BASIC:

Page:
Section:

32
Index

KWIC INDEX

3.6.4
3.41.3

3.44
9.2.38
9.2.38

3.12.11
3.5.9

3.13
3.18.22
3.18.31
6.8.16
6.8.17
6.8.15

3.32
3.41.29

3.32
3.12.5
3.6.11
3.41.9

3.5.1
3.5.5

3.5.13
9.2.74

3.40
3.41.13
3.41.13

3.33
3.34.8

3.34
3.34.1
3.34.2
3.34.3
3.34.4
3.34.5
3.34.6
3.34.7
3.34.8
3.34.9

3.34.10
3.34.11
3.34.12

3.35
3.36

3.41.28
3.41.27
3.5.10

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

next, DISPLAY NEXT SCREENFULL TQL:
next, ON-LINE DATA DISPLAY ODD:
normal, DISPLAY NORMAL PRIORITY JOB QUEUE JBQ:
number> <line number>, <line
number>, <line number> <line
Negative Fields, MESSAGE DEFINITION
NAME PACKET FCS: file-pkt, LOGICAL FILE
NAMES *MST/*BYP, MCS SPECIAL TERMINAL
NAMES MSGAR: write, WRITE SCREEN FORMAT
NAMES TQL: show, SHOW SUMMARY OF DISPLAY
NAMES TQL: show, SHOW SUMMARY OF FIELD
NEW BASIC PROGRAM BASIC: new, EDIT A
NEW PAGE DOC: @Enn,mm, EJECT TO
NEW SESSION TQL: open, OPEN
NEWUSER, SPECIFY CHANGE IN USERID AT TERMINAL
NEXT RECORD FCS-NEXT, INDEXED: GET
NEXT Statement NEXT
NEXT SCREENFULL TQL: next, DISPLAY
NEXT, NEXT Statement
NEXTFOR Statement NEXTFOR
NEXTFOR, NEXTFOR Statement
NON-INDEXED FILE DD, DDU, SPECIFYING A RECORD OF A
NORMAL PRIORITY JOB QUEUE JBQ: normal, DISPLAY
NORMAL TIP/30 SHUTDOWN EOJ
NOTATION (HANGING INDENT) DOC: @Nnn
NOTE, INFORMATIONAL MESSAGE
NUMBER DOC: @!n : @]n, SAVE PARAGRAPH
NUMBER DOC: @?n, RECALL PARAGRAPH
NUMBER DOC: @P, RETRIEVE CURRENT PAGE
NUMBER DOC: @Xn, INCREMENT PARAGRAPH
NUMBER OF CURRENT LINE, LINE
NUMBER QED: <n, RECALL SAVED LINE
NUMBER QED: >n, SAVE THE CURRENT LINE
NUMBER TIPTERM: phone, CHANGE DIAL-UP LINE TELEPHONE
NUMBERS QED, LINE
NUMBERS QED, SUMMARY OF COMMANDS AND LINE
NUMBERS QED: v, VERSION

- 0 -

old, EDIT EXISTING BASIC PROGRAM BASIC:
online, ONLINE DOCUMENT GENERATOR DOC:
open, OPEN NEW SESSION TQL:
operation, SPL PROGRAM OPERATION SPL:
opr commands, OS/3 CONSOLE OPERATION
options, PARAM OPTIONS FOR TJ$PARAM TJ$PARAM:
0#, DISPLAYING A COLUMN SCALE QED:
OBJECT FILE BASIC: delete, DELETE BASIC
ODD - PITFALLS TO AVOID ODD

KWIC INDEX Page:
Section:

INDEX

4.5.4
3.39.8
3.26.6
9.2.35
9.2.35
3.35.1
6.7.1

7.2
3.34.12

4.5.8
4.5.9

3.5.10
3.18.17
4.5.11

3.37
6.8.10
9.2.39
4.5.4

9.2.39
9.2.40
9.2.40
3.12.4
3.26.6

3.19
3.18.25

3.38
3.18.6

3.18.11
3.18.27
3.18.35
3.45.2

3.41.28
3.41.27
7.10.19
3.41.35
3.41.33
3.41.20

3.5.11
3.18.1
4.5.11
3.49.3

8.14
8.3.7

3.41.26
3.5.4

3.39.15

33
Index

INDEX

ODD COMMAND LINE FORMAT ODD
ODD FUNCTION KEYS ODD
ODD OR EVEN PAGE DOC: @0, START
ODD, ODD - PITFALLS TO AVOID
ODD, ODD COMMAND LINE FORMAT
ODD, ODD FUNCTION KEYS
ODD, ON-LINE DATA DISPLAY
ODD, PROGRAM LIMITATIONS
ODD: add, ON-LINE DATA DISPLAY
ODD: close, ON-LINE DATA DISPLAY
ODD: count, ON-LINE DATA DISPLAY
ODD: delete, ON-LINE DATA DISPLAY
ODD: display, ON-LINE DATA DISPLAY
ODD: list, ON-LINE DATA DISPLAY
ODD: next, ON-LINE DATA DISPLAY
ODD: print, ON-LINE DATA DISPLAY
ODD: show, ON-LINE DATA DISPLAY
ODD: update, ON-LINE DATA DISPLAY
OFF TIP/30 LOGOFF, LOG
OI MODE REPETITION QED: *
ON Statement ON
ON-LINE CATALOGUE MANAGER CAT
ON-LINE DATA DISPLAY Command Format
ON-LINE DATA DISPLAY ODD
ON-LINE DATA DISPLAY ODD: add
ON~LINE DATA DISPLAY ODD: close
ON-LINE DATA DISPLAY ODD: count
ON-LINE DATA DISPLAY ODD: delete
ON-LINE DATA DISPLAY ODD: display
ON-LINE DATA DISPLAY ODD: list
ON-LINE DATA DISPLAY ODD: next
ON-LINE DATA DISPLAY ODD: print
ON-LINE DATA DISPLAY ODD: show
ON-LINE DATA DISPLAY ODD: update
ON-LINE DISK DISPLAY AND UPDATE DD, DDU
ON-LINE FILE FCLOSE, PHYSICALLY CLOSE
ON-LINE FILE FOPEN, PHYSICALLY OPEN
ON-LINE LIBRARIAN TLIB
ON-LINE PROGRAM STRUCTURE PCS
ON-LINE UTILITY PROGRAMS UTILITIES, CHAPTER III -
ON-LINE 8080 CROSS ASSEMBLER UTSASM
ONE LINE AND ROLL SCREEN ROLL, SEND
ONE LINE FROM TERMINAL TEXT, GET
ONE LINE FROM TERMINAL TEXTS, GET
ONLINE DOCUMENT GENERATOR DOC: online
ONLINE PROGRAM TIPRTN, END
OPEN FCS-OPEN, EDIT:
OPEN FILE FCS-OPEN, DIRECT:
OPEN FILE FCS-OPEN, DYN:
OPEN FILE FCS-OPEN, INDEXED:

Page:
Section:

34
Index

KWIC INDEX

3.39.12
3.39.13
3.18.26
3.39.15
3.39.12
3.39.13

3.39
3.39.14
3.39.2
3.39.3
3.39.4
3.39.5
3.39.6
3.39.7
3.39.8
3.39.9

3.39.10
3.39.11

3.28
3.41.29

9. 2. 4.1
3.7.1

3.39.1
3.39

3.39.2
3.39.3
3.39.4
3.39.5
3.39.6
3.39.7
3.39.8
3.39.9

3.39.10
3.39.11

3.12
3.20
3.22
3.56

5.1.1
3.

3.57
7.9.6
7.9.8
7.9.9

3.18.1
5.8

6.17.6
6.9.10
6.11.6
6.8.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•
KWIC INDEX

OPEN FILE FCS-OPEN, SEQ:
OPEN LIBRARY FCS-OPEN, LIB:
OPEN NEW SESSION TQL: open
OPEN ON-LINE FILE FOPEN, PHYSICALLY
OPERATION opr commands, OS/3 CONSOLE
OPERATION BCP: mode, MODES OF
OPERATION MODE, SPECIFY MODE OF
OPERATION SPL: operation, SPL PROGRAM
OPERATOR A MESSAGE BCP: msg, SEND COMPUTER
OPERATOR BREAK BREAK, CHECK FOR
OPTIONS FOR TJ$PARAM TJ$PARAM: options, PARAM
OPTIONS TIP: exec, RUN TIME JOB CONTROL
ORIENTED TERMINAL I/0 LINE I/O, LINE -
ORIGINAL TERMINAL TIPUORG, USE
OS/3 BATCH JOB RV, START
OS/3 CONSOLE OPERATION opr commands
OS/3 JOB QUEUE INFORMATION JBQ, DISPLAY
OS/3 JOB QUEUES JBQ: all, DISPLAY ALL
OS/3 MEMORY DISPLAY MEM
OS/3 SYMBIONT SYM, SCHEDULE
OUT OF RPG, GETTING
OUTPUT A MESSAGE TIPTERM: put
OUTPUT A MESSAGE TO A TERMINAL TIPMSGO
OUTPUT FCS-NOUP, LIB: CLOSE LIBRARY; ABORT
OUTPUT MESSAGE FORMAT DCIO: pref ix, INPUT AND
OUTPUT RECORD FCS-PUT, SEQ:
OUTPUT TO PRINT A FILE TIPPRINT
OVERVIEW OVERVIEW, TIP/30
OVERVIEW, DISPLAY FORMAT PREPARATION
OVERVIEW, DOCUMENT PREPARATION
OVERVIEW, FILE CONTROL SYSTEM
OVERVIEW, INTERACTIVE UTILITIES
OVERVIEW, MESSAGE CONTROL SYSTEM
OVERVIEW, PROGRAM PREPARATION
OVERVIEW, PROGRAM TESTING AND DEBUGGING
OVERVIEW, SECURITY
OVERVIEW, TIP/30 OVERVIEW
OVERVIEW, UTILITIES

- p -

param, TJ$DOCS PARAM CARD FORMAT TJ$DOCS:
params, CALL TIPFCS - COMMON PARAMETERS TIPFCS:
params, CATALOGUE LIST PROGRAM PARAMETERS TJ$LC:
phone, CHANGE DIAL-UP LINE TELEPHONE NUMBER TIPTERM:
pib, PROCESS INFORMATION BLOCK PCS:
pp, PRINT PROGRAM TQLMON:
pre-emptive, DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE JBQ:
pref ix, INPUT AND OUTPUT MESSAGE FORMAT DCIO:

KWIC INDEX Page:
Section:

INDEX

. 6.10.3
6.16.5
4.5.11

3.22
8.14

3.6.11
3.32

3.49.3
3.6.12
7.9.1
8.3.7

8.4
7.9

7.9.16
3.46
8.14
3.26

3.26.1
3.31
3.52

3.44.5
7.10.20

7.7
6.16.4
7.10.1
6.10.4

6.12
1.6

1.6.6
1.6.8
1.6.2
1.6.4
1.6.1
1.6.5
1. 6. 7
1.6.3

1. 6
1.6.9

8.11.1
6.6

8.12.1
7.10.19

5.1.2
4.4.9

3.26.7
7.10.1

35
Index

INDEX

print, ON-LINE DATA DISPLAY ODD:
print, PRINT A REPORT TQL:
print, PRINT BASIC PROGRAM LISTING BASIC:
print, PRINT HARD COPY DUMP PMDA:
print, PRINT HARD COPY LISTING TLIB:
print, PRINT SCREEN FORMAT MSGAR:
print, PRINT SPOOL FILE SPL:
print, PRINT VTOC VTOC:
print, TRANSMIT PRINT FILE BCP:
prog, CATALOGUING A TRANSACTION CAT:
program, DEFINING A TQL PROGRAM TQL:
pt, PRINT SPOOL FILE WITH TEST PAGE SPL:
punch, PUNCH ELEMENT TLIB:
punch, TRANSMIT PUNCH FILE BCP:
put, OUTPUT A MESSAGE TIPTERM:
Predefined Function ABS, ABS
Predefined Function ASC, ASC
Predefined Function ATN, ATN
Predefined Function CBRT, CBRT
Predefined Function CHR$, CHR$
Predefined Function CLK$, CLK$
Predefined Function COS, COS
Predefined Function COSH, COSH
Predefined Function DAT$, DAT$
Predefined Function EBC, EBC
Predefined Function EXP, EXP
Predefined Function INT, INT
Predefined Function LEFT$, LEFT$
Predefined Function LEN, LEN
Predefined Function LOG, LOG
Predefined Function LOGlO, LOGlO
Predefined Function MID$, MID$
Predefined Function POS, POS
Predefined Function RIGHT$, RIGHT$
Predefined Function RND, RND
Predefined Function SEG$, SEG$
Predefined Function SGN, SGN
Predefined Function SIN, SIN
Predefined Function SINH, SINH
Predefined Function SQR, SQR
Predefined Function STR$, STR$
Predefined Function TAB, TAB
Predefined Function TAN, TAN
Predefined Function TRM$, TRM$
Predefined Function USR$, USR$
Predefined Function VAL, VAL
Program, SAMPLE TIP/BASIC PROGRAM Sample
PACKET FCS: descriptor, FILE DESCRIPTOR
PACKET FCS: file-pkt, LOGICAL FILE NAME
PACKET TC-MCS, MCS INTERFACE

Pa9~:
Section:

36
Index

KWIC INDEX

3.39.9
4.5.3

3.5.12
3.40.3
3.56.8
3.34.7

3.49.11
3.58.6
3.6.13
3.7.5

4.2.10
3.49.12

3.56.9
3.6.14

7.10.20
9.2.2
9.2.3
9.2.4
9.2.6
9.2.8
9.2.9

9.2.12
9.2.13
9 .• 2 .14
9.2.17
9 .•. 2.21
9.2.31
9.2.32
9.2.33
9.2.36
9.2.37
9.2.38
9.2.42
9.2.50
9.2.51
9.2.52
9.2.53
9.2.54
9.2.55
9.2.57
9.2.61
9.2.64
9.2.65
9.2.67
9.2.68
9.2.69
9.2.71
6.7.2
6.7.1

7.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

•

KWIC INDEX

PACKETS, FILE CONTROL SYSTEM INTERFACE
PAGE CPAGE, SET U400 CONTROL
PAGE DOC: @Enn,mm, EJECT TO NEW
PAGE DOC: @0, START ODD OR EVEN
PAGE LENGTH DOC: @Gnn, SET
PAGE NUMBER DOC: @P, RETRIEVE CURRENT
PAGE SPL: pt, PRINT SPOOL FILE WITH TEST
PAGE TIPCPAGE, SET UTS-400 CONTROL
PAGING THROUGH THE CURRENT RECORD DD, DDU
PARAGRAPH NUMBER DOC: @!n : @]n, SAVE
PARAGRAPH NUMBER DOC: @?n, RECALL
PARAGRAPH NUMBER DOC: @Xn, INCREMENT
PARAM CARD FORMAT TJ$DOCS: param, TJ$DOCS
PARAM OPTIONS FOR TJ$PARAM TJ$PARAM: options
PARAM, PARAMETERIZE AN INPUT MESSAGE
PARAMETER RUN TJ$PARAM, TIP/30 GENERATION
PARAMETERIZE AN INPUT MESSAGE PARAM
PARAMETERS FROM STRING TIPSCAN, SCAN
PARAMETERS TIPFCS: params, CALL TIPFCS - COMMON
PARAMETERS TJ$LC: params, CATALOGUE LIST PROGRAM
PASSWORDS USER ID, USER IDENTIFICATION AND
PCS, CHAPTER V - PROGRAM CONTROL SYSTEM
PCS, ON-LINE PROGRAM STRUCTURE
PCS, PROGRAM CONTROL SYSTEM
PCS: cda, CONTINUITY DATA AREA
PCS: gda, GLOBAL DATA AREA
PCS: .mes, MESSAGE CONTROL SYSTEM WORKAREA
PCS: pib, PROCESS INFORMATION BLOCK
PCS: workarea, WORK AREA
PHYSICAL FORM FEED DOC: @.
PHYSICALLY CLOSE ON-LINE FILE FCLOSE
PHYSICALLY OPEN ON-LINE FILE FOPEN
PITFALLS TO AVOID ODD, ODD -
PMDA AND SCRATCH DUMP FILE PMDA: quit, END
PMDA PROGRAM PMDA: end, END
PMDA, POST MORTEM DUMP ANALYSIS
PMDA: display, DISPLAY MEMORY CONTENTS
PMDA: end, END PMDA PROGRAM
PMDA: print, PRINT HARD COPY DUMP
PMDA: quit, END PMDA AND SCRATCH DUMP FILE
POINT ROLLPT, SET TERMINAL ROLL
POINTS BULLETIN APB, ALL
POS Predefined Function POS
POS, POS Predefined Function
POSITION & TRANSMIT TIPMSGRV, CURSOR TO LAST
POSITIONING DCIO: cursor, CURSOR
POST MORTEM DUMP ANALYSIS PMDA
POTENTIAL PROBLEMS DD, DDU
PRE-EMPTIVE PRIORITY JOB QUEUE JBQ: pre-emptive, DISPLAY
PREDEFINED FIELDS TQL

