————————————————————— TTTTTTTTTTT -~ IIIIIII ~- PPPPPPPPP

T —— - e e TTTTTTTTTTT -- IIIIIII -- PPPPPPPPPP
- - TTT ———————- 111 --—— PPPP PPP
TTT ———-—7—— 111, ---- PPPP PPP
TTT ---—---- 111 —-—--- PPPPPPPPPP
TTT =------=- 1I11. =---- PPPPPPPPP
TTT ----—---_ 11l .---- PPP
TTT —-—f+:,‘1111111 ~— ' PPP
TTT ------""TIITIIL “——*wppp
333333333333333 -=-~---= 000000

33333333333333 —-~~=- 0000000000

3333333333333 fe--fe 000000000000
) 3333333 - - g 00000
w=~— 3333333 000000
T 3333333t)0 000000
-~ 333333333 - 080000 000000
333333333333 —— 000000 000000
b i | 33333333 --- 000000 = 000000
e ©3333333° -- 000000 000000
T 3333333 -- 000000 000000
e e 333 33333333 --- 000000 000000
T 333333333333333 ———--" oooeoooooooooo
e 3333333333333 ------=-=" 00000000000
e e e 333333333 -——====—==== 00000000

TIP/30 REFERENCE MaNUAL -
Version 2.5 (82/08/01)

ARP-600

A'Product of:

Allinson-Ross Corporat1on
_First Rexdale Place,

155 Rexdale Boulevard, Suite 906

REXDALE, Ontario

Canada M9W 528

TEL: (416) 746-3388

TWX: (610) 491-1772

kkkkkhkhhkhhkkhhhdhkhkdkhhkdhhhhhkhhhhkhdhhdkhhdkddhhhdhddhkhhdkdhdddhkdhkhhhddkkkk
khhkkkkkhhkhkhhhhkhkhkhhhkkhkhhkhhkkhkhkhkhkkhhhhhhhkhkhhkhkkhkkhhkhkhhkhkhhkhhhhkhkkhhkkkhkk

* % * %
*% A L L IIIII N N SSS§ 000 N N *x
** AA L L I NN N S O O NN N *x
** AAAAA L L I N NN SSS O O NNN ===== *x
* A A L L I N NN S O O N NN ok
** A A LLLLL LLLLL IIIII N N SSSS 000 N N %
* % * %
** RRRR 000 SSSS SSSS cce 000 RRRR PPPP o
** R R O O S s C O O R R P P ok
** RRRR O O SSS SSS c O O RRRR PPPP %
* R R O O s s C O O R R P A 5
* R R 000 SSSS SSSS cce 000 R R P R &
%* % * %
*% CCC 000 PPPP Y Y RRRR IIIII GGG H H TTTTT o
*% C © oP P YY R R I G G H H T %
** O O PPPP Y RRRR I G HHHHH T *x
*kC O O P Y R R I G GG H H T *%
*% CCC 000 P Y R R IIIII GGGG H H T *x
* % * %
khkkkkhkkkhkhkdhkhddkrhdhkhkhhhkhdrkhhkhdkhhhkhhkkhkhdhhhhhhkhhkhkhdkhdhhrdhhhdhdhhkdkdhkx
** (C) 1975,1976,1977,1978,1979,1980,1981,1982 *x

** Allinson—Ross Corporation reserves the right to modify or revise **
** the content of this document. Except where a Software Usage **
** Agreement has been executed, no contractual obligation between **
% Allinson—-Ross Corporation and the recipient is either expressed **
** or implied. It is agreed and understood that the information con- **
**%* tained herein is proprietary and confidential and that the recip- **
** jent shall take all necessary precautions to ensure the confiden- **
% tiality thereof. This document, in whole or in part, may not be **
** copied or transmitted, in any form or by any means, electronic, **
** mechanical, photocopying, or otherwise, without the prior written **

** permission of: *x
* % Allinson-Ross Corporation, * %
*% 155 Rexdale Blvd, Suite 906, * %
* % Rexdale, Ontario, *%
* % Canada M9W 528 * %
* % Tel: (416) 746-3388 *%
%* % * %
* % : * %
kkkkhkhkhkkkhkhkhhdkhhhkhkhhhhhkhhhhkkhhkkhhkhhkdkhhkhkhdkhkkhkhkhkhkhhhhkkhhdhhkkhhkhhkkhkhkkdxx
*% THIS DOCUMENT WAS PRODUCED USING THE *%
* ALLINSON-ROSS CORPORATION DOCUMENT GENERATOR. *%

hkhkhkhkhkkkhkhkhhkhhkhkhhhhkhhhhkhhhkhhhkhhhhhrkhdkhkdhddkhhhkhkdhhhhkhhkhhkhhkhkkhhddkhikdkdix
khkhkhkhhhhkhhhhhkhhkhkhkhhkhhkhhhhhhkhhhkhhkhhhdhhhhhkhkhhhkikhkhkhhkdrhhkhhhkhkhhkhhkhhkhkkk

CHAPTER 1 - INTRODUCTION

1. CHAPTER I - INTRODUCTION
1.1 PREFACE
This document is the reference manual for TIP/30 (Transaction
Interface Processor), a software product developed by Allinson-Ross
Corporation.
The names TIP and TIP/30 are wused interchangeably in this
manual.
Please direct any inquiries or requests for further information
to:
Allinson~Ross Corporation
First Rexdale Place
155 Rexdale Blvd., Suite 906
Rexdale, Ontario
Canada MOW 5z8
Tel. (416) 746-3388
TWX. (610) 491-1772
CHAPTER I - INTRODUCTION Page: 1

PREFACE Section: 1.1

HOW TO USE

HOW TO USE THIS REFERENCE MANUAL

1.2

HOW TO USE THIS REFERENCE MANUAL HOW TO USE

The TIP/30 reference manual is organized into volumes, chapters,
sections, and sub-sections.

The division into volumes is purely a matter of convenience for
physical handling and distribution.

The manual is a hierarchy of information. The information in the
manual is presented in a "top down" fashion. By this we mean that
the most general information is presented first, proceeding on to
more specific information at a later point in the documentation.

The page numbers at the bottom of each page are relative to each
individual sub-section.

Each sub-section is terminated by a sentinal such as: —-+*+-

Following is a brief description of the contents of the chapters
in the reference manual.

Page: 1 TIP/30 Reference Manual
Section: 1.2 Version 2.5 (82/08/01)

o

HOW TO USE

HOW TO USE THIS REFERENCE MANUAL

Chapter 1

Chapter 11
Chapter III
Chapter 1V

Chapter V

Chapter VI

Chapter VII

Chapter VIII

Chapter IX

Chapter X

An overview of TIP/30 and the design philosophy of
the product.

This section on how to effectively use the manual.
A generalized table of contents.
A glossary of terms used in the manual.

A presentation of some of the fundamental concepts
necessary to understand the use of TIP/30.

The detailed documentation for all supplied
on-line utility programs.
Documentation for the Allinson-Ross Application

generator utility (Tip Query Language).

The progrém control
native mode programs).

system (how to create TIP

The file control system (interface with user
files).

data

The message control system (terminal interface).

System Maintenance information. (The care and
feeding of TIP/30).

Appendices.

Key Word In Context (KWIC) index.

A KWIC index 1is produced by indexing every

non-trivial word in title information. Users are
then able to find appropriate information even if
they only remember one conceptual key word.

Although the KWIC index is admittedly voluminous
it is invaluable.

CHAPTER I - INTRODUCTION
HOW TO USE THIS REFERENCE MANUAL

Page: 2
Section: 1.2

HOW TO USE
HOW TO USE THIS REFERENCE MANUAL

This 1is a reference manual for the product TIP/30. It is not
intended as a tutorial introduction to (on-line) data processing.
There 1is no substitute for a proper grasp of the fundamentals of
data processing terms and ideas.

Readers of this manual are assumed to have a reasonable
understanding of general data processing principles. Descriptions
of how terminals work, how the operating system works and the like
are far beyond the scope and intent of this manual. The reader Iis
urged to consult the appropriate publications from the manufacturer
of the hardware for this type of information.

It is recommended that ALL users read Chapters I and II
thoroughly before attempting to use the features of TIP/30.

Programmers (or wusers) who will need to know how to run (some
of) the supplied utilities will find Chapter III indispensible as a
reference.

Chapter IV (Applications development systems) describes an
on-line gquery language. We strongly recommend (as a matter of
fundamental philosophy) that the Data Processing personnel use this
(tool!) as a convenient means to generate applications. Very few
user department personnel will have the capability of making
effective use of this product without extensive training AND
support from the Data Processing Department.

Programmers must read and understand much of Chapters V through
VII before attempting to create new TIP/30 programs of their own.

Chapter VIII (System maintenance) 1is of primary interest to
those individuals who are responsible for the ongoing maintenance
and support of TIP/30 at the site. The system programmer must have
a thorough knowledge of this chapter to be able to understand fully
the ramifications of any changes he may envision for the TIP/30
system at the site.

Chapter VIII also contains all the necessary documentation
(including console messages and commands) for the machine operator
who must run TIP/30 and be aware of the status of the on-line
system,

Chapter 1IX contains appendices which provide supplementary
documentation for various topics.

Chapter X 1is the Key Word In Context (KWIC) index. This index
may be consulted to find information when the user is unsure of its
location in the manual.

Page: 3 TIP/30 Reference Manual
Section: 1.2 Version 2.5 (82/08/01)

STRUCTURE
REFERENCE MANUAL STRUCTURE

1.3 REFERENCE MANUAL STRUCTURE STRUCTURE

VOLUME I.
CHAPTER I: INTRODUCTION

- Preface

How to use this document
Structure of this document

Table of Contents

Glossary of terms and concepts
Introduction to TIP/30 (overview)

CHAPTER IT1: FUNDAMENTAL CONCEPTS

User identification and Password
Logon and Logoff procedures

Command line / options / parameters
System Security / Catalogue

CHAPTER I - INTRODUCTION Page: 1
REFERENCE MANUAL STRUCTURE Section: 1.3

STRUCTURE

REFERENCE MANUAL STRUCTURE

CHAPTER III:

EXECUTING TIP/30 UTILITY PROGRAMS

Alphabetically ordered documentation of
transactions supplied by Allinson-Ross
that may be executed at a terminal.

- ACCESS Assign a dynamic file

- AFT Active File Table

- APB A1l Points Bulletin

- ASG Assign a dynamic file

- BASIC BASIC language interpreter

- BCP Batch terminal Control Program
- CAT TIP/30 Catalogue Manager

- CC COBOL Converter (Reformatter)
- CCA ICAM Statistics Display

- CPAGE Change UTS400 control page
- CRASH Terminate TIP/30 with a dump

- CREATE Create dynamic file

DD, DDU Dynamic file display
DEBUG Set file in debug mode
DEFKEY Define function keys

DIE Abort TIP/30 transaction
DLL Down Line Load Utility
DOC Document Processor
- EOJ TIP/30 normal end of job
- FCLOSE Physically Close 0S/3 file
- FIN Logoff
- FOPEN Physically Open 0S/3 file
- FREE terminate Access to a file
- HELP display HELP information
- IDA interactive debug aid
- JBQ display 0S/3 job queue
- JCL interactive JCL submittor

- LOGOFF Log off TIP/30
- LOGON Log on TIP/30

- MAIL interactive Mail

- MEM display 0S/3 memory usage
- MODE set terminal mode

- MSG send a message to terminal

Page:
Section:

TIP/30 Reference Manual
Version 2.5 (82/08/01)

REFERENCE MANUAL STRUCTURE

STRUCTURE

MSGAR
MSGDEF
MSGSHOW

NEWUSER
NOTE

0DD
PMDA
QED

RELOAD
RPG
RV

SCRATCH
SET

SPL
STATUS
STOP
SYM

SYS

TCB
TIPFLG
TLIB
UTSASM
vV10C

WHOSON
WM

message (screen format) archiver
message definition
message test

logoff and logon in one step
display note on terminal

Online Data Display
Post Mortem Dump Analysis
TIP/30 text editor

refresh load module from library
editor for RPG source programs
run an 0S/3 batch job

scratch dynamic file

set terminal characteristics
spool file processor

TIP/30 statistics

immediate TIP/30 eo0j

0S/3 symbiont submittor

0S/3 system status

0S/3 task control block display
Set TIP/30 flag(s)

TIP/30 Librarian

UTS400 assembly language processor
online disc VTOC

display users of TIP/30 system
display user logged on

CHAPTER Iv: APPLICATIONS DEVELOPMENT SYSTEMS

- TIP QUERY LANGUAGE (TQL)

CHAPTER I - INTRODUCTION

REFERENCE MANUAL STRUCTURE

Page: 3
Section: 1.3

STRUCTURE

REFERENCE MANUAL STRUCTURE

VOLUME II.
CHAPTER V:

PROGRAM CONTROL SYSTEM

- structure of on-line programs
- linkage section areas

- TIPABRT
- TIPBITS
- TIPBYTES
- TIPDATE
- TIPDUMP
TIPFCER
TIPFLAG
TIPFORK
TIPRTN
TIPSNAP
TIPSUB
TIPSUBP
TIPTIMER
TIPXCTL

CHAPTER VI: FILE CONTROL SYSTEM

establish island code 1linkage
convert 32 bytes to fullword
convert fullword to 32 bytes
get date including day of week
force deliberate program check
expanded FCS error code

flag services

start asynchronous process
return to caller

storage dump for selected areas
‘perform’ other program
‘perform’ resident subprogram
timer services ,
transfer control to program (GO)

TIPFCS and the TIP/30 catalogue
Record and file locking

Summary of FCS calls

File types supported

Common FCS parameters

FCS interface packets

INDEXED FILES (ISAM IRAM MIRAM)
DIRECT ACCESS FILES (DAM)
SEQUENTIAL FILES
DYNAMIC FILES (DYN)
TIPPRINT

(SAM)

- FCS copy elements

- LIBRARY FILES

- EDIT FILES

- DATA BASE INTERFACE

- TIP/30 JOURNAL FILE

- batch access to journal file

Page: 4
Section:

TIP/30 Reference Manual
Version 2.5 (82/08/01)

STRUCTURE
REFERENCE MANUAL STRUCTURE

CHAPTER VII: MESSAGE CONTROL SYSTEM

- Screen format generator
- Line oriented 1/0 (PROMPT, ROLL etc)
- Direct Control 1/0 (TIPTERM)

CHAPTER VIII: SYSTEM MAINTENANCE

- TIP/30 file requirements

- TIP/30 Generation

- execution job control and options

- File recovery

- Batch Jobs [job control information]
- TIP/30 Operation and Error messages

CHAPTER IX: APPENDICES
- Directory of COBOL copy elements
- BASIC Language syntax

CHAPTER X: KEY WORD IN CONTEXT (KWIC) INDEX

CHAPTER I - INTRODUCTION Page: 5
REFERENCE MANUAL STRUCTURE Section: 1.3

TABLE OF CONTENTS

T70C

1.4 TABLE OF CONTENTS

. CHAPTER I - INTRODUCTION
PREFACE
HOW TO USE THIS REFERENCE MANUAL
REFERENCE MANUAL STRUCTURE
TABLE OF CONTENTS
TIP/30 GLOSSARY OF TERMS AND CONCEPTS
TIP/30 OVERVIEW
MESSAGE CONTROL SYSTEM
FILE CONTROL SYSTEM
SECURITY
INTERACTIVE UTILITIES
PROGRAM PREPARATION
DISPLAY FORMAT PREPARATION
PROGRAM TESTING AND DEBUGGING
DOCUMENT PREPARATION
UTILITIES

SR S T T L

(o aWe AN WeorWoaWeaNe 2 WeaNe AN A WS, IS T OV S o

WO JoOYOT P WN

-2 -

2. CHAPTER II - FUNDAMENTAL CONCEPTS
2.1 USER IDENTIFICATION AND PASSWORDS
2.2 LOGON AND LOGOFF PROCEDURES

2.3 TIP/30 COMMAND LINE

2.4 TIP/30 SYSTEM SECURITY

- 3 -

3. CHAPTER III - ON-LINE UTILITY PROGRAMS
3.1 ACCESS A FILE

3.2 DISPLAY ACTIVE FILE TABLE

3.3 ALL POINTS BULLETIN

3.4 ASSIGN A FILE

3.5 TIP/30 BASIC INTERPRETER - COMPILER
3.5.1 TERMINATE MONITOR

3.5.2 COMPILE BASIC PROGRAM

3.5.3 COMPILE BASIC PROGRAM WITH LISTING
3.5.4 DELETE BASIC OBJECT FILE

3.5.5 TERMINATE THE BASIC MONITOR

3.5.6 DISPLAY BASIC PROGRAM HELP INFORMATION
3.5.7 LIST BASIC PROGRAM ON TERMINAL

3.5.8 LIST BASIC PROGRAMS IN TIP CATALOGUE
3.5.9 CHANGE SCREEN ROLL MODE

TOC

HOW TO USE
STRUCTURE
TOC
GLOSSARY
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW
OVERVIEW

CONCEPTS
USER 1D
LOGON/LOGOFF
COMMAND LINE
SECURITY

UTILITIES
ACCESS

AFT

APB

ASG

BASIC

BASIC: bye
BASIC: compile
BASIC: cp
BASIC: delete
BASIC: end
BASIC: help
BASIC: list
BASIC: 1lc
BASIC: mode

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

Page: 1
Section: Contents

T0C
TABLE OF CONTENTS

3.5.10 EDIT A NEW BASIC PROGRAM BASIC: new

3.5.11 EDIT EXISTING BASIC PROGRAM BASIC: old

3.5.12 PRINT BASIC PROGRAM LISTING BASIC: print

3.5.13 TERMINATE BASIC MONITOR BASIC: quit

3.5.14 RUN A BASIC PROGRAM BASIC: run

3.5.15 DIRECT EXECUTION OF BASIC PROGRAMS BASIC: run

3.5.16 SAVE A PROGRAM IN A LIBRARY BASIC: save

3.6 BATCH TERMINAL COMMAND PROCESSOR BCP

3.6.1 SUMMARY OF BCP COMMANDS BCP

3.6.2 BCP KEYWORD SHORTFORMS BCP

3.6.3 BCP COMMAND LANGUAGE BCP

3.6.4 BCP STATUS MESSAGES BCP: ack/nak

3.6.5 USER PROGRAM EXECUTION BCP: call

3.6.6 DELETING PRINT FILE BCP: delete

3.6.7 TERMINATING BCP BCP: fin

3.6.8 BACKGROUND PROGRAMS BCP: fork

3.6.9 CREATE INPUT READER SPOOL , BCP: in

3.6.10 USER LOG-ON PROCEDURE BCP: logon

3.6.11 MODES OF OPERATION BCP: mode

3.6.12 SEND COMPUTER OPERATOR A MESSAGE BCP: msg

3.6.13 TRANSMIT PRINT FILE BCP: print

3.6.14 TRANSMIT PUNCH FILE BCP: punch

3.6.15 DISPLAYING PRINT FILE QUEUE BCP: queue

3.6.16 SEND DATA FILE TO HOST BCP: receive

3.6.17 RUN BATCH JOB BCP: run

3.6.18 SEND DATA FILE TO TERMINAL BCP: send

3.6.19 SUBMIT REMOTE BATCH JOB BCP: submit

3.6.20 USING BCP INTERACTIVELY BCP

3.6.21 ICAM GENERATION CONSIDERATIONS BCP: icam

3.6.22 SAMPLE ICAM BCP: icam

3.7 TIP/30 CATALOGUE MANAGEMENT CAT

3.7.1 ON-LINE CATALOGUE MANAGER CAT

3.7.2 SECURITY LEVEL SPECIFICATION CAT: security

3.7.3 DEFINITION OF CATALOGUE GROUPS CAT: security

3.7.4 CATALOGUING A USER-ID CAT: user

3.7.5 CATALOGUING A TRANSACTION CAT: prog

3.7.6 CATALOGUING A FILE CAT: file

3.7.7 CATALOGUE HINTS FOR TESTING PROGRAMS CAT

3.7.8 UPDATING CATALOGUE RECORDS CAT

3.7.9 CATALOGUE STATEMENT CONTINUATION CAT

3.7.10 LISTING CATALOGUE ENTRIES CAT: list

3.8 COBOL REFORMATTER (CONVERSION AID) CcC

3.8.1 COMMUNICATIONS CONTROL AREA DISPLAY CCa

3.9 SET U400 CONTROL PAGE CPAGE

3.10 ABNORMAL TIP/30 SHUTDOWN CRASH

3.11 CREATE A DYNAMIC FILE CREATE

3.12 ON-LINE DISK DISPLAY AND UPDATE DD, DDU

3.12.1 INTERACTION WITH DD & DDU DD, DDU

3.12.2 SPECIFYING A RECORD TO BE DISPLAYED DD, DDU

3.12.3 SPECIFYING A RECORD OF AN INDEXED FILE DD, DDU
Page: 2 TIP/30 Reference Manual

Section: Contents Version 2.5 (82/08/01)

TABLE OF CONTENTS

10C

3.12.4 SPECIFYING A RECORD OF A NON-INDEXED FILE DD, DDU
3.12.5 SPECIFYING DISPLAY MODES DD, DDU
3.12.6 PAGING THROUGH THE CURRENT RECORD DD, DDU
3.12.7 TERMINATING DD & DDU DD, DDU.
3.12.8 UPDATING THE RECORD CURRENTLY DISPLAYED DD, DDU
3.12.9 UPDATING A CHARACTER DISPLAY DD, DDU
3.12.10 UPDATING A HEX DISPLAY DD, DDU
3.12.11 UPDATING A MIXED DISPLAY DD, DDU
3.12.12 RECORD PROTECTION DD, DDU
3.12.13 FUNCTION KEY USAGE DD, DDU
3.12.14 POTENTIAL PROBLEMS DD, DDU
3.13 SET FILE IN TEST MODE DEBUG

3.14 DEFINE FUNCTION KEYS DEFKEY

3.15 ABORT A PROGRAM DIE

3.16 DOWN LINE LOAD UTILITY DLL

3.17 UTS-400 MESSAGE CONTROL SYSTEM MCS400

3.18 DOCUMENT GENERATOR DOC

3.18.1 ONLINE DOCUMENT GENERATOR DOC: online
3.18.2 ADDITIONAL CONSIDERATIONS DOC

3.18.3 SUMMARY OF IMBEDDED COMMANDS DOC

3.18.4 PHYSICAL FORM FEED DOC: @.
3.18.5 START MARGIN FLAGGING DOC: @(
3.18.6 SAVE PARAGRAPH NUMBER DOC: @!n ; @]n
3.18.7 STOP MARGIN FLAGGING DOC: @)
3.18.8 CHANGE COMMAND DELIMITER DOC: @-c
3.18.9 SWITCH INPUT TO FILE/ELEMENT DOC: @%file/elt
3.18.10 START/STOP UNDERLINING DOC: @_
3.18.11 RECALL PARAGRAPH NUMBER DOC: @?n
3.18.12 GENERATE LITERAL AT-SIGN DOC: @@
3.18.13 CALLING MACROS DOC: @nn
3.18.14 SPACE TO ABSOLUTE COLUMN DOC: @Ann
3.18.15 GENERATE DOCUMENT INDEX DOC: @B
3.18.16 END OF LINE (QUAD CENTRE) DOC: @Cnn
3.18.17 EJECT TO NEW PAGE DOC: @Enn,mm
3.18.18 FLUSH LINE DOC: @Fc
3.18.19 SET PAGE LENGTH DOC: @Gnn
3.18.20 HORIZONTAL SPACE DOC: @Hnn
3.18.21 SET INDENTATION (LEFT) DOC: @Inn
3.18.22 JUSTIFY MODE DOC: @J
3.18.23 INCREMENT AND CALL MACRO DOC: @Knn
3.18.24 END OF LINE (QUAD LEFT) DOC: @Lnn
3.18.25 NOTATION (HANGING INDENT) DOC: @Nnn
3.18.26 START ODD OR EVEN PAGE DOC: @O
3.18.27 RETRIEVE CURRENT PAGE NUMBER DOC: @QP
3.18.28 DEFINING MACRO CONTENTS DOC: @QOnn..."
3.18.29 END OF LINE (QUAD RIGHT) DOC: @Rnn
3.18.30 SET LINE SPACING DOC: @Snn
3.18.31 UNJUSTIFIED MODE DOC: @T
3.18.32 SAVE COMPOSITION STATUS DOC: QU
3.18.33 RESTORE COMPOSITION STATUS DOC: @V
CHAPTER I -~ INTRODUCTION Page: 3

TABLE OF CONTENTS

Section: Contents

10C

TABLE OF CONTENTS

3.18.
3.18.
3.18.
3.18.
3.18.
3.18.
3.18.

3.19
3.20
3.21
3.22
3.23
3.24
3.25

3.25.
3.25,

3.26

3.26.
3.26.
3.26.
3.26.
3.26.
3.26.
3.26.

34 SET LINE WIDTH
35 INCREMENT PARAGRAPH NUMBER
36 LOG LINE IN TABLE OF CONTENTS
37 SEQUENTIAL TABLE OF CONTENTS
38 EXAMPLE OF MACRO USE AND DEFINITION
39 PREDEFINED MACROS 0-39
40 LIBRARY ERRORS

NORMAL TIP/30 SHUTDOWN

PHYSICALLY CLOSE ON-LINE FILE

LOGOFF TIP/30

PHYSICALLY OPEN ON-LINE FILE

DEACCESS A FILE

DISPLAY USER HELP INFORMATION
INTERACTIVE DEBUG AID
1 IDA COMMANDS
2 IDA COMMAND EXAMPLES

DISPLAY 0S/3 JOB QUEUE INFORMATION
1 DISPLAY ALL 0OS/3 JOB QUEUES
2 END INTERACTION WITH JBQ PROGRAM
3 DISPLAY HELP INFORMATION ON TERMINAL
4 DISPLAY HIGH PRIORITY JOB QUEUE
5 LIST JOB STEP INFORMATION
6 DISPLAY NORMAL PRIORITY JOB QUEUE
7 DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE

DOC: @Wnn
DOC: @Xn

DOC: @Y

DOC: @Z

DOC

DOC: @0-@39
DOC

EQJ

FCLOSE

FIN

FOPEN

FREE

HELP

IDA

IDA: commands
IDA: exmaples
JBQ

JBQ: all

JBQ: end

JBQ: help
JBQ: high
JBQ: list
JBQ: normal
JBQ: pre-emptive

3.26.8 END INTERACTION WITH JBQ JBQ: quit
3.27 INTERACTIVE JOB CONTROL SUBMITTOR JCL
3.28 LOG OFF TIP/30 LOGOFF
3.29 LOG ON TIP/30 SYSTEM LOGON
3.30 TIP MAIL SYSTEM MAIL
3.31 0S/3 MEMORY DISPLAY MEM
3.32 SPECIFY MODE OF OPERATION MODE
3.33 SENDING A MESSAGE MSG
3.34 MESSAGE ARCHIVER (LIBRARIAN) MSGAR
3.34.1 CURSOR RESTING LOCATION MSGAR: cursor
3.34.2 DELETE SCREEN FORMAT MSGAR: delete
3.34.3 DIRECTORY OF SCREEN FORMATS MSGAR: directory
3.34.4 END MESSAGE ARCHIVER MSGAR: end
3.34.5 HELP INFORMATION MSGAR: help
3.34.6 LIST SCREEN FORMAT INFORMATION MSGAR: list
3.34.7 PRINT SCREEN FORMAT MSGAR: print
3.34.8 QUIT MSGAR PROGRAM MSGAR: quit
3.34.9 RENAME SCREEN FORMAT MSGAR: rename
3.34.10 RESTORE SCREEN FORMAT MSGAR: restore
3.34.11 SAVE SCREEN FORMAT MSGAR: save
3.34.12 WRITE SCREEN FORMAT NAMES MSGAR: write
3.35 MESSAGE DEFINITION MSGDEF
3.35.1 MESSAGE DEFINITION Negative Fields
3.36 MESSAGE TESTING MSGSHOW/MSGTST
3.37 SPECIFY CHANGE IN USERID AT TERMINAL NEWUSER
3.38 INFORMATIONAL MESSAGE NOTE

Page: 4 TIP/30 Reference Manual

Section: Contents

Version 2.5 (82/08/01)

TABLE OF CONTENTS

T70C

3.39 ON-LINE DATA DISPLAY ODD

3.39.1 ON-LINE DATA DISPLAY Command Format
3.39.2 ON-LINE DATA DISPLAY ODD: add
3.39.3 ON-LINE DATA DISPLAY ODD: close
3.39.4 ON-LINE DATA DISPLAY ODD: count
3.39.5 ON-LINE DATA DISPLAY ODD: delete
3.39.6 ON-LINE DATA DISPLAY ODD: display
3.39.7 ON-LINE DATA DISPLAY ODD: list
3.39.8 ON-LINE DATA DISPLAY ODD: next
3.39.9 ON-LINE DATA DISPLAY ODD: print
3.39.10 ON-LINE DATA DISPLAY ODD: show
3.39.11 ON-LINE DATA DISPLAY ODD: update
3.39.12 ODD COMMAND LINE FORMAT ODD

3.39.13 ODD FUNCTION KEYS ODD

3.39.14 PROGRAM LIMITATIONS ODD

3.39.15 ODD - PITFALLS TO AVOID ODD

3.40 POST MORTEM DUMP ANALYSIS PMDA

3.40.1 DISPLAY MEMORY CONTENTS PMDA: display
3.40.2 END PMDA PROGRAM PMDA: end
3.40.3 PRINT HARD COPY DUMP PMDA: print
3.40.4 END PMDA AND SCRATCH DUMP FILE PMDA: quit
3.41 TIP/30 TEXT EDITOR QED

3.41.1 GETTING STARTED QED: intro
3.41.2 QED CONTROL CHARACTER, DOUBLE QUOTE QED: "
3.41.3 ERROR MESSAGES QED: errors
3.41.4 LINE LENGTH QED

3.41.5 ADDING TEXT; THE ADD COMMAND QED: a
3.41.6 DISPLAYING LINES; THE PRINT COMMAND QED: p
3.41.7 THE CURRENT LINE QED: dot
3.41.8 DELETING LINES QED: d
3.41.9 MODIFYING TEXT; THE SUBSTITUTE COMMAND QED: s
3.41.10 CONTEXT SEARCHING QED

3.41.11 REPEATED SEARCHING FOR THE SAME STRING QED

3.41.12 CHANGE AND INSERT QED: c
3.41.13 MOVING BLOCKS OF TEXT: MOVE QED: m
3.41.14 COPYING BLOCKS OF TEXT; COPY QED: k
3.41.15 GLOBAL COMMANDS QED: g
3.41.16 RE-DIRECTED QED INPUT QED: "<
3.41.17 READING TEXT FROM A FILE QED: r
3.41.18 WRITING AN EDIT BUFFER TO A FILE/ELEMENT QED: w
3.41.19 END OF EDIT SESSION: QUIT / END QED: g, e
3.41.20 VERSION NUMBERS QED: v
3.41.21 SUPPLEMENTARY QED REFERENCE QED

3.41.22 MATCHING AT THE BEGINNING OF A LINE QED: 1t
3.41.23 MATCHING AT THE END OF A LINE QED: S
3.41.24 MATCHING ANY LETTER QED: %
3.41.25 MATCHING ANY DIGIT QED: #
3.41.26 DISPLAYING A COLUMN SCALE QED: O#
3.41.27 SAVE THE CURRENT LINE NUMBER QED: >n
3.41.28 RECALL SAVED LINE NUMBER QED: <n
CHAPTER I - INTRODUCTION Page: 5
TABLE OF CONTENTS Section: Contents

T70C

TABLE OF CONTENTS

3.41.29 0I MODE REPETITION QED: *
3.41.30 MATCHING ANY CHARACTER QED: .
3.41.31 WHAT WAS JUST MATCHED QED:
3.41.32 REGULAR EXPRESSION CONSIDERATIONS QED
3.41.33 SUMMARY OF COMMANDS AND LINE NUMBERS QED
3.41.34 COMMAND and FUNCTION SUMMARY QED: summary
3.41.35 LINE NUMBERS QED
3.41.36 EXERCISE 1: APPEND, QUIT, WRITE QED: Exercise 1
3.41.37 EXERCISE 2: APPEND, PRINT QED: Exercise 2
3.41.38 EXERCISE 3: READ, PRINT, APPEND QED: Exercise 3
3.41.39 EXERCISE 4: ADD, READ, PRINT, WRITE QED: Exercise 4
3.41.40 EXERCISE 5: SUBSTITUTE QED: Exercise 5
3.41.41 EXERCISE 6: CONTEXT SEARCHING QED: Exercise 6
3.41.42 EXERCISE 7: CHANGE QED: Exercise 7
3.42 RELOAD PROGRAM RELOAD
3.43 RPG EDITOR RPG
3.43.1 ENTERING RPG
3.44 ERROR MESSAGES
3.44.1 DELETE
3.44.2 ADD A RECORD
3.44.3 UPDATE RECORDS
3.44.4 LIST LINES
3.44.5 GETTING OUT OF RPG
3.45 CURRENT LINE
3.45.1 LAST LINE
3.45.2 LINE NUMBER OF CURRENT LINE
3.45.3 WRITING TEXT TO FILE
3.46 START 0S/3 BATCH JOB RV
3.47 SCRATCH A DYNAMIC FILE SCRATCH
3.48 SET ATTRIBUTES FOR PROCESS SET
3.49 SPOOL FILE ENQUIRY SPL
3.49.1 SPL SECURITY CONSIDERATIONS SPL: security
3.49.2 SPL KEYWORDS SPL: keywords
3.49.3 SPL PROGRAM OPERATION SPL: operation
3.49.4 SPL FUNCTION KEY USE SPL: fnkeys
3.49.5 DELETE SPOOL SUB-FILE SPL: delete
3.49.6 END SPL PROGRAM SPL: end
3.49.7 DISPLAY SPL PROGRAM HELP SPL: help
3.49.8 LIST SPOOL FILE ON TERMINAL SPL: list
3.49.9 LIST (SPACE SUPPRESSED) SPOOL FILE SPL: 1ls
3.49,.10 LIST (TRUNCATED) SPOOL FILE SPL: 1t
3.49.11 PRINT SPOOL FILE SPL: print
3.49.12 PRINT SPOOL FILE WITH TEST PAGE SPL: pt
3.49.13 END SPL PROGRAM AND LOGOFF SPL: quit
3.49.14 RELEASE SPOOL FILE SPL: release
3.49.15 SUMMARIZE SPOOL QUEUE CONTENTS SPL: summary
3.49.16 WRITE SPOOL FILE TO EDIT BUFFER SPL: write
3.49.17 WRITE SPOOL FILE TO FILE/ELEMENT SPL: wl
3.50 DISPLAY TIP/30 STATISTICS STATUS
3.50.1 FILE BUFFER USAGE STATUS: b

Page: 6 TIP/30 Reference Manual

Section: Contents Version 2.5 (82/08/01)

TABLE OF CONTENTS

70C

3.50.2 DISK DEVICE USAGE STATUS: d
3.50.3 FAST LOAD INDEX STATUS: f
3.50.4 1/0 SUMMARY STATUS: 1
3.50.5 KEY HOLDING TABLE STATUS: k
3.50.6 RE-ENTRANT PROGRAM TABLE STATUS: r
3.50.7 GENERAL STATISTICS STATUS: s
3.50.8 TERMINAL USAGE STATUS: t
3.51 IMMEDIATE TIP/30 SHUTDOWN STOP
3.52 SCHEDULE 0S/3 SYMBIONT SYM
3.53 SYSTEM STATUS SYS
3.54 TASK CONTROL BLOCK DISPLAY TCB
3.55 TIP FLAG MANIPULATION TIPFLG
3.56 ON-LINE LIBRARIAN TLIB
3.56.1 RE-ACTIVATE PREVIOUS VERSION TLIB: back
3.56.2 COPY ELEMENT TLIB: copy
3.56.3 DELETE ELEMENT TLIB: delete
3.56.4 END TLIB PROGRAM TLIB: end
3.56.5 DISPLAY HELP INFORMATION TLIB: help
3.56.6 SUBMIT REMOTE BATCH JOB TLIB: job
3.56.7 LIST ELEMENT ON TERMINAL TLIB: list
3.56.8 PRINT HARD COPY LISTING TLIB: print
3.56.9 PUNCH ELEMENT TLIB: punch
3.56.10 QUIT TLIB PROGRAM TLIB: quit
3.57 ON-LINE 8080 CROSS ASSEMBLER UTSASM
3.58 DISK VOLUME TABLE OF CONTENTS VTOC
3.58.1 DISPLAY FILE INFORMATION VTOC: display
3.58.2 END VTOC PROGRAM VTOC: end
3.58.3 FREE SPACE ON VOLUME VTOC: free
3.58.4 DISPLAY HELP INFORMATION .VTOC: help
3.58.5 LIST FILES ON VOLUME VTOC: list
3.58.6 PRINT VTOC VTOC: print
3.58.7 END VTOC PROGRAM AND LOGOFF VTOC: quit
3.58.8 SORTED VTOC DISPLAY VTOC: sort
3.58.9 LIST VOLUMES VTOC: volumes
3.58.10 CREATE JCL FOR FILES ON VOLUME VTOC: write
3.59 DISPLAY ACTIVE USERS WHOSON
3.60 DISPLAY USER INFORMATION WMI

- 4 —
4, CHAPTER 1V - APPLICATIONS DEVELOPMENT SYSTEMS TQL
4.1 INTRODUCTION TO TIP/30 QUERY LANGUAGE TQL
4.2 TQL: QUERY PROGRAM SYNTAX TQL
4.2.1 FILE DEFINITION TQL: file
4,2.2 RECORD DEFINITION TQL: record
4.,2.3 ALLOWING FIELDS TO CHANGE TQL
4.,2.4 RECORD IDENTIFICATION TQL: id
4.2.5 FIELD VERIFICATION TQL: verify
4,2.6 PREDEFINED FIELDS TQL
CHAPTER I - INTRODUCTION Page: 7
TABLE OF CONTENTS Section: Contents

TABLE OF CONTENTS

7 WORKING STORAGE
8 DISPLAY DEFINITION
9 REPORT DEFINITION
10 DEFINING A TQL PROGRAM
11 SAMPLE PROGRAM
INITIALIZING TQL DICTIONARY
MAINTAINING TQL DICTIONARY
COMPILE FILE/RECORD
COMPILE PROGRAM
DELETE FILE/RECORD
DELETE PROGRAM
LIST FILE/RECORD
LIST PROGRAM
CREATE SCREEN FORMATS
PRINT FILE/RECORD
_PRINT PROGRAM
0 SUMMARY OF FILE/RECORD
1 SUMMARY OF PROGRAMS
2 UPDATE CONTROL FILE HEADER
3 WRITE FILE/RECORD
4 WRITE TQL PROGRAM TO LIBRARY
EXECUTING A TQL PROGRAM
PRODUCE A DISPLAY
COUNT RECORDS
PRINT A REPORT
DISPLAY NEXT SCREENFULL
UPDATE RECORD
DELETE RECORD
ADD RECORD
SHOW SUMMARY OF DISPLAY NAMES
SHOW SUMMARY OF FIELD NAMES
0 END SESSION
1 OPEN NEW SESSION
2 USE OF FUNCTION KEYS
RESERVED WORDS

.
HHE OO IO O E WY

S R R R Y i N ol U S S S R S R L
OO JoODs W -

- 5 -

CHAPTER V - PROGRAM CONTROL SYSTEM
PROGRAM CONTROL SYSTEM

1 ON-LINE PROGRAM STRUCTURE

2 PROCESS INFORMATION BLOCK

3 CONTINUITY DATA AREA

4 MESSAGE CONTROL SYSTEM WORKAREA
5 WORK AREA
6
1
2

GLOBAL DATA AREA

USER PROGRAM ABORT TRAP
CONVERT 32 BYTES TO 32 BITS
CONVERT 32 BITS TO 32 BYTES

(66 RO N RS NE 1N MO NS NS RO

TQL: workfields
TQL: display
TQL: report
TQL: program
TQL: sample

TQLINT
TQLMON
TQLMON: c
TQLMON: cp
TQLMON: d
TQLMON: dp
TQLMON: 1
TQLMON: 1p
TQLMON: m
TQLMON: p
TQLMON: pp
TQLMON: s
TQLMON: sp
TQLMON: u
TQLMON: w
TQLMON: wp

TQL: commands
TQL: display

TQL: count
TQL: print
TQL: next

TQL: update
TQL: delete

TQL: add

TQL: show
TQL: show
TQL: end

TQL: open
TQL: function key
TQL: words
PCS

PCS

PCS

PCS: pib

PCS: cda

PCS: mcs

PCS: workarea
PCS: gda
TIPABRT
TIPBITS
TIPBYTES

Page: 8
Section: Contents

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TABLE OF CONTENTS

70C

TODAY'S DATE

FORCE PROGRAM DUMP
FILE ERROR EDIT
FLAG SERVICES
CREATE AN ASYNCHRONOUS PROCESS
END ONLINE PROGRAM
SNAP MEMORY

PROGRAM LINKAGE
SUB-ROUTINE LINKAGE
TIMER SERVICES
TRANSFER CONTROL

. ¢« e o * o . .

0 000 O W

[GREGELESG NG RGN RGNS NS Re
WO

- 6 -

CHAPTER VI - FILE CONTROL SYSTEM
FILE CONTROL SYSTEM
TIPFCS AND THE TIP/30 CATALOGUE
RECORD AND FILE LOCKING
SIMPLE RECORD HOLDING

RECORD HOLDING SUMMARY

FCS DEADLOCK CONSIDERATIONS
SUMMARY OF FCS CALLS
SUPPORTED FILE TYPES
CALL TIPFCS - COMMON PARAMETERS

‘1
.2
.3 RECORD HOLDING FOR THE UPDATE
.4
.5

.1 LOGICAL FILE NAME PACKET
.2 FILE DESCRIPTOR PACKET

RECORD HOLDING FOR THE TRANSACTION

FILE CONTROL SYSTEM INTERFACE PACKETS

[a¥aXaXaXalalakaXalaXalaNoaloaNoNoNaNaloNoNoNaRaRoRaNoNaNoaNeaNoaRea ol e R ep!

'TIPFCS' FOR DIRECT ACCESS FILES

TIPDATE
TIPDUMP
TIPFCER
TIPFLAG
TIPFORK
TIPRTN
TIPSNAP
TIPSUB
TIPSUBP
TIPTIMER
TIPXCTL

FCS

FCS

FCS

FCS
HOLD=YES
HOLD=TR
HOLD=UP
FCS

FCS

FCS: summary
FCS: types

TIPFCS: params

FCS: file-pkt

FCS: direct

. FCS: descriptor
. '"TIPFCS' FOR INDEXED FILES FCS: indexed
.8.1 INDEXED: ADD RECORD TO FILE FCS-ADD
.8.2 INDEXED: ROLL BACK UPDATES FCS-BACK

.3 INDEXED: CLOSE FILE FCS-CLOSE
.8.4 INDEXED: DELETE RECORD FCS-DELETE
.8.5 INDEXED: END SEQUENTIAL PROCESSING FCS~-ESETL
.8.6 INDEXED: FLUSH FILE FCS-FLUSH
.8.7 INDEXED: READ RECORD FCS-GET
.8.8 INDEXED: READ RECORD AND LOCK FCS-GETUP
.8.9 INDEXED: HOLD RESOURCE FCS-HOLD
.8.10 INDEXED: GET NEXT RECORD FCS-NEXT
.8.11 1INDEXED: CANCEL UPDATE FCS-NOUP
.8.12 INDEXED: OPEN FILE FCS-OPEN
.8.13 INDEXED: UPDATE RECORD FCS-PUT
.8.14 INDEXED: RELEASE RESOURCE FCS-RELEASE
.8.15 INDEXED: SET SEQUENTIAL MODE FCS-SETL
.8.16 INDEXED: SET SEQUENTIAL MODE FCS-SETL-EQ
.8.17 INDEXED: SET SEQUENTIAL MODE FCS-SETL-GT
.8.18 INDEXED: MARK TRANSACTION END FCS-TREN

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

Page:
Section:

9
Contents

10C

TABLE OF CONTENTS

DIRECT: ADD RECORD
DIRECT: ROLL BACK UPDATES
DIRECT: CLOSE FILE
DIRECT: DELETE RECORD
DIRECT: FLUSH FILE
DIRECT: READ RECORD
DIRECT: READ RECORD AND LOCK
DIRECT: HOLD RESOURCE
DIRECT: CANCEL UPDATE
DIRECT: OPEN FILE
DIRECT: UPDATE RECORD
DIRECT: RELEASE RESOURCE
DIRECT: MARK TRANSACTION END
"TIPFCS' FOR SEQUENTIAL FILES
SEQ: CLOSE FILE
SEQ: READ RECORD
SEQ: OPEN FILE
SEQ: OUTPUT RECORD
DYNAMIC FCS FILES
DYN: ACCESS FILE
DYN: ASSIGN FILE
DYN: CLOSE FILE
DYN: CREATE FILE
DYN: READ RECORD(S)
DYN: OPEN FILE
DYN: WRITE RECORD(S)
DYN: SCRATCH FILE
OUTPUT TO PRINT A FILE
FCS COBOL COPY ELEMENT

LI} . . .
s o s s o

.
.

.
. »

HHEFOO-JOOEWN

e e & s e e
s e s
& W N WNHO

OJONEWN

o e e e b b e W0 L0 WO WO WD WO WO WO WO W0 WO WO WO
NHEHRHRPRFHHEHOOOOO: o

[¥ xR NoaNoaN aNoaNoaNoaNoNoaNoNaRoaloaRoaNalaoaNoaNoaNoaNoaNealeaNeoaNoaNeaNoaNeaNea

e
> W

.

6.16 'FCS' FOR LIBRARY FILES
6.16.1 LIBRARY FILE DESCRIPTOR
6.16.2 LIB: CLOSE LIBRARY
6.16.3 LIB: READ RECORD

6.16.4 LIB: CLOSE LIBRARY; ABORT OUTPUT

6.16.5 LIB: OPEN LIBRARY
6.16.6 LIB: WRITE RECORD

6.17 'TIPFCS' FOR EDIT BUFFERS
6.17.1 EDIT: ADD

6.17.2 EDIT: CLOSE

6.17.3 EDIT: DELETE

6.17.4 EDIT: FLUSH

6.17.5 EDIT: GET

6.17.6 EDIT: OPEN

6.17.7 EDIT: PUT

6.17.8 EDIT: SCRATCH

6.18 TOTAL DATA BASE

6.19 DATA BASE MANAGEMENT INTERFACE
6.19.1 DMS/90 - XR7DMS

COMMON TIPFCS FUNCTIONS AND STATUS CODES
6.15 ASSEMBLER FCS FUNCTIONS AND STATUS CODES

FCS—-ADD
FCS-BACK
FCS-CLOSE
FCS-DELETE
FCS-FLUSH
FCS-GET
FCS-GETUP
FCS-HOLD
FCS-NOUP
FCS-OPEN
FCS-PUT
FCS-RELEASE
FCS-TREN
FCS: sequential
FCS-CLOSE
FCS-GET
FCS-OPEN
FCS-PUT
FCS: dynamic
FCS-ACCESS
FCS-ASSIGN
FCS-CLOSE
FCS-CREATE
FCS-GET
FCS-OPEN
FCS-PUT
FCS-SCRATCH
TIPPRINT
TC-FCS

FCS: libraries
FCS: libraries
FCS-CLOSE
FCS-GET
FCS-NOUP
FCS-OPEN
FCS-PUT

FCS: edit
FCS-ADD
FCS-CLOSE
FCS-DELETE
FCS-FLUSH
FCS-GET
FCS-OPEN
FCS-PUT
FCS-SCRATCH
FCS: total
FCS: dbms

FCS: dms/90

Page: 10
Section: Contents

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TABLE OF CONTENTS

70C

6.19.2 DBS/90 - IXF???

6.20 JOURNAL FILE PROCESSING

6.20.1 'LGOF' JOURNAL RECORD FORMAT
6.20.2 BATCH JOURNAL FILE READ

-7 =

CHAPTER VII - MESSAGE CONTROL SYSTEM
MESSAGE CONTROL SYSTEM
MCS SPECIAL TERMINAL NAMES
DOWN LINE LOADED DISPLAY MANAGEMENT
MCS INTERFACE PACKET
READ A MESSAGE FROM A TERMINAL
SEND AN ERROR MESSAGE
OUTPUT A MESSAGE TO A TERMINAL
CURSOR TO LAST POSITION & TRANSMIT
LINE - ORIENTED TERMINAL I/O
CHECK FOR OPERATOR BREAK
PARAMETERIZE AN INPUT MESSAGE
PROMPT THE USER FOR A REPLY
PROMPT THE USER FOR TEXT
PROMPT THE USER FOR TEXT
SEND ONE LINE AND ROLL SCREEN
SET TERMINAL ROLL POINT
GET ONE LINE FROM TERMINAL
GET ONE LINE FROM TERMINAL
ATTACH AN ALTERNATE TERMINAL
SEND PRINT CODE TO AUX PRINTER
SET UTS-400 CONTROL PAGE
DETACH ALTERNATE TERMINAL
SCAN PARAMETERS FROM STRING
USE ALTERNATE TERMINAL
USE ORIGINAL TERMINAL
DIRECT COMMUNICATIONS I1/0
INPUT AND OUTPUT MESSAGE FORMAT
AUXILIARY DEVICE I/0 DELIVERY STATUS
GENERATE CARRIAGE RETURN
CURSOR POSITIONING
DELETE FUNCTION
ERASE FUNCTION
GENERATE FIELD CONTROL CHARACTERS
INSERT FUNCTION
ROLL THE SCREEN
7.10.10 SCAN FUNCTION
7.10.11 TAB FUNCTIONS
7.10.12 TRANSMIT FUNCTION
7.10.13 YES/NO FUNCTION
7.10.14 TIPTERM FUNCTIONS
7.10.15 CONTROL TERMINAL INPUT

» L] * L] . * . . L] . .
o e 0 OO W N

OkxwWwNHFO

» & 8 e e & ® & & & & s o s o s =

NN NN NNNNNNSNNNNSNNNNNNSNNNSN NN NNNNN NN

* e e e @

HHEMHFRFRHRPREEFEROOUOOOUODWOWOOUOUOVODWYWOVOVUOOWORIOOB» WN -

QOO ODOOOOOe o o o
* e 9o & o & e ¢

OO W

FCS: dbs/90
FCS: journal
FCS: journal
FCS: journal

MCS

MCS
*MST/*BYP
MCS: dll
TC-MCS
TIPMSGI
TIPMSGE
TIPMSGO
TIPMSGRV
LINE 1/0
BREAK

PARAM
PROMPT
PROMPTX
PROMPTXS8
ROLL

ROLLPT

TEXT

TEXTS8
TIPATTCH
TIPCOP
TIPCPAGE
TIPDETCH
TIPSCAN
TIPUALT
TIPUORG
Direct 1/0
DCIO: prefix
DCIQO: status
DCI0O: carret
DCIO: cursor
DCIO: delete
DCIO: erase
DCIO: fcc
DCIO: insert
DCIO: roll
DCIO: scan
DCIO: tab
DCIO: xmit

DCIO: tipterm
TIPTERM: cntrl

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

Page:
Section:

11
Contents

T70C

TABLE OF CONTENTS

7.10.16 DISCONNECT DIAL-UP LINE
7.10.17 ALLOW FREE TERMINAL INPUT
7.10.18 GET AN INPUT MESSAGE

7.10.19 CHANGE DIAL-UP LINE TELEPHONE NUMBER

7.10.20 OUTPUT A MESSAGE
7.10.21 TEST FOR INPUT
7.10.22 SEND AN UNSOLICITED MESSAGE

- 8 -

CHAPTER VIII - SYSTEM MAINTENANCE
1 TIP/30 LIBRARY FILE REQUIREMENTS
2 EXECUTION TIME WORK FILES

3 TIP/30 SYSTEM GENERATION

3 TIPGEN DEFINITION

3 FILE DEFINITION

3 CLUSTER DEFINITION

3 TIP/30 GENERATION KEYWORD SUMMARY
3 TIP/30 GENERATION JCL EXAMPLE

3 TIP/30 GENERATION PARAMETER RUN

3 PARAM OPTIONS FOR TJSPARAM

4 RUN TIME JOB CONTROL OPTIONS
5

6

7

7

7

7

7

8

9

1

1

NoOYOL S W N

FILE RECOVERY
TIP/30 BATCH PROGRAMS
TIP FILE INITIALIZATION
.1 COPY IN STATEMENTS
.2 USER, PROGRAM, FILE COMMANDS
.3 CATALOGUE INITIALIZATION SAMPLE
.4 TIP FILE INITALIZATION JOBS

foslosRooNosNosReeNooNesNeoNooNocNooNeoloeoloo oeoResNoeolle oo oo Je o]

TIPTERM: disc
TIPTERM: free
TIPTERM: get
TIPTERM: phone
TIPTERM: put
TIPTERM: test
TIPTERM: un

TIPGEN

workfiles
TIPGEN
TIPGEN
FILE
CLUSTER

TJSPARAM
TJSPARAM: options
TIP: execC

TBS$SRCV

TIP: batch jobs
TBSINT

TBSINT: copy
TBSINT: cat
TBSINT: sample
TBSINT: jobs

JOURNAL FILE COPY AND INITIALIZATION TBSJRN
COMPILE COBOL-68 TIP PROGRAM TJSCOB68
0 COMPILE COBOL-74 TIP PROGRAM TJSCOB74
.11 THE BATCH DOCUMENT GENERATOR TJISDOCS
8.11.1 TJSDOCS PARAM CARD FORMAT TJISDOCS: param
8.12 CATALOGUE FILE LISTING TJISLC
8.12.1 CATALOGUE LIST PROGRAM PARAMETERS TJSLC: params
8.13 LIST JOURNAL FILE TJISLST
8.14 0S/3 CONSOLE OPERATION opr commands
8.15 CONSOLE MESSAGES messages
..9_
9. CHAPTER IX - APPENDICES
9.1 DIRECTORY OF COBOL COPY BOOKS COPY BOOKS
9.2 Basic Compiler-Interpreter TIP/BASIC
9.2.1 DESCRIPTION OF THE TIP/BASIC LANGUAGE
9.2.2 ABS Predefined Function ABS
9.2.3 ASC Predefined Function ASC
Page: 12 TIP/30 Reference Manual

Section: Contents

Version 2.5 (82/08/01)

TABLE OF CONTENTS

70C

9.2.4 ATN Predefined Function ATN

9.2.5 CALL Statment CALL

9.2.6 CBRT Predefined Function CBRT

9.2.7 CHAIN Statement CHAIN
9.2.8 CHRS Predefined Function CHRS

9.2.9 CLKS Predefined Function CLKS
9.2.10 CLOSE Statement CLOSE
9.2.11 <constant> <constant>
9.2.12 COS Predefined Function CoSs

9.2.13 COSH Predefined Function COSH
9.2.14 DATS Predefined Function DATS
9.2.15 DATA Statement DATA
9.2.16 DIM Statement DIM

9.2.17 EBC Predefined Function EBC

9.2.18 END Statement END

9.2.19 ENDIF Statement ENDIF
9.2.20 EXITFOR Statement EXITFOR
9.2.21 EXP Predefined Function EXP

9.2.22 <expression> <expression>
9.2.23 FILE Statement FILE
9.2.24 FOR Statement FOR

9.2.25 GOSUB Statement GOSUB
8.2.26 GOTO Statement GOTO
9.2.27 <identifier> <identifier>
9.2.28 1IF Statement IF

9.2.29 IF END Statement IF END
9.2.30 INPUT Statement INPUT
9.2.31 INT Predefined Function INT

9.2.32 LEFTS Predefined Function LEFTS
9.2.33 LEN Predefined Function LEN

$5.2.34 LET Statement LET

9.2.35 <line number> <line number>
89.2.36 LOG Predefined Function LOG

9.2.37 LOG10 Predefined Function LOG10
9.2.38 MIDS Predefined Function MIDS
9.2.39 NEXT Statement NEXT
9.2.40 NEXTFOR Statement NEXTFOR
9.2.41 ON Statement ON

9.2.42 POS Predefined Function POS

9.2.43 PRINT Statement PRINT
9.2.44 RANDOMIZE Statement RANDOMIZE
9.2.45 READ Statement READ
8.2.46 REM Statement REM

9.2.47 Reserved Word List Reserved Word Lis
9.2.48 RESTORE Statement RESTORE
8.2.49 RETURN Statement RETURN
9.2.50 RIGHTS Predefined Function RIGHTS
9.2.51 RND Predefined Function RND

9.2.52 SEGS Predefined Function SEGS
9.2.53 SGN Predefined Function SGN
CHAPTER I - INTRODUCTION Page: 13

TABLE OF CONTENTS

Section: Contents

T0C

TABLE OF CONTENTS

4 SIN Predefined Function

5 §SINH Predefined Function

6 Special Characters

7 SQR Predefined Function

8 <statement>

9 <statement list>

0 STOP Statement

1 STRS Predefined Function

2 <subscript list>

3 SYSTEM Statement

TAB Predefined Function

5 TAN Predefined Function

6 THEN Statement

7 TRMS Predefined Function

8 USRS Predefined Function

9 VAL Predefined Function

0 <variable>

1 SAMPLE TIP/BASIC PROGRAM

2 COMPILER STRUCTURE (BCOMP)
3 INTERPRETER STRUCTURE (BINT)
4 RUN-TIME MONITOR ERROR MESSAGES

. . * e o

WOWVWOLVOVVOWWYWOVWOWOUWWYOUOWWWWOLWOWO

[] [] . - L] L) L] . L) » L] . L) L] []

NN MNONNDNNNNDNDNDNDNDNODNDNODNDNODNDNDNON

NN OO oYt ot Oon Ut O O
©

s e s o o o . e o e ¢ o e o o) . * o . .

- 10 -

10. KWIC INDEX

SIN
SINH
Special Character
SOR
<statement>
<statement list>
STOP
STRS
<subscript list>
SYSTEM
TAB
TAN
THEN
TRMS
USRS
VAL
<variable>
Sample Program
BCOMP
BINT
errors

INDEX

Page: 14
Section: Contents

TIP/30 Reference Manual
Version 2.5 (82/08/01)

GLOSSARY
TIP/30 GLOSSARY OF TERMS AND CONCEPTS

1.5 TIP/30 GLOSSARY OF TERMS AND CONCEPTS GLOSSARY

This section of the manual supplies working definitions of some of
the common terms wused 1in this manual. The definitions are not
intended to be rigorous; they are explanations within the context
of the TIP/30 system.

CHAPTER I - INTRODUCTION Page: 1
TABLE OF CONTENTS Section: 1.5

GLOSSARY

TIP/30 GLOSSARY OF TERMS AND CONCEPTS

ACK

asynchronous

auxiliary device

batch

bi-synch

catalogue (0S/3)

catalogue (TIP)

CRT

cursor

Direct Access (DAa)

dynamic file

edit buffer

Acknowledge(ment). A signal indicating that error

detection logic has failed.
Happening simultaneously but independently.

A unit (such as a printer, diskette, or cassette)
attached to a terminal.

Not interactive.

Bi-synchronous; a communications protocol which
implies that traffic 1is synchronized 1in both
directions by acknowledgement messages.

A directory of file names and corresponding
location information,

A directory of information about user-ids,
transaction programs, and on-line files.
Literally, Cathode Ray Tube. Often used to refer

to the display screen of a computer terminal.

A current position marker on a CRT. Usually a
blinking rectangle or underline character.

A file organization technique that numbers fixed
size records using integers from 1 to the highest
record number.

A TIP/30 pseudo-file that has
direct access.

characteristics of
May be created, manipulated and erased (scratched)
on demand by TIP/30 transaction programs.

A particular type of TIP/30 dynamic file that is

used by the TIP/30 text editor (QED) as a work
space for editting.
element The name of a library member or module.
FCS File Control System. TIP/30 interface between
programs and on-line files.
Page: 2 TIP/30 Reference Manual
Section: 1.5 Version 2.5 (82/08/01)

GLOSSARY

TIP/30 GLOSSARY OF TERMS AND CONCEPTS

Function Key

hardware
hashing

Host computer

index

interactive

IMS/90

IMS/90 emulation

A key on a UNISCOPE terminal keyboard (numbered F1
F2 ... etc) which signals the host computer when
pressed.

The physical computer equipment.

A technique of computing a key from information in
the record.

The main computer; the computer which 1is running
TIP/30.

A collection of keys and associated 1location
information that can be searched to locate an item
with a given key.

Operating in "question and answer" mode.

An interactive program will present decisions for
a user to make and act according to the response.

A Sperry Univac software product that provides an
execution environment for transaction programs.

A facility of TIP/30 which enables a transaction
program written to use the facilities of IMS/90 to
run under control of TIP/30 without change or
recompilation.

I1SAM Indexed Sequential Access Method. A file
organization method that allows access to records
either randomly by a single key or sequentially by
a single key.

Records may be fixed or variable length (UNIVAC
implementation).

key A portion of the data in a record which is used to
index the record.

LFD The name of a file as stated in the Job Control
information for the job which refers to the file.

LFN Logical File Name. The name by which .a TIP/30
program refers to a file. Connected to real LFD
name by TIP/30 catalogue information.

CHAPTER I - INTRODUCTION Page: 3

TIP/30 GLOSSARY OF TERMS AND CONCEPTS Section: 1.5

GLOSSARY

TIP/30 GLOSSARY OF TERMS AND CONCEPTS

MIRAM

MSG-WAIT

multi thread

native mode

NAK

0Ss/3

prefix notation

single thread

SOE

software
transaction

TIP
TIP/30

Multiple Indexed Random Access Method. File
organization method that is similar to ISAM with
the exception that there may be from one to five
keys.

Key on UNISCOPE terminals that signals the host
computer when pressed.

A number of transactions concurrently sharing
resources.

A program that uses TIP/30 facilities that is NOT
running under the control of the TIP/30 IMS/90
emulator is said to be running in this mode.

Negative acknowledgement. (not ACK).

Operating System 3. The control software supplied
by Sperry Univac for use on series 90 and 80
machines.

A notation convention adopted by most TIP/30
utilities to allow selection by prefix.

Eg: "*ABC" means all names with prefix "ABC"
Eg: "!XYZ" means all names NOT with prefix "XYz"

One transaction monopolizing resources until
completion of the transaction.

(character). Start Of Entry character. On UNISCOPE
terminals a character (shaped 1like a pennant
blowing from 1left to right) which marks the
leftmost boundary of data to be transmitted to the
host computer.

the programs which control the operation of the
hardware or other (application) programs.

A program that executes wunder the control of
TIP/30.

see TIP/30.

Transaction Interface Processor - a system
software product of Allinson-Ross Corporation.

Page: 4
Section: 1.5

TIP/30 Reference Manual
Version 2.5 (82/08/01)

GLOSSARY

TIP/30 GLOSSARY OF TERMS AND CONCEPTS

The name of a data base system marketed by CINCOM.