KWIC INDEX

,.-.,. ·•
_.- l' ~ \

Page:
Section:

INDEX

6.7
3.9

3.18.17
3.18.26
3.18.19
3.18.27
3.49.12
7.9.12
3.12.6
3.18.6

3.18.11
3.18.35
8.11.1
8.3.7
7.9.2
8.3.6
7.9.2

7.9.14
6.6

8.12.1
2.1

5.
5.1.1

5.1
5.1.3

:'7 '5.1.6
5.1.4

.} 5.1.2
5 .1. 5

c 3.18.4
3.20
3.22

3.39.15
3.40.4
3.40.2

3.40
3.40.1
3.40.2
3.40.3
3.40.4
7.9.7

3.3
9.2.42
9.2.42

7.8
7.10.4

3.40
3.12.14
3.26.7
4.2.6

37
·Index

INDEX

PREDEFINED MACROS 0-39 DOC: @0-@39
PREFACE
PREPARATION OVERVIEW, DISPLAY FORMAT
PREPARATION OVERVIEW, DOCUMENT
PREPARATION OVERVIEW, PROGRAM
PREVIOUS VERSION TLIB: back, RE-ACTIVATE
PRINT A FILE TIPPRINT, OUTPUT TO
PRINT.A REPORT TQL: print
PRINT BASIC PROGRAM LISTING BASIC: print
PRINT CODE TO AUX PRINTER TIPCOP, SEND
PRINT COMMAND QED: p, DISPLAYING LINES; THE
PRINT FILE BCP: delete, DELETING
PRINT.FILE BCP: print, TRANSMIT
PRINT FILE QUEUE BCP: queue, DISPLAYING
PRINT FILE/RECORD TQLMON: p
PRINT HARD COPY DUMP PMDA: print
PRINT HARD COPY LISTING TLIB: print
PRINT PROGRAM TQLMON: pp
PRINT QED: Exercise 2, EXERCISE 2: APPEND,
PRINT Statement PRINT
PRINT SCREEN FORMAT MSGAR: print
PRINT SPOOL FILE SPL: print
PRINT SPOOL FILE WITH TEST PAGE SPL: pt
PRINT VTOC VTOC: print
PRINTj APPEND QED: Exercise 3, EXERCISE 3: READ,
PRINT, PRINT Statement
PRINT,·. WRITE QED: Exercise 4, EXERCISE 4: ADD, READ,
PRINTER TIPCOP, SEND PRINT CODE TO AUX
PRIORITY JOB QUEUE JBQ: high, DISPLAY HIGH
PRIORITY JOB QUEUE JBQ: normal, DISPLAY NORMAL
PRIORITY JOB QUEUE JBQ: pre-emptive, DISPLAY PRE-EMPTIVE
PROBLEMS DD, DDU, POTENTIAL
PROCEDURE BCP: logon, USER LOG-ON
PROCEDURES LOGON/LOGOFF, LOGON AND LOGOFF
PROCESS INFORMATION BLOCK PCS: pib
PROCESS SET, SET ATTRIBUTES FOR
PROCESS TIPFORK, CREATE AN ASYNCHRONOUS
PROCESSING FCS-ESETL, INDEXED: END SEQUENTIAL
PROCESSING FCS: journal, JOURNAL FILE
PROCESSOR BCP, BATCH TERMINAL COMMAND
PRODUCE A DISPLAY TQL: display
PROGRAM ABORT TRAP TIPABRT,. USER
PROGRAM AND LOGOFF SPL: quit, END SPL
PROGRAM AND LOGOFF VTOC: quit, END VTOC
PROGRAM BASIC: compile, COMPILE BASIC
PROGRAM BASIC: new, EDIT A NEW BASIC
PROGRAM BASIC: old, EDIT EXISTING BASIC
PROGRAM BASIC: run, RUN A BASIC
PROGRAM CONTROL SYSTEM PCS
PROG.~. _C_O~T~Q~-· --~-~-~'J'~M ~~S_, _CHAPTER V -

KWIC INDEX

3.18.39
1.1

1.6.6
1.6.8
1.6.5

3.56.1
6.12

4.5.3
3.5.12
7.9.11
3.41.6
3.6.6

3.6.13
3.6.15
4.4.8

3.40.3
3.56.8
4.4.9

3.41.37
9.2.43
3.34.7

3.4g.11
. ·3.49~:12

3 ~:58~. 6.
; ' .. 3 .4fa:;·36

..: . ,_: :·9:;;2::'~'3'
3. ~1,;39

: ~ 1 .·s .. 11
. . 3 .• :26 -~· 4

'3'..;:26'~ 6
~3!.'2tL7

3.12~14
3.6.10

2.2
5.1.2

3.48
5.7

6.8.5
6.20
3.6

4.5.1
5.2

3.49.13
3.58.7
3.5.2

3.5.10
3.5.11
3.5.14

5.1
5.

.Page:
Section:

38
Index

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

PROGRAM DIE, ABORT A
PROGRAM DUMP TIPDUMP, FORCE
PROGRAM EXECUTION BCP: call, USER
PROGRAM HELP INFORMATION BASIC: help, DISPLAY BASIC
PROGRAM HELP SPL: help, DISPLAY SPL
PROGRAM IN A LIBRARY BASIC: save, SAVE A
PROGRAM JBQ: end, END INTERACTION WITH JBQ
PROGRAM LIMITATIONS ODD
PROGRAM LINKAGE TIPSUB
PROGRAM LISTING BASIC: print, PRINT BASIC
PROGRAM MSGAR: quit, QUIT MSGAR
PROGRAM ON TERMINAL BASIC: list, LIST BASIC
PROGRAM OPERATION SPL: operation, SPL
PROGRAM PARAMETERS TJ$LC: params, CATALOGUE.LIST
PROGRAM PMDA: end, END PMDA
PROGRAM PREPARATION OVERVIEW
PROGRAM RELOAD, RELOAD
PROGRAM Sample Program, SAMPLE TIP/BASIC
PROGRAM SPL: end, END SPL
PROGRAM STRUCTURE PCS, ON-LINE
PROGRAM SYNTAX TQL, TQL: QUERY
PROGRAM TABLE STATUS: r, RE-ENTRANT
PROGRAM TESTING AND DEBUGGING OVERVIEW
PROG~ TIPRTN, END ONLINE
PROGRAM TJ$COB68, COMPILE COBOL-68 TIP
PROGRAM TJ$COB74, COMPILE COBOL-74 TIP
PROC?RMt. TL I B: end , END TL I B
PROGBAM.TLIB: quit, QUIT TLIB
PROG~'TO LIBRARY TQLMON: wp, WRITE TQL
PROGRAM TQL: commands, EXECUTING A TQL
PROG~ TQL: program, DEFINING A TQL
PROGRAM.TQL: sample, SAMPLE
PROGRAM TQLMON: cp, COMPILE
PROGRAM TQLMON: dp, DELETE
PROGRAM TQLMON: lp, LIST
PROGRAM TQLMON: pp, PRINT
PROGRAM VTOC: end, END VTOC
PROGRAM WITH LISTING BASIC: cp, COMPILE BASIC
PROGRAM, FILE COMMANDS TB$INT: cat, USER,
PROGRAMS BASIC: run, DIRECT EXECUTION OF BASIC
PROGRAMS BCP: fork, BACKGROUND
PROGRAMS CAT, CATALOGUE HINTS FOR TESTING
PROGRAMS IN TIP CATALOGUE BASIC: le, LIST .BASIC
PROGRAMS TIP: batch jobs, TIP/30 BATCH
PROGRAMS TQLMON: sp, SUMMARY OF
PROGRAMS UTILITIES, CHAPTER III - ON-LINE UTILITY
PROMPT THE USER FOR A REPLY PROMPT
PROMPT THE USER FOR TEXT PROMPTX
PROMPT THE USER FOR TEXT PROMPTX8
PROMPT, PROMPT THE USER FOR A REPLY

.:: '

KWIC INDEX

.,_

INDEX

3.15
5.4

3.6.5
3.5.6

3.49.7
3.5.16
3.26.2

3.39.14
5.10

3.5.12
3.34.8
3.5.7

3~49.3
8.12.1
3.40.2
1.6.5

3.42
9.2.71
3.49.6
5.1.1

4.2
3.50.6
1.6.7

5.8
8.9

~- 6.10
' .. 3.56.4

~··· .. J;56.10
·4:4.14

... 4. 5
4.2.10
4.2.11
.4.4.2
4.4.4
4.4.6
4.4.9

3.58.2
3.5.3
8.7.2

'3.5.15
3.6.8

' 3.7.7
·. ·; .. 3.5.8

:· 8. 6
. 4.4.11

3 •
.... 7.9.3

7.9.4
.- ',A, ·'·: :1·. 9· • 5

•. '.-. :7'. 9. 3

Page:
Section:

39
, l~na-ex

INDEX

PROMPTX, PROMPT THE USER FOR TEXT
PROMPTX8, PROMPT THE USER FOR TEXT
PROTECTION DD, DDU, RECORD
PUNCH ELEMENT TLIB: punch
PUNCH FILE BCP: punch, TRANSMIT.
PUT FCS-PUT, EDIT:

- Q -

(QUAD CENTRE) DOC: @Cnn, END OF LINE
(QUAD LEFT) DOC: @Lnn,;END OF LINE
(QUAD RIGHT) DOC: @Rnn·, END OF LINE
queue, DISPLAYING PRINT FILE QUEUE BCP:
quit, E~~D INTERACTION WITH JBQ JBQ: ..
quit, END PMDA AND SCRATCH DUMP FILE PMDA:
quit, END SPL PROGRAM AND LOGOFF SPL:
quit, END VTOC PROGRAM AND LOGOFF VTOC:
quit, .QUIT MSGAR PROGRAM MSGAR:
quit, QUIT TLIB PROGRAM TLIB:
quit, TERMINATE BASIC MONITOR BASIC:
QED CONTROL CHARACTER, DOUBLE QUOTE QED: "
QED Ii~PUT QED: "< , RE-DIRECTED
QED R~FERENCE QED, SUPPLEMENTARY
QED, CQNTEXT SEARCHING
QED, LINE LENGTH
QED, LINE NUMBERS
QED, REGULAR EXPRESSION CONSIDERATIONS
QED, REPEATED SEARCHING FOR THE SAME STRING
QED, SUMMARY OF COMMANDS AND LIN:E_-NUMBERS
QED, SUPPLEMENTARY QED REFERENCE
QED, TIP/30 TEXT EDITOR
QED: ., MATCHING ANY CHARACTER
QED: <n, RECALL SAVED LINE NUMBER
QED: &, WHAT WAS JUST MATCHED
QED: $, MATCHING AT THE END OF A LINE
QED: *, OI MODE REPETITION
QED: ~, MATCHING AT THE BEGINNING OF A LINE
QED: %, MATCHING ANY LETTER
QED: >n, SAVE THE CURRENT LINE NUMBER
QED: #, MATCHING ANY DIGIT
QED: "<'., . RE-DIRECTED QED INPUT
QED: ", QED CONTROL CHARACTER, DOUBLE QUOTE
QED: a, ADDING TEXT: THE ADD COMMAND
QED: c, CHANGE AND INSERT
QED: d', DELETING LINES
QED:· dot, THE CURRENT LINE
QED: errors, ERROR MESSAGES
QED: . g,: GLOBAL COMMANDS
QED: fntro, GETTING STARTED

.)>a9·e:
section:

: ~· '.~; -~ ~~Q. · .
Index ·

KWIC INDEX

7.9.4
7.9.5

3.12.12
3.56.9
3.6.14
6.17.7

3.18.16
3.18.24
3.18.29
3.6.15
3.26.8
3.40.4

3.49.13
3.58.7
3.34.8

3.56.10
3~5.13
3 .. 41.2

3+41.16
3,.41 • .21

· 3 .41.~ lO
. 3.41;4
.3-. 41. 35·
3,41.32
3.41.11
3~41.33
3.41.21

3.41
3.41.30
3.41.28
3.41.31
3.41.23
3.41.29
3.41.22
3.41.24
3.41.27
3.41.25
3.41.16
3.41.2
3.41.S

3.41.12
3.41.8
3.41.7
3.41.3

3.41.15
3.41.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

KWIC INDEX

QED: k, COPYING BLOCKS OF TEXT; COPY
QED: m, MOVING BLOCKS OF TEXT; MOVE
QED: p, DISPLAYING LINES; THE PRINT COMMAND
QED: q, e, END OF EDIT SESSION: QUIT / END
QED: r, READING TEXT FROM A FILE
QED: s, MODIFYING TEXT; THE SUBSTITUTE COMMAND .
QED: summary, COMMAND and FUNCTION SUMMARY
QED: v, VERSION NUMBERS
QED: w, WRITING AN EDIT BUFFER TO A FILE/ELEMENT
QED: Exercise 1, EXERCISE 1: APPEND, QUIT, WRITE
QED: Exercise 2, EXERCISE 2: APPEND, PRINT
QED: Exercise 3, EXERCISE 3: READ, PRINT, APPEND
QED: Exercise 4, EXERCISE 4: ADD, READ, PRINT, WRITE
QED: Exercise 5, EXERCISE 5: SUBSTITUTE
QED: Exercise 6, EXERCISE 6: CONTEXT SEARCHING
QED: Exercise 7, EXERCISE 7: CHANGE
QED: 0#, DISPLAYING A COLUMN SCALE
QUERY LANGUAGE TQL, INTRODUCTION TO TIP/30
QUERY PROGRAM SYNTAX TQL, TQL:
QUEUE BCP: queue, DISPLAYING PRINT FILE
QUEUE CONTENTS SPL: summary, SUMMARIZE SPOOL
QUEUE INFORMATION JBQ, DISPLAY OS/3 JOB
QUEUE JBQ: high, DISPLAY HIGH PRIORITY JOB

INDEX

3.41.14
'3~4i.13

3·. 41. 6
3.41.19

. '3.41.17
3~41.9

3. 41. 34
3.41.20
3.41.18
3.41.36
3.41.37

, .. 3.41.38
:3:41.39

';.·:r.:41.40
3.41.41
3.41.42
3 .•. 41. 26

4·. l
4.2

'3.6.15

QUEUE-JBQ: normal, DISPLAY NORMAL PRIORITY JOB
QUEtJE.'JBQ: pre-emptive, DISPLAY PRE-EMPTIVE PRIORITY JOB
QUEUES JBQ: all, DISPLAY ALL OS/3 JOB

3'. 49 .15
3.26

3 ~ 26. 4
3~:26.6

· . · -.r· ~a:~-6. 1
-· . · :L-2 6 • 1

:.i, :i :. 3. 41.19 QUlTi/'.END QED: q, e, END OF EDIT SESSION:
QU1T MSGAR PROGRAM MSGAR: quit
QUIT'I'LIB PROGRAM TLIB: quit
QUIT,.WRITE QED: Exercise 1, EXERCISE i: APPEND,
QUOTE QED: ", QED CONTROL CHARACTER,· DOUBLE

- R

"<, RE-DIRECTED QED INPUT QED:
receive, SEND DATA FILE TO HOST BCP:
record, RECORD DEFINITION TQL:
release, 'RELEASE SPOOL FILE SPL:
rename, RENAME SCREEN FORMAT MSGAR:
report, REPORT DEFINITION TQL:
restore, RESTORE SCREEN FORMAT MSGAR:
roll, ROLL THE SCREEN DCIO:

.. --

BASIC:

.,

run, DIRECT EXECUTION OF BASIC PROGRAMS
run, RUN A BASIC PROGRAM BASIC: - •· ,t

run, RUN BATCH JOB BCP:

•.

,, .. ~:;, :;• '3.34.8
. ' ~ "-l '3· .• :s 6 • 1 0

. <3'~"41. 36
·_· ' ;,3 • 41 • 2 .. ,. . ' . -

: . '·.
-~ > • • ·- ~ ••

'--3.41.16
' '3.6.16

4.2.2
: ~ ;-· ,.

3.49.14
'3.34.9

4.2.9
-- - :_ :· ,, 3.3,4.10

' ,., . ,..,..,
; · .. : '.

: .• :. __ r..· ... <.

·~ - r

7.10.9
3.5.15

-3.5.14
3.6.17
9'.2.47
9 .. 2 .47

Reserved Word List Reserved Word List
Reserved Word List, Reserved Word List
RANDOMIZE Statement RANDOMIZE
RANDOMIZE, RANDOMIZE Statement

·-::· :. ~,,..~ ":..l.:/ .. :· :

·9.-2.:44
-~.L - - ' 9 .;.2. 4·~

',\

KWIC INDEX . Page:
section:

""

41
· ''fn'~lex
,, : :.~:.. .. :-9:.

INBEX
KWIC INDEX

RE-'ACTIVATE PREVIOUS VERSION TLIB: back 3.56.1
RE.-D.I'RECTED QED INPUT QED: "< 3 • 41 • 16
RE~ENTRANT PROGRAM TABLE STATUS: r 3.50.6
REM)};. MESSAGE FROM A TERMINAL TIPMSGI 7.5
READ·l"CS: journal, BATCH JOURNAL FILE 6.20.2
READ 'RECORD AND LOCK FCS-GETUP, DIRECT: 6.9.7
READ.· .RECORD AND LOCK FCS-GETUP, INDEXED: 6. 8. 8
READ 'RECORD FCS-GET, DIRECT: . . . 6. 9. 6
READ: RECORD FCS-GET, INDEXED: 6. 8. 7
READ RECORD FCS-GET, LIB: 6.16.3
READ RECORD FCS-GET, SEQ: .· :, ~: 6 .10. 2
READ' RECORD (S) FCS-GET, DYN: ..: ··, - 6 .11. 5
READ Statement READ .'.~:: · · - . • 9.2.45
READ',' PRlNT, APPEND QED: Exercise 3, EX~R~J.SE ·J:. ~: _::: , __ - : 3.41.38
RE.Al)', PRINT, WRITE QED: Exercise 4, EX-ER:QI·SE 4;T ADD~' - _. 3.41.39
READ·,· READ Statement "' · .. : 9. 2. 45
READER;· SPOOL BCP: in, CREATE INPUT ·:.i-- .. >·; ~,_:'\3-~6.9
READl'NG TEXT FROM A FILE QED: r ... 3. 41.17
RECALL PARAGRAPH NUMBER DOC: @? n · "3·~18 ·~ 11
RECALL-SAVED LINE NUMBER QED: <n .3.41.28
RECOR!> AND FILE LOCKING FCS _ . :.· .-6.3
RECORD' AND LOCK FCS-GETUP, DIRECT: READ . _;·, · .-. -~ .:~--_: ·:6..;9·/7
RECORD'AND LOCK FCS-GETUP, INDEXED: READ ;::-~.:.:· ;~:.:. _ ... -~ .. '...?6::;.S.:~8·
RECORP'. CURRENTLY DISPLAYED DD, DDU, UPDATING THE·::· < ·,- ·.' - .· .. ~.-_:;;. -3--~12.,;g;;
RECORD'.:DD, DDU, PAGING THROUGH THE CURRENT ;:'•_,, ·:. ~ ~.:'" ·.;:3~12«~6~::
RECO!ID~ DEFINITION TQL: record . -- T ' ' >: ; - /, ;.;_4. 2 .• lz ~
RECOtill FCS-ADD, DIRECT: ADD · ~ ·--· ·~ - - '.. - '.:.~'.6~'9:1":
RECORD:- FCS-DELETE, DIRECT: DELETE - . : . ~ : 6 -~ 9-. 4
RECORD FCS-DELETE, INDEXED: DELETE .'~"::'..''6:.9-_:4·
RECORD FCS-GET, DIRECT: READ "" :.; :e,·;9~g :
RECORD. FCS-GET, INDEXED: READ ··- .. .-6::s~7.:
RECOIW"FCS-GET, LIB: READ 6:16~3
RECORD - FCS-GET, SEQ: READ (f •. ;fO • 2
RECORD'FCS-NEXT, INDEXED: GET NEXT 6:8~10
RECORD FCS-PUT, DIRECT: UPDATE · -6~9.ll
RECORD FCS-PUT, INDEXED: UPDATE . 6.8.13
RECORD FCS-PUT, LIB: WRITE · >'.6~16. 6
RECORD· FCS-PUT, SEQ: OUTPUT . . .6 .10. 4
RECORD-· FORMAT FCS: journal, 'LGOF' JOURNAL 6. 20 .1
RECORD HOLDING FOR THE TRANSACTION HOLD=TR .·. ·6. 3. 2
RECORD ·HOLDING FOR THE UPDATE HOLD=UP __ _ 6. 3. 3
RECORD'HOLDING HOLD=YES, SIMPLE 6.3.1
RECORD HOLDING SUMMARY FCS 6.3.4
RECORD'IDENTIFICATION TQL: id . 4.2.4
RECORD·QF A NON-INDEXED FILE DD, DDU, SPECIFYING A 3.12.4
RECORD'OE AN INDEXED FILE DD, DDU, SPECIFYING A 3.12.3
RECORD '·PROTECT I ON DD , DDU 3 • 12 • 12
RECQRD"TO BE DISPLAYED DD, DDU, SPECIFYING A 3.12.2
RECORD'.TO FILE FCS-ADD, INDEXED: ADD 6.8.1
RECORD .:TQL: add, ADD 4. 5. 7

.... ,....-, ··---·-· .. --··~---.... ~,. ·-·---------... ··-----.. --~~·-···-·· ·-·--- -~-..

. ¥age.:
sect'forr:

. ~~_'.:'42 .
·Iriaex : .. ; TIP/30 Reference Manual

Version 2.5 (82/0~/01)

--

KWIC INDEX

RECORD TQL: delete, DELETE
RECORD TQL: update, UPDATE
RECORD(S) FCS-GET, DYN: READ
RECORD(S) FCS-PUT, DYN: WRITE
RECORD, ADD A
RECORDS CAT, UPDATING CATALOGUE
RECORDS TQL: count, COUNT
RECORDS, UPDATE
RECOVERY TB$RCV, FILE

...

REFERENCE MANUAL HOW TO USE, HOW TO USE THIS ;
REFERENCE MANUAL STRUCTURE STRUCTURE
REFERENCE QED, SUPPLEMENTARY QED
REFORMATTER (CONVERSION AID) CC, COBOL
REGULAR EXPRESSION CONSIDERATIONS QED
RELEASE RESOURCE FCS-RELEASE, D-IRECT:
RELEASE.RESOURCE FCS-RELEASB~ INDEXED~
RELEASE SPOOL FILE SPL: release
RELOAP.PROGRAM RELOAD
RELOAP,.RELOAD PROGRAM
REM Statement REM
REM, · REM Statement
REMOrE BATCH JOB BCP: submit, SUBMIT
REMOTE,_,BATCH JOB TLIB: job, SUBMIT
REN.~E.!SCREEN FORMAT MSGAR: rename
RE:el;:b'J'ED SEARCHING FOR THE:sAME STRING QED·.
REJ?~TITION QED: *, OI MODE ' .
RE~~Y.P.ROMPT, PROMPT THE USER FOR A
RE~Q~'l' ';DEFINITION TQL: report
RERQR'r·;TQL: print, PRINT A
RE~Q~RaMENTS, TIP/30 LIBRARY FILE
RES.~~V~D WORDS TQL: words

. "' . : ..: ~ - ~ '

RESOURCE FCS-HOLD, DIRECT: HOLD
RE$0U~CE FCS-HOLD, INDEXED: HOLD
RESQU~C~ FCS-RELEASE, DIRECT: RELEASE
RESOURCE FCS-RELEASE, INDEXED: RELEASE
RESTING LOCATION MSGAR: cursor, CURSOR
RESTORE COMPOSITION STATUS DOC: @V
RESTORE Statement RESTORE
RESTOR~ SCREEN FORMAT MSGAR: restore
RESTORE, RESTORE Statement
RETRIEVE CURRENT PAGE NUMBER DOC: . @P - ' . "
RETURN DCIO: carret' GENERATE CARRIAGE1· ·.

RETURN Statement RETURN
RETURN, RETURN Statement
RIGHT$ Predefined Function RIGHT$
RIGHT$, RIGHT$ Predefined Function"·: . -
RIGHT} DOC: @Rnn, END OF LINE . (QUAD ..: · ··
RND Predefined Function RND
RND, RND Predefined Function
ROLL BACK UPDATES FCS-BACK, DIRECT:

KWIC iNDEX

................ ~-- --- -·-· -~--·

·1 '· .

-·· :.·

INDEX

'-'·.

. . .
-, ~ -

··~ ,- I

---~-- .. --.. ---~ ·~--~·_. . .,.,.... -.---~ ,;_ -·

)?age:
SeC:fion:

•.. ,-43
:fri'.ciex.~, ·
~ '>. ~ - .· - (

. • - v.,,._,., ____ .. _

I NDE-X ·

ROLL BACK UPDATES FCS-BACK, INDEXED:
ROLL.MODE BASIC: mode, CHANGE SCREEN
ROLL.PO'INT ROLLPT, SET TERMINAL
ROLL: SCREEN ROLL, SEND ONE LINE AND
ROLL' 'THE· SCREEN DCIO: roll
ROLL, $'END ONE LINE AND ROLL SCREEN
ROLLP.'f, .SET TERMINAL ROLL POINT
RPG:EDITOR RPG
RPG,: .EN.TERING
RPG'· GET.TING OUT OF
RPG,. RPG: ED I TOR
RUN A BASIC PROGRAM BASIC: run
RUN .BATCH JOB BCP: run
RUN .TI:ME. JOB CONTROL OPTIONS TIP: exec
RUN TJ$'PARAM, TIP/30 GENERATION PARAMETER
RUN-TtME. MONITOR ERROR MESSAGES errors
RV,. $'T~R!J:' OS/3 BATCH JOB

- s -

"

KWIC INDEX

. . ~ :- . ~
'..;'

6.8.2
3.5.9
7.9.7

'7.9.6
7.10.9
7.9.6
7.9.7

3.43
3.43.1
3.44.5

3.43
3.5.14
3.6.17

8.4
.. 8.3.6
.9~~2. 74

_3 .• 46

<st.~~teme:nt list> <statement list> s.:.:2~ .. '.5.9.
<st:ateiri~nt 1 ist>, <statement 1 ist> ·, ·- • 'L'-: .- .. - -_ :-. :: 9 ..• ~, .. ~·9
<st;afement> <statement> -·:;.:_. , ... · .-·,._-,._·.~~:~ :s: .. ~.~~5Ef.
<st,9£ement>, <statement> ·:. '' :; . - :: ·::·, :"~ ~~.2~ •. ,5~.,
<stibpG'.rfpt list> <subscript list> ·.r<·•?", •. ·:-:· ,., .$, .. ~·.~2:.
<sti.b.,sc.fr'ipt list>, <subscript list> .. · · :_:·:~· ·.g:::i·,j)~
(SPACE~;suPPRESSED) SPOOL FILE SPL: ls, LIST ·_' .· ... · .. :.'.:'3_:, • ..,4;f,.~9-
samp!e, CATALOGUE INITIALIZATION .SAMf:LE ·TB$~~T,::. ' ·, - 8:.:7 .-.3.\,
sample, SAMPLE PROGRAM TQL: ... - -- :~:: :. - ·4-°.~2;.-a.l,.-

save ,' '.sAVE A PROGRAM IN A LIBRARY BASIC: ~ .. - :, ':~~c.5.J.~6.
save, '$.AVE SCREEN FORMAT MSGAR-:., - · ., . " ,, . - ~·:34:.l;l
scari-, SGAN FUNCTION DCIO: '' ' . •' - j7·.-:l0..;.1.0
secur fty, DEFINITION OF CATALOGUE GRPPPS CAT: - " ·- .~-~3 ~~"t. 3
sectirft-y, SECURITY LEVEL SPECIFICATION- CAT': ' ., . .3·.-7. 2
security, SPL SECURITY CONSIDERATIONS SPL: -. .' ", : ~· ·:;. < ~:~.:~.4-9.1
send, SEND DATA FILE TO TERMINAL BCP: · .· .. ,- ·,,~:-..' -~;-.3~~6.18
sequenf:ial, 'TIPFCS' FOR SEQUENTIAL FILES $C-S:'·~.-... :···-.~:;, - . ~,:; .. ·· ·;,- ;,-6.10
show; 'dN..:LINE DATA DISPLAY ODD: .. ; ' . _·;·-'-. -· :·- -•'.>-;: .. -J,.'.39.10
show, -SHOW SUMMARY OF DISPLAY NAMES TQL: _,.-, ·~·'· ' , ., > '.4.5.8
show' -$HOW SUMMARY OF FIELD NAMES TQL: . . . _.. : . . . 4. 5. 9
sort; SORTED VTOC DISPLAY VTOC: ... _. ·· .. -· ·:·.• ·3.58.8
sp, _.SUMMARY OF PROGRAMS TQLMON: . - , . . . ~ '. ~ . 4· ~ 4 .11
status, AUXILIARY DEVICE I/0 DELIVERY STATUS DCI6\.~.~- .: 7 .10. 2
submit, -SUBMIT REMOTE BATCH JOB BCP,: , , ·· _, :: ·~ .. ' 3. 6 .19
sunµttai-y,- COMMAND and FUNCTION SUMMARY .. QED: . , 3.41.34
s umffia~y ;, SUMMARIZE SPOOL QUEUE CONTENTS SPL: ... · . - ,_: - ~-:-' 3 • 4 9 .15
sUJllffi.ajfy, SUMMARY OF FCS CALLS FCS: ·· . ·· . - , '. - : . ·. · .. 6. 4
Samp1e Program, SAMPLE TIP/BASIC PROGRAM ' - - . -:: ~,.. .. ,; : 9.2. 71
·Sp~~iil Characters Special Characters 9.2.56

~Pane:
' ,', . · •. ?. ..
Section:

: "':·_~4.;
··Index ·

TIP/30 Referenci:::.:M~~ua'1
Version 2.5 (82/08/01)

INDEX
KWIC INDEX

Special Characters, Special Characters 9.2.56
Statement CHAIN, CHAIN ·' • ~ .' .. - <-. ; . - . ·\· :.'[' - 9 ~ 2. 7-
St t t CLOSE CLOSE -~ · :.. , .n:~ ·9~:L1-0:
St:t:::~t DATA, , DATA .. - :· ; :' : ·_:: _ . ~.: ~~<- , '· __)3_ •. 2!.15
Statement DIM, DIM · - ·-· ·· · '· 9. 2.16
Statement END, END -~-:-~'.-? 9'1~1 2'..18-
Statement ENDIF, END IF~, : - ·, '~.,.. ·~··· ~·~:2 .·1·9-'
Statement EXITFOR, EXITFOR . "'! "· ~·~f'· . i~:· .. :-9 .·.2 'I. 2{}~:
Statement FILE, FILE ,. '. ... ~-·.9:. 23.-23"'.
Statement FOR, FOR ·. · . :§':·i. 2-4··
Statement GOSUB, GOSUB ·.. ·~-;~ · '9 .2-'. 25:
Statement GOTO, GOTO ·>>" :.:,: 9:'i. 2-ES
Statement IF END, IF END - ,:_ :-~- ·:: ; ·.:, ~-.::2: 29
Staternertt IF, IF ·:~. : :: :<:: <·' ::9~·~~2 ;:2a··
Statement INPUT, INPUT .:. ... , .. '. ·: ·· •.. Fl".';·- "· -, ~f. 'i /301 .