TOTAL
An interface to TOTAL is supported by TIP/30.
unsolicited (message). A message sent to a terminal that is
not necessarily a response to a previous input
message.
XMIT (transmit). A key on UNISCOPE terminals that sends
data from the CRT to the host computer.
CHAPTER 1 - INTRODUCTION Page: 5

TIP/30 GLOSSARY OF TERMS AND CONCEPTS Section: 1.5

OVERVIEW

TIP/30 OVERVIEW

1.6

TIP/30 OVERVIEW OVERVIEW

TIP/30 is an integrated system of transaction processing and
program development software which is compatible with the Sperry
Univac 0S/3 operating system.

TIP/30 offers the user the following advantages:

* TIP/30 facilitates the development of application systems

* TIP/30 has a large number of productivity tools

* TIP/30 makes most efficient use of hardware resources

* TIP/30 will execute existing IMS/90 action programs without
modification with no need to compile or link. Because it is a
complete and comprehensive software system, TIP/30 represents
the most powerful transaction processing and program
development software available to the 0S/3 user.

The heart of the TIP/30 software system is a multi-thread Program
Control System, an integrated Message Control System, and a
comprehensive File Control System. Included in this nucleus 1is an
extensive system access security control facility as well as
facilities for maintaining user data base integrity. 1In addition,
Allinson-Ross supplies an extensive library of interactive utility
programs to aid in program design, testing, implementation and
system monitoring.

Page: 1 TIP/30 Reference Manual

Section: 1.6 Version 2.5 (82/08/01)

OVERVIEW
TIP/30 OVERVIEW

The TIP/30 Program Control System provides multi-thread control of
application programs.

Through a concept oifi program stacking, TIP/30 provides for
inline return from all external program CALL's. This feature allows
each individual program to do more work, thereby reducing the
number of programs required in an online system.

TIP/30 allows the application designer a great degree of freedom
in the design of applications.

The TIP/30 Program Control System alliows application designers
to concentrate on the application instead of ways to overcome
unreasonable system constraints.

CHAPTER I - INTRODUCTION Page: 2
TIP/30 OVERVIEW Section: 1.6

OVERVIEW
MESSAGE CONTROL SYSTEM

1.6.1 MESSAGE CONTROL SYSTEM OVERVIEW

The TIP/30 Message Control System 1is an integrated facility
which provides user programs and programmers complete freedom from
terminal hardware characteristics.

MCS screen formats are developed interactively and stored in the
TIP/30 catalogue.

TIP/30 provides a utility called MSGSHOW which is used to test
developed screen formats with no programming required. Users
therefore, can participate in the design of screen formats. MSGSHOW

makes it easier to develop online systems that feel comfortable to
the user.

MCS allows programs to be written with no concern for the
physical hardware characteristics of the terminal. The user program
deals only with data. TIP/30 assumes the responsibility for knowing
the hardware characteristics of the terminal. TIP/30 users can take
advantage of new terminal hardware with no programming changes.

-4+~

Page: 1 TIP/30 Reference Manual
Section: 1.6.1 Version 2.5 (82/08/01)

OVERVIEW

FILE CONTROL SYSTEM

1.6.2 FILE CONTROL SYSTEM OVERVIEW

The TIP/30 File Control System provides an efficient interface
to all standard data management files as well as integrated data
base systems such as CINCOM's "TOTAL Data Base Management System".

FCS provides both record and file 1locking to preserve data
integrity.

Automatic journalling of file updates provides for on-line or
off-line recovery from system failures.

A system for «creating, maintaining and scratching temporary
scratch-pad files allows for flexible application design.

ket -

CHAPTER I - INTRODUCTION Page: 1l
TIP/30 OVERVIEW Section: 1.6.2

OVERVIEW
SECURITY

1.6.3 SECURITY OVERVIEW

System-wide security in the TIP/30 system is maintained through
the TIP/30 catalogue file. All users, programs and files must be
catalogued before they can be referenced online. TIP/30 guarantees
security for a user, his programs and his files.

A horizontal layering of security is achieved by the use of a
security level number in the range of 1 to 255. A wuser can only
access those system facilities permitted by his catalogued security
level. A vertical partitioning of wusers, programs and files by
application group can be achieved through the group specification
in the TIP/30 catalogue.

A user logged on the TIP/30 system with a valid password only
has access to those features of the system belonging to his
application group for which his security level is high enough to
permit him access.

k-

Page: 1 TIP/30 Reference Manual
Section: 1.6.3 Version 2.5 (82/08/01)

OVERVIEW
INTERACTIVE UTILITIES

l1.6.4 INTERACTIVE UTILITIES OVERVIEW

As a TIP/30 user you will have access to an extensive library of
interactive programs to assist in the design, implementation,
testing and maintenance of online application systems.

-k

CHAPTER I - INTRODUCTION Page: 1
TIP/30 OVERVIEW Section: 1.6.4

OVERVIEW
PROGRAM PREPARATION

1.6.5 PROGRAM PREPARATION OVERVIEW

For program preparation TIP/30 provides a powerful text editor,
an online librarian and a spool file inguiry utility.

The TIP/30 text editor 1is wused to create and modify text
elements. These elements may be source programs, job control
language, or documents.

The editor's work space is fully recoverable so that no work is
lost due to a system failure. This feature alone results in higher
morale and greater productivity on the part of the programming
staff.

-kt~

Page: 1 TIP/30 Reference Manual
Section: 1.6.5 Version 2.5 (82/08/01)

OVERVIEW
DISPLAY FORMAT PREPARATION

1.6.6 DISPLAY FORMAT PREPARATION OVERVIEW

TIP/30 Message Control System screen formats are created and
maintained online by the MSGDEF utility.

Screen formats can be tested on-line using the MSGSHOW wutility.
The message archiver, MSGAR, can be used to print screen formats,
save screen formats in an 0S/3 library, and restore screen formats
from an 0S/3 library.

Creating and maintaining screen formats in a TIP/30 system is a
very simple task. User departments can work with the development
staff to design 'friendly' screen formats to help ensure on-line
system success.

-4k

CHAPTER I - INTRODUCTION Page: 1
TIP/30 OVERVIEW Section: 1.6.6

OVERV

[EW
PROGRAM TESTING AND DEBUGGING

1.6.7

PROGRAM TESTING AND DEBUGGING OVERVIEW

TIP/30 provides wutilities to help the programmer get his
programs running quickly.

Program dumps may be displayed online by the Post Mortem Dump
Analysis program. This eliminates waiting for the central printer
and also eliminates the printing of most dumps.

User programs can be traced online by the Interactive Debug Aid
(IDA). A programmer can set break points in his program or trace
the program one instruction at a time. Errors can be corrected at
execution time and the execution of the program can be resumed at a
new location. A programmer can find more errors per program test
using IDA thus reducing the number of compilations required to get
a program implemented.

-kt -

Page: 1 TIP/30 Reference Manual
Section: 1.6.7 Version 2.5 (82/08/01)

OVERVIEW

DOCUMENT PREPARATION

1.6.8 DOCUMENT PREPARATION OVERVIEW

The TIP/30 Document Generator (DOC) simplifies the maintenance
of system documentation.

A programmer maintains the documentation for his programs using
the same Text Editor that is used for program source maintenance.
The documentation is permanently stored in an element of an 0S/3
library. DOC reads the source element to produce a document
formatted according to information supplied with the text of the
document.,

Good documentation can ensure online system success. Timely
availability of new information can save a lot of headaches during
system implementation.

-+ k4~
CHAPTER I - INTRODUCTION Page: 1
TIP/30 OVERVIEW Section: 1.6.8

OVERVIEW
UTILITIES

1.6.9 UTILITIES OVERVIEW

TIP/30 provides a comprehensive set of utility programs. A Query
Language program accepts english-like requests for information from
indexed files with no programming.

A Remote Job Entry facility gives you the ability to transfer
files of information from another computer or from a batch terminal
to your TIP/30 system.

An Electronic Mail program allows a user to store full-screen
messages in another user's mailbox file.

Allinson-Ross also provides the TIP/30 user with batch utility
programs to initialize and back up system files as well as a
program to analyze and summarize the system accounting information
that is maintained in the journal file.

-4kt

Page: 1 TIP/30 Reference Manual
Section: 1.6.9 Version 2.5 (82/08/01)

CONCERTS CHAPTER 11 - FUNDAMENTAL CONCEPTS

2. CHAPTER 11 - FUNDAMENTAL CONCEPTS CONCEPTS

This chapter of the TIP/30 reference manual describes a number of
the fundamental concepts that are of interest to all TIP/30 users.
This chapter of the TIP/30 reference manual describes fundamental
concepts as they apply to the use of the TIP/30 system. These
concepts are considered to be essential information for all users
of the TIP/30 system. A thorough understanding of this chapter 1is
required to be able to make proper use of the reference manual.

It is assumed in the following discussion that the reader Iis
familiar with the operation of the UNISCOPE (TM) family of
terminals. The reader that is not familiar with the operation of
the terminal is advised to consult the terminal operator
publications available from the manufacturer of the equipment.

CHAPTER 11 - FUNDAMENTAIL CONCEPTS Page: 1
Section: 2

USER ID
USER IDENTIFICATION AND PASSWORDS

2.1 USER IDENTIFICATION AND PASSWORDS USER ID

A wuser of the TIP/30 system 1is assigned a "user-id" by the
installation administrator. This wuser-id 1is intended to be a
meaningful pseudo name for the individual. It often takes the form
of the individual's last name, his 1initials, or any character
string of up to eight characters that might serve to identify the
individual within the user community. For example, a wuser named
"John Q. Doe" might well have a user-id of "DOE" or "JOHN" or
"JQDOE".

To be able to enforce system security, the TIP/30 system must be
capable of verifying that an individual is who he claims. To that
end, there 1is a "password" associated with every user-id in the
system. Each user is assigned an initial password with his user-id.
The user must realize that the password is merely an agreement
between the user and the TIP/30 system on a means of positively
identifying the wuser. The password may be (and should be) changed
at frequent intervals to eliminate the likelihood of wunauthorized
use of the user-id.

When a user identifies himself to the TIP/30 system, he must
give his current password. He may also elect to change his password
at this time. If he does change his password, all subsequent 1logon
attempts will require the new password. This process may be
repeated as often as deemed necessary by the individual user.

While it 1is intended that the individual's user-id be known to
other users, the password is the first and most fundamental 1level
of security. The password should not be known to anyone but the
individual.

The TIP/30 system only requires a password to be given at logon
time; the password is not required to run programs or to access
files. Once a wuser has logged on the system his capabilities are
well defined by his positive identification.

Page: 1 TIP/30 Reference Manual
Section: 2.1 Version 2.5 (82/08/01)

I
USER IDENTIFICATION AND PASSWORDS SER 1D

Associated with each user of the system is their security level.
Each wuser is assigned a security 1level by the installation
administrator. This security level is a numeric value from 1 to
255. In general terms, the security level is a statement about the
access the user may have to programs and files. A numerically low
security level indicates that the user has a high degree of access.
Since there are 255 security levels, users may be easily organized
into logical access groups. A user may not access a program or file
if their security level does not permit them access.

TIP/30 wusers may be given membership in groups. These user
groups are established by the installation administrator. A user is
a member of two implicit groups: his own private group (with the
same name as his wuser-id) and the system-wide group (named
"TIPSYS"). BEach user may also be given membership in one or two
optional, elective groups. The installation administrator specifies
the elective group memberships at the time a wuser-id is
established. These elective group membershlps may be changed at any
time by the administrator.

Membership in a group grants a user the potential to access
programs and files belonging to the group. Actual ability to
execute a specific program or to access an individual file depends
on the security 1level of the user with respect to the security
level of the program or file in question.

CHAPTER I1 - FUNDAMENTAL CONCEPTS Page: 2
USER IDENTIFICATION AND PASSWORDS Section: 2.1

ON/LOGOFF
LOGON/LOG LOGON AND LOGOFF PROCEDURES

2.2 LOGON AND LOGOFF PROCEDURES LOGON/LOGOFF

A user must LOGON the TIP/30 system in order to identify himself
to the system and to establish his capabilities with respect to the
TIP/30 security system. There are two methods of logon:

- immediate transmission of a valid user-id and password

- transmission of anything not wvalid as a user-id and
password

If the user transmits (at an idle terminal) a valid user-id and
password he will be logged on immediately. For example, a user with
a user-id of "FRED" and a password of "QWERTYUI" might logon by
transmitting the following:

>FRED/QWERTYUI
--0R--.
>LOGON FRED/QWERTYUI

Note the required character (slash) that separates the password
from the user-id. The word "LOGON" is not required in the current
version of TIP/30. If specified however, it must be correct as
shown.

If the user transmits an invalid user-id/password combination or
presses a function key or msg-wait, the TIP/30 system will respond
by displaying a screen format with areas in which the user may
enter his user-id, password, and (optionally) new password. The
user 1s expected to £fill in the appropriate values and press
transmit. TIP/30 will then validate the user-id and password.

Page: 1 TIP/30 Reference Manual
Section: 2.2 Version 2.5 (82/08/01)

LOGON/LOGOFF
LOGON AND LOGOFF PROCEDURES

When the user has successfully logged on the system, TIP/30 will
display the standard system prompt:

TIP?>

To log off the TIP/30 system, the user may run the program
"LOGOFF" as a response to the standard system prompt. To run the
LOGOFF program the user would enter:

TIP?>LOGOFF

The logoff program will terminate the session and output a
display giving the date and time of logoff and various statistics
about the session that was just completed (for example: average

response time, number of input and output messages to the terminal
etc).

The installation administrator may (at his discretion) change
the name of the "LOGON" and "LOGOFF" programs. Users are advised to
review their installation's LOGON and LOGOFF requirements with the
installation administrator when they receive their user-id and
initial password.

CHAPTER II - FUNDAMENTAL CONCEPTS Page: 2
LOGON AND LOGOFF PROCEDURES Section: 2.2

COMMAND LINE

TIP/30 COMMAND LINE

2.3

TIP/30 COMMAND LINE COMMAND LINE

The TIP/30 system will display on the terminal the standard
system prompt after a successful logon and whenever control returns
to TIP/30 from a transaction program. In order to run transaction
programs, the user must be familiar with the structure of the
Command Line. When the user is given the standard system prompt, he
is being given an opportunity to enter a command to the TIP/30
system. This command has the following structure:

TIP?>transaction-id[,options] [,parameteri] ... [,parameter8]

The transaction-id immediately follows the SOE character and is
the name of the program the user wishes to run. The transaction-id
may be up to eight characters long.

Some transactions (programs) allow the user to enter options
immediately following the transaction-id. The options are separated
from the transaction-id by a comma or a slash. Options are from one
to eight characters which are defined by the particular transaction
program.

Separated from the transaction-id (and possibly the option
characters) by a blank are the parameters for the program. There
may be up to eight parameters supplied to the program from the
command line.

These command line parameters represent initial input data for
the program. Each parameter is restricted to a maximum of eight
characters. The parameters are positional; any omitted parameters
are 1indicated by the presence of a comma separator without any
data.

Example:

TIP?>PAYROLL MAR,, 1982

In the example above "PAYROLL" is the transaction-id; there are
no command 1line options; parameterl 1is "MAR"; parameter2 is
omitted; parameter3 is "1982",

Page: 1 TIP/30 Reference Manual

Section: 2.3 Version 2.5 (82/08/01)

COMMAND LINE
TIP/30 COMMAND LINE

It is important to note that the parameters on the command 1line
are passed to the indicated program as initial data. The programmer
wvho wrote the program is free to interpret the parameters 1in any
manner he chooses. The TIP/30 system merely enforces this command
line convention as a simple means of running a program. It is quite
reasonable for a program to require no information from the command
line (for example, menu-driven full-screen oriented systems

frequently require that the user simply enter the name of the menu
program) .

Many of the utility programs supplied by Allinson-Ross
Corporation make extensive use of the command 1line options and
parameters. The documentation for these programs describes the

command line parameters recognized by each utility and the command
line options required.

CHAPTER II - FUNDAMENTAL CONCEPTS Page: 2
TIP/30 COMMAND LINE Section: 2.3

SECURITY
TIP/30 SYSTEM SECURITY

2.4 TIP/30 SYSTEM SECURITY SECURITY

TIP/30 provides an extensive security system that may be
utilized by the installation administrator to control access to
programs and files. The security system cannot be selectively
disabled or circumvented. The security system is implemented by
entries in the TIP/30 catalogue. The catalogue is a TIP/30 file
that 1is managed by the on-line catalogue manager program. The
installation administrator uses the catalogue manager program to
enter and modify information in the catalogue.

The catalogue contains entries for all authorized users of the
TIP/30 system, all programs that are available on-line, and all
files that are accessible on-line.

Each authorized TIP/30 user has an entry in the catalogue that
states his user-id, current password, security level and the names
of (up to two) elective groups to which he belongs.

There 1is an entry 1in the catalogue for each program
(transaction-id) which states the group to which the program
belongs and the security level required to access the program.

There 1s an entry in the catalogue for each on-line file in the
system. The entry indicates which group has access to the file and
the security level required to access the file.

A user may only access programs and files that are defined in
the group(s) in which the wuser 1is a member. Furthermore, even
though the user is a member of a group his access to programs and
files in that group is restricted further by the requisite security
level,

The catalogue manager program is generally assigned a high
security 1level so that only wusers with high security (the
installation administrator) may change entries in the catalogue.
This ensures there is no mechanism whereby the average wuser can
alter security levels or group memberships.

Page: 1 TIP/30 Reference Manual
Section: 2.4 Version 2.5 (82/08/01)

SECURITY
TIP/30 SYSTEM SECURITY

When a wuser attempts to run a program or access a file, TIP/30
will search for a corresponding program or file entry in the
catalogue. The search follows a fixed order, known as 'the order of
search'. TIP/30 will search the wuser's private group, elective
group one, elective group two, and the system universal group
("TIPSYS"). The first program or file entry that is found is
considered to be the intended one. The user's security level is
then compared to the required security level to run the program or
access the file.

If the security level does not imply access, TIP/30 will display
a "SECURITY ERROR" message. It is very important to note that the
catalogue search will NOT continue past the first entry found in
the predefined order of search. If no appropriate entry is found in
the catalogue, the user will receive an error message stating that
the program or file could not be accessed.

The above description of search order also applies whenever a
program attempts to call another program or access files. The
catalogue is searched every time an attempt is made to access a
program or file. The TIP/30 catalogue file is organized in such a
fashion that this order of search may be accomplished very quickly.
There 1is no appreciable overhead asociated with this security

mechanism.
CHAPTER I1 - FUNDAMENTAL CONCEPTS Page: 2
TIP/30 SYSTEM SECURITY Section: 2.4

e

-

UTILITIES
CHAPTER TIT - ON-LINE UTILITY PROGRAMS

3. CHAPTER III - ON-LINE UTILITY PROGRAMS UTILITIES

This chapter of the TIP/30 reference manual contains documentation
describing the operation of the on-line utility programs that are
supplied with the TIP system.

The documentation is in alphabetical order by transaction name.

The transaction name of a program may be changed by the
installation administrator at the site. Users are advised to
determine what changes, if any, have been made at their site.

All of the programs that operate under the control of TIP/30 are
subject to security restrictions that are maintained by the
installation administrator; many of the programs described in this
chapter may not be available all users.

Many of the wutility programs supplied by Allinson-Ross
Corporation provide on-line help information (available through a

"help" command recognized by the program or through the HELP
utility).

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
Section: 3

ACCESS
ACCESS A FILE

3.1 ACCESS A FILE ACCESS

The ACCESS program is used to assign a Logical File Name (LFN)
to a file. Most transaction programs access files wvia (TIPFCS),
through a Logical File Name.

Syntax:
ACCESS aft-name,file-name
Where:

aft-name is the Logical File Name assigned to the file.
This is the name used in the active file table.

file-name is the catalogue name of a file. If the file to be
accessed 1is an FCS dynamic file, the catalog-name
consists of three sections:
USER-ID/CATL-ID/FILE-ID, which wuniquely identify
each FCS file in the catalogue. If the USER-ID is
not specified, then the USER-ID used to LOGON to
TIP will be used. If left blank then CATL-ID =

FILE-ID,
In the following example assume that the user-id 'ARC' was used to
log on.
Example:

ACCESS UPDATE,MASTER

Assign the logical name 'UPDATE' to the file with the catalogued
name of 'MASTER'. '

Error Conditions:
TIPFCS errors may be reported.

Page: 1 TIP/30 Reference Manual
Section: 3.1 Version 2.5 (82/08/01)

AFT
DISPLAY ACTIVE FILE TABLE

3.2 DISPLAY ACTIVE FILE TABLE AFT

The AFT program is wused to 1list the files that have been
assigned to this terminal.

Syntax:
AFT{/quall
Where:
qual a command line option available to master level
users to display the active file table of a logged
on user. May be a user-id or terminal name. If
omitted, the active file table for the issuing
user will be displayed.
Example:
AFT
AFT/MARY

Logical User-id Catl-id File-id Type Class Hold Element

ARCUST TIP$YS ARCUST MIRAM S YES
QEDTRM11 ARC TDSAFT TDSAFT EDIT E

- e e - [—— - . - - Py ===y

Error Conditions:
The specified process may not be found.

Additional Considerations:

An asterisk ("*") preceding the Logical file name indicates that
the file is currently in debug mode (updates ignored).

An asterisk ("*") preceding the File-id indicates that the file is
a file that is journalled by TIP/30.

CHAPTER III -~ ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY ACTIVE FILE TABLE Section: 3.2

APB
ALL POINTS BULLETIN

3.3 ALL POINTS BULLETIN APB

The APB program allows a MASTER user to send a message to all
currently active terminals. When the message is received, it is
prefaced by the USER-ID and terminal name of the sender.

Syntax:
APB [/ALL] text
Where:

[/ALL] command 1line option indicating that the APB
message 1is to be sent to all terminals (logged on
or not).

text is the text of the message (64 characters maximum)
to be sent.
Example:

APB SYSTEM WILL BE DOWN AT 3:15 FOR 30 MIN.

Error Conditions:
None.

Page: 1 TIP/30 Reference Manual
Section: 3.3 Version 2.5 (82/08/01)

ASG
ASSIGN A FILE

3.4 ASSIGN A FILE ASG

The ASG program is used to assign a Logical File Name (LFN) to a
file. Transaction programs access files by reference to the logical
file name. If the ASG program is used to assign a TIP/30 dynamic
file that does not exist, the ASG program will create the dynamic
file.

Syntax:
ASG aft-name,file-name
Where:

aft-name is the Logical File Name assigned to the file.
This is the name used in the active file table.

file—name is the catalogue name of a file. If the file to be
assigned 1is an FCS dynamic file, the catalog-name
consists of three sections:
USER-ID/CATL-ID/FILE-ID, which uniquely identify
each FCS file in the catalogue. If the USER-ID is
not specified, then the USER-ID used to LOGON to
TIP will be used. If left blank then CATL-ID =

FILE-ID.
In the following example assume that the user-id 'ARC' was used to
log on.
Example:

ASG UPDATE,MASTER

assign the logical name 'UPDATE' to the file with the name of
MASTER.

Error Conditions:
TIPFCS errors may be reported.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ASSIGN A FILE Section: 3.4

BASIC
TIP/30 BASIC INTERPRETER - COMPILER

3.5 TIP/30 BASIC INTERPRETER - COMPILER BASIC

BASIC 1is a supplied program that implements a version of the
BASIC programming language. BASIC will 1interpret and execute
programs written in this language. The syntax of BASIC that is
supported is defined in an appendix of this reference manual. This
section describes the commands that may be given to the BASIC
(monitor) program,

The BASIC monitor program recognizes the following commands:
- B - terminate monitor
- C - compile a program
- CP - compile a program and print compilation listing
- D - delete the "object" version of a program

- E

terminate monitor
- H - display help information on terminal

- L - list a program on the terminal

- LC - list all basic programs in TIP catalogue

change screen roll mode

- edit a new'program

edit an old (existing) program

print program listing

terminate monitor and LOGOFF system

= run a program

I
n w o v O =z X
I

- save program source in a file

Page: 1 TIP/30 Reference Manual
Section: 3.5 Version 2.5 (82/08/01)

BASIC: BYE
TERMINATE MONITOR

3.5.1 TERMINATE MONITOR BASIC: bye
This command will terminate the BASIC monitor program in a
normal fashion. This is analagous to the "BYE" command in some
implementations of the basic language.
Syntax:
Bye

Where:
no parameters required.

Example:
B
Will cause the BASIC monitor to terminate normally.

Error Conditions:
None.

-4k -

CHAPTER III -~ ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.1

BASIC: coMmPILE
COMPILE BASIC PROGRAM

3.5.2 COMPILE BASIC PROGRAM BASIC: compile

The "C" command will compile a basic program. The compilation
process actually produces a TIP/30 dynamic file containing
pseudo-code (this file 1is referred to as the "object" file). The
pseudo-code is later executed (via the "R" command) by the BASIC
interpreter.

Syntax:

Compile [progname] [,group]

Where:

progname The name of the program to compile. Default is
last program edited.

group The name of the group to own the object code.
Default 1is the wuser's private group. A master
level user may specify any group name; system
level wusers may specify any group to which they
have access; programmer level wusers may not
specify a group.

Example:
C test
Will compile the program named "test" into (by default)

the user'’s private group.

Error Conditions:
The named program may not exist.

-4k -

Page: 1 TIP/30 Reference Manual
Section: 3.5.2 Version 2.5 (82/08/01)

BASIC: cp
COMPILE BASIC PROGRAM WITH LISTING

3.5.3 COMPILE BASIC PROGRAM WITH LISTING BASIC: cp

The compile process (described previously) does not produce a
compilation 1listing. To compile a program and produce a hard copy
listing, the user must use the "CP" command. The 1listing may be
sent to the site printer (default) or to an auxiliary terminal
printer.

Syntax:
CP [progname] [,group]l 1[,dest]

Where:

progname The name of the program to compile. Default is the
last program edited.

group The name of the group that is to own the object
code file. Default is the user's private group.

dest The desired printer. Default is PRNTR (site
printer). Other choices include: AUX1l etc.

Example:
CP test,TIPY,auxt

Would compile the program named "test" into the group TIPY
and generate a compile listing at the terminal auxiliary
print device on interface 1.

Error Conditions:

The named program may not exist. The named printer may not be
available.

- +k+ =

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER ~ COMPILER Section: 3.5.3

BASIC: DELETE
DELETE BASIC OBJECT FILE

3.5.4 DELETE BASIC OBJECT FILE BASIC: delete

The delete command will scratch the dynamic file containing the
BASIC object code (pseudo-code) for a basic program. The object

code file would have been produced by the BASIC compilation
process.

Syntax:
Delete [progname] [,groupl

Where:

progname The name of the program object file to delete.
Default is the last edited program.

group The group owning the specified object file.
Default is the user's private group.

Example:

Del test

Will delete the object code file for the program "test"
from the user’s private group.

Error Conditions:

The object file for the program may not exist in the specified
group.

-+ k-

Page: 1 TIP/30 Reference Manual
Section: 3.5.4 Version 2.5 (82/08/01)

BASIC: END
TERMINATE THE BASIC MONITOR

3.5.5 TERMINATE THE BASIC MONITOR BASIC: end
This command will cause the BASIC monitor to terminate normally.
Syntax:
End

Where:
No parameters required.

Error Conditions:
None.

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.5

BASIC: HEeLP
DISPLAY BASIC PROGRAM HELP INFORMATION

3.5.6 DISPLAY BASIC PROGRAM HELP INFORMATION BASIC: help

This command will cause the BASIC monitor to display help
information which will summarize the recognized command syntax.

Syntax:
Help

Where:
No parameters required.

Error Conditions:
The help information may not be available or may have been deleted.

-k -

Page: 1 TIP/30 Reference Manual
Section: 3.5.6 Version 2.5 (82/08/01)

BASIC: LisT
LIST BASIC PROGRAM ON TERMINAL

3.5.7 LIST BASIC PROGRAM ON TERMINAL BASIC: list
This command willl list on the terminal the source for a basic
program.
Syntax:

List [progname]
Where:

progname The name of the program source to list on the
terminal. Default is the last edited program.

Example:
L test
Will list the source for program named "test" on the

user’s terminal.

Error Conditions:
The named program may not exist.

- 4%k+-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.7

BASIC

P Le LIST BASIC PROGRAMS IN TIP CATALOGUE

3.5.8

LIST BASIC PROGRAMS IN TIP CATALOGUE BASIC: 1lc

This command actually calls the TIP/30 catalogue manager program
to list entries in the catalogue for BASIC language programs. The
executable pseudo-code for BASIC programs is stored in a TIP/30
dynamic file. The LC command will display all entries in the
catalogue that are available to the user who issued the LC command.

Syntax:
LC [progname] [,groupl
Where:
progname Optional program name (prefix specification
allowed).
group Optional group name (prefix specification
allowed).
Example:
LC

Error Conditions:

The user may not have sufficient security clearance to run the
catalogue manager program,

-+ k-

Page: 1 TIP/30 Reference Manual
Section: 3.5.8 Version 2.5 (82/08/01)

BASIC: mopE
CHANGE SCREEN ROLL MODE
3.5.9 CHANGE SCREEN ROLL MODE BASIC: mode
This command will change the way in which BASIC manipulates the
user terminal. The default mode is "roll" mode. This means that
messages from BASIC will appear at the bottom line of the CRT and,

in effect, push up any existing information on the CRT. An
alternative is "scroll" mode. In this mode, output from BASIC
appears on the next line of the CRT; when the last line has been
used, the next output will appear on the top 1line. In ‘"scroll"
mode, all prompts from BASIC will be issued on the bottom line of

the CRT.
Syntax:
Mode [option]

Where:

option A choice of "roll" or "scroll". Default is "roll".

Example:

M scroll

Error Conditions:

None,
-4k+ -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.9

BASIC:

NEW EDIT A NEW BASIC PROGRAM

3‘5.1

0 EDIT A NEW BASIC PROGRAM BASIC: new

This command will enable the user to edit a program. The BASIC
monitor will attempt to find existing source for the program (as
named). If no existing source is found, the user will begin with an
empty edit work space. The BASIC monitor will call the TIP/30 TEXT
EDITOR (QED) to allow the user to edit the program. The user should
be familiar with the operation of the text editor before attempting
to edit a BASIC program. When the user has completed editing the
program it is important to terminate the text editor session with
the "E" command (see section on QED). The "new" command will set
the name of the "current" program which may be used as a default in
some other BASIC monitor commands. BASIC program names are limited
to a maximum of eight characters.

Syntax:

New prognhame

Where:

progname The name of the BASIC program to be edited.

Example:

N mytest

Error Conditions:

The user may not have sufficient security clearance to run the
TIP/30 text editor.

-+ %+-

Page: 1 TIP/30 Reference Manual
Section: 3.5.10 Version 2.5 (82/08/01)

BASIC: oLD
EDIT EXISTING BASIC PROGRAM

3.5.11 EDIT EXISTING BASIC PROGRAM BASIC: old
This command is identical to the previously discussed "New"
command. It 1is provided primarily for compatibility with other
implementations of the BASIC language.
Syntax:
0id progname
Where:
progname The name of the BASIC program to be edited.
Example:
0 myprog
Error Conditions:

The user may not have sufficient security to run the TIP/30 Text
Editor.

-kt -

CHAPTER II1 - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.11

BASIC: PRINT

PRINT BASIC PROGRAM LISTING

3.5.12

This
of a

PRINT BASIC PROGRAM LISTING

BASIC: print

command will enable the user to generate a hard-copy print
BASIC program. The

BASIC interpreter «calls the TIP/30

Librarian (TLIB) to produce the printout. The program may be either
an existing edit work space or may have been filed in a library.

Syntax:

Print
OR Print
OR PA

Where:

progname

dest
file

prog

Example:

[progname, ,dest]
file,progl,dest]

[progname]

The name of a BASIC program.
current program name (from a
"0ld" command) will be assumed.

If omitted, the
previous "New" or

The name of the desired printer (eg: AUX1l etc).
Default is "PRNTR".

The catalogued file name of the library containing
the program to print.

The name of the library element to be printed.

P myprog, ,aux1t

Error Conditions:

Various errors associated with the TIP/30 1librarian may be
displayed.
— 4kt~
Page: i TIP/30 Reference Manual
Section: 3.5.12 Version 2.5 (82/08/01)

BASIC: auiT
TERMINATE BASIC MONITOR

3.5.13 TERMINATE BASIC MONITOR BASIC: quit

This command will cause the BASIC monitor to terminate
interaction with the user. If the BASIC monitor had been executing
at stack level one the user will be logged off the TIP/30 system.

Syntax:
Quit
Where:
No parameters required.
Example:
Q
-+ %+ -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.13

BASIC: RuN
RUN A BASIC PROGRAM

3.5.14 RUN A BASIC PROGRAM BASIC: run

This command will execute a BASIC program. The program must have
been previously compiled.

Syntax:
Run [progname]

Where:

Example:
R spacewar

progname The name of the BASIC program to execute. Default
is the current program name (as set by a previous
"01ld" or "New" command).

Error Conditions:
The program object file may not be found (it might have been
deleted or the program was not compiled).

-4kt -

Page: 1 TIP/30 Reference Manual
Section: 3.5.14 Version 2.5 (82/08/01)

BASIC: RuN
DIRECT EXECUTION OF BASIC PROGRAMS

3.5.15 DIRECT EXECUTION OF BASIC PROGRAMS BASIC: run

A BASIC program may be executed by using the "run" command in
the BASIC monitor. It is also possible to enable a basic program to
be executed directly from the TIP command line.

To do this, the user must make an entry in the TIP/30 catalogue
(see section on the catalogue manager program "CAT").

The entry in the catalogue would specify the transaction name as
the name of the basic program. The entries for the program (eg:
LOADM=, WORK=, CDA= etc) would correspond exactly with the entries
for the BASIC interpreter ("BINT").

When the user runs the transaction with the name of the basic
program, the BASIC interpreter is loaded. The interpreter detects
that it was called from the command 1line (as opposed to being
called from the BASIC monitor) and assumes that the user wants to
simulate entering a RUN command with the program name equal to the
transaction id.

When the basic program ends, the user will be prompted again by
the TIP command processor.

An example of a program entry in the TIP/30 catalogue for a
basic program called "spacewar" is as follows:

Example:

>PROG SPACEWAR GRP=TIPY FROM=TIPY/BINT ENTER=YES.

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 BASIC INTERPRETER - COMPILER Section: 3.5.15

BASIC: save
SAVE A PROGRAM IN A LIBRARY

3.5.16 SAVE A PROGRAM IN A LIBRARY BASIC: save

This command will enable a user to save a BASIC program in an
0S/3 1library. For wediting, the source for a BASIC program is
retained in a text editor work file; to save the source in a more
permanent place, the user would use the "SAVE" command.

Syntax:
Save file
Where:
file The catalogued name of the 0S/3 library which is
to contain the current program. The BASIC monitor
will create a library element containing the
source of the current program (set by a previous
"0l1ld" or "New" command).
Error Conditions:

None.

- +k+-

Page: 1 TIP/30 Reference Manual
Section: 3.5.16 Version 2.5 (82/08/01)

BCP
BATCH TERMINAL COMMAND PROCESSOR

3.6 BATCH TERMINAL COMMAND PROCESSOR BCP

The TIP/30 Batch Terminal Command Processor (BCP) 1is a system
level transaction program. BCP is activated whenever an input
message arrives from an idle batch terminal. Typical batch
terminals are IBM-3780, IBM-3741, 1BM-2780, UDS-2000, etc.. Batch
terminals are file oriented devices. They always send/receive
complete files of data. A file may consist of one or more records,
and take several communications I/0's to complete.

BCP's functions include:
- user logon and logoff
- interpreting and executing commands,

- running user programs.

The wuser interacts with BCP from a terminal by preparing and
transmitting files of commands and/or data, and by receiving files
from the host computer system.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6

BCP

SUMMARY OF BCP COMMANDS

3.6.1 SUMMARY OF BCP COMMANDS BCP
All BCP commands must begin in column 1 of the input message and
begin with an @ (commercial at-sign). The following is a summary of
the valid BCP commands available in this release:
Command Function
CALL call user program
DELETE delete spool files
FIN logoff the system, disconnect
FORK call user program in background
IN transmit from terminal to system spool file
LOGON fogon to the system
MSG send message to computer operator
PRINT transmit from system spool file to terminal
PUNCH transmit from system spool file to terminal
QUEUE display spool gueue
RECEIVE transmit from terminal to system file
RUN start up a batch job on the system
SEND transmit from system file to terminal
SUBMIT copy to RBPIN queue and call RB symbiont
- +x+ -
Page: 1 TIP/30 Reference Manual
Section: 3.6.1 Version 2.5 (82/08/01)

BCP KEYWORD SHORTFORMS

BCP

3.6.2 BCP KEYWORD SHORTFORMS BCP
Keyword - Alternate spelling
COMPRESS CcO
COPIES COPY
DELETE DE
FILEID LABEL, LABLE
FIN LOGOFF
FORM FO
IN IN
INLINE INL
PAGE PA
PRINT PR, OUT
PUNCH PU
QUEUE QU
RECEIVE RE
SEND SE
STEP STE
STOP ST
USING USE

-4k +-

CHAPTER III - ON-LINE UTILITY PROGRAMS
BATCH TERMINAL COMMAND PROCESSOR

Page:
Section:

BCP
BCP COMMAND LANGUAGE

3.6.3 BCP COMMAND LANGUAGE BCP

Once the wuser has successfully 1logged on he may begin
transmitting BCP commands. All BCP commands are of a similar
format. The commands begin in column one (1) with an @. Next is the
command itself. Next are any positional parameters separated by
commas. Next are any keyword parameters. The entire command may be
terminated by a period.

Syntax:

@COMMAND Parmi,..,Parm4 KEY1=vall,..,KEYn=valn
Where:

e all commands begin with an at-sign '@'.

COMMAND is the BCP command being used. (each command is
documented in later sections)

PARAMETERS are zero thru four optional fields which are used
to specify variable information.

KEYl= keyword parameters as required by each command.
The keywords must be spelled in full (the defined
alternate spelling may be used).

Optional parameters are enclosed 1in square brackets when being
documented in this section. Example: [filenamel].

Example:

@PRINT ALL JOB=TESTBCP COPIES=2

An attempt is made to support Univac's RBP style of commands. If an
equivalent RBP command is supported it will be listed at the end of
each section describing the BCP command. Commands may begin with
"/R" instead of "@". This will have the same effect as specifying
INLINE=YES as a parameter.

-tk -

Page: 1 TIP/30 Reference Manual
Section: 3.6.3 Version 2.5 (82/08/01)

BCP: Ack/NAK

BCP STATUS MESSAGES

3.6.4

BCP STATUS MESSAGES BCP: ack/nak

All informational and status messages returned by BCP will begin
with one space and then the characters BCP:. (' BCP:'). The next
three letters will be ACK if this is an affirmative reply or NAK if
it is a negative reply.

Following the ACK/NAK status is some informational message.
Following the message will be the time of day in the format HH:MM.

For example:

! BCP:ACK LOGON ACCEPTED FOR RJUNORMAN SITE:ARC 17:30'

-kt

CHAPTER III1 - ON-LINE UTILITY PROGRAMS Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.4

BCP: caLL
USER PROGRAM EXECUTION

3.6.5 USER PROGRAM EXECUTION BCP: call

To execute a wuser written program use the CALL command. The
transaction code may be followed by one or more spaces and up to
six parameters. These parameters make up the called program's
Command Line. Command line parameters may not be more than eight
characters 1in length and are separated by commas (,), slashes (/),
or one or more blanks. When the user program receives control,
these parameters may be retrieved from the CDA (continuity data
area). Alphanumeric parameters are left justified and space filled.
Numeric parameters are right justified and zero filled. The
parameters are stored in eight consecutive eight byte fields.

Syntax:
@CALL PROGNAME Param-1,...,Param-4
Where:
PROGNAME is the name of the program to be activated. This
. name is the catalogued name.
Example:

@CALL TAX WARDSG

This command calls the program 'TAX' and passes the parameter
'WARD6' to the program in the first eight bytes of the continuity
data area.

NOTE: the input file is not cleared, the user program must do
that.

-~k -

Page: 1 TIP/30 Reference Manual
Section: 3.6.5 Version 2.5 (82/08/01)

BCP: DELETE
DELETING PRINT FILE

3.6.6 DELETING PRINT FILE BCP: delete

This command must supply either a form-name or job-name of the
printout which is to be deleted from the spool file. This printout

must have already been created and placed in hold mode in the
spooler.

The user-id must match either the job name or the form name before
you are allowed access to the print file.

Syntax:

@DELETE [g-name] [ALL] [FORM=formname] [JOB=jobname]l [STEP=n]

Where:

g—name optional positional paramter 1. This 1is the
spooler queue name which is to be deleted. It will
default to the printer spool (PR). Other choices
include: RDR, PU, RBPPR, RBPPU.

ALL will cause all spool files which match the given
criteria to be deleted.

FORM=formname is the form name of the printout wanted.
JOB=jobname is the JOB name wanted.

STEP=n is the job step number to delete.

Example:

ODELETE FORM=STAND1 JOB=MYCOMPLE

This command deletes the printout with the form name of 'STAND1'
and job-name of 'MYCOMPLE'.

If INLINE=YES was not specified then the terminal will receive a
message for each spool file deleted.

-+%k+-

CHAPTER III - ON-LINE UTILITY PROGRAMS

Page: 1
BATCH TERMINAL COMMAND PROCESSOR

Section: 3.6.6

BCP: FiIN

TERMINATING BCP

3.6.7 TERMINATING BCP BCP:

the

Synta

no

Examp

Rep

The FIN command 1is used to terminate BCP and
system.

X

@FIN

parameters are required.
le:

@FIN

ly message:
LOGGED OFF - PLEASE DISCONNECT

RBP equivalent /RLOGOFF

e

fin

log the user off

Page:
Section:

1 TIP/30 Reference Manual
3.6.7 Version 2.5 (82/08/01)

@

BCP: FoRK

BACKGROUND PROGRAMS

3.6.8

BACKGROUND PROGRAMS BCP: fork

TIP/30 provides the facility to execute programs in the
background environment. A background program is not associated with
any terminal and therefore cannot solicit input. It may, however,
use all other TIP/30 functions (ie. call other programs, send
output to any terminal, call TIPTIMER to suspend itself, etc). To
start a program in a background environment use the FORK command.

Example:
@FORK POSTAR 6

- In response to the above command, BCP would call TIP/30
to start the program 'POSTAR' in a Dbackground
environment. BCP would then continue to interact with the
user while the background program executes.

Reply message: - none, BCP continues to read input file.
-k -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

BATCH - TERMINAL COMMAND PROCESSOR Section: 3.6.8

BCP: 1N
CREATE INPUT READER SPQOOL

3.6.9 CREATE INPUT READER SPOOL BCP: in

This command supplies the label which is to be assigned to an
input reader spool file. BCP will create the spool file and store
the incoming data records in it. This command would normally be the
first record of a data file. The remainder of the data file (up to
end-of-file or another command) is stored in the input reader spool
file. At end of file a '/*' record is written to the spocl file.

Syntax:
@IN LABEL='label’ [SIZE=n] [RETAIN=Y] [INLINE=Y] [XPAR=YES]
Where:

LABEL="'1label’ is the 1label of the input reader file to be
created.

One of wuser-id, group names etc.. must match the

prefix of the label or it will be considered a
security violation.

NOTE: if an input spool file of the same 1label
already exists then it will be deleted before this
current one is stored.

SIZE=n n is the input record size. Default size is 128.

RETAIN=Y the spool file will be retained after being read
by the batch job. The default value is R=N,

INLINE=Y the data follows immediately 1in this file.
Normally the input file is cleared and BCP will
tell the terminal to send the data file.

XPAR=YES send data in transparent mode.

Reply message: (if INLINE=Y was not specified)
READY TO RECEIVE label - PLEASE XMIT DATA

When the terminal has received the above message it should then
send the data file.

RBP format // DATA FILEID=?7?7?? followed by the data, followed
by // FIN.

Page: 1 TIP/30 Reference Manual
Section: 3.6.9 Version 2.5 (82/08/01)

BCP: 1IN
CREATE INPUT READER SPOOL

Example:

Terminal Host

@IN LABEL='MAILUPDT',SIZE=80
READY TO RECEIVE MAILUPDT - PLEASE XMIT

NAME 1 ADDRESST
NAME 2 ADDRESS2
NAME 3 ADDRESS3

3 RECORDS TRANSFERED. FILE: MAILUPDT

- This stores 3 data records in the input rdr spool
'MAILUPDT'.

If any error occurs while opening the spool file one of the
following messages is sent to the terminal:

ERROR: CREATING SPOOL FILE COMMAND: IN SITE: site-id
ERROR: NO MEMORY FOR SPOOLER COMMAND: IN SITE: site-id

ERROR: SECURITY VIOLATION COMMAND: IN SITE: site-id

-tk -

CHAPTER II1 - ON-LINE UTILITY PROGRAMS Page: 2
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.9

BCP: Locon
USER LOG-ON PROCEDURE

3.6.10 USER LOG-ON PROCEDURE BCP: logon

Traffic from an 1idle batch terminal (idle means no-one logged
on), will cause BCP to be loaded for that terminal.

Once activated, BCP will consult the TIP/30 catalogue to see if
the terminal name has been catalogued as a user-id. If the terminal
name 1is a valid user-id then no logon is required. If not BCP will
read the in-coming data.

The first record must contain
@LOGON user-id,password|,J0B=jobid][,SIZE=n][,MODE=type]

The ‘'user-id' is verified in the TIP/30 catalogue. If valid then
the host console is notified of the successful 1logon (TI#67
message). If not valid then an error message will be sent back to
the terminal attempting connection.

Where:
user-id as setup in the TIP/30 catalogue file.
password used for security purposes.

JOB=jobid is stored in the first eight (8) bytes of the CDA
and may be accessed by user written programs which
may be called by BCP. This 'jobid' is wused later
as the default JOB= value for other commands.

SIZE=n is the new default record size. The remote
terminal must be able to handle a message of this
size. The communications software on the host
computer (ie. ICAM) must have large enough network
buffers. This value is passed in bytes 9 thru 16
of the CDA as a right Jjustified, zero-filled
number.

COMPRESS=Y use 3780 data compression for non-transparent data
transmission.

'N' - do not do any data compression.

TIMEOUT=n the time 1in minutes for which BCP is to wait for
the next command. When BCP has nothing to do it
will go to sleep for a given time interval. If no
more commands arrive then BCP will automatically
log the user off. The default value is the TIMEOUT

Page: 1 TIP/30 Reference Manual
Section: 3.6.10 Version 2.5 (82/08/01)

BCP: LoGoN
USER LOG-ON PROCEDURE

value given in the TIP/30 generation.

OBUFR=n the maximum output buffer size to be used. This
overrides the MODE defaults.

FF=NO this will cause BCP to not send the form feed
character as a home paper command when printing.
An Escape 'G' will be sent instead. The default is
to use the FF character,.

MODE=type is the terminal type. BCP needs to know if it is
an IBM-2780, IBM-3741, IBM-3780 or UDS-2000. The
default is UDS-2000, If the remote terminal is an
IBM-2780 then specify MODE=IBM-2780.

After a successful logon a TI#67 message is sent to the operator
console. The rest of the input 1is read and ignored. Then the
following message is sent back to the remote terminal.

LOGON ACCEPTED FOR user-id SITE IS site-id
Other error message may include:

INVALID LOGON FORMAT
INVALID USER-ID
INVALID PASSWORD

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.10

BCP: MopE
MODES OF OPERATION

3.6.11 MODES OF OPERATION BCP: mode

The following table gives the MODE value and corresponding
default actions unless overidden by keyword parameters.

------ oQuTPUT-------- ------INPUT---------
Data Buffer Lines Record Buffer Lines Record
MODE Compress Size / msg size Size / msg Size
IBM-2780 No 160 1 136 512 50 80
IBM-3780 Yes 512 21 136 512 50 128
MOHAWK Yes 512 21 136 512 50 128
IBM-3741 Yes 512 21 136 512 50 128
ubs-2000 Yes 512 21 136 512 50 128
NIM-3305 Yes 512 500 136 512 500 128 (DATAPAC)
DCT-1000 No 160 1 160 80 1 80
DCT-2000 No 160 1 160 80 1 80
-kt -
Page: 1 TIP/30 Reference Manual

Section: 3.6.11 Version 2.5 (82/08/01)

BCP: mse
SEND COMPUTER OPERATOR A MESSAGE

3.6.12 SEND COMPUTER OPERATOR A MESSAGE BCP: msg

The MSG command allows a terminal user to send the host computer
operator a message. When the message is received, it is prefaced by
the USER-ID and terminal name of the sender.

Syntax:
@MSG TEXT.......
Where:
TEXT is the message (50 characters maximum) to be sent.
Example:

@MSG INVENTORY UPDATE IS COMPLETE.

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.12

BCP: PRINT
TRANSMIT PRINT FILE

3.6.13 TRANSMIT PRINT FILE BCP: print

This command supplies the form-name of the printout which is to
be sent to the requesting terminal. This printout must have already
been created and placed in hold mode in the spooler. The remainder
of the communications file is read to clear the line, and then the
print file is transmitted to the remote terminal.

The user-id must match either the job name or the form name before
you are allowed access to the print file.

Syntax:
@PRINT [g-name] [ALL] [FORM=formname] [J0B=jobname]
[STEP=step#] [PAGE=n] [STOP=n]
[COPY=n] [COMPRESS=N] [SIZE=size]
[FF=Y/N] [DELETE=YES]
Where:

All parameters must fit on one input 1line. All parameters are
optional, but you must specify at least one of FORM= or JOB=.

g-name optional positional parameter 1. This is the spool
gueue name which 1is to be transmitted. It will
default to the printer spool queue (PR). Other
choices include: RDR, PU, RBPPR, RBPPU.

ALL will cause all spool files which match the given
criteria to be sent.

COMPRESS=N indicates that the data is not to be compressed.
COPY=n 'n' is the number of copies to print.

DELETE=YES this will cause BCP to delete the spool file after
transmission.

FORM=formname is the form name of the printout wanted.

FF=NO this will cause BCP to not send the form feed
character as a home paper command when printing.
An Escape 'G' will be sent instead. The default is
to use the FF character.

Page: 1 TIP/30 Reference Manual
Section: 3.6.13 Version 2.5 (82/08/01)

®

TRANSMIT PRINT FILE

BCP: PRINT

JOB=jobname
PAGE=n
SIZE=size
STEP=n
STOP=n

Example:

is the
'n' is
is the
'n' is

‘n' is

JOB name wanted
the starting page number.

size of records to be sent.

the step number of the job for the printout

the stopping page number.

@PRINT ALL FORM=MAILLIST

This command

transmits

the printout with the form

'MAILLIST' to the terminal.

If the printout does not exist BCP will send back

NO DATA AVAILABLE FOR JOB=jobxx FORM=formxx

- +%k+-

name of

CHAPTER III - ON-LINE UTILITY PROGRAMS Page:
BATCH TERMINAL COMMAND PROCESSOR Section:

2
3.6.13

BCP: puNcH
TRANSMIT PUNCH FILE

3.6.14 TRANSMIT PUNCH FILE BCP: punch

This command supplies the name of the punch file which is to be
sent to the requesting terminal. This punch file must have already
been created. The remainder of the communications file is read to

clear the line, then the punch file is transmitted to the remote
terminal.

The user-id must match either the job name or the form name before
you are allowed access to the punch file.

Syntax:
@PUNCH [g-name] [ALL] [LABEL=formname] [J0OB= jobname]
[STEP=step#] [PAGE=n] [STOP=n]
[COPY=n] [COMPRESS=N] [SIZE=size]
[DELETE=YES]

Where:

All parameters must fit on one input line. All parameters are

optional, but you must specify at least one of FORM= or JOB=, or
LABEL=,

g-name optional positional parameter 1. This is the spool
queue name which is to be transmitted. Default is
the punch spool queue (PU). Other choices include:
RDR, PU, RBPPR, RBPPU.

ALL will cause all spool files which match the given
criteria to be sent.

COMPRESS=N indicates that the data is not to be compressed.
COPY=n 'n' is the number of copies to print.

DELETE=YES this will cause BCP to delete the spool file after
transmission.

LABEL=label is the spooler label of the punch file.
JOB=jobname is the JOB name wanted

PAGE=n 'n' is the starting card-image number.

Page: 1 TIP/30 Reference Manual
Section: 3.6.14 Version 2.5 (82/08/01)

BCP: PuNCH
TRANSMIT PUNCH FILE

FSIZE=size is the size of records to be sent.
STEP=n 'n' is the step number of the job for the printout
STOP=n 'n' is the stopping card-image number.
Example:

@PUNCH ALL LABEL=MAILLIST

This command transmits the punch file with the name of 'MAILLIST'
to the terminal.

If the punch file does not exist BCP will send back

NO DATA AVAILABLE FOR JOB=jobxx FORM=formxx

-tk -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.14

BCP: quEUE
DISPLAYING PRINT FILE QUEUE

3.6.15 DISPLAYING PRINT FILE QUEUE BCP: queue

This command may supply either a form-name or job-name of the
printouts which are to be summarized to the terminal. The printouts
must have already been created and placed in hold mode in the
spooler. The job name, job step number, program name, form name,
and number of pages in the spool file 1is 1listed back to the
terminal for each spool file which satisfied the search criteria.

Syntax:
@QUEUE [FORM=formname] [JOB= jobname]

Where:
FORM=formname is the form name of the printout wanted.
JOB=jobname is the JOB name wanted
Example:
@QUEUE FORM=STAND1

This command summarizes the printouts with the form name of
'STAND1',

In reply to this command a sequence of records will be sent back.
Each record is as follows.

JOB=xxxxxX STEP=nn PROG=xxxxxXx FORM=xxxxxx PAGES=nnnnn LABEL=label

-k -

Page: 1 TIP/30 Reference Manual
Section: 3.6.15 Version 2.5 (82/08/01)

BCP: RECEIVE
SEND DATA FILE TO HOST

3.6.16 SEND DATA FILE TO HOST BCP: receive
This command supplies the file name and an optional LFD name of
a data file into which BCP is to store the incoming data records.
The remainder of the input file is read to clear the line.
Syntax:
@RECEIVE FILE [FILEID=1fd] [INLINE=YES]
Where:
FILE is the file name as generated in TIP
FILEID=1£fd is an LFD name to override that known to TIP.
This will modify the file (as it was generated
into TIP/30) to now refer to the specified LFD
name.
INLINE=YES data follows inline.
BCP will reply with:
READY TO RECEIVE label - PLEASE XMIT DATA
Example:
Terminal Host

ORECEIVE UDS80,FILEID=MAILUPD
READY TO RECEIVE UDSB0 - PLEASE XMIT

NAME 1 ADDRESS1
NAME 2 ADDRESS2
NAME 3 ADDRESS3

3 RECORDS TRANSFERED. FILE: UDS80

- this stores 3 data records in the data file 'MAILUPDT'.

-4kt~

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.16

BCP: RuUN
RUN BATCH JOB

3.6.17 RUN BATCH JOB BCP: run
The JOB command allows a user to RUN a batch job from a
terminal,
Syntax:

@®RUN JOB-NAME, ,parameters
Where:
JOB—-NAME is the name of the batch job to be run.
Reply message:
JOB REQUESTED: JOBNAME, ,Parameters....

Example:

@RUN APO1, ,MONTH=MARCH

- +k+-

Page: 1 TIP/30 Reference Manual
Section: 3.6.17 Version 2.5 (82/08/01)

BCP: senD
SEND DATA FILE TO TERMINAL

. 3.6.18 SEND DATA FILE TO TERMINAL BCP: send

This command supplies the TIP file name and optionally the
LFD-name of a data file which is to be sent the the requesting
terminal. This file must be defined to TIP and should contain valid
data. The remainder of the communications file is read to clear the
line, and then the data file is transmitted to the remote terminal.

Syntax:
@SEND FILE [FILEID=1fd] [XPAR=YES]
Where:
FILE is the file name as generated in the TIP system.

FILEID=1f£d is an optional LFD name to override the name known
by TIP/30.

This command will actually modify the file as it
was generated into TIP/30. If the file 1is 1later
used without FILEID then it has the name as given
with the last FILEID.

XPAR=YES send data in transparent mode.

Example:

@SEND UDS80 FILEID=MAILMST

This command transmits the file MAILMST using the DTF of UDSS80.
UDS80 was generated into TIP, and MAILMST was specified in the TIP
job control. ’

- +%+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.18

|

BCP: suBmiT
SUBMIT REMOTE BATCH JOB

3.6.19 SUBMIT REMOTE BATCH JOB BCP: submit

The SUBMIT BCP command allows a user to write data into the

remote batch input reader queue (RBPIN) and call the RB symbiont to
process it.

This command operates similiar to the IN command. At end of file
a '// FIN' record will be appended to the spool file.

To use this facility the 0S/3 supervisor must be generated with
SPOOLING=REMOTE.

Syntax:

@SUBMIT [LABEL=label] [INLINE=YES]

Where:
LABEL=label spooler file label

INLINE=YES data folows inline, begining with a JOB card.
Reply message:

12 RECORDS TRANSFERRED.

Example:

@SUBMIT INLINE=YES.

// JOB TEST

// OPR 'HELLO WORLD’

/&

// FIN

- 4%+~

Page: 1

TIP/30 Reference Manual

Section: 3.6.19 Version 2.5 (82/08/01)

BCP
USING BCP INTERACTIVELY

3.6.20 USING BCP INTERACTIVELY BCP

BCP may also be called from an interactive terminal such as a
UTS-400. The transaction code is BCP. Interactive BCP may be wused
to send/receive data files to/from a batch terminal. To do this BCP
must not be concurrently running for the batch terminal.

A summary of available commands follows:

Command Function

END end BCP

IN receive spool file from batch terminal
MODE specify terminal type

PRINT transmit spool file to batch terminal
RECEIVE receive file from batch terminal

SEND transmit file to batch terminal

USING specify terminal name to SEND/RECEIVE

All of the commands (SEND, RECEIVE, PRINT, & IN) have the same
format as described in previous sections with the following
exceptions:

- The commands should be entered on the 1interactive
terminal without the '@' character.

- One additional keyword parameter may be supplied:

USING=terminal-id

Where 'terminal-id' is the name of the batch terminal to be
involved in the data transfer process.

CHAPTER III - ON-LINE UTILITY PROGRAMS - Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.20

BCP
USING BCP INTERACTIVELY

Example:

IN FILEID=BCPINPUT USING=BSC2

After successful initiation BCP will display

BCP STARTED ON xxx

If BCP could not be started (terminal not up or does not exist
or is already busy) the following message would be received:

BCP NOT STARTED

All error and diagnostic messages are sent back to the
initiating terminal as unsolicted messages (ie. you must press MSG
WAIT).

- +k+-

Page: 2 TIP/30 Reference Manual
Section: 3.6.20 Version 2.5 (82/08/01)

BCP:
ICAM GENERATION CONSIDERATIONS TCAM

3.6.21 ICAM GENERATION CONSIDERATIONS BCP: icam

ICAM must be generated with network buffers large enough to hold
the largest message which may be generated by BCP. This seems to be
required by ICAM itself. Otherwise you may get NO NETWORK BUFFERS
or no data will be transmitted to the terminal.

You should use disk queueing for all of the terminal queues for
Bi-Sync terminals.

Place LINE definitions for Bi-Sync terminals at the end of the
ICAM gen. This should be done so as not to interfere with
interactive terminals.

-+ k4~

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
BATCH TERMINAL COMMAND PROCESSOR Section: 3.6.21

BCP: 1cam

SAMPLE ICAM

3.6.22 SAMPLE ICAM BCP: icam
COMMCT
NET1 CCA TYPE=(TCI),FEATURES={(0OPCOM,OUTDELV)
BUFFERS 20,192,4 ARP=35,STAT=YES
LNO8 LINE DEVICE=(UNISCOPE),TYPE=(9600,SYNC),ID=08,STATS=YES
ARC1 TERM ADDR=(21,51),FEATURES=(U400,1820),AUX1=(COP,73), X
LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN
ARC2 TERM ADDR=(21,52),FEATURES=(U400,1920),AUX1=(C0OP,73), X
LOW=DQFILE,MEDIUM=MAIN,HIGH=MAIN
LNOS LINE DEVICE=(BSC,516,EBCDIC),TYPE=(9600,SYNC),ID=09 -
BSC1 TERM FEATURES=(BSC,512,MULTI,PRIMARY, TRANSPARENT,0,512), X
LOW=DQBSC,MEDIUM=DQBSC,HIGH=DQBSC
DQFILE DISCFILE FILEDIV=4
DQBSC DISCFILE FILEDIV=4
TCIFLE DISCFILE MSGSIZE=2560
ENDCCA
MCP MCPNAME=C3, : X
CACH=(08,9600,SYNC), X
CACH=(09,9600,SYNC)
END
~ k-
Page: 1 TIP/30 Reference Manual

Section: 3.6.22 Version 2.5 (82/08/01)

TIP/30 CATALOGUE MANAGEMENT CAT

3.7 TIP/30 CATALOGUE MANAGEMENT CAT

The TIP/30 catalogue file contains the information needed to
execute online programs. The catalogue is organized as a hashed (or
calced) file containing three record types:

User-—id These records identify valid users of the online
system.

Program These records describe valid online programs
(transactions). A program record identifies all
the run time requirements of the program. (ie:
load module name, MCS size, Work size etc).

File These records describe valid online files. A file
record in the catalogue 1links the logical file
name (the name used in a program) with the LFD
name (the name used in the operating system).

Each record in the catalogue has a 25 character key. This key is
composed of four fields which together uniquely identify each
record in the catalogue. Duplicate keys in the catalogue are not
allowed. The four fields that form the <catalogue key are as
follows:

Group This is the name of the group to which the item
belongs. In the case of a user-id record, this
field will contain the same value as the user-id.
Any items (programs or files) catalogued in a
group with the same name as a user-id record, are
considered to be in that user's private group.

Id This is the id of the program (TRID) or file (FID)
described by the catalogue record. If the
catalogue record is a file type record, then this
field would contain the FID (file id) of the file.
If the record is a program type, then this field
would contain the TRID (transaction id or program
name). If the record is a user-id type, then this
field is not used.

Elt this field is only used if the catalogue record
describes a TIP/30 dynamic file. Dynamic files
have a two level name (id/elt), and this field is
used to contain the element name of the dynamic
file,

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 CATALOGUE MANAGEMENT Section: 3.7

CAT TIP/30 CATALOGUE MANAGEMENT

Type this 1is the type <code of the catalogue record.
There are five type codes used as follows:

- user-id record

program (TRID) record

file (FID) record

file records in the catalogue

may also be refered to by the

class code which identifies the type

of file as follows:

S - system (data management) file record
D - dynamic file record

E - dynamic edit file record

mocC
[

Since the catalogue is a hashed file (ie. no index) it cannot be
processed in any order other than on a block by block basis (ie:
block 1, 2, 3...). To produce an ordered listing of the file,
either on-line or in batch, it must be entirely scanned at the
block level to extract the desired records, then those records
selected must be sorted to produce the desired 1listing. An
understanding of this fact will help the user obtain listings of
records in the catalogue in as short a period of time as possible.

The catalogue is implemented using a two partition SAT file, the
second partition is used to store the screen formats developed
using the TIP/30 Message Control System (MCS). The catalogue file
should never be processed by programs other than those provided
with the TIP/30 system. An exception is the operating system file
dump/restore program (DMPRST).

Page: 2 TIP/30 Reference Manual
Section: 3.7 Version 2.5 (82/08/01)

C
ON-LINE CATALOGUE MANAGER g

3.7.1 ON-LINE CATALOGUE MANAGER CAT

TT$SCAT (usually referenced by the transaction id of CAT) is a
system utility program which displays, updates, adds, and deletes
records in the TIP/30 catalogue. The on-line catalogue manager
operates interactively in a free-format command mode. The user
enters a command code, positional parameters (to identify the
required item), and keywords to supply values for the item.

CAT also accepts command line parameters for the list function.

Syntax:
Command P1,P2,P3,P4 keyl=vi,key2=v2,key3=Vv3,...,Keyn=vn.

Where:
Command is the function to be performed. The valid functions are:

List List the TIP/30 catalogue on the interactive
terminal.

Write Write the TIP/30 catalogue to a source element
within a library. '

DELete Delete catalogue record(s).
Prog Create/Update a program record.
User Create/Update a User-id record.
File Create/Update a file record.

End Terminate execution of the online catalogue
manager.

P1,P2,P3,P4 are positional parameters supplied with the command.
For the Prog, User, and File commands, only positional
parameter one is used, positional parameters two, three
and four must not be specified. For the List, Write,
and DELete commands positional parameters one through
four are used to identify the item(s) to be processed.

keyl=,...keyn= are keyword parameters that are used to supply
additional information.

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 CATALOGUE MANAGEMENT ’ Section: 3.7.1

AT:
CAT: securITY SECURITY LEVEL SPECIFICATION

3.7.2 SECURITY LEVEL SPECIFICATION CAT: security

There is one keyword common to each catalogue entry which is
used by the TIP/30 Security system.

SECurity=level determines the security
level of the catalogue record.
- entered as a numerical value from
1 to 255.
- also may be entered as a reserved
word as follows:
=TECH - sets SECURity=1
=MAST - sets SECURity=9
=SYST - sets SECURity=19
=PROG - sets SECURity=28
=APPL - sets SECURity=32

SECurity= specifies. a wvalue in the range of 1 to 255 which
defines the security level of the item. The Ilower
the security number the higher the priority. The
security of an item may also be specified by using
a reserved word in place of the numeric security
level number. The five reserved words that are
allowed with the security= keyword are TECH, MAST,
SYST, PROG, APPL.

The following table lists the security ranges provided and shows
the reseved word equivalent. This table also indicates the
functions allowed by the the online catalogue manager for users
within each range.

Page: 1 TIP/30 Reference Manual
Section: 3.7.2 Version 2.5 (82/08/01)

SECURITY LEVEL SPECIFICATION

CAT: securiTy

Security
Level

2-9

10-19

20-29

30-255

Reserved
Word
Equivalent

MAST

SYST

PROG

APPL

Remarks (allowable functions)

Master User of the highest priority
-may create other Master Users.
-may list, create, update, delete

any record in the catalogue.

Master User
-may list, create, update, delete
any record in the catalogue except
user-id records of master users

System User

-may list, create, update, delete
any catalogue record in a group

to which the user has access
-may create user-id records, but may
not allow access to a group that
the system user does not

have access to.

Programmer
-may list any catalogue record in a
group to which the user has access
-may create, update, delete program
records in the user’s private group
-not allowed to create, update file
or user-id record.

Application user
-not allowed to manipulate the
catalogue in any manner.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
TIP/30 CATALOGUE MANAGEMENT

Section: 3.7.2

CAT: SECURITY

SECURITY LEVEL SPECIFICATION

When cataloguing files and programs assign them a security level
numerically equal to or less than the security level of the user

who will be accessing them.

When a user attempts to access a file or to run a program the

following security check takes place for these items:

IF user security is less than item security
THEN deny access.

IF user security is not lower than item security
IF the item is time-locked,
THEN deny access
ELSE allow access.

-k -

Page: 3 TIP/30 Reference Manual
Section: 3.7.2 Version 2.5 (82/08/01)

DEFINITION OF CATALOGUE GROUPS CAT: secur1Ty

3.7.3 DEFINITION OF CATALOGUE GROUPS CAT: security

The concept of grouping 1in the TIP/30 catalogue must be
understood to properly wutilize the catalogue and its features.
Every program and file is catalogued within a group (a program or
file may appear in several groups).

Every user of the system has a list of groups to which the user
has access.

When a user requests access to a program or file, each group to
which to user has access is consulted to determine if the requested
item exists in that group. The order in which the groups are
consulted is known as the catalogue order of search and is defined
as follows:

Private This is the wusers private group. Any items
(programs or files) catalogued in a group with the
same name as the user-id name are considered to be
in the private domain of the user.

Group 1 This 1is an optional (elective) group and is
consulted if the user-id record was created wusing
the GRouP=(a,b) keyword parameter. The first
subparameter of the GRouP= keyword is used to name
the group.

Group 2 This optional (elective) group is similar to Group
1l above. It is the third group to be consulted
when 1looking for an item. To specify this group
name, the second subparameter of the GRoup=
keyword of the User command is specified as the
group name.

System This group is the 1last group consulted in the
order of search. The name of the group is TIPSYS
and it is available to all users.

It is important to note that grouping and the order of search
concepts only control which item in the catalogue is selected for a
given wuser. It 1is the security level of the item that controls
whether the item may be used.

It is through the specification of groups and security levels
that the TIP/30 security mechanism is able to control user access
to programs and files.

— k4 -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 CATALOGUE MANAGEMENT Section: 3.7.3

CAT: USER

CATALOGUING A USER-ID

3.7.4 CATALOGUING A USER-ID CAT: user

The catalogue
user-id record in

Syntax:

User user-id
ACcounTss=
GRouPs=
MaXUSers=
MENU=
PassWorD=
PROG=
SeaRCH=
SECurity=

Where:

user-id

ACCOUNTS=(a,b,c)

GROUPS=(gl,g2)

manager command USER either creates or modifies a
the TIP/30 catalogue.

required positional parameter

list of valid accounts for this user
user group 1 and 2

max concurrent uses of this user-id
screen 1o be used as menu

password to protect this User-id
program to auto run at logon time
full catalogue search or just TIPY
user security level

Required and must be specified as the first
parameter of the USER command. This 1is a
positional parameter and is used to 1identify the
name of the user-id being created or updated.

specifies a 1list of accounts that can be used by
this user when logging on to the system. A maximum
of 16 account numbers can be specified. Account
numbers are a maximum of four characters long.

If a user 1is assigned account numbers then the
user must supply one of the valid account numbers
at logon time. If this is not done the user will
not be allowed to logon.

These optional (elective) groups are in addition
to the wuser's private group and the system group
when TIP searches the catalogue to resolve a
reference to a program or file.

This parameter may be omitted, or only one group
name may be given.

specifies the maximum number of concurrent users
of this user-id. Specifying MXUSR=1 implies that
the wuser-id can only be used on one terminal at a
time.

If this keyword is not specified, there is no
limit to the number of people logged on with this
user-id,

MAXUSERS=
Page: 1
Section: 3.7.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CATALOGUING A USER-ID

CAT: user

MENU=mcsfmt

PASSWORD=pwd

PROG=trid

SEARCH=

SECURITY=nn

This is the name of a screen format defined by
MSGDEF to be used as a menu (or prompt). Whenever
a program terminates without a reply to the
terminal, this format will be displayed. The wuser
may also have the menu displayed by pressing the
MSG WAIT key while in system mode. 1If this
parameter is not not specified, then a standard
prompt message is used.

specifies the password to protect use of this
user-id. (ie. the password must accompany the
User-id at logon time).

trid is the transaction code which is to be called
immediately after logon.

When this feature is used the user will

automatically be 1logged off when the specified
program ends.

This facility allows the user to be limited to a
specific program (usually a menu program) thus
excluding the user from all other facilities of
the system.

controls the catalogue searching done for this
user. If SRCH=NO 1is specified, then only the
system group (TIPSYS$) is searched for programs and
files. If SRCH=YES is specified, then a complete
order-of-search (see previous discussion) will be
performed.

is the security level for this user. This controls
access to programs and files. The security code
may be specified as a number (1-255) or as one of
the following reserved words (TECH, MAST, SYST,
PROG, APPL).

The security level may not be specified as a
numerically lower value than the security level of
the user issuing the command.

~+%+ -

CHAPTER III - ON-LINE

UTILITY PROGRAMS Page: 2

TIP/30 CATALOGUE MANAGEMENT Section: 3.7.4

CAT: proG

- CATALOGUING A TRANSACTION

3.7.5 CATALOGUING A TRANSACTION

CAT: prog

The catalogue manager command PROG creates or modifies a program
entry in the TIP/30 catalogue. All programs must be catalogued. The
format of this command is as follows:

Syntax:
Prog trid required positional parameter
CDAsize= . size of CDA required by program
CMdL ine= . command line parameters reqguired
DeBug= type of debugging: YES / NO / IDA
EDIT= removal of communications characters
ENTer= allow execution from standard prompt
FilLes= files to be auto accessed
FRom= . use Keywords from another PROG entry
GRouP-= . group to which this prog entry applies
INsize= size of IMA required (IMS emulation)
IMS= program run via IMS emulation
LoaDM= load module name
MAXsize= . max activation record (IMS emulation)
MCSsize= size of MCS area required by program
OUTsize= size of OMA required (IMS emulation)
SECuritys= security level of program
TiMelLocK= time range program canNOT be run
TRANslate= transliate input message to upper case
USeages= . program characteristics
VOLatiles= size of VOLATILE data area required
WoRKsizes= size of WORK area required by program
Page: 1 TIP/30 Reference Manual
Section: 3.7.5 Version 2.5 (82/08/01)

CATALOGUING A TRANSACTION

CAT: proG

Where:

trid

CDASIZE=n

DEBUG=YES

DEBUG=IDA

DEBUG=NO

EDIT=YES

EDIT=c

ENTER=NO

FILES=(,,)

FROM=grp/trid

is a required positional parameter specifying the
transaction-id used to schedule this program.

Programs can be called only using their catalogued
transaction-id (trid).

n is the CDA size required by this program.

if the program is to be used in a debug mode. The
use of this option causes the program to be
executed with hardware storage protection in
effect.

To use this facility the 0S/3 supervisor must be
be generated with RESMOD=SMS$ASCKE.

if this program 1is to be 1loaded with the
Interactive Debug Aid (IDA) in control.

No debugging.

for input messages received by TIPTERM or IMS/90
emulation all communications characters,
sequences, dice and multiple spaces will be
removed. Default is EDIT=NO.

specifies a character to be used as the field
separator in input messages received by TIPTERM or
IMS/90 emulation.

this program may not be called directly by
entering the TRID via the TIP command line.

That is, it may only be called by another program.
Default=YES.

Up to 12 files to be opened when the program is
loaded.

Indicates that the keywords (except GRP=) for the
program entry for "grp/trid" are to be copied to
this program.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
TIP/30 CATALOGUE MANAGEMENT Section: 3.7.5

CAT: proG

CATALOGUING A TRANSACTION

GROUP=name

IMS=

INSIZE=

LOADM=

MAXSIZE=

MCSSIZE=

OUTSIZE=

SECURITY=

TIMELOCK=(bgn, end)

TRANSLATE=YES

USAGE=REENT

group name to which this program belongs.

YES 1if this 1is an IMS/90 program which is to be
emulated.

The IMA size if this is an action program to be
run under IMS/S0 Emulation.

names the load module associated with the
transaction-id.

Default is the same as the +trid positional
parameter,

For programs running under IMS emulation and
USAGE=RELOAD, and wutilizing immediate internal
succession, this keyword specifies the size of the
largest program in the succession chain.

Size (in bytes) of the 1load module plus all
required work areas (CDA, WORK, IMA, OMA etc).

The size of the MCS area (parameter passed to
native mode programs.

The OMA size if this is an action program run
under IMS/90 Emulation.

is the security level assigned to this
transaction. Specified as a number between 1 and
255,

The hours of the day that this program is NOT
available. Specified using a 24-hour clock.

Eg: =(830,1730) or (1800,900).

For input messages received by TIPTERM or IMS/90
emulation all alphabetic characters will be forced
to upper case.

Default=NO.

This program is to be used re-entrantly. This is
also specified for COBOL programs which were
compiled with the shared code option [0OUT=(M) for
COBOL68; IMSCOD=YES for COBOL74].

If a COBOL program you must also specify the
VOLATILE data area size (see VOLATILE=).

Section:

TIP/30 Reference Manual
Versiqn 2.5 (82/08/01)

CAT: ProOG

CATALOGUING A TRANSACTION

USAGE=REUSE

USAGE=RELOAD

Re-entrant programs have 'sticking' power and
reduce disk I/0's needed to schedule the program.

This program 1is serially re-useable. Only one
process 1s allowed to use this program at a time,

The process must terminate before the load module
may be used by another process.

Re-useable programs have sticking power.

For COBOL programs the VOLATILE data area size
(VOLATILE=) must also be specified.

This program is to be reloaded each time the
program is used.

This entry is required if the program is neither
re~entrant nor re-useable.

VOLATILE= The size of the volatile data area of a shareable
COBOL program.
If this program calls any data base management
routines, add four times the number of parameters
in the longest "CALL" parameter list to the size
reported by the COBOL compiler.
WORKS1ZE= The size of the work area required by this
program.
e
CHAPTER III - ON-LINE UTILITY PROGRAMS nge: 4
TIP/30 CATALOGUE MANAGEMENT Section: 3.7.5

CAT: FILE CATALOGUING A FILE

3.7.6 CATALOGUING A FILE CAT: file

The FILE catalogue statement is used to create or modify a file
entry in the TIP/30 catalogue.

All on-line files must be catalogued and it is recommended that
the wuser take advantage of the logical naming of files and the
assignment of security codes as these capabilities enhance the
flexibility and security of the system. The format of the FILE
statement is as follows:

Syntax:
File 1fn . logical file name

GRouP= . this file statement for this group
LFD= . LFD name of the file as given in JClL
ReaD= . "NO" : read not allowed
SECuritys= . security level assigned to this file
WRites= . "NO" : write not allowed

Where:

1lfn A required positional parameter identifying the
logical file name by which user on-line programs
must access the file.

GROUP= Group to which this file entry applies. Default
"TIPSYS".

LFD= LFD name of the file as given in the TIP/30 JCL
and in the TIP/30 generation.

READ= "NO" indicates file may not be read. (Output only
file for this group). Default is TIP generation
specification.

SECURITY=n is the security level assigned to this file. See
description of Security in previous section.

WRITE= "NO" indicates file may not be written. (Read only
file for this group). Default is TIP generation
specification.

- k4~
Page: 1 TIP/30 Reference Manual
Section: 3.7.6 Version 2.5 (82/08/01)

C
CATALOGUE HINTS FOR TESTING PROGRAMS g

3.7.7 CATALOGUE HINTS FOR TESTING PROGRAMS CAT

When testing a new program it 1is recommended that the
transaction code be catalogued with slightly 1larger work areas
(CDA, MCS, WORK, IMA, OMA, etc...) than actually required. When the
program is completely tested update the catalogue to reflect the
correct sizes.

During program development the areas tend to grow and the
programmer usually forgets to keep the catalogue up to date. Having
an area catalogued too small may result in some portion of another
program or TIP/30 being destroyed.

Catalogue the program being tested as USage=RELOAD and possibly
DEBUG=YES. When completed declare it re-entrant (if it 1is),
DEBUG=NO, and specify the final volatile data area size. Only make
re-entrant programs resident.

- 4k+-

CHAPTER III - ON-LINE UTILITY PROGRAMS nge: 1
TIP/30 CATALOGUE MANAGEMENT Sectlpn: 3.7.7

CAT UPDATING CATALOGUE RECORDS

3.7.8 UPDATING CATALOGUE RECORDS CAT

When updating existing catalogue records you need only specify
sufficient information to identify the key of the catalogue record

desired and the keywords for the information which 1is to be
updated.

Always give the type of record USER, FILE, or PROG; the item's
name, and the GROUP name.

Example:
USER TOMMY PROG=TMENU.

PROG UPDT GRP=AP CDA=768.
FILE MAST GRP=AP SECUR=88.

-+ k+ -

Page: 1l TIP/30 Reference Manual
Section: 3.7.8 Version 2.5 (82/08/01)

AT
CATALOGUE STATEMENT CONTINUATION .

3.7.9 CATALOGUE STATEMENT CONTINUATION CAT
CAT will only process the first 72 characters of an input line.
If you are entering data on the terminal, type as much as you
can (up to 72 characters) and then press transmit. CAT will prompt
you again.

Leave at least one space after the SOE character in the prompt
and continue to enter the additional keyword parameters.

When you are entering the last line of a multi-line command,
terminate the last line with a period.

CAT will automatically terminate the previous command 1if it
reads a line which begins with a command.

-tk

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 CATALOGUE MANAGEMENT Section: 3.7.9

CAT: LisT LISTING CATALOGUE ENTRIES

3.7.10 LISTING CATALOGUE ENTRIES CAT: list

For the List and Delete commands, the command line format is as

follows:

Syntax:
List Group/ld/E1t [,Typel | GRouP=xxx] [LoaDM=xxx]
LS Group/Id/E1t [,Type]l [GRouP=xxx] [LoaDM=xxx]
DELete Group/Id/Elt [,Typel [GRouP=xxx]
Write Group/Id/E1t [,Typel | GRouP=xxx]

Where:

Group User-id or group name of the catalogue records to
~ be processed. Only Master type users may process
catalogue records that have a different group name
than their own wuser-id or one of the groups to
which they have access. If this parameter 1is not

given, then the user's private group is used.

1d name of the item (program or file) to be
displayed. If not given, then all items 1in the
specified group are displayed.

Elt The element name of a dynamic file. This parameter
is only valid when used with dynamic file entries.
If not given, all elements are processed.

Type The types of catalogue records to be processed.
The value for this parameter may be as follows:

- tx! process all entries

- 'P' = process program entries
- 'U' = process User-id entries
-~ 'F' = process file (all files) entries

'D' = process dynamic file entries
'E' process Edit file entries
- 's' process System file entries

If type 1is omitted, all types are processed
(exception 1is the delete command which insists on
a supplied type!).

Page: 1 TIP/30 Reference Manual
Section: 3.7.10 Version 2.5 (82/08/01)

LISTING CATALOGUE ENTRIES CAT: LisT

Note: for the first three parameters (Group, 1Id, and Elt), the
value entered may be preceded with the asterisk (*) character to
denote a prefix search., If the value entered is preceded with an
exclamation mark (!), then this is taken to be a prefix search for
items that do not begin with that prefix.

GROUP= This optional specification limits the scope of

the command to entries matching the specified
group name.

LOADM= This optional specification limits the scope of
the command to entries (obviously PROGRAM entries)
that refer to the specified load module.

Example:

List *,*pay

- this would indicate a list of all catalogue records (no
type given) of any group (* alone is a 'match all') and
of any name that starts with the letters 'PAY' (*PAY).

Additional Considerations:
The 'Write' command will list to the terminal as well as write the

information to a library file called RUN/LISTCAT. This file may be

edited by the text editor and later fed back to 'CAT' via '.IN'
files.

List will produce an unsorted listing.

LS will produce a sorted listing.

-tk -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
TIP/30 CATALOGUE MANAGEMENT Section: 3.7.10

cC

COBOL REFORMATTER (CONVERSION AID)

3.8

COBOL REFORMATTER (CONVERSION AID) cC

This wutility will reformat a COBOL source program. The input
source element may be in COBOL-68 or COBOL-74 format.

The source 1is reformatted so that (where possible) the PICTURE
clauses are column aligned, the full spelling of COBOL reserved
words is used, IF clauses are indented to show the scope of nesting
etc.

A keyword parameter is available to allow the specification that
a COBOL-68 to COBOL-74 conversion is to be performed. This 1is a
syntactic conversion; that is, the necessary spelling changes and
cosmetic changes will be made. The user is still responsible for
changes to the input/output statements that are required.

The CC program assumes that the input module is a syntactically

correct program. If this is not the case, unpredictable results may
occur.

Page: 1 TIP/30 Reference Manual
Section: 3.8 Version 2.5 (82/08/01)

COBOL REFORMATTER (CONVERSION AID) ‘

@

Syntax:

IN=file/elt,0UT=file/elt [,LIST=N,COPY=N,RENUM=Y K MODE=COBOL74]

Where:
IN= Required keyword parameter giving the input file

and element name.

OuT= Required keyword parameter giving the output file
and element name. May not be the same as IN=.

LIST= YES/NO option whether to list the output at the
terminal. Default value is "NO".

COPY= YES/NO option whether the input module is a DATA
DIVISION copy book. Default is "NO".

RENUM= YES/NO option whether to automatically renumber
the level numbers of item in the Data Division in
the output element. Increments of 5 are used.
Default is "YES".

. MODE= Specifies the type of COBOL for the input module.

The default is COBOL68 to COBOL74 conversion. (The
conversion is only suitable for online programs)

MODE=COBOL68 input is COBOL68 program.
MODE=COBOL74 input is COBOL74 program.

MODE=DMS90 input is COBOL74 program which wuses DMS/90. The
DMS/90 verbs are processed.

Example:
IN=TIP/TTSAMP,OUT=RUN/TEST,MODE=COBOL74
Reformat element "TTSAMP" from file "TIP" and

put the new version in element named "TEST" in file
“RUN" (YRUN). The input module is in COBOL74 format.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
COBOL REFORMATTER (CONVERSION AID) Section: 3.8

cC

COBOL REFORMATTER (CONVERSION AID)

Error Conditions:
The CC program may indicate FCS errors if an error occurs reading
or writing a file/element.

Additional Considerations:

The CC program keywords must be terminated with a period or no
action will be taken.

The CC program will display "Working - Please Wait" if 1t is
successfully processing your command.

Page: 3 TIP/30 Reference Manual

Section: 3.8 Version 2.5 (82/08/01)

COMMUNICATIONS CONTROL AREA DISPLAY CCA

3.8.1 COMMUNICATIONS CONTROL AREA DISPLAY CcCa

CCA is a utility program which displays information and
statistics derived from tables within ICAM.

To use CCA the ICAM must be generated with "STAT=YES" on BUFFER
statements and "STATS=YES" on LINE statements. This will cause ICAM
to collect statistics for 1lines and buffers. CCA will display

statistics required by a system programmer who is tuning the
periormance of a network.

This program should be run when TIP/30 1is operating in a
"production” environment for the statistics to be of any real
meaning.

The wuser should re-run CCca when ever any additional
communications hardware is added or after any major system changes
affecting ICAM through-put.

Syntax:

CCA

The commands are as follows:
Arps produces a list of A.R.P. penetration statistics.
Buffers produces a list of buffer penetration statistics.

Lines produces a list of lines showing line name, type,
speed, number of terminals, errors, etc.

Terminal produces a list of terminals on each line, showing
terminal name, size, polling interval, status,
polls, messages in, messages out, errors, etc.

End end execution of CCa.

Quit end execution of CCA, and logoff TIP/30.

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
COBOL REFORMATTER (CONVERSION AID) Section: 3.8.1

CPAGE SET U400 CONTROL PAGE

3.9 SET U400 CONTROL PAGE CPAGE

The CPAGE program is used to set the control page of a UTS-400
type terminal. This also includes UTS-20 and UTS-40.

Syntax:
CPAGE[,opt]
Where:
opt command line option indicating the desired setting
of the XMIT option of the control page.
"A" sets the control page to transmit all ("ALL")
"V" sets the control page to transmit variable
(unprotected) ("VAR")
"C" sets the control page to transmit changed
("CHAN")
Example:
CPAGE,V

Error Conditions:
None.

Additional Considerations:

The preferred option for TIP/30 operation is 'V' but users doing
IMS/90 emulation may have to wuse 'A' with its additional
transmission overhead.

Page: 1 TIP/30 Reference Manual
Section: 3.9 Version 2.5 (82/08/01)

CRASH
ABNORMAL TIP/30 SHUTDOWN

3.10 ABNORMAL TIP/30 SHUTDOWN CRASH
This command will cause TIP/30 to shut down immediately. It will
not wait for all users to log off. A JOBDUMP will be taken if the
JOBDUMP option was specified in the TIP/30 job control stream.
Syntax:
CRASH

Where:
No parameters required.

Example:
CRASH
Error Conditions:
None.
Additional Considerations:

The system SHUTDOWN program will NOT be scheduled.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ABNORMAL TIP/30 SHUTDOWN Section: 3.10

CREATE

CREATE A DYNAMIC FILE

3.11 CREATE A DYNAMIC FILE CREATE

catalogue.

The CREATE program is used to make a file entry in the TIP/30

By doing this, the user is creating a new FCS dynamic

file within TIPSRNDM.

Syntax:

CREATE[, typel aft-name, file-name

Where:

In the following

type

aft-name

file-name

LOGON, then:

the type of dynmic file to create

'P' : the file created is a permanent dynamic file
and will remain in the system after the user 1logs
off unless it is specifically scratched.

'T' : the file created is temporary and will be
scratched by TIP/30 when the user logs off. In the
case of an HPR or power failure, this file will be
scratched during the subsequent TIP/30
initialization. NOTE: This is the default type.

is the logical file name to be assigned to the
file. After the file has been created, it is
automatically assigned to the user. This 1is the
entry in the active file table (AFT).

is the entry to be made in the catalogue for the
new file. The catalogue-name consists of three
sections, USER-ID/CATL-ID/FILE-ID which uniquely
identify each file in the catalogue. The user must
at least specify FILE-ID to access the file. If
the USER-ID is not specified, then the USER-ID
used to logon TIP/30 is used. If CATL-ID is not
specified then CATL-ID is set to FILE-ID.

examples assume that the USER-ID 'ARC' was used to

Page:
Section:

3.11

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CREATE A DYNAMIC FILE

- CREATE

Example:

CREATE STRTUP,BGNFL

Will create the file 'ARC/BGNFL/BGNFL' as a temporary, dynamic file

and assign it the logical name of STRTUP.

Error Conditions:
Errors may be reported from TIPFCS.

CHAPTER III - ON-LINE UTILITY PROGRAMS
CREATE A DYNAMIC FILE

Page:
Section:

b bbu ON-LINE DISK DISPLAY AND UPDATE

3.12 ON-LINE DISK DISPLAY AND UPDATE DD, DDU

Online disk displéy and update is a utility used to display and
modify the contents of disk files at a terminal. It is designed to
be a programming aid useful for testing and debugging.

For example, a file could be displayed to determine if a program
being tested had altered it correctly or had erroneously left the
file 1intact. Using the wupdate feature would allow a guick
modification to prepare for another test.

This wutility can handle FCS dynamic files, indexed files,
(including MIRAM), direct access files, and edit buffers. It
displays one record at a time from the selected file. The records
can be displayed in three formats: character, hexadecimal, or both
character and hexadecimal. For records too 1large to fit on one
screen, an option is provided to allow the user to 'page' through
the rest of the record contents. The user selects records to be
displayed by either record number or key depending on the file
type.

STARTING THE DD UTILITY

Two transaction names are provided to call this utility program.
DD is display only, but DDU allows both display and update
functions. .

It is suggested that DDU be catalogued at a higher security
level than DD to reflect the relative power of the two
transactions. To start up the utility enter:

>transaction-id filename

The following are all valid invocations to allow display only of
the file MYFILE in the group ARC:

DD ARC//MYFILE
DD ARC/MYFILE

DD MYFILE

Page: 1 TIP/30 Reference Manual
Section: 3.12 Version 2.5 (82/08/01)

D,
INTERACTION WITH DD & DDU b DL

3.12.1 INTERACTION WITH DD & DDU DD, DDU

When the utility is invoked it displays the first record of the
file specified. For indexed files this 1is the record with the
lowest primary index. The initial mode of display is character with
all non-displayable bytes shown as underscores.

At this point the user must 'tell' the utility what to do next. The
possible actions are:

(1) specify another record to display

(2) specify another display mode

(3) go to another part of the current record (Paging)
(4) redisplay the current screen

(5) exit the utility (end)

(6) update the record displayed (DDU only)

A description of these actions immediately follows.

-4k

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DISK DISPLAY AND UPDATE Section: 3.12.1

DD, DDU SPECIFYING A RECORD TO BE DISPLAYED

3.12.2 SPECIFYING A RECORD TO BE DISPLAYED DD, DDU
The method of specifying a record to be displayed is dependent
on the file type.
For the purpose of specifying records, files are categorized as
either indexed and non-indexed.
Records of indexed files are referenced through a key.
Records of non-indexed files are reference by a relative (to
one) record number.
- 4%+ -
Page: 1 TIP/30 Reference Manual
Section: 3.12.2 Version 2.5 (82/08/01)

SPECIFYING A RECORD OF AN INDEXED FILE DD, Dpd

3.12.3 SPECIFYING A RECORD OF AN INDEXED FILE DD, DDU

The user can specify the next record to be displayed by entering
the key in one of two fields provided at top of the screen. The
fields are appropriately titled 'Hex' and 'Char' to indicate the
type of key expected. Whatever value is entered as the key is right
filled with 1low values. DD will display the next record with a
primary index greater than or equal to the one specified.

If the key 1is given as character then no case conversion takes
place. However, if a hex key is given all characters are converted
to upper case since lower case 'a' through 'f' are meaningless.
Invalid hex values are flagged and an error message is returned.

Pressing function key 2 will cause DD or DDU to display the next
record (in sequence).

The actual key of the record displayed is shown in the same mode
the user entered the key.

-tk -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DISK DISPLAY AND UPDATE Section: 3.12.3

DD, DDU

SPECIFYING A RECORD OF A NON-INDEXED FILE

3.12.4

SPECIFYING A RECORD OF A NON-INDEXED FILE DD, DDU

The user can specify the record number in one of two fields

filled with underscores at the top of the screen. These fields are
appropriately titled 'Dec' and 'Hex' to indicate the type of number
they expect.

Pressing function key 2 (F2) will imply that the user wishes to

select the "next" record (sequentially).

When the record 1is displayed the current record number is

displayed in both decimal and hex.

Specifying invalid record numbers results in a variety of

actions:

Entering a record number more than 4096 past the highest
record number will cause the utility to abort.

For FCS dynamic files, specifying a record number past
the current allocation will result in more disk space
being allocated! The user is advised not to do this.

Negative record numbers will result in a 'not found'
message.

If invalid hex values are encountered in input they will
be flagged and an error message will be sent.

—4 k4=

Page:
Section:

1 TIP/30 Reference Manual
3.12.4 Version 2.5 (82/08/01)

SPECIFYING DISPLAY MODES DD, DDU

3.12.5 SPECIFYING DISPLAY MODES DD, DDU

The user controls the mode of display by using the field titled
'display=' at the top of the screen. Valid values are:

C character
H hexadecimal
B both character and hexadecimal

Nondisplayable bytes of character fields are shown as underscores.
All display modes show the zero relative position in the record of
the first byte in the line. These byte numbers are given in decimal
for the character display and in hexadecimal in the other two

display formats. Switching modes sets the display to the beginning
of the record being displayed.

gk~

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DISK DISPLAY AND UPDATE Section: 3.12.5

DD, DDU

PAGING THROUGH THE CURRENT RECORD

3.12.6 PAGING THROUGH THE CURRENT RECORD DD, DDU

Whether or not a record will fit on a screen depends on the
display mode being used and the record length of the file. If a
record will not fit on the screen the user can move back and forth
through the record a screenful at a time. Pressing function key 3
pages forward through the current record unless the end of the
record is currently displayed. Pressing function key 4 pages
backward through the current record unless the beginning of the
record is currently displayed.

-4kt -

Page: 1 TIP/30 Reference Manual
Section: 3.12.6 Version 2.5 (82/08/01)

TERMINATING DD & DDU

DD, DDU

3.12.7

TERMINATING DD & DDU DD, DDU

When the user has finished working with DD or DDU he terminates
the utility by pressing msg-wait.

-4k

CHAPTER III - ON-LINE UTILITY PROGRAMS nge:
ON-LINE DISK DISPLAY AND UPDATE Section:

1
3.12.7

DD, DDU

UPDATING THE RECORD CURRENTLY DISPLAYED

3.12.8 UPDATING THE RECORD CURRENTLY DISPLAYED DD, DDU

This function can only be used by starting the utility with the
transaction-id DDU. It is intended to provide a method for quick
and simple changes to aid in testing and debugging.

The update procedure requires that the user display the record to
be updated. If the record is larger than the screen area the user
may have to page to the segment being updated. To update the record
displayed:

(1) place a 'Y' in the update field,

(2) alter the record as desired,

(3) 1leave the <cursor in the space provided in the bottom right
corner of the screen,

(4) press transmit and wait for a reply.

After completing the above steps the wuser will receive an
informational message about the processing that occurred. 1If the
update was successfully executed the display is redisplayed with
the updated record contents and the following message appears:

"RECORD UPDATED SUCCESSFULLY".

Otherwise, an error occurred and an informational message will be
displayed. The user can now repeat some or all of the above steps
and try to update the record again.

-4k + -

Page: 1 TIP/30 Reference Manual
Section: 3.12.8 Version 2.5 (82/08/01)

DD, DDU
UPDATING A CHARACTER DISPLAY g

3.12.9 UPDATING A CHARACTER DISPLAY DD, DDU

When a record 1is displayed in character mode, nondisplayable
characters appear as underscores. In updating a character display
DDU ignores all bytes received as underscores. This prevents the
non-displayable data from being converted to wunderscores. Even
underscores entered by the wuser will be ignored! To insert
underscores in a record the user must update from one of the other
display modes.

The character display is case sensitive and will display both upper
and 1lower case. This allows the user to make changes using mixed
case. At the same time remember that no case conversion occurs on
input.

-k

CHAPTER III -~ ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DISK DISPLAY AND UPDATE Section: 3.12.9

DD, DDU UPDATING A HEX DISPLAY

3.12.10 UPDATING A HEX DISPLAY DD, DDU

When the wuser transmits the screen with the new contents of a
record the data is converted to upper case. As a result lower case
'a' through 'f' will be valid input. Invalid hex digits are flagged
and will prevent the update from taking place.

- +%+-

Page: 1 TIP/30 Reference Manual
Section: 3.12.10 Version 2.5 (82/08/01)

DD,
UPDATING A MIXED DISPLAY DDU

3.12.11 UPDATING A MIXED DISPLAY DD, DDU

We refer to the mixed display as showing character and hex
simultaneously. The part of the screen displayed in character is
protected. The reason for this is that only the hex fields are used
in updating the record from this display.

The hex fields are converted to upper case so that lower case 'a'
through 'f' will be valid input. As with the hex display, invalid
hex digits encountered in input are flagged and result in an error
message.

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DISK DISPLAY AND UPDATE Section: 3,12.11

DD, DDU RECORD PROTECTION

3.12.12 RECORD PROTECTION DD, DDU

When a user attempts to update the record being displayed there
is a possibility that the record has already changed since it was
displayed. For system files, DDU checks to see if the record has
changed. If it has, no update occurs and an error message 1is sent
to inform the user. It is necessary to do this check since DDU does
not use file locking. Record locking is used with system files for
the duration of the update.

For FCS dynamic files and edit buffers no record 1locking 1is wused
and no attempt is made to determine if the record has been changed.
Since QED locks an edit buffer changes cannot occur simultaneously
from QED and DDU. However, two users both using DDU could make
changes to the same record of an edit buffer without being aware of
changes made by the other user.

The user should remember that DDU is not a general purpose editor
and is designed for quick changes to disk files.

- +%k+-

Page: 1 TIP/30 Reference Manual
Section: 3.12.12 Version 2.5 (82/08/01)

DD, DDU

FUNCTION KEY USAGE

3.12.13 FUNCTION KEY USAGE DD, DDU

MSG-WAIT

Fl or Fb5

F2 or F6

F3 or F7

F4 or F8

Terminates DD and DDU

Redisplays the current screen as it was last sent to the
terminal.

Displays the first page of the next record in the file.
For non-indexed files, this means the relative record
number is incremented by one. For indexed files, this
means the next record found sequentially.

Displays the next page (or screenful) of the current
record. If the end of the record is currently displayed,
no paging occurs and a redisplay takes place.

Displays the previous page (or screenful) of the current
record. If the beginning of the record 1is currently
displayed, no paging occurs and a redisplay takes place.

-4kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DISK DISPLAY AND UPDATE Section: 3.12.13

DD, DDU

POTENTIAL PROBLEMS

3.12.14 POTENTIAL PROBLEMS DD, DDU

The

following points are guidelines to help the user enjoy

trouble free use of DD.

In the hands of an animal DD can have serious side
effects when used with FCS dynamic files. If the wuser
asks to see a record past the current end of file then
the file will be automatically extended to provide that
record. For example asking for record 500 when only 40
exist would result in 520 records being allocated to the
file. This 1is like a malignant tumour feeding itself on
your TIPSRNDM file. To cure this disease wuse the TIP
SCRATCH program to get rid of any mammoth files created.

Specifying record numbers more than 4096 past the end of
the file (for dynamic files only) causes DD to abort.
Avoid this problem by making sensible requests.

Dynamic files and edit buffers are wupdated without
locking records. Avoid problems with updates by
cataloguing DDU with at a higher security level than DD.

When updating a file from a character display remember
underscores are ignored. To replace bytes with
underscores you must use the hex or mixed display.

Updates can cause problems if the user forgets that both
upper and lower case are accepted in character mode. If
you want upper case then you would be wise to enter the
data in upper case.

Records in FCS dynamic files (includes edit buffers) and
non-indexed files cannot be physically deleted.

Since DD and DDU are sensitive to the case of character

data, these transactions should be used with caution from
terminals that do not support upper and lower case case.

-kt

Page:
Section:

1 TIP/30 Reference Manual

3.12.14 Version 2.5 (82/08/01)

DEBUG
SET FILE IN TEST MODE

3.13 SET FILE IN TEST MODE DEBUG

The DEBUG program places a named file in a READ ONLY mode for
testing programs. A command line option indicates whether the file
is to be placed in debug mode or removed from debug mode. In debug
mode, any WRITE attempts from any program (at this terminal) will
be ignored, thus ensuring the integrity of the file.

Syntax:
DEBUG, [opt] aft-name

Where:
opt furthur defines what operation is to be done.
'"N' places a file in debug mode.
'F' removes a file from debug mode. (Default).
aft-name is the name of the assigned file that 1is to be
placed in (or removed from) debug mode.
Example:

DEBUG,N CUSTOMER

This command would place the file assigned to the logical name of
'CUSTOMER' in debug mode and would ignore any subsequent write
requests to the file from this terminal.

Error Conditions:
File not assigned.

Additional Considerations:
This option is only effective while the file 1is assigned to the

user (ie. once the file 1is de-accessed the DEBUG option is no
longer effective).

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SET FILE IN TEST MODE Section: 3.13

DEFKEY

DEFINE FUNCTION KEYS

3.14

DEFINE FUNCTION KEYS DEFKEY

The DEFKEY program is a utility program that allows the user to
specify a character sequence that will be "painted"” on the screen
whenever a function key is pressed as a response to the standard
system prompt. After the character sequence 1is painted on the
screen, TIP/30 will generate an auto transmit sequence to the
terminal. The net effect of this is to simulate the keying of that
character sequence.

The definition of function key contents may be specified by user
group. The search for the appropriate function key contents follows
the same sequence as the standard order of search in the catalogue:
the user's private group is searched first, then elective groups
one and two, and finally, the universal group "TIPSYS$".

By utilizing the DEFKEY program, the user may assign character
strings to function keys and make 1t simple to enter the character
strings.

The DEFREY program stores the function key definitions in a
TIP/30 dynamic file with the name: <group>/FUNCTION/KEYS (where the
group is name of the group that owns the definitions).

The DEFKEY program is NOT an interactive wutility. It accepts
information only from the command line.

Page: 1 TIP/30 Reference Manual
Section: 3.14 Version 2.5 (82/08/01)

DEFKEY
DEFINE FUNCTION KEYS

Syntax:
DEFKEY [GROUP=xxxxxxxx] [LIST] [nn,’..."]
Where:
GROUP= This specifies the name of the group desired.
Default is "TIPSYS".

LIST A positional word indicating that DEFKEY is to
list the current definitions of the function keys
for the specified group.

nn Numeric specification of function key. Valid
values 1 through 23. (Function key 23 may be
returned by the Master terminal in a UTS-400
cluster when a power-on confidence test is
initiated - this is a hardware strapping option of
the UTS-400).

el The desired contents of the function key enclosed
in quotes (single or double).

Example:

DEFKEY LIST

- Will list the current contents of the function keys for
group "TIPY" (the default).

DEFKEY 12, "WHOSON',9, 'LOGOFF’

- Will define function key 12 as the character string "WHOSON"
and function key 8 as the string "LOGOFF".

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
DEFINE FUNCTION KEYS Section: 3.14

DIE
ABORT A PROGRAM

3.15 ABORT A PROGRAM DIE

The DIE program may by used to force an abnormal termination of
a user program running at another terminal.

Syntax:

DIE, identifier

Where:

identifier specifies the user or terminal name of the program
to be aborted.

Example:

DIE, JOHN

This command would cause the program being executed by user JOHN to
be abnormally terminated.

Error Conditions:
User or terminal cannot be found.

Additional Considerations:

The program is not aborted immediately. It will be aborted the next
time it is activated. One may have to press transmit or msg-wait on

the terminal running the program to cause TIP to reschedule the
program and thus cause the abort.

Page: -1 TIP/30 Reference Manual
Section: 3.15 Version 2.5 (82/08/01)

DLL
DOWN LINE LOAD UTILITY

3.16 DOWN LINE LOAD UTILITY DLL

DLL is a supplied program designed to assist the wuser working
with the UTS-400 terminal. This program provides the capability of
down line loading the UTS-400 memory from the host. The UTS-400 may
be loaded with wuser developed programs, compiled with the
Allinson-Ross Corporation 8080 Cross Compiler (UTSASM and ASM80)
and/or programs produced using Univac's software. In addition, the
UTS-400 may also be loaded with screen formats that have been
created with the TIP/30 Message Control System (MSGDEF). A supplied
UTS-400 program (MCS400) must be loaded whenever the user 1is down
line loading MCS screen formats. Refer to the section on the
Message Control System for further information on the use of down
line loaded screen formats.

It is important to note that the operation of this (DLL) program
involves a staging buffer within the program. All program and
message requests are collected in this staging buffer, then the
entire buffer is loaded into the UTS-400 with a single command.

Note: this program requires 18k of memory, therefore the MAXPROG
parameter in the TIPGEN procedure should be at least 18000.

The DLL commands are as follows:
Include file/element

- add the UTS-400 object module generated by either ASM80
or UTSASM (described 1later) to the staging buffer. The
transfer address is set to the address specified in the
transfer record of this module

- TIP/MCS400 is a module which interfaces with MCS in the
host to display screen formats on the terminal.

Get module

- add the UTS-400 object module as generated by either
MAC80, PL/M, or UTSCOB to the staging buffer. The
transfer address 1is set to the address specified in the
transfer record of this module.

Ntr address

- the transfer address is changed to the address specified
in the first parameter.

Message mcs—name, [U]

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOWN LINE LOAD UTILITY Section: 3.16

DLL
DOWN LINE LOAD UTILITY

- De-code and load the specified MCS message 1into the
staging buffer. Only heading information 1is normally
stored. When this message has been 1loaded into the
terminal TIP/30's Message Control System will only send
the data portions, thus resulting in a complete screen.
If the second parameter 1is 'U' this message will be
stored with filler's to represent the data fields. If you
have a data entry screen for which you want the data
fields to be filled with underscores, then specify "U"
with this command and specify '_' as the filler character
in the MCS packet when your program calls TIPMSGO. This
will result in the shortest possible XMIT time to display
the message on the terminal.

Function key#,word,XMIT, SOE

- this equates a UTS-400 function key F5 thru F13 with a
word of up to 8 <characters. When the function key is
pressed the word will be written on the terminal where
the cursor 1is positioned at that time. If the 3rd
parameter is XMIT then a transmit function will take
place. If the 4th parameter is SOE, a start-of-entry will
be placed in front of the word.

Load [terminal] [,dvc,name]

- the contents of the staging buffer will be down 1line
loaded into the memory of the UTS-400. After the UTS-400
has been loaded, the transfer record is sent to the
UTS-400. If no terminal is specified, then the down line
load is performed on the terminal that is in wuse. Note
that only the master or primary terminal of a UTS-400
cluster receive down line loading.

- 'dvc' is the auxiliary device index where the program is
to be stored (e.g diskette).

- 'name’ 1is the name to be given to the program when it is
stored on the diskette.

LT [terminal] [,dvc,name]
- same command as Load except the time of day from the host
will be loaded to location A06B in the format 'HHMMSST',
7 digits of hours, minutes, seconds, and tenths.

input re-direction

Page: 2 TIP/30 Reference Manual
Section: 3.16 Version 2.5 (82/08/01)

DLL
DOWN LINE LOAD UTILITY

. - re-direct input to the given file/element. This command
is very useful. The user may make up a canned run stream
for this program which may be run at the begining of each
day to load all of the UTS-400 clusters with the screen
formats. The .IN file as described in the section on TCP
may be used here. This may be on the command line to DLL,
example

DLL <file/elt
DLL R file/elt
End
- end execution of DLL
Note:

- Only the first letter of the DLL commands are required to
identify the command (IE. L-load, I-include etc.).

Example stream which may be stored and called via a .IN file:

Include TIP/MCS400 -MCS terminal program

Message ACCT1,U -accounting screen
Message PAY1 -payroll screen
Function 5,PAYUPDT,XMIT, SOE -send in the word PAYUPDT
Loadm TMO 1 -load into UTS-400 cluster
Loadm TMO6 -load into UTS-400 cluster
End ~ -~end of loader
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 3

DOWN LINE LOAD UTILITY Section: 3.16

DLL
DOWN LINE LOAD UTILITY

3.17 UTS-400 MESSAGE CONTROL SYSTEM MCS400

This is a UTS-400 program which 1is written in Intel 8080
assembler language and supplied to the user as an ASMB(0 object
module. It operates under the direction of TIP/30's MCS to display
screen formats on the terminal and eliminate the need to
continually transmit it down the line. This program and messages to
be wused should be 1loaded into the UTS-400 master when TIP/30 is
started up, and any time the UTS-400 master (or controller) is
initialized [ie: via a power-on confidence (POC) test].

Function keys 5 thru 13 can be programmed by DLL. The other
function keys perform as follows.

- Fl14 := beeps the terminal to let you know that the
program has been successfully loaded.

- F15 := takes ZZname from home position, looks for 'name'
in the screen table, then displays it.

- F16 := displays the next screen format in the table. The
screen name is displayed in bottom right hand corner.

- F17 := does an erase display and cursor home.

- F18 := re-displays the last screen format used for this
terminal

All of these functions operate independently per terminal in the

cluster.

- F20 := allows you to set the time of day in the terminal.
The program will keep the time of day as HHMMSST 1in
location AO06B. To set this time, enter the time at the
home position of the terminal and press F20. Time is kept
in hours, minutes, seconds, and tenths of seconds.

- F21 := begins the display of the time of day at the home
position of the terminal.

- F22 := end the display of time of day.

Page: 1 TIP/30 Reference Manual

Section: 3.17 Version 2.5 (82/08/01)

DOC
DOCUMENT GENERATOR

3.18 DOCUMENT GENERATOR DOC

The Document Generator (DOC) 1is a program which creates a
formatted document from data files created using the TIP/30 text
editor. A batch version of this on-line program is also supplied by
Allinson-Ross. The data in the input file consists of the text to
be printed as well as imbedded commands which provide formatting
instructions to the DOC program. The DOC program reads this "raw
text", acts on the imbedded commands, and produces a formatted
output document at the terminal, auxiliary printer or the site
printer,

The DOC program consumes resources at a rate roughly proprtional
to the length of the input raw text and the number and nature of
imbedded commands. It may be prudent to use the batch version of
DOC for serious (or high volume) documenting and reserve on-line
use of DOC for testing small, self-contained documents.

DOC recognizes two types of imbedded commands:
- declarative
- imperative
A declarative command 1is one which changes the format of the
document or the mode of program operation. A declarative command
does not necessarily have an immediate effect.
An imperative command is one which performs an action either on

the <current 1line or on the next line. All commands are imperative
except as noted in the command descriptions.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18

DOC

DOCUMENT GENERATOR

A command
formats:

Syntax:
@F
@FA
@Fnn

Where:

(declarative or 1imperative) may be in one of three

nn

is the command delimiter (which is by default the
commercial at sign character as shown);

represents a single character which indicates the
function to be performed;

represents a single character which supplies
further information to be used in executing the
command

represents a one or two digit wvalue which
specifies quantitative information to be wused 1in
executing the command.

If the value required is a single digit, it may be
specified as a single digit unless the first
character of text which follows the command is
also a digit., In that case, a single digit would
be erroneously associated with the digit 1in the
raw text that follows. To avoid this situation,
the single digit should be specified with a
leading =zero, as illustrated by '@I05' in this
example:

@I051. PROCESSING THE COMMANDS...

Page: 2
Section: 3.18

TIP/30 Reference Manual
Version 2.5 (82/08/01)

DOC: oNLINE
ONLINE DOCUMENT GENERATOR

3.18.1 ONLINE DOCUMENT GENERATOR DOC: online

The DOC program gives the user the ability to have documentation
produced at the terminal, the central site printer, or a terminal
auxiliary printer.

Syntax:
DOC[,option] file [,element] [,dest]
Where:
option choice(s) from the following list:
"U" - force upper case output;
"H" - print identification header page (default if
destination is not an auxiliary device);
"N" - do not print header page (default if
destination is an auxiliary device);
file The catalogued name of the library containing the
element which 1is to be input to DOC, or the name
of an existing edit buffer which 1is to be the
input to DOC.
element The element name associated with "file" or omitted
if the first parameter is the name of an edit
buffer.
dest The destination of the output of the DOC program.
Default is the terminal. Other possibilities are:
PRNTR, AUX1l etc. If this parameter is strictly
numeric, it will be interpreted as the number of
lines to output to the terminal (the default
destination) before prompting the user (see
additional considerations following).
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DOCUMENT GENERATOR Section: 3.18.1

0C:
DOC: onwIne ONLINE DOCUMENT GENERATOR

Example:
DOC,U source/memo12,PRNTR

Will cause DOC to process the contents of element "memoi2"
from the library with catalogued file name "source". The
formatted document will be sent to the batch printer, with
forced upper case alphabetics.

Error Conditions:

The requested output device may not be available or the specified
file/element or edit buffer may not be found.

-4k

Page: 2

TIP/30 Reference Manual
Section: 3.18.1

Version 2.5 (82/08/01)

ADDITIONAL CONSIDERATIONS

DOC

. 3.18.2 ADDITIONAL CONSIDERATIONS DOC

When the output of DOC is directed to the terminal, the output
is continuously rolled out (from bottom to top) until the number of

lines specified by parameter 3 is encountered. At that point DOC
will stop rolling out lines and prompt the user. The wuser has an
opportunity to indicate whether or not to continue the output, go
to a specific page or alter the pause interval. The choices are:
"E" or llQ"

- end document production.
"P nnn"

- proceed to page nnn.
"L nnnll

- change pause interval to nnn lines.
none of the above

. - continue output.
-+%k+-
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DOCUMENT GENERATOR Section: 3.18.2

DOC
SUMMARY OF IMBEDDED COMMANDS
3.18.3 SUMMARY OF IMBEDDED COMMANDS DOC
The Document Generator recognizes these imbedded commands:
COMMAND FUNCTION NOTES
@, PHYSICAL FORM FEED
@ (START MARGIN FLAGGING
@! or @] SAVE PARAGRAPH NUMBER 0-1 MODIFIER
@) STOP MARGIN FLAGGING
@- CHANGE COMMAND DELIMITER
@% SWITCH INPUT TO FILE/ELEMENT
0@ START/STOP UNDERLINING (batch only)
@7 RECALL SAVED PARAGRAPH NUMBER 1 MODIFIER
@@ GENERATE LITERAL AT-SIGN
enn CALL MACRO nn (0 thru 99) 1-2 MODIFIERS
@A SPACE TO ABSCLUTE COLUMN 0-2 MODIFIERS
@B GENERATE DOCUMENT INDEX (batch only)
@C END OF LINE (CENTRE) . 0-2 MODIFIERS
OE EJECT TO NEW PAGE 0-2 MODIFIERS
eF FLUSH LINE 1 MODIFIER REQUIRED
@G SET PAGE LENGTH 1-2 MODIFIERS
@H HORIZONTAL SPACE 1-2 MODIFIERS
@l SET INDENTATION (LEFT) 0-2 MODIFIERS
eJ JUSTIFY MODE
@K INCREMENT AND CALL MACRO
eL END OF LINE (JUSTIFY LEFT) 0-2 MODIFIERS
@N NOTATION (HANGING INDENT)
@0 START ODD/EVEN PAGE
@P RETRIEVE PAGE NUMBER
eQ DEFINE MACRO CONTENTS
@R END OF LINE (JUSTIFY RIGHT) 0-2 MODIFIERS
@S SET LINE SPACING 1-2 MODIFIERS
@7 UNJUSTFIED MODE
@u SAVE COMPOSITION STATUS ONLY USED IN HEADING
@y RESTORE COMPOSITION STATUS ONLY USED IN HEADING
oW SET LINE WIDTH 1-2 MODIFIERS
ex INCREMENT PARAGRAPH NUMBER 1 MODIFIER ("0"-"Qg")
ey LOG LINE IN TABLE OF CONTENTS (batch only)
ez PRODUCE TABLE OF CONTENTS (batch only)
-+%k+-
Page: 1 TIP/30 Reference Manual
Section: 3.18.3 Version 2.5 (82/08/01)

DOC: a.
PHYSICAL FORM FEED

3.18.4 PHYSICAL FORM FEED DOC: @.

This command will result in a real page eject. It 1is wusually
found within macro 20 [which is executed whenever a page overflow
condition occurs (via @E or normal overflow)].

-kt~

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.4

DOC: a(
START MARGIN FLAGGING

3.18.5 START MARGIN FLAGGING DOC: @(

This command causes the printing of a character in the left
margin, thereby flagging the current line and all subsequent lines
until an occurrence of the "turn off margin flagging" command [@)].
The character that is printed in the margin is usually the vertical
bar character ('|'). This character is not printable on some print
devices. The batch version of the DOC program allows the user to
redefine the flag character.

- +k+-

Page: 1 TIP/30 Reference Manual
Section: 3.18.5 Version 2.5 (82/08/01)

DOC: aln 5 @ N
SAVE PARAGRAPH NUMBER

3.18.6 SAVE PARAGRAPH NUMBER DOC: @!n ; @ln

This command is used to save the current paragraph number. The
modifier 'n' uniquely identifies the saved number, and may have a
value from 1 to 9. This command may be used in connection with the
recall paragraph number command (@?) to facilitate references to

previous paragraphs without having to guess (or explicitly include)
the actual paragraph number.

This command may be spelled using the exclamation character

("!t") or with the right side square bracket character ("]1").
-kt -
CHAPTER II1 - ON-LINE UTILITY PROGRAMS Page: 1

DOCUMENT GENERATOR Section: 3.18.6

DOC: &)

STOP MARGIN FLAGGING

3.18.7 STOP MARGIN FLAGGING

DOoC: @)

This command terminates the printing of the margin flag on
subsequent lines. This command is the 1logical inverse of the
command "@(".

-kt~
Page: 1 TIP/30 Reference Manual
Section: 3.18.7 Version 2.5 (82/08/01)

DOC: a-c
CHANGE COMMAND DELIMITER

' 3.18.8 CHANGE COMMAND DELIMITER DOC: @-c

This command is wused to specify a new command delimiter (ie:
other than the default commercial at sign). Once this command 1is
encountered, all subsequent commands must start with the character
specified as 'c'. This command may be used to change the delimiter
prior to «calling a new 1input element (@%) which may have the
standard delimiter ('@') as part of its text.

EXAMPLE:

When including the source of a program as part of a document
and the program source has the character '@' in it, the
following commands could be used:

@28@-t1%file/prognamet-@@29

- +k+-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.8

DOC: QZ%FILE/ELT
SWITCH INPUT TO FILE/ELEMENT

3.18.9 SWITCH INPUT TO FILE/ELEMENT DOC: @%file/elt

This command specifies a source element that is to be used as
input (read in) at this point. When this new element is exhausted,
the data immediately following this command will be processed. The
new input element may also have input switching commands
(@%file/element) in it, however such nesting may only occur to a
maximum of five levels. If the file is not specified, the last
input file is used (ie @%eltname).

For the batch version of the DOC program, the filename must
match an LFD name of a standard 0S/3 library file.

For the on-line version of DOC, the filename is the catalogued
name of the library file containing the new input element. 1In the
online version, the filename may also be the name of an edit buffer
that contains the input data. In this case, the eltname field
remains blank (ie @%buffername).

Syntax:

@%file [/element] [, type]

Where:
file The catalogued file name of the library to use or,
the edit buffer name (assuming element and type
are omitted).
element The element name to read from the specified
library.
type Standard element types: "S", "M", "P" [Default is
"S"].
Example:
@%JCS/TIP30

Switch to reading element named "TIP30" from library
catalogued with name "JCS".

Page: 1 TIP/30 Reference Manual
Section: 3.18.9 Version 2.5 (82/08/01)

SWITCH INPUT TO FILE/ELEMENT

DOC: Q%FILE/ELT

Additional Considerations:

This DOC command should be followed by at least one blank (so that
any trailing text is not erroneously associated with the parameters

of this command.

- +k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2

DOCUMENT GENERATOR

Section: 3.18.9

DOC: a_
START/STOP UNDERLINING

3.18.10 START/STOP UNDERLINING DOC: @_

This command is implemented as a toggle. It will either start or
stop underlining. The initial state is underlining off. The first
ocurrence of @_ will Dbegin wunderlining; the next will stop
underlining etc.

Blanks in the string will not be underlined (see following
example).

For example, the following line was underlined by the following
string in the input document:

@_This entire sentence is underlined.@_

This entire sentence is underlined.

-tk

Page: 1 TIP/30 Reference Manual
Section: 3.18.10 Version 2.5 (82/08/01)

DOC: a?w

RECALL PARAGRAPH NUMBER

3.18.11 RECALL PARAGRAPH NUMBER DOC: @?n

This command is used to recall a previously saved paragraph
number. The paragraph number must have been saved with the save
paragraph command (@!n - see 3.18.6). The modifier 'n' uniquely
identifies the saved number, and may have a value from 0 to 8. If a
value of 0 is used, then the current paragraph number is recalled.
(This would, for example, be employed in cases where the current
paragraph number was needed in some heading or other information).

-+ k4 -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.11

DOC: aa
GENERATE LITERAL AT-SIGN

3.18.12 GENERATE LITERAL AT-SIGN DOC: @@

This command will cause a real commercial at sign to be
generated. Since the at sign is the default command character, it
is necessary to have this mechanism available for those situations
when a real at sign is desired in the output.

-kt

Page: 1 TIP/30 Reference Manual
Section: 3.18.12 Version 2.5 (82/08/01)

CALLING MACROS

DOC: anN

3.18.13 CALLING MACROS

DOC: @nn

A macro is called by a command expression of the form:

@nn

Where nn is an integer in the range 0 through 99 identifying which

of the 100 macro definitions is to be called.

Any macro may be called by the user at any point after the

definition of that macro.

-tk

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.13

DOC: QANN
SPACE TO ABSOLUTE COLUMN

3.18.14 SPACE TO ABSOLUTE COLUMN DOC: @Ann

This command causes DOC to generate in the current line a number
of space characters. The number of spaces generated is calculated
to be the difference between the current column location and the
value specified as a modifier to this command. If the value
specified is not greater than the «current column location, the
command is ignored.

-tk +-

Page: 1 TIP/30 Reference Manual
Section: 3.18.14 Version 2.5 (82/08/01)

DOC: aB
GENERATE DOCUMENT INDEX

3.18.15 GENERATE DOCUMENT INDEX DOC: @B
This command is used to produce an index. The index is produced
from the logged (@Y) lines arranged in alphabetical order by the
first significant word.

This command is ignored by the on-line DOC program, but is
processed by the batch version.

The index of this document is initiated as follows

@EI N D E X @Y Page@R @B

- +k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS : Page: 1
DOCUMENT GENERATOR Section: 3.18.15

DOC: aCnw
END OF LINE (QUAD CENTRE)

3.18.16 END OF LINE (QUAD CENTRE) DOC: @Cnn
This command causes the line currently being constructed to be
terminated. The line terminated by this command is unjustified and
is centered between the (possibly indented) left margin and the
right margin. The optional modifier 'nn' specifies the number of
lines to leave after the centered line.
The information string
Table of Contents @GCl
Produces the following line
Table of Contents
~ 4kt~
Page: 1 TIP/30 Reference Manual
Section: 3.18.16 Version 2.5 (82/08/01)

DOC: aENN,MM

EJECT TO NEW PAGE

’ 3.18.17 EJECT TO NEW PAGE DOC: @Enn,mm

Eject to a new page. The optional modifier 'nn' specifies the
number of consecutive 1lines which must not be split between two
pages. If nn lines (or more) remain on the current page, a new page
is not initiated. If less than nn lines remain on the current page,
a new page is initiated.

Modifier mm specifies the number of lines to leave if a page
eject is not performed by this command.

If nn is not specified, an unconditional eject to a new page is
performed. In any case, if a text line has not yet been terminated
when this command occurs, the line will be terminated as if the
command @L (with no nn specification) had occurred.

It 1s important to note that this command does not cause a
physical form feed to occur, it generates a space command to
position the <current page at the bottom 1line of the page (as
defined in the @Gnn command) then macro 20 is executed.

Macro 20 1is assumed to contain the correct information to
produce a page footing, eject the page and produce a page heading
for the next page. An example of how this is performed for this
document may be found in the section describing initial definitions
' of macros.