Statement LET, LET ,, . -•·"' ·. c~ i.,;~. -~' ·,: ':' · >..\ ;:~ :_gI~'.i,.-34·'·
Statement NEXT, NEXT .. · ; . : _, .. ·' ~-~i'<: •:!·)i ·-~-1 '·" , : ~:.:' 9 ~ 2 .. 3·9~ .
Statement NEXTFOR, NEXTFOR - .. .]'_' '.9·;2'.-4o
Statement ON, ON 9.2.41
Statement PRINT, PRINT 9.2.43
Statement RANDOMIZE, RANDOMIZE 9.2.44
st a t_em~J?.t READ, READ 9 • 2 • 4 5
Sta:t'¢meryt REM, REM ... , - .. , ' ' .·o:g:r2·.:4-6
Sta:tj:mte1}:t RESTORE, RESTORE - ; , .'•'.g'/z.:'41f -·
Stci"t2~,t RETURN, RETURN . ' - .- ' "§'~~:439
Stat-en\~:t STOP, STOP ~.:: '- -~ - .: '::; -. -t :9· ~ 16'0
Stei:t1:!nierrt SYSTEM, SYSTEM .. ~ ;· l : , • '-....... · · '· _ : .. : ~ ~-:~ ~:?.~~~3 .: .
Stat-=e,n_etjJ THEN, THEN ,.. ._, ~--: ... ,,_, ~.~9.).':?.' ... ~6.
Statmeht· CALL, CALL ' . ' ;, . ; '·:".'.. ::;~~ . . <';,g :2~~.
SAM~--~ING QED, REPEATED SE'ARCHING~FoR':TllE"·' r-..::;: 3.411.11
SAMPU~ -~AM BCP: i cam . , , . _ '' ~ · '!>'c~~3 ;6.'22
SAMPLE· ·PROGRAM TQL: sample ··· · · - ·· · 4

"-'
1 :. " ·· 4~-2.11

SAMPuE: 'I'R$INT: sample, CATALOGUE INITIALIZATION -~~. ~'< \ ._: ~: :. ;~;~~- --.. '.; J:'!)t. 7 ~:3
SAMP4E· .'.!'IP/BASIC PROGRAM Sample P.rogram_, - . .'~ .. :. :. ·''; :,_ ",, ·9 ~·2. 71
SAVE' '.k :PROGRAM IN A LIBRARY BASIC:· save=· T ·'-~- " , .. · - :· · ·; ~::·, 3·.·5 ~·16
SAVE COMPOSITION STATUS DOC: @U : , .. - - ~--· ··'::.:'. 3 i8 32
SAVE PAMGRAPH NUMBER DOC: @!n; -©th;·:_· ,,,_c:.;·-,, ~::··. __ "':~ :·.":~:.: _. ::; ___ i,·1a~6
SAVE SCREEN FORMAT MSGAR: save . -I -- \ ._,, •• ••••• _. .: •• ~ • ;; ·' ·• •• -3 ~:3·4 .11
SAVE Tl\E CURRENT LINE NUMBER ·dEI}: ;.~;n·: ~ · _;· :::·:-· ~--:.: '.·"'.. -~·:</=- ·

1
·: •• : ;_~.4)·;'27

SAVED LINE NUMBER QED: <n, RECALL _ ~·--,_• .· .. ·-~ · ·'· :-'._~-:· ... · --·3_,-4;1.28
SCALE·QED: 0#, DISPLAYING A COLUMN;··- .. '.<.·:·:,.~~--~.·;;-; .. :,-.~--:":>· .::3'.J:l.26
SCAN FUNCTION DCIO: scan .. ' ._ "~, -" ,, . ~ ··7~:1·0.10
SCAN PARAMETERS FROM STRING TIPSCAN · ~-~-_, .. ~ ·: . :.- . : . -~~- ·i:: ~-~•l:'.~ .. i4
SCHEDULE' OS/3 SYMBIONT SYM •... , · :. ·-"' ". : . :·.· : ·•·13;·52
SCRATCH A DYNAMIC FILE SCRATCH·~,:··" : .• \ -~ :·";• :~.} .'·:r_. ~_;-;;_" 3·~47
SCRATCH DUMP FILE PMDA: quit END PMDA :AND .-:::: ·_;r.:. ;··- :..i.•:;_, '"..' ~:'., -:,3 . 4o 4 _,:;
SCRATCH FCS-SCRATCH EDIT: , . .,.. . .. _r ! ,: '.. I) • ··. ·:·. :<... --.~ C·:.-· .. p ,- 6 :i''i :-1f~'
SCRATCH FILE FCS-SCRATCH DYN: • -~ ;-~··:·.,,· ·:·-:.·, ... ·.:----:-. .·:_::.,'1i.<'''.r~. 6::ff·::a::J

, I·)••·•!,: q i' " '". ·~ ·-~ ~· \ •.~,-:..; I< ' ~ :., ~·~~ • ·-.:"~·.· • • '"'•

SCRATCH SCRATCH A DYNAMIC FILE ·1 -. • ~·-- ... '. • ..-, , • • · ' ·~-::. · ::.3 ·4 '1'"·
' ·(..... ,~ .• , ·..1 ·. , .. ·.- .•· r .. ,:,.•. .~ ,_ ~.--.·~~..._ :

SCREEN DCIO· roll ROLL THE . ' ··- .. , .. - 1 ;_' c "·'·~-: • : ·'· ·.' ~1 10'--;9~ :
. • ' ~ : f'.. ~---~~L- :.:~ ~·.::-:...r.·:· ;:<.~2 ,:;·~~:2., ·.:b··.r.·:l(', : ~~ ~ ~. ..

KWIC INDEX
- : ,_;·:-.~

.:eage:
Se¢t~on:

. ~ . :

INDEX
KWIC INDEX

SCREEN. FORMAT INFORMATION MSGAR: list; .LIST - ~ .3.34.6
SCREEN FORMAT MSGAR: delete' DELETE ' ; l .3. 34. 2
SCREEN FORMAT MSGAR: print, PRINT ... · . - · :3. 34. 7
SCREEN'. FORMAT MSGAR: rename, RENAME 3.34.9
SCREEN.FORMAT MSGAR: restore, RESTORE '3.34.10
SCREEN FORMAT MSGAR: save, SAVE ;-~ 3. 34 .11
SCREEN FORMAT NAMES MSGAR: write, WRITE ,:~'- .3~~34.12

SCREEN.FORMATS MSGAR: directory, DIRECTORY OF ·3 .. 34.3
SCREEN. FORMATS TQLMON: m, CREATE · · ~ · . 4. 4. 7
SCREEN ROLL MODE BASIC: mode, CHANGE ~3.5.9
SCREEN:- ROLL, SEND ONE LINE AND ROLL •· -- ,_ · · - .- 7. 9. 6
SCREENFULL TQL: next, DISPLAY NEXT '!".· •. ~. -.. ·~ii ~-,...-- :-1 ,~· · >'4· .• 5.4
SEARCHING FOR THE SAME STRING QED, REPEATED_ : :-.: . . ::>.· __ 3:.41.11
SE'ARCHING QED, CONTEXT _ _ ·3·.41.10
SEARCHING QED: Exercise 6, EXERCISE 6: CONTEXT''._. . . '. 1 3 •. 41·.41
SECURITY CONSIDERATIONS SPL: security, SPL ' :-_ .:3.49.1
SECURITY LEVEL SPECIFICATION CAT: security ':. : : : ·;_.B ~·7. 2

. SECURITY OVERVIEW - . · 1 .. 6. 3
SECURITY SECURITY, TIP/30 SYSTEM ·' -. ~ ... ~ '" i 2·. 4
SECURITY, TIP/30 SYSTEM SECURITY 2.4
SEG.$: Predefined Function SEG$ 1 ·9~2.52-
SEG,$·,: SEG$ Predefined Function · ' -.. . . , .. _" 9. 2T52J
SEND. AN ~ERROR MESSAGE TI PMS GE .' ~·: :. ·:.: · . .r. •. 6-. ~
SEND;.:AN·: UNSOLICITED MESSAGE TIPTERM: un . . . ·,r_;· • , . -.- •; - 7:·~10.:22. __
SEND. ·COMPUTER OPERA TOR A MESSAGE BCP: msg ; . '.; _; ' < ._: . '· 3 ~ 6 ~:1,2 ~ :
SEND ·DATA FILE TO HOST BCP: receive - : ' . J.·, "•-: : • . 1i 3.·.6".:16·::
SEND' DATA FILE TO TERMINAL BCP: send;: - -:-.~-- -- . . ·-: <>'3~_6:.1.:B'
SEND .ONE LINE AND ROLL SCREEN ROLL.'. . :_;_) " - -- :; . -- .-<: 7: 9~~-6 ..
SEND .PRINT CODE TO AUX PRINTER ':'TIP.COP _, - : . ·- 7-_: 9 .. 11
SEND.ING A MESSAGE MSG --- . - --- - :·' '."3:.·33
SEQ:~. CLOSE FILE PCS-CLOSE'~--~ - - ... ·--,- .. . ·, -· , ~6-~·1:et •. L
SEQ: OPEN FILE FCS-OPEN . '.. _ . .., ·;c6~'l.D~.3
SEQ: DUTPUT RECORD FCS-PUT " , 6 :'1:0 .• 4-
SEQ: .READ RECORD FCS-GET ' . 6~10:.2
SEQUENTIAL FILES FCS: sequential, 'TIPFCS' F:OR .'" .. ~ ,:~-6-.10
SEQUENTIAL MODE FCS-SETL-EQ, INDEXED: SET ... · · _ ,.-. ., ;::., 6:~:8.16
SEQUENT.EAL MODE FCS-SETL-GT, INDEXED:;;,SET. • ··-·:";·-~ :: .:::6.:8-.17
SEQUENTIAL MODE FCS-SETL, INDEXED: SET''..·-_ .·. ;li_.~ .. 15
SEQUENTIAL PROCESSING FCS-ESETL, INDEXED:~ END: .. ,_. - ·1 -- ·:•· :6.8. 5
SEQUENTIAL TABLE OF CONTENTS DOC: @Z ·~ - ·. -:s·.18. 37
SERVLCES TIPFLAG, FLAG ~ ... _ ··: .~ --. .i _. ·-. _ • •• ::5. 6
SERVICES TIPTIMER, TIMER : - .. - :: : ~- ---:-5.12
SESSION TQL: end, END . :. : .: - < 4.5.10
SESSION. TQL: open, OPEN NEW - -4 • 5. 11
SESSI-ON: QUIT I END QED: q, e, END OF EDIT: -· - - "-_ ... , ~ ,·· 3 .41.19
SET :ATTRIBUTES FOR PROCESS SET ... ' -' - · . . ,,. _ 3. 48
SET FILE IN TEST MODE DEBUG " :--r_ 3 .13
SElT-;lNDENTATION (LEFT) DOC: @Inn : ,; . :,·_' "'· 3 .• 18.'.21
SET :·LINE SPACING DOC: @Snn ... v .• --. ~ .. ' • -- 3 .·18. 30

.§E'.!'_ ;LJ~-~ W.!J?..~Ii_p_Q<;___:. @W.!}~---·- ---.. --- . -----"·~----- --------··--·- _______ - ______ __ ________ _ 3. l~ ~-~4 ___ _

> c;Page: : . , ·:, ;49 .
~~f.t~.9.!1.L .. __ _Index

TIP/30 Reference Manual
Version 2 • 5 (~ ~f.9 .~l.Q ~ L

•

INDEX
KWIC INDEX

·~ .- ·- -
SET PAGE LENGTH DOC: @Gnn 3.18.19
SET SEQUENTIAL MODE FCS-SETL-EQ,· INDEXED: .. > .. '<~- ... :···6:8-.16:.
SET SEQUENTIAL MODE FCS-SETL-GT, INDEXED:·. :. ·-, .. · ' 6.8:lT'.
SETSEQUENTIALMODEFCS-SETL, INDEXED: .,:;: ,7 ··• , • ,·· 6.8:1s·.
SET TERMINAL ROLL POINT ROLLPT , - . 1 '· - -... • ' • •. •• 7 .•. 9~7 ..
SET UTS-:-400 CONTROL PAGE TIPCPAGE . . · ·.·' 7. 9i:12. :·
SET U400• CONTROL PAGE CPAGE ' ·,·· ' '.' · 3·:~ .. 9 .
SET, SET.ATTRIBUTES FOR PROCESS •· · "-~ ' " .-, . -, -3 :~.j,8.
SGN Predefined Function SGN -.9 .2~.S-1
SGN, SGN Predefined Function . , :. ·9.2~~53:
SHORTFORMS BCP, BCP KEYWORD . . - " --'·~ . · · 3;~'6.: 2
SHOW SUMMARY OF DISPLAY NAMES TQL: show._'.·" ·.~ ·• ·~ ' - ,_ . 4·.:5·:·s·
SHOW SUMMARY OF FIELD NAMES TQL: show ' · ' _-_,-_·4: .• ~5.9 ·
SHUTDOWN CRASH, ABNORMAL TIP/30<~::·~-- -'.J .. ; •· 1 .. . • •J•''• .\.: = ._ T' • ,; '" •• ·3 .• 10.:.
SHUTDOWN EOJ, NORMAL TIP/30 • :._ ' ' ' ... · .· :3 ... 19.:
SHUTDOWN STOP, IlvfMEDIATE TIP/~3·0~ : } ~ ~- . . •'·;_', : ~ « T..:. ·i~--51.~-

SIMPLE. RECORD HOLDING HOLD=YES ·"" .. _ ::· -- ·~ ' ·: ' ·' ', •. :. . 6 .• .J .• T";..
SIN Predefined Function SIN . _ ··, 9·:2::.:54.
SIN, .. SIN Predefined Function .:: · ·· 9~2".54<.
SINH Predefined Function SINH) ·r· ~.: ·9·: 2~55?.'~; ·
SINH~ SINH Predefined Function ·-· ... :·.: ·:: . 9.2.cSs-~·-2
SNAP. MEMORY TIPSNAP " . - ·:, 5.9: ~
SORTED. VTOC DISPLAY VTOC: sort ... " - :. .. - 3..:. 58·.s-. ':,
SPACE DOC: @Hnn, HORIZONTAL <~;: ') . :-: .·. · - ,[<3.1·8.:20:'.,
SPACE. ON: VOLUME VTOC: free' FREE - . . '·· - - _<' - • - -·"'.: 3~59_;,;,3:
SPACE•:,ro ABSOLUTE COLUMN DOC: @Ann .. ·::::-_.~··:;_:~;:;.~::· _. - ... '' 1; ,_ ''3·!.1 .. l.B.I4<-
SPAC.I·NG:: DOC: @Snn, SET LINE :. · , · :-,, : . ,, i ' .: : ~ · .-:-3:.18 ,;.30":
SPEClAL': TERMINAL NAMES *MST/*BYP, MCS :: : . ~ :>.. , '~ : .-- ' ;_:· . '. .: '·. :~-~ T.:2 .
SP.ECTFlCATION CAT: security, SECURITY LEVEL; : -:.:.' .. ' :.:~··.· _ .. '.::K. 1·.2<.
SPECI·Fy·· CHANGE IN USERID AT TERMINAL NEWU.SER ·:.: ... l .. •. ' -·~ -~ ' . ·-:: .~ ~ ,:3 .:3!7.
SPECJFY MODE OF OPERATION MODE : .. · .. · ·· .:3·. 32
SPECIFY::!NG A RECORD OF A NON-INDEXED FILE DD, DDU .. ,. : . 3.12.4
SPECIFYING A RECORD OF AN INDEXED FILE DD, DDU -'· 3 .• 12."'3
SPECl.FYING A RECORD TO BE DISPLAYED DD, DOU .. , ,. · -,·_-, ~: ~ :· _ ·-''.3 .12 .·2
SPEClFY:I NG DI SPLAY MODES DD , DDU . . -· .. , . ;:- . 3:' ~ 12 • 5
SPL FUNCTION KEY USE SPL: fnkeys . . _· . 3':14:9.. 4
SP'L_. KEYWORDS SPL: keywords . - .. , . .. 3:.49 .• 2
SPL PROGRAM AND LOGOFF SPL: quit,~''.END • .. " ... -.:-: : ... 3-~-4.9:.'-13
SPL PROGRAM HELP SPL: help, DI SPLAY - . :.:- . ': ;;:_ · -·. ~ -~ ' :3. ;:4"-S. 7
SPL PROGRAM OPERATION SPL: operat:ion·: ::1 ... ~-- : ..• :~:_:: . 1: .. '·3~~ :49 ~ .. 3
SPL PROGRAM SPL: end' END . . :: ·;.~" -- ., .: J'. ': . ·3·~·4,9 .• 6
SPL SECURITY CONSIDERATIONS SPL: security :::,.e_:·~ -.. :. ... :.·. ;:-:' . 3.'.49~---1
SPL, SPOOL FILE ENQUIRY ·-·• , ; .~ : ., ~ . ~ . _; 3 ;4'9
SPL: delete' DELETE SPOOL SUB-FILE - - . -~·~" 3::')49 .. ~5
SPL: erid, END SPL PROGRAM · - . •:. · .. - · · ., 3:.49';·6 ...
SPL: f nkeys, SPL FUNCTION KEY USE ·: ~ .. · . .: ·: . . . ';'" :3' •. 49.;~4::
SPL: help, DISPLAY SPL PROGRAM HELP :·:·.-. :.,~. ·,... . .-~::. •~.· . : ;.,·:··· :.-: . ·J."4.9 :1.
SPL: keywords, SPL KEYWORDS "-·.·! .. -- :. :·:·.· ., : ::3·.4'9~-2 . .:.
SPL: l'ist, LIST SPOOL FILE ON TERMINAL -~·- «.: ': ~~:-_. ·:: = ·: f.~J: .. ,49·.s·~:.
SPL.:. ls,. LIST (SPACE SUPPRESSED) SPOOL FILE .. ' :>~ .'. '.- >.: :.·. --~:: 3 .•. 49 .:9· :~