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.17

DOC: aFc '

FLUSH LINE
3.18.18 FLUSH LINE DOC: @Fc
Flush with character fill. This command causes the text already
in the line to be unjustified and positioned at the beginning of
the 1line. The text following this command and preceding the next
@Lnn command is positioned at the end of the line. The intervening
space between these two portions of the 1line 1is filled with
repetitions of the character c. If space fill is desired, then the
character ¢ must be a space.
The information string
Reader@F.600 CPM@L1
Produces the following line
Reader......... ceccsesesesessanns cessseeenn cveensassss 600 CPM
-k -
Page: 1 TIP/30 Reference Manual
Section: 3.18.18 Version 2.5 (82/08/01)

SET PAGE LENGTH

DOC: aGnN

3.18.19 SET PAGE LENGTH

DOC: @Gnn

This is a declarative command which controls the number of lines
which may be printed on each page. The "nn" is the number of lines
which will be printed and/or spaced before performing a skip to the
home position. This number must be less than the number of lines
determined by the

between two consecutive home positions
physical carriage control mechanism.

Default = @G55

— 4kt~

as

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.19

DOC: aHnN
HORTZONTAL SPACE

3.18.20 HORIZONTAL SPACE DOC: @Hnn
Immediate horizontal space. This command inserts space 1in the
'nn' print positions following the text most recently placed in the
current line or, in the absence of such text, inserts space at the
beginning of the (possible indented) line. If less than nn print
positions remain in the current line, the excess is ignored and the

line is not justified.
-kt~

Page: 1 TIP/30 Reference Manual
Section: 3.18.20 Version 2.5 (82/08/01)

SET INDENTATION (LEFT)

DOC: alnn

3.18.21 SET INDENTATION (LEFT) DOC

This command changes the 1left indentation
indentation at nn print positions from the 1

¢ @Inn

by resetting the

eft margin.

This

command will neither terminate nor change the indentation for a

line in progress; the change in indentation will only affect
subsequent lines.
Default = €I00
-kt
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.21

DOC: aJ
JUSTIFY MODE

3.18.22 JUSTIFY MODE DOC: @J

This command is used to set the mode of the Document Processor

back to the standard 'justify' mode. This command is the logical
inverse of the 'card image' (@T) command.

- +k+-

Page: 1

TIP/30 Reference Manual
Section: 3.18.22

Version 2.5 (82/08/01)

DOC: aknn
INCREMENT AND CALL MACRO

. 3.18.23 INCREMENT AND CALL MACRO DOC: @Knn
This command increments by 1 and retrieves (as text) a 6-digit
counter (leading zero suppressed).
Before using this command, the macro 'nn' should be set to an
all decimal string of 6 digits (ie. @Qnn00000O").
This command is useful when a running counter 1is desired (for
example, a STEP number to be used in a heading).
-+ %+ -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.23

DOC: QLNN
END OF LINE (QUAD LEFT)

3.18.24 END OF LINE (QUAD LEFT) DOC: @Lnn

Terminate current 1line and start new line; the terminated line
is positioned so that its beginning is at the (possibly indented)
left margin and its end is followed by spaces. The value of nn is
the number of lines of spacing in addition to the standard line
spacing as specified in the command @Snn. The value nn need not be
specified. If nn is greater than the number of lines remaining on
the current page, a new page 1is initiated and the excess is
ignored. The line terminated by this command is unjustified. This
command should normally be preceded by a space character.

The information string
@L1Table of Contents@Ll
Produces the following three lines

Table of Contents

-4kt

Page: 1 TIP/30 Reference Manual
Section: 3.18.24 Version 2.5 (82/08/01)

DOC: aNnN
NOTATION (HANGING INDENT)

. 3.18.25 NOTATION (HANGING INDENT) DOC: @Nnn

This command is used to produce a notation format (often called
'hanging indentation'). The text preceding this command is placed
at the beginning of the (possibly indented) 1line. The text
following this command 1is placed starting at a point which is nn
print positions from the current position in the 1line; subsequent
lines of text alsc begin at the same point. The effect of this
command is terminated by the command @Lnn.

It should be noted that if spaces occur in the text preceding
this command and if the line is subsequently expanded to the right
margin, these spaces may be expanded thereby producing an undesired
result. Alternatively, a macro such as macro 10 (see later
description) may be used.

Example:

point one: this 1is the description of point one. Note that
this description .illustrates hanging indentation
(otherwise known as notation format) and may go on
for a rather long time and keep the temporary
hanging identation.

°

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.25

DOC: a0
START ODD OR EVEN PAGE

3.18.26 START ODD OR EVEN PAGE DOC: @O
This command will call macro 36 if the current page number 1is
even, otherwise macro 37 will be called. These macros do not have
any specific pre-defined contents. They may be used to cause a new

section to start on an even (or odd) number page.
-kt

Page: 1 TIP/30 Reference Manual
Section: 3.18.26 Version 2.5 (82/08/01)

DOC: aP
RETRIEVE CURRENT PAGE NUMBER

3.18.27 RETRIEVE CURRENT PAGE NUMBER DOC: @P

This command will retrieve (as text) the current page number.
The text retrieved 1is the page number expressed in the minimum
number of decimal digits without leading =zeroes. The user would
normally precede and follow this command with any desired spacing
or other decorations (ie: 'Page @P.').

-+ okt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DOCUMENT GENERATOR Section: 3.18.27

DOC: aQNN, .7
DEFINING MACRO CONTENTS

3.18.28 DEFINING MACRO CONTENTS DOC: @Qnn..."

There are 100 macros that may be defined by the DOC user. The
contents (ie: definition) of a macro may be changed any time and as
often as required.

To define the contents of a macro the user would include a
command such as:

@Qnn...string-of-commands-and/or-text..."

Where:

nn' A number in the range of 0 through 99 identifying
the macro being defined.

the string of commands and/or text is limited in
length to 70 characters. The string must be
terminated by the double guote character.

The string which the macro represents may contain calls to other
macros, but the user should be careful to avoid defining a macro
which <calls other macros in such a manner that an endless loop of
calls is created. The DOC program allows nested macro calls to a
depth of 5.

A macro may be called by using the command "@O0" through "@99".
There is no provision for passing parameters to a macro.

- k4=

Page: 1 TIP/30 Reference Manual
Section: 3.18.28 Version 2.5 (82/08/01)

END OF LINE (QUAD RIGHT)

DOC: aRnN

3.18.29 END OF LINE (QUAD RIGHT)

DOC: @Rnn

This command terminates the line currently being constructed.
The terminated line will be unjustififed and positioned with the
end at the right margin and the space to the left of the first

non-space character is filled with spaces.

The

optional

modifier

'nn' specifies the number of lines to leave after the line that was

right-justified.
The information string
@L1Table of Contents@R1

Produces the following line:

-4kt -

Table of Contents

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.29

DOC: aSnw
SET LINE SPACING

3.18.30 SET LINE SPACING DOC: @Snn
This 1s a declarative command which controls the spacing that
occurs between lines of the generated output document. Single
spacing is the default. If nn is 1, 2, or 3, then normal spacing is
single, double or triple. If nn is greater than 3, the value 1 is
assumed. If nn is zero, no vertical advance (implying print with no
space or overstriking) will occur until another @Snn occurs with nn

greater than zero.
- +k+ -

Page: 1 TIP/30 Reference Manual
Section: 3.18.30 Version 2.5 (82/08/01)

UNJUSTIFIED MODE

DOC: af

3.18.31 UNJUSTIFIED MODE DOC: @T

This command causes the Document Generator to enter what is
called 'card image' mode. In this mode, strings of space characters
are not reduced to a single space (as they would be in justify

mode), they are treated as real data characters.

If this command is not followed by any data characters in the

current input, and the line width has been set to 72,
following records will be printed as they appear in

then the
the input

stream (card image). This is very wuseful in the production of

complicated diagrams or tables.

It should be noted that in this mode column 72 should always be
left blank as the end-of-line sequence is only invoked whenever a

space 1is detected in column 72.

This command is often considered 'as is' mode because the raw

text shows the exact format of the generated output text.

-4kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page:
DOCUMENT GENERATOR Section:

1
3.18.31

DOC: al ,
SAVE COMPOSITION STATUS

3.18.32 SAVE COMPOSITION STATUS DOC: @U

This command saves the pertinent information concerning the
composition of the current line. It should be the first command in
the definition of the macro which is executed at page overflow time

(ie. Macro 20). The information which 1is saved is line width,
indent value, case shift, and margin flagging.

-+ k4~

Page: 1

TIP/30 Reference Manual
Section: 3.18.32

Version 2.5 (82/08/01)

RESTORE COMPOSITION STATUS

DOC: aV

. 3.18.33 RESTORE COMPOSITION STATUS

command in the definition of the
composition of page headings (ie.
purpose.

-k -

macro
Macro

DOC: @V

This command restores the information saved by the @U
concerning the composition of a prior line.

command

It must be the last

which specifies the
@30) and has no other

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page:
Section:

1
3.18.33

DOC: aWnN
SET LINE WIDTH

3.18.34 SET LINE WIDTH DOC: @Wnn

This is a declarative command which sets the width of the 1line.
The value nn 1is the number of print positions to be contained in

the unindented line. There is no provision within DOC to allow
lines wider than 99 print positions.

Default = @W72

-kt

Page: 1

TIP/30 Reference Manual
Section: 3.18.34

Version 2.5 (82/08/01)

DOC: QXN

INCREMENT PARAGRAPH NUMBER

3.18.35 INCREMENT PARAGRAPH NUMBER DOC: @ZXn

This command will increment the current paragraph number by one.
DOC generates paragraph numbers that are of the form:

nnn.nnn.nnn. efc

There may be from 1 to 9 levels within the paragraph number. Each
level may be from 1 to 3 digits. By issuing the @Xn command the
user is requesting that level 'n' of the current paragraph number
be incremented by one and the 1levels to the right of the
incremented 1level be discarded. This command may be considered to
mean: 'start a new paragraph at level n '. For example, issuing the
command @X2 when the current paragraph number was '12.3.4' will
change the current paragraph number to '12.4'.

Given the paragraph number in the lefthand column below as the
current paragraph number, the command @X3 produces the
corresponding paragraph number in the righthand column.

e e W En e e M ED e MR A EA e M e G G G M M e e e G e M Em W M Gm G W Bm b G wm e e ww e e e W
e e M em e e b e M R e e e e e e e e e e e e e e e = e v em mm e e Em = e = o

i CURRENT NUMBER @x3 NEW NUMBER
I
4.1, --> 4.1.1.
I 6.13.5. --> 6.13.6.
' 7.2.9.4. --> 7.2.10.
I 9.6.14.3.7. --> 19.6.15.
0 12.2.7.10.3.14 -=> 12.2.8.
-kt -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DOCUMENT GENERATOR ‘ Section: 3.18.35

DOC: aY

LOG LINE IN TABLE OF CONTENTS

3.18.36 LOG LINE IN TABLE OF CONTENTS DOC: @Y

This command is used to have the current 1line stored in the
table of contents file., The line is stored in the file in the order
logged. An internal pointer chain is maintained through the file in
alphabetical order by the first significant text in the line. Any
indents or horizontal skips at the begining of the 1line will not
affect the resulting order of the logged records.

The logged lines may be recalled into the document (usually near
the end of the document) by using the @Z (sequential order) command
or the @B (alphabetical order) command.

This command 1is 1ignored by the on-line DOC program, but is
processed by the batch version.

-tk

Page:
Section:

1
3.18.36

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SEQUENTIAL TABLE OF CONTENTS

DOC: az

3.18.37 SEQUENTIAL TABLE OF CONTENTS

This command is used to compose the table o
those 1lines logged via the @Y command. This c
table of contents to be inserted in the docume
@Z is coded.

This command is ignored by the on-line D
processed by the batch version.

This command normally appears near the end

DOC: @2

f contents containing
ommand will cause the
nt at the point the

OC program, but is

of the document and

should normally be preceded by commands to format the first page of

the table of contents.

The table of contents may be 1located
document.

The table of contents of a document
follows (for example):

T A B L EGH30 FEH3C O N T E N T S@C Page@Rl @Z

-kt -

at any point in the

might be initiated as

CHAPTER III - ON-LINE UTILITY PROGRAMS
DOCUMENT GENERATOR

Page: 1
Section: 3.18.37

DOC

EXAMPLE OF MACRO USE AND DEFINITION

3.18.38 EXAMPLE OF MACRO USE AND DEFINITION DOC

Assume that the user wishes to define a macro that will make it
simpler to achieve the following:

- leave two blanks lines
- display the company name (centered)
- leave two blank lines
One way to do this would be to select a macro number to be used

(assume 61 for example) and then DEFINE that macro as follows:

@Q61@L2A11inson - Ross Corporationec2”
Whenever the user wishes to leave two Dblank 1lines Dbefore and.
after displaying the company name (centered) all that would be

needed would be the inclusion of @61 in the text at the appropriate
point. For example:

Allinson - Ross Corporation

Page: 1 TIP/30 Reference Manual

Section: 3.18.38 Version 2.5 (82/08/01)

DOC
EXAMPLE OF MACRO USE AND DEFINITION

Another potential use is rather simple but powerful. Assume that a
certain phrase is wused very often in a document. Under normal
circumstances, the user would have to key that phrase in every time
it was needed. A much simpler approach would be to define a macro
containing the desired text and then it is just a matter of calling
the macro whenever the text is required.

For example:

DEFINITION: @Q61the party of the second part,"
USE: whereas @61 the appellant...
RESULT: whereas the party of the second part, the appellant...

The user should note that assigning a number to a macro
definition 1is a critical part of the process - there is no
provision for defining a temporary macro; once a macro is defined,
the previous definition of that macro is no longer obtainable.

— %+ -

CHAPTER I1I - ON-LINE UTILITY PROGRAMS Page: 2
DOCUMENT GENERATOR Section: 3.18.38

DOC: a0-a39
PREDEFINED MACROS 0-39

3.18.39 PREDEFINED MACROS 0-39 DOC: @0-@39

Macros 0 through 39 (inclusive) have been given default
definitions. These definitions are in effect when the DOC program
begins processing the wuser raw text. It is advisable to avoid
modifying the definitions of these macros (but under some
circumstances it may be required).

The initial definition of the general purpose macros and their
intended use are described below:

@0 = @Q30"RERX

- End document
@l = @ECGIEX1EGA6QIO0S5

- Produce a first level numbered paragraph heading
@2 = @L2Q@E30@I@X2@A10@IO05

- Produce a second level numbered paragraph heading
@3 = @GL2@E20@IE@X3@Al12@IO05

- Produce a third level numbered paragraph heading
@4 = @GL2@E15@I@X4@A15@IO05

- Produce a fourth level numbered paragraph heading
@5 = @L2G@E10@IE@X5@A18@IO05

- Produce a fifth level numbered paragraph heading
@6 = E@L2GE10G@IEGX6GA20Q@IO0S5

- Produce a sixth level numbered paragraph heading
@7 = @L1GE2@IO0S5

- Terminates the line in process. Generates one blank line

space, and assures that the next two lines will not be
separated by a page break

Page: 1 TIP/30 Reference Manual
Section: 3.18.39 Version 2.5 (82/08/01)

DOC: a0-a39
PREDEFINED MACROS 0-39

@8 = @L1E@E2@IS5*ENO4

- Generates a "bullet" paragraph using the character * as
the bullet; following is an example:

* This is an example of the @8 bullet paragraph the bullet is
placed in print position 6 and subsequent lines start in print
position 11, The effect of this macro is terminated by
initiation of a new line. This bullet paragraph is logically
superior to the second bullet paragraph, @9, explained below.

@9 = @L1E@E2€I5 - —ENO4

- Generates a "bullet" paragraph using the character - as
the bullet; following is an example:

- this is an example of the @9 bullet paragraph, the bullet
is placed in print position 11 and subsequent lines start
in print position 16. The effect of this macro 1is
terminated by initiation of a new 1line. This bullet
paragraph is logically subordinate to the first bullet
paragraph, @8, explained above.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: : 2
DOCUMENT GENERATOR Section: 3.18.39

DOC: a0-a39
PREDEFINED MACROS 0-39

@10 = @SELES1EN

- Produces a notation format using the @n command (see
section 3.18.25) but escapes the limitation of that
command concerning spaces within the noted text.
Following are two examples; the first showing the
limitation in the @n command; the second showing the same
text preceding the macro @10:

(1) no def notice that, although ten spaces were desired
following "def", the spaces preceding "no" and
"def" might have been expanded when the 1line
was justified.

(1) no def notice that now, with the use of the @10 macro,
those spaces preceding "no" and "def" remain
unchanged.

Note that the last command (@n) in the macro definition above Iis
incomplete; that 1is, no specification of "pp" 1is included.
Accordingly, the first two characters following the call on this
macro (@10) must be the digits which complete the @n command at the
end of the macro definition; for example, @1019, the value of the
two digits following the macro call, @10, should be one less than
the number of print positions from the start of the 1line to the
point at which the text following the macro call is to be placed.

Of the two examples shown above, the second was created by the
following segquence:

... line was justified. @7(1) no def@l0Ol9notice that
now, with the use of...

Page: 3 TIP/30 Reference Manual
Section: 3.18.39 Version 2.5 (82/08/01)

DOC: a0-a39

PREDEFINED MACROS 0-39

@11 = @YEGLO1@HO3
- Terminate a heading line
@12 = @L1@I5EH03
- Terminates a paragraph
@13 thru @18 = --reserved for future use--
@19 = QEO0O
- Called after the table of contents is produced.
@20 = @UEL2GIE.E@30
- This macro is <called when a page overflow condition
occurs. The intent of this macro is to produce a page
footing, eject the form, and produce a page heading for
the next page. The initial definition shown above however
does not contain any page footing data. Macro @20 could
be redefined as follows if the user wanted a page footing
which consisted of the page number.
@U- @P -@CRIE.Q@30
@21 thru @25 = --reserved for future use--
@26 = --spaces--
- Contains the break word during the production of the
index or table of contents.
@27 = Allinson-Ross Corporation Document Generator
- This macro is called by macro @30 in the generation of
page headings.
@28 = QLI1GE10QIET
- Is used to simplify entry into the "card image” mode
described under the command @T (see command @T).
@29 = @LEJ
- Is used to simplify termination of the "card image"” mode
described under the command @J (see command @J). An
indentation in effect prior to entering the "card image"
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 4

DOCUMENT GENERATOR Section: 3.18.39

DOC: a0-a39
PREDEFINED MACROS 0-39

mode will no longer be in effect after termination of the
"card image" mode.

Page: 5 TIP/30 Reference Manual
Section: 3.18.39 Version 2.5 (82/08/01)

PREDEFINED

DOC: a0-a39
MACROS 0-39

@30

@27@F Page @PRL2@V

This macro 1is wused to define the page heading. It is
called via macro @20 which is called at page overflow
time. Since the page heading macro (@30) above calls
macro @27, for the text of the heading, the wuser need
only modify macro @27 to set up his personalized page

headings.

@31 = @E5,1- @26 -@CO1
Generate sub-heading for index or table of contents.
This macro is called automatically during the production
of an index (@B) or table of contents (@Z) whenever a
logical break occurs between two lines. In an index, a
logical break occurs when there is a change in the first
letter. In the table of contents, however, a break is a
change in the first level of the paragraph number.

@32 = 000000
This macro contains the current page number.

@33 = 000002.5
This macro contains the version number as specified by
the '// PARAM VER=' job control card. If the version
number is not specified via job control, then the version
number is taken from the first input module read.

@34 = 82/08/18
contains the date the document was generated.

@35 = 9:07:02
contains the time received from the Operating System at
the start of composition.

@36 = --empty--
This macro is called if the page number is even when the
'call odd or even page macro' (@0) command is executed.
This macro has no initial definition.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 6

DOCUMENT GENERATOR Section: 3.18.39

DOC: a0-a39
PREDEFINED MACROS 0-39

@37 = --empty--
- This macro 1is called if the page number is odd when the
'call odd or even page macro' (@0) command 1is executed.
This macro has no initial definition.
@38 = WEDNESDAY AUGUST 18 1982
- This macro contains the current date in literal format
@39 = 0

- This macro contains the revision number of the input
element.

@40 through @99 are not predefined and may be defined by the user
to suit the requirements of the document being generated.

-tk

Page: 7 TIP/30 Reference Manual
Section: 3.18.39 Version 2.5 (82/08/01)

DOC

LIBRARY ERRORS

3.18.40 LIBRARY ERRORS DOC

If a library error should occur (usually file or element not
found) the following error message will be printed:

IEE SRR S LR EE LSRR EE SRR L EE R RS LSS R SRR RS EEEEEEEEEEEEEEEESE LRSS ERESEE ST

LIBRARY ERROR!!!

FILE/ELEMENT = xxxxxxxx(n), FUNCTION = f, ERROR= e.

2R L S E AL RS SRS TS SRS LSS LS SR SR SRS R TS LSS EEESSEEEEE LR EE LTS L R

Where:

Xxxxxxxx 1s the name of the file or element (depending on
the function being performed) that was being
accessed at the time of the error.

n is the file number, each time a new file is
opened, it 1is assigned a number from 1 to 10
starting at 1 for the first file, 2 for the
second etc.

f is the function being performed as follows:

FUNCTION DESCRIPTION
0 open element (XxXxxxxx = element name)
2 open file (xxxxxxxx = filename)
e is the error type as follows:
ERROR DESCRIPTION
2 file not found (// LFD missing)
3 element not in file
3 I1/0 error
-kt -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DOCUMENT GENERATOR Section: 3.18.40

AN
NORMAL TIP/30 SHUTDOWN

3.19 NORMAL TIP/30 SHUTDOWN EOJ

This command will post the END OF JOB REQUESTED flag in TIP/30.
When all users have logged off, TIP/30 will terminate gracefully.

Syntax:
EOJ

Where:
No parameters required.

Example:
EOJ
Error Conditions:
None.
Additional Considerations:

The system SHUTDOWN program (if one 1is specified) will be
scheduled.

Page: 1 TIP/30 Reference Manual
Section: 3.19 Version 2.5 (82/08/01)

FCLOSE
PHYSICALLY CLOSE ON-LINE FILE

. 3.20 PHYSICALLY CLOSE ON-LINE FILE FCLOSE

This program enables the wuser to physically cause a Data
Management "CLOSE" to be issued for up to eight files. Once closed,
the files will not be available to on-line programs until a
subsequent "FOPEN" is issued. This facility is also available as an
0S/3 operator unsolicited command to TIP/30 ("CLOSE"). This program
does NOT operate interactively. It requires up to eight filenames
on the command line; 0S/3 Data Management will be presented with an
CLOSE request for each file name given.

Syntax:

FCLOSE filet [,file2) [,file3] ... [,file8]
Where:

filel...8 the LFD name of the file(s) to be closed.
Example:

FCLOSE CUSTMAST, INVMAST,ORDENTRY

Will close the three specified files.

Error Conditions:

The LFD name specified may not be a.valid LFD name (ie: not in the
TIP/30 job control stream).

Additional Considerations:

If the operation 1is held pending (eg: deferred until users have
relinquished control of the file) the user will be not be notified
of actual completion because the FCLOSE program will terminate
before the actual Data Management function is performed.

The LFD names used must be catalogued in the TIP/30 catalogue in a
group to which the user has access.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
PHYSICALLY CLOSE ON-LINE FILE Section: 3.20

FIN
LOGOFF TIP/30

3.21 LOGOFF TIP/30 FIN
The FIN command is used to logoff TIP/30. If TCP was called via
the escape function, control returns to the program that was active
at that time, otherwise the user is logged off.
Syntax:
FIN

Where:
No parameters are required.

Example:
FIN
Error Conditions:
If the user has not logged on, TIP/30 will not allow a logoff.
Additional Considerations:

FIN is a reserved word recognized by the TIP/30 command processor.

The FIN command is recognized to maintain downward compatability
with previous releases of the TIP/30 system. The LOGOFF program is
the preferred method of logoff.

Page: 1 TIP/30 Reference Manual
Section: 3.21 Version 2.5 (82/08/01)

FOPEN
PHYSICALLY OPEN ON-LINE FILE

3.22 PHYSICALLY OPEN ON-LINE FILE FOPEN

This program enables the user to physically cause a Data
Management "OPEN" to be issued for up to eight files. This facility
is also available as an O0S/3 operator unsolicited command to
TIP/30. This program does NOT operate interactively. It expects up
to eight filenames on the command line; 0OS/3 Data Management will
be presented with an OPEN request for each file name given.

Syntax:
FOPEN filet [,file2] [,file3] ... [,file8]

Where:
filel...8 the LFD name of the file(s) to be opened.
Example:
FOPEN CUSTMAST, INVMAST,ORDENTRY
Will open the three specified files.
Error Conditions:
The LFD name specified may not be a valid LFD name (ie: not in the
TIP/30 job control stream).

Additional Considerations:

Note that this program references files by the real LFD name - NOT
the catalogued logical file name.

The LFD names used must be catalogued in the TIP/30 catalogue in a
group to which the user has access.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
PHYSICALLY OPEN ON-LINE FILE Section: 3.22

FREE

DEACCESS A FILE

3.23 DEACCESS A FILE FREE
The FREE program is used to release a file from assignment to a
user. The effect is to remove the file from the active file table
for the terminal.
Syntax:
FREE[, typel [aft-name]
Where:
type type of FREE to be done.
'"A' : all assigned files are to be free'd. Any
temporary files are scratched by this option.
'F' : any records held for update for the aft-name
are to be released.
'X' : all records held for update for the user in
any file are to be released.
aft-name active file name.
Example:

FREE UPDATE

release the file that was assigned with the logical name of UPDATE.

Error Conditions:

TIPFCS errors may be reported.

Page: 1 TIP/30 Reference Manual
Section: 3.23 Version 2.5 (82/08/01)

HELP
DISPLAY USER HELP INFORMATION

3.24 DISPLAY USER HELP INFORMATION HELP

The HELP program 1is a wutility which will display help
information for a specified program. The user may ask to see the
help information for many of the supplied utility programs.

Help information may also be provided (by the installation
administrator) for the installation's user programs.

The HELP program 1is NOT interactive. It requires only one
parameter (see following) and expects this parameter on the command

line.
Syntax:
HELP [name]
Where:
name The name of the program for which the user needs
help information. If omitted, the HELP program
will display information to help the user run the
HELP program.
Example:
HELP VTOC

Will display the supplied help information for the
program "VTOC".

Error Conditions:
The requested help information may not be available.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY USER HELP INFORMATION Section: 3.24

[DA

INTERACTIVE DEBUG AID

3.25

INTERACTIVE DEBUG AID IDA

IDA is a wutility program which facilitates the debugging of
on-line programs. When the user activates IDA on behalf of a
program, IDA is given control by TIP/30 and then executes the user
program using the hardware execute instruction. After each user
program instruction has been 'executed' (by IDA), the results and
effects of that execution are displayed on the terminal in a format
similar to the assembly language representation of an instruction.
The information presented includes:

- program and job region relative address

- condition code setting

- instruction mnemonic and operands

- effective addresses (operand 1 and operand 2)
- first four bytes of operand 1 and operand 2

If you wish to debug a program that you call directly, and you
only want to debug it once, enter the question mark ('?') character
preceding the transaction code on the command line. This is only
useful when the program to be debugged is the first one called.
Programs that are called from other programs or via IMS/90
succession must be debugged by altering the catalogue entry for the
program.

In order to have a program loaded with IDA activated, catalogue
the transaction code with DEBUG=IDA. Now, whether invoked directly
or by succession, when the transaction is loaded IDA will also be
loaded and given control.

When IDA receives control, it will display various information
about the current environment (transaction id, load module name
etc) and will then prompt the terminal user for a command.

To begin debugging simply press transmit., IDA will begin
executing your program at the address specified as the entry
address by the Linkage Editor. At any time the user may interrupt
the display by pressing MSG/WAIT or a FUNCTION key and enter any of
the following IDA commands.

Page: 1 TIP/30 Reference Manual
Section: 3.25 Version 2.5 (82/08/01)

[DA COMMANDS

IDA: COMMANDS

3.25.1 IDA COMMANDS

(blank)

+,0ffset

-,offset

A PRA,n

AA addr,n

AR r,n

B PRA,N,C

IDA: commands

no command - continue tracing program
Display next storage

Display next 16 bytes from the address last used
in a 'D' or 'A' command. IDA remembers the last
address which was displayed or altered. The user
may specify a hexadecimal offset <offset> to be
added to the address. If an offset 1is not
specified a default value of 16 is used.

Display previous storage

Similar to "+,offset™ but treats any specified
offset as a negative value.

Alter storage

Begining at the program relative address (given as
PRA) store the value specified as 'n'. The value
may be specified as a hexadecimal string or a
character string within single quotes (').

Alter storage at absolute address

Similar to "A" command except that the <addr> is
specified as an absolute address rather than a
program relative address.

Alter general purpose register

Alter the contents of the register. <r> 1is the
decimal number of the register to be changed.
Leading zeros are not significant.

Specify breakpoint address

PRA is the program relative address at which the
user wishes to interrupt execution of the program
to Dbe able to call other IDA functions. A maximum
of eight breakpoints is allowed. This command 1is
usually used in conjunction with the DISPLAY OFF
command when the user wishes to inhibit the 1IDA
display until a specific address has been reached.

<N> is the display mode option to be executed
before prompting; usually "C", "I", or "N".

CHAPTER III - ON-LINE
INTERACTIVE DEBUG AID

UTILITY PROGRAMS Page: 1
Section: 3.25.1

[DA: COMMANDS
IDA COMMANDS

<C> is the decimal count of the number of times
the breakpoint address is to be encountered before
prompting the user.

When a breakpoint has been reached its address is
displayed as well as information describing the
display status (on/off) and mode (Continuous or
Instruction),
C Continuous Mode display
The display 1is scrolled up for each instruction
displayed. To interrupt the display the user must
press a function key or MSG/WAIT.
D PRA Display storage

Display 16 bytes in hex and graphic starting at
the user program relative address given as PRA.

DA addr Display storage from absolute address

Display 16 bytes 1in hexadecimal and graphic
starting at absolute address given as <addr>.

DB Display Breakpoint Table

Display the user defined breakpoint addresses and
their associated options and counts.

DE PRA Display edited
Treat the specified program relative address as if

it was an instruction and display that location as
an instruction.

DF Display floating point registers
Display floating point registers 0, 2, 4, and 6.
(Each floating point register is 64 bits wide but
is displayed as left and right 32 bits).
DI r,offset Display indirect
Display 16 bytes in hex and graphic from the

address computed as the sum of the contents of
register <r> and hex offset <offset>.

Page: 2 TIP/30 Reference Manual
Section: 3.25.1 Version 2.5 (82/08/01)

[DA COMMANDS

IDA: COMMANDS

DR r

ED

L addr

Display General Purpose Register(s)

Display the contents of the specified (in decimal)
register. If <r> is omitted, all 16 registers are
displayed.

End tracing

Tracing of the program is discontinued. The user
program continues executing in normal mode (ie:
not executed via IDA). If a subsequent program
check occurs, control reverts to IDA,

End tracing and IDA

Similar to the "E" command except that a
subsequent program check will pass control to PMDA
instead of IDA.

Display OFF

Turn the IDA display off. Usually used to inhibit
the display of instructions in anticipation of
reaching a breakpoint.

GO TO address

Alter the PSW to execute the next instruction at
the program relative address given as <PRA>.

Instruction mode display

The wuser is prompted for an IDA command after
every instruction; forces display mode ON.

Specify linked address

The wuser may enter the linker assigned address of
the traced routine. This maintains a zero relative
display of user program addresses for easy
reference to the program listing.

Display ON

Turn the IDA display on. Usually used as a
breakpoint option. :

CHAPTER III - ON-LINE
INTERACTIVE DEBUG AID

UTILITY PROGRAMS Page: 3
Section: 3.25.1

IDA: coMMANDS

DA COMMANDS

O,PRA

R term

S PRA,n

T mnemonic

Omit Breakpoint

The program relative address specified by <PRA> is
omitted (deleted) from the breakpoint table.

Stop run

IDA is terminated and control returns to the
previous program on the stack, usually the TIP
COMMAND PROCESSOR.

Redirect IDA display

Direct IDA'S output to the specified terminal. The
terminal must be idle, (ie. no user logged on).
This command allows the user to view the debugging
information displayed by IDA at another terminal.
This would normally be done so that the output
from IDA does not destroy the output of the
program being traced.

The "R" command may leave the alternate terminal
locked up if the program terminates. You must set
some breakpoint to get control back, then Redirect
back to the original terminal sometime before the
program terminates.

Search for memory contents (program relative)

Search for the wvalue <n> (1, 2, 3, or 4 bytes)
from program relative address <PRA>, The value <n>
may be specified as a hexadecimal string or as a
character string enclosed in single quotes.

Translate mnemonic to opcode
Translate the <mnemonic> for an instruction to its

internal hexadecimal representation. Used to
determine opcodes when displaying memory contents.

TN hexop Translate opcode to mnemonic
Translate the specified hex opcode to its mnemonic
equivalent.
-+ k4 -
Page: 4 TIP/30 Reference Manual
Section: 3.25.1 Version 2.5 (82/08/01)

[DA COMMAND EXAMPLES

IDA: EXMAPLES

3.25.2 IDA COMMAND EXAMPLES

(blank)
L 128

IDA: exmaples

FUNCTION

CONTINUE EXECUTING TRACED PROGRAM
DISPLAY ADDRESSES ZERO RELATIVE TO 128

D 23A
+20

DISPLAY
DISPLAY
DISPLAY

16 BYTES AT 'PRA'
16 BYTES AT 'PRA'
16 BYTES AT 'PRA'

23A
25A
24A

DR

DR 11

DF

DI 12

DI 12,40
B D6,N,10

O D6

o)
~
>

23A,D200F002E000
23A,'T301"
24A,47BOF0OE

45E
0,Cic2
TRM4
CLC

TN 41

G 128

DA 2364A
DE 128
ED

E

Q

'-BFUU)U)U)UJII’:I’OHZ"IJFU

DISPLAY
DISPLAY
DISPLAY
DISPLAY

GENERAL PURPOSE REGISTERS

GENERAL PURPOSE REGISTER 11

FLOATING POINT REGISTERS

16 BYTES AT ADDRESS IN R12

DISPLAY 16 BYTES AT ADDRESS R12 + 40

STOP AT PRA D6 ON 10'TH ENCOUNTER AND
EXECUTE OPTION 'N' IE. DISPLAY ON

OMIT BREAKPOINT ADDRESS D6

STOP AT PRA 7A, AUTO-OMIT ENTRY

DISPLAY ENTRIES IN BRKPT TABLE

DISABLE IDA DISPLAY

ENABLE IDA DISPLAY

SINGLE INSTRUCTION DISPLAY MODE

CONTINUOUS DISPLAY MODE

ALTER MEMORY AT 23A TO X'D200F002EQ00O0'

ALTER MEMORY AT 23A TO C'T301'

SEARCH FOR 47BOFOOE FROM ADDRESS 24A

SEARCH FOR NEXT OF PREVIOUS ARGUMENT

SEARCH FROM 45E FOR PREVIOUS ARGUMENT

SEARCH FOR Cl1C2 FROM ZERO

REDIRECT IDA OUTPUT TO 'TRM4'

TRANSLATE 'CLC' TO HEX OPCODE

TRANSLATE 41 TO MNEMONIC OPCODE

GO TO PROGRAM RELATIVE ADDRESS 128

DISPLAY ABSOLUTE LOCATION 2364A

DISPLAY INSTRUCTION AT 128

END TRACING ALLOW PMDA DUMP

END TRACING, ALLOW USER CPROGRAM TO EXECUT

(RECALL IDA IF SUBSEQUENT PROGRAM CHECK)
CANCEL IDA SESSION; EXIT TRACED PROGRAM

-4k4~

CHAPTER 111
INTERACTIVE DEBUG AID

- ON-LINE UTILITY PROGRAMS

Page: 1
Section: 3.25.2

JBQ
DISPLAY 0S/3 JOB QUEUE INFORMATION

3.26 DISPLAY 0S/3 JOB QUEUE INFORMATION JBQ

The JBQ program 1is a wutility program that will display
information about the 0S/3 job queue. It is functionally similar to
the 0S/3 operator command "DI JBQ". The JBQ program recognizes the
following commands:

AT1 - display all queues
End - end the JBQ program
Help - display help information on the terminal

High - display the high priority job queue

List - display step information for a selected job name
Normal - display the normal priority job queue

Pre - display the pre-emptive priority job queue

Quit - end the JBQ program and logoff TIP/30

The JBQ program may be executed interactively or may be given a
single command via the command line. If a single command is given
on the command 1line, JBQ will attempt that command and then
terminate normally. If used interactively, JBQ will prompt the user
for each command until and "End" or "Quit" command is given.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY 0OS/3 JOB QUEUE INFORMATION Section: 3.26

JBQ: aLL

DISPLAY ALL 0S/3 JOB QUEUES

3.26.1 DISPLAY ALL 0S/3 JOB QUEUES JBQ: all

This command will cause the JBQ program to display the status of
all the 0S/3 job queues (Normal, High and Pre-emptive priority).
All jobs 1in each queue will be shown; those job names in
parentheses are currently on hold.

Syntax:
Al

Where:
No parameters required.

Example:

A
Will display all 0S/3 job queues.

Error Conditions:
None,

— %kt~

Page: 1 TIP/30 Reference Manual

Section: 3.26.1 Version 2.5 (82/08/01)

JBQ:
END INTERACTION WITH JBQ PROGRAM END

3.26.2 END INTERACTION WITH JBQ PROGRAM JBQ: end

This command will cause the JBQ program to stop prompting the
user for further commands and terminate normally.

Syntax:
End

Where:
No parameters required.

Example:
E
Will end the JBQ program.

Error Conditions:
None. .

-kt

CHAPTER II1 - ON-LINE UTILITY PROGRAMS P§ge: 1
DISPLAY 0S/3 JOB QUEUE INFORMATION Section: 3.26.2

JB0: we DISPLAY HELP INFORNATION ON TERMINAL

3.26.3 DISPLAY HELP INFORMATION ON TERMINAL JBQ: help

This command will cause the JBQ program to display help
information on the terminal. The help information 1is a
summarization of the recognized command syntax.

Syntax:
HE 1p

Where:
No parameters are required.

Example:
HE
Will display help information on the terminal. Note that

"HE" is the shortest possible string of characters that may
be entered for this command.

Error Conditions:
The help information may not be available.

~+%k+-

Page: 1 TIP/30 Reference Manual
Section: 3.26.3 Version 2.5 (82/08/01)

DISPLAY HIGH PRIORITY JOB QUEUE JBO: HreH

3.26.4 DISPLAY HIGH PRIORITY JOB QUEUE JBQ: high
This command will display jobs that are in the 0S/3 high
priority job gqueue. Jobs currently held by the 0S/3 operator will
be displayed with the job name in parentheses.
Syntax:
High

Where:
No parameters required.

Example:
H
Will display the high priority job queue.

Error Conditions:
None.

-4k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY 0S/3 JOB QUEUE INFORMATION Section: 3.26.4

L1ST LIST JOB STEP INFORMATION

.26.5 LIST JOB STEP INFORMATION JBQ: list

This command will display step information about a selected job.
The job may be queued for execution, rolled out, or executing. The
information displayed includes the job status (executing, queued
etc), the queueing priority of the job, the number of steps in the
job and, for each step in the job, the program executed in that
step, the LFD name of the step library and the switching priority
(if currently executing.

Syntax:
List jobname

Where:
jobname the name of the selected job (8 characters max).
Example:
L TIP30
Will display the step information about job named "TIP30".

Error Conditions:

The specified job may not be found in any queue or may not be
currently executing or rolled out.

- 4%+ -

Page: 1 TIP/30 Reference Manual

Section: 3.26.5 Version 2.5 (82/08/01)

JBQ:
DISPLAY NORMAL PRIORITY JOB QUEUE NORMAL

3.26.6 DISPLAY NORMAL PRIORITY JOB QUEUE JBQ: normal
This command will display the jobs in the normal priority job
queue.
Syntax:
Normal
Where:

No parameters required.
Esxample:
N
Will display the jobs in the normal priority queue.

Error Conditions:
None.

-+k+-

CHAPTER III1 - ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY 0OS/3 JOB QUEUE INFORMATION Section: 3.26.6

JBQ: PRE-EMPTIVE

DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE

3.26.7 DISPLAY PRE-EMPTIVE PRIORITY JOB QUEUE JBQ: pre-emptive
This command will display jobs in the pre-emptive priority job
gueue. If the system was generated without pre-emptive job
scheduling the display will indicate no jobs in that queue.
Syntax:
Pre
Where:
No parameters required.
Example:
P
Will display jobs in the pre-emptive job queue.
Error Conditions:
None.
4%+~
Page: 1 TIP/30 Reference Manual

Section: 3.26.7 Version 2.5 (82/08/01)

END INTERACTION WITH JBQ JBQ: quit

3.26.8 END INTERACTION WITH JBQ JBQ: quit

This command will cause the JBQ program to stop prompting the
user for further commands. If the JBQ program is executing at
program stack level one (ie: was NOT called by another program) the
user will be logged off the TIP/30 system.

Syntax:
Quit

Where:
No parameters required.

Example:

Q
End JBQ program and logoff.

Error Conditions:
None.

-kt

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY 0S/3 JOB QUEUE INFORMATION Section: 3.26.8

JCL

INTERACTIVE JOB CONTROL SUBMITTOR

3.27 INTERACTIVE JOB CONTROL SUBMITTOR JCL

The JCL program allows the user to enter job control statements
at the terminal that will be submitted directly to the 0S/3 run
processor. This eliminates the necessity of creating an element in
the YSJCS library for quick one-~time-only jobs. The JCL program
calls the TIP/30 text editor (QED) to enable the user to create (or
modify) a job control stream. When the editing session is
completed, the JCL program submits the edit buffer to the TIP/30
librarian (TLIB) to be submitted to the remote batch reader queue.
A facility for editing and resubmitting job control streams is
provided so that the user need not re-type a control stream that
was almost correct.

Syntax:

Where:

JCL [file,element [,typel] [,buffer]
OR
JCL [buffer]

file,element an optional file and element to initially read

into the editor work buffer

type the type of element to read [default is source
("S")]

buffer the name of the edit buffer that will be accessed.
If an edit buffer of that name does not exist, JCL
will create it.

If the name 1is not specified, it defaults to
"JCLStttt" where "tttt" is the ICAM name of the
submitting terminal.

Example:

JCL TEST

Will access or create as necessary the edit buffer named
GROUP1/TEST (where GROUP1 is the name of the first

elective group to which the user belongs). The TIP/30

text editor will be called and, if the user exits the editor
with the "E" command, the buffer will be submitted to the
remote batch reader.

Page:
Section:

1 TIP/30 Reference Manual
3.27 Version 2.5 (82/08/01)

JCL
INTERACTIVE JOB CONTROL SUBMITTOR -

Error Conditions:
None.

3.28 LOG OFF TIP/30 LOGOFF

The LOGOFF program is used to logoff TIP/30. Only users that
have previously logged on may log off.

Syntax:
LOGOFF

Where:
No parameters are required.

Example:
LOGOFF
Error Conditions:
None.
Additional Considerations:
This program may only be executed 1in response to the standard

system prompt. The logoff request will not be honoured at stack
levels higher than one.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
INTERACTIVE JOB CONTROL SUBMITTOR Section: 3.28

0
LOGON LOG ON TIP/30 SYSTEM

3.29 LOG ON TIP/30 SYSTEM LOGON

To be able to use the TIP/30 system, the user must first
"logon". This may be accomplished by executing the LOGON program.
The LOGON program requires the user to supply his user
identification and current password. Other methods of logging on
the TIP/30 system are described in Chapter II (logon and logoff
procedures). The wuser id and password supplied by the user are
checked for validity in the TIP/30 catalogue.

Syntax:
LOGON userid/password [,account]

Where:

userid the user name (max 8 characters) assigned to the
user by the installation administrator.

password the current password associated with the userid.
The password is a maximum of 8 characters. It 1s
quite 1legal to have a password that is all blank
(omitted) but this is ill-advised since it
provides rather minimal protection against
unauthorized use.

account the account number the user wishes to associate
with this session. The account number is defined
by the installation administrator and may or may
not be optional.

Example:
LOGON FRED/QWERTYUI

Will Togon a user named "FRED" who has a password
of "QWERTYUI".

Error Conditions:

The userid may not be recognized, the password may not match the
current password for the wuserid, or the account number does not
appear in a list of valid account for the wuserid. After three
attempts, TIP/30 will 1lock the terminal keyboard and inform the
0S/3 system operator that a logon attempt was unsuccessful at that
terminal. The keyboard may be wunlocked for more attempts by
pressing the "KBOARD UNLOCK" key.

Page: 1 TIP/30 Reference Manual
Section: 3.29 Version 2.5 (82/08/01)

L
TIP MAIL SYSTEM Al

3.30 TIP MAIL SYSTEM MAIL

MAIL is a program designed to provide user to user communication
through a mailbox file. Each user who wishes to receive mail must
first create a mailbox using the mail program 'Create' command.

If mail 1is sent to a user who is not logged on, the message is
simply stored in the user's mailbox. However, if the receiving user
is 1logged on, the message 1is stored 1in his mailbox and he is
informed that the message is available for him to read by way of
the 'message/waiting' alarm.

Syntax:
command param

Where:
command is one of the following

Create Create a new mailbox. If the user already has a
mailbox then this command has no effect. There are
no parameters on the Create command.

? Check the mailbox to see how many new messages and
how many old messages it contains. A new message
is a message which has not yet been read. An old
message is a message which has been read by the
user.

Send USER-ID Send a message to a specific user. The Send
function will display a blank screen into which
the user can enter the message he wishes to send.

List List the directory of the mailbox.
List ? List all NEW messages.
List msg# List the message with the specified number.
List USER-1ID List all messages sent by the specified USER-ID.
An asterisk may be used to denote a prefix search.
For example, if the user enters "L *ABC" then all

messages from USER-ID's begining with the
characters "ABC" will be listed.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP MAIL SYSTEM Section: 3.30

AL TIP MAIL SYSTEM

List * List all messages in the mailbox.

Delete Delete all OLD messages. Note that MAIL will not
allow you to delete a message he has not read.

Delete msg# Delete the message with the specified number.
Delete USER-ID Delete all messages sent by the specified user. As
in the List command, an asterisk may be wused to
denote a prefix search.

Delete * Delete all OLD messages in the mailbox.

Additional Considerations:

MAIL may be called to perform a single function by entering the
desired function and its parameters in the command line.

MAIL uses only the first character of a command to 1identify the.

requested function.

Page: 2 TIP/30 Reference Manual
Section: 3.30 Version 2.5 (82/08/01)

0S/3 MEMORY DISPLAY

3.31 0S/3 MEMORY DISPLAY , MEM

The MEM program is a utility which displays the current 0S/3
memory utilization (map). The program details job name, memory
region in hex, size in decimal, type, program executing, CPU time,
account number, storage protect key, executing and scheduling
priority.

Syntax:
MEM [wait] [,Buffers]
Where:
Wait If given causes the MEM program to refresh the
display on the screen every 20 seconds or until a
function key or msg-wait 1is pressed. This also
causes the screen to be scrolled rather than
rolled.

Buffers Optional parameter to cause program to display
buffer pool information (Release 7 and above).

Example:
MEM
Will display the current 0S/3 memory usage map.
Error Conditions:
None.
Additional Considerations:

To discontinue the memory display with the wait parameter, press a
function key or msg-wait and reply "No" to the continuation prompt.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
0S/3 MEMORY DISPLAY Section: 3.31

MODE
SPECIFY MODE OF OPERATION

3.32 SPECIFY MODE OF OPERATION MODE

The MODE program 1is used to place a user in debug mode, to
specify an MCS screen format to be used in place of the standard
system prompt or specify a transaction program which will replace
the standard system command processor (TCP).

Syntax:
MODE[,opt] [menull,progl

Where:
opt defines the mode of operation.
'DB' places the terminal in debug mode: all files
are placed in debug mode. File wupdates are
ignored.
no option; remove debug mode.
menu name of a message format which is to be wused as
the prompt message.
prog is the name of a prompt program which is to be
called.
When this program terminates, the user will be
logged off.
Example:

MODE ARMENU

This will change the standard system prompt for the user to
the MCS screen format "ARMENU".

Error Conditions:
None.

Page: 1 TIP/30 Reference Manual
Section: 3.32 Version 2.5 (82/08/01)

MSG
SENDING A MESSAGE

3.33 SENDING A MESSAGE MSG

The MSG program allows a terminal user to send a message to
another TIP/30 user, to a specific terminal, or to the computer
operator. If the destination is not valid, the sender will receive
an error message. When the message is received, it is prefaced by
the USER-ID and terminal name of the sender.

Syntax:
MSG[/dest] text

Where:
dest is the name of the user (user-id), or the terminal
name (as defined in ICAM) to which the message is
to be sent.
'dest' follows standard prefix notation.
If the destination is not specified (omitted), the
message will be sent to the computer operator.
text is the message (64 characters maximum) to be sent.
Example:

MSG/BETTY INVENTORY UPDATE IS COMPLETE.
MSG/TRM1 YOU CAN LOG ON NOW.

MSG HOW LONG WILL THE SYSTEM BE UP?
MSG/*MF MANUFACTURING FILES CLOSED!

Error Conditions:
No such user or terminal found.
Additional Considerations:

A message that is sent to the 0S/3 operator may be split into two
console lines if the text is too long.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SENDING A MESSAGE Section: 3.33

MSGAR
MESSAGE ARCHIVER (LIBRARIAN)

3.34 MESSAGE ARCHIVER (LIBRARIAN) MSGAR

The message archiver (MSGAR) is a utility program that provides
librarian services for TIP/30 screen formats (messages). Screen
formats are stored in a partition of the TIP/30 catalogue file and
may also be pooled 1in memory for fast access (refer to "TIP/30
System Generation").

The message archiver recognizes the following commands:

CURSOR - specify cursor resting location for a message
DELETE - delete a message
DIRECTORY -

print a directory of message names and information
END - end interaction with MSGAR program :

HELP - display help information on terminal

LIST - list message names and information

PRINT - print a hard copy image of a message

QUIT - end interaction with MSGAR program and Jogoff
RENAME - rename a message

RESTORE - restore a message from an 0S/3 library element

SAVE - save a message in an 0S/3 library element
WRITE create a library element containing message names

The message archiver may be used interactively or may be given a
single command on the command line. If a single command is given on
the command 1line MSGAR will attempt only that command and then
terminate normally. When used interactively, MSGAR will prompt the
user for each command.

Page: 1 TIP/30 Reference Manual
Section: 3.34 Version 2.5 (82/08/01)

CURSOR RESTING LOCATION

MSGAR: cursor

',. 3.34.1

Syntax:

CUrsor name [,row,column]

Where:

name the name of a single

specification not allowed)

screen

[,row,column]
Example:

cursor testmsg,5,51

Will

format named "TESTMSG" to row 5 column 51.

Error Conditions:
The
specification may be incomplete or invalid.

-k

CURSOR RESTING LOCATION MSGAR: cursor

This command specifies the cursor resting location for a
message. The cursor location may be specified as a row and column
(relative to 1) or may be omitted. If the row and column are
omitted, the archiver will compute the resting location as the
first position of the first unprotected field. 1If there are no

unprotected fields in the message, the cursor will rest at (1,1).

format (prefix

resting location [home position is (1,1)]

force the cursor resting location for screen

specified screen format may not be found or the row and column

CHAPTER III1 - ON-LINE UTILITY PROGRAMS
MESSAGE ARCHIVER (LIBRARIAN)

Section:

Page:
3.34.1

HSGAR: peLETE DELETE SCREEN FORMAT

3.34.2 DELETE SCREEN FORMAT MSGAR: delete

This command will delete a screen format. In order to minimize
the possibility of inadvertent wholesale deletes, the screen format
name for this command may NOT be given as a prefix specification.

Syntax:
DELete name
Where:
name the name of a single screen format (prefix
specification not allowed)
Example:

DEL testmsg
Will delete the screen format named "TESTMSG".

Error Conditions:
The specified screen format may not be found.

- +%k+-

Page: 1 TIP/30 Reference Manual
Section: 3.34.2 Version 2.5 (82/08/01)

MSGAR :
DIRECTORY OF SCREEN FORMATS GAR: DIRECTORY

3.34.3 DIRECTORY OF SCREEN FORMATS MSGAR: directory

This command produces a printout containing information known
about the selected screen formats. The information printed
includes: screen name, author, date and time created, total data
field count, etc.

Syntax:
DIrectory *name [,printer]
Where:
*name a single message name or a prefix specification
printer the output printer destination. The default
destination 1is PRNTR (the site printer). The
printer may also be specified as an auxiliary
print device.
Example:
DIR ltest,auxt

Produce a directory listing of all screen formats

which have a name NOT starting with the string "TEST"
The printout is to be directed to the auxiliary printer
for the issuing terminal.

-tk -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
MESSAGE ARCHIVER (LIBRARIAN) Section: 3.34.3

MSGAR: END

END MESSAGE ARCHIVER

3.34.4 END MESSAGE ARCHIVER

MSGAR: end

This command causes the message archiver to terminate processing

normally.
Syntax:
End

-4k

Page: 1
Section: 3.34.4

TIP/30 Reference Manual
Version 2.5 (82/08/01)

MSGAR: HELP
HELP INFORMATION

3.34.5 HELP INFORMATION MSGAR: help

This command causes the message archiver to display a summary of
recognized commands and required parameter syntax.

Syntax:

Help

-4kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
MESSAGE ARCHIVER. (LIBRARIAN) Section: 3.34.5

MSGAR: L1sT LIST SCREEN FORMAT INFORMATION

3.34.6 LIST SCREEN FORMAT INFORMATION MSGAR: list

This command displays (on the terminal) a summary listing of
information known about the selected screen formats. The
information is similar to that shown by the DIRECTORY command.

Syntax:
List *name
Where:
*name a single message name or a prefix specification
Example:
LIST *test

Produce a listing of all screen formats which have a
name starting with the string "TEST". .

-4k -

Page: 1 . TIP/30 Reference Manual
Section: 3.34.6 Version 2.5 (82/08/01)

MSGAR
PRINT SCREEN FORMAT GAR: PRINT

3.34.7 PRINT SCREEN FORMAT MSGAR: print

This command will create a hard copy image of specified screen
formats. The image is a representation of the screen as it was
defined to the Message Definition program (see "MSGDEF"). Data
fields and heading fields are shown with original edit and control
information. The hard copy image may be routed to the site printer
PRNTR (the default destination) or to an auxiliary print device
(for example: AUX1).

Syntax:
Print *name [,printer] [,case]
Where:
*name a single message name or a prefix specification

printer the name of the destination printer (default is
PRNTR; other examples are: AUX1 AUX1*BYP etc.)

case a choice between "Upper"” and "Lower" indicating
the desired case of the printout. "Upper" is the
default when the destination is the site printer;
"Lower" is the default when the destination is an
auxiliary printer.

Example:
PRINT =*test,,LOWER

Produce a hard copy printout of all screen formats

with a name starting with the string "TEST" on the
site printer and attempt to print lower case data.

-k

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
MESSAGE ARCHIVER (LIBRARIAN) Section: 3.34.7

AR:
MSG QUIT QUIT MSGAR PROGRAM

3.34.8 OQUIT MSGAR PROGRAM MSGAR: quit
This command will end the message archiver. In addition, if the
user was executing the message archiver at stack level 1 (ie: the
message archiver was NOT called from another program) then the user
will be logged off the TIP/30 system.
Syntax:
Quit
- k4 -
Page: 1l TIP/30 Reference Manual
Section: 3.34.8 Version 2.5 (82/08/01)

MSGAR :
RENAME SCREEN FORMAT GAR: RENAME

3.34.9 RENAME SCREEN FORMAT MSGAR: rename

This command will rename an existing screen format. The new name
must be a name that is not currently in use.

Syntax:
REName name, newname
Where:
name the name of an existing screen format
newname the desired new name for the screen format
Example:
ren festmsg, xtestmsg

Will change the name of screen format "TESTMSG"
to "XTESTMSG".

-+ k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
MESSAGE ARCHIVER (LIBRARIAN) Section: 3.34.9

HSGAR: ResTORE RESTORE SCREEN FORMAT

3.34.10 RESTORE SCREEN FORMAT MSGAR: restore

This command will restore a screen format that was previously
saved (by the message archiver) in an 0S/3 library element. The
name of the element containing the saved screen format need not be
the same as the name of the message. If the specified screen format
already exists the user is asked whether or not the existing screen
format is to be overwritten,

Syntax:
REStore name ,file [,elt]
Where:
name the name of a single screen format (prefix
specification not allowed)
file the logical file name of the 0S/3 library
elt the name of the element in the library which
contains the saved screen format (default name is
same as message name)
Example:

REST TESTMSG, PRODSRC/XTESTMSG

Will restore (recreate) a screen format called "TESTMSG"
from library "PRODSRC" element "XTESTMSG".

-+ k4 -

Page: 1 TIP/30 Reference Manual
Section: 3.34.10 Version 2.5 (82/08/01)

SAVE SCREEN FORMAT MSGAR: save

3.34.11 SAVE SCREEN FORMAT MSGAR: save

This command will save one or more screen formats in an 0S/3
library. Each selected screen format will be written to an element
(default element name is the same as the screen name). The save
command is useful for taking a backup of screen formats before
undertaking extensive modifications or in preparation for
transporting screen formats to another TIP/30 system.

Syntax:
Save *Nname ,file [,elt]
Where:
*name the name of a single screen format or a prefix
specification.
file the logical file name of the 0S/3 library
elt the name of the element in the library which will
be <created containing the screen format. The
element name will default to the name of the
screen format that 1is being saved. 1If screen
formats are selected by prefix the element name
must be omitted.
Example:

SAVE *TF$,BACKUP

Will save all screen formats with a name starting with
"TF$" into the 0S/3 library catalogued with the logical
file name "BACKUP". Each element will be created with
the name of the screen format it contains.

e

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
MESSAGE ARCHIVER (LIBRARIAN) Section: 3.34.11

MSGAR: wRITE

WRITE SCREEN FORMAT NAMES

3.34.12 WRITE SCREEN FORMAT NAMES MSGAR: write
This command will create an element in an 0S/3 library which
will contain all the specified screen format names. Each "line" of
the created element will contain a single screen name. The write
command is especially useful for <creating command files for a
subsequent run of the message archiver. The element created by the
write command can be edited later wusing the TIP/30 Text Editor
(QED) .
Syntax:
Write *Name [,file] [,elt]
Where:
*name the name of a single screen format or a name
prefix specification.
file the logical file name of the 0S/3 library (default
is "RUN") '
elt the name of the element to create (default is
"MSGAR") ‘
Example:
WR ITF$,RUN/NONTIP
Will create an element named "NONTIP" in library "RUN"
containing lines of message names that do NOT begin
with the string "TF$".
- +k+ -
Page: 1l TIP/30 Reference Manual

Section: 3.34.12 Version 2.5 (82/08/01)

MESSAGE DEFINITION

MSGDEF

3.35 MESSAGE DEFINITION

MSGDEF first prompts for the name of the

sScreen

MSGDEF

format

to Dbe

created or modified. To create a new display, enter its NAME in the
"new" field and leave the "o0ld" field blank. To modify an

display enter its name in "old"
make a new display from an existing

existing
field and leave "new" blank. To

in both fields.

Although a prompt screen is provided, the user may enter these two

parameters on the initial command
program.

first

calling the

Defining a message can involve three or four steps. Each step will
be preceded by a display describing both functions and options.

CHAPTER III - ON-LINE UTILITY PROGRAMS
MESSAGE DEFINITION

Page:
Section:

3.35

MSGDEF MESSAGE DEFINITION

Step 1:

At this time the user must select various options which affect the
entire the display. Step 1 functions through a 'fill in the blanks'
style menu where options are simply selected from a 1list. (Some
default options are given, but may be overlaid.) Place the cursor
at the end of the screen and press transmit. The options are:

- *+ is the character to be wused in following steps to
identify characteristics of portions of the display.

- \ 1is the character which may be used to represent a
start-of-entry (SOE) character in the display.

- _ Enter Y if all data fields are to be unprotected.

- Y Enter Y if the entire screen is to be erased before the
screen format is sent to a terminal.

- 01 Enter the row to which this display 1is to be
transmitted.

- __,__ Enter the row and column where the cursor is to

rest after the display 1is transmitted (MSGDEF will
normally compute this).

- nn,nn is the row and column where the cursor used to be
set (this is displayed here on o0ld screens by MSGDEF).

- __ Enter display intensity for data fields (UTS-400
typically). TN is Tab (in front of fields) and Normal
intensity. TL 1is Tab (in front of fields) and Low
intensity. N is no Tab and Normal intensity. L is no tab
and Low intensity.

- _ Enter the display intensity for heading fields (UTS-400
typically). N for normal and L for low.

- _ Enter 'Y' if you want the informational messages which
are displayed between each step of MSGDEF processing.

Page: 2 TIP/30 Reference Manual
Section: 3.35 Version 2.5 (82/08/01)

MSGDEF
MESSAGE DEFINITION

Step 2:

If a 'new screen’' is being generated, step 2 will present an
entirely blank screen upon which the wuser designs the screen
layout; otherwise, the previous definition will appear on the CRT.
Create or modify the CRT data on the terminal until the desired
screen is complete with both field headings and data fields. Define
the data fields using the following Field Definition Codes (FDC's).
(Data fields are those which are to be filled in by a terminal
operator or program.) When this entire process is complete, place
the cursor immediately behind the last field defined on the CRT and
TRANSMIT it into MSGDEF for analysis.

FDC Meaning

U - defines an upper case alpha-numeric
data tield. Any lower case
alpha input is forced to upper case.

X - defines an alpha-numeric data field.

E - defines an ERROR field. E fields are
displayed using the TIPMSGE call.

Z - numeric only, on output leading zeros will
be suppressed. :

9 - numeric only, right justified, zero filled

2 - numeric only, right justified, zero filled

(not zero filled if blank)
, - comma to be edited into numeric field if significant

- - reserve room for leading minus sign

- decimal point to be edited into numeric field, This
will be used to determine the number of decimal places
in the field.

/ - edit character for numeric field

- edit character for numeric field

B - defines an upper case alpha-numeric
data field which is to blink

0 - defines an alpha-numeric data field,
which is to have the display turned off.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 3
MESSAGE DEFINITION Section: 3.35

MSGDEF
MESSAGE DEFINITION

A - defiﬁes an upper case alpha-only field.
_ - defines an unprotected underscore heading character

Note: codes B, 0, and A are only effective if your
terminal has such capabilities (UTS-400's typically).

Note: numeric fields are zero suppressed during output (TIPMSGO)
and zero filled during input (TIPMSGI). A negative numeric field is
displayed with a leading minus (-) sign. To allow room for this
minus sign, it may be necessary to begin the field definition with
a comma, to force it one postion larger on the terminal without
affecting its size in the program.