.. .. -~ .. - '-·---... -· - '·'

KWIC INDEX Page: 47
Se~t ion: ·:: :rnaex '

,, .
' .:.·'.· \

INDEX
KWJCJNDEX

SP!,.: .lt, LIST (TRUNCATED) SPOOL FILE , ··· .. 3.49.10
SPL;.9peration, SPL PROGRAM OPERATION 3;49.3
SPI.:.,: print, PRINT SPOOL FILE ,.. ·3.49.11
SPL; pt, PRINT SPOOL FILE WITH TEST PAGE ·3.49.12
SP~: . ql;l·i t , END SPL PROGRAM AND LOGO FF .. 3 • 4 9 • 13
SPL.: J:"e~ease' RELEASE SPOOL FILE 3 .·49 .14
SPL: ~~ctirity, SPL SECURITY CONSIDERATiON:S · ·· · 3.49.1
SPL: ~~a ry, SUMMARIZE SPOOL QUEUE CONTENTS . ·· · .. 3 • 4 9. 15
SPL: .~l, WRITE SPOOL FILE TO FILE/ELEMENT, . ··. 3.49.17

.SPJ:,.: ~rite, WRITE SPOOL FILE TO EDIT BUFF~:i:t·: :.·. 3.49.16
SPOOL BCP: in, CREATE INPUT READER · :' ., ,,3~6.9
SPOOL FILE ENQUIRY SPL __ ,. :~ 1 .\.: ·: ·: - .. _ ~ ., • ,.1 . ·•· .• , 'j : ;: 3. 49
SPQQ~ FILE ON TERMINAL SPL: list, LIS~,:_.~·~·~)~::··-~ ~~1 ··:3,:49.8
SP00L FJ:LE SPL: ls, LIST (SPACE SUPPRESSJ,!:])); ___ . .. ~: 3'.:49.9
SPOOL·: FILE SPL: lt, LIST (TRUNCATED) ·, · -~ '.3.49.,10
SPOOL FILE SPL: print, PRINT -, .. : ':3.'49.11

.spoor.. .FILE SPL: release, RELEASE - .-3~:49~14
:sP60i. FILE TO EDIT BUFFER SPL: write; ·.WRl':rl;: ":. '_-_ - 3~.4'~.16
• SPOQL F.ILE TO FILE/ELEMENT SPLr:- wl,·::WR~T~' ·· · .. _, 3 _.49 ;l 7
SPOOL fILE WITH TEST PAGE SPL: pt, PRINT : ~: ~3~49.12
SPOQL: QU~UE CONTENTS SPL: summary r. ,SQ~RIZE. ·:·. :: : :, · " _- · . · 3;4.9.15.
SPOOL SUB-FILE SPL: delete, DELETE ._ . "- . · · ~. · : :: . _ : · 3 .·49';5.·.;.:
SQR · Pr.edef ined Function SQR (.-·~;: r..<.:.. _.. .. . ,,9 i2 ... ,5Ji "
SQit~ SQR ·Predefined Function · _ ~· , .. : : ·;: .· _ "'.)9. 2,;,57 .. .:.;
ST~~'.(~RGIN FLAGGING DOC: @(.... :.>L· · ·.:. : . 'L3;18.-.S: .. ·.
ST~~~ ODD OR EVEN PAGE DOC: @O · ···. - :: . •c3 .18 .;2& ; ·
STA~ OS/3 BATCH JOB RV ·· ; .. 1 • •• , .\• • •• 3 ~46 .. ·>

START/STOP UNDERLINING DOC: @_ ', ·,. :. L·:· ~ • ' · 3 .18~.10."
STARTED QED: intro, GETTING . ·. ·.'.~:"': "'3'.41:.;l ',}
STATEMENT CONTINUATION CAT' CATALOGUE . . ~ '' .•'.: - ;·~ 3 .;i;7.I.·9'
STATEMENTS TB$INT: copy, COPY IN. . . . :".:'., 8.;J .• 1 ·
ST~TlSTICS STATUS, DISPLAY TIP/30. . ·. . ,·3.~ 50
STATISTICS STATUS: s, GENERAL _ . . ·· · ~- 3·,·3.0 •. 7
STATUS CODES, ASSEMBLER FCS FUNCTIONS AND ___ . · ·': iij,15
STATUS CODES, COMMON TIPFCS FUNCTIONS AND · ~ · · · · : < ... ·6 .14
STATUS DCIO: status, AUXILIARY BEV:ICE ~/0 D~LJV~RY·· : _; :-:" ~. · - , ··'..:7 ,;l,Q .:2
STATUS' DOC: @U' SAVE COMPOSITION; .: 'J.: ~ ; , ~ ~\ ·:: 3; 18 .• 32
STATUS DOC: @V' RESTORE COMPOSITION l •' --, •. :: ·:. ·2·3'i18. 33
STATUS MESSAGES BCP: ack/nak, BCP , .. ,.:".~ ~3.6.4 ·
STATUS SYS, SYSTEM . ~ ~ .<•" 3. 53
STATUS, DISPLAY TIP/30 STATISTICS . . · .·~ · 3. 50
STATUS: b, FILE BUFFER USAGE ·· · ::: .. ·3.,50.l
STATUS: d, DISK DEVICE USAGE J.· '· ~··· .~ 3.50.2
STAT,QS: f, FAST LOAD INDEX · .. · - , .. 3. 50. 3

· STAT\JS: i, I/0 SUMMARY . · ,,. .:. i .: ~ , 3. 50. 4
ST.ATUS: k, KEY HOLDING TABLE . , _:,: 3. 50. 5
STrATUS: r, RE-ENTRANT PROGRAM TABLE _ .. _ 3. 50. 6 .

. si.Ai:rus: s, GENERAL STATISTICS , , -. .; :·· · · . >·. 3. so-~ 1
STATUS: t, TERMINAL USAGE · · .;; .. · .. ., ' · · · · · :··.: 3. 50. e·
STEP INFORMATION JBQ: list, LIST JOB 3.26.5

- .. •¥• -·.-·~ -- ,~ -~--· ·- ,.~·---·-·-·-··-·••, ... _..., ~--.. ----·--·...-.•»'-___ ···--~-~- - -- ••- -· ··- • - __ -·-·r··--- ---~~- ·--- -·- • ooM ,

-.
·'

. :-~f.a<J~:

. Section:
'. ':';): ·48°' ;·
· ind.ex

·. :·.'"· .,..
·-' .· ...

TIP/30 Reference Manual
Ve rs i9~ __ 2_. ~ J..~2(Q..Bl9!)

•
INDEX

KWIC INDEX

STOP MARGIN FLAGGING DOC: @) 3.18.7
STOP Statement STOP >:~~- '· ··'. . .:' ,_; 9:2.Ge'".
STOP, IMMEDIATE TIP/30 SHUTDOWN ·. ' - ·· · '·, .' '3. Slc .
STOP, STOP Statement 9". 2. Ge.
STORAGE.TQL: workfields, WORKING ... ". ·:·-. " 4;2.7 ~'.
STR$ Predefined Function STR$ · .. '.·. ... ··· · 9.2.frl',::
STR$,·STR$ Predefined Function ·~ .. ·.-· .. ·;.'.: 9.2.6i~;
STRING. QED, REPEATED SEARCHING FOR THE~ SAME . ·, · ·· - · · ·: 3: 41. lT: ·
STRING TIPSCAN, SCAN PARAMETERS. FROM '. ". ~ 'r.7 ~ 9 .14':
STRUCTURE (BCOMP) BCOMP, COMPILER ." .:·: . -· _- - 9 • 2 • 7 2
STRUCTURE (BINT) BINT, INTERPRETER. , . ; - '-;9.2.73.
STRUCTURE PCS, ON-L !NE PROGRAM . ' - , .. ~ '5 • f .. 1
STRUCTURE STRUCTURE, REFERENCE MANUAL ' , .. ·'' · · ! i ~·3 ·.:
STRUCTURE, REFERENCE MANUAL STRUCTURE:_,' - . " - ' · :.; ~ ·· '.-rz :' • '. ·: - .: · -: 1 >3 _; .
su:e-:FH.E SPL: delete, DELETE SPOOL :.:=~~ ' ·- -- . ".' . ,,, .. :3·~49 .• s<".'.·
SUB-:ROUT!NE LINKAGE TIPSUBP .. ' · · · · . ._.: ·- 5·.l'i' ·.
SUBMrr= REMOTE BATCH JOB BCP: submit ; .. . :· .. '. :. . ~ :L 6-.1'9· I ..
SUBMIT-REMOTE BATCH JOB TLIB: job ~;- ~:56_.6·: -~.
SUBMIT'l'OR JCL, INTERACTIVE JOB CONT.ROL ·.. : __ c:r:-_ ·;; ·· -· _,_, · ·3-.27 · ·
SUSSTtTU'i'E COMMAND QED: s, MODIFYING;TEX'I'; THE -~ .: :3·~41.9'''
SUBST!TUTE QED: Exercise 5, EXERCISE·s·: .• · l.;•. ·3~41~40'•
SUMMARIZE SPOOL QUEUE CONTENTS SF>t.:.: summary .. , - .. '·.· ...,. 3 .'-49 .15
SUMMARY. FCS, RECORD HOLDING .. · . - - .. 1

.... ·· ·;6 .3>4 ~
SUMMARY ·:OF BCP COMMANDS BCP ... '•- . . - . .:< 3·~ 6. l' -~
·SUMMARY '.OF COMMANDS AND LINE NUMBERS QED ,.··· ·:·~ 1 3;; 41. 3;3:· .
;SUMMAR.Y• OF DISPLAY NAMES TQL: show, SHOW . •. >~ ;~;: ·' ·:..:.:·: , -,_,;, -~4.S·ia .J;

SuMMARY. OF FCS CALLS FCS: summary · · · · ..) '·f : '<: :· ' ' .. : · 6. -4:
'SUMMARY OF FIELD NAMES TQL: show, SHOW ·.;I ' ·. ~.:>: .:~: .::' ~4.s;9:-
SUMMA~Y.OF FILE/RECORD TQLMON: s ·· "·'~ ; ':;: _::: .: -; ·; ~· 4·~4-~t():·::~
'SUMMARY· OF IMBEDDED COMMANDS DOC : ' - : ~: .. , · : : · i · "' ··". 3;'fa·. 3 ~ ..
SUMMARY OF PROGRAMS TQLMON: sp ' : , · ·· .. ,.. _·: · ... ~ ._. , 4.:>4~~11 '·
SUMMARY QED: summary, COMMAND and FUNCTION:~·~ ~~, .--: .. ~ r~3--~.4·:1:·~,·34.
SUMMARY STATUS: i, I/0 .. : ..:--·--- .:· ···---::1

;:: 3~50,·4
SUMMAftY 7 TIP/30 GENERATION KEYWORD .· ' ::..,r·._--:) ;::·:'.:a,~3'~4
SUPPLEMENTARY QED REFERENCE QED . ' ·· - "'.:i";:; ::."·)~4l~?i· .

....
SUPPORTED FI LE TYPES FCS : types "· :.. -~ · 6 .-5
SUP.PltE:SSED) SPOOL FI LE SPL: .' ls-; : LI ST (SPACE · .. ·.. : : •3 • 4 9. 9
SWITCH INPUT TO FILE/ELEMENT DOC: @%f i le/elt >' : . •: .: " .. ~ ::·. 3. fa~ 9
SYM, SCHEDULE OS/3 SYMBIONT . ·-:- ·:-: ~ L' .. < :?. -·~: : :<·l 3"~'52
SYMBIONT SYM, SCHEDULE OS/3 .. ·~ ' : .-' .. -~~ · .. : ~~-"' 3·~·52
SYNTAX TQL, TQL: QUERY PROGRAM ; · · · · ' -:. ' ·L 2
SYS, SYSTEM STATUS - · · · · . :::. -.· · : . . · .. ·''" _, , 3 ~ 53
SYSTEM· FCS, CHAPTER VI - FILE CONTROL ;·:. :; --- ·:c:rr · ···: '. • ·.: G:~.:
SYSTEM. FCS, FILE CONTROL . :' · · - · ;'."6-.1 ~-
SYSTEM GENERATION TIPGEN, TIP/30 ·· · .. :_: ::2a::r-·:.
SYSTEM. INTERFACE PACKETS, FILE CONTROL .. : :; ·· ,, .. : 6>1:·.
SYSTEM LOGON, LOG ON TIP/30 -· - .i <. :~ . ..: .:: ' -- : : S·; 2-·9'' ~
SYSTEM.MAIL, TIP MAIL ... r" _,~_/·: :::. ··· -· .·c ·: _-:_· }:3cf_-;.
SYSTEM MAINTENANCE TIPGEN, CHAPTER VIII ::;: :· :2i. :·. : .. :·:_· . .: ~-.. ·-.ra-~··-.;
SYSTEM-MCS, CHAPTER VII - MESSAGE CONTROL :·~~-.:::J __;, .. :>!s.:·:· · · .. · ·:'>r~:~:.-;:

• ..~ ~ • -~:-~, .,J ·:·~:,: .. l 1 -- : i. -·~ ~: ~;.~: '. :·~-~~, ~ :- ~.:·:· ~: ~. · ' ~

KWIC INDEX
" 1 :::'

. -.
. ~. ' \ ~-;. . ' ... :

-· -~·-- ~ .. ·-··--·--------·-·--·-----·-· _ .. _ ... ______
Page:

seci:ion:
49

= ~rrnt~x
._:"' ... '"!~ f"f'"'\~~-, ... :. _.,, ;; ... ,..,.,.;

INDEX

SYSTEM:MCS, MESSAGE CONTROL
SYSTEM MCS400, UTS-400 MESSAGE CONTROL
SYSTEM OVERVIEW, FILE CONTROL -·- ..
SYSTEM·. OVERVIEW, MESSAGE CONTROL _ · ·

'.-,.

SYSTEM. PCS, CHAPTER V - PROGRAM CO:N,'l'ROL •' ·
SYSTEM PCS, PROGRAM CONTROL ' . . . · .. : > ~,-•
SYSTEM Statement SYSTEM
SYSTEM SECURITY SECURITY, TIP/30

•:"' ..

SYSTEM. STATUS SYS

·• r , . ._ _.·,.

-··- --K-W-1 C--lNDEX

.";.'-i

• • .,. I, i --..

.. 7 .1
·3.17
1:6.2
l'.6.1

5.
5;.l

9-.2.63
J• 2.4

~. ~ '

. -· -· 3.53
SYsrgM WORK.AREA PCS: mes,
SYSTEi-f, .. SYSTEM Statement
SYSTE~ TQL, CHAPTER IV -

MESSAGE CONTROL'-- .· ! .: ~· ·~ _;,: . 5 .1~4
:('· .- ~ ,4 • • - IJ(' • ' : ~ 9 • 2 ~ 6 3

APPLICATIONS DEVELOPMENT. ii.. -.-:~ - . ~ . :: ; ~ 4.
,l ... :"' ~ ', - ~ ,,~ J"r : ": L ~ - .· ~:· • ·: -: • - • -· T .y· . ··: '.. L ,J. ..•

. ·, - _ __:,
f .. , >" ~ ' -.. ~

~ 1 "'' -·~ .. • :: ~

.·. ... ·' . !
~ :' ...

. - •• -.I 2. '·.

:(TRUNcATED) SPOOL FILE SPL: 1 t, LIST -,.<· ,_, ~,. ·:.: · ·: <~ .-4·9<~:0
'TIPFCS' FOR DIRECT ACCESS FILES FCS: direct ··· · "• ' , - - · ""· 6 .;9
'TIPFCs·• FOR EDIT BUFFERS FCS: edit . ·-·· -, . ,, ··6:.;l7
'TiPFCS'' FOR INDEXED FILES FCS: indexed 6-.8
'TI'PFCS." FOR SEQUENTIAL FILES FCS: sequent~fa.r": ·"' 1 '' -~<''·':·.: . . :.:.~"·6;.10°-'
tab., TAB FUNCTIONS DCIO: ~ · . ·y -... . ; . - ''. 1-)i{}~ if>
test,. TEST FOR INPUT TIPTERM: . _c:- :-;:._,·":. ::•,: . ., - _: ~,~ - i.=i0·~11·:.:

;tipt'ehIT,. TIPTERM FUNCTIONS DCIO: .. . :. ·:;_.; .: --::~ .• i:o~~i1'' ..
~~~::;:· ~~~~~R~~~A F~~~E T~~~~ ~cs":' .. ;.~ ~. .. ,.,. \.>.T .. :·:· .. :~ .. · .. ~-· ! ::_r_·l>~~~;~~ 
TAB FuNCTIONS DCIO: tab · ·- ' · -«' . . .• - ,, ·:·-7_. i-Cf. ~}:'.·. 
TAB Pr,ede.f ined Function TAB ··· ... r _,.. · - ' -9'; 2". 64:: 
TAa:,-- ·TAB ·Predefined Function · : - · · ") -~f.-2:. 64···'3' 
TABLE ~AFT, DISPLAY ACTIVE FILE :· .: · ·:,:~ .:.. ":L2:::· 
.TABLE OF CONTENTS DOC: @Y , LOG LI N,E; IN ' · · : ,; S3•. f8\j6 -
TABLE ·oF CONTENTS DOC: @Z, SEQUENT.IAL ·, · ~--.i1Lj'i · 
TABLE OF CONTENTS TOC · · · ~:.:1~4· 
TABLE ·OF ·CONTENTS VTOC, DISK VOLUME · 3. 58 ·· 
TABLE STATUS: k, KEY HOLDING ~ ·~. 3. '5'o •. s< 
TABLE :STATUS: r, RE-ENTRANT PROGRAM · -- :·:· ., l~-5-0 .6· 
TAN 'Pi.edef ined Function TAN : '.'. .. ·r · • -:. .. 'Jg~ 2. 65 -~ 
TAN~: 'tA'.N·.Predefined Function · - - ,,.. ; -·~-,:. :·9.2.65 .. 
TASK ~.CONTROL BLOCK DISPLAY TCB ... ·3 ;54· 
TB$INT;. TIP FILE INITIALIZATlO~. .. · '·· · ~ , 8.7· 

• f; .. 

TB$INT~, cat, USER, PROGRAM, FII;;E ;COMMANDS .. : , .. ,., ·' . . . -·a. 7 .2 
TB$INT:. copy, COPY IN STATEMENTS ·: . ._ '.. ~ · - : :. . ·'B·. 7 .1 
TB$INT: jobs, TIP FILE INITALIZATION JOBS:· .... -·''.:: ';l•'·~·:· ' ., '·: .. · 8.7.4 
'TB$Ilff: .. sample, CATALOGUE INITIALIZATidN-SAMPLE. ·8.·7.3 
TB$JIW; :-JOURNAL FILE COPY AND INITIALIZATION ~ .-' .. : •..:.~~ -~ ~.).I :· ': · .. ·8. 8. 
TB$RCV;. FILE RECOVERY · ·1 

-' ·' 8. 5 
TC~F~S;. FCS COBOL COPY ELEMENT · 6.;13 
:Tc..:.Mcs,~MCS INTERFACE PACKET :_,;:··_ •. '. ~::.,_.·.::...-: :··_:;:r,·.· - ,_ ··7.4 
TCB;· TASK CONTROL BLOCK DISPLAY '. .. ; : .... ·:> ~: :'.i . "f,_ -- -: 3.54 · 

:TELEPHONE ... NTJMBER· .!1'-I.P.T.ERM:-ph.G.l:le.r-·.Cl:IAN.GE. DI AL-,.UILL.IlIE- --- . ~ -- ._.'l .. l.0-1.9.. __ .. 

·"P~9e: :..-,::5bs~ 
--see-H.a.1u-.. --... I-Rde*·-· .. ----·------·-~ -· --- - ..... . 

..... .....; ... • !. 

TIP/30 Reference Manual 
. Ve rs ion .. 2.-5. {.82./a.a.LOl.). 

• 



KWIC INDEX 
INDEX 

TERMINAL. BASIC: · 11st; .LIST BASIC PROGRAM· ON· ... ·· -· .... ·- ···- ·-·-········ ··- · · - ··'3' ;5·~ T---
TERMINAL BCP: send, SEND DATA FILE TO '. -;-3. 6 ~ l..8-
TERMINAL COMMAND PROCESSOR BCP, BATCH -·~· . ~--- -· "\ ·3- 6(~~ .. 
TERMINAL I/0 LINE I/0, LINE - ORIENTED . ·'··:··::.. ~-.. ._,. , 1'·~'9·;·:. 
TERMINAL INPUT TIPTERM: cntrl, CONTROL ~"::. ~r .·.:;;~. ·,,~ . :;7·.'1o·~is:·: -. 
TERMINAL INPUT TIPTERM: free, ALLOW FREE ' '., ··· .. · (' . 7 • .10.1-7 
TERMINAL JBQ: help, DISPLAY HELP INFORMATION. ON" ~":' ,. .. :~. ·. ~ :3.~ 26·~3. 
TERMINAL.NAMES *MST/*BYP, MCS SPECIAL ;,,_ . " ": ,:.• 7~2- -
~::i~~~ ~~~S~~IN~P~g~~~T ~~~E IN USERID AT . . - - . -~ . _-' ._ :,::;.:;~ -~ :~.:~~-: : 

TERMINAL SPL: 1 ist, LIST SPOOL FILE .QN· . ~ - ·.·: . 3·: 49 ... 8 .. 
TERMINAL TEXT, GET ONE LINE FROM -·· '' " ~~ >'··;- 7 .. 9~ff-' 
TERMINAL- TEXTS, GET ONE LINE, :f.RQM · - .-~ ~. '. "'' ., . " ., __ , ·~,: '", 7-. 9~--9 . 
TERMINAL TIPATTCH, ATTACH AN.ALTERNATE '°' ·- .. · ... '·' 7.~9.TO: 
TERMINAL TIPDETCH, DETACH ALTERNATE 7.9.13 
TERMINAL TIPMSGI, READ A MESSAGE FROM_ A, 7. 5 
TERMINAL TIPMSGO, OUTPUT A MESSAGE TO A 7.7 
TERMINAL TIPUALT, USE ALTERNATE .. . ,.7. 9-.15 
TERM!NAlL~ TIPUORG, USE ORIGINAL . ~. ... .~.~~ .. ·1· •. 9 .~2."6. 
TERMINAL TLIB: list, LIST ELEMENT ON .. "~ - ; . •;; -~ .. ~.: " . . ~ .. ~.: 3 .-st~.-7: ., 
~::·i~~~Eu~~~~cs~~~~;~Rt BASIC: quit .. ··~ ' '! :-·-- ~ ~::_~-:~~~: ;.\.~' ~-:~~i~ :• 
TERMI:t{A'.l'E·MONITOR BASIC: bye -· . .. ·- • . .... ,., .3 •. 5.l. 
TERMI:t{~fl'E- THE BASIC MONITOR BASIC: end ·- ... ,, . ·, .... .J~·5.5· . 
TER.Ml~.Air'rNG BCP BCP: fin - . : . - ·, - ~-- :· - . '.·: :··'. : ~.~. 3,:.,6.:T :-
TE~1it.AT'ING DD & DDU DD, DDU "' .. ,,. r' , .,.,l .. 12 •. 7; 
TERMS;.·AND CONCEPTS GLOSSARY, TIP/30 GLOSSAR~.,.()F ·:··- .; -'-'.~/.:·;.-:··_,:··;:~.:-.~:;;,~':.:,. 'l.'5 ., . 
TESj', FOR ·INPUT TIPTERM: test . - . '· .... "' ...... · .. /, 10 '2t ( . 
'I'ES'°:T, MODE DEBUG, SET FILE IN .. " . ·> -~ : .. ~;·· .. ;_.~(_;:.\~ :i:iJ:·:" 
TEsr .. ~f:GE SPL: pt, PRINT SPOOL FILE WITH . . .. -- . 3 ·49,J.z ." 
TESTlNG AND DEBUGGING OVERVIEW, PROGRAM .. ·, _ - '' - :: .:·, ··: , .·I'. 6 .. :7;· : 
TES'J:'I~q~ MSGSHOW/MSGTST, MESSAGE , .·~ · · -· . . , . ' ; ..... ~ '.~ ·::o ...... : ... " - .. 3; 3'6[ '. 
TESTING PROGRAMS CAT, CATALOGUE HINTS FOR .. ,,3. 7': 7· 
TEXT ~EDITOR QED, TIP/30 ~.-. . ..... :. ' . ..· ... ·.' ... '.: . 3.:4·1~ . 
TEXT FROM A FILE QED: r, READING ,,, .. ,. ;-~.:· :.;·~'.:.' :~3 .. ,41.17; '. 
TEXT P.ROMPTX , PROMPT THE USER FOR '. : . . . . 7 .• ~ ~ ~'.'" 
TEXT P~qMPTX8, PROMPT THE USER FOR F'·,, , , .. : ... - . ;},. 9 .·5 --
TEX-II' 'PO ~FILE, WRITING .. ~- : ~-.. -;- ,; .. l . . ; ·: ' .. 3 ~-45 .• 3 -· 
TEXT:' ·COPY QED: k, COPYING BLOCKS OF .. . . _ - . ~ 'J .. 4·1~;14 
TEXT: -MOVE QED: m, MOVING BLOCKS OF '.~ . . ( . . - .... ,_.· . :~. - '.1:J1 .13 " 
TEXT; THE ADD COMMAND QED: a, ADDING y . -~ . ~- -.-~ . " .. - .. .: . . :.3. 4;}i. 5 
TEXT~- THE SUBSTITUTE COMMAND QED: s, ·M.ODIFy;ING • _ . . . . ··-. ;;· • .3 ~ 41.· 9 -

~~i~a,:~~~To~~ELi~~EF;~~MT~~~~~~L:· ~ .. - .•. ·':· ~ ·>~.'~: __ -~·~~ ... ·'..- •i.' :~ ~:g:~-·· 
THE BATCH DOCUMENT GENERATOR TJ$DOCS ·· -. :'" .. : ,._ , ··. · _, .. _ . S . .,11 :: 
THE CURRENT LINE QED: dot . ··:" .... ·;;~.:3;4i:~1 .. 
THEN .Statement THEN . . . ~ .T : , ; ;9: 2-.. 66 . ' 
THEN, _THEN Statement ,. . -~: "~: .·:: .... : .. ~ 9: 2.:.GG.::. 
THROUGH THE CURRENT RECORD DD, DDU, PAGING ·~··,.;;~;·.·::. ~:~ .. .:..·::· .. :·:Z·< ~ ~>:3~~.2-~6:" 
TIME JOB CONTROL OPTIONS TIP: exec, RUN ,.'. .; · .. :· .. :.}.;:: ,_::,.__,: .:. '..:.:: ",8.4--~ 

• . " >. :~. ,, • ~ ::'' ' "''· • ........ •"!' 

- ·- · · ..... -... -.. - -----------·-------·-pa-g-er----·-···"5'"r-·· · 
Sec;::t ion: . ,~~~x 



INDEX 
Kwrc INDEX 

TIME ·woRK FILES workf i les, EXECUTION -- . 8. 2 
TIMER. SERVICES TIPTIMER . ~-: : .5· .12 
TIP.FILE INITALIZATION JOBS TB$INT: jobs 8.7.4 
TIP FI LE INITIALIZATION TB$ I NT : ., .. - . _ . . 8 • 7 . 
TI J::> FLAG ·MAN I PULAT I ON TI PFLG . . ·· · 3 • 5 5 
TIP .MAIL ·SYSTEM MAIL · ; -~ · .... , 3 . ._30 
TIP/BASIC LANGUAGE, DESCRIPTION OF THE · ··· ,... .9..2.1 
TIP/BASIC PROGRAM Sample Program, SAMPLE .. . .; 9 .~2: 7-1 
TI:P/BASiC, Basic Compiler-Interpreter 9~4. 
TIP/30 BASIC INTERPRETER -: COMPILER BASI-C·- · :; .. ., 3, 5 
TIP/30'BATCH PROGRAMS T'IP: batch jobs ·-. . .. '' .•.. ·-~- . . .e;6 
TI:P/30 ::cATALOGUE MANAGEMENT CAT · . . ~3, 1 
TIP/3o·: COMMAND LINE COMMAND LINE :· · .,, .. :·:2 ~ 3 
TIP/30. GENERATION JCL EXAMPLE . . .; 8 •. 3 • 5 

;Tii?/30 GENERATION KEYWORD SUMMARY -·-· ~8._3.4 r 

TIP/3°Q' GENERATION PARAMETER RUN TJ$PARAM .. ·. ·-, . -l> 8,~:3 1: 6 · 
TIP/30 GLOSSARY OF TERMS AND CONCEPTS GLOSSARY .. · · ~··: "~-· : . -~l:: ~ 
TIP/30 LIBRARY FILE REQUIREMENTS : :. . . ,., . , ;, 8-.1 
TIP/30 OVERVIEW OVERVIEW - , ,. -· . -~ . ·: ·.1·.6 
TIP/30 SYSTEM GENERATION TIPGEN . . -" , , .. ~. -~ ~. , .0 .- 3 
TIP/30. SYSTEM SECURITY SECURITY _, . . . -~ ~-.2 :-4. 
TIP/30'fEXTEDITORQED . · .1 , • ~ ·, ~-:.·._.",:· ··.-- :~;,~,8.4~.--~· Tr:t>': batch jobs, TIP/30 BATCH PROGRAMS ··. ~ :--::.. __ i. --~ - ;_, _ ·'-. · .o- ,. 
TIP:: ¢xec, RUN TIME JOB CON'J'RO~,OPTION$: -·: _,.,... . $;4. :. 

' TI PABjlT; USER PROGRAM ABORT .. TRAP . . . . . : ""' . -. ' , -~- · .: . .' .. -. : ,.., -: -~ $ ; 2 
: TIPATTCH, ATTACH AN ALTERNATE--.TERMlN~ ~ . '· .. · /- ... : -: '. J. ~9~l(): 
TI PB'I TS , CONVERT 3 2 BYTES TO 3 2 Bi TS. ., ; ~ ' ' .. ; . . · . . .. · : . ;·$,~~Oil, !"' 

Til>BYTES, CONVERT 32 BITS TO 3~ BYTES .. · .. - . . , ; .. : -i-$:.i·2.;2 . 
TIPtOP, · SEND PRINT. CODE TO AUJC PRIN'l'ER . , : .. ·· , . -.: .7,i.11 .. ·. 
TIPCPAGE, SET UTS-400 CONTROL PAGE .. , .· :--7.;9.~2 .. 
TIPDATE, TODAY'S DATE ... · ··: . --~ ,·· · 5~·3 
TIPDE'I'CH, DETACH ALTERNATE TERMINAL. .. . . . . -: _7_ .. _:" 9~1--~ 

4
3. 

TI PDUMi? ·, FORCE PROGRAM DUMP " .. ;:> • 

TIPFtER.~ FILE ERROR EDIT · 5 ~ 5. -
TIPFCS - COMMON PARAMETERS TIPFCS: pa rams, CALL., · · , . 6 .• 6 ... 
TIPFcs· AND THE TIP/30 CATALOGUE FCS . . . . • . : " - ".. ·;. ' i 6: 2··. 
TifF~s· FUNCTIONS AND STATUS CODES, COMMO,N- .· ·:. ,'_. ., ·-:~ '> · · ·~. ~ .·~ 6.14 · . 
T IP'.F(;:S ': . par ams, CALL TI PFCS - COMMON PA~'f.ERS' : ~. : ., ·- ., ·:· - '· ~ ". .. 6,, 6 

. TI,:PFl.,AG·, FLAG SERVICES .. . _'. . , . - ~ . " . - - . 5 6. 
TIPF.LG·,_. TIP FLAG MANIPULATION ·. , --1: _· :::.::_ . :. -: . ~- : ; 3 •. $5~. 
TI:PFb-RK, CREATE AN ASYNCHRONOUS PROCESS .. ~ 1 

• 5~ 7 
TIPG~N DEFINITION TIPGEN . .-7 .. ; ·. ~r. ~ 13. 3-.1 . 