Step 3:

At step 3, the user must indicate which portions of the designed
screen really represent data fields. MSGDEF may have taken poetic
licence during step 2's analysis of headings versus data fields.
The user does this by overlaying the Field Definition Codes with
the option character (usually t) and TRANSMITing the defined screen
back in to MSGDEF again. MSGDEF will have attempted to sort out the
differences automatically and will have overlaid all sequences of 2
or more " U's, E's, X's and digits " with the option character.
Check to be sure that it was not too clever and overlaid something
it should not have.

Page: 4 TIP/30 Reference Manual
Section: 3.35 Version 2.5 (82/08/01)

MSGDEF
MESSAGE DEFINITION

Step 4: (optional)

This step will only be entered if the user indicated in step 1 that
not all data fields were unprotected. At step 4, the user must
indicate which portions of the display are to be unprotected. As in
step 3, this is done by overlaying the FDCs with the option
character and TRANSMITing the design screen back to MSGDEF. Just
before entering step 4, MSGDEF will prompt the user to request
whether the automatic option character processing should be done.
If the 'SOE *' choice is made, MSGDEF will attempt to automatically
define, by overlay, the unprotected fields. As before, MSGDEF
replaces all sequences of 2 or more " U's, E's, X's and digits "
with the option character. Check to be sure that it was not too
clever and overlaid something it should not have. Remember to
TRANSMIT the final screen back to MSGDEF for inclusion into TIP's
screen file.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 5
MESSAGE DEFINITION Section: 3.35

MSGDEF MESSAGE DEFINITION

Editing the message

For users who have older CRT's, limited in editing features, MSGDEF
implements certain hardware extensions via software with function
keys. For example,

- Fl - 'insert line in display' wherever the cursor 1is
resting.

- F2 - 'deletes 1line 1in display' where the cursor |is
resting.

Many displays are of a repetitive nature with 1lines containing
similar data from several records from a file. On UTS-400's, the
LINE-DUP key is very helpful in defining this type of display.
Older CRT's do not have such a feature. However, even the UTS-400
will not allow duplication of a set of lines. MSGDEF therefore has
been written to provide both single and multi-line duplication
facilities for all terminal types. Function keys 3 and 4 together
provide this capability;

- F3 - save line(s) - place the cursor on the last column
of the 1line above the line(s) to be saved and press F3.
This begins the save function by sending a SOE to the
cursor position. Then place the cursor on the 2nd last
column of the last line to be saved and press TRANSMIT.
MSGDEF will then save those line(s) and erase the SOE
character.

- F4 - to recall the lines saved by F3 and TRANSMIT, place
the cursor on the last column of the line above the 1line
where the saved 1lines are to be repeated and press F4.
For multiple copies keep pressing F4,

Page: 6 TIP/30 Reference Manual
Section: 3.35 Version 2.5 (82/08/01)

N F
MESSAGE DEFINITION EGATIVE FIELDS

3.35.1 MESSAGE DEFINITION Negative Fields

There are several ways to display negative numeric data fields.
You may select one of: trailing minus sign, leading minus sign,
trailing "CR", trailing "DB", or enclosed in parentheses "()".

The minus sign may be placed at either the beginning or end of a
numeric field during step 2 and then overlaid during step 3.

The letters CR or DB may be placed at the end of a numeric field
and then overlaid during step 3.

To get parentheses place a ")" at the end of the numeric field
(and 1leading minus sign if there is a possibility that the field
may require all available digits) and overlay during step 3.

In all cases, the negative editing is used during output only if
the data is negative. During input processing the program will
receive negative data by any of the above methods (when keyed by
the terminal operator).

On FCC type terminals, a minus sigh is the only allowable method
since TIP/30 sets up numeric fields using FCC codes.

- +k+-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
MESSAGE DEFINITION Section: 3.35.1

SHOW/MSGTST
MSGSHOW/MSGTS MESSAGE TESTING

3.36 MESSAGE TESTING MSGSHOW/MSGTST

To test a display created by MSGDEF enter 'MSGTST name' or
'MSGSHOW name'; where "name" 1is the name of your screen format.
MSGTST will prompt the user for test data and present it on the CRT
using the named screen format. MSGSHOW expects the user to fill in
the test screen and displays the data a program would receive back.
In either case, the unformatted data screen expects the test data
to be a continuous character string. A user can cycle back and
forth between screens trying various data entry options.

When the user's formatted message 1is displayed, intentional
errors may be introduced to check error field options. Entering a
"t" (circumflex) as the first character in a field and pressing
transmit will cause the field to blink and an error message to be
displayed.

MSGTST and MSGSHOW display the data received exactly as it would
appear in a user program input buffer. Note that no header
information or communications characters are received, and that the
number of characters sent is a function of cursor position. Numeric
fields are returned to the user right justified and zero filled.
Data characters entered into a field which are incompatible with
the field definition are replaced by blink characters (or are
blinked) by the Message Control system. The errors may be corrected
and data changed to try out various options available. Simply place
the cursor behind the data and TRANSMIT.

MSGTST name [, 1 [,]

MSGSHOW name [:] [:]

The underscore in the second parameter is used to cause the
program to display the format with an underscore character in the
MCS-FILLER field of the MCS packet.

An optional third parameter may be supplied which will be used
as the MCS-FUNCTION value.

If further information is desired for either program, place a
question mark on the call line as the MCS-FILLER (causing an error)
and invoke the program. This will solicit a HELP screen which
details other options including the definition of the function
keys. Remember to fix the question mark when the parameter screen
is presented.

Page: 1 TIP/30 Reference Manual
Section: 3.36 Version 2.5 (82/08/01)

NEW
SPECIFY CHANGE IN USERID AT TERMINAL EHUSER

3.37 SPECIFY CHANGE IN USERID AT TERMINAL NEWUSER

There is often the necessity to terminate the current session
(logoff) and start another session (logon) using a different
user—-id or account number. To simplify this process, the NEWUSER
transaction has been provided.

NEWUSER enables a 1logged on wuser to logoff and logon in one
step.

Syntax:
NEWUSER wuserid [/password] [,account]
Where:

userid the user name {(max 8 characters) assigned to the
user by the installation administrator.

password the current password associated with the userid.
The password is a maximum of 8 characters. It is
guite legal to have a password that is all blank
(omitted) but this is ill-advised since it
provides rather minimal protection against
unauthorized use.

account the account number the user wishes to associate
with this session. The account number is defined
by the installation administrator and may or may
not be optional.

Example:
NEWUSER FRED/QWERTYUI,A106

Will logon a user named "FRED" who has a password
of "QWERTYUI" using the account code "A106".

Error Conditions:
The userid may not be valid, the password does not match the
current password for the userid, or the account number may not be
valid for the specified user-id. If any of these errors occur,
TIP/30 will present the user with the logon screen format (the
implied logoff will have been successful).

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPECIFY CHANGE IN USERID AT TERMINAL Section: 3.37

0T
oI INFORMATIONAL MESSAGE

3.38 |INFORMATIONAL MESSAGE NOTE

The NOTE program allows a terminal user to send a message to the
terminal which invoked the NOTE. This command is designed for use
within DOT-IN files (See section on DOT-IN) to notify the user that
various functions being requested have been performed.

Syntax:
NOTE[,W] text
Where:

W is wused to specify that the user must generate
some input from his terminal (usually a function
key or MSG-WAIT) before TIP will continue to
process the next command. The text 1is displayed
and the NOTE program will wait for any input.

text is the message (64 characters maximum) that is to
be displayed on the terminal.

Example:
NOTE ALL USER-IDS HAVE BEEN CATALOGUED
NOTE,W PRESS MSG-WAIT TO CONTINUE

Error Conditions:
None.

Page: 1 TIP/30 Reference Manual
Section: 3.38 Version 2.5 (82/08/01)

0DD
ON-LINE DATA DISPLAY

. 3.39 ON-LINE DATA DISPLAY ODD

ODD provides the capability of performing general inquiry/update
functions on any indexed file (ISAM, IRAM, MIRAM) with a minimum
of time and effort. The TIP/30 user need only define the record
format in a COBOL style definition language and define the screen
displays with the TIP/30 Message Control System (MSGDEF). By using
MCS, the TIP/30 user is able to instruct ODD to present data the
way the end user would like to see it. The user is not restricted
by a pre-defined display style.

This program is a preliminary version of the TIP QUERY LANGUAGE
(TQL) and will be replaced by TQL. The user is advised to use this
program only if his requirements cannot be (currently) met by TQL.

The user is not required to do any programming. Instead he
defines his record layout in COBOL format followed by a few simple
ODD directives. QED is used to enter these definitions; perhaps
using some existing COBOL COPY element as a basis.

The ODD definition may be stored in a permanent O0S/3 library;
however, the library/element must be placed in a QED edit buffer
when ODD is invoked. The edit buffer must be specifically named,
but may differ from the library/element name. It is mandatory to
, create the edit buffer in the group "DBA" (Data Base
. Administrator). Normally one individual would be designated as the

'D.B.A'., This individual would have the responsiblity of
maintaining the ODD definitions and setting naming conventions.

The reason for using an edit buffer to hold the ODD definition
is simply to enhance the speed of retrieval for the compilation.
When ODD begins execution, it takes a name from the command 1line
prefixes GROUP-ID of DBA and then looks for the QED buffer of that
name. When it finds the definition, it then compiles it into memory
and into a work file for the duration of the session.

Suppose a definition element of 'DDF123' exists in a library
'DDFSRC' and that wusers want to call it 'PAYMAST' under ODD. The
following QED command line would be used to setup the edit buffer
the first time:

QED DDFSRC/DDF123,,DBA/PAYMAST
and the end user would enter,

ODD PAYMAST or OPEN PAYMAST

If changes have to be made to this definition, the QED command
line would be:

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DATA DISPLAY Section: 3.39

0DD
ON-LINE DATA DISPLAY

QED ,,,DBA/PAYMAST

In either case, the editor must be terminated with the 'E' command
to leave the edit buffer intact.

Compiling the definition at execution time makes it easier for
the D.B.A to keep the definitions up to date. No batch job need be
run to implement a new definition or change an existing one.
Everything is done online at the terminal.

As mentioned earlier, in addition to the file definition, ODD
requires a few directives. These must follow each record definition
and contain "*/" in columns 7-8 (QED - Cobol mode).

ODD directives indicate:

Key field
Record-type field
Fields to be displayed

Field display sequence
MCS display name

The wuser may browse through indexed files using multiple record
formats; in the case of MIRAM, browse using multiple keys.

The record definition source element may begin with

INDENTIFICATION DIVISION.
Next, identify the FD of the file to be processed. This is the
logical name as defined in the TIP/30 catalogue.

FD. lfname.

If the file is not to be updated this is indicated by a statement
which contains

READ-ONLY.

If records may be not be deleted include a statement which contains

NO-DELETE,

If records may not be added you should enter a statement which

Page: 2 TIP/30 Reference Manual
Section: 3.39 Version 2.5 (82/08/01)

ON-LINE DATA DISPLAY o

contains

NO-ADD.

When ODD 1is searching a file it may operate in one of two modes,
normal or read ahead. If your requests usually require several

screens of data to be displayed you may specify the following in
the definition.

READ-AHEAD-ON.,

1f this is specified, then while you are viewing one screen of
data, ODD will read ahead 1in the file and collect the data for
records on the next screen. When the next complete screen has been
collected, the wait 1light be illuminated on a Uniscope terminal.
Pressing function key 2 will cause the data to be displayed; ODD
will continue with the next screen full. To stop the read ahead
process before wait light notification, press message waiting; then
enter your next request (which may be message waiting again to go
back to the menu of commands).

NOTE: the read ahead feature is excellent for file browsing but
becomes awkward if the intent is to update the file. Therefore, it

is recommended that this feature NOT be used if the file is to be
updated.

After ODD has compiled the specified data definition, the user may
interactively specify:

READ-AHEAD-ON
to switch to read ahead mode or:

READ-AHEAD-OFF

to switch back to normal mode. To update records, processing must
be in 'normal' mode.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 3
ON-LINE DATA DISPLAY Section: 3.39

0DD ON-LINE DATA DISPLAY

ODD will always prompt with a M.C.S. display format. The default
display used is named TF$ODDl. The user has the option of designing
and specifying his own prompting display. This may be useful for
providing instructions to the end user of the system. To specify
your own prompting display provide a 'MENU' statement after the
'"FD' statement.

Example:

MENU IS PAYDDMNU

Comment statements may be included in the definition. Since record
and field names are used as part of the interactive search criteria
specification, it is recommended that the names be 16 characters or
less in length and be easy to remember. For example:

DISPLAY MAST-PAY IF PAY GT 24000 AND HIRE-DATE LE 68

Group names may be left in the definition, but ODD views them as
comments and does not store the identifier name.

Multiple files may be processed. However the first record
described must contain the full key of the secondary files. To
define a secondary file, include a statement such as:

FD file2 POINTER is fieldt.
...record layout for secondary files...

Following each record definition identify which fields make up the
key. This information is also placed on an ODD directive statement
(ie. */ in columns 7,8).

KEY IS NUMBER NAME

If your are processing a MIRAM file which has a multiple index,
specify all of the keys. This is done as follows:

Page: ‘ 4 TIP/30 Reference Manual
Section: 3.39 Version 2.5 (82/08/01)

0DD
ON-LINE DATA DISPLAY

KEY1 IS NUMBER
KEY2 IS NAME, CODE
KEY3 IS ADDRESS

Next, 1indicate how ODD may verify the record type. If all records
have the same format then this directive is not required. Several
identifying conditions per record may be specified, however, only
one condition need be satisfied for ODD to select that record.
There 1is a logical 'OR' relationship between the ID statements.
Note that an ID statement can not span more than 1 line.

ID IS TYPE = 'A6'

ID IS TYPE = 'A6' AND HOURS 100

ID IS TYPE = 'A6' AND HOURS >= 100
ID IS TYPE = 'B0O’

Next, specify how many DATA SETS the display which you have
defined, can hold; also the field names and order in which they are
to be displayed on the screen. A DATA SET is defined as a set of
fields from one record. If no field names are given, ODD will
assume that all fields of the record are to be displayed. Example:

DISPLAY 16 (NAME ADDRESS NUMBER) USING MYMESG

In this example the fields 'NAME ADDRESS NUMBER' from 16 indexed
records will be displayed on the screen MYMESG; perhaps 16 lines of
3 columns, each under headings.

Several types of displays may be extracted from the same record
definition. To distinguish between them you must name each by
preceding the keyword "DISPLAY" with 'a LABEL, followed by a
semi-colon.

Example:

TOTAL: DISPLAY 16 (NAME RATE HIRE-DATE) USING MYMESG
Note that it is possible to use the same display (see MYMESG in the
previous examples), but different data fields. If the display name

is not specified, the record name is used. Duplicate display names
are not allowed.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 5
ON-LINE DATA DISPLAY Section: 3.39

0DD
ON-LINE DATA DISPLAY

Data Definition Examples:
IDENTIFICATION DIVISION.
FD. AROOO.
01 REC-A.
05 SORT-KEY.
10 PHONE PIC 9(7) COMP-3.
10 ACCT-NO PIC X(8).
10 INV-NO PIC X(8).
10 REC-TYPE PIC X.
10 INV-DTE PIC 9(86) COMP-3.
05 NAME PIC X(52).
05 ORDER-TYPE PIC X.
05 CLASS PIC XXX.
05 REF PIC X(20).
05 PO-NO PIC X{16).
05 AR-STATUS PIC X.
05 START-DTE PIC 9(6) COMP-3.
05 TIMES-RAN PIC 99.
05 UNITS-CDE PIC X.
05 UNITS PIC S9(7) COMP-3.
05 INSER-DTE PIC 9(10) COmP.
*/ KEY IS PHONE ACCT-NO INV-NO REC-TYPE INV-DTE
*/ ID IS REC-TYPE = 'A’
*/ DISPLAY 4 (PHONE ACCT-NO INV-DTE NAME
*/ ORDER-TYPE CLASS REF PO-NO
* / START-DTE TIMES-RAN) USING AROMSGA
01 REC-B.
05 SORT-KEY.
10 PHONE PIC 9(7) COMP-3.
10 ACCT-NO PIC Xx(8).
10 INV-NO PIC X(8)
10 REC-TYPE PIC X.
10 INV-DTE PIC 9(6) COMP-3.
05 PAYMNT-DATE-1 PIC 9(6) COMP-3.
05 PAYMNT-AMNT -1 PIC 9(7)Vv99 COMP-3.
05 FILLER PIC x(88).
*/ KEY IS PHONE ACCT-NO INV-NO REC-TYPE INV-DTE
*/ ID IS REC-TYPE = 'B’
*/ DISPLAY 16 (PHONE ACCT-NO INV-DTE INV-NO
*/ PAYMNT-DATE-1 PAYMNT-AMNT-1) USING AROMSGB
Page: 6 TIP/30 Reference Manual
Section: 3.39 Version 2.5 (82/08/01)

0DD
ON-LINE DATA DISPLAY

Second example:

IDENTIFICATION DIVISION.

FD. AOMOO.
READ-ONLY.
ok 3k ok 3k ok 5k 3k 3k sk sk ok Sk 3k 3k sk sk vk 3k Sk Sk 3k ok Sk 3 5k ok 3k 3k 3k vk ok 3 3k ok 3k 3k ok ok ok Sk 3k 3K 3 3 oKk ok vk ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk k
Kok ORDER MASTER RECORD Hkk
3k 3k 3k 3k ok 3k ok 3k 3k ok 3k 3k ok 3k 3k %k vk 2k ok 3k ok 3k sk ok 5k 5k 3k 3k 5k 3k ok ok 3k 3k 5k 3k 5k 5k 3k ok ok 3K ok sk 3k ok sk 5k 5k 3k 3K vk ok 3k ok 3K 3Kk ok ok ok k K %k ok
01 ORDER.
10 KEY.
15 ACCT PIC X(8).
15 ND PIC X(8).
10 STATUS PIC X.
10 TYPE PIC X.
10 ADU-TYPE PIC X.
10 ORIGIN PIC XXX.
10 PROD - CDE PIC XXX.
10 BRAND-CDE PIC X.
10 AGT-CDE PIC XXX.
10 TEXT PIC X(20).
10 UNITS PIC 999.
10 UNITS-CDE PIC X.
10 SALESPER PIC XXX.
10 PREPRICED-AMT PIC S9(7)V99 COMP-3.

*/ KEY IS ACCT NO

*/ DISPLAY 1 USING OASODD

* %k

*/ SUMMARY: DISPLAY 19 (ACCT NO STATUS TYPE BRAND-CDE
* / AGT-CDE TEXT) USING OASODD2

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 7
ON-LINE DATA DISPLAY Section: 3.39

CoMMAND FORMAT

ON-LINE DATA DISPLAY

3.39.1 ON-LINE DATA DISPLAY Command Format

Most of

Syntax:

Where:

the commands follow the same syntax.

<cmd> <display> [IF <selection>]

<cmd>

<display>

IF <selection>

[BY <KEYm>]

[FROM <keyvalue>]
[TO <keyvalue>]
[SUM <field>]

is the command name. Most commands may be
truncated to the first two letters. You may also
enter a display name and ODD will perform LIST
<display>.

All commands are documented in the following
sections.

this 1is the label of the display statement in the
definition; essentially identifying the fields of
the record to be displayed and the message format
used. However, the display command will only
display one record on the screen. This is the
record which would be wupdated 1if the wupdate
command was used next.

selects records based on a conditional expression.
A simple conditional expression is a comparison
between a field and some value, or one field and
another. In ODD two fields must be of the same
type and size to be compared to each other, and
the left operand must always be a field name of
the record displayed. The comparison operators may
be

EQ = - equal to

NE <> -~ not equal to

GT > - greater than

GE >= - greater than or equal to

Page:
Section:

3.39.1

TIP/30 Reference Manual
Version 2.5 (82/08/01)

CoMMAND FORMAT
ON-LINE DATA DISPLAY

LT < - less than
LE <= - less than or equal to

Conditional expressions may be combined by Boolean
operators (AND, &, OR, |) 1into more complex
expressions.

BY <KEYn> indicates that the file is to be processed by an
alternate index. 'KEYn' may be one of the reserved
words KEY1l, KEY2, KEY3, KEY4, or KEY5. 'KEYn' may
also be an actual data field name which is also a
key field, such as NUMBER.

If 'BY' is used then it must precede 'FROM' and
'TO' in order for ODD to know how to interpret the
key field.

FROM <keyvalue> indicates the first record to be considered for
displaying. The key may be enclosed in single or
double quotes. The key may be a period (.), which
means that the search is to continue from the last
record displayed.

TO <keyvalue> indicates the last record to be considered for
displaying. The key may be enclosed in single or
double quotes.

SUM <field> specifies that the named 'field' is to be summed.
At the end of the display the total value of this
field for all records selected is displayed along
with the average value of the field. If you wish
to sum several fields wuse this clause several
times.

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
ON-LINE DATA DISPLAY Section: 3.39.1

ODD: aDD
ON-LINE DATA DISPLAY

3.39.2 ON-LINE DATA DISPLAY ODD: add
The ADd command allows the you to place new records in the file.
It will display an empty screen which must be filled in and
transmitted to the program.
Syntax:
ADd <display>
Where:
<display> the screen is displayed with no data, fill it in
and press transmit.
~ 4K+ -
Page: 1 TIP/30 Reference Manual
Section: 3.39.2 Version 2.5 (82/08/01)

ODD:

ON-LINE DATA DISPLAY

CLOSE

3.39.3 ON-LINE DATA DISPLAY ODD: close
The CLose command will terminate the ODD session.
Syntax:
CLose

Where:
None required.

Additional Considerations:

Note: The CLose command and the ENd command are synonyms,

~dk+-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page:
ON-LINE DATA DISPLAY Section:

3.39.3

ODD: count
ON-LINE DATA DISPLAY

3.39.4 ON-LINE DATA DISPLAY ODD: count

The COunt command will count records based on the selection
criteria, starting position, & ending position in the file.

Syntax:
COunt <display> [IF <selection>]
[BY <KEYn>] [FROM <keyvalue>]
[SUM <field>] [T0 <keyvalue>]
Where:

Refer to command format.

Example:
COUNT REC-A IF TIMES-RAN > 5
SUM BASIC-CHRG SUM TOTAL-CHRG
-kt -
Page: 1 TIP/30 Reference Manual

Section: 3.39.4 Version 2.5 (82/08/01)

ON-LINE DATA DISPLAY

ODD: DELETE

3.39.5 ON-LINE DATA DISPLAY

The DElete command will re-display the last record selected
prompt for the 'YES' to delete it.
then transmit 'Y' back to the program. The record is

ODD: delete

deleted

and

If this is the record to delete

from

the file and the menu is re-displayed for the next ODD command. The

delete will only be succesful if the file was

generated with the

'"DELETE' parameter specified on the 'FILE' statement in the TIP/30
generation. This command must be used without READ-AHEAD.

Syntax:
DElete

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS
ON~-LINE DATA DISPLAY

Page:
Section:

3.39.5

ODD: pispLAY
ON-LINE DATA DISPLAY

3.39.6 ON-LINE DATA DISPLAY ODD: display

The DIsplay command will select a record based on the selection
criteria and starting position in the file.

Syntax:

DIsplay <display> [IF <selection>]
[BY <KEYn>] [FROM <keyvalue>]
[SUM <field>] [T0 <keyvalue>]

Where:
Refer to command format.

Example:

DISPLAY SUMMARY IF TIMES > 50 AND UNITS = 9
FROM 71219348
T0 75225543

DISPLAY MAILTO IF TIMES LT 32 & UNITS NE O

BY ADDRESS
FROM HARCOURT TO MILLVIEW

The text of latest request to ODD is saved and may be
recalled by pressing function key 3 on the terminal.

T 2

Page: 1 TIP/30 Reference Manual
Section: 3.39.6 Version 2.5 (82/08/01)

ODD: LisT
ON-LINE DATA DISPLAY :

3.39.7 ON-LINE DATA DISPLAY ODD: list

The LIst command will select a screen full of records based on
the selection criteria and starting position in the file.

Syntax:
LIst <display> [IF <selection>]
[BY <KEYn>] [FROM <keyvalue>]
[SUM <field>] [TO <keyvalue>]
Where:

Refer to command format.
Example:
LIST SUMMARY IF TIMES < 75 AND UNITS NE 9

SUM PREPAY-AMT SUM PREPICED-AMT
FROM 71219348 710 75225543

The text of this command is saved by 0DD and may be
recalled by pressing function key 3 on the terminal.

- k4

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DATA DISPLAY Section: 3.39.7

ODD: NExT
ON-LINE DATA DISPLAY

3.39.8 ON-LINE DATA DISPLAY ODD: next

The NExt command continues the DIsplay or LIst command from the
last record displayed.

Syntax:
NExt

Where:
No parameters required.

- +%+-

Page: 1 TIP/30 Reference Manual
Section: 3.39.8 Version 2.5 (82/08/01)

ODD: PRINT
ON-LINE DATA DISPLAY

3.39.9 ON-LINE DATA DISPLAY ODD: print

The PRint command will build full displays of records, (as the
LIst command does), based on the <selection>, starting position, &
ending position in the file. When a display is collected it will be
sent to the terminal with a print command to print on the auxiliary
printer attached to the terminal. The print command will continue

to print all records from the file which satisfy the selection
criteria.

Syntax:
PRint <display> [IF <selection>]

[BY <KEYn>] [FROM <keyvalue>]
[SUM <field>] [T0 <keyvaiue>]

Where:
Refer to command format.

Example:

PRINT REC-A IF TIMES-RAN = 0

-kt

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON~LINE DATA DISPLAY Section: 3.39.9

ODD: sHow
' ON-LINE DATA DISPLAY

3.39.10 ON-LINE DATA DISPLAY ODD: show
The SHOW command allows you to get a list of all available
display names in the current definition. Or you may get all of the
field names within a given display.

Syntax:
SHOW <display>

Where:

<display> from which you want the field names
Syntax:

SHOW
Where:

to get summary of all display names

-4 k+-

Page: 1 TIP/30 Reference Manual
Section: 3.39.10 Version 2.5 (82/08/01)

ODD: uPDATE
ON-LINE DATA DISPLAY

3.39.11 ON-LINE DATA DISPLAY ODD: update
The UPdate command will re-display the last record selected. You
may then update the information on the screen and transmit. The
updated record is written to the file and the ODD menu is displayed
for the next command. This command must be without READ-AHEAD.

Syntax:
UPdate

Function kKey 4 may be pressed after a record is displayed. This
will re-display the same record for update.

If you decide not to proceed with the update press MSG WAIT to
cancel the update.

-4kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DATA DISPLAY Section: 3.39.11

0DD

ODD COMMAND LINE FORMAT

3.39.12 ODD COMMAND LINE FORMAT oDD

When ODD starts up it reads and compiles the source element
specified on the command line and stores the record definition in
memory. This approach makes it very easy to change definitions
using QED.

You should use the editor to create and maintain the data file
definition and use the Message Control System to define the format
of the messages used by ODD to display the user's data in a format
which is useful and easy to read.

To use ODD, the definition must be stored in an edit buffer which
was created with a GROUP-ID of DBA. The ODD call uses the edit
buffer name.
For example:

ODD AOMDEF

- k4~

Page: 1 TIP/30 Reference Manual

Section: 3.39.12 Version 2.5 (82/08/01)

0DD
ODD FUNCTION KEYS

3.39.13 ODD FUNCTION KEYS oDD

MSG-WAIT this always means to cancel your most recent
request. (Ie. cancel record update, stop searching
file, etc..)

Fl or F5 Re-display the most recent message. If a LIst or
DIsplay was last entered Fl1 will also step
backwards through all displays given since the
original request was given.

F2 or F6 During LIst or DIsplay this will cause the next
full screen of data to be displayed.

F3 or F7 will return to the menu and display the most
resent request.

F4 or F8 If a record was just displayed, this will
re-display the record for update.

— 4kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DATA DISPLAY Section: 3.39.13

0DD

PROGRAM LIMITATIONS

3.39.14 PROGRAM LIMITATIONS

ITEM

OoDD

MAXIMUM

RECORD TYPES

FIELDS PER RECORD
DISPLAYS

SEARCH CONDITIONS
VARIABLE DATA AREA
KEY SIZE

RECORD SIZE

DATA IN MESSAGE
CHARACTERS PER NAME
PROGRAM SIZE

600 BYTES

- k-

Page: 1
Section: 3.39.14

TIP/30 Reference Manual
Version 2.5 (82/08/01)

0DD
0DD - PITFALLS TO AVOID

3.39.15 ODD - PITFALLS TO AVOID OoDD

Some syntax errors may cause ODD to abort - be careful when
entering commands. It has been found that by cataloging 'ODD'
and/or 'OPEN' with EDIT=YES, some problems can be avoided.

Further limitations are:
- maximum of 15 digits may be entered to be compared to a
numeric field (if this becomes a problem change the field
from PIC 9 to PIC X if not COMP or COMP-3).

- maximum of 15 digits may be entered in the FROM and/or TO
clauses.

- ODD truncates field names to 16 letters and does not tell
you.

- ODD does not handle some field descriptions very well.
(For example SV99 should be coded as 99.

- ODD becomes confused when DISPLAY field definitions
entered on the CRT go past column 70.

%+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE DATA DISPLAY Section: 3.39.15

PMDA

POST MORTEM DUMP ANALYSIS

3.40

POST MORTEM DUMP ANALYSIS PMDA

PMDA is a dump analysis program that enables a programmer to
interactively examine a dump from an on-line program. PMDA is
automatically invoked by TIP when a user program aborts. PMDA
creates a dynamic file containing a copy of the user program memory
areas at the time of the dump. The dynamic file is created with a
name constructed as: "userid/DUMPtttt/trid" where "userid" is the
userid of the user executing the program that aborted, "tttt" 1is
the ICAM terminal name of the user terminal, and "trid" is the
catalogued transaction name that invoked the program that aborted.

If the user is an application level user PMDA merely prints the
dump at the site printer and ends processing at that point.
However, if the user is a programmer level user, PMDA will allow
the user to enter commands to 'browse' through the dump at the
terminal. The programmer level user may specify that the dump file
is to be printed and/or kept. PMDA may be invoked directly from the
terminal to browse through a previously kept dump file. Another
important function of the PMDA program is to roll back any f{file
updates that the aborted program may have done and to release any
files that may have been assigned to the program.

PMDA is most often encountered as a result of a program aborting.
However, it is possible to execute PMDA directly as a transaction
to continue analysis of a previously retained dump.

Page: 1 TIP/30 Reference Manual
Section: 3.40 Version 2.5 (82/08/01)

PMDA

POST MORTEM DUMP ANALYSIS

To execute PMDA interactively, the command line syntax is:

Syntax:
PMDA trid [,tttt] [,userid]
Where:
trid the name of the transaction that aborted
tttt the ICAM name of the terminal where the original
abort occurred (default is the current terminal).
userid the wuserid of the wuser that was running the
program at the time the program aborted (default
is the current userid).
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2

POST MORTEM DUMP ANALYSIS Section: 3.40

PMDA
POST MORTEM DUMP ANALYSIS

PMDA recognizes the following interactively submitted commands:

Display - display area of memory

End - end interaction with PMDA (retain dump file)
Print - print hard copy dump

Quit - end interaction with PMDA (scratch dump file)

Most programmers find that it is generally advisable to print a
dump whenever a transaction program aborts. In some cases, it |is
possible to browse through the dump at the terminal and discover
the cause of the dump (and therefore eliminate the need to print
the dump).

Some familiarity with assembler programming concepts is assumed in
the following discussion of PMDA commands.

Page: 3 TIP/30 Reference Manual
Section: 3.40 ' Version 2.5 (82/08/01)

PMDA: pispLAY
DISPLAY MEMORY CONTENTS

3.40.1 DISPLAY MEMORY CONTENTS PMDA: display

This command enables the user to display the contents of the
memory allocated to the program that aborted. The display command
has several variations (which are described below) enabling the
user to specify storage, registers etc to display.

D address display 16 bytes in hexadecimal and graphic from
the specified address.

D name [,offset] display 16 bytes in hexadecimal and graphic from
the start of the linkage area given by <name> plus
optional offset. The recognized names are: PIB CDA
MCS IMA OMA WORK. Offset 1is specified in
hexadecimal;: if omitted, the offset defaults to
zero.

DF Display the contents of the floating point
registers.

D PSW Display the abort address and the PSW at time of
abort.

DR Display the contents of the general purpose
registers.

Example:
D 5800

Will display 16 bytes starting at address X'5800'.

Example:
D MCS, 40

Will display 16 bytes at offset X'40’ from the start of
the MCS linkage section area.

-+k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
POST MORTEM DUMP ANALYSIS Section: 3.40.1

PMDA: END
END PMDA PROGRAM

3.40.2 END PMDA PROGRAM PMDA: end
This command will end interaction with PMDA and keep the retain
the dynamic file containing the dump for later analysis.
Syntax:
End
Where:
No parameters required.
Example:
E
Error Conditions:
None.
-+%k+ -
Page: 1 TIP/30 Reference Manual
Section: 3.40.2 Version 2.5 (82/08/01)

PRINT HARD COPY DUMP

PMDA: PRINT

3.40.3 PRINT HARD COPY DUMP

PMDA: print

This command will cause PMDA to create a printed dump for
the programmer. The dump will be printed to
the site printer. The dump will be formatted for ease of
major areas of storage will be identified in much the same fashion

off-line analysis by

as 0S/3 SYSDUMP.
Syntax:
Print

Where:
No parameters required.

Example:

P

-4k -

analysis;

CHAPTER III - ON-LINE UTILITY PROGRAMS Page:

POST MORTEM DUMP ANALYSIS

Section:

3.40.3

PMDA: aquIT
END PMDA AND SCRATCH DUMP FILE

3.40.4 END PMDA AND SCRATCH DUMP FILE PMDA: quit
This command will cause PMDA to scratch the temporary dump file
and end interaction with the wuser. This command is most useful
after issuing a PRINT command.
Syntax:
Quit

Where:
No parameters required.

Example:
Q
Error Conditions:
None.
-4kt -
Page: 1 TIP/30 Reference Manual

Section: 3.40.4 Version 2.5 (82/08/01)

QED
TIP/30 TEXT EDITOR

3.41 TIP/30 TEXT EDITOR QED

QED is an interactive program for creating and modifying 'text’',
using directives provided by a user at a terminal. The text may be
a program, a runstream, a document or perhaps data for a program.

The TIP/30 editor is patterned after 'QED' by BELL Labs. You may
also find it similar to the editors used on many mini-computers and
micro-processors; being primarily 1line number independent and
string/contextually oriented.

First, a bit of terminology. In QED the text being processed is
said to be kept in 'the buffer'. Think of the buffer as a work
space, or simply as the information to be edited. In effect, the
buffer is like a piece of paper on which things are written,
changed and finally 'filed' for future reference.

The user interfaces with QED and his text via the QED command
language. Most commands consist of a single letter, which may be
typed in either wupper or lower case. Generally (although not
always) each command is typed at the beginning of a new line and is
followed by a transmit. (Sometimes the command 1is preceded by
information about what line or lines of text are to be affected).
At the completion of each command, QED will respond by moving the
cursor to a new line and prompt with a ? (question mark).

This document was developed 1in a tutorial style and it is
recommended that the wuser actually perform the examples and
exercises described in the manual. In the QED examples which
follow, the User will notice both upper and lower case letters
being used. QED accepts either, for commands or text.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41

UED:

INTRO
GETTING STARTED

3.41.1 GETTING STARTED QED: intro

After 1logging on to TIP/30 (see USER GUIDE), activate QED by
entering

QED <elt>
to create a new element or
QED FILE/ELT
to update an existing element.

If the element to be updated is a macro (or proc) then parameter
three must be ',M' or ',P' respectively (',S' meaning 'source' Iis
assumed default).

QED proclib/macroname,M

The fourth and fifth parameters identify the group id. and edit
buffer name to QED. If the user only provides the fourth parameter
to '‘name' the buffer, QED defaults to the User's group id. at LOGON
time. For example

QED FILE/ELT, ,RCVNAM
or -

QED FILE/ELT, ,DBA/DATADEF

Page: 1 TIP/30 Reference Manual
Section: 3.41.1 Version 2.5 (82/08/01)

QED: INTRO
GETTING STARTED

In the event of a system crash, the buffer may be recovered by
logging back on to TIP/30 and calling QED using the same buffer
name. If no buffer name is given, QED will default the buffer name
to the element name provided. Using the examples above, the QED

calls would be
QED ,,,RCVNAM
or
QED RCVNAM
or,

QED ,, ,DBA/DATADEF

QED will respond by displaying the name of the edit buffer file
assigned and then prompt the user with a ?SOE sequence to indicate
its ready (command mode) state. It is preferable to start a new

program by the second method, to ensure that the edit buffer will
have a reasonable name.

-k

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
TIP/30 TEXT EDITOR Section: 3.41.1

QED: *
OED CONTROL CHARACTER, DOUBLE QUOTE

3.41.2 QED CONTROL CHARACTER, DOUBLE QUOTE QED: "

The double quote (") is the QED control character and requires
care in 1its wuse, even when adding text. Why this is so, should
become clear later on!

—d k-

Page: 1 TIP/30 Reference Manual
Section: 3.41.2 Version 2.5 (82/08/01)

QED: ERRORS
ERROR MESSAGES
3.41.3 ERROR MESSAGES QED: errors
QED will respond to user command errors by displaying a self
explanatory error message.
-4 k+ -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.3

QED
LINE LENGTH

3.41.4 LINE LENGTH QED

The current version of QED copies the first 80 characters of
each record to the edit buffer. Different sizes are displayed
depending on the mode you set with the option command (OR,Q0C,0A):

RPG - 6 to 74
COBOL - 7 to 72
BAL -1 to 72
-tk + -
Page: 1 TIP/30 Reference Manual

Section: 3.41.4 Version 2.5 (82/08/01)

QED: &
ADDING TEXT; THE ADD COMMAND

3.41.5 ADDING TEXT; THE ADD COMMAND QED: a
It means 'Add' (or Append) lines to the edit buffer.

To enter lines of text, just type an 'A' and transmit. QED will
prompt with an 'A' (which replaces ? while in Append mode) at the
beginning of each new line to be entered. The user may enter data a

line at a time or by the screenful. Just follow the last text line
with a "F as follows:

A
now is the time
for all good men

to come to the aid of their party.
IIF

(The "F is the QED command which says 'end Add mode'.)

After the Add mode has been ended, the edit buffer will contain
the three lines:

now is the time
for all good men
to come to the aid of their party.

Of course the 'A' and '"F' are not there, as they were not text
but QED commands.

To append text to data already in the buffer, just issue another

'A' command and continue. To append at a specific line, give its
number and follow it with an 'A'.

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: ' 1
TIP/30 TEXT EDITOR Section: 3.41.5

QED: p
DISPLAYING LINES; THE PRINT COMMAND

3.41.6 DISPLAYING LINES; THE PRINT COMMAND QED: p

To print or display the contents of the QED buffer at the
terminal, use the print command 'P'

As follows: specify the lines where printing 1is to begin and
end, separated by a comma, and followed by the letter 'P'. Thus to
print the first two lines of the buffer for example,

1,2p (starting line=1l, ending line=2 p)

QED will display:

now is the time
for all good men

and prompt the user for the next command.

To print all the lines in the buffer, 1,3p may be used since the
exact number of 1lines 1is known. Normally this 1is wunknown;
therefore, QED provides a shorthand symbol for 'line number of last
line in buffer' - the dollar sign $. Use it this way:

1,sP

This will print all the 1lines in the buffer (line 1 to last
line).

. NOTE: OQED will check for unsolicited input after every 14 lines
of continuous display. To end the command being serviced, press any
one of the function keys on the CRT, or the break or attention key
on other terminals. QED will then prompt for the next command.

To display the last line of the edit buffer, enter $.

To print any line, enter the line number followed by a 'P'. Thus
1p

produces the response
now is the time

which is the first line of the buffer.

It is common to use '$' in combinations such as

$'1,$P

Page: 1 TIP/30 Reference Manual
Section: 3.41.6 Version 2.5 (82/08/01)

QED: P
DISPLAYING LINES; THE PRINT COMMAND

to print the last two lines of the buffer.

-k

CHAPTER III - ON~LINE UTILITY PROGRAMS Page: 2
TIP/30 TEXT EDITOR Section: 3.41.6

QED: pot
THE CURRENT LINE

3.41.7 THE CURRENT LINE QED: dot

Suppose the buffer still contains the three lines as above; that
the operator has just typed

1,2p

and QED has displayed lines 1 and 2. Entering
P (no line numbers)

will cause QED to return
for all good men

Although this is the second line of the buffer, it 1is 1in fact
the 1line most recently processed (ie. 1,2p the last line printed).
If the 'p' command is repeated without 1line numbers, QED will
continue to display line 2.

QED maintains. a record of the last line referenced which can be
used instead of an explicit line number. This most recent line is
referred to by the shorthand symbol

. (pronounced 'dot').

Dot is a line number, meaning more exactly, 'the current 1line',
or 'the 1line most recently processed.' It can be used in several
ways - one example is

. SP

This will print all the lines from (including) the current line
to the end of the buffer. In this case, lines 2 and 3.

Some commands change the value of dot, while others do not. The
print command sets dot to the number of the last line printed. For
example, after the command ".,$P" (as above), "dot" will be set to
3 (the last line in the buffer).

Dot is implied when used in combinations like:

+1p

this means 'print the next line' and is a handy way to step
through a buffer. Also

Page: 1 TIP/30 Reference Manual
Section: 3.41.7 Version 2.5 (82/08/01)

QED: pot
THE CURRENT LINE

which means 'print the 1line before the current line.' This
enables backward referencing. Another example of the relative 1line
number addressing (dot implied) is:

-3, —1p
which prints the previous three lines from dot.

Remember that Print commands change the value of dot itself. To
find the value of 'dot' enter

. (or just null XMIT)

QED will respond by displaying the dot line and/or current value
of dot, ie. latest line number.

Review of the 'P' command and dot.

Essentially 'P' can be preceeded by 0, 1, or 2 line numbers. If
there 1is no 1line number given QED displays the current line. If
there is one line number given QED displays that line and sets dot
there. 1If two line numbers are given QED displays all lines in the
range and sets dot to the last line displayed. If two line numbers
are specified, where the first 1is greater than the second (see
exercise 2), OQED will 1logically invert the arguments before
execution of the command.

Pressing XMIT twice will cause printing of the next line - This
is equivalent to entering +1P.

-+ ¥+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
TIP/30 TEXT EDITOR Section: 3.41.7

QED: »
DELETING LINES

3.41.8 DELETING LINES QED: d

Suppose the edit buffer contains

now is the time

for all good men

to come to the aid of their party.
now is the time

for all good men

to come to the aid of their party.

To remove the duplicate lines in the example use
starting line, ending line D

Either command
4,6D or 4,8D

would delete lines 4 through the end. Try this example and
verify the change by displaying the contents of the buffer using

1,$P

Notice that §$ equals 3. Dot is set to the next line after the
last line deleted unless the last line deleted is §, in which case
dot equals §.

-kt -

Page: 1 TIP/30 Reference Manual
Section: 3.41.8 Version 2.5 (82/08/01)

QED: s
MODIFYING TEXT; THE SUBSTITUTE COMMAND

3.41.9 MODIFYING TEXT; THE SUBSTITUTE COMMAND QED: s

The substitute command 'S' is used to change text within a line
or set of lines. Suppose by a typing error line 1 reads:

now 1is th time
The command
1S/th/the/

would set dot to line 1 and substitute for the characters 'th'
the characters 'the'. To verify the change, issue P and see the
results. This yields

now is the time

Note that dot is set to the line where the substitution took
place, since the P command displayed that line.

In general, the format of the substitute command is
starting-line, ending-line s/change this/to this/

Whatever string of characters 1is between the 1lst and 2nd
delimiter 1is replaced by whatever is between the 2nd and 3rd;
everywhere it occurs; in all the lines between the starting 1line
and the ending 1line. The rules for line numbers are the same as
those for 'P', except that dot is set to the last line changed.

Thus
1,8S/speling/spelling/

will correct &a 'speling' error everywhere in the text. If no
line numbers are given, the 'S' command defaults the substitution
to 1line dot(1ie. it changes text only on the current line). This
leads to the very common sequence

§/====/===~/P

which makes a change to the current line, and prints it to
verify the change. Note that this is not the same as

SP/-==~/====/

which only prints a line if the substitution occured. The 'P' in
this case is a optional modifier to the 'S' command itself. (Notice
the use of multiple commands on a line in the lst example. This is
often possible; substitute then print is the most common case.)

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR _ Section: 3.41.9

QED:
° MODIFYING TEXT; THE SUBSTITUTE COMMAND

Also of interest is
S/---=//

which will ‘'change every occurrence of the first string of
characters to nothing' (ie. remove/null them). This is wuseful for
deleting extra words 1in a 1line or removing extra letters from
words.

-kt -

Page: 2 TIP/30 Reference Manual
Section: 3.41.9 Version 2.5 (82/08/01)

QED
CONTEXT SEARCHING

3.41.10 CONTEXT SEARCHING QED

Suppose the buffer contains

now is the time
for all good men
to come to the aid of their party.

Problem: Find the line that contains 'their' to <change it to
"the'. With only three lines in the buffer, it's easy to keep track
of what line the word 'their' is on. If the buffer contained
several hundred 1lines and many additions and deletions had been
made, it would be difficult to establish 1line numbers. Context
searching 1is simply a method of specifying the desired line,
without knowing its number. This is done by specifying data within
a line which fixes its location uniquely (hence context).

To search for a line that contains the particular string of
characters enter

/character string to locate/
For example, the QED line
/their/P

is a context search sufficient to find the desired line - it
will locate the next occurrence of the characters between /'s
(‘their'). It also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

'Next occurrence' means that QED starts looking for the string
at line DOT+1, searches to the end of the buffer, then continues at
line 1 and searches to 1line dot. (That 1is, the search 'wraps
around' from $ to 1.) It scans all the lines in the buffer until it
either finds the desired line, or returns to dot again. If the
given string of characters cannot be found in any line, QED
responds with an error message, Otherwise it prints the 1line it
found.

Both the search for the desired 1line and a substitution can
occur in the same command sequence as follows

/ aid /sp/their/the/

which will yield

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.10

QED
CONTEXT SEARCHING

to come to the aid of the party.

There were three parts to that last command: context search for
the desired line, make the substitution, if so print the line.

The expression / aid / is a context search expression. In their
simplest form, all context search expressions are a string of
characters surrounded by delimiters. Although slash is used as the
delimiter in these examples, any other special character which does
not have significance to QED may be used (ie: apostrophe (') or
back slash (\) for example). Context searches are interchangeable
with 1line numbers, and may be used to find and print a desired
line, or as line numbers for some other command, 1like 'S'. Both
uses were shown in the examples above.

Suppose that the buffer contains

now is the time

for all good men

to come to the aid of their party.
Then the QED line numbers

/ for /

/ good /

/ all /

are all context search expressions, and they all refer to the
same line (ie. line 2). To make a change in line 2, for example

/ for /S/good/bad/
or

/good/S/good/bad/
or

/ all /S/good/bad/

Would all achieve the same result. The following example would
print all three lines

/now/, /party/P
Of course, if there were only three lines in the buffer,

1,8$P

Page: 2 TIP/30 Reference Manual
Section: 3.41.10 Version 2.5 (82/08/01)

QED
CONTEXT SEARCHING

would be acceptable but not if there were several hundred.

If a context search 1is preceded by a minus sign (-) then the
editor will search from the current line towards line 1 and then
wrap around to the last line, back to the current line. The search
stops when a match is found or the starting line is reached again.

If a context search is preceded by an exclamation mark (!) then
the editor will search for a line which does not contain the given
pattern. (- and ! may be used together).

Note: the search always begins from the current line.

The basic rule is: a context search expression is the same as a
line number, so it may be used whenever a line number is required.
Remember that once the line numbers are resolved, QED will test for
start number less than end number and invert them if necessary.

Example:

48, /fox/sp/a/b/
-/quick/,+1sp/x/y/

-kt

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 3
TIP/30 TEXT EDITOR Section: 3.41.10

QED

REPEATED SEARCHING FOR THE SAME STRING

3.41.11 REPEATED SEARCHING FOR THE SAME STRING QED

QED provides a shorthand method for repeating a context search
for a previously specified string. Example, the QED line number

/string/

will find the next occurrence of 'string'. It often happens that
this is not the desired line and the search must be repeated. (ie.
there may be other occurrences of 'string' in the element so look
around with -2,.P etc.). This can be done by entering:

//

This 'shorthand' argument represents 'the most recently used
context search expression.' It can also be used as the first string
of the substitute command, as in

/stringl/S//string2/

which will find the next occurrence of 'stringl' and replace it
with 'string2'.

The substitute command may have modifiers before the 1st
delimiter. If 'S' is followed by a number (say 2) then the 2nd
occurrence of the string on a 1line 1is substituted. If 'S' s
followed immediately by 'p' then those 1lines matched will be
printed. If 'S' is followed by 'd' then those lines matched will be
deleted. If ‘'string2' is not supplied (ie. just carriage return),
then no substitution is done but only lines matched will be printed
or deleted as requested. If the 's' is preceded by ! (exclamation
mark) which means 'logical not', then all 1lines which do not
contain ‘'stringl' will be matched; hence printed or deleted
according to the modifier.

-k -

Page: 1 TIP/30 Reference Manual

Section: 3.41.11 Version 2.5 (82/08/01)

D: ¢
CHANGE AND INSERT CE

3.41.12 CHANGE AND INSERT QED: c

This section discusses the change command

C

which is used to change or replace a group of one or more lines,
and the insert command

I

which is used for inserting a group of one or more lines.
‘Change', written as

C

is used to modify or replace a number of 1lines with different’
lines, which are entered via the terminal. For example, to change
lines 2 through 4

2,4C
lines are displayed
2,4D1
.....€Nnter new lines here....
"F

The lines entered between the 'DI' commands and the "F will take
the place of the original lines between start line and end line.
This is most useful in replacing a line or several lines which have
errors in them. It should be noted that the number of text lines
between 'sss,eeeDI' and '"F' can be varied. This means that a 'C'
function can encompass multi-line addition or deletion during the
change operation.

QED will display the lines to be changed. For convenience, a tab
stop will be set after the generated "F. On a CRT they may be
modified wusing the hardware editing features of the CRT and
added/inserted into the edit buffer with one XMIT.)

If only one line is specified in the 'C' command, then just that
line is replaced. One line may be changed to many, or many to one,
but OQED imposes a maximum limit of 1 screen page for each change
command. Notice the use of "F in the add step of the 'C' and that
it must start on a new line. If "F is omitted, the user will be
left in append mode and may continue to enter further text. If no

line number is given, line dot is assumed. The value of dot is set
to the last line added.

L -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.12

QED: ¢
CHANGE AND INSERT

'Insert’' is similar to ADD - for instance

/string/1I

...enter lines to be inserted here...
"

F

Will insert the given text before the next line that contains
'string'. The text between I and "F 1Is inserted before the
specified 1line. If no 1line number is specified dot is used. Dot
will be set to the last line inserted.

~d k-

Page: 2 TIP/30 Reference Manual
Section: 3.41.12 _ Version 2.5 (82/08/01)

QED: m
MOVING BLOCKS OF TEXT; MOVE

3.41.13 MOVING BLOCKS OF TEXT; MOVE QED: m
The 'M' (move) command enables rearranging sections of code or
text. Position ‘'dot' to the 1line after which the text 1is to be
added and specify which lines are to be moved. For example
10p
110,140m

copies lines 110 through 140 after line 10 and deletes them from
their previous position.

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.13

QED: «
COPYING BLOCKS OF TEXT; COPY

3.41.14 COPYING BLOCKS OF TEXT; COPY QED: k
The 'K' (copy) command enables duplicating sections of text.
Position 'dot' to the line after which the text is to be added and
specify which lines are to be copied. For example
10p
110,140k

copies lines 110 through 140 after line 10.

-4kt~

Page: 1 TIP/30 Reference Manual
Section: 3.41.14 Version 2.5 (82/08/01)

QED: @

GLOBAL COMMANDS

3.41.15 GLOBAL COMMANDS QED: g

This section discusses QED's 'global' command,
G\string\

The global command provides a way to perform one or more edit@ng
operations on all 1lines in the buffer that match some specified
context search.

For example to print all lines that contain the word 'comment'.
The context search

/comment/

matches a line containing the word ‘'comment', and the global
command 'G' 1s used, together with the print command 'p', as
follows

G/comment /P

This says 'for each line that matches the context search (for
the word 'comment'), execute all of the commands on this line' - of
which in this example, there is only one, a print. (A similar case
would be to delete all the lines containing a particular string.)

The substitute command can operate on many lines at once;
consider:

1,8SP/xxx/yyy/

This scans an entire buffer but operates line by line for
changes. This may not be desirable. But consider

G/zzz/S/xxx/yyy/P

which will perform the same substitution only on /zzz/ context
lines, and print all of the matched lines whether or not a change
occured in those lines.

This example used two commands on one line; in general, as many
commands as common sense permits may be used.

The 'G' command may be preceded by two line numbers, in which
case only the lines within this range are considered. As implied
above, if no line numbers are given, the range 'l,$' is assumed. In
the following, no context criteria has been specified to limit the
'S' commands.

CHAPTER III ~ ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.15

QED: ¢
GLOBAL COMMANDS

G//S/xxx/yyy/S/zzz/www/

The preceding 'S' commands, given as separate commands would
incur twice the buffer scanning overhead to the computer. If the
global command is followed by a null string then it will match all
lines. Note that this is different from the usual, ie. G// does not
match the most recently used context expression.

~+%+-

2 TIP/30 Reference Manual

Page:
Version 2.5 (82/08/01)

Section: 3.41.15

QED: *
RE-DIRECTED QED INPUT

3.41.16 RE-DIRECTED QED INPUT QED: "<

Another way to get text into the buffer is to go into add mode
(A command) and select the input from a file in the permanent
library file system. This is a simple method by which tabulation
may be imposed onto elements not previously structured by QED. The
command:

"< bktext/elt

will read the element 'elt' from file 'bktext'. If the element
to be read is a proc then ',P' must follow the element name. For
example

"< bktest/pname,P
will read the proc 'pname' from file 'bktest'.
While in Add mode, the "< command may be used to select input

from a file/elt. In command mode, the data read from file/elt will
be interpreted as QED commands.

In this way a set of commands may be coded once and passed
against many elements to minimize repetitive editing. The file
processed by the re-direction command is treated as if it were an
extension of the keyboard.

The file/elt .selected as re-direction input may also contain a
"< command but that is the 1limit for nesting.

-kt

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.16

QED: R
READING TEXT FROM A FILE

3.41.17 READING TEXT FROM A FILE QED: r

The Read command normally appends (at the end of the buffer)
data from file/elt to the lines already in the edit buffer.

For example:
R SOURCE/STORY
will read the element 'STORY' from file 'SOURCE'. If the element
to be read 1is a proc then ',P' must follow the element name. For
example
R FILEX/MACRO,P
will read the proc 'MACRO' from file 'FILEX'. }
Remember, the Read command will add the text from file/elt to
the end of the edit buffer. The user may then move it around as
necessary. A more sophisticated version of the Read command is:
line R bgn,end file/elt,type
This allows specifing a 1line range (bgn,end) of text from

file/elt to be appended (at 'line') into the current edit buffer;
pushing existing data down. For example:

100 R 50,103 COPY/MODULE3

would copy lines 50 through 103 of element 'MODULE3' in file
"COPY' to the edit buffer after line 100 pushing 101,$ down.

The user may create an edit buffer containing the directory of a
library by specifying a type of "D" or "F". A type "D" will include
the comments and timestamp for each element; a type "F" will omit
comments and timestamps. Each line of the edit buffer contains one
element name.) p

-kt -

Page: 1 TIP/30 Reference Manual
Section: 3.41.17 Version 2.5 (82/08/01)

QED: w
WRITING AN EDIT BUFFER TO A FILE/ELEMENT

3.41.18 WRITING AN EDIT BUFFER TO A FILE/ELEMENT QED: w

To write out the contents of the edit buffer to a permanent
library file use the write command 'W'

W file/elt,type comments

This will copy the entire content of the edit buffer to the
specified file. To save the text as an element named 'PROG' to a
file named 'PRGFIL', for example, enter

W PRGFIL/PROG

If the element is to be written out as a proc, then ',P' must be
added after the element name.

If you specify the file, element and type then you may also
specify up to 20 bytes of comments. These comments are placed 1in
the library header record for the element. The editor will not drop
these comments on later editing sessions, therefore you need only
supply them once. Likewise the editor will also recover the type of
module from the library header record.

QED will respond with the number of lines copied after the
'write' is complete and prompt the user for the next command. It is
possible to 1limit the number of lines written out by providing a
line range. For example:

100,159 W COPY/MODULE1l

would copy lines 100 through 159 of the edit buffer out to an
element named 'MODULEl' in the file 'COPY'. Writing an element to a
file does not delete or disturb the edit buffer. This remains
intact wuntil a 'Quit' command is issued to end the update session
and scratch the work space. This is an important point ! QED at all
times works on a ‘'copy' of an element, in a fast Edit File. No
change in the contents of a library takes place until a 'W' (write)
command is issued,

If you attempt to write out an element which already exists you
will be prompted for over-write. Reply 'Y' or 'N'. To avoid this
over-write check message, use the 2 1letter command 'WR' (not
generally recommended).

If you wish to write the element out, only if changes have been
made, you may use the 2 letter command WC. If nothing was changed
in the module the write is not done. This is useful when making wup
execute files of QED commands.

CHAPTER 1II - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.18

QED:
" WRITING AN EDIT BUFFER TO A FILE/ELEMENT

Since QED at initialization, saves the file/elt,type parameters,
it 1is possible to simply issue 'R' or 'W' commands without
re-stating 'file/elt,type'.

NOTE: Whenever another or subsequent write, or input
re-direction occurs, QED resets the default file/elt parameters.
Under these conditions, the user should always check the settings
with command '=' before executing a default I/0 command.

Failure to do so may produce results which are quite
undesirable.

-tk

Page: 2 ‘ TIP/30 Reference Manual
Section: 3.41.18 Version 2.5 (82/08/01)

QED: a, E

END OF EDIT SESSION: QUIT / END

3.41.19 END OF EDIT SESSION: QUIT / END QED: q, e

Prior to QED termination, the user may save his updated text by
writing it to a permanent file using the 'W' command. To terminate
an QED run, enter

Q
or

E

'Q' scratches the buffer while 'E' does not. Each returns control
to the program which called the editor or TIP/30.

To leave QED but retain the edit buffer for later use employ
'E'nd (see 'getting started' for buffer naming).

If the user has modified any text within the buffer, QED will
issue a warning message before deleting the work space. This is the
last chance to save the session. If the user has written the text
to a permanent file, the warning is not given.

-4kt -

CHAPTER III - ON~-LINE UTILITY PROGRAMS _ Page: 1
TIP/30 TEXT EDITOR Section: 3.41.19

QED: v

VERSION NUMBERS

3.41.20 VERSION NUMBERS QED: v

A version number for each line in the element is maintained by
QED to aid the user in keeping track of updates. This number
indicates when the line was last changed. Each time the element is
read into the edit buffer, the version number is incremented by 1.
For COBOL, Assembler, and text files the version number of each
line is stored in columns 72 to 74 The user may change the current
version number with the 'V' command. eg.

V4

will set the current version number to 4.

The version number is stored by QED modulo 256; that 1is, the
remainder when the version number 1is divided by 256 is the new
version number. (ie: v300 would result in version 44).

The version number and the name of the last person to update an
element is stored in the comment area of the element's header
record.

-4kt -

Page: 1 TIP/30 Reference Manual
Section: 3.41.20 Version 2.5 (82/08/01)

OED
SUPPLEMENTARY QED REFERENCE

3.41.21 SUPPLEMENTARY QED REFERENCE QED

This section describes some of the more advanced features of the
text editor.

The use of regular expressions is controlled by the options OI
(option in) and OO0 (option out). In QED OO is the default state and
the use of regular expressions is turned off. To turn 'on' regular
expressions issue an OI command. The OI command remains active
until the next OO command.

Regular expressions allow the wuser of QED to perform more
complex editing, but introduce a degree of complication. For
example, most special characters can no 1longer be wused with
complete freedom 1in substitute and context searches. Normally, to
search for a string of characters, it is sufficient to type

/string of characters to be found/

The expression between delimiters is referred to as a context
search expression which is, in fact, the simplest case of a regular
expression. The /'s are not part of the regular expression,
although most regular expressions are written between slashes.

By definition, a regular expression specifies a set of one or
more strings of characters which satisfy a given context search; it
is a complex form of context search.

The regular expression 1is a mask which provides degrees of
acceptable search argument. It might specify any one of a whole set
of strings of <characters that will satisfy the search, or a
particular string in a particular position on a line. A particular
regular expression 'matches' a string of characters whenever the
string contains one of the desired character strings satisfying the
match pattern.

Regular expressions are typically formed from ordinary context

searches elaborated by wusing special characters with specific
functional meanings. The special characters can be interpreted as
search mask operators. In fact, the discussion of regular
expressions is largely a discussion of the special characters:

TLx S "% E

In 00 mode ('option special characters out'), the regular
expression meanings are off; use OI ('option in') to activate them.

The (*) is a circumflex or roof-top character on Uniscopes. This
character is typed as an up-arrow or cent sign on some terminals.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIiP/30 TEXT EDITOR Section: 3.41.21

e

QED:
MATCHING AT THE BEGINNING OF A LINE

-kt -

Page: 2 TIP/30 Reference Manual
Section: 3.41.21 Version 2.5 (82/08/01)

QED:
MATCHING AT THE BEGINNING OF A LINE

3.41.22 MATCHING AT THE BEGINNING OF A LINE QED: *

It is often useful to be able to look for a 1line that begins
with a specific string of characters. The regular expression

/tstring/
will find the next occurence of a 1line that begins with

'string'. This is a restricted context search since it only finds
'string' if it is at the beginning of a line. Thus, for example, if
the buffer contains:

he said,

'now is the time

for all good men

to come to

the party.'
and dot is set at line 1, then the regular expression

/tthe/p
will display

the party.'

The scan ignores 'the' in line 2 because it 1is not at the
beginning of the line.

A substitution for a string at the beginning of a 1line 1is a
frequently wused QED command. For example, as above, suppose the
line dot contains:

the party.'
Then the commands

s/t/the aid of /p
will yield

the aid of the party.'

The substitution takes place at the beginning of the line, since
+ means in effect 'the beginning of the line' (notice the space

after 'of'). It is usually easier to type *t than to type sufficient
context data to uniquely identify the beginning of the line: For

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.22

QED:
MATCHING AT THE BEGINNING OF A LINE

example,
s/the/the aid of the/p
could be used but this is clumsy and long.
To modify 'the' at the front of this line for example
s/tthe/the immediate/p
would yield
the immediate aid of the party.'

The use of * makes definite which occurrence of 'the' to change;
without it, the result would be:

the immediate aid of the immediate party.’
This was not our intent.