TIPGEN, CHAPTER VIII - SYSTEM MAINTENANCE . ..., ;·,_- . ·--~·,-.... > 8-. '. 
TIPGEN, TIP/30 SYSTEM GENERATION , ~. ~ -_' -~ . 8. 3 

ii~~~~E, T~~~N ~E~~:b~I~~SSAGE :"< ~'. .- . ·< :, .. .. "· .. , .. , ~:._: _>;.·: ~- 8
:· ~: ~-

TI.PMSGI, READ A MESSAGE FROM A TERMINAt,. - . ~.' : : : ;'. ·.. . -. . . ... '. : .7. 5 
T!J?Ms'°Gb, OUTPUT A MESSAGE TO A TERM1~A.L, : ~- '.: .1 • .. < .. , , - ~- . , . '.; 7. 7 -
T lPMSGRV, CURSOR TO LAST POSIT I ON & "i'Rf\NSM'.tt~ -.· ·-. . " -', ~ . .. .. .· . ". ... '- , '.-.:, · ·:-; 7 • lf . 
TIPPlUNT, OUTPUT TO PRINT A FILE . .. --- . . . '.. . . _,_ __ ,, ·- 6·.12 

:. ,P.age: 
section: 

---- ' .. 

TIP/30 Reference Manu-a1 
Version 2.5 (82/08/01) 



• 

INDEX 
KWIC INDEX 

TIPRTN, END ONLINE PROGRAM . ., .... 5, 8 1 • 

TIPSCAN, SCAN PARAMETERS FROM STRING ·. · · d ·. ':. . ' ·:·::: . : 1. · • ··1·:9 .1·4 · 
TIPSNAP, SNAP MEMORY ~~.: ~ ~- , ... ~;·-~.~: 5~j.9-~.:·· 

TIPSUB, PROGRAM LINKAGE ... ~-~ ~ · · . ., ' 1 :· : •· 5·~10 :r ., 

TIJ?SUBP, SUB-ROUTINE LINKAGE · · ' 1
. ; • •• ~ . -: . . . • ~:,_ 5,·. l.:t: ··. 

TIP'l'ERM FUNCTIONS DCIO: t ipterm '· ···· · · · ·· · · · ·~- ·· ·· .. · 7. IO .14 · 
TIPTEffi1: cntrl, CONTROL TERMINAL INPQ'I'_ . -· \.. ·" ':.7.10~'15.~ 
TIP'rERM: disc, DISCONNECT DIAL-UP ~!NE; .. :·· .,,~ j ;,:·. • • • .7~~0.D.6' .. 
TI:PTERM: free, ALLOW FREE TERMINAL iINPU'f' · .· .. ,. :. 7~10:17 . 
TIPT~RM: get, GET AN INPUT MESSAG~ . . . . . 1~io~18 . . , 
TII~Tl';RM: phone, CHANGE DIAL-UP LINE<'-TELEPH0NE NUMSE~ :--·;,· .·'. ;: . . ·. :: 7.·i l'O~ 1~~ :. 
TI:PTERM: put, OUTPUT A MESSAGE .. . · . . ":'. ... ~',' , . .. ... . ~)~ 10'..20 '., 
TIPTERM: test, TEST FOR INPUT ... "~ ,;;[ . .... -, .. ),;10;21, .-. 
TIPTJSRM: un, SEND AN UNSOLICITED MESSAGE T·· ... .<,' -'" '. •"J'.J'7·'10'.22 
TIPTlMER, TIMER SERVICES . · "5 

:_- - )._ • - -,. r::;.··;:,~ 5·12 : 
TIPUALT USE ALTERNATE TERMINAL ,.. :: .:. · .·. :,:··~~. :.':: :"'·!..'r.:•,:·-7 .9:1S · 
TIP'C:JORC, USE ORIGINAL TERMINAL .. ~ ... '' .. "'- . ~," ~ .: .\:· . ~- .-· · :·.·-~·-~,I· . 9. 9·16 , .. ' 
TIP.xeTL: TRANSFER CONTROL . ' :· ' . ! .. .' ~. c' : - • 7. ~ , •. ;-;. __ :;-- 5 :·13. , 
TJ$eOB68, COMPILE COBOL-68 TIP PROGRAM - .•. · .... :. - ' .. ·. i::- .! ' '•.: q·. :.' . a·. 9. ' 

~m~rP~~~c~~~~~i:~h~~am '"·.··· .: .s;,.:'·t.·:::-,~-E~f:. 
:TJ$DOCS: par am, TJ$DOCS PARAM CARD FQ~'..I' -· . · · ·-· · ... 8 .11 1 
1TJ$LC, CATALOGUE FILE LISTING -:.':·.·-::.• .... .·: '~:::· :.' - ,t"~~~e.ir-· 
TJ$L¢: params, CATALOGUE LIST PROGRAM~P/.:i~~~tR~;.::;:; :·'..>. ;.: ~~-;: 1~;·;. '::::B'_;:l.J~·i·;~, 
TJ~?,.81', _LI ST JOURNAL F~ LE _ . • . ;! ·"~' ·,.., ~: _··~ ;:-.~ ·, ',f ... ~ · .:

1
. ' ••. >.· :-. ~ L .. ..'.' ~~.; '~} '. _-_ 

iTJ$P~ TJ$PARAM: options, PARAM OP'f"lP,Jl:f¢'.FOR-" .. ',.·-· , ... '.: . ~ ,...._-~,-:··:--.... '.~.~~.-.:.!: 
,TJ$P~~' TIP/30 GENERATION PARAMETER. ~JJ1L ,·' :,.. .,:: . · . ~ - ,,~·:"·'., _l~-' ·· .Jt,~'. .. 6: :. , 
1 
TJ$PA~: opt ions, PARAM OPTIONS FOR. To7.$l:?~lW;f, :. : :· ·· ., : . -~-;~ - :' " -_ ~ ~ : .. 8 ·, 3 ~ 7· :. · 
TL,t:e·PROGRAM TLIB: end, END · ··. ·- · .... ,. " ·'··· .. '.:.:·- • . .3t56~·.~· · 
TLlB:PROGRAM TLIB: quit, QUIT -~:.•' - . .1.' .. : > · .. _,-:- · .. :, ... J·:5 .. 6'·.l,(Y .... 
TLl:B; ON-LINE LIBRARIAN .. ·•: .. = , .... '.'... ··.:::: ~ ' :. 3.~5G' ~ 
TLIB~: back, RE-ACTIVATE PREVIOUS VERSION":.. '" . '·3·."56. L .· 
TLtB': copy, COPY ELEMENT .• ' ... ·~'_>> __ ,:.· '. 3'.$:6.~2' . 
TLiB! delete, DELETE ELEMENT .... : ·-:::: ·. ·'.:-: ~' :.LSG •. 3· ~-
TLIB: end, END TLIB PROGRAMi- . :..:. • ... '• .. . ... - '.: ' ·. -.. 3. 56 .}~ 
TLIB·: ~elp, DISPLAY HELP INFORMATI,0~ .,. . ..... , ,, .·. ·: _ _'-- ;:, ,~-- : •. :; :~.5~·'.",5 

. TL~B-: - Jc;>b, SUBMIT REMOTE BATCii J.0,~. . .; , . ~· ·· · .~ ::" .. ·: 3 .:5:6 ~6 
TLIB; list, LIST ELEMENT ON·TERMIMAL ' ·'... .i · :~ · .~·'-3'.5().~] 
TLIB: print, PRINT HARD COPY LISTING '~-> \ ;·-...~. ~.:'' ~- ~ ... 3~'56;·a 
TLIB; ·punch, PUNCH ELEMENT 1 

' · ••.• '._ -,_: 
1

" • - • ~_' •. -~: · 3 ;5~-~ 9 
TLIB·: quit, QUIT TLIB PROGRAM ' ., ... -.,-~ J .. 

1
· · » ;~._:;' 7' 

1 
• .,:,., '·~ --~ 3 .. 59~_'.l.~ 

TOC:, TABLE OF CONTENTS ·- ·· · · " · · ·' · · · . ···t~ ~ .. 
TODAY'S DATE TIPDATE ~:·~ _: ~L.: r ·_. . : ·:: _ ... · :_: ... : . i. ';. · ':.: ···~ · · .. ""5 .,:3: _, 
TOTAL DATA BASE FCS: total ~'. ~ .. , ~ .. . .. . J .. '.'. . .:_: ·. ' . 1 -~: .. _ts-- .. 
TQL DICTIONARY TQLINT, INITIALIZING .. ' c. - : •. ~ •. :..... -~::.'' ~: ·· .:. .. '·.4. 3: .. 
TQL DICTIONARY TQLMON' MAINTAINING ' r . . ::r; .: .. :-<-: .• .~'., ·:.: .. ;:: <;-. ,. ::. '·:·'.:~ ~:~· .• 
TQL PROGRAM TO LIBRARY TQLMON: wp, WR'l1!E~.~ -~·~, ::;:,~ !, :::~..:: : .;,, .:.~:~~:-~ 4· •• :4~. l.~: :., 

. TQ~· PROGRAM TQL: commands, EXECt{'l'J,lj~.·:·'c'.':.:_~· '~-::: '<;:·~: >·:·:~:·;i,~ .•. ,.·'·:~··; ,·.~:; : ... ~~ ::4;:p-;. 
TQL~ PROGRAM TQL: program, DEFINING A". " '·:;. - . "~ . -,-;. ::: ~ ·, .. :.": .... ~· ' ~~~4·.:J:JY .. 

-KWIC INJ;>EX 
.• ,r'. .: ., ~ . 

.. '•·' ·. \ . :--: 

_,_. •~ "' ~ _,,. J. ~ ,.. '· ·J. < • - - I."'. " " • . ' .. ' • .. ~ ~ 

. .Page: 
section: 

XS 1~" r-

, .. ,. ............. __ .. __ ,_.._......... _ .... --.. - ..... -- ......... __ ,_ .... ___ ..._ . ._,, 



INDEX 
KWIC INDEX . . . . 

'TQL;'ALLOWING FIELDS TO CHANGE 
TQL; c;HAPTER IV - APPLICATIONS DEVELOPMENT SYST~MS 
, TQf., ·; ·. INTRODUCTION TO TIP I 3 0 QUERY · LANGUAGE 

4.2~3 
4. 

4 .1,, 
- 4.2.6 

".4. 2 
"· ., 4.5;7 

. TQf.: PREDEFINED FIELDS . . 
TQL: TQL: QUERY PROGRAM SYNTAX 
.TQbi'add, ADD RECORD 
TQb:'commands, EXECUTING A TQL PROGRAM 
TQL: count, COUNT RECORDS 
TQL: delete, DELETE RECORD 
TQL: display, DISPLAY DEFINITION 
TQL: display, PRODUCE A DISPLAY 
TQL: end, END SESSION 
TQl'.,i

0 file, FILE DEFINITION 
TQ.r..: ~function keys, USE OF FUNCTION KEYS 
TQt: id, RECORD IDENTIFICATION 
TQ~i'next, DISPLAY NEXT SCREENFULL 

.TQL:'Qpen, OPEN NEW SESSION 
TQL:·print, PRINT A REPORT 
TQI:.:'prqgram, DEFINING A TQL PROGRAM 
.TQL:'record, RECORD DEFINITION 
TQL:~report, REPORT DEFINITION 

·TQL:· sa.mple, SAMPLE PROGRAM . 
TQL:.: show, SHOW SUMMARY OF DISPLAY NAMES ... 

'TQLs-iShow, SHOW SUMMARY OF FIELD NAMES •' 
· TQt·:. VPQate, UPDATE RECORD 
TQt::·,verify, FIELD VERIFICATION 

'TQ:(.:'words, RESERVED WORDS 
,TQL: workf ields, WORKING STORAGE 
TQ~:~QOERY PROGRAM SYNTAX TQL 

,TQLlNT, INITIALIZING TQL DICTIONARY 
TQLMON:, MAINTAINING TQL DICTIONARY 
TQLMOf·f: . c , COMP I LE FI LE/RECORD 

.TQLMC>Nj cp, COMPILE PROGRAM 
TQLMON: d, DELETE FILE/RECORD 
TQLMON': dp, DELETE PROGRAM · .. 
TQLMOt\l: 1, LIST FILE/RECORD 
TQLMON·: · lp, LIST PROGRAM 
TQt,MON': ·· m, CREATE SCREEN FORMATS 
TQLMON:·p, PRINT FILE/RECORD 
TQLMON':; pp, PRINT PROGRAM . ~' 
TQLMbtf: ~. s , SUMMARY OF FI LE/RECORD 

. TQLMPN:: sp, SUMMARY OF PROGRAMS 
TQLMQN.: u, UPDATE CONTROL FI LE HEADER .. 
TQiJ.tON-: w, WRITE FILE/RECORD .. 
TQLMON: wp, WRITE TQL PROGRAM TO LIBRARY 
TRANSACTION CAT: prog, CATALOGUING: A ... ·· ... 

;·· 

' .. 

.. 4. 5 
4.5.2 
4.5.6 
4.2.8 
4.5.1 

' ! ~ . • ~ _ _. • :· .~ ·, .l \, ~ ~ .•. 5 . l 0 
.. • ' 1 • -.'\'." .q, ~ 2 • i 

. .,·: .4,5.12 
. . < \ .. ' . : ; ' ~ • 2 • 4; ' 

. '.' . : ~ .. , 5 .•. 4 
~' 4. ~~;q 

' . ,4;,~.3: 
':~. 2···10 ;_ 

. .. . :, 4;2.,2' 
' ' .: .. :::.: . 4..:4 .• 9 
. .:.:---::.A-?;;J.J..: 

~ , .. ...: ·, E~ 4 •. 5 • a. . ! 

:~ ·'' ' '. "~:~4:!i9•9 
,' .. ' . >!'~4 ... $•.~ . 

, '· j • • : : • ~) ! 4 'w ~ • ,? 'I" , 

: ,· -~,·--:? ;4,~ q"' .,._: -~:--·:: '.!'.~ ... z 
< i ?.:4.,;,;_i;: 

. '·' ~~;~~::. 
,.: '. ' '~ 4.; 4- ' 

~' ~ ~ 4 .).: 
' ~ ! 4. 2· 
;~ ~ 4. 3 
'4.4 •. 4. 

·-~ -.:4.4 .• 5· 
. >"' ~ c' 4 4 .6 ' 
,. .. . . ' . ·• " : <:". :'4. ~: ... :f:· 

. ·' ,·- 4;; 4. 8 
·;··;4 .. 4.9 

,'. ~ .. '~ ~ • 4 ! 1 ~ 
. ·~ 4. 4. l.l . 
. c: .: '4 : 4 .12 

• . ~ • . . t ., 

·"; i ···::: 4.4.;l~ 
" - ' (" ,' ;_4 14. :l.~ 

- '. : ·:' "::, - ,, . 3 • 7 ~? 
TRANSACTION END FCS-TREN, DIRECT:.·MARK: 
T~SACTION END FCS-TREN, INDEXED: MARK .·~>~, .. -· 
'T~SACTION HOLD=TR, RECORD HOLDING FOR THE .,. 
•TRANSFER CONTROL TIPXCTL 

. ,,,, . ' 6.9.13 
'-6~0.i0. 

~,· ~ ·-::~ • ·,6.3.2r:~· 

. " 

. , ~age: 
, se«:fi'oh: . ,' .''" ~4, . · Index 

' . ,··· , ~ .. ' 
5.13 

-~- ·-- ... . ". t' .. I ,; • ". 

TIP/30 Reference Manual 
Version 2.5 (82/08/01) , 

,. <·-·- .......... ---- ............. -----··-~--·- -· • 

• 



--

• 

INDEX 
KWIC INDEX . 

,, ·- --·~ ,..~,_ •• ,._,.,.. ~- , ... ·····-- -~ #• ...... ·- -· - '*' ~·-- _ .... - ••• --

TRANSMIT FUNCTION DCIO: xmit 
TRANSMIT PRINT FILE BCP: pr,int 
TRANSMIT PUNCH FILE BCP: ·punch. . . 
TRANSMIT TIPMSGRV, CURSOR TO LAST-POSITION & 
TRAP TIPABRT, USER PROGRAM ABORT 
TRM$ Predefined Function TRM$ 
TRM$; TRM$ Predefined Function 
TYPES FCS: types, SUPPORTED FILE 

- u - l' •.•• 

l • ... ' -~ 

_,,,.,._ .; . -
•. · ~ f ' •· ., ' 

7.10.12 .. 
. ?s{_e.13_; 

. -, - ' . 3 • 6 • 14' _'. . 
·.·. _7.8. 

' '. ,: .... 5 2' 
·9_.2.61:' 

. 9;2.67· ., . 
. , :_~ 6 ~ 5 .: ' 

' . ·- . 

·' 

un, SEND AN UNSOLICITED MESSAGE TIPTERM: ... '.;· .. /'-: .. ?'~ i'Q. 2·4.: 
update i ON-LINE DATA DISPLAY ODD: - - :.. . . .. !, - :3:. 39. ll··" 