Notice the wuse of regular expressions in two places, as a line
number (for a context search) and as the text to be replaced in a
substitute command. The text which 1is to be replaced in the
substitute command is technically a regular expression; therefore
all of the regular expression features may be used there.

-4k~

Page: 2 TIP/30 Reference Manual
Section: 3.41.22 Version 2.5 (82/08/01)

QED: $
MATCHING AT THE END OF A LINE

. 3.41.23 MATCHING AT THE END OF A LINE QED: $§

Another regular expre551on special character is the dollar sign
($). The dollar sign in a regular expre551on means 'the end of the
line'. For example, the regular expression

/string$/

will find the next line that ends with 'string'. Do not confuse
this with '$' used as the last line of the buffer; the OI mode has
altered the normal meaning.

Again, '$' like circumflex, is probably most useful as part of a
substitute command, where it can be used to add characters to the
end of a line. For example, suppose the buffer contains:

the other side of the coin
Then the commands
s/$/ is a tail./p
produce
the other side of the coin is a tail.

Note the blank before 'is'. Leaving it out yields:

the other side of the coin is a tail.

If the line in the buffer is

to come to
,then to change the 2nd 'to'
s/toS$/immediately to/
gives,
to come immediately to
The 'S$' definites which word 'to' is referenced.

As an illustration of the both uses of '$', the command

/stringss$/Sp

CHAPTER 111 - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.23

QED: $
MATCHING AT THE END OF A LINE

will print all lines from the next one ending in 'string' to the
end of the buffer.
-4kt -
Page: 2 TIP/30 Reference Manual
Section: 3.41.23 Version 2.5 (82/08/01)

OED: %
MATCHING ANY LETTER

3.41.24 MATCHING ANY LETTER QED: %

The percent sign (%) will match any letter of the alphabet when
used in a regular expression. For example, *SpP/ a% /

would print the 1lines containing words ‘as','at',K6'an'...etc.

not, however, 'a ','al','a2'...etc..
-k -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1l

TIP/30 TEXT EDITOR Section: 3.41.24

QED: #
MATCHING ANY DIGIT

3.41.25 MATCHING ANY DIGIT QED: #
The number sign (#) will match any digit when used in a regular
expression. For example, *SP/ a# /
would print the 1lines containing 'a0','a3','a9'...etc. not,
however, 'a ','as','at'...etc..
-+%k+-
Page: 1 TIP/30 Reference Manual
Section: 3.41.25 Version 2.5 (82/08/01)

DISPLAYING A COLUMN SCALE

QED: O#

3.41.26 DISPLAYING A COLUMN SCALE QED: O#

When used as a command, # will cause a scale of numbers to be
placed on the terminal. This 1is wuseful for aligning column
dependent data in control cards or RPG source,.

-4k
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.26

QED: N
SAVE THE CURRENT LINE NUMBER

3.41.27 SAVE THE CURRENT LINE NUMBER QED: >n

In the > command, the modifier 'n' may be a digit from 0 to 7.
You may save 8 line numbers for use later. Generally this is used
in implementations of re-direction procedures, where searches are
employed to bracket block moves/copies of text.

- +k+-

Page: 1 TIP/30 Reference Manual
Section: 3.41.27 Version 2.5 (82/08/01)

QED: N
RECALL SAVED LINE NUMBER

3.41.28 RECALL SAVED LINE NUMBER QED: <n

n may be a digit from 0 to 7. The previously saved line number
is recalled and used within the current command. This function is
not technically a command in its own right since it is used as line
number equivalent within other commands. For example, the sequence:

<1,<3S/01d/NEW/

sets the 'start,end' line range for the 'S' command to content
of the save registers 1 and 3 respectively.

-4k

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.28

QED: *
0l MODE REPETITION

3.41.29 OI MODE REPETITION QED: *

The asterisk * 1s wused to 1indicate an arbitrary number of
repetitions (including zero) of some string. As an example,

/ab*c/
means ‘'search for any one of the following:'
ac, abc, abbc, abbbc, ...etc

Notice that 'b*' includes a string of no characters; also, *
applies only to the previous character - just the 'b' is repeated.

More useful would be the expression
/Tt *S/

which searches for a line that contains only blanks. Notice that
a blank has been typed before the '*',

'*' is most useful when used in conjunction with other special
characters, particularly the period. Examples of the use of '*'
with other special characters will follow.

- %+ -

Page: 1 TIP/30 Reference Manual
Section: 3.41.29 Version 2.5 (82/08/01)

QED: .
MATCHING ANY CHARACTER

3.41.30 MATCHING ANY CHARACTER QED: .

The period '.' is another character that QED uses in more than
one way, with different meanings. Its use as 'dot', the current
line has been discussed. This section describes its use as a 'match
anything' character in regular expressions.

The precise definition of '.' in a regular expression is that it
matches any single character. Thus

/x.y/
would match any one of the lines

x=y+1

8 = x+y

if (x<y) go to 10
abc ... xy z

And of course it will match

x.y
combining the period with t gives the expression

/T...the/

which matches any line that starts with 3 characters followed by
'"the'. This would include any of

on the other side of the coin
to the party
another time

but not
the other side

Probably the single most important use of '.' is in combination
with '*' ; for instance

*

means 'any string of zero or more characters on a line'. It |is
usually used to save typing a long string of characters; only a
small part is typed, and the rest is expressed by '.*'. So, for
example, if the buffer contains

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.30

QED: .
MATCHING ANY CHARACTER

to come to the aid of the party
then the commands
s/aid.*/party/p
will produce
to come to the party
The '.*' in this case matched all of the line after 'aid'.
Equally effective is
s/aid.*the //p
to get again
to come to the party
As a final example, the expression
/tbegin.*ends$/

matches any line that starts with 'begin' and ends with 'end'.

-tk -

Page: 2 TIP/30 Reference Manual
Section: 3.41.30 Version 2.5 (82/08/01)

UED: 8
WHAT WAS JUST MATCHED

3.41.31 WHAT WAS JUST MATCHED QED: &

The ampersand '&' is another shorthand symbol, which often saves
typing. Suppose that the current line is

now is the time

and that parenthesis are required around it. One way would be to
make the substitutions

s/t/(/
s/$/)/

Another way is based on the ampersand; the following command has
exactly the same effect.

s/.*/(&)/

This example defines '&' as a shorthand symbol for 'the text
matched by the regular expression in the substitute command'.
Whatever was to be replaced (ie. whatever was matched) is available
by typing '&' in the replacement text. Consider this substitution
on the original line:

s/.*/'&'? He answered, '&'./p
which returns

‘now is the time'? He answered, 'Now is the time'.

The regular expression '.*' matched the whole line, so that is
the 'value' of '&'.

It 1s not necessary to match the whole line. Suppose the buffer
contains

the end of the world

A common abbreviated command sequence would be
/world/s//& is at hand/p

to produce

the end of the world is at hand

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.31

QED: ¢
WHAT WAS JUST MATCHED

Observe this example carefully, for it 1illustrates QED's
conciseness. The regular expression '/world/' found the desired
line; the shorthand '//' found the same word in the line; and '&'
saved retyping the text.

The '&' has special meaning only within the replacement text of
a substitute command. To use ampersand within the replacement text,
use two ampersands in a row. For example

s/ampersand/&&/

will convert the word 'ampersand' to the real symbol '&' in the
current line. substitute command to separate out various parts of
the string matched by the regular expression, for reference in the
_second half of the substitute command. This is an idea analogous to
the '&', which represents the entire matched string.

Suppose that each 1line 1in the buffer contains a 5-character
sequence number as its last five characters. Suppose want to move
this information to the beginning of the line. This can all be
accomplished in just one command.

s/+{.}a{.....}bS/ba/

Examine this carefully! The first character after the closing brace
is the 1label or tag for that portion of the string matched within
the braces. These tags only have this special meaning within that
substitute command and may be used any number of times.

If you do not have a full keyboard then the square brackets ("["
and "]") may be used by setting QED in upper case mode. (The upper
case command is OU).

~ k-

Page: .2 TIP/30 Reference Manual
Section: 3.41.31 Version 2.5 (82/08/01)

OED
REGULAR EXPRESSION CONSIDERATIONS

3.41.32 REGULAR EXPRESSION CONSIDERATIONS QED

I1f a regular expression can match several overlapping strings on
a line, it will first match the leftmost (making it as 1long as
possible) and will then find the next non-overlapping and longest
string, until the entire expression 1is satisfied. Remember that
regular expression will not match text spread over two or more
lines.

— k-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.32

QED
SUMMARY OF COMMANDS AND LINE NUMBERS

3.41.33 SUMMARY OF COMMANDS AND LINE NUMBERS QED

The general form of QED commands is the command name, preceded
by one or two 1line numbers, and perhaps followed by arguments.
Commands may follow one another directly on the same line.
Exceptions are 'that no commands may follow R or W or redirection

commands' and 'Global executes all commands on its own line'.

-+x+-

Page: 1 TIP/30 Reference Manual
Section: 3.41.33 Version 2.5 (82/08/01)

QED: suMMaRY

COMMAND anp FUNCTION SUMMARY

3.41.34 COMMAND and FUNCTION SUMMARY

A ADD

C Change

D Delete

E End

= Facts

G Global

I Insert

K Kopy

M move

00 Option Out

QED: summary

Add lines after the specified 1line number (else

dot) Adding continues until "F is seen as first
two characters on a line. Dot is set to last 1line
added.

Change the 1lines specified to the new lines

following the ¢ command, up to "F. If no lines are
specified, replace line at dot. Dot is set to last
line changed.

Delete the lines
delete
line.

specified. If none specified,
line dot. Dot is set to the next undeleted
End the Edit session. The edit work file is saved.
Give the file name of the last R or W command.
Note that a W or R command immediately followed by
a carriage return will use the file name which is
displayed by the = command.

G/context search/ QED commandS......

Execute the QED commands on all lines that satisfy
the context search.

Insert 1lines before the specified line (or dot)
until a "F is typed on a new line. Dot is set to
the last line inserted.

Copy the specified lines after dot. Dot will point
to the last line copied in.

Move the specified lines after dot. Dot will point
to the last line moved in.

Display a number scale across the screen.
Display the next line.

Turns OFF the use of regular expressions, and
special character meanings in substitutes, context

searches and tabbing. This 1is the default QED
mode.
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.34

QED: sumMaRY

COMMAND anp FUNCTION SUMMARY

OI Option In

OA Option ASM

OT Option ASM

OD Option ESCAPE

04 numbering

0S scroll

0OX text

OR RPG

OC COBOL

Turns ON the wuse of regular expressions, the
inverse of 00.

Causes all lines added and written out to be
tabbed by assembler conventions. A blank is used
to separate the fields and a tabset character will
tab to column 72 for continuation.

Normal tabbing is to <c¢olumns 1,10,20,39,72 and
continued lines begin in column 16. Use 00 to turn
tabbing off.

Causes all lines added and written out to be
tabbed by assembler conventions. A blank is used
to separate the fields and a tabset character will
tab to column 72 for continuation. Normal tabbing
is to columns 1,10,16,40,72 and continued lines
begin in column 16. Use 00 to turn tabbing off.

Turns OFF the system escape feature of TIP. Use
this if input 1lines 'may begin with the same
character as the system escape character (usually
Q).

This command is a toggle; it flips the switch (ie.
lst on, 2nd off, etc.)

Turns line numbering on or off. Every line
displayed to the terminal will be preceded by its
line number. To turn this off enter O# a second
time.

This command changes the way in which terminal
output is handled. Scrolling or 3just carriage
returns. '

QED will delete redundant blanks and permit word
overflow from one line to the next.

Sets RPG tabulation mode where columns 1-5 are not
displayed. When the element is written out columns
1-5 are sequenced and the element name 1is placed
in columns 75-80 as required by the RPG compiler.

Sets COBOL mode. Like "OR", only columns 1-6 are
not displayed. Note the first character you enter
on each line goes in column 7; also,in COBOL mode,
tab-set characters will cause 4 blanks to be
inserted for each tab-set entered beyond column 7.

Page:
Section:

2
3.41.34

TIP/30 Reference Manual
Version 2.5 (82/08/01)

QED: SuMMARY

COMMAND anp FUNCTION SUMMARY

OL Lower

OU Upper

ON Normal

P Print

Q Quit

R Read

"< file/elt

S Substitute

V Version

All alphabetic characters input from the keyboard
are changed to lower case.

All alphabetic characters input from the keyboard
are changed to upper case.

No upper/lower case conversion of characters input
from the keyboard. (What you typed is what you
get).

Display specified 1lines on terminal; 1if none
specified, print current line (dot).

Terminate the text editor program. The QED buffer
(work file) is scratched

Add text from the specified file/elt to the end of
the edit buffer unless otherwise specified.

Used to redirect QEDs input from a element of a
library file. OQED will take its input (commands)
from the named file/element until end of file is
reached. This command must not be followed by any
other QED command on the same 1line on the
terminal.

Usually wused in association with QED Exec
Elements.

S/stringl/string2/

Substitute characters ‘'string2' for 'stringl’
wherever 'stringl' occurs in specified lines. If
no line is specified, make substitution in 1line
dot. Dot is set to last 1line 1in which a
substitution took place. Note that the slashes can
be replaced by any character which is not QED
defined as significant.

A numeric modifier (Sl/stringl/string2/) can be
used to just change the nth occurrence of
'stringl' in a line.

Set the version number.

W Write Write out buffer to a permanent file. A line range
may be specified to limit the transfer. 1In any
case, dot is changed to the last line written out.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 3

TIP/30 TEXT EDITOR

Section: 3.41.34

QED: suMmaRrY
COMMAND anp FUNCTION SUMMARY

ZL Zap Lower Change alphabetics in the specified lines to lower
case. The current 1line (dot) will be set to the
last line where a change of case was made.

ZU Zap Upper Identical to ZL command except that the change is
to upper case.

ZSnn sort Sort the specified lines into ascending sequence.
ZBnn sort Sort the specified lines into descending sequence.

If ZS or ZB is followed immediately by a number
(nn) the sort will be done from that column of
each record to the end of the record.

= Display summary of edit buffer contents and
options in effect

/-——-/ Context search. Search for next line which
contains this string of characters and print it.
Dot is set to line where the string is found.

Search starts at DOT+1, wraps around from § to 1,
and continues, if necessary, back to the starting
point.

-/—===/ Context search in reverse direction. Start search
at DOT-1, scan to 1, wrap around to §.

v/ ===/ Context search for 1line that does NOT have this
string on it. The ! may be wused 1in conjunction
with the reverse search direction '-' command.

L

Page: 4 TIP/30 Reference Manual
Section: 3.41.34 Version 2.5 (82/08/01)

LINE NUMBERS

QED

3.41.35 LINE NUMBERS

QED

Current line ("dot") - set by many commands, often
to last line changed or referenced.

$ Last line in the edit buffer.
1,2,... Absolute line numbers in edit buffer.
/xxxx/ Implicit context search - line number of next line
that contains the string of characters.
-/xxxx/ Implicit context search in reverse direction.
* All lines in the edit buffer
Equivalent to 1,8
& Special line range for CRT terminals.
It is approximately equivalent to '.,+15"' (16
lines).
Approximately equivalent because it may adjﬁst
based on the specific terminal type in use.
— k-
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

TIP/30 TEXT EDITOR

Section: 3.41.35

QED:
D Exercrse | EXERCISE 1: APPEND, QUIT, WRITE

3.41.36 EXERCISE 1: APPEND, QUIT, WRITE QED: Exercise 1
Enter QED and create some text using
a
...text...
"f
Write it out using W. Then leave QED with the Q command. To
check the results call QED with the file/elt name used to write the
text out. When QED has read the elt in display the buffer contents
using P.
—+%k+-
Page: 1 TIP/30 Reference Manual
Section: 3.41.36 Version 2.5 (82/08/01)

QED: E 2
EXERCISE 2: APPEND, PRINT ED: Exercise

3.41.37 EXERCISE 2: APPEND, PRINT QED: Exercise 2

As Dbefore, create some text using the append command and
experiment with the P command. You will find, for example, that you
can't print line 0 or a line beyond the end of the buffer and that
attempts to print a buffer in reverse order by saying

3,1p

will result in QED inverting the line arguments before execution
of the command.

-4k~

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.37

: B 5
UED: Exercise EXERCISE 3: READ, PRINT, APPEND

3.41.38 EXERCISE 3: READ, PRINT, APPEND QED: Exercise 3

Experiment with the R command - try reading and printing various
files. Try alternately reading and appending to see that they work
similarly.

-+k+-

Page: 1 TIP/30 Reference Manual
Section: 3.41.38 Version 2.5 (82/08/01)

QED: Exercise 4
EXERCISE 4: ADD, READ, PRINT, WRITE

3.41.39 EXERCISE 4: ADD, READ, PRINT, WRITE QED: Exercise 4

Experiment with A, R, W, P, and D. Understand how dot, $, and
the line numbers are used.

Try using line numbers with A, R, and W as well. Note that 'A®
will append lines after the 1line number that you specify (not
necessarily at the wend); and that 'W' will write out exactly the
lines specified, not necessarily the whole buffer. These variations

are sometimes handy. For instance to insert an element at the
beginning of a buffer use

11
"< filename/eltname

and to insert lines at the beginning of the buffer use

11
..I.text...
“F
-+k+4-
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

TIP/30 TEXT EDITOR Section: 3.41.39

UED: bxercrse 3 EXERCISE 5: SUBSTITUTE

3.41.40 EXERCISE 5: SUBSTITUTE QED: Exercise 5

Experiment with the substitute command. See what happens if you
substitute for some word on a line with several occurrences of that
word. For example, do this:

A

the other side of the coin
"F

S/the/on the/P

you will get
on the oon ther side of on the coin
Try 1it! Be sure you understand what's happening - that
substitute changes all occurrences of the first string. Even
experienced users make mistakes by forgetting this.
Try other characters instead of /'s to delimit the two sets of
characters in the S command. Try several S commands (or others) all

on one line.

If you recreate that same line again, but this time try

Sl:the:on the:P
you will get, instead
on the other side of the coin

Notice the 1 immediately after the S. (the : were used for /
just to show it could be done.) The 1 caused QED to only carry out
the first substitute rather than all of them. 1In general, any.
number can be wused instead of the one. It allows you to select a
particular substitution to take place rather that every one on the
line.

~+k+-

Page: 1 TIP/30 Reference Manual
Section: 3.41.40 Version 2.5 (82/08/01)

QED: Exercise 6
EXERCISE 6: CONTEXT SEARCHING

3.41.41 EXERCISE 6: CONTEXT SEARCHING QED: Exercise 6

Experiment with context searching. Try a body of text with
several occurrences of the same string of characters, and scan
through it using the same context search. (see section 1.9).

Try using context searches as line numbers for the substitute,
print and delete commands. (They can also be used with R, W, and
A.)

Try context searching wusing -/text/ 1instead of /text/. This
scans lines in the buffer in reverse order rather than normal:
sometimes useful if you go too far while looking for some string of
characters. It's a fast way to back up.

- 4k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
TIP/30 TEXT EDITOR Section: 3.41.41

QED: Exercise 7/
EXERCISE 7: CHANGE

3.41.42 EXERCISE 7: CHANGE QED: Exercise 7

"Change" is exactly the same as a combination of delete followed
by insert. Experiment to verify that

start,end D
I

...-text....
"F

is the same as
start,end C

«cse.text....
"F

Experiment with A and I, to see that they are similar, but not
the same. You will observe that

line-number A
....text...'
"F

adds after the given line, while
line-number I
....text...'
"F

inserts before it. Observe that if no line number is given, 'I'
inserts before line dot, while 'A' appends after line dot.

-4k+-

Page: 1

TIP/30 Reference Manual
Section: 3.41.42

Version 2.5 (82/08/01)

RELOAD
RELOAD PROGRAM

3.42 RELOAD PROGRAM RELOAD

The first time a program 1is loaded from the TIPLOD library
TIP/30 will move a copy of the load module to the TIPSSWAP file.
Any subsequent requests for the load module will cause TIP to read
the load module from the swap file copy. If the programmer has
compiled the program, he may wish TIP/30 to get the new version
from the TIPLOD library. To tell TIP/30 to do this the programmer
must use the RELOAD transaction.

Syntax:

RELOAD loadm
Where:

loadm is the load module name.

Example:

RELOAD PAYUPD

Would dispiay (for example):

PAYUPD cleared from loadr table.

PAYUPD cleared from reentrant control table.
Using PAYUPD as of 82/05/19 15:05:35 (C) ALLINSON-ROSS

Additional Considerations:

If the program is being used re-entrantly then TIP/30 must wait for
all current users of the program to stop using it before a new
version can be loaded.

RELOAD will have no effect on resident programs. A new version

of a resident program can only take effect at TIP/30
initialization.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
RELOAD PROGRAM Section: 3.42

RP
6 RPG EDITOR

3.43 RPG EDITOR RPG

The RPG editor 1is an online program which was written to aid
programmers in the creation and maintenance of programs written in
the language 'RPG'. Using RPG, a programmer no longer has to worry
about aligning fields in their columns. RPG has eight screen
formats; one for each of the form types used in writing 'RPG'
programs. The User only has to select the appropriate screen and
enter the data on titled blank fields. RPG edits and aligns the
data as if it were on a card.

In total there are 10 screen formats used in the RPG editor:

- Menu

- Record list

- Control card format

- File descriptor format

- File extension format

- Line counter format

- Telecommunications format
- Input format

- Output format

- Calculation format

where:

Menu All commands are issued from the menu. All the

remaining screen formats can be displayed using
commands from the basic menu

Record list Displays from one to fifteen records from the input.
file in card format

Others The remaining screen formats are of the eight format
types which correspond to the syntax of the 'RPG'
language. These are invoked by entering the form
type as the command in the menu; the corresponding
screen format will be displayed. Each screen format
contains the field names and data areas for the

Page: 1 TIP/30 Reference Manual
Section: 3.43 Version 2.5 (82/08/01)

RPG EDITOR

RPG

corresponding form.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

RPG

RPG EDITOR

3.43.1

to

to

by

ENTERING RPG
After logging on to TIP, activate RPG by entering
RPG
create a new element or
RPG FILE/ELT
update an existing element.

In the event of a system crash the edit buffer can be retrieved
entering

RPG ELT

Page:
Section:

3 TIP/30 Reference Manual
3.43.1 | Version 2.5 (82/08/01)

RPG

RPG EDITOR

3.44

ERROR MESSAGES

RPG will respond to command and data entry errors by displaying
a self-explanatory error message. In the case of data entry errors,
in addition to the message the fields in error are set to blink.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 4
RPG EDITOR Section: 3.44

RPG

RPG EDITOR

3.44.1 DELETE

To delete a record from the edit buffer it must be displayed on
its correct 'RPG' format screen. Once the record is displayed, it
can be deleted by pressing function key 2. The line number of all
records following the deleted record are decreased by one. The
current 1line 1is the record which immediately followed the deleted
record.

Page: 5 TIP/30 Reference Manual

Section: 3.44.1 Version 2.5 (82/08/01)

RPG
RPG EDITOR

3.44.2 ADD A RECORD

The addition of records is also done from the formatted screen.
If the screen displayed at the moment is not the correct 'RPG'
format, the user must intercede by returning to the menu and
selecting the correct form type format. Once the data has been
entered, press transmit. The data is then validated. If all fields
are valid, the record is added to the edit buffer and becomes the
current line. In the case where the current line already pointed to

a record, that record and any following records would have their
line numbers increased by one.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 6
RPG EDITOR Section: 3.44.2

RPG

RPG EDITOR

3.44.3 UPDATE RECORDS

To update a record, display it on the CRT with its correct form
type screen; make the necessary corrections to the data and press
function key 1. The data fields are then edited. If they are all
valid the old record is replaced by the new record and the user is
given update confirmation. If the RPG validation fails, the fields
in error are «changed to blinking fields and the record is not
updated. The user may correct the fields in error and re-submit or
request another screen. Any fields which are numeric or blank only
are edited by the screen formatter. Any record in the edit buffer
can be wupdated as 1long as it 1is in one of the eight format
displays. There are five ways to get a record into these displays:

- from the menu by entering '.' (current line)
- from the menu by entering '$' (the last line)

- from the menu by entering 'P' and the 1line number
(specific line)

- from one of the eight format displays by pressing £3
(next record)

- from one of the eight format displays by pressing f4
(previous record)

The current line number is not altered by updates.

Page: 7 TIP/30 Reference Manual

Section: 3.44.3 Version 2.5 (82/08/01)

RP
RPG EDITOR b

3.44.4 LIST LINES

To list part of the edit file: enter 'P' as the command on the
menu and the beginning and end line numbers of the lines to be
listed. The records are listed as they would appear on cards except
that the 1line numbers and program identification are not shown. A
maximum of 15 lines can be viewed at once. After these 1lines are
listed, the next or previous 15 records may be viewed by pressing

function key 1 or 2 respectively. The current line is the last line
displayed on the terminal.

NOTE: If 'P' is entered without a line number, RPG editor assumes
that the user wants the current line displayed in its card format.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 8
RPG EDITOR Section: 3.44.4

R RPG EDITOR

3.44.5 GETTING OUT OF RPG

To terminate the session enter 'X' or'Q' as the command in the
menu. Upon entering 'Q' the buffer is scratched whereas with 'X' it
is retained. Before entering this command the user may wish to save
his updated text by writing it to a permanent file using the 'W'
command.

Page: S TIP/30 Reference Manual
Section: 3.44.5 Version 2.5 (82/08/01)

RPG EDITOR

RPG

3.45

CURRENT LINE

To display the current 1line in its format display, enter '.'

(dot) as the command on the menu.

CHAPTER III - ON-LINE UTILITY PROGRAMS
RPG EDITOR

Page:
Section:

10
3.45

RPG

RPG EDITOR

3.45.1 LAST LINE
To display the last line in the edit file enter '$' (dollar
sign) as the command on the menu. The record will be displayed in
its corresponding format. The last line now becomes the current

line.

Page: 11 TIP/30 Reference Manual
Section: 3.45.1 Version 2.5 (82/08/01)

RPG EDITOR ik

. 3.45.2 LINE NUMBER OF CURRENT LINE

By entering '=' as the command on the menu the user is informed
of the line number of the current line.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 12
RPG EDITOR Section: 3.45.2

RPG

RPG EDITOR

3.45.3 WRITING TEXT TO FILE

To write the contents of the edit file to a permanent file enter
command 'W' and the 'filename/elt on the menu. A special comment
can be inserted on the file header by entering it next to the
'comment' (maximum length is 20 characters). If this entry is left
blank, your USER-ID will be used.

On a successful write to the library, the editor will respond
with the number of lines copied. The edit file does not change as a
result of the write command. It is important to remember that RPG
works only with a copy of what is in the library file. The content
of the library file does not change until the write command is
issued and confirmed positively.

Page: 13 TIP/30 Reference Manual

Section: 3.45.3 Version 2.5 (82/08/01)

START 0S/3 BATCH JOB W

3.46 START 0S/3 BATCH JOB RV

To start an OS/3 batch job, the TIP user may use the SYM program
(see section on "SYM") and enter an 0S/3 operator command via the
SYM program. A more direct approach is the use of the RV program.
The RV program 1is, in fact, a transaction-id that calls the SYM
program. The SYM program detects that it has been called with a
transaction-id of "RV" and reacts appropriately.

The RV program expects (on the command line) the parameters that
the user would normally give to the 0S/3 operator "RV" command. The
user should keep in mind that 0S/3 limits the length of a console
command to a maximum of 60 characters.

Syntax:
RV parameters
Where:

parameters the parameters required by the RV command.

Example:
RV COB74(FRED),,E=TEST010

Would run a job stream named "COB74" from YJCS and
cause the job name to be changed to "FRED". The keyword
specification assigns a value to the job g]obal‘"E".

Error Conditions:
The wuser may receive a security error 1if he does not have
sufficient security to run the "RV" program.

CHAPTER III - ON-LINE UTILITY PROGRAMS. Page: 1
START OS/3 BATCH JOB Section: 3.46

SCRATCH
SCRATCH A DYNAMIC FILE

3.47 SCRATCH A DYNAMIC FILE SCRATCH

The SCRATCH program is used to scratch a dynamic file that is
currently assigned to the terminal. The SCRATCH program removes the
entry for the dynamic file in the TIP/30 catalogue and releases the
space currently used by the dynamic file in the TIPSRNDM file.

Syntax:
SCRATCHI[,A] aft-name

Where:
"A" option used to indicate that all assigned files
are to be scratched. Any 0S/3 files assigned are
FREE'd by this option. No file names need be
specified.
aft-name is the active file name of the file to be
scratched.
Example:

SCRATCH WORK1
SCRATCH, A

Error Conditions:
TIPFCS errors may be reported.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SCRATCH A DYNAMIC FILE Section: 3.47

SET SET ATTRIBUTES FOR PROCESS

3.48 SET ATTRIBUTES FOR PROCESS SET
The SET program is a utility that allows the user to change
various attributes of his own or other terminal processes.
Syntax:
SET [FOR term] [attributes]
Where:
FOR term is the terminal name which is to be changed. If
omitted then the calling terminal is used.
attributes any of the following parameters:
U200 change terminal type to U200.
U400 change terminal type to U400.
0310 change terminal type to Q310.
TTY change terminal type to TTY (teletype).
LMON turn TIP/30 line monitor on.
LMOFF turn TIP/30 line monitor off.
LOGON=YES terminal requires logon.
LOGON=NO terminal is NOT required to logon.
DISABLE terminal is disabled. No transactions will be
allowed.
ENABLE terminal is enabled.
DEBUG SYSTEM all programs will run with storage protection.
DEBUG OFF inverse of "DEBUG SYSTEM",
TEST ON the terminal 1is set 1in test mode. File updates
ignored.
TEST OFF the terminal is cleared from test mode.
Page: 1 TIP/30 Reference Manual
Section: 3.48 Version 2.5 (82/08/01)

SET ATTRIBUTES FOR PROCESS

SET

Example:
SET FOR T312 U200 LMOFF LOGON=YES.
SET U400 LOGON=NO.

Additional Considerations:

This program is intended to be used by systems programmers.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page:
SET ATTRIBUTES FOR PROCESS Section:

SPL
SPOOL FILE ENQUIRY

3.49 SPOOL FILE ENQUIRY SPL

The SPL program enables the user to examine sub-files in the
0S/3 spool queues. A spool sub-file may be listed at the terminal,
printed at a terminal printer, released for batch printing, or
deleted.

The SPL program 1is able to read sub-files in the 0S/3 spool
queues. It has no provision for modification of data in the
sub-file.

The 0S/3 spool file is divided into two classes of sub-file:

- Held
- Not Held (gqueued)

Sub-files that are held are the usual (default) target of the
SPL program. It is possible to direct SPL to examine sub-files that
are not held, but the wuser should be aware that sub-files are
gueued only until the 0S/3 output writer opens them for processing.
There 1is, therefore, a potential race condition associated with
queued files.

The 0S/3 spool file is also divided (for each of the two classes
described above) into the following gqueues:

LOG job log.
PR local print (default queue for SPL).
PU local punch,
RDR local reader.
RDRY96 local 96 column reader.
SYSLOG retained job logs.
RBPIN remote reader (if configured).
RBPPR remote print (if configured).
RBPPU remote punch (if configured).
There are 18 (2 x 9) combinations of class and queue.
To examine or manipulate a spool sub-file entry, the user must

always clearly establish both the class (default is HELD) and the
queue (default is PR) of the desired sub-file.

Page: 1 TIP/30 Reference Manual
Section: 3.49 Version 2.5 (82/08/01)

SPL
SPOOL FILE ENQUIRY

The SPL program operates only in interactive mode. It makes no
use whatsoever of command line parameters. To begin the SPL program
simply enter the transaction name:

SPL

When SPL prompts the user for commands, the general syntax is as
follows:

Syntax:

cmnd [queuel [option] [keyword...keyword...keyword...]

Where:
cmnd A recognized SPL program command (eg: DELETE,
PRINT, etc) as described in the next sections.
queue The O0S/3 spool queue to be searched (default is
PR).
option Optional additional information required by some
commands as documented.
keyword Optional keywords that are wused to qualify the
selection of sub-files in the specified queue.
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2

SPOCL FILE ENQUIRY Section: 3.49

SPL: SECURITY
SPL SECURITY CONSIDERATIONS

3.49.1 SPL SECURITY CONSIDERATIONS SPL: security

To maintain the security of the 0S/3 spool file, the SPL program
will display information from the spool queues according to the
following rules:

* MASTER level users (ie: security 1 thru 9) are able to examine
any spool queue sub-file;

* SYSTEM and PROGRAMMER users (ie: security 10 thru 29) are able
to examine any spool queue entry with form name "STAND1";

* Other spool sub-files can be examined by a user if and only
if:

- userid, group one, group two, or terminal name (four
characters) matches one of: FORM=, CART=, REMOTE=, FILE=,
or ACCT= keyword specified.

Note that account number is the 4 character account number as
given on the JOB statement of the job that created the spool
sub-file.

-k -

Page: 1 TIP/30 Reference Manual
Section: 3.49.1 Version 2.5 (82/08/01)

SPL: KEYWORDS
SPL KEYWORDS

. 3.49.2 SPL KEYWORDS SPL: keywords
Following is a summary of the keywords that are recognized by
the SPL program. Most keywords provide information that is used to
specify the desired sub-file entry (ie: Jobname= etc).
Some keywords provide information to the SPL program that
changes the behaviour of the SPL program (ie: PAge=).
Upper case characters 1in the keyword are required characters;
lower case characters are noise characters for readability.
Acct= sub-files with this job account number.
The account number is a parameter on the // JOB
statement and is restricted to 4 digits for SPL
purposes.
Cart= sub-files with this print band name.
The cartridge name is a parameter on the // LCB
statement
COlumn= specify leftmost column to display.
‘ This keyword specifies the starting column to be
used. Default is column one.
Flle= sub-files created with this LFD name.
This allows selection based on originating LFD
name.
FOrm= sub-files that specify this form name.
This keyword allows selection based on orignal
form name.
Hold= held or not-held class.
Indicates the class of spool queue (held or not
held). Specified as "Y" or "N". Default "Y".
Job= sub-files with this job name.
JobNo= sub-files with this job number.
The summarize SPL command displays sub-file job
numbers that may be referenced by this keyword.
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49.2

SPL: KEYWORDS

SPL KEYWORDS

Labels=

Prog=

PAge=nnn

Remote=

STep=

USing=term,dvc

sub-files created with this label.

This keyword allows selection based on // LBL
name.

sub-files created by this program name.

Selection by EXEC name.

specify starting page number.

The summarize SPL command displays number of pages
in the sub-file. This keyword allows user to begin
processing at a specific page number.

sub-files for this remote destination.

The destination from the // DST statement.
sub-files created by this step number.

The step number within a job.

route SPL output to alternate terminal.

SPL may be started up (asynchronously) on another
terminal (to print using an attached printer).

If term 1is omitted, the issuing terminal is
assumed.

If dvc is omitted, device AUX1l is assumed.

To route printout to AUX2 of your terminal, for
example, USING=,AUX2 may be specified.

Several keywords may be specified to narrow the search as much

as possible.

-4k

Page: 2
Section: 3.49.2

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPL: OPERATION
SPL PROGRAM OPERATION

3.49.3 SPL PROGRAM OPERATION SPL: operation

Since the first sub-file that matches the specified criteria may
not be the intended sub-file, the SPL program always prompts the
user to determine if the found sub-file is to be processed.

When SPL finds the first sub-file (of the class and queue
specified) that matches the criteria specified by the keyword
information, it will display all known information about that
sub-file. The sub-file that is found may not be the intended one -
especially if the keyword information was too vague.

SPL then prompts the user for confirmation that the sub-file
found 1is indeed the one wanted. If the user replies "Yes", the
command will be carried out; if the reply is "No", the search will
continue for the correct sub-file.

While a sub-file is listed at the user's terminal, the user may
press MSG-WAIT to interrupt the display. The user is then prompted
with a continuation prompt.

In response to the continuation prompt, the user may tab to the
appropriate choice and press transmit.

The user may change page number (forward or backward) and/or may
change the starting column number. To do this, specify:

>PAGE nnn [,ccc]

where nnn is the page number to proceed to and ccc is the new
starting column number.

-4kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49.3

SPL: FNKEYS
SPL FUNCTION KEY USE

3.49.4 SPL FUNCTION KEY USE SPL: fnkeys

The SPL program recognizes the following use of function keys:
MSG-WAIT Interrupt display on terminal.
User will be prompted with a continuation query.

F2 Re-display last command entered (can save some
typing).

F3 Re-execute last command entered (can save some
typing).

- +k+-

Page: 1

TIP/30 Reference Manual
Section: 3.49.4

Version 2.5 (82/08/01)

DELETE SPOOL SUB-FILE

SPL: DELETE

3.49.5 DELETE SPOOL SUB-FILE
This command enables
deleted.
Syntax:
DELete [queuel [,ALL]
Where:
queue Optional positional
desired spool queue
ALL Optional positional
ALL sub-files found
are to be processed.
keywords see section 3.49.2
Example:

DEL ALL JOB=COB74

Would select ALL sub-files with
class for possible deletion.

Error Conditions:

None.

Additional Considerations:

The SPL program will display information

SPL: delete

the user to select spool sub-files to be

[...keywords...]

parameter which specifies
(default is PR).

the

parameter which indicates that
that match keyword «criteria

jobname "COB74" in the held

about each

sub-file 1in

turn and prompt the user for delete verification.

-k

CHAPTER III - ON-LINE UTILITY PROGRAMS

SPOOL FILE ENQUIRY

Page: 1
Section: 3.49.5

SPL: END
END SPL PROGRAM

3.49.6 END SPL PROGRAM SPL: end
This command will cause the SPL program to terminate normally.
Syntax:
End

Where:
No parameters required.

Error Conditions:
None.

-4kt~

Page: 1 TIP/30 Reference Manual
Section: 3.49.6 Version 2.5 (82/08/01)

SPL: HELP
DISPLAY SPL PROGRAM HELP

3.49.7 DISPLAY SPL PROGRAM HELP SPL: help

This command will display on the terminal a summary of SPL
program command syntax.

Syntax:
Help

Where:
No parameters requried.

Example:
HELP

Error Conditions:
The help information may not be available or may have been deleted.

~d k-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49.7

SPL: LisT LIST SPOOL FILE ON TERMINAL

3.49.8 LIST SPOOL FILE ON TERMINAL SPL: list

This command will list selected spool sub-files on the terminal.
Since print 1lines (for example) are usually longer than the width
of most terminals, the output from the 1list command may be
"folded". This means that the display may span more than one line,

Syntax:
List [queue] [,ALL] 1[...keywords...]
Where:
queue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.
ALL Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.
keywords See section 3.49.2.
Example:

L JOB=COB74 PROG=LNKEDT
Would select for listing on the terminal any entry in the

(held) PR queue that has a job name "COB74" and a
program name "LNKEDT".

Error Conditions:
None.

-kt -

Page: 1 TIP/30 Reference Manual
Section: 3.49.8 ~ Version 2.5 (82/08/01)

SPL: Ls
LIST (SPACE SUPPRESSED) SPOOL FILE

3.49.9 LIST (SPACE SUPPRESSED) SPOOL FILE SPL: 1s

This command is similar to the LIST command. Multiple spaces
will be reduced to a single space, thus attempting to display more
data per line on the terminal.

Syntax:
LS [queue] [,ALL] [...keywords...]

Where:

qgueue Optional positional parameter which specifies the
spool qgueue to search. Default is PR.

ALL Optional positional parameter which indicates that
ALL sub-files that match the selection criteria
are to be processed.
keywords See section 3.49.2.
Example:
LS JOB=COB74 PAGE=10

Wouild list (with multiple space suppression) any entry in
the (held) PR queue which has a job name "COB74". The
PAGE=10 specification indicates that the listing is to
start at page 10 of the file.

Error Conditions:
None,

-kt -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49.9

SPL:

- LIST (TRUNCATED) SPOOL FILE

3.49.

10 LIST (TRUNCATED) SPOOL FILE SPL: 1t

This command 1is similar to the LIST command. Output to the
terminal will be truncated to the width of the 1lines on the
terminal. The keyword COL= is very useful to specify the starting
column number to display. By varying the starting column, the user
can view either the left or right side of the spool data.

Syntax:
LT [queue]l [,ALL] [...keywords...]
Where:
gueue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.
ALL Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.
keywords See section 3.49.2.
Example:

LT JOB=COB74 COL=20

Would select for listing on the terminal any entry in the
(held) PR queue that has a job name "COB74". The listing
is to display (80) columns starting with column 20.

Error Conditions:

None.

-4kt~

Page: 1 TIP/30 Reference Manual
Section: 3.49.10 Version 2.5 (82/08/01)

SPL: PRINT
PRINT SPOOL FILE

3.49.11 PRINT SPOOL FILE SPL: print

This command will print selected spool sub-files on the
auxiliary printer attached to the terminal.

Syntax:
Print [queuel [,ALL] [...keywords...]
Where:
queue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.
ALL Optional positional parameter which indicates that
1 ALL sub-files found to match are to be processed.
keywords See section 3.49.2.
Example:

P ALL JOB=COB74

Woyld select for printing on the AUX1 printer sub-files in
the (held) PR queue that have job name "COB74".

Error Conditions:
None.

-k

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49.11

SPL: P

PRINT SPOOL FILE WITH TEST PAGE

3.49.12 PRINT SPOOL FILE WITH TEST PAGE

SPL: pt

This command 1is similar to the PRINT command. A test page

(similar to the test page generated by the
will be sent to the auxiliary printer. The

batch output writer)
user may find that this

is preferable when printing forms that require delicate alignment.

queue Optional positional parameter which specifies the

Default is PR.

ALL Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.

Syntax:
PT [queue]l [,ALL] [...keywords...]
Where:
spool gueue to be searched.
keywords See section 3.49.2,
Example:

PT JOB=PAYROLL FORM=CHEX

Would select for printing on the auxili

ary printer sub-files

in the (held) PR queue that have job name "PAYROLL" and have
form name "CHEX". Test (alignment) pages will be produced.

Error Conditions:
None.

- k4

Page: 1
Section: 3.49.12

TIP/30 Reference Manual
Version 2.5 (82/08/01)

SPL: aquiT
END SPL PROGRAM AND LOGOFF

3.49.13 END SPL PROGRAM AND LOGOFF SPL: quit
This command will terminate the SPL program normally. If the SPL
program was executing at program stack level one (ie: not called
from another program) the user will be logged off TIP/30.
Syntax:
Quit

Where:
No parameters required.

Example:
Q
Error Conditions:
None.
~+k+-
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

SPOOL FILE ENQUIRY Section: 3.49.13

SPL: RELEASE
RELEASE SPOOL FILE

3.49.14 RELEASE SPOOL FILE SPL: release

This command will release sub-files(s) for batch processing.
This command is intended to be a mechanism to allow the user to
release a held sub-file that is now to be printed.

Syntax:
Release [queue] [,ALL] [...keywords...]
Where:
queue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.
ALL Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.
keywords See section 3.49.2.
Example:

RE JOB=COB74
Would select for release any sub-file in the (held) PR
queue that has a job name "CCB74".

Error Conditions:

None.

-4k -

Page: 1 TIP/30 Reference Manual
Section: 3.49.14 Version 2.5 (82/08/01)

SPL: suMmaRry
SUMMARIZE SPOOL QUEUE CONTENTS

3.49.15 SUMMARIZE SPOOL QUEUE CONTENTS SPL: summary

This command will 1list (on the terminal) the sub-files that
exist in the specified class and queue which match the selection
keywords.

By using this command the user can browse through the spool file
to determine which spool sub-files exist.

Syntax:
S [queue] [,ALL] [...keywords...]
Where:.
queue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.
ALL Optional positional parameter which indicates that
ALL sub-files found to match are to be processed.
keywords See section 3.49.2.
Example:
S H=N

Would summarize the sub-files that are not held (queued) in
the PR queue.

Error Conditions:
None.

-4kt~

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49.15

SPL: wRITE
WRITE SPOOL FILE TO EDIT BUFFER

3.49.16 WRITE SPOOL FILE TO EDIT BUFFER SPL: write

This command will select sub-files to be written to a TIP/30
edit buffer. The spool sub-file data will be copied to an edit
buffer with the specified name.

Syntax:
Write [queue] [,buffer] [...Keywords...]
Where:
queue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.
buffer Optional positional "~ parameter which names the
output edit buffer. Default is "SPOOL".
The edit buffer will be created with a group name
equal to the user's group one specification.
keywords See section 3.49.2.
Example:

WR ,MYCOMP JOB=COB74
Would create an edit buffer named "MYCOMP" containing the
contents of a (held) print sub-file with job name "COB74".
Error Conditions:
None.

" Additional Considerations:

This command writes 80 columns to the edit buffer. The COL= keyword
may be used to some advantage.

-kt -

Page: 1 TIP/30 Reference Manual
Section: 3.49.16 Version 2.5 (82/08/01)

SPL: wL
WRITE SPOOL FILE TO FILE/ELEMENT

3.49.17 WRITE SPOOL FILE TO FILE/ELEMENT SPL: wl

This command will write spool sub-files to a specified 08/3
library element.

Syntax:
WL [queue] [,file/elt] [...keywords...]

Where:

queue Optional positional parameter which specifies the
spool queue to be searched. Default is PR.

file/elt Optional positional parameters which specify the
output library and element name.

Default is RUN/SPOOL.
keywords See section 3.49.2.
Example:
WL ,TSTSRC/MYCOMP JOB=COB74

Would write to library TSTSRC, element MYCOMP, sub-files
in the (held) PR queue that have job name "COB74".

Error Conditions:
None.

Additional Considerations:

This command writes 128 columns to the specified element. The COL=
keyword may be used to some advantage.

-k -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SPOOL FILE ENQUIRY Section: 3.49,17

STATUS
DISPLAY TIP/30 STATISTICS

3.50 DISPLAY TIP/30 STATISTICS STATUS

The transaction 'STATUS' is a standard TIP/30 utility which is
made available to the user. It is designed to give an insight into
online system performance by probing internal tables and elapsed
time counters maintained by TIP/30. By identifying disproportionate
resource utilization, STATUS gives direction for action in tuning
the system.

Syntax:
STATUS cmd
STATUS P cmd
STATUS PAUX cmd

Where:

STATUS is the catalogued transaction code for the STATUS

program,

cmd is a command for status. Acceptable commands are:
A - produce all statistics
B - file buffer usage
D - disk device usage
F - fast load index
I - I/0 summary
K - key holding table
R - program control tables
S - system statistics
T - terminal usage

P the report 1is spooled to the Dbatch printer
(PRNTR) .

PAUX the report 1is printed on the auxiliary printer
attached to your terminal (AUX1).

Additional Considerations:

If the STATUS program is specified as the system shutdown program
(see section on TIP system generation), the STATUS program will
perform a "P A" (print all statistics) function when TIP/30 is
ended via "EOJ".

Page: 1 TIP/30 Reference Manual
Section: 3.50 Version 2.5 (82/08/01)

STATUS: B
FILE BUFFER USAGE

3.50.1 FILE BUFFER USAGE STATUS: b

Display the current occupant of each file buffer, and the number
of swaps which have occurred.

Example:
TIP/ 30 FILE BUFFER STATISTICS
BUFFER SWAPS SIZE OCCUPANT FILES 1/0’S OQUTPUTS
1 3 1,792 PRNTR 4 90 90
2 1 2,048 ISAM1 13 1,071 4
3 3 1,792 DOC 11 551 30
4 1 5,120 INITDTA 15 0 0
5 1 1,792 DDPOUT 6 0 0
Where:
BUFFER is the file buffer number.
SWAPS is the number of swaps done in this buffer.
SI1ZE is the size of the buffer in bytes.
OCCUPANT is the name of the file currently in the buffer.
FILES is the total number of files assigned to this
buffer.
1/0's is the number of logical input/output requests
done using this buffer.
OUTPUTS 1s the number of update/add requests done using
this buffer.
- +k+-
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DISPLAY TIP/30 STATISTICS Section: 3.50.1

STATUS: b
DISK DEVICE USAGE

3.50.2 DISK DEVICE USAGE STATUS: d

For each disk volume which is assigned to TIP/30, a list of file
names (LFD's) and I/0 count for the file. For each disk the sum of
I1/0 requests and the actual EXCP count is displayed.

Example:

1/0 SUMMARY B Y DVC

I/0 SUMMARY FOR RELO7t TIPSCAT 198
TIP$SRNDM 253
SYSGEN 0
SAM1 0
TOTAL (KNOWN) I/0 FOR DVC --- 451
EXCP'S 5,240
I/0 SUMMARY FOR ARCSPL TIPLOD 0
TSTSRC 0
ISAM1 1,071
TOTAL (KNOWN) I/0 FOR DVC --- 1,071
EXCP'S 3,836
I1/0 SUMMARY FOR ARCRUN TIP$SWAP 248
TIP 0
DOC 551
MAC 0
INITDTA 0
DAM1 0
TOTAL (KNOWN) I1/0 FOR DVC --- 798
EXCP’'S 3,749
-+%k+ -
Page: 1 TIP/30 Reference Manual

Section: 3.50.2 Version 2.5 (82/08/01)

STATUS: *

FAST LOAD INDEX

3.50.3 FAST LOAD INDEX STATUS: f{

Display the programs currently in the fast load index and the

memory blocks to which each has been relocated.

The fast load index is only used for non-re-entrant transaction
programs. Its purpose 1is to improve the initial loading of such

programs.

Example:
TIP/ 30 Fast Load Table
Loadm Page Size Loadm Page Size
TTSRUN 11 2K TT$DOC 20 32K

TT$LIB 20 18K TTSLIB 15
TT$SPL 15 18K TT$SYS 20 4K
TTSMAL 15 10K TT$IDA 13 12K

Where:
Loadm is the load module name.
Page is the page number to which to program has been
relocated.
Size is the size of the program (K=1024).
-tk -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISPLAY TIP/30 STATISTICS Section: 3.50.3

STATUS: 1 [/0 SUMMARY

3.50.4 1I1/0 SUMMARY STATUS: i

Display a summary of the 0S/3 files which have been used by
TIP/30; the number of programs currently assigned to a file; the
sum of logical file accesses both for input and output; the file
buffer associated with each file named.

Example:
TI1IP/ 30 FILE SUMMARY
FILE USERS I/0’S OUTPUTS BUFFER
PRNTR o 80 80 1
DOC 551 30 3
ISAM1 1,071 4 2
TOTAL S 1,702 114

Where:

FILE is the file name as generated into TIP/30.

USERS is the number of programs currently using the
file.

1/0'S is the number of logical input/output requests.

OUTPUTS is the number of update/add requests. This number
is included in the 1/0'S figure.

BUFFER is the buffer number where the file resides.
Additional Considerations:

Files which have no current users and have zero 1/0 counts are not
listed.

-kt

Page: 1 TIP/30 Reference Manual
Section: 3.50.4 Version 2.5 (82/08/01)

KEY HOLDING TABLE

STATUS: «

3.50.5 KEY HOLDING TABLE STATUS: k
Display the current contents of the key holding table within
TIP/30.
Example:
TIP/ 30 Key Holding Table
File User-id Term Key
ARCUST RJUNORMAN ARC2 X'C1CACHFOF1F4FQFE’
C'ADEQ1406"
Where:
File is the file name.
User-id is the name of the user who has the record held
for update.
Term is the terminal name where the user is running.
Key is the key value displayed in hexadecimal and
character.
— k4 -
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DISPLAY TIP/30 STATISTICS

Section: 3.50.5

STATUS: R
RE-ENTRANT PROGRAM TABLE

3.50.6 RE-ENTRANT PROGRAM TABLE STATUS: r
Display the 1list of program control tables. The information
displayed includes program size, current number of wusers, total
number of times the program has been used.
Example:

TIP/ 30 RE-ENTRANT TABLE

MODULE LANGUAGE TYPE PAGE SIZE SWAPS STATUS USERS USED
TT$STS BAL TIP3 16K 3 IN 1 6
TT$TCP BAL TIP 1 RES 0 50
TT$LGN BAL TIP 3 4K 1 ouT 0 4
TT$LGF BAL TIP 13 4K 2 IN 0 2
TT$WHO BAL TIP 1 RES 0 1
TT$TV2 COBOL IMS 1 6K 3 ouT 0 1
GETREC(SER) BAL TIP RES 0
Where:

MODULE is the load module name.
LANGUAGE is either CCBOL or BAL,
TYPE is either TIP or IMS.

PAGE is the page number where the program is currently
allocated.

SIZE is the size (in bytes) of the program (modulo
2K=2048).

SWAPS is the number of times that this load module has
been read/written to/from TIP$SWAP.

STATUS IN if the program is in memory. RES if the program
is permanently resident. OUT if the program is not
in memory at this instant.

USERS is the number of wusers currently using the
program.

USED is the number of times the program has been
entered.

-kt -

Page: 1 TIP/30 Reference Manual
Section: 3.50.6 Version 2.5 (82/08/01)

STATUS: s
GENERAL STATISTICS

3.50.7 GENERAL STATISTICS : STATUS: s

This command will show statistics accumulated overall in two
columns. The first column is since TIP/30 was initiated. The second
column 1is since some more recent time period. This provides a
picture of what has happened since TIP/30 initialization and in the
most recent time period.

The statistics are then averaged on a per input message basis.
This 1information should present a transaction profile. ie: what
happens (on the average) every time someone presses XMIT.

Example:

TIP/ 30 STATUS REPORT

SINCE SINCE
TOTALS 82/06/04 82/06/04
12:22 13:00
INPUT MESSAGES 92 57
OUTPUT MESSAGES 449 © 109
PROGRAM LOAD REQUESTS 88 53
ACTUAL LIBRARY LOADS 10 3
M.C.S. FORMAT REQUESTS 4 2
M.C.S. FORMAT FILE 1/0 2 1
CATALOG REQUESTS 382 192
CATALOG FILE I/0 ' 196 109
SWAP FILE I/0'S (TIP$SWAP) 248 81
DYNAMIC FILE I/0'S (TIP$RNDM) 253 251
ALL TASKS WERE BUSY 0 0
OF WAITING TERMINALS 5 0 0
OF WAITING TERMINALS 10 0
OF WAITING TERMINALS 15 0
DATA BASE OPENS FOR 0. 0
DATA BASE 1/0'S. 0 0
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DISPLAY TIP/30 STATISTICS Section: 3.50.7

STATUS: s

GENERAL STATISTICS

- PER INPUT MESSAGE -

RESPONSE TIME

TRANSACTION SCHEDULING TIME
INPUT NOTIFICATION TIME (ICAM)
CPU TIME USED

SUPERVISOR CALLS (SVC)
TRANSIENT CALLS

EXCP’S

PROGRAM LOAD REQUESTS

M.C.S. FORMAT REQUESTS

M.C.S. FORMAT FILE 1/0
CATALOG REQUESTS

CATALOG FILE I/0 ‘

SWAP FILE I/0’'S (TIP$SWAP)
DYNAMIC FILE 1/0'S (TIP$RNDM)
INPUT MESSAGE LENGTH

OUTPUT MESSAGE LENGTH

LIBRARY FILE: RECORDS READ
LIBRARY FILE: RECORDS WRITTEN
DATA FILE: RECORDS READ

DATA FILE: RECORDS WRITTEN

- 4%+ -

.834

=Y

(o]
o POt
QW
O~ —

O OUIN-aNNNA,OOOWOOT2OOO

w
QUOIWOAORANO 2 —=2O0OO0OOWWON

~ Ot

—_—

194.

q
O —=WWwOOO
BHBOPRPRPRPOWOOW

L7172
.500
.458

Page: 2
Section: 3.50.7

TIP/30 Reference Manual
Version 2.5 (82/08/01)

TERMINAL USAGE

STATUS: 1

3.50.8 TERMINAL USAGE

STATUS: t

Display number of input and output messages for each terminal.

Example:
TIP/ 30 TERMINAL STATISTICS
TERMINAL SESSION: INPUT OUTPUT TODAY: INPUT OUTPUT
T312 44 83 44 90
T313 13 20 38 251
ARCA1 0 0 0 1
ARC2 0 0 21 122
TRM1 0 0 0 0
Where:
TERMINAL is the ICAM terminal name.
SESSION: INPUT number of input messages since the current user
logged on.
OUTPUT number of output messages since the current user
logged on.
TODAY: INPUT number of input messages since TIP/30
initialization.
OUTPUT number of output messages since TIP/30
initialization.
—- A~
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

DISPLAY TIP/30 STATISTICS

Section: 3.50.8

STOP
IMMEDIATE TIP/30 SHUTDOWN

3.51 IMMEDIATE TIP/30 SHUTDOWN STOP

This command will cause TIP/30 to shut down immediately. It will
not wait for all users to log off.

Syntax:
STOP

Where:
No parameters required.

Example:

STOP

Error Conditions:
None.

Additional Considerations:
The system SHUTDOWN program will NOT be scheduled.

Under normal operating conditions, this command should only be
issued after an "EOJ" command has been entered. "EOJ" is the
preferred method of shutdown. Under certain conditions, a "STOP"
command may be necessary to force off wusers that are running
programs that do not recognize system shutdown requested.

Page: 1 TIP/30 Reference Manual
Section: 3.51 Version 2.5 (82/08/01)

SCHEDULE 0S/3 SYMBIONT

3.52

SCHEDULE 0S/3 SYMBIONT SYM

SYM is a utility program which interfaces with the 0S/3 symbiont
scheduler. It allows the user to submit requests to run symbionts
in the same manner as the 0S/3 console operator. Common commands
include RV (run a program) PR (start an output writer) HO (hold an
0S/3 queue) etc. An informational message 1is sent to the 0S/3
operator console whenever a symbiont 1is scheduled by SYM. The
message informs the operator that a symbiont command was issued and
also shows the user name and terminal name of the submittor.

The SYM program may be run interactively or may be given a
single command on the command line. If SYM is run interactively the
user will be prompted for each command; if a command is provided on
the command line SYM will attempt to execute that command and then
terminate normally.

I1If the SYM program detects that it has been called via a
transaction name other than "SYM" then it will assume that the
transaction name 1is the desired command and will also assume that
the parameters on the command 1line are associated with the

transaction name. This composite command will be attempted and then
SYM will terminate normally.

Syntax:

command parameters

Where:

command The two character name of the desired symbiont.
The following symbiont names are supported:

BE CA CH DE D1...DS HO PD PR PU RB RU RV.

Refer to O0S/3 console operator documentation for
details concerning the use of these commands. Also
recognized are: "End" or any function key (end the
SYM program) "Quit" (end the SYM program and
logoff).

parameters The appropriate parameters for the requested
symbiont.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SCHEDULE 0S/3 SYMBIONT Section: 3.52

SYM

SCHEDULE 0S/3 SYMBIONT

Example:

PR BX,J0OB=TIP30

This example would start a burst mode output writer to
print any print spool files with a job name of "TIP30".

Additional Considerations:

The SYM program may be called from TIP/30 native mode programs [via
the TIPSUB 1linkage mechanism (see TIP/30 PROGRAM MANAGEMENT
ROUTINES)].

When invoked in this manner SYM expects the command and parameters
in free format in the text area of the CDA (bytes 73 through 152).

If an error 1is detected, byte 73 of the CDA will be set to X'FF'
otherwise byte 73 of the CDA will not be altered. This facility is
extremely useful for submitting O0S/3 commands from an on-line
program.

SYM allows the user to invoke the cancel symbiont (CA) but will not
allow any attempt to cancel the currently executing TIP30 job or
any ICAM symbiont.

The distributed version of TIP/30 includes catalogue entries for a
number of transactions that are in fact quick ways of calling SYM
to perform a single function. For example, there is a transaction
named "RV" which references the SYM load module. The existence of
this transaction means that the "RV" transaction can have a low
enough security to enable programmers to use it, but that the more
powerful SYM transaction could have a higher security 1level and
thus be wunavailable to programmers. It is through this technique
that the use of individual symbionts may be restricted.

Page: 2 TIP/30 Reference Manual

Section: 3.52 Version 2.5 (82/08/01)

SYS
SYSTEM STATUS

3.53 SYSTEM STATUS SYS

SYS is a utility program which displays the current status of
batch jobs in the 0S/3 environment.

Syntax:
SYS opt
Where:
opt is one of the item discussed below.

A Similiar to "J" (see below) except that symbionts

and shared code modules will also be listed.
End End the SYS program normally.

J Produces a list of the jobs which are currently
running in batch. It details the decimal memory
size, program, job step, job number, CPU seconds
elapsed, base key priority and free memory
regions.

Quit End the SYS program normally and logoff TIP/30.
W At 20 second intervals execute the "J" function.
WA At 20 second intervals execute the "A"™ function.
Wait 'jobname' Iteratively produces a list of the jobs which are
currently running in batch until the job you have
named starts and subsequently terminates.
Example:
SYS J : display 0S/3 job information
.SYS W COB74 : start background program to monitor

progress of job named "COB74".

2Additional Considerations:

If SYS is run as a background program with the WAIT function (ie
.SYS W jobname), then it will notify the initiating user with an
unsolicited message when 'jobname' has started and when 'jobname'
has terminated.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
SYSTEM STATUS Section: 3.53

SYS
SYSTEM STATUS

This allows the user to continue with other interactive activities
SYS monitors the batch job asynchronously in the background.

When SYS 1is running in continuous display mode, press MSG-WAIT to
interrupt the display.

If SYS 1is entered with no command then it will produce the 'Jobs'
display and prompt you for another command.

Page: 2 TIP/30 Reference Manual
Section: 3.53 Version 2.5 (82/08/01)

TASK CONTROL BLOCK DISPLAY

TCB

3.54 TASK CONTROL BLOCK DISPLAY

TCB

The transaction 'TCB' is a utility program which displays

control blocks that are attached to

the 0S/3 switch 1list.

program details job name, memory region in hex, size in hex,
program executing, CPU time, account number, protect key, switch

list and scheduling priority.

task

The

type,

Priority numbers displayed are the actual displacement from the
head of the switch list; hence the first user priority is 4.
transients and the supervisor overlay area
displayed in the account field is actually the t
overlay ID. and the name in the program field is the overlay name.

Syntax:
TCB [wait]

Where:

For

(SOA), the number

ransient, or

S0A

wait Will instruct the TCB program to continuously

display (at 20 second
information.

interval

If wait is not specified, the

s) the 0S8/3

TCB

TCB program will

display the current O0S/3 TCB information and
terminate normally.
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1l
TASK CONTROL BLOCK DISPLAY Section: 3.54

TIPFLG
TIP FLAG MANIPULATION

3.55 TIP FLAG MANIPULATION TIPFLG

The TIP/30 system has 32 flag bits that are accessible by all
on-line programs. The 32 flag bits may be considered to be roughly
analagous to the 0S/3 job control UPSI bytes.

The wutility program TIPFLG 1is provided as a transaction to
interrogate or change the setting of any of the flag bits.