~~~~~~&~~i~~~~I~~c~~s~~~~D CAT: ,... ·'· ',. ·'. ~:·"> -~/:: '§~~:~;-' 
UNDERE.iNING DOC: @ , START/STOP .· .. ,. · ·'-' · · :3;18.iO ::
UNJUSTIFIED MODE DOC: @T . ::.: -· ·- <, • 3~18. 31~ '.
UNSOLICITED MESSAGE TIPTERM: un, SEND AN -- .. - 7. to. 22·. '.'.
UPDATE .c:ONTROL FI LE HEADER TQLMON: u : ·, · 4 : 4 • i2 : ~
UPDATE-DD, DDU, ON-LINE DISK DISPLAY AND "" -i . ·3.1·2.
UPDATE-·FCS-NOUP, DIRECT: CANCEL - 6. 9 ~ 9.: :,
UPDATE· FCS-NOUP, INDEXED: CANCEL '" · . - ··,6·· 8 l·i
UPDATE;'HOLD=UP, RECORD HOLDING FOR THE·· : 1 ·:r '::: :. : '-G-; 3: S:.
UPDATE~RECORD FCS-PUT, DIRECT: . ·' ··: 7

. :·· ""· .• _:• • • • ·-: • ·- £ ·g i'l-'
UPDATE·;·RECORD FCS-PUT, INDEXED: - · .. : ... ·:·-. -~:. ,i_. '" • - -··:-6 ~~

0 li°
UPD-A"'·· E•'RECORD TQL: update "·-. . " :--.... ;.-. .. . - ;:- ",. ... ~ • , ~-., :r " " , . . - . ··' .• , ' . • . 4 ' 5. ;.J .•

:g:~!t~sR~~~~~CK, DIRE~T: ROLL BACK -· .·. :-:-~'.-',":. r:··~·,::T._._·._;:_. <-~~-6-~~·:·-~>'.
iUPDA'l"ES FCS-BACK, INDEXED: ROLL BACK · ·':, · -~ •· .'. 6 8' 2
UP:9ATING A CHARACTER DISPLAY DD, DDU : .'. . 1 < ·· , . 3. i'2: 9·:.:;:_
UPDATING A HEX DISPLAY DD, DDU .. · '· - " · 3 14 10"
UPDATING A MIXED DISPLAY DD, DDU ··:,. .. · · : .. 1 :3:12:11·,.r
UPDATING CATALOGUE RECORDS CAT : . , ~ . -: .:: · ·. . .: 3.7-~8
UPDATING THE RECORD CURRENTLY DISPLAYED DD, DD'O· · ·· ___ ·. 3.1'2 .• 8
US~GE DD, DDU, FUNCTION KEY · · ·3 .12 .1·3
USAGE·STATUS: b, FILE BUFFER 3.~0.1
USAGE· STATUS: d, DISK DEVICE . ~ · :·1 ·. .. - 3'. 50 1~'2
USAGE STATUS: t, TERMINAL ,· I.-..•;:, ' ·.. ·, i .• - ~. ~: 3 ·.so. B
USE ALTERNATE TERMINAL TIPUALT ·; i • . , . 7: '9' 'rs.
USE· OF-~FUNCTION KEYS TQL: function keys :. c:;• :.~-i '.l ~- . . 4:::~ :·~·2.
USE~ 0RIGINAL TERMINAL TIPUORG . ·: - . : ' . '. .. yr . _. _· 7·. ~:-JG ..
USER F0R A REPLY PROMPT, PROMPT THE -~:;.-' --.. ::r · .. ·:·~. ·t.r_·:._, ·- 7;Q·;'3".
US$R· FOR TEXT PROMPTX, PROMPT THE . ' ": ~-i.:_ .. -~- ·~· '" .. ·· ·" . < }.,,9,.'4.: ..
USER· FOR TEXT PROMPTXB, PROMPT THE.. ·"·· '· ·.: .. ' /~:9·~-5'

1

USER<liELP INFORMATION HELP, DISPLAY''·.·· .•. '.;:~.-:·· ·· --- '. .. :_j:~?4r::;
USER ID USER IDENTIFICATION AND PASSW0RDS '•I'·-·· ... · .· ,_··.: ; : ! ·"-·~· •· ----2 ·.l' · ·
USER· ±D~NTIFICATION AND PASSWORDS USEft:: 1p: :.>~~.- :. ~ .. ;:::,·<: ~ y. __ ._ .. : /,-- - I ; :- ? : i~"~

:usER· INFORMATION WMI, DISPLAY .. , .. , ~: -~~;_ ... ' ... - .• - ·; -~- .. ·, 3~ $0: :.
USER. ;,oG-ON PROCEDURE BCP: logon.. ·.· ;.: .-:;--: '.>::·· ·; :, 1~· - '"' _' ·: . . _ 1 _':' ·r· :~.:~:~~o<

'KWIC INDEX
:. i;' '· ; •• : : .. ;. :

··--·-· -- ~---····-···· ·--·~·-··- ···- ·-·- ~~· -- _ _____ . .,, , .. -..-···-··- ~--··-- -- ____ -a,.. --·--·'

Page:
sett ion:

>~ .1 .. :·: t''

-·- . . . - ---·--·--

INDEX.

USER "'PROGRAM ABORT TRAP TIPABRT
USER PROGRAM EXECUTION BCP: call
USER-ID CAT: user, CATALOGUING A
USER, PROGRAM, FILE COMMANDS TB$INT: cat
USERID AT TERMINAL NEWUSER, SPECIFY CHANGE IN .
USERS . .WHOSON, DISPLAY ACTIVE .
USING BCP INTERACTIVELY BCP
USR~ Predefined Function USR$
USE.$, ·uSR$ Predefined Function
UTILITIES OVERVIEW

,·- --.,)I.

UTILIT1ES OVERVIEW, INTERACTIVE
UTI.LIT!ES, CHAPTER III - ON-LINE UTILITY PROGRAMS ... _'· .
UTIL:tT.Y -::DLL, DOWN LINE LOAD -·· :L_:. ·,:

1
• .: •

u'f.tLf:TY :PROGRAMS UTILITIES, CHAPTER I IIr: · ··.:..: o"N~i}niE.' :- · .-:.
UTS-:4:0.0: CONTROL PAGE TIPCPAGE, SET · . ''"" · '···-' :_,, '
UTS-:4:QO: MESSAGE CONTROL SYSTEM MCS400' ;-· .:.":; · ·-..: · ~ ,:. . ..
UTSASM,. ~ON-LINE 8080 CROSS ASSEMBLER · ·'--" '

,... . ·~·-;'

U40:Q. :CONTROL PAGE CPAGE, SET
.. < :--; :

, >:;" •.,. '~. •

r, ,.

- v - 1_·, ...). • • ... •• ~ • ..

KWIC INDEX

5.2
3.6.5
3.7.4
8.7.2
J.37
:L59

.3.6.20
9.2.68

... 9. 2 ~ 68
1 ... 6. 9
1. 6 .• 4· .

r -:·~~·.::; , 3•~·
.· - : :~ ,. 3 • 16~

. ·· .. --~~- -~··· 3' •.
. •7;9 .12

- ' ~ . ~ .~l 7 .
.. - .) ~- 57

'_3-.•. :s · ..

r .. ,,, .. 1 1 -. 1 ···-~·~.,.·-"!'",i~~ • ,.-:·." , · --~' ·1.-., !
<v:.ariable> <variable> ·- -~- ··· · · .. · ·s. •. 2.JO ..
<v.a:r:iable>, <variable> · · · · · ··· ':. ·· -. : :· ~~ ~~ (~r.::<> · ., .. ,: .. ~,; : . ·> ... ·g:-.·2~:'-7.Q ,: • ·
ve:r.if,y.., FIELD VERIFICATION TQL: :.u · · .. · . ' . ; -. .' ... :' .1

_' • •. ,·: ·-4.z.;_5~·~
vo_l umes' LI ST VOLUMES VTOC: ' . "~ . " . . . ",3 ~ 5$' 9 .
VA-µ .Pr:eaefined Function VAL.... - 1~ ·~·"- ··-:3 : 2 • ~- •·· .. : .·t .·: ,~9:2:;69"
VAL, V;AfSPredefined Function .·.'· 1 · .• - ·,· r·· ··-. '9.~2~69
VERI_F .. l.CATION TQL: verify, FIELD .. : ... -4_-2~5
VERSJON: NUMBERS QED: v . · - · · _._.·- 3..:~l~-:20-:

'."' , . ~~.;

VERS .. I,QN.TLIB: back, RE-ACTIVATE PREVIOUS" ·' ,,_ .. . ;J ••• 3:5£.l~
VOLUME'. TABLE OF CONTENTS VTOC, DISK; ; :··.·, ._ .. _, ·:·.: .··~.: =·.3'~5a:
VOLUME' V-TOC: free, FREE SPACE ON . : > _ ;: . '..''·. ·· ·. _ '. : - .. 3: 58. 3
VOLUME. :VTOC: 1 is t , LI ST FI LES ON . . '3 • 5 8 • 5
VOL,UM.E' V.TOC: write, CREATE JCL.·FOR FILES~ ON. - : 3.58.lO
VOLUMES VTOC: volumes, LIST 3.58.9
VTOC DISPLAY VTOC: sort, SORTED 3.58.8
VTOC PROGRAM AND LOGOFF VTOC: quit, END 3.58.7
VTOC PROGRAM VTOC: end, END 3.58.2
VTOC VTOC: print, PRINT . , ... --,. 3.58.6 ..
VTOC.,. DISK VOLUME TABLE OF CONTENTS " ,. . . 3.~ 58 ,,
VTOC::.:display, DISPLAY FILE INFORMATION , ;.: 'i.. 3.5'8':1
VTOC: end, END VTOC PROGRAM 3.58.2

,VTOC: free, FREE SPACE ON VOLUME 3.58.3
VTOC: help, DISPLAY HELP INFORMATION- 3.58.4
VTOC: list, LIST FILES ON VOLUME 3.58.5 ...
VTQC.: pr int, PRINT VTOC 3. 58. 6
VTOC: quit, END VTOC PROGRAM AND LOGOFF 3.58.7
VTOC: sort, SORTED VTOC DISPLAY 3.58.8
VTOC: volumes, LIST VOLUMES 3.58.9

,. Page:
·Se<;:~i~n:

~ .:>z_;<_.'56
: .Index

TIP/30 Referenc~-M~rtu~1··
Version 2~5 (82/08/01)

•

INDEX.
KWI C INDEX :

VTOC: write, CREATE JCL FOR FI LES ON VOLUME · ' : . ·

- w
'._:: ..

. ' '
::_:·, ,l., ' . .:

,.,_ - .
•'''

..... , .. :

• -'._. J,, ••••• - l - ..

wl, WRITE SPOOL FILE TO FILE/ELEMENT SPL: · · _i' .. ·. 3'· •. 49·~ 17'
words , .RESERVED WORDS TQL: "' . . '· ' . 4 .: 6. .
workarea, WORK AREA PCS: ' ":;·5.1~5·-
workfields~ WORKING STORAGE TQL: '.i • :-:·4.2~7.'
workf i les' EXECUTION TIME WORK FILES .· ·. 8. 2.'
wJ),· WRITE TQL PROGRAM TO LIBRARY TQLMON: ·~· ~ · . · :,_::-4. 4..14
write, CREATE JCL FOR FILES .ON(;VOLUME VTOC:; ~ i:~ "X .. : . ,3 .S8 •. 10 .:
wrfte, WRITE SCREEN FORMAT NAME:'s MSG.AR:· ~ · · .. ·· : ·: ::·; , ... : 3.34~1z·.:.
writ·e, WRITE SPOOL FILE TP:~EDLT. BUFFERr:aPI:..::··;·: ... < .. , .. , ,·.x.::···:3;49..16·:
Word List Reserved Word List:, :Reserved · .. :·: .~~ · ·:·.;· ._.,_,, ':.'·>· 9~2 ... 47
Word I.;ist, Reserved Word List Reserved,.;.·: -.?·:····:;:.. ._ur;:~·"··· .~'<.,~:->: 9.~'2·.-4:7·
WHAT WAS JUST MATCHED QED: & ::·. ·::; '·· , , ; .. : .. "-·:.3 •. 41..3'.1
WHpSON, DISPLAY ACTIVE USERS _ . -:·.J :· .. ~.J;r·:· 1 . 3 ~ 5,9
WIDTH DOC: @Wnn, SET LINE 3.18.34
WMI, DISPLAY USER INFORMATION 3.60
WORDS TQL: words, RESERVED 4.6
WORK AREA PCS: workarea 5.1.5

1 WORK .FILES workf i les, EXECUTION TIME ._ .. '··: · ·: , . : I>.- :a·_,j2·
WORKAREA PCS : mes , MESSAGE CONTROL SYSTEM , _. . . : . · c, • _5: ... 1 "'4 ··

' woilli. lN:G STORAGE TQL: WO r k f i e Ids . " ,, . ; 1{:. ~ : ._ ..) .. ;· . /1 :.i . .. l ~d ·t ,4{. '2 :?:·
wRITE: 'FILE/RECORD TQLMON: w :::. '·: .·: .. ~ .r: .!": ,.-~ L! .4:_-,4.,,1,3;~

: wRJrt~ QJ!:D: Exe re~ s e 1 , EXERCISE 1 : APPEND, QUI 'I.'.I~ . : .>; :· .·: ; ··: .) "j ., i ~ .:3.\.4''1'.. J.ij\
'WRLTE:QED: Exercise 4, EXERCISE 4: ADD, READ, :P~INT,· 7 -~:·>·' l ':•-:r 0 J:,/41.,39
WRJ 'i'.E"' !{ECORD FCS-PUT, LIB: . ___ - 1 : ·- ·' ; ' ··' · • ':_· ,.n,.~.l fr. 6 :_ .
WR+.TE ~ECORD(S) FCS-PUT, DYN: I :<::;:: _;.:.,·-':\;.-_;,; 6~1[~. 7:
WRiTE" -'SCREEN FORMAT NAMES MSGAR: wri-te· .. : :: 7,.., 'i , , : .: 3. 3.4~.12·

.WRITE· s'POOL FILE TO EDIT BUFFER SPL:· wr'(te ... , : .· , . ,.,.:_3":49~·10 ·
WR'! TE: SPOOL FI LE TO FI LE/ELEMENT SPL: w 1 . .. ·" .. . · · ·· . /3 ~ 4-9·.' l 7 .
WRITE. TQL PROGRAM TO LIBRARY TQLMON: wp ,(~:.1.~" : 4. 4 .14
WRITING' AN EDIT BUFFER TO A FIL,E;/EL~~~NT, Q~D_::_ W i' 3:41~18.
WR1 TI NG. TEXT TO FI LE : 3 .. :4 5 • 3 ·

',r;

- x -

xrni t ·,.TRANSMIT FUNCTION DCIO:
XR7bMS FCS: drns/90, DMS/90 -

y -.::

YES/NQ FUNCTION
·, ·' / . !'('

- ~-

·... . .

.... -~ _..,_ ·~~-.-----· ... ----... -.. _-·--·--' .. ~---- "'~ ~·:,.-.......- . .., ___ ..,. ''

, ... J. '·:. ,' '

.. ·,'. ·: v
" .

. - . ;· ' 1 ~ ~ '"" ! -· .: f': ,. ~

... ;: •. ::_1., ... ,,-.·· i/!1~10.12
'..'...,,: .::.::. l ' <: .6'~ 19-~'1· .

. ..;; ',

~
. ' ; .· . ,_ .

-.. 7 ' . ~.· "' .
. ' 't

''

0Page:
Se.ctd.oh:

; <~·:'57
: lf.lcdex'.: ~

,.
'

;

} .
l
I

'i

INDEX

;Page:
Section:

:.;, :·-,: ·;.··· r.--- ..

,· ,,

~·a
~I;ndex

KWIC INDEX

- E n d O f D o c u m e n t -

~- ·:irf .,,,,,, - ~·

'k·c• •. ,..., ·-"···c
"'""' -~---~- .;,,. .. ,,._~~,-.:., . .., ___ , , ... ···~ --........

¥IP/3b Reference Manual
Vers.ion 2. 5 (82/08/01)