The flag bits may also be manipulated by an on-line native mode
program (see section on the Program Control System), or by the
console operator.

Before using this transaction in a cavalier fashion, the user is
advised to check with the installation administrator. Some of the
32 bits may be used for specific scheduling purposes and should not
be modified without careful consideration.

Syntax:
command [,bit1 ,bit2 ,bit3 ,bitd ,bitd ,bit6 ,bit7]

Where:
command The TIPFLG command chosen from the following list:
"WANYS" - wait for specified bits to be on
"WALLS" - wait for all to be on
"WSETC" - wait for specified bits to be on then
set them off
"WANYC" - wait for specified bits to be off
"WCLRS" - wait for specified bits to be off then
set them on
"SET " - set specified bits on
"CLEAR" - set specified bits off
"FLAGS" - display current flag bit status
bitl-7 Optional parameters where the user may specify up
to 7 bits that are to be acted upon by the
specified command.
Bits are numbered 0 through 31.
Page: 1 TIP/30 Reference Manual

Section: 3.55 Version 2.5 (82/08/01)

TIPFLG
TIP FLAG MANIPULATION

Example:
TIPFLG FLAGS : display current bits status
TIPFLG CLEAR 0,1,2 : turn of bits 0, 1, and 2
TIPFLG WANYS : wait for any bit to be set

Additional Considerations:

The TIPFLG program is NOT an interactive program. The required
parameters are entered on the command line.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
TIP FLAG MANIPULATION Section: 3.55

TLIB
ON-LINE LIBRARIAN

3.56 ON-LINE LIBRARIAN TLIB

TLIB is a wutility program that provides on-line librarian
facilities. The user may manipulate 0S/3 library elements, QED edit
buffers, and terminal auxiliary devices (cassette, diskette,
printer).

TLIB will not create an edit buffer - but it will allow the user
to specify an edit buffer as an input. TLIB will manipulate library
elements that are type source (S) or macro (M) or proc (P); object
modules and load modules may NOT be accessed via TLIB.

For certain commands, TLIB recognizes two pseudo types:
directory "D" and fast directory "F". Directory implies the library
header information including module name, module type, comments,
date and time stamp (similar to a LIBS table of contents 1listing)
whereas fast directory implies Jjust the module name and module

type.

TLIB recognizes the. following commands:

BACK - re-activate the previous version of an element
COPY - copy an element or edit buffer to an element
DELETE - delete a library element
END - end TLIB interaction
HELP - display help information on terminal
JOB - submit an element or edit buffer to the
remote batch reader queue
LIST - list {on the terminal) an element or edit buffer
PRINT - print a listing of an element or edit buffer
PUNCH - punch an element or edit buffer
QUIT - end TLIB interaction and logoff
Page: 1 TIP/30 Reference Manual

Section: 3.56 Version 2.5 (82/08/01)

TLIB
ON-LINE LIBRARIAN

TLIB may be used interactively or may be given a single command
on the command line. If a single command is given on the command
line TLIB will attempt only that command and terminate. When used
interactively, TLIB will prompt the user for each command.

If TLIB detects that it has been called with a transaction name
other than "TLIB", it will assume that the transaction code IS the
command and not treat the first parameter as a command.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2
ON-LINE LIBRARIAN Section: 3.56

TLIB: BACK
RE-ACTIVATE PREVIOUS VERSION

3.56.1 RE-ACTIVATE PREVIOUS VERSION TLIB: back

When an element of an 0S/3 library is deleted, the module is not
physically removed - the index entry for it 1is merely marked as
logically deleted. The BACK command simply marks the currently
active element as removed and finds the previous version and
re-activates 1its directory entry. Elements that are marked as
logically deleted are physically removed during a library pack
operation. The BACK command may be 1issued several times 1in
succession to go back a number of versions (if they still exist).
If there 1is not a current active version of an element (for
example, the user inadvertently deleted an element) then the wuser
must first create a (dummy) current version before using a BACK
command.

Syntax:
Back file,element [, type]l
Where:

file the catalogued 1logical file name of the 0S/3
library

element the name of the desired element

type the type of the element (Source, Macro or Proc)

default S
Example:
BACK JCS/MYJOB
Will delete the current active eiement named "MYJOB" in

the library "JCS" and re-activate the most recent previous
version of that element.

Error Conditions:
The specified element may not currently exist or the file name may
be invalid or it may not be possible to locate a "previous" version
of the element.

- -

Page: 1 TIP/30 Reference Manual
Section: 3.56.1 Version 2.5 (82/08/01)

TLIB: copy
COPY ELEMENT

3.56.2 COPY ELEMENT TLIB: copy
This command will copy an existing 1library element or edit
buffer to a specified output library element or auxiliary device.
The number of lines copied is reported upon completion of the copy
command.

Syntax:

Copy file [,elt] [,typel ,out-file [,out-elt] [,out-typel

Where:
file the catalogued 1logical file name of the input
library file or edit buffer name or auxiliary
device.
elt the 1input element name (not required if an edit
buffer)
type the type of input element [default is source (S)];
must be "E" for edit buffer
out-file the catalogued 1logical file name of the output
library file or an auxiliary device id (eg: AUX3
etc)
out-elt the name of the output element (default is same as
the input element name)
out-type the output element type (default is same as input
type)
Example:
COPY JCS/TIP30,,TEST/TIP30BAK
This example illustrates copying the jcl1 for TIP/30 from
the system YJCS library (assumed to be catalogued with
a logical file name of "JCS") to a test library under the
name "TIP30BAK".
CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1

ON-LINE LIBRARIAN Section: 3.56.2

TLIB: copy
COPY ELEMENT

Example:
COPY JCS/TIP30,,AUX3

This example illustrates copying the jcl1 for TIP/30 to

the issuing terminal AUX3 device (presumably a cassette
or diskette style device).

Error Conditions:

The input file/element or edit buffer

may not be found or the
output file may not be available for use.

Additional Considerations:

Note that the output "file" may be an auxiliary device or may be an
0S/3 queue such as "RDR" "RDR96" or "RBPIN". If the output file is
specified as one of these queues, the output element name is taken
as the LBL name of the gqueue element that is created. It is not
possible to specify the same 0S/3 library as both input and output.

-4kt -

Page: 2 TIP/30 Reference Manual
Section: 3.56.2 Version 2.5 (82/08/01)

TLIB: DELETE
DELETE ELEMENT

3.56.3 DELETE ELEMENT TLIB: delete

This command will delete an element from an OS/3 library. The
element is marked "deleted" in the directory of the library; it is
not physically removed from the file until such time as a pack
operation 1is performed by the batch 0S/3 librarian (LIBS). TLIB
does not provide a facility for deleting edit buffers.

Syntax:

DELete file,element [, typel

Where:
file the catalogued 1logical file name of the 0S/3
library
element the name of the element to be deleted
type the type of the selected element [default is
source ("s")]
Example:

DELETE JCS/MYJOB
Will delete element "MYJOB" from library "JCS".

Error Conditions:
The specified element may not exist or the file cannot be accessed.

-4k -

CHAPTER II1 - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE LIBRARIAN Section: 3.56.3

TLIB: END
END TLIB PROGRAM

3.56.4 END TLIB PROGRAM TLIB: end
This command will cause TLIB to terminate normally.
Syntax:
End

Where:
No parameters required.

Error Conditions:
None.

-4k 4=

Page: 1 TIP/30 Reference Manual
Section: 3.56.4 Version 2.5 (82/08/01)

TLIB: HELP
DISPLAY HELP INFORMATION

3.56.5 DISPLAY HELP INFORMATION TLIB: help

This command will summarize the commands that are recognized by
TLIB and the required parameter syntax.

Syntax:
Help

Where:
No parameters required.

Error Conditions:
The help information may be unavailable.

-4 k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON~LINE LIBRARIAN ‘ Section: 3.56.5

TLIB:

J08 SUBMIT REMOTE BATCH JOB

3.56.

6 SUBMIT REMOTE BATCH JOB TLIB: job

This command will submit a library element or edit buffer to the
remote batch reader queue. This command should only. be issued if
the 0S/3 supervisor has been generated with support for remote
spooling. If such is not the case, unpredictable results may occur
(including the possibility of an unrecoverable HPR). After the
element or edit buffer has been written in the remote batch reader
gueue TLIB will automatically call the "RB" symbiont to start the
remote reader.

Syntax:
Job file [,element] [, typel
Where:
file the catalogued logical file name of the library or
the name of an edit buffer
element the name of a library element [not required if
type is specified as edit buffer ("E")]
type the type of input [default is source ("S")]
Example:

J RUN/QUIKJOB, s

Will submit a source element named "QUIKJOB" from
library "RUN" to the remote batch reader and invoke
the RB symbiont to process it.

Error Conditions:

The named element or edit buffer may not exist or the file cannot
be accessed or the type may be invalid.

-4 %+~

Page: 1 TIP/30 Reference Manual
Section: 3.56.6 ’ Version 2.5 (82/08/01)

TLIB: LisT
LIST ELEMENT ON TERMINAL

3.56.7 LIST ELEMENT ON TERMINAL TLIB: list

This command will list a library element or edit buffer at the
terminal. The listing will be produced in "burst" mode; that is, it
will continue as quickly as possible until completed or until the
user presses the MSG WAIT key. If the user presses MSG WAIT, he
will be notified that the listing has been halted and asked whether
or not to continue listing. All 80 "columns" of the element or edit
buffer will be displayed on the terminal.

Syntax:
List file [,element] [, type]
Where:
file the catalogued 1logical file name of a library or
the name of an edit buffer.
element the name of an element in the library (may be
omitted "if type is specified as Edit buffer or
Directory or Fast Directory).
type the type of input [default is source ("S")]; other
choices include directory ("D") or fast directory
("F") of a library.
Example:

LIST JCs,,D

Will list the directory of the file catalogued with logical
file name "JCS".

Error Conditions:
The named element may not exist or the file cannot be accessed or
the type may be incorrect.

-+%k+ -

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE LIBRARIAN Section: 3.56.7

TLIB: PRINT
PRINT HARD COPY LISTING

3.56.8 PRINT HARD COPY LISTING TLIB: print

This command will create a hard copy printout of a 1library
element or edit buffer or library directory at the site printer or
an auxiliary print device. TLIB is aware of the declared format of
a library element (ie: COBOL or Assembler or RPG etc) and will
recognize COBOL page skip statements (a "/" in column 7) and
assembler eject statements and the like and produce a printout that
is somewhat more presentable than a simple 1list of the lines.
Unless TLIB 1is advised otherwise, print files sent ot the site
printer are preceded by a separator page to facilitate
identification of the printout. Each TLIB print request to the site
printer is breakpointed by TIP and may be printed by starting a
burst mode output writer (ie: 0S/3 operator command
"PR BX,JOB=TIP30").

Syntax:
Print file [,element] [,typel [,printer] [,header] [,case]
Where:
file the catalogued logical file name of the library or
the name of an edit buffer
element the name of a library element (must be omitted if
type is edit buffer or directory or fast
directory)
type the type of input [default is source ("S")]
printer the destination printer [default 1is the site
printer (PRNTR)] other possibilities are (for
example) AUX1 or AUX1*BYP etc.
header YES/NO choice of a header (separator) page.
Default is "N" if the destination 1is an AUX
printer, otherwise default is "Y".
case the choice of upper or lower «case printing.
.Default is upper case ("U") if printer is the site
printer otherwise default is lower case ("L").
Page: 1 TIP/30 Reference Manual

Section: 3.56.8 Version 2.5 (82/08/01)

PRINT HARD COPY LISTING

TLIB: PRINT

Example:
PR jcs/tip30,,auxi,n,U PR TWo7, £

Will print source element named "TIP30"
with catalogued logical

and with atll
Error Conditions:

The specified element or edit
could not be accessed or the type is invalid.

-tk -

from the library
file name "JCS" on the terminal
auxiliary printer without a separator page (too noisy!)
alphabetic characters translated to upper case.

buffer was not found or the file

PROTYOOT) Trivhe Fur uller TH22T

ON-LINE LIBRARIAN

F@A.ngz,ﬂ‘ P eee s (72
pﬁl SC S” [~ [| . L 5;/«;4,‘,,-7 o) e
CHAPTER III -~ ON-LINE UTILITY PROGRAMS Page: 2
Section: 3.56.8

TLIB: PUNCH
PUNCH ELEMENT

3.56.9 PUNCH ELEMENT TLIB: punch

This command will create a PUNCH file from a library element or
edit buffer or library directory at the site punch.

Syntax:
Punch file [,element] [,type] [,punch]
Where:
file the catalogued logical file name of the library or
the name of an edit buffer
element the name of a library element (must be omitted if
type is edit buffer or directory or fast
directory)
type the type of input [default is source ("S")]
punch the destination punch [default is the site punch
(PUNCH)].
Example:

PUN jcs/tip30

Will punch source element named "TIP30" from the library
with catalogued logical file name "JCS" to the site punch.

Error Conditions:
The specified element or edit buffer was not found or the file
could not be accessed or the type is invalid.

-4kt

Page: 1 TIP/30 Reference Manual
Section: 3.56.9 Version 2.5 (82/08/01)

TLIB: quiT
QUIT TLIB PROGRAM

13.56.10 QUIT TLIB PROGRAM TLIB: quit

This command will cause the TLIB program to discontinue
prompting the user for more commands and will terminate the TLIB
program normally. If the TLIB program was executing at stack level
one (ie: TLIB was NOT called by another program) the user will be
logged off the TIP/30 system.

Syntax:
Quit

Where:
No parameters required.

Error Conditions:
None.

-+ %t

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
ON-LINE LIBRARIAN Section: 3.56.10

UTSASM

ON-LINE 8080 CROSS ASSEMBLER

3.57

ON-LINE 8080 CROSS ASSEMBLER UTSASM

UTSASM is an assembler that accepts the the INTEL 8080 assembler
language as input. The UNIVAC MAC80 language is the same with the
exception that macros have not yet been implemented in UTSASM.

The COPY psuedo-op has been added to enable the programmer to
include other source modules.

The format of the 'COPY' statement follows:
COPY FILE/ELT

The program will prompt you for the input source file name and
the output object file name; if no object file name is given then
none is produced. The assembly listing is spooled out to the PRNTR
file.

Note:

- To use the online 8080 cross assembler, you must specify
a maximum program size of at least 32000 in the TIP/30
generation (ie: MAXPROG=32000).

Page: 1 TIP/30 Reference Manual
Section: 3.57 Version 2.5 (82/08/01)

VT0C
DISK VOLUME TABLE OF CONTENTS

3.58 DISK VOLUME TABLE OF CONTENTS VTOC

VTOC is a utility program that will display the volume table of
contents of a disk. The selected disk must be one that is assigned
to TIP/30 via job control; that is, the VTOC program cannot access
any physical disk that 1is not allocated to the TIP/30 job. VTOC
will also compute the available free space on a volume and indicate
the size of the largest contiguous free area.

VTOC recognizes the following commands:

Display - display detailed file information

End - end VTOC program

Free - display available free space

Help - display command help information

List - list files on voiume

Print - print vtoc listing

Quit - end VT0OC program and logoff

Sort - display command (sorted by filename)
Volumes - display volumes aliocated to TIP/30 job
Write - create library element of JCL statements

The VTOC program may be used interactively or may be given a single-
command on the command 1line. 1If wused interactively, VTOC will
prompt the user for each command. If a single command is entered on
the command line, VTOC will attempt that command and then terminate
normally.

CHAPTER III -~ ON-LINE UTILITY PROGRAMS Page: 1
DISK VOLUME TABLE OF CONTENTS Section: 3.58

VTOC: pispLAY
DISPLAY FILE INFORMATION

3.58.1 DISPLAY FILE INFORMATION VTOC: display

This command will display (on the terminal) detailed information
about selected files. The information includes record count,
allocation, file type etc.

Syntax:
Display vo lume [,prefix]
Where:
volume the volume serial number of the selected disk (six
characters).
prefix optional prefix of file names to select. 1If
omitted all filenames will qualify.
Example:

D ARCRES, !Y

Will display the files on the volume "ARCRES" that have
a filename that does NOT begin with "Y".

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job or there may not be any files found matching the
specified file name prefix.

-kt

Page: 1 TIP/30 Reference Manual
Section: 3.58.1 Version 2.5 (82/08/01)

END VTOC PROGRAM

V10C

» END

3.58.2 END VTOC PROGRAM

This command will end interaction with
terminate the VTOC program normally.

Syntax:
End

Where:
no parameters required.

Example:
E

Error Conditions:
no error conditions known.

-k~

VTOC: end

the

VTOC program

and

CHAPTER III - ON-LINE UTILITY PROGRAMS
DISK VOLUME TABLE OF CONTENTS

Page:
Section:

3.58.2

VTOC: FREE
FREE SPACE ON VOLUME

3.58.3 FREE SPACE ON VOLUME VTOC: free

This command will display (on the terminal) the free space
available on a disk volume. The total free space and the size of
the largest available contiguous area is given.

Syntax:
Free vo lume
Where:

volume the volume serial number of the desired disk. (six
characters).

Example:

F ARCRES

Will display the disk type of disk volume "ARCRES",
the total available free space on the volume,

and also display the size of the largest available
contiguous area.

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job.

-kt~

Page: 1 TIP/30 Reference Manual
Section: 3.58.3 | Version 2.5 (82/08/01)

VTOC: HELP
DISPLAY HELP INFORMATION

. 3.58.4 DISPLAY HELP INFORMATION VvTOC: help
This command will display (on the terminal) help information
which will summarize the command syntax recognized by the VTOC
program.
Syntax:
Help

Where:
no parameters required.

Example:
HELP

Error Conditions:
No known error conditions.

-+ %+ -

CHAPTER III1 - ON-LINE UTILITY PROGRAMS Page: 1
DISK VOLUME TABLE OF CONTENTS Section: 3.58.4

VTOC: LisT
LIST FILES ON VOLUME

3.58.5 LIST FILES ON VOLUME VTOC: list

The 1list command displays (on the terminal) a summary of
information about the files on a selected disk. The information
includes the LBL name of the file, the file organization, the block
size and record size, the number of records etc. All files on a
volume may be selected or a prefix may be given to select files by
a 1l to 7 character prefix.

Syntax:
List vo lume [,prefix]
Where:
volume the volume serial number of the selected disk.
(six characters).
prefix optional prefix to select file names. If omitted,
all file names will qualify.
Example:

L ARCRES, *SG$

Will 1ist information about files with names beginning with
the prefix "SG$" from the volume "ARCRES".

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job or there may not be any files that match the
specified prefix.

-4k

Page: 1 TIP/30 Reference Manual
Section: 3.58.5 Version 2.5 (82/08/01)

VTOC: PRINT
PRINT VTOC

3.58.6 PRINT VTOC VTOC: print

This command will produce a printed VTOC listing. The VTOC
information printed is similar to the information given by the LIST
command, but the output may be directed to the site printer or a
terminal auxiliary printer.

Syntax:
Print volume [,prefix] [,printer]
Where:
volume the volume serial number of the selected disk (six
characters).
prefix optional file name prefix to select filenames by a
1 to 7 character prefix. If omitted, all files
will qualify.
printer name of the printer to receive the output. Default
is the site printer (PRNTR); other possibilities
include: "AUX1" or "AUX1*BYP" etc.
Example:

PR ARCSPL, ,AUX1

Will produce a VIOC listing on the executing terminal
auxiliary printer of all files on the volume "ARCSPL".

Error Conditions:

The specified volume may not be mounted or may not be allocated to
the TIP/30 job. The specified printer may not be available or no
files exist which match the prefix specification.

- +k+-

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISK VOLUME TABLE OF CONTENTS Section: 3.58.6

VIOC: auiT
END VTOC PROGRAM AND LOGOFF

3.58.7 END VTOC PROGRAM AND LOGOFF VTOC: quit

This command will end interaction with the VTOC program and, if
the VTOC program is being executed at stack level one (ie: VTOC was
NOT called by another program) the user will be 1logged off the
TIP/30 system.

Syntax:
Quit

Where:
no parameters required.

Example:

Q

Error Conditions:
No error conditions known.

-kt~

Page: 1 TIP/30 Reference Manual
Section: 3.58.7 Version 2.5 (82/08/01)

VTOC: soRrT
SORTED VTOC DISPLAY

3.58.8 SORTED VTOC DISPLAY VTOC: sort

This command will produce the same output as the "Display"
command in sequence by file name.

Syntax:
Sort volume [,prefix]
Where:
volume the volume serial number of the selected disk.
(six characters).
prefix optional file name prefix. If omitted, all file
names on the selected disk will qualify.
Example:
S ARCRUN, !'YRUN
Will produce (at the terminal) a display of VIOC information

in file name seqgquence of all files on disk "ARCRUN" that do
NOT begin with the prefix "$YSRUN".

Error Conditions:
The specified volume may not be mounted or may not be allocated to
the TIP/30 job. There may not be any files on the volume that match
the specified prefix.

-4kt

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 1
DISK VOLUME TABLE OF CONTENTS Section: 3.58.8

VTOC: voLuMEs
LIST VOLUMES

3.58.9 LIST VOLUMES VTOC: volumes

This command will 1list the volumes currently mounted on the
system. The display is similar to the display generated by the 0S/3
operator command "MI VI". The display will show the volume name,
the device address, and whether or not the volume is allocated (via
JCL) to the TIP/30 job.

Syntax:
Volume

Where:
no parameters required.

Example:
Vv
Will display the volumes currently mounted on the 0S/3
system.

Error Conditions:
No known error conditions.

-kt

Page: 1 TIP/30 Reference Manual
Section: 3.58.9 Version 2.5 (82/08/01)

VTOC: wRITE
CREATE JCL FOR FILES ON VOLUME

3.58.10 CREATE JCL FOR FILES ON VOLUME VTOC: write

This command will create an 0S/3 library element containing the
JCL corresponding to the files selected on a disk volume. The
element created will have an element name the same as the volume
name and will be written to the TIP/30 $YSRUN library (catalogued
logical file name "RUN"). The JCL written for each file includes
DVvC, VOL, EXT, LBL, SCR, and LFD statements. Once this element has
been created, the user may use the TIP/30 editor (QED) to edit the
JCL to suit his requirements. This process is very useful for
creating backup/restore job control streams or for creating a job
control stream to catalogue (in the 0S/3 catalogue) selected files
on a selected disk volume.

Syntax:
Write volume [,prefix]
Where:
volume the volume serial number of the selected disk.
(six characters)
prefix optional file name prefix to select files on the
disk by prefix. If omitted, all files on the
volume specified will qualify.
Example:

WR ARCRES, !Y

Will create RUN/ARCRES (element "ARCRES" in library "RUN")
containing job control statements for all files on that
volume that do not have a filename beginning with the
prefix "Y".

Error Conditions:
The specified volume may not be mounted or allocated to the TIP/30

job or there may not be any files on the volume which have
filenames that match the specified prefix.

- K-

CHAPTER III - ON~-LINE UTILITY PROGRAMS Page: 1
DISK VOLUME TABLE OF CONTENTS Section: 3.58.10

WHOSON
DISPLAY ACTIVE USERS

3.59 DISPLAY ACTIVE USERS WHOSON

The WHOSON utility displays on the terminal a 1list of active
TIP/30 terminals and associated information.

Syntax:
WHOSON/ [qual]
Where:
qual An optional qualifier. The qualifier may be one
of: a terminal name, user-id, or active file name.
The qualifier may also follow standard prefix
notation (ie. *AR).
If the qualifier 1is omitted then a list of all
active terminals is produced.
Example:
WHOSON/*TRM
User-Id Terminal Program Lvi In Out Resp Uns
GEORGE TRM1 WHOSON 3 7 16 .852 0
MARY TRM2 VT0C 1 12 17 .652 1
Where:
User-id is the user currently using the terminal.
I1f an asterisk ("*") precedes the wuser-id, the
terminal is in wuse without a wuser 1logged on
(LOGON=NO) .
Terminal Is the terminal name. This may be followed by
'/DN' if the terminal is marked down by ICAM.
Program is the transaction code of the program currently
running on that terminal.
If preceded by an asterisk ("*") the program is
currently not in memory (swapped out).
Page: 1 TIP/30 Reference Manual

Section: 3.59 Version 2.5 (82/08/01)

DISPLAY ACTIVE USERS

WHOSON

Lvl
In
Out

Resp

CPU

Uns

Error Conditions:
None.

is the program execution stack level.
is the number of input messages since logon.
is the number of output messages since logon.

average response time (seconds) observed at that
terminal.

CPU time (seconds) consumed at that terminal.
(Not available on release 7 and above).

number of outstanding unsolicited messages
waiting.

Additional Considerations:

All columns are displayed for master 1level wusers. Other wusers
receive a truncated display.

CHAPTER III - ON-LINE UTILITY PROGRAMS Page: 2

DISPLAY ACTIVE USERS

Section: 3.59

WM1
DISPLAY USER INFORMATION

3.60 DISPLAY USER INFORMATION WMI

The WMI (who am I?) program displays information on the terminal
showing the user-id of the wuser 1logged on the terminal, the
terminal name (as defined to the system), the current date and

time, the version of both TIP/30 and 0S/3 that is in use, and the
features of TIP/30 that are configured.

The WMI program requires no parameters. The user need only enter
the transaction code ("WMI").

Example:
The following is sample output:

Hello GEORGE on terminal T313 at site ABC-CORP
Date: 82/06/18 Time: 14:13:39 TIP/30 Version: 2.5

ICAM network: NET1 0S/3: 7.1.0
Attributes: SYSTEM/80 CDM DBMS OPEN DMS

Page: 1

TIP/30 Reference Manual
Section: 3.60

Version 2.5 (82/08/01)

————————————————————— TTTTTTTTTTT -- 1111111 ~-- PPPPPPPPP

® ————— TTTTTTTTTTT -- II11111 -- PPPPPPPPPP
————————————————————————— TTT -------- [III =---- PPPP PPP
————————————————————————— TTT =-==-=---= 1[Il =---- PPPP PPP
————————————————————————— TTT =—=—====- 111 ---- PPPPPPPPPP
————————————————————————— TPT —--===--= [I1 =---— PPPPPPPPP
————————————————————————— TPT =-=——===—= II1 =——-— PPP
------------------------- TPT —----—- JII111I1 =-- PPP
————————————————————————— TTT ------ IIIIII1 ~-- PPP
—————————————————————— 333333333333333 ----——-— 000000
—————————————————————— 33333333333333 ---—-—— 0000000000
—————————————————————— 3333333333333 ----——— 000000000000
—————————————————————— 3333333 --—---- 00000 00000
—————————————————————————— 3333333 -----—— 000000 000000
————————————————————————— 3333333 ----———— 000000 000000
———————————————————————— 333333333 ~--———-— 000000 000000
——————————————————————— 333333333333 —-—---- 000000 000000
—————————————————————— 33333333 --- 000000 000000
—————————————————————————————— 3333333 -- 000000 000000
—————————————————————————————— 3333333 -- 000000 000000
————————————————————— 333 33333333 --- 000000 000000
————————————————————— 333333333333333 ----- 00000000000000
————————————————————— 3333333333333 =--—-——-—— 00000000000
——————————————————————— 333333333 -==—===—=——— (00000000

TOL REFERENCE MANUAL
VErRsioN 2.5R1 (83/06/01)

TD$TQL

A Product of:

Allinson-Ross Corporation

First Rexdale Place,

155 Rexdale Boulevard, Suite 906
REXDALE, Ontario

Canada M9W 528

TEL: (416) 746-3388

TWX: (610) 491-1772

khkhhkkhkhhkhkkhhhhkhhhkkhkkhkhhhhkhkhkhkhkhkhkhkrkhkhhkkhhkhhhhkhhkhkhhhkhkhkhkhhhhkhkrhhkkhkkk
khdhkhkkkhhhkhkkhhhkdkhhkhkhkhhhhkhkkhkhhhhhkhkkhkhhhhhkkhhkhkhhkhhhhhhhhkhkhkhkhkhkhhkhhhkkhkkdk

* % % %
*% A L L IIIII N N SSSS 000 N N %
* AA L L 1 NN N S O O NN N *x
% AAAAA L L I NNN SSS O O NNN ===== %%
** A A L L I N NN S O O N NN *%
*+ A A LLLLL LLLLL IIIII N N SSSS§ 000 N N %
* %k % %
** RRRR 000 SSSS SSSS CCC 000 RRRR PPPP *%
*% R R O O S s C 0O OR R P P *k
* RRRR O O SSS SSS C O O RRRR PPPP *%
*% R R 0 O s s C O O RUR P R &
** R R 000 SSSS SSSS CCcC 000 R R P R &
% % * %
* CCC 000 PPPP Y Y RRRR IIIII GGG H H TTTTT *k
*% C O oP P YY R R I G G H H T *%
**% C O O PPPP Y RRRR I G HHHHH T *%
** C o o P Y R R I G GG H H T *%
* CCC 000 P Y R R IIIII GGGG H H T *%
* % % %
kkkhkhkhkhhhhkhkhhkhhkhkhkhhkhhhhhhhkhhkhhhkhhhkhhkhkhkhkhkkkhkhhkhkdhhkhkkhhkhkkkkhkkhkhkhhkhhkhhkkhkk
** (C) 1975,1976,1977,1978,1979,1980,1981,1982 %

** Allinson-Ross Corporation reserves the right to modify or revise **
** the content of this document. Except where a Software Usage **
** Agreement has been executed, no contractual obligation between **
** Allinson-Ross Corporation and the recipient is either expressed **
** or implied. It is agreed and understood that the information con- **
** tained herein is proprietary and confidential and that the recip- **
** jent shall take all necessary precautions to ensure the confiden- **
** tiality thereof. This document, in whole or in part, may not be **
** copied or transmitted, in any form or by any means, electronic, **
** mechanical, photocopying, or otherwise, without the prior written **

** permission of: *x
*% Allinson-Ross Corporation, *%
*% 155 Rexdale Blvd, Suite 906, * %
*% Rexdale, Ontario, * %
**% Canada M9W 528 *%
** Tel: (416) 746-3388 *%
*% * %
%* % * %
kkkhkhhkdkhkhhhkhhhkhkhkhkkkhhhkhhhhhhhhhhhhhdhdhhhkhhhhhhhhhhhhhhhdhhhhhhhhkhhrdd
*x THIS DOCUMENT WAS PRODUCED USING THE * %
*% ALLINSON-ROSS CORPORATION DOCUMENT GENERATOR. *%

khkkhkhkkhhkhkkhkkhhkhkhkkhkhhhkhkhhhkhkhkhhkhhhkhhhkkkkhkhhhhkhkhkkkhkhkhkhkhkhhhkhkhhkkkhkhkkk®
khkhkhhhhhhhhhkhhkkhhkhhkkhkhkhhkhkhhhkhhhhkkhhhhhhkhhhkhkhhhhkkhkrhhhkkkhkhkhkkkkkk®

CHAPTER T - INTRODUCTION

1.

1.1

CHAPTER I - INTRODUCTION

PREFACE

This document is the reference manual for TIP/30 (Transaction
Interface Processor), a software product developed by Allinson-Ross
Corporation.

The names TIP and TIP/30 are used interchangeably in this
manual.

Please direct any inquiries or requests for further information
to:

Allinson~-Ross Corporation
First Rexdale Place

155 Rexdale Blvd., Suite 906
Rexdale, Ontario

Canada M9W 5Z8

Tel. (416) 746-3388

TWX. (610) 491-1772

CHAPTER I - INTRODUCTION v Page: 1
PREFACE Section: 1.1

TABLE OF CONTENTS

T0C

1.2 TABLE OF CONTENTS

CHAPTER I - INTRODUCTION
PREFACE
TABLE OF CONTENTS
THE TIP/30 QUERY LANGUAGE
TQL EXPRESSIONS
FILE DEFINITION
RECORD DEFINITION
ALLOWING RECORDS/FIELDS TO CHANGE
FIELDS WHICH MUST BE ADDED
RECORD SELECTION
FIELD VERIFICATION
SYSTEM FIELDS
TQL PROGRAM STRUCTURE
0 IDENTIFICATION DIVISION
1 DATA DIVISION
2 WORKING STORAGE SECTION
3 DECLARATIVES SECTION
4 DISPLAY DIVISION
5 REPORT DIVISION
MAINTAINING THE TQL DICTIONARY
COMPILE FILE/RECORD
COMPILE PROGRAM
DELETE FILE/RECORD
DELETE PROGRAM
END TQLMON PROGRAM
DISPLAY HELP INFORMATION
LIST FILE/RECORD
LIST PROGRAM
CREATE SCREEN FORMATS
DEFINE NEW RECORD
DEFINE NEW FILE
DEFINE NEW PROGRAM
PRINT FILE/RECORD
PRINT PROGRAM
PURGE PROTOTYPE FILE
EDIT RECORD DEFINITION
EDIT TQL PROGRAM
RUN PROGRAM
SUMMARI ZE FILE/RECORD
SUMMARI ZE PROGRAMS
UPDATE RECORD DEFINITION
UPDATE CONTROL HEADER
UPDATE FILE DEFINITION
UPDATE PROGRAM

HHEHHMEHEWOO U WN -

NNV HSERRRERRHREEOOOI00PWND

BWNHOWODITOUTEPWNHO

TOC

TOC

TQL

TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:
TQL:

expr
file

record

allow

must add

id

verify
fields
program

id division
data divisio
work fields
declaratives
display
report

TQLMON

TQLMON: ¢
TQLMON: comp; cp
TQLMON: delete
TQLMON: dp
TQLMON: end
TQLMON: help
TQLMON: list
TQLMON: 1p
TQLMON: mcs
TQLMON: n
TQLMON: nf
TQLMON: np
TQLMON: print
TQLMON: pp
TQLMON: purge
TQLMON: q
TQLMON: gp
TQLMON: run, open
TQLMON: s
TQLMON: sp
TQLMON: u
TQLMON: uc
TQLMON: uf
TQLMON: up

CHAPTER I - INTRODUCTION
TABLE OF CONTENTS

Page: 1

Section: Contents

TABLE OF CONTENTS

1.4.25 WRITE FILE/RECORD TQLMON: write
1.4.26 WRITE PROGRAM TO LIBRARY TQLMON: wp
1.5 THE TQL TEXT EDITOR TQLEDT
1.5.1 ADD LINES TQLEDT: ad
1.5.2 COPY LINES TQLEDT: co
1.5.3 DELETE LINES TQLEDT: de
1.5.4 END TQL EDITOR TQLEDT: en
1.5.5 HELP FOR TQL EDITOR TQLEDT: he
1.5.6 MOVE LINES TQLEDT: mo
1.5.7 PRINT (DISPLAY) LINES TQLEDT: pr
1.5.8 QUIT TQL EDITOR TQLEDT: qu
1.5.9 TQL EDITOR FUNCTION KEYS TQLEDT: fkeys
1.6 RUNNING A TQL PROGRAM TQL: open
l.6.1 TQL PROGRAM EXECUTION TQL: open
1.6.2 PREDEFINED DATA DISPLAY TQL: display
1.6.3 ADD RECORD TQL: add
1.6.4 COUNT RECORDS TQL: count
1.6.5 DELETE RECORD TQL: delete
1.6.6 ENTER RECORDS TQL: enter
1.6.7 END SESSION . TQL: end/close
1.6.8 TQL HELP TQL: help
1.6.9 FREE FORMAT LIST TQL: list
1.6.10 DISPLAY NEXT SCREENFULL TQL: next
1.6.11 OPEN NEW PROGRAM : TQL: open
1.6.12 PRINT A REPORT TQL: print
1.6.13 FREE FORMAT PRINT TQL: print
l1.6.14 SHOW FIELD NAMES TQL: show
1.6.15 UPDATE RECORD TQL: update
1.6.16 USE OF FUNCTION KEYS TQL: fn keys
1.7 CALLING TQL FROM TIP PROGRAM TQL: call tql
1.8 RESERVED WORDS TQL: words
1.9 INITIALIZING TQL DICTIONARY TQLINT
1.10 LISTING THE TQL DICTIONARY FILE QBSLST
1.11] REORGANIZING THE TQL DICTIONARY FILE QBSDMP
1.12 TQL PROTOTYPING TQLSPRO
1.13 TQL EXAMPLE TQL Example
2

2. KWIC INDEX INDEX

Page: 2 TQL Reference Manual

Section: Contents Version 2.5R1 (83/06/01)

TQL
THE TIP/30 QUERY LANGUAGE

1.3 THE TIP/30 QUERY LANGUAGE TQL

The TIP/30 Query Language (TQL) is an interactive facility that
allows the user to create flexible and powerful 'query' programs.
These programs have the capability to display, modify, enter, and
report data from on-line files. The TQL system also allows the user
to enter unstructured or 'ad hoc' requests. Ad hoc commands enable
the user to request the retrieval of data in ways that may not have
been explicitly anticipated by the programmer.

TQL allows access to standard Data Management files that are
either direct access (DA) or indexed (ISAM, 1IRAM, MIRAM). In
addition, the programmer may choose to make use of a very powerful
facility: prototype files. A prototype file is a 'virtual' file
that is maintained internally by TQL. The actual file is simulated
by TQL. The programmer may alter the size and number of the fields
within a record; all such changes take effect as soon as the TQL
program is recompiled. The wuse of a prototype program mechanism
allows the programmer to completely design, test and (if desired)
implement an application without creating real files. The structure
of the files (including any indices) may be altered as testing
. proceeds and new ideas materialize. When the application is

completed, the application users can use the TQL programs until
such time as a proper TIP native mode system can be written.
Indeed, in some cases, it may be quite justifiable to leave certain
limited applications 1in production although they are actually
implemented using prototype files.

TQL programs are written in a language that is based on a subset
of the COBOL-74 syntax with the addition of a number of extensions
for wuse by TQL. The TQL program is compiled on-line and the output
of the compiler is stored for later "execution" by the TQL run-time
interpreter. The run-time interpreter provides an interface between
the user and the TQL program. Ad hoc commands are interpreted and
executed by the run-time interpreter - the TQL program need not
concern itself with any aspect of such unstructured requests for
data.

Page: 1 TQL Reference Manual
Section: 1.3 . Version 2.5R1 (83/06/01)

THE TIP/30 QUERY LANGUAGE

The TQL system is organized around a centralized data dictionary
(or contol file). This control file is assumed to have the 1logical
file name TQLSCTL. This file 1is 1initialized as part of the
installation of TIP/30. The control file contains:

- the source for all existing TQL programs;

- the run-unit code (pseudo-object code) for all compiled
TQL programs

- ANY pre-compiled record layouts
- ALL file descriptions and definitions

From this 1list of contents, we can draw the following
conclusions:

- the source for TQL programs is stored in the TQL control
file; other copies of this source may, of course, exist
in normal 0S/3 libraries;

- the 'executable' output of the TQL compiler is stored in
the control file;

- record layouts MAY be pre-compiled and used (in common)
by a number of TQL programs that need to access such
records. This 1is a significant extension of the idea of
using COPY books.

- all files that are to be accessed by TQL programs must be
described (compiled) in the control file. The definition
of a file (as will be shown) is a simple matter. This
seemingly redundant definition of file characteristics is
required to enable an implementation of a future batch
interface to TQL.

CHAPTER I - INTRODUCTION Page: 2
THE TIP/30 QUERY LANGUAGE Section: 1.3

TQL

THE TIP/30 QUERY LANGUAGE

The steps required to create a working TQL application are:

ensure that all on-line files that are to be accessed are
both generated into the TIP/30 system (unless they are
prototype files) AND their characteristics have been
compiled (defined) to TQL;

either pre-compile record layouts for the files to be
accessed OR include the record layouts in-line
(explicitly) in the program;

write and compile a TQL program that declares which files
and record layouts are needed for the particular
application AND defines displays and reports that are
available to the user.

The following sections of this chapter describe:

the rules of syntax for the specification of FILES,
RECORDS, and PROGRAMS;

the commands and use of the TQL Monitor Program (TQLMON)
- a development environment for the TQL programmer;

The commands and facilities available at run time to the
user of a TQL program.

Page:
Section:

3 TQL Reference Manual

1.3 Version 2.5R1 (83/06/01)

TOL: EXPR

TQL EXPRESSIONS

1.3.1 TQL EXPRESSIONS TQL: expr

TQL allows the programmer or run-time user to make use of
arithmetic and relational expressions. These expressions may be
used either as part of the TQL program proper or as part of a
run-time command (eg: in the run-time "IF" command).

This section describes the syntax of the general TQL expression
and contains several example expressions.

Syntax:
(field oper field) [connector] (field oper field) ...
or or or or
value value value value
Where:

() The use of parentheses may be necessary to force a
specific order of evaluation of the expression or
to nest expressions.

If parentheses are not used, standard operator
precedence rules apply (multiplication and
division before addition and subtraction etc).

field The name of a field that is defined in the TQL
program. A list of available field names can be
found (at run-time) by using the "SHOW" command
(documented in a following section).

value A numeric or character value. Character values are
normally enclosed in quotes. (Eg: 38 or
'JANUARY').

CHAPTER 1 - INTRODUCTION Page:
THE TIP/30 QUERY LANGUAGE Section:

TQL: EXPR

TQL EXPRESSIONS

oper A

relational

or

arithmetic operator (arithmetic

- operators may only be applied to numeric fields!).
TQL supports the following operators:

ALTERNATIVE

OPERATOR

NOTATION

DESCRIPTION

F o 3 T T o D Ty P
A e Y S i s - - 3+ 1+ 1 2 3 3 + 2 2 - T 5 5 3 33 3K 5 ¥ K

LE

BEGINS WITH

DOES NOT BEGIN WITH
CONTAINS

DOES NOT CONTAIN
+

00l * |

connector A

(standard)

AV AV A
\

oo o= % N NI

equal

not equal

greater than

less than

greater than or equal
less than or equal
begins with

does not begin with
contains

does not contain
arithmetic addition
arithmetic subtraction
arithmetic multiplication
arithmetic division
arithmetic remainder

logical connector. TQL supports the

following connectors:

"AND" or "&" - logical "and" function

"OR" or "!" - logical "or" function

"NOT" - logical negative

"Example:

MOVE INVENTORY-COUNT - 1 TO -WORK~COUNT.

IF (JOB-DESCRIPTION CONTAINS 'DEPUTY') AND GROSS-SAL > 25000

AND GROSS-SAL <= 50000

IF (NOT JOB-DESCRIPTION =: 'DEPUTY')

IF 0 = TOTAL-COUNT % 2

Page: 2 .TQL Reference Manual
Section: 1.3.1 Version 2.5R1 (83/06/01)

TQL: EXPR

TQL EXPRESSIONS

Additional Considerations:

Note that the field name "GROSS-SAL" had to be repeated for the
comparison with 50000. This illustrates that TQL does not allow the
subject of a comparison to be omitted (unlike COBOL-74).

Numeric fields must be entered without comma separators. (eg:
25000 rather than 25,000).

The remainder operator ("%$") implies division, but the result is
the remainder rather than the quotient. The example above compares
0 with the remainder when TOTAL-COUNT 1is divided by 2. 1If the

remainder is zero, it implies that the field is evenly divisible by
2.

The result of a relational test (ie: A >= B) is considered to be
equivalent to numeric 1 if the test was TRUE otherwise the value is

0 if FALSE. Such implied numeric values may be used in further
computations if required.

s

CHAPTER I - INTRODUCTION Page: 3
THE TIP/30 QUERY LANGUAGE Section: 1.3.1

TQL: FILE
FILE DEFINITION

1.3.2 FILE DEFINITION

TOL: file

The programmer must define all required on-line files to TQL. In
order to do this, it is necessary to create a source module [either
using the standard TIP/30 text editor (QED) or by using the TQL
source editor (described later)]. The source module may contain one
or more FILE definitions. This source module is then compiled by
TQL (the compilation process will be described in detail in a later
section).

The definition of a FILE is similar to the specifications that are

used in the TIP/30 generation process. The syntactical reguirements

are:
Syntax:
FILE filename,filetype

ACCESS=

BLKSIZE=

DELETE=

INDSI ZE=

IORTN=

KEYLEN=

KEYLOC=

KEYl=

KEY2=

KEY3=

KEY4=

KEY5=

RECFORM=

RECSIZE=

(period --> end the file definition)

Where:

filename the logical

catalogue.

file name as specified in the TIP/30

filetype the type of file. Choose one of ISAM, MIRAM,

DMIRAM, or PROTOTYPE.

DAM,

ACCESS=opt the -access option as described in the -“data

management manual., Default is EXCR.

BLKSIZE=n

the block size of the file.

Page: 1
Section: 1.3.2

TQL Reference Manual
Version 2.5R1 (83/06/01)

FILE DEFINITION

TOL: FILE

DELETE=n the zero relative offset of the delete byte in the
record. This is currently ignored by TQL (since
TQL wutilizes the TIP/30 file system) but may be
required by a future batch interface to TQL.
INDSIZE=n is the INDEX AREA SIZE for this file. Default=256.
IORTN=name 'name’' is the name of a user written I/0 routine
which 1is to be called by TQL to do all 1/0 for
this file. This routine must be specified as a
resident TIP/30 SUBPROGRAM. The name, therefore,
must be the LOADM name of the suprogram.
TQL will call this routine via 'TIPSUBP' and pass
the same parameters which would have been passed
to '"TIPFCS'.
KEYLEN=n the length of the key for the file.
KEYLOC=n is the zero relative location of the key in the
record. Default=0.
KEYLEN and KEYLOC do not have to be specified if
the key information is provided by one or more of
the keywords KEYl= thru KEY5=.
KEYl= (size,loc,NDUP,NCHG)
defines index 1.
'size' is the key length.
'loc' is the zero relative key location.
Note that TIP/30 does not allow KEYl of a MIRAM
file to change or have duplicates.
KEY2= (size,loc,DUP|NDUP, CHG ! NCHG)
defines index 2
KEY3= (size,loc,DUP|NDUP, CHG |NCHG)
defines index 3
KEY4= (size,loc,DUP|NDUP, CHG ! NCHG)
defines index 4
CHAPTER I - INTRODUCTION Page:

THE TIP/30 QUERY LANGUAGE Section:

TQL: FILE

FILE DEFINITION

KEY5= (size,loc,DUP!NDUP,CHG!NCHG)

defines index 5

RECFORM= record format. Choose either FIXBLK or VARBLK.
Default=FIXBLK.
Note that the first halfword of a variable length
record is the record 1length. This field is
available to the TQL program and the record
definition must account for these two bytes (PIC
9(4) COMP-4). During an ADD of a record TQL will
set the maximum record length.

RECS1ZE=n is the length of the records in the file.

. the end of a file definition must be marked by a
period. Other file definitions may follow in the
same source module.

- K g
Page: 3 TQL Reference Manual
Section: 1.3.2 Version 2.5R1 (83/06/01)

TQL: RECORD

RECORD DEFINITION

RECORD DEFINITION TQL: record
The programmer has several methods of handling record layouts:

- pre-compile the record definition and reference it by
name in TQL programs that need to access such records;

- Use the COPY clause to include the record layout in (each
of) the TQL programs that access the record;

- explicitly code the record definition in (each of) the
TQL programs that access the record.

The first method (pre-compilation) is the most efficient and is
highly recommended. Use of the COPY clause is clearly better than
explicitly coding the record layout. The latter two methods are
inferior. Pre-compilation ensures that all TQL programs use the
same record layout and will be the basis for any future support of
data dictionary schemes.

The record definition follows standard COBOL-74 record
description conventions with the following exceptions:

- The COBOL special names: SPACES, ZEROES, HIGH-VALUES,
LOW-VALUES are not recognized by TQL.

- COMPUTATIONAL-1 and COMPUTATIONAL-2 fields (short and
long format floating point) are NOT supported by TQL.

- 66 level items (COBOL-74 RENAMES) are ignored.
- 77 level items are ignored.
- 88 level items are ignored.

- VALUE clauses are ignored.

- Only one level of subscripting is supported by TQL; that
is, arrays may have only one dimension.

The record layout must be preceded by the (optional) "FOR"
clause if it is to be separately pre-compiled. If the record is
described explicitly in the program, record definitions immediately
follow the associated FILE statement.

The COBOL record layout may contain or be followed by ALLOW
CHANGE clauses, VERIFY clauses, ID clauses, ALLOW DELETE clause,
ALLOW ADD clause.

CHAPTER I - INTRODUCTION Page: 1
THE TIP/30 QUERY LANGUAGE Section: 1.3.3

TQL: RECORD
RECORD DEFINITION

Records are not allowed to change or be deleted unless such
permission is explicitly granted through the appropriate clauses.

Example:

[FOR filename.]
RECORD PAYMST.

01 PAYMST.

05 KEY.

10 DEPT PIC 99.

10 NUMB PIC 9(5) COMP-3.
05 NAME PIC X(20).
05 ADDRESS.

10 LINE-1 PIC X(20).

10 LINE-2 PIC X(20).
05 SALARY PIC 9(4)Vv99.
05 JOBS OCCURS 4 TIMES.

10 LOCATION PIC X(8).

10 NUMBER PIC 9(4).

ID IS DEPT > O.

ALLOW CHANGE ALL.

NO CHANGE DEPT NUMB.

VERIFY SALARY 6000 THRU 32000,

Additional Considerations:

The definition of the key field is critical to the operation of TQL
at run time. The first definition of the key field(s) is taken as
the way the key will be entered at the terminal when selecting
records. This is a problem if the key 1is actually made up of
several smaller fields. For example, if the key is defined as three
(3) small fields then any key value must be entered at execution
time as 3 separate items of the correct type. Numeric data is
entered as a number, but alpha-numeric data must be entered in
quotes('). If you prefer to enter the key data as one big field but
still want to reference the sub-fields then code the record layout
with one single field and then redefine it as the sub-fields. Since
the single field definition would appear first, TQL would expect
the key to to be entered as a single data item.

- K -

Page: 2 TQL Reference Manual
Section: 1.3.3 Version 2.5R1 (83/06/01)

TOL: ALLOW
ALLOWING RECORDS/FIELDS TO CHANGE

1.3.4 ° ALLOWING RECORDS/FIELDS TO CHANGE TQL: allow

Records are not allowed to be added, changed or deleted unless
explicit permission is given in the TQL program. Fields within
records cannot change unless permission is explicitly given. The
ALLOW clause enables the programmer to specify what actions are
permitted. The ALLOW clause may appear within a pre-compiled record
layout, or within the DATA DIVISION of the TQL program. The program
may specify multiple ALLOW clauses for a record.

Syntax:

ALLOW ADD.
ALLOW DELETE.
ALLOW CHANGE field-names.
ALLOW CHANGE ALL.
NO CHANGE field-names.
NO CHANGE ALL.

Where:
ALLOW ADD Indicates that records may be added to the file.

ALLOW DELETE Indicates that records may be deleted from the
file.

ALLOW CHANGE defines which fields of the record may be changed
when records are being updated.

field-names A list of field names involved. The names may be
separated by commas or spaces and the statement
should be terminated with a period.
ALL Indicates that all fields are implied.
NO CHANGE Defines fields which may not change.
Example:
ALLOW CHANGE ALL.

NO CHANGE SIN.
ALLOW CHANGE SALARY DEDUCTIONS.

—_— K -

CHAPTER I - INTRODUCTION Page:
THE TIP/30 QUERY LANGUAGE Section:

TQL: MusT ADD

FIELDS WHICH MUST BE ADDED

1'

3.5

Sy

Wh

Ex

FIELDS WHICH MUST BE ADDED TQL: must add

If there are fields which MUST be entered, that is, the field
may not have a value of zero if it is numeric or may not have a
value of spaces if it is alpha-numeric the programmer may specify
the following statements after the record definition. If this
clause is not present for a record TQL assumes that the user may or

may not enter a value for each field.
ntax:

MUST ADD field-names.
MUST ADD ALL.

ere:

MUST ADD defines which fields of the record may not be
omitted when a record is added or changed.

field-names is a list of field names involved. The names may
be separated by commas or spaces and the statement
should be terminated with a period.
ALL implies all field names.
ample:

MUST ADD ALL. |
MUST ADD SALARY, DEDUCTIONS.

-k -

Page: 1l TQL Reference Manual

Section: 1.3.5 Version 2.5R1 (83/06/01)

TQL: 1D
RECORD SELECTION

1.3.6 RECORD SELECTION TQL: id

Files often contain many different record types. Records may be
selected by specifying the ID clause. The ID clause specifies to
TQL which record types are to be selected.

Syntax:
. ID IS <expression>
Where:

expression A relational expression which is a test for the
inclusion of a record. TQL will evaluate the
expression on every read or write of the record to
determine whether the record 1is of the correct

type.
Example:

ID IS REC-TYPE = 'HD'.
ID IS REC-TYPE NE 'HD' AND SAL > 25000.

Additional Considerations:

In the first example, the programmer has specified that the field
"REC-TYPE" must be equal to the literal "HD". The second example
requires that the field "REC-TYPE" is NOT equal to the literal "HD"
and the field "SAL" must be greater than 25,000. If a record is
read that does not satisfy the condition TQL will ignore that
record and proceed to the next record.

—_—tX -

CHAPTER I - INTRODUCTION Page: 1
THE TIP/30 QUERY LANGUAGE Section: 1.3.6

TQL: VERIFY
FIELD VERIFICATION

.l 1.3.7 FIELD VERIFICATION TQL: verify

Whenever a record 1is added or updated, field verification is
done by TQL as the data fields are moved from the screen display
area to the record build area. Fields may be verified by specifying
a list of possible values for each field to be verified. Such
statements must follow the appropriate record definition.

Syntax:

VERIFY field 'string' THRU 'string'.
VERIFY field 'string', 'string'.
VERIFY field 'string'.

VERIFY field number THRU number.
VERIFY field number, number.

VERIFY field number.

Where:
field is the name of the data field to be verified.
'string’ is some alpha-numeric value
number is some numeric value
THRU is used to define a range check.
Example:

VERIFY SALARY 10000, 20000, 30000 THRU 55000.
VERIFY TITLE 'V.P.', 'MANAGER', 'GO-FOR'.

Additional Considerations:

A field may be tested for specific values and/or range(s) of
values.

If the value of a field 1is found to not meet the required
verification TQL will send back an error message which consists of
the field name followed by question mark (?). The terminal operator
must correct the field in error and continue.

— K -

Page: 1 TQL Reference Manual
Section: 1.3.7 Version 2.5R1 (83/06/01)

TQL: FIELDS
SYSTEM FIELDS

1.3.8 SYSTEM FIELDS TQL: fields
There are several system data fields that are maintained by TQL
that are available to the TQL program. They may be used in the same
manner as record fields with the exception that ONLY the ERRCODES
field may be assigned a value.

Field / Format Definition

AUTHORS X(8) user-id of person who wrote the program.
DDS$ 9(2) current day.
DESCS$ X(30) description of program from PROGRAM-ID clause.
DMYS$ 9(6) current date in DDMMYY format
ERRCODES X(1) a status field [may be set by user].
HHS 9(2) current hour.
HHMMS 9(4) current time of day in HHMM format.
JULS$ 9(5) current date in YYDDD (Julian) format.
LINES 9(3) current line number (of report).
MINS 9(2) current minute.
MONS 9(2) current month.
PAGES 9(5) current page number (of report).
SITES X(12) site name from TIP/30.
TIDS X(4) terminal name running the TQL program.
TIMES 9(6) time of day in HHMMSS format.
UIDS X(8) user-id of user running TQL program.
YMDS 9(6) current date in YYMMDD format.
YYS 9(2) current year.

—t R -

CHAPTER I - INTRODUCTION Page: 1
THE TIP/30 QUERY LANGUAGE Section: 1.3.8

TQL: PROGRAM
TQL PROGRAM STRUCTURE

1.3.9 TQL PROGRAM STRUCTURE TQL: program
The general syntax of a TQL program is as follows:
IDENTIFICATION DIVISION.
PROGRAM-1ID.
DATA DIVISION,
FILE <file-name-1>,

RECORD <record-name-1>.
[ALLOW CHANGE, NO CHANGE, VERIFY, ID, clauses]

[ALLOW DELETE.] [NO DELETE.]
[ALLOW ADD.] [NO ADD.]
RECORD <record-name-n>, ...€tC...

FILE <file-name-n>.
RECORD <record-name-n>, ...€tCc...

[WORKING-STORAGE SECTION.]

[DECLARATIVES SECTION.]
%
* comments may be entered anywhere
* by entering an asterisk (*) in column 7
%

[DISPLAY DIVISION.]

[REPORT DIVISION.]

A program may specify as many files and records as are needed for
the application. TQL programs may have any number of defined
displays and/or reports. There should be at least one display or
report in a TQL program.

- K

Page: 1 TQL Reference Manual
Section: 1.3.9 Version 2.5R1 (83/06/01)

TQL: 1D DIVISION
IDENTIFICATION DIVISION

1.3.10 IDENTIFICATION DIVISION TQL: id division

The IDENTIFICATION DIVISION of a TQL program must appear first
and 1is required 1in all TQL programs. This division names the TQL
program, may provide an informative description of the program and
may restrict run-time access of the program to specific TIP/30
users.

Example:

IDENTIFICATION DIVISION.
PROGRAM-1D. progname
['comments']
[GROUP=id]
[PASSWORD PROTECT]
. (period indicates end of this DIVISION)

Where:

progname Up to eight characters (the first of which must be
alphabetic) which uniquely identifies the program.

'comments’ Up to thirty characters (enclosed in single
quotes) which provide a description of the
program.

This is the character string returned as the
system field 'DESCS$' (see previous section "SYSTEM
FIELDS").

id An id that specifies which set of users may use
the program. A user may use the program if this id
matches either their wuser-id, a group to which
they belong or their terminal name.

If no GROUP= clause is specified the program may
be run by any user that has access to TQL.

PASSWORD PROTECT If this clause is specified, the programmer will
be asked (at TQL compile-time) to supply a
password. Whatever password is assigned by the
programmer must be supplied by any user who
attempts to run the TQL program. The only way to
change the password is to recompile the program.

— K-

CHAPTER I - INTRODUCTION Page: 1
THE TIP/30 QUERY LANGUAGE Section: 1.3.10

TOL: DATA DIVISION
DATA DIVISION

@ :.:.11 para pivision TQL: data division

The DATA DIVISION of a TQL program is required and must follow
the IDENTIFICATION DIVISION. The first section of the data division
identifies the files and records that are required by the program.
Subsequent (optional) sections define program work fields
(WORKING-STORAGE SECTION) and exceptional event processing
(DECLARATIVES SECTION).

Syntax:
DATA DIVISION.
FILE file-name.

[RECORD rec-name.]
[ALLOW, VERIFY, ID, clause(s)]

[01 name.]
[02 ...]
[-]
[ALLOW, VERIFY, ID, clause(s)]

Where:
. file—-name name of a pre-compiled file description.
rec-name name of a pre-compiled record description.

name record name of an explicitly defined record that
is coded in-line.

Additional Considerations:

Records may be defined by either referring to the name of a
pre-compiled record (that is the "RECORD rec-name" clause), or by

actually coding the record description in place of the RECORD
clause.

More than one record may be specified for a file; more than one
file may be specified in a TQL program.

The "ALLOW, VERIFY, and 1ID" clauses may be specified in a

pre-compiled record description, after the RECORD clause, or after
the in-line record description.

Page: 1l TQL Reference Manual
Section: 1.3.11 Version 2.5R1 (83/06/01)

DATA DIVISION

TQL: paTaA

DIVISION

Example:
DATA DIVISION.

FILE PAYMAST.
RECORD PAY-HDR.
RECORD PAY-DETL.

FILE PAYTRANS.
RECORD PAYTRHDR.,

01 PAYTRAN.
05 FILLER PIC X(4).
05 PAYTRAN-ID PIC X(2).
05 PAYTRAN-DATA OCCURS 12 TIMES.
10 PAYTRAN-AMOUNT PIC S9(7)v9(2).

ALLOW CHANGE ALL,

ALLOW DELETE. ALLOW ADD.
VERIFY PAYTRAN-1ID 'B3'.

MUST ADD PAYTRAN-AMOUNT.

— K e —

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page:
Section:

2
1.3.11

TQL: wWORK FIELDS
WORKING STORAGE SECTION

1.3.12 WORKING STORAGE SECTION TQL: work fields

The WORKING-STORAGE SECTION of the DATA DIVISION of a TQL
program is an optional section that may be included by the
programmer to define work-fields that are used in computations or
other data manipulations. The section must contain only a single 01
level. All fields must be subordinate to this group item. Since
VALUE clauses are ignored by TQL, the fields are initialized by TQL
to zero or spaces (as appropriate) upon each 1initial wuse of a
display or report.

Example:
WORKING-STORAGE SECTION.
01 WORK-FIELDS.
05 GRAND-TOTAL PIC S9(7)Vv99 COMP-3.
05 SUB-TOTAL PIC S9(7)V99 COMP-3,
05 FULL-ADDRESS.
10 FULL-ADDRESS-1 PIC X(40).

10 FULL-ADDRESS-2 PIC X(40).
10 FULL-ADDRESS-3 PIC X(20).

- K —

Page: 1 TQL Reference Manual
Section: 1.3.12 : Version 2.5R1 (83/06/01)

TOL: DECLARATIVES
DECLARATIVES SECTION

1.3.13 DECLARATIVES SECTION TQL: declaratives

The DECLARATIVES SECTION of the DATA DIVISION of a TQL program
is an optional section that may be included by the programmer to
define special processing that is to occur after a specified record
is read or immediately before a specified record is written or
added.

For example, the programmer may wish to timestamp all records
which are written to a file. Rather than have the wuser enter the
current date and time for each record (a tedious and error-prone
procedure), the program could accomplish this by specifying the
appropriate move statements in the declaratives section. The
general syntax of the Declaratives Section is as follows:

Syntax:
DECLARATIVES SECTION.
[ON READ OF <record-name> statements.]
[ON WRITE OF <record-name> statements.]
[ON ADD OF <record-name> statements.]
Where:
ON READ OF clause indicating that the statements which follow

are to be executed immediately AFTER any read of
the specified record name.

An 'ON READ' <clause for one record may contain
'READ' statements to get other records. This is
the only way to select records (by using an IF
clause at run time) based on the value of data in
supplementary records.

ON WRITE OF clause indicating that the statements which follow
are to be executed immediately BEFORE any write of
the specified record name.

ON ADD OF clause indicating that the statements which follow
are to be executed immediately before any new
record is added to the file.

If both 'ON WRITE' and 'ON ADD' clauses exist for
the same record, TQL will only execute the 'ON
ADD' clause for added records. The 'ON WRITE'
clause will then only be used when a record is
updated (re-written).

CHAPTER I - INTRODUCTION Page: 1
THE TIP/30 QUERY LANGUAGE Section: 1.3.13

TOL: DECLARATIVES

DECLARATIVES SECTION

<record-name> specifies the record name associated with this

clause.

statements One or more statements which are to be executed at
the indicated point in time.

The expression may contain a number of TQL
statements (including (but not limited to) READ
statements, MOVE, COMPUTE etc). :

Valid statements for use in the DECLARATIVES SECTION are
described as follows:

Syntax:

statement-list .

<-- statement-list 1is one or more of the following -->

(statement-list)

number (statement-list)

ADD expression TO field

COMPUTE field = expression

ERROR 'string'’

IF (expression) (statement-list)
IF (expression) (statement-list) ELSE (statement-list)
MOVE expression TO field

NEXT RECORD

ON ERROR 'string'

READ record FROM field

READ record VIA field

SUBTRACT expression FROM field
WHILE expression (statement-list)

Where:

number (statement-list) indicates that the instructions appearing
inside the parentheses are to be repeated the
specified number of times. This is the
simplest way to display more than one record.
The "loop" will be exited early if a READ
statement fails to retrieve a record from the

file.
expression A standard TQL expression (see section 1.3.1).
Page: 2 TQL Reference Manual
Section: 1.3.13 Version 2.5R1 (83/06/01)

DECLARATIVES SECTION

TQL: DECLARATIVES

ADD

COMPUTE

ERROR

IF

MOVE

NEXT RECORD

ON ERROR

the arithmetic expression is evaluated, added
to the value of the 'field' and the result
stored in the 'field'. Note that result fields
as well as fields in the expression may be
subscripted when appropirate by either a
constant or subscript field.

the arithmetic expression 1is evaluated, and
the result stored in the 'field'.

The specified string will be used as an error
message and the system field "ERRCODES" will
be set to a non-blank value to indicate an
error has occurred.

This clause may be wused to signal an error
condition

Eg: IF (COUNT LT 10) (ERROR 'not enough
stock')

the relational expression immediately
following the IF is evaluated. If it is found
to be true then the code inside the
parentheses will be executed. If it is found
to be false then the code 1in parentheses
following the ELSE will be executed. If no
ELSE clause was given TQL continues with the
next statement after the IF clause. Nested IF
clauses are supported to a depth of 10.

It may be necessary to enclose the expression
in parentheses to avoid confusion with
subscripting.

The expression is evaluated, and the result is
stored in the 'field'.

this will move an "S" to the field ERRCORDS,
indicating that the current record is to be
by-passed.

This clause may be used following a read
statement to specify a string which will be
displayed if an error occurred on the read.
Expression wusually is a literal (eg: ON ERROR
"No part info')

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page: 3
Section: 1.3.13

TOL: DECLARATIVES

DECLARATIVES SECTION

READ record

Via field

FROM field

SUBTRACT

WHILE

Directs TQL to read the specified record at
this point in the generation of the display.

'field' is the name of a field which contains
the key of the record to be read.

If the READ is being done because a record is
about to be ADDed or UPDATEd then the READ is
actually a read for update ('GETUP') and the
record will be updated back to the file.

'field' is the name of field holding (part of)
the key for the secondary record. The file is
read sequentially until this first portion of
the key in the record no longer matches the
value in 'field'.

the arithmetic expression is evaluated,
subtracted from the value of the 'field' and
the result is stored in the field.

the relational expression immediately
following the WHILE 1is evaluated. 1If it
evaluates to be true, the code inside the
parentheses will be executed. The code is
executed repeatedly until the expression
evaluates to be false.

each ON statement 1list must be ended with a
period.

Page: 4
Section: 1.3.13

TQL Reference Manual
Version 2.5R1 (83/06/01)

TQL: DECLARATIVES
DECLARATIVES SECTION

Example:

DECLARATIVES SECTION.

ON READ OF PAYMAST ADD PAYMAST-SALARY TO WS-TOTAL-SALARY
ADD 1 TO WS-PAYMAST-COUNT.

ON WRITE OF PAYMAST MOVE TIMES TO PAYMAST-TIME-WRITTEN
MOVE YMDS$ TO PAYMAST-DATE-WRITTEN.

In this example, every time a record named 'PAYMAST' is read,
TQL will automatically execute the two ADD statements (which
presumably modify some WORKING-STORAGE fields for later use).

Immediately before all writes of records named 'PAYMAST', TQL
will automatically execute the two move statements (which take
advantage of the system fields to move the current date and time to
corresponding fields in the PAYMAST record).

Additional Considerations:

The statements that may be specified in the 'ON READ' or 'ON WRITE'
statement can be arbitrarily complex and may include (for example)
the usual 'IF' statements etc.

— K-

CHAPTER I - INTRODUCTION Page: 5
THE TIP/30 QUERY LANGUAGE Section: 1.3.13

TQL: DISPLAY
DISPLAY DIVISION

1.3.14 DISPLAY DIVISION TQL: display

The DISPLAY DIVISION of a TQL program is a division that
represents a TQL extension to standard COBOL-74. This division
defines the display sets that are available at execution time. Each
display set contains statements that specify the fields that are to
be displayed. In addition, the display set contains VERBS that
specify (to TQL) exactly which records to read. At execution time,
the wuser of the TQL program uses the name of a display set to
request the display of data according to the specifications of the
display set.

Syntax:
name : display-list USING msg-name .
<-- display-list is one or more of the following -->

field

(display-list)

number (display-list)

ADD expression TO field

COMPUTE field = expression

IF (expression) (display-list)
IF (expression) (display-list) ELSE (display-list)
MORES

MOVE expression TO field

NLS

READ record

READ record FROM field

READ record VIA field

SUBTRACT expression FROM field
WHILE expression (display-list)

Where:

name is the display name. This name is required and
must be unique within a TQL program. This name
is wused at execution time by the TQL user to
request a particular display format.

““msg-~name This is the name of ‘the TIP/30 screen ‘format
which is to be used to control the display
format of the data.

field is the name of a data field. If the field is
part of an OCCURS clause, it may be followed
by the occurrence number such as PART-NUM(3).
If no occurrence number 1is given then the
first occurrence is assumed.

Page: 1 TQL Reference Manual
Section: 1.3.14 Version 2.5R1 (83/06/01)

DISPLAY DIVISION

TOL: DISPLAY

number (display-list)

expression

ADD

COMPUTE

IF

MORES$

The field name may be subscripted by either a
literal or another field. A field used as a
subscript must be a binary halfword (ie. PIC
9(4) COMP-4). A subscript field may be part of
a record structure or a working-storage field.

If the field named is a group item all
subfields are processed with appropriate
subscripting.

indicates that the instructions appearing
inside the parentheses are to be repeated the
specified number of times. This is the
simplest way to display more than one record.
The "loop" will be exited early if a READ
statement fails to retrieve a record from the
file.

A standard TQL expression (see section 1.3.1).

the arithmetic expression is evaluated, added
to the wvalue of the 'field' and the result
stored in the 'field'. Note that result fields
as well as fields in the expression may be
subscripted when appropirate by either a
constant or subscript field.

the arithmetic expression 1is evaluated, and
the result stored in the 'field'.

the relational expression immediately
following the IF is evaluated. If it is found
to be true then the code inside the
parentheses will be executed. If it is found
to be false then the code 1in parentheses
following the ELSE will be executed. If no
ELSE clause was given TQL continues with the
next statement after the IF clause. Nested IF
clauses are supported to a depth of 10.

It may be necessary to enclose the expression
in parentheses to avoid confusion with
subscripting.

Marks the point from which the display is to
be continued when more detail records are
requested at execution-time. The TQL user can
request "more" records by entering the "MORE"
run-time command or by pressing function key
9. :

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page: 2
Section: 1.3.14

TQL: DISPLAY
DISPLAY DIVISION

See following section "Executing TQL
programs”.

MOVE The expression is evaluated, and the result is
stored in the 'field'.

NL$ This notation may be inserted to indicate (to
the automatic screen generation process) that
the screen format 1is to force a new line on
the screen at this point. This NLS
specification has no other effect.

READ record Directs TQL to read the specified record at
this point in the generation of the display.

VIA field 'field' is the name of a field which contains
the key of the record to be read.

If no record could be read on a 'READ VIA'
then TQL will skip to the end of the current
repeat loop ('number (display-list)') or the
to end of the display, whichever comes first.

If more information is to be displayed even if
the READ VIA fails, then it would be necessary
to include a (dummy) repeat loop such as: 'l
(READ fileb VIA field)'.

FROM field 'field' is the name of field holding (part of)
the key for the secondary record. The file is
read sequentially until this first portion of
the key in the record no 1longer matches the
value in 'field'.

SUBTRACT the arithmetic expression is evaluated,
subtracted from the value of the 'field' and
the result is stored in the field.

WHILE the relational expression immediately
following the WHILE 1is evaluated. 1If it
evaluates to be true, the code inside the
parentheses will be executed. The code is
executed repeatedly until the expression
evaluates to be false.

. each display must be ended with a period.

Page: 3 TQL Reference Manual
Section: 1.3.14 Version 2.5R1 (83/06/01)

TOL: DISPLAY
DISPLAY DIVISION

Example:

DEPLST: READ DEPT-REC, DEPT-NUM, DEPT-NAME,
MOVE 0 TO TOT-SAL,
MORES 19 (READ PAYREC FROM DEPT-NUM,
NAME, SIN, SALARY, NLS$
ADD SALARY TO TOT-SAL,
) TOT-SAL USING PAYSCRN.

In the above example, TQL does the following for each display:

- read a department record (DEPT-REC) and display the
fields DEPT-NUM and DEPT-NAME.

- collect up to 19 payroll records (PAYREC) which are in
the selected department. The payroll file has the
department number as the first part of the key of the
record.

- for each PAYREC the fields NAME, SIN, and SALARY are
displayed.

- SALARY is accumulated in the field TOT-SAL.
- TOT-SAL is the last field displayed on the screen

- The Message Control System (MCS) screen format name is
PAYSCRN. Note that the 1inclusion of the NLS notation
forces the automatic screen generator to begin a new line
in the screen format at that point.

- If more the 19 payroll records exist then the terminal
operator may ask for more by pressing function key 9 on
the terminal (or entering the run-time command "MORE").
TQL will continue from the point marked by the tag:
"MORES".

CHAPTER I - INTRODUCTION Page: 4
THE TIP/30 QUERY LANGUAGE Section: 1.3.14

TQL: pIsPLAY

DISPLAY DIVISION

Example:

DEPSUM:

20 (READ PAY-REC, READ DEPT-REC VIA DEPT-NUM,

NAME, SIN, SALARY, DEPT-NAME NLS
) USING PAYDEPT.

In the above example, TQL does the following for each display:

read a payroll record (PAY-REC)

then read from the department file (DEPT-REC) by using
the field DEPT-NUM as a key. DEPT-NUM must be a field in
the PAY-REC record.

for each PAY-REC the fields NAME, SIN, SALARY, and
DEPT-NAME (from department record) are displayed.

The Message Control System (MCS) screen format name is
PAYDEPT.

Repeat up to 20 times (20 reads of PAY-REC).

— K g —

Page:
Section:

5 TQL Reference Manual

1.3.14 Version 2.5R1 (83/06/01)

TQL: REPORT
REPORT DIVISION

1.3.15 REPORT DIVISION TQL: report

The REPORT DIVISION of a TQL program is a division that is a TQL
extension to standard COBOL. This division defines one or more
reports that are available at run-time to the TQL user. Each report
has an assigned name that is used by the user to select the report.
The report defines the contents of a "logical page" of the physical
report. A logical page may consist of more than one physical page.
The run-time TQL interpreter will generate the report by repeatedly
generating the "logical page" until no more records are available.

The default destination of the report may be either the site
printer (EG: PRNTR) or an auxiliary printer. The printout is
actually routed by TQL via the TIP/30 printing facility (TIPPRINT).

The user may override the destination of the report at the time
the report is requested.

Syntax:
name : report-list ON print-file [AT END report-list] .
<--- report-list 1is one or more of the following --->

field-names

(report-list)

number (report-list)

ADD expression TO field

COMPUTE field = expression

HOMES

IF (expression) (report-list)
IF (expression) (report-list) ELSE (report-list)
MOVE expression TO field

NLS$

READ record

READ record FROM field

READ record VIA field

SUBTRACT expression FROM field
SKIPS(number)

TABS (number)

WHILE expression (report-list)

CHAPTER I - INTRODUCTION Page:
THE TIP/30 QUERY LANGUAGE Section: 1.3.15

TOL: REPORT

REPORT DIVISION

Where:

name

print-file

field

number (report-list)

expression

ADD

COMPUTE

The report name. This must be unique within a
TQL program. At execution time the wuser will
request the production of this report by
referring to this report name.

The default report destination. This may be
the site printer which is called 'PRNTR', a
communications printer such as 'AUX1l' or even
the name of a printer that data processing has
generated into TIP/30 (eg: PRNTR2).

the name of a data field. If the field is part
of an OCCURS clause it may be followed by the
occurrence number such as PART-NUM(3). If no
occurrence number is given then the first
occurrence is assumed. The field name may also
be subscripted by some other field. A field
used as a subscript must be a binary halfword
(ie. PIC 9(4) COMP-4). A subscript field may
be part of a record structure or
working-storage field.

If the field named is a group item all
subfields are processed with appropriate
subscripting.

indicates that the instructions coded inside
the parentheses are to be repeated the
specified number of times. This is the
simplest way to process several records. The
"loop"™ will be exited early if a READ
statement fails to retrieve a record from the
file.

A standard TQL expression (see section 1.3.1).
The arithmetic expression is evaluated, added

to the value of the 'field' and the result is
stored in the 'field'. Note that result fields

as well as field involved in the expression

may be subscripted (when appropriate) by
either a number or subscript field.

The arithmetic expression 1is evaluated, and
the result stored in the 'field'.

Page: 2
Section: 1.3.15

TQL Reference Manual
Version 2.5R1 (83/06/01)

REPORT DIVISION,

TQL: REPORT

HOMES

IF

MOVE

NLS$

READ record

VIAa field

FROM field

SUBTRACT

Force a skip to a new page (top of form). The
system field "PAGES" is incremented by one and
the the system field "LINES" is set to zero.

The relational expression immediately
following the IF statement 1is evaluated. If
the expression evaluates "TRUE" the code which
follows in parentheses will be executed. 1If
the expression evaluates "FALSE" the code in
parentheses which follows the word "ELSE" will
be executed. If no ELSE clause was given TQL
continues with the next statement after the IF
clause. Nested IF clauses are supported to a
maximum depth of 10.

The arithmetic expression is evaluated and the
result is stored in the 'field’.

Force a new line. The current contents of the
print line are printed. The system field
"LINES" is incremented by one.

Read the specified record name.

'field' 1is the name of the field containing
the key of the desired record.

If a record cannot be read on a 'READ VIA'
statement TQL will skip to the end of the
current repeat loop ('number (report-list)')
or to the end of the report, which ever comes
first.

I1f more information is to be reported even
though the READ VIA fails, then it would be
necessary to include a (dummy) repeat loop
such as: 'l (READ file VIA field)'.

'field' 1is the name of the field containing
(part of) the key for the secondary record.
The file is read sequentially until this first
portion of the key in the record no longer
matches the value in 'field'.

The arithmetic expression is evaluated,
subtracted from the value of the 'field' and
the result stored in the ‘'field’'.

CHAPTER I - INTRODUCTION
THE TIP/30 QUERY LANGUAGE

Page: 3
Section: 1.3.15

TQL: REPORT

REPORT DIVISION

TABS (number)

SKIPS$ (number)

WHILE

AT END

TQL will position the output pointer into the
print line to the exact column specifed by
'number’.

This statement may position the output pointer
after the current column 1location OR before
the current column location. The wuser is
responsible for the results of overlapped
fields.

TQL will advance the output pointer
(horizontally) to the right by the number of
columns indicated.

The statements in parentheses following the
"WHILE" will be executed repeatedly until the
relational expression is false.

When all records have been processed the
coding following the words "AT END" will be
executed. This provides the capability to
generate final totals or summary information
of whatever kind.

This clause must appear as the last clause in
a report definition.

each report must be ended with a period.

Page:
Section:

4
1.3.15

TQL Reference Manual
Version 2.5R1 (83/06/01)

TQL: REPORT
REPORT DIVISION

Example:
REPORT DIVISION.
QOH: HOMES
TABS(15) 'PART - QUANTITY ON HAND' TABS$(70) 'PAGE' PAGES NLS
'PART NUMBER' TABS$(20) 'DESCRIPTION' TABS$(50) 'QUANTITY' NLS
50 (READ PARTFIL,
PM-NUM TABS$(20) PM-DESC TABS$(50) PM-QTY NLS
) ON AUX1.
For each logical page of this report the following is done:
- a new page is forced (HOMES)
- a two line page title is printed.

- up to 50 PARTFIL records are read.

- for each record the fields PM-NUM, PM-DESC and PM-QTY are
printed on a separate line (note the NL$)

- the default destination of the report is AUX1l. This may
be overridden at execution time by the TQL user.

-k -

CHAPTER I - INTRODUCTION Page: 5
THE TIP/30 QUERY LANGUAGE Section: 1.3.15

TQLMON

MAINTAINING THE TQL DICTIONARY

1.4 MAINTAINING THE TQL DICTIONARY TQLMON

The TQL monitor program (TQLMON) is a supplied utility that
enables the PROGRAMMER to maintain the contents of the TQL
dictionary (or control) file. TQLMON provides sub-functions which
allow the programmer to create, edit or compile file or record
definitions or TQL programs.

The programmer may use the standard TIP/30 system editor (QED)
to create and maintain the source for file, record or program
definitions. TQLMON also provides a screen-format oriented editor
that is specifically designed for editing TQL source elements.

Each of the commands of the TQL monitor is described in the
following sections. The TQLMON program is not normally wused by
non-programmers (users).

TQLMON COMMAND SUMMARY

c Compile file and record definitions

COMP Compile program (from dictionary)

CP Compile program (from library or edit buffer)

Delete Delete files and/or records

DP Delete program from dictionary

End End TQL monitor

Help Display help information

List List file and/or record compilation on terminal

LP List program compilation on terminal

Mcs Generate MCS screen format(s) for a program

N enter a new record definition

NF enter a new file definition

NP call editor to enter a new program

Print Print files and records on printer

PP Print program on printer

PURGE delete all records in a PROTOTYPE file

Q call QED then compile record definition

QP call QED then compile program

Run execute a TQL program (same as OPEN ...)

- Summary Summary of files and records

SP Summary of programs

Update Update then compile record definition

uc Update control record

UF Update file characteristics

UP Update then compile program

Write Write records to library

WP Write program to library

Page: TQL Reference Manual
Section: 1.4 Version 2.5R1 (83/06/01)

TQLMON: ¢
COMPILE FILE/RECORD

1.4.1 COMPILE FILE/RECORD TQLMON: ¢

Syntax:
C file [,elt]

Where:
file The catalogued file name of a library file or the
name of an edit buffer.
elt The name of the desired element from the file.
This parameter should be omitted if the file or
record is to be compiled from an edit buffer.
Example:

C SOURCE/PAYREC

Additional Considerations:
The input to this command (either an element of a library or an
edit buffer) may contain one or more file definitions or record
definitions.

Error Conditions:
Record already exists: <record-name>

- the record already exists and a new one with the same
name is not allowed. The existing record must be deleted
beforehand (see description of DELETE command following).

<file> not found <record-name> not posted.

- the file named for this record does not exist.

-tk -

CHAPTER I - .INTRODUCTION Page: 1
-MAINTAINING THE TQL DICTIONARY Section: l.4.1

TQLMON: comp; cp
COMPILE PROGRAM

1.4.2 COMPILE PROGRAM TQLMON: comp; cp

The COMP command causes a TQL program to be compiled directly
from the TQL dictionary file (as opposed to compilation from a
library element or edit buffer). This command is most often used
when a record definition (or file definition) has been changed and
all programs that refer to the record have to be recompiled.

The CP command compiles a TQL program from either an edit buffer
or a library element.

Syntax:
COMP program
CP file [,elt]
Where:
program The name of the TQL program to be recompiled. The
program must already be in the control file. A
programmer may wish to do this if some record or
file definition which the program uses has
changed.
file the catalogued name of the library containing the
source for the program or the name of an edit
buffer.
element the name of the element within the library. This
parameter should be omitted if the compilation is
from an edit buffer.
Example:
COMP TQLTSP

CpP TIP/TQLTSP
Error Conditions:

DUPLICATE DISPLAY NAME: <name>

- a display set of that name is already defined in the

program,
Page: 1 TQL Reference Manual
Section: 1.4.2 Version 2.5R1 (83/06/01)

TOLMON: comp; cp
COMPILE PROGRAM

DUPLICATE REPORT NAME: <name>

- a report of that name is already defined in the program.
File not found: <name>

- the requested file does not exist.
Record not found: <name>

- the requested record does not exist.
EXPR: MISSING ')'

- a required right parenthesis is missing in an expression.
EXPR: INCOMPATIBLE DATA FIELDS

- attempting to compare numeric to non-numeric data or
attempting arithmetic operations on non-numeric data.

—_— k-

CHAPTER I - INTRODUCTION Page: 2
MAINTAINING THE TQL DICTIONARY Section: 1.4.2

TQLMON: DELETE
DELETE FILE/RECORD

1.4.3 DELETE FILE/RECORD TQLMON: delete

The Delete command will delete a single record or single file
definition from the TQL dictionary file.

Syntax:

Delete file [,record]

Where:
file the name of a file defined in the TQL dictionary.
record the name of a record of that file.
If 'record' is omitted the file definition is
deleted.
Example:

Del PAYMST/PAYREC

Error Conditions:
A file definition cannot be deleted until all associated record
definitions have been deleted.

e i

Page: 1 TQL Reference Manual
Section:: 1.4.3 Version 2.5R1 (83/06/01)

TQLMON: pp

DELETE PROGRAM

1.4.4 DELETE PROGRAM TQLMON: dp

The DP command will delete a single program from the TQL
dictionary. The executable code will be deleted as well as the
source for the program. Note that there is no recovery from this
command (unless a backup copy of the source of the program has been
stored in an element of a library).

Syntax:

DP progname

Where:
progname the name of a program defined in the dictionary.

Note that the name of the program is determined by
the PROGRAM-ID clause in the TQL program.

Example:

DP PAYINQ
- -
CHAPTER I - INTRODUCTION Page: 1

MAINTAINING THE TQL DICTIONARY Section: 1.4.4

TQLMON: END

END TQLMON PROGRAM

1.4.5 END TQLMON PROGRAM ‘ TQLMON: end

The

E command

will terminate interaction with the TQL monitor

program and return to the calling program or the TIP command line
(whichever is appropriate).

Syntax:
End
— K o
Page: 1 TQL Reference Manual
Section: 1.4.5 Version 2.5R1 (83/06/01)

TOLMON: HELP
DISPLAY HELP INFORMATION

1.4.6 DISPLAY HELP INFORMATION TQLMON: help

The help command will display help information for the TQL
monitor or will display help information for specific commands.

Syntax:

Help [command]

Where:
command the specific command for which help is required.
If this is omitted, the help command will display
a list of all available commands.
- K
CHAPTER 1 - INTRODUCTION Page: 1

MAINTAINING THE TQL DICTIONARY - Section: l1.4.6

TOLMON: LisT
LIST FILE/RECORD

1.4.7 LIST FILE/RECORD TOQLMON: 1list
The LIST command will display (at the terminal) the compilation

listing of a file or record definition. The 1listing may be
interrupted by pressing the MSG-WAIT key on the terminal.

Syntax:
List file [,record]
Where:

file the name of a file defined in the dictionary. This
may be specified using standard prefix notation.

record the name of a record defined for the named file.
This may be specified wusing standard prefix
notation. If this parameter is omitted, only the
file specified will be listed.
Example:
L PAYMST *Pp

This example will list the compilation output for file
"PAYMST" and all records with names beginning with "P",

- K =

Page: 1 TQL Reference Manual
Section: 1.4.7 Version 2,5R1 (83/06/01)

TQLMON: vLp
LIST PROGRAM

1.4.8 LIST PROGRAM ’ : TQLMON: 1lp
The LP command (list program) will display (at the terminal) the
compilation output for a program. The listing may be interrupted by
pressing the MSG-WAIT key at the terminal.
Syntax:
LP progname
Where:
progname the name of a program defined in the dictionary.
This may be specified using standard prefix
notation.
Example:
LP PAYINQ
- -
CHAPTER I - INTRODUCTION Page:
MAINTAINING THE TQL DICTIONARY Section:

TQLMON: mcs ‘
CREATE SCREEN FORMATS

1.4.9 CREATE SCREEN FORMATS TQLMON: mcs

The MCS command will direct TQL to generate screen formats for
the indicated display definitions in a named TQL program. The
generated screen formats will have names as specified in the USING
clause in the DISPLAY DIVISION of the TQL program.

The user may wish to later make enhancements to the machine

generated screen formats by wusing the standard TIP/30 utility
MSGDEF .

Syntax:
Mcs program [,display-name]
Where:
program the name of a program defined in the dictionary.
This may be specified wusing standard prefix
notation.
display-name the name of the display which describes the screen
format(s) which are to be built. If this parameter
is omitted, all screen formats will be built. This

parameter may be specified using standard prefix
notation.

Note that this name is NOT the name specified in
the USING clause in the DISPLAY DIVISION.

Example:
M PAYINQ *P
This will build all message formaats for the displays that begin
with the letter 'P' in the program 'PAYINQ'.

- K

Page: 1 TQL Reference Manual
Section: 1.4.9 Version 2.5R1 (83/06/01)

TQLMON: N
DEFINE NEW RECORD

1.4.10 DEFINE NEW RECORD TQLMON: n

The N command (new record) allows the user to define a new
record definition using the TQL Editor. The TQL Editor is described
in detail in the following section.

When the N command is processed, TQLMON will call the TQL Editor
to allow the user to complete the record definition process. The

initial contents of the edit workspace includes a skeleton record
format.

When the user ends the editor, TQLMON will automatically compile
the record definition composed by the user.

Syntax:

N [file] [,recordl]

Where:
file name of the file which 1is associated with the
record. If omitted, the wuser must include the
appropriate "FOR" clause in the text that is
subsequently prepared.
record The name of the record. If this parameter is
given, the TQL Editor will automatically use it as
the name of the 01 1level item in the skeleton
record layout.
Example:

N PAYROLL, PAYREC

Error Conditions:
If errors occur during the compilation of the record, the user may
return to editing the record definition by simply issuing the N
command again (with the same parameters).

—t kg

CHAPTER I - INTRODUCTION Page: 1
MAINTAINING THE TQL DICTIONARY Section: 1.4.10

TQLMON: ~F
DEFINE NEW FILE

1.4.11 DEFINE NEW FILE TQLMON: nf

The NF command (new file) will cause the TQL monitor to display
a screen format which may be used to define the characteristics of
a file. This method may be preferable to defining a file using

keywords in a 1library element (as described in the previous
section).

Syntax:

NF [filename]

Where:
filename The catalogued name of the file to be defined to
TQL. If this parameter 1is provided TQLMON will
copy it (as the first field) into the screen
format which is to be displayed.
Page: 1 TQL Reference Manual

Section: 1.4.11 Version 2.5R1 (83/06/01)

TQLMON: ~F
DEFINE NEW FILE

TQLMON will display the following screen format. The user is
then able to fill in the information requested and press transmit
(XMIT) to cause the file definition to be compiled. If the user
does not press XMIT, (for example, presses MSG-WAIT), the new file
definition process will be cancelled.

r(TF$TQLFL) TQL File Definition \

File Name: File Type: Access:
Block Size: Detlete flag: Index Size:
1/0 routine: Record Format: Record Size:

Key Information:

Location Duplicates? Changes?
Length rel to O (Y/N) (Y/N)
Key 1: I R _ _
Key 2: P R _ _
Key 3: — . - _
Key 4: — - _ _
Key 5: —_ I _ _

Leave cursor here and press XMIT (_)

u)

Where:
The values that may be specified in the screen format are identical
to those described in the previous section ("FILE DEFINITION").

— K

CHAPTER I - INTRODUCTION Page: ,
MAINTAINING THE TQL DICTIONARY Section: 1.4.11

TQLMON: wp
DEFINE NEW PROGRAM

1.4.12 DEFINE NEW PROGRAM TQLMON: np

The NP command (new program) will cause the TQL monitor to call
the TQL Editor to enable the user to enter the source for a new TQL
program. This method may be used as an alternative to the standard
TIP/30 text editor (QED). The TQL Editor will begin with a skeleton
definition of a TQL program which may be modified by the user. When
the TQL Editor is ended, the TQLMON program will automatically
compile the program. The mechanics of the TQL Editor are described
in the next section of this manual.

Syntax:

NP [progname]

Where:
progname The name of the new TQL program that is to be
created. If this parameter is provided, it will
appear as the PROGRAM-ID of the skeleton program
that is used as the starting point for editing.
Example:

NP TESTPRO

Will create a skeleton program with PROGRAM-ID "TESTPRO".

Additional Considerations:

If errors are encountered when the program is compiled, the user
may correct the errors merely by issuing the NP command again (with
the appropriate program name). The TQL Editor will retrieve the
source (as it was at compile time) and allow the user to resume
editing.

- K

Page: 1 TQL Reference Manual
Section: 1.4.12 Version 2.5R1 (83/06/01)

TOLMON: PRINT
PRINT FILE/RECORD

1.4.13 PRINT FILE/RECORD TQLMON: print

The PRINT command will generate a printed copy of the
compilation output of a file or record definition. The printout may
be routed to the site printer or an auxiliary print device. The
printout is generated using TIPPRINT (the standard TIP/30 printing
interface).

Syntax:
Print file [,record] [,dest]
Where:

file the name of a file defined in the dictionary. This
may be specified using standard prefix notation.

record the name of the record to be printed. This may be
specified using standard prefix notation.

If record name 1is omitted, only the file
compilation will be printed.

dest The desired destination of the printout. Default
is PRNTR (the site printer). Other possibilities
include: AUX1 etc.
Example:

P PAYMST *

This will print all record defninitions for the file PAYMST.

—t K =

CHAPTER 1 - INTRODUCTION Page: 1
MAINTAINING THE TQL DICTIONARY Section: 1.4.13

TOLMON: pp
PRINT PROGRAM

1.4.14 PRINT PROGRAM TQLMON: pp

The PP command (print program) will generate a printed copy of
the compilation output of a TQL program. The printout may be routed
to the site printer or to an auxiliary printer. The printout is
generated wusing the facilities of TIPPRINT (the standard TIP/30
printing interface).

Syntax:

PP program [,,dest]

Where:
program the name of a program defined in the dictionary.
This may be specified wusing standard prefix
notation.
dest The desired print destination. Default is PRNTR
(the site printer). Other possibilities include:
AUX1 etc.
Note that "dest" is the third parameter to the PP
command. The second (omitted) parameter is
reserved for future wuse and should normally be
omitted.
Example:

PP PAYINQ, ,AUX1

— K-

Page: 1 TQL Reference Manual
Section: 1.4.14 Version 2.5R1 (83/06/01)

TOLMON: PURGE
PURGE PROTOTYPE FILE

1.4.15 PURGE PROTOTYPE FILE TQLMON: purge
The PURGE command (purge prototype file) may be used to delete
all records that are contained in a PROTOTYPE .file. This command
will only operate on PROTOTYPE files.
Syntax:
PURGE filename

Where:

filename The name of the prototype file that is to be
purged.

Example:
PURGE TESTFILE
This delete all prototype record for the prototype file known as
TESTFILE.

-t K

CHAPTER I - INTRODUCTION Page: 1
MAINTAINING THE TQL DICTIONARY Section: 1.4.15

TOLMON: @
EDIT RECORD DEFINITION

1.4.16 EDIT RECORD DEFINITION TQLMON: q

The Q command (QED record) allows the programmer to use the
standard TIP/30 text editor (QED) to modify an existing record
definition. TQLMON will call the text editor (QED) to enable
editing of the record definition. When the wuser ends the
interaction with QED with the QED "E" command, TQLMON will
automatically recompile the record definition.

Syntax:
Q filename,record
Where:

filename name of the file with which the record is
assoclated.

record name of the record which is to be edited.

Error Conditions:
If errors occur in the compilation of the record definition, the
user may resume editing the record definition simply by issuing the
Q0 command again (with the same parameters).

- K -

Page: 1l TQL Reference Manual
Section: 1.4.16 Version 2.5R1 (83/06/01)

TQLMON: ar
EDIT TQL PROGRAM

1.4.17 EDIT TQL PROGRAM TQLMON: qp

The QP command (QED program) allows the programmer to wuse the
standard TIP/30 text editor (QED) to modify the source of an
existing TQL program. TQLMON will call the text editor (QED) to
allow editing of the program source. When the user ends the
interaction with OQED with the QED "E" command, TQLMON will
automatically recompile the TQL program.

Syntax:
QP progname
Where:
progname The name of the TQL program to be edited.
Error Conditions:
1f errors occur in the compilation of the program, the programmer
need only re-enter the QP command to resume editing the program

source.

- K

CHAPTER I - INTRODUCTION Page: 1
MAINTAINING THE TQL DICTIONARY Section: 1.4.17

——

TQLMON: RuN, OPEN
RUN PROGRAM

1.4.18 RUN PROGRAM ' TQLMON: run, open

The Run command (run program) allows the programmer to execute a
TQL program. This command is provided only to eliminate .the need to
end the TQL monitor and then use the OPEN transaction.

When the TQL program completes, control will return to the TQL
monitor (TQLMON) program.

Syntax:

Run program
OPEN program

Where:
program The name of a TQL program defined in the
dictionary.
Example:
R PARTINQ

— R -

Page: 1 TQL Reference Manual
Section: 1.4.18 Version 2.5R1 (83/06/01)

TQLMON: s
SUMMARIZE FILE/RECORD

1.4.19 SUMMARIZE FILE/RECORD TQLMON: s

The Summarize command will display a 1list of existing file
and/or record definitions that are presently in the TQL dictionary.
File and/or record names may be selected by prefix. The listing may
be interrupted by pressing MSG-WAIT.

Syntax:
S file [,record]

Where:
file the name of a file defined in the dictionary. This
may be specified using standard prefix notation.
record the record name to be 1listed. This may be
specified using standard prefix notation. 1If
omitted, only file entries will be listed.
Example:

S PAYMST *

Summarize all records for the file "PAYMST".

-k -

CHAPTER I - INTRODUCTION Page: 1 r.

MAINTAINING THE TQL DICTIONARY Section: 1.4.19

TOLMON: sp
SUMMARIZE PROGRAMS

1.4.20 SUMMARIZE PROGRAMS TOQLMON: sp
The SP command (summarize programs) will display a list of
program names that are presently in the TQL dictionary. The listing
may be interrupted by pressing MSG-WAIT.
Syntax:
SP

Where:
There are no parameters to this command.

Example:

Sp

Additional Considerations:
The programs that are in the dictionary are 1listed (along with
their program description). The 1list 1is 1in the order that the
programs were entered into the dictionary (chronological).

—tK -

Page: 1 TQL Reference Manual
Section: 1.4.20 Version 2.5R1 (83/06/01)

TQLMON: v
UPDATE RECORD DEFINITION

1.4.21 UPDATE RECORD DEFINITION TQLMON: u

The U command (update record) allows the user to change a record
definition wusing the TQL Editor. The TQL Editor is described in
detail in the following section,

When the U command is processed, TQLMON will call the TQL Editor
to allow the user to modify the record definition. When the wuser
ends the editor, TQLMON will automatically compile the modified
record definition.

Syntax:

U file,record

Where:
file Name of the file which 1is associated with the
record.
" record Name of the record.
Example:

N PAYROLL , PAYREC

—_— K-

CHAPTER I - INTRODUCTION Page: 1
MAINTAINING THE TQL DICTIONARY Section: l1.4.21

TQLMON: uc

UPDATE CONTROL HEADER

1.4.22 UPDATE CONTROL HEADER TQLMON: uc

This command is used to maintain the control record in the TQL
dictionary.
WRITE password to control dictionary access and a 1list of TIP/30

user-ids.

The control record contains (an optional) READ and/or

The wuser-ids in the list are authorized to make changes

to the contents of the TQL dictionary (ie: compile, delete etc).

Syntax:
uc

Where:

no parameters.

Example:
ucC
Page: 1 TQL Reference Manual
Section: 1.4.22 Version 2.5R1 (83/06/01)

UPDATE CONTROL HEADER

TQLMON: uc

TQLMON will display the screen format shown below. The user may
alter the list of user-ids in the fields provided and press XMIT to

effect the change. Pressing MSG-WAIT will abort the "UC"
with no changes to the control record.
TIP/30 TOL DEFINITION FILE CONTROL RECORD (TF$QLC)
Free Chain: -=>
File Chain: -->
Session Chain: -->
Directory Chain: -—>

Next Available Block:

Users:

Control Record Created: /__/ at T Read Password [
Update Password [

-tk -

command

CHAPTER I - INTRODUCTION
MAINTAINING THE TQL DICTIONARY

Page:
Section:

TQLMON: ur
UPDATE FILE DEFINITION

1.4.23 UPDATE FILE DEFINITION TQLMON: uf

The UF command (update file) will cause the TQL monitor to
display a screen format which may be used to change the definition
of a file. This method may be preferable to defining a file using

keywords in a 1library element (as described 1in the previous
section).

Syntax:
UF filename
Where:

filename The name of the file which is to be changed.

Page: 1 TQL Reference Manual
Section: 1.4.23 Version 2.5R1 (83/06/01)

- TQLMON: ur
UPDATE FILE DEFINITION

TOLMON will display the following screen format. The user is
then able to alter the information shown and press transmit (XMIT)
to cause the file definition to be compiled. If the user does not
press XMIT, (for example, presses MSG-WAIT), the f£file change
process will be cancelled.

(TF$TQLFL) TQL File Definition *—_‘\

File Name: File Type: Access:
Block Size: Delete flag: Index Size:
I1/0 routine: Record Format: Record Size:

Key Information:

Location Duplicates? Changes?
Length rel to O (Y/N) (Y/N)
Key 1: —_— B _ _
Key 2: . - _ _
Key 3: [—_— _ _
Key 4: —_— —_ - _
Key 5: R R _ _

Leave cursor here and press XMIT (_)

_ By

Where:
The values that may be specified in the screen format are identical
to those described in the previous section ("FILE DEFINITION").

-tk -

CHAPTER I - INTRODUCTION Page: 2
MAINTAINING THE TQL DICTIONARY Section: 1.4.23

TQLMON: up
UPDATE PROGRAM

1.4.24 UPDATE PROGRAM TQLMON: up

The UP command (update program) will cause the TQL monitor to
call the TQL Editor to enable the user to modify the source for an
existing TQL program. This method may be used as an alternative to
the standard TIP/30 text editor (QED). When the TQL Editor is
ended, the TQLMON program will compile the program. The mechanics
of the TQL Editor are described in the next section of this manual.

Syntax:
UP progname
Where:
progname Name of the TQL program that is to be updated.
Example:

UP TESTPRO

-k -

Page: 1 TQL Reference Manual
Section: 1.4.24 , Version 2.5R1 (83/06/01)

TOLMON: wriITE
WRITE FILE/RECORD

1.4.25 WRITE FILE/RECORD ’ TQLMON: write

The WRITE command directs TQL to write the source (which is
stored in the TQL dictionary) for a file or record to an 0S/3
library element. This function may be performed as part of a backup

scheme or to facilitate transporting TQL file or record definitions
to other sites.

Syntax:

Write file [,record] 1lib elt

Where:
file the name of a file defined in the dictionary.
record the name of a record defined for the specified
file. If omitted, only the file definition will be
written.
lib the output library file name.
elt the output library element name.
Example:

W PAYMST,PAYREC, SOURCE, SVREC

This example will write the source for record "PAYREC" of file

"PAYMST" from the TQL dictionary to the library/element:
SOURCE/SVREC

—_— K -

CHAPTER I - INTRODUCTION Page: 1
MAINTAINING THE TQL DICTIONARY Section: 1.4.25

TQLMON: wep
WRITE PROGRAM TO LIBRARY

1.4.26 WRITE PROGRAM TO LIBRARY TQLMON: wp
This command will copy the source statements of a TQL program to
a specified 0S/3 library element. This function may be done as part
of a backup scheme or to facilitate transporting TQL programs to
other sites.
Syntax:

WP program 1lib elt

Where:
program the name of a program defined in the dictionary.
1lib the output library file name.
elt the output library element name.
Example:

WP PAYINQ SOURCE SVINQ

This example will copy the source for the TQL program "PAYINQ"
to the library element SOURCE/SVINQ.

e K e

Page: 1l TQL Reference Manual
Section: 1.4.26 : Version 2.5R1 (83/06/01)

TQLEDT

THE TQL TEXT EDITOR

1.5 THE TQL TEXT EDITOR TOLEDT

The TQL editor is a screen format oriented editor which has been
designed specifically for use with TQL. TQLEDT will display a full
screen of text (approx 17 lines). The user may directly alter the
text which is displayed or may enter commands to display other
portions of text or to move or copy text.

The command repertoire of TQLEDT is 1less extensive than the
standard TIP/30 text editor, but 1is sufficient for TQL editing
reguirements.

There are no search or substite commands in the TQL editor.
Searching is accomplished by using the "Forward Page" and the
"Backward Page" function keys. Substitution is merely a matter of
entering the desired text in place of the original text.

Lines in the edit work area are displayed with line numbers that
are used as reference points by the various commands.

TQL Editor Commands
ADd - ADD lines
COpy - COPY lines
DElete - DELETE lines
ENd - END editing (and cause automatic compilation by TQLMON)
HElp - HELP please!
MOve - MOVE lines
PRint - PRINT (display) lines on screen
QUit - QUIT editing (and suppress automatic compilation)
F1/F5 - refresh screen display
F2/F6 - display next screen (Forward Page)
F3/F7 - display previous screen (Backward Page)
MSGWAIT - same as QUIT command
CHAPTER I - INTRODUCTION Page: 1

THE TQL TEXT EDITOR Section: 1.5

TQLEDT
THE TQL TEXT EDITOR

TQLEDT (initially) displays the screen format shown below (the
lines will contain the first 17 lines of text). The user may enter
explicit commands or simply modify the text that is displayed and
press XMIT from the first cursor resting location.

Note that there 1is a field for entering a command, a starting
line number, ending line number, or an "after" .line number. Each
command has specific requirements which are described in the
following sections.

<<<TQL Editor>>>
L7100 20........ 30........ 40. 50........ 60........ 70...

»Enter command: ___ Start line: End line: After line:

Text:
i [_]J

Page: 2 TQL Reference Manual
Section: 1.5 Version 2.5R1 (83/06/01)

- TQLEDT: ap
ADD LINES

1.5.1 ADD LINES TQLEDT: ad

The ADd command allows the user to add new lines of text after a
specific line number. The user should enter "AD" as the command and
specify an "after" line number.

If the text to be added is two lines or less the user may enter
them directly in the "Text" fields of the screen format and press
transmit from the second cursor resting location.

If more than two lines are to be added, the user should leave
the "Text" fields blank and simply specify the "after" line number.
TQLEDT will respond by re-displaying the screen with the first line
containing the contents of the specified "after" line (protected).
The user may then enter any desired text below the first line and
press transmit at the first cursor resting location.

Trailing lines which are entirely blank will not be added.

The "start line" and "end line" fields are ignored by the ADD
command.

Pressing MSG-WAIT while in ADD mode will cancel the ADD command.

- -

CHAPTER I - INTRODUCTION Page:
THE TQL TEXT EDITOR Section:

TQLEDT: co

COPY LINES

1.

5.2

COPY LINES TQLEDT: co

The COpy command allows the user to copy a range of 1lines from
one part of the edit work area to a point which is "after" another
line.

The wuser should enter "CO" as the command and provide the
starting line and ending line to be copied as well as the number of
the line which is ahead of the desired location of the copied text.

For example, to copy lines 1 through 8 after line 17, the user
would specify the command as "CO", the starting line as "1", the
ending line as "8" and the after line as "17". TQLEDT will copy the
lines after 1line 17 and ahead of the line which was line 18. The
lines originally at lines 1 through 8 would remain unchanged.

-— K-

Page: 1 TQL Reference Manual
Section: 1.5.2 Version 2.5R1 (83/06/01)

TQLEDT: bE
DELETE LINES

1.5.3 DELETE LINES , TQLEDT: de

The DElete command allows the user to delete a range of lines.
As a precaution against fumble-finger syndrome, TQLEDT will not
allow the deleting of lines that are not currently displayed in the
upper portion of the display.

The user must enter "DE" as the command, the starting 1line
number and the ending line number. The TQL Editor will delete the
lines from the starting line number to the ending 1line number
INCLUSIVELY.

If the range of lines specified is not contained entirely within
the lines displayed in the upper portion of the display an error
message will be displayed and the delete request will not be
honoured.

-tk -
CHAPTER I - INTRODUCTION Page: 1
THE TQL TEXT EDITOR Section: 1.5.3

TQLEDT: e
END TQL EDITOR

. 1.5.4 END TQL EDITOR TQLEDT: en

The ENd command signals the TQL Editor that the user has
‘ completed all desired editing. The TQL Editor will terminate
| normally. The program which called the TQL Editor (normally the TQL
Monitor - TQLMON) will (by default) immediately begin compiling the
‘ contents of the edit workspace. (See previous section on the TQL
Monitor - in particular the description of the N, NP, U, UP
‘ commands) .

I1f errors occur during that compilation process, the wuser can
‘ simply re-enter the appropriate TQLMON command and correct the
errors.

-k -

Page: 1 TQL Reference Manual
Section: 1.5.4 . Version 2.5R1 (83/06/01)

TQLEDT: He
HELP FOR TQL EDITOR

1.5.5 HELP FOR TQL EDITOR - TQLEDT: he

The HElp command will display a screen containing the current
help information for the TQL Editor. The following screen format is
representative of what is displayed:

r TI1IP/ 30 Query Language Editor \

Command Function

AD add text after ‘Start line’

(of0] copy ‘Start l1ine’ thru ‘End l1ine’ after ‘To line’.

DE delete ‘Start l1ine’ thru ‘End line’.

EN end this editor. (Module will then be compiled)

MO move ‘Start 1ine’ thru ‘End line’ after ’‘To l1ine’

PR display from ’‘Start line’

QU quit this editor. (Module will not be compiied)

RE read an element in at ‘Start line’ (default is last line)
WR write ’‘Start 1ine’ thru ‘End 1ine’ to an element

Press XMIT to continue: _

_ B

—t K-

CHAPTER 1 - INTRODUCTION Page: 1
THE TQL TEXT EDITOR Section: 1.5.5

TQLEDT: mo
MOVE LINES

1.5.6 MOVE LINES i TQLEDT: mo

The MOve command is identical to the COPY command (see previous
section) with the exception that the moved lines are NOT left in
their previous location.

The move command requires the starting, ending and after line
numbers be specified.

-t K —

Page: 1 TQL Reference Manual
Section: 1.5.6 Version 2.5R1 (83/06/01)

TQLEDT: pr
PRINT (DISPLAY) LINES

1.5.7 PRINT (DISPLAY) LINES TQLEDT: pr

The PRint command will display a range of line numbers in the
upper portion of the screen. The user must enter the "PR" command
in the command field and then must specify a starting line number.

I1If an ending line number is not specified the TQL editor will
display as many lines as possible (to a maximum of 17) starting
with the specified starting line number.

—_—t K-
CHAPTER I - INTRODUCTION Page: 1l P
THE TQL TEXT EDITOR Section: 1.5.7

TQLEDT: qu |
QUIT TQL EDITOR

'1.5.8 QUIT TQL EDITOR TQLEDT: qu

The QUit command causes the TQL editor to abort the editing
session. The calling program (normally TQLMON) will NOT attempt an
automatic compilation of the contents of the edit workspace. The
contents of the work space will be lost.

If changes had been made to the contents of the workspace, the
TQL editor will warn the user and ask for confirmation of the QUIT
command.

The QUIT command is normally used only if the contents have been
damaged by a poor choice of previous commands.

—t K =

Page: 1l TQL Reference Manual
Section: 1.5.8 Version 2.5R1 (83/06/01)

TOQLEDT: rkEYS

TQL EDITOR FUNCTION KEYS

1.5.9 TQL EDITOR FUNCTION KEYS TQLEDT: fkeys

The TQL Editor recognizes certain function keys as special
commands. Invalid function keys will result in an error message
displayed on the screen.

Fl / F5

F2 / Fé6

F3 / F7

MSG-WAIT

Function key 1 (or 5) causes TQLEDT to resend the
last output screen. This can be necessary if the
screen display was altered unintentionally or by
the recpetion of an unsolicited message.

Function key 2 (or 6) is the "Forward Page" key.
When this function key 1is pressed TQLEDT will
display the next set of source lines. This 1is
equivalent to advancing the display by 17 lines.

Function key 3 (or 7) is the "Backward Page" key.
When this function key 1is pressed TQLEDT will
display the previous set of source lines. This is
equivalent to displaying the previous 17 lines.

Pressing MSG-WAIT will signal the TQLEDT program
that the wuser wishes to abort the edit session
(equivalent to the QUIT command). If changes had
been made, the user will receive a warning and be
given a chance to reconsider.

-t K

CHAPTER I - INTRODUCTION Page: 1

THE TQL TEXT EDITOR

Section: 1.5.9

TQL: oPEN
RUNNING A TQL PROGRAM

1.6 RUNNING A TQL PROGRAM TQL: open

The supplied transaction code "OPEN" is used to begin execution
of a TQL program. The TQL user may choose to OPEN a particular
(TQL) program or may choose to view a menu of available TQL
programs and make a selection from the menu. In either case, once a
particular program has been selected, TQL will display a standard
TQL command screen.

The commands available include capabilities to:
- request the generation of a pre-defined report

- request the display of data using a pre-defined display
format

- list selected fields (at the terminal using a free-format
display)

- print selected fields (at the site printer or an
auxiliary printer)

- display or report data according to constraints (IF field

The user may select certain subsets of the available data by
including in his command certain conditions that must be met before
data is to be displayed.

To specify the conditions the user would normally use the "IF"
statement. The "IF" statement contains field comparisons and/or
other constraints that the data must meet before being included in
a particular display.

The following sections describe the initial execution of a TQL
program and the various commands that are available to the TQL
user.

Page: 1 TQL Reference Manual
Section: 1.6 Version 2,.5R1 (83/06/01)

TOL: oPEN
TQL PROGRAM EXECUTION

1.6.1 TQL PROGRAM EXECUTION TQL: open

The OPEN transaction causes the TQL interpreter to "execute" a
TQL program. All TQL programs operate interactively to allow the
user to enter commands which are processed by the TQL program.

Syntax:
OPEN [progname [,initial command]]
Where:

progname Name of the TQL program to run. If this program
name is not specified, TQL will react by
displaying a menu of available programs. The user
may enter the selection number desired and press
transmit (XMIT) or press MSG-WAIT to terminate the
OPEN transaction.

r TIP/30 Query Language --- Summary of available programs {TF$TQMNU} \

Enter selection numpber : (__) _ [Function key 2 for next group]
and press XMIT [MSG WAIT to end program]
Selection Name Description

CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: l.6.1

TQL: oPEN

TQL PROGRAM EXECUTION

displayed.

command

This optional initial command may be specified if
the user wishes to execute ONLY this one command.
The inclusion of this 1initial command merely
bypasses the display of the standard TQL command
screen (since the command is already known). When
this command is completed (successfully) the OPEN
transaction will terminate normally.

If the program selection is valid the following menu screen is

commands.

This screen format is used to enter all interactive TQL

—~

TIP/30 Query Language \

Available displays:

Available reports:

Summary of commands: ADD, END, UPDATE, etc..

Please enter your commands on the following 3 lines:

-k

Page:
Section:

TQL Reference Manual
Version 2.5R1 (83/06/01)

TOL: DISPLAY
PREDEFINED DATA DISPLAY

1.6.2 PREDEFINED DATA DISPLAY TQL: display

The TQL user may request that data be displayed according to a
pre-defined display format. Each pre-defined display format has a
name which was assigned by the programmer. The display format
effectively describes which fields will be displayed and the visual
format of the display. To request a particular display, the user
must enter a command of the following format.

Syntax:
display-name [IF expr]
[BY field]
[FROM key]
[TO key]
[SUM field field ...]

Where:

displayname The name of the desired pre-defined display. A
list of available display names that have been
programmed is given at the top of the TQL command
screen.

IF expr The 1IF clause may be included to qualify the data
to be displayed. The expression which follows the
word "IF" may include field comparisons (Eg: IF
PRICE > 500) and/or computations (Eg: PRICE *
QUANTITY < 100000).

The complete description of TQL expressions 1is
described in section 1.3.1.

BY field Indicates that the display is to be produced in
ascending order by the specified field name. The
field name specified must be defined as a "key"
for the file that is being accessed.

If this clause 1is included, it must precede any
use of the "FROM" or "TO" clauses.

FROM key Indicates that the display is to begin with the
first record which has a key greater than or equal
to the key given.

TO key Indicates that the display is not to go beyond
records which have a key greater than or equal to
the specified key.

CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.2

TQL: pIspLAY
PREDEFINED DATA DISPLAY

SUM field Specifies one (or more) fields which are to be
summed by TQL. At the end of the display (or upon
returning prematurely to the TQL command screen)
the total, average and count of each specified
field will be shown. Fields specified must be
numeric fields.

Example:

DISP1 IF INVOICE-TOTAL > 5000 SUM INVOICE-AMT UNIT-PRICE

This example would request a pre-defined display named "DISP1".
The display would only be produced if the field "INVOICE-TOTAL" has
a value greater than 5,000. At the end of displaying all data, the
total and average of both "INVOICE-AMT" and "UNIT-PRICE" will be
displayed. The count of the number of items that was wused to
compute the average will also be shown. Note that the total of
UNIT-PRICE might be rather meaningless in practice, but the average
may be very interesting.

—t K -

Page: 2 TQL Reference Manual
Section: 1.6.2 Version 2.5R1 (83/06/01)

TQL: ADD
ADD RECORD

1.6.3 ADD RECORD TQL: add
The ADD command allows the user to place new records in the
file. It will display an empty screen which must be filled in and
transmitted to the program.
Syntax:
ADD <display-name>
Where:
display-name name of display statment in program.

Additional Considerations:

The screen is displayed with no initial data; the user must enter
the appropriate data and press XMIT.

When TQL receives the data it will verify it according to any
VERIFY clauses and ON ADD/ON WRITE clauses. If errors are detected
the terminal operator will be notified. The terminal operator
should correct the data in error and try again.’

- K

CHAPTER I -~ INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.3

TQL: counT
COUNT RECORDS

l.6.4 COUNT RECORDS TQL: count

The COUNT command will count records based on the <expr>,
starting position, and ending position in the file.

Syntax:
COUNT record-name [IF <expr>]
[BY keyn] [FROM key] [TO key]
[SUM field]

Where:))
Parameters are the same as previously described.

Example:

COUNT PAY-REC IF TIMES-RUN > 5
SUM BASIC-CHRG TOTAL-CHRG

EE R XN

Page: 1 TQL Reference Manual
Section: 1.6.4 Version 2.5R1 (83/06/01)

TOL: DELETE
DELETE RECORD

l1.6.5 DELETE RECORD TQL: delete

The DELETE command will display the selected record. The
informational message "Press F2 to delete record"” will also appear
on the screen. The terminal operator should verify that the
displayed record is indeed the record to be deleted. To delete the
displayed record Function key 2 (F2) must be pressed. If any other
key is pressed, TQL will NOT delete the displayed record and return
the user to the main prompt screen.

Syntax:
DELETE display-name Kkey

Where:
Same parameters as before.

Example:

DELETE CUST 'AEI100020'

- K-

CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.5

TQL: ENTER
ENTER RECORDS

1.6.6 ENTER RECORDS TQL: enter

The ENTER command is equivalent to multiple uses of the ADD
command. TQL will repeatedly display the specified display-name so
that the terminal operator may enter new records to the file. To
terminate the ENTER command, the terminal operator must press
MSG-WAIT. This causes TQL to return to the main prompt screen. The
message "record not added" signals that the ENTER operation has
been completed (the last screen - at the time of MSG-WAIT - was not
added to the file).

Syntax:

ENTER <display-name>
Where:

display-name name of display statment in program.
Additional Considerations:

The screen 1is displayed with no initial data. The user must enter
the data and press transmit. ‘

When TQL receives the data it will verify it according to any
VERIFY clauses and ON ADD/ON WRITE coding. If errors are detected
the terminal operator will be notified. The terminal operator
should correct the data in error and try again.

- K-

Page: 1 , TQL Reference Manual
Section: 1.6.6 Version 2.5R1 (83/06/01)

TQL: END/CLOSE
END SESSION

1.6.7 END SESSION TQL: end/close
The END command terminates the current session. The optional
'CLOSE' command is equivalent.
Syntax:
CLOSE
END
-k -
CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: l1.6.7

TQL: HELP
TQL HELP

l1.6.8 TQL HELP ' TQL: help

The HELP command will display a screen with a summary of
available commands.

Syntax:
HELP <session-name>

Where:
The following screen is displayed.

r TIP/30 Query Language ... run time commands \

display-name [IF expression] [FROM key] [TO key] [BY field]
[SUM fields] :

ADD display-name . add new record

DELETE display-name . delete record

END . end program

HELP : display this screen

OPEN program-name . open new TQL program
PRINT report-name [ON file]l : print report

SHOW display-name . display field names used
UPDATE display-name key . update a record

Current program:
Available displays:

Available reports:

Enter your command and press XMIT »

-)

— -

Page: 1 TQL Reference Manual
Section: 1.6.8 Version 2.5R1 (83/06/01)

TQL: L1sT
FREE FORMAT LIST

1.6.9 FREE FORMAT LIST TQL: list

The LIST command may be used to produce an ad hoc display
selecting records based on the <expr>, starting position, and
ending position in the file. The selected records are displayed in
groups of 4 on the terminal. The listing will be truncated (if
necessary) at 80 columns.

Syntax:
LIST (field-names) [IF <expr>]
[BY keyn] [FROM key] [TO key]
[sUM field]

Where:

(field-names) a list of field names enclosed in parentheses and
separated by either commas or spaces. The first
field name is used to determine which record is to
be read.

Example:

LIST (CUST-NAME CUST-DATE CUST-DUE)
IF TIMES-RUN = 0

- K -

CHAPTER I - INTRODUCTION Page:
RUNNING A TQL PROGRAM Section:

TOL: NEXT
DISPLAY NEXT SCREENFULL

1.6.10 DISPLAY NEXT SCREENFULL TQL: next

The NEXT command continues displaying records from the file from

the last record displayed. Function key 2 (F2) equivalent to the
NEXT command.

Syntax:

NEXT

— K-

Page: 1 TQL Reference Manual
Section: 1.6.10 Version 2.5R1 (83/06/01)

TOL: oPEN
OPEN NEW PROGRAM
1.6.11 OPEN NEW PROGRAM TQL: open
The OPEN command will END the current TQL program and execute
the TQL program specified as a parameter to the OPEN command.
Syntax:
OPEN <program-name>
Where:
program-name The name of the TQL program to execute.
s
CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.11

TQL: PRINT
PRINT A REPORT

1.6.12 PRINT A REPORT TQL: print

The PRINT command will generate the pre-defined report. Data may
be selected based on the <expr>, starting position, and ending
position position in the file. This command will continue to print
all records from the file which satisfy the <expr>. The wuser may
overide the default print destination by using the "ON" clause.

Syntax:

PRINT report-name [IF <expr>)
[BY keyn] [FROM key] [TO key] [ON file]

Where:
Parameters are the same as previously described.

ON file a valid printer file name. This may be the name of
a printer generated into the TIP/30 system, PRNTR
or AUX1.
Example:

PRINT REC-A IF TIMES-RUN = 0 ON AUX1

- K-

Page: 1 TQL Reference Manual
Section: 1.6.12 Version 2.5R1 (83/06/01)

TQL: PRINT
FREE FORMAT PRINT

1.6.13 FREE FORMAT PRINT TQL: print

The PRINT command may also be used to produce an ad hoc report
selecting records based on the <expr>, starting position, and
ending position in the file. The user specifies which fields are to
be printed (instead of specifying a pre-defined report name). The
report will continue with all records that satisfy the given
expression. The destination of the printed report may be changed
(from the default of the site printer) by using the "ON" clause.

Syntax:

PRINT (field-names) [IF <expr>]
[BY keyn] [FROM key] [TO key] [ON file]
[suM field]

Where:

(field-names) A list of field names enclosed in parentheses and
separated by either commas or spaces. The printed
fields must be able to fit on one print line (132
characters) otherwise truncation will occur. The
first field named 1is wused to determine which
record is read.

ON file a valid printer file name. This may be the name of
a printer generated into the TIP/30 system, PRNTR
or AUX1.

Example:

PRINT (CUST-NAME CUST-DUE CUST-DATE)
IF TIMES-RUN = 0 ON AUX1l

—t k-

CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.13

TQL: sHow
SHOW FIELD NAMES

1.6.14 SHOW FIELD NAMES TQL: show

The SHOW command allows the wuser to get a list of all field
names in a given display.

Syntax:
SHOW display-name
Where:
display-name The name of a pre-defined display. The names of
the fields that are referenced by this display
will be shown. Field names that have the suffix
":9" are numeric fields (the ":9" is not part of
the field name - merely a notation).

- K -

Page: 1 TQL Reference Manual
Section: 1.6.14 Version 2.5R1 (83/06/01)

TOL: UPDATE
UPDATE RECORD

1.6.15 UPDATE RECORD TQL: update

The UPDATE command will display the record selected. The user
may then update the information on the screen and transmit. The
updated record is then written to the file and the main prompt
screen is displayed for the next command.

Syntax:
UPDATE <display-name> [<from-clause>] [IF <expression>]

Where:
Same parameters as before.

Example:

UPDATE CUST IF AMOUNT-DUE > 5000
UPDATE CUST FROM 'AEI00020'
UPDATE CUST 'AEI00020'

Additional Considerations:

Function key 4 (F4) may be pressed after a record is displayed.
This will re-display the same record for update.

If you decide not to proceed with the update press MSG-WAIT to
cancel the update.

e -

CHAPTER I - INTRODUCTION Page: 1
RUNNING A TQL PROGRAM Section: 1.6.15

TQL: FN KEYS
USE OF FUNCTION KEYS

1.6.16 USE OF FUNCTION KEYS TQL: fn keys

Fl, F5 will re-display the current screen.
F2, F6 will proceed to the next screen of data.
F3 will return to the menu screen
F4 will prepare to update the last displayed record.

F9 get more detail records.

-— K -

" Page: 1 TQL Reference Manual
Section: 1.6.16 Version 2.5R1 (83/06/01)

CALLING TQL FROM TIP PROGRAM

TQL:

CALL TQL

1.7 CALLING TQL FROM TIP PROGRAM

A TQL program may be invoked by another transaction

TQL: call tql

program by

using the TIPSUB or TIPXCTL subroutine to transfer control to the

transaction code "TQL".

TQL expects the CDA to contain the following information (the
structure of the CDA is assumed to be that described by
book "TC-CDA" in library "TIP" - refer to the description of this
layout in the PCS section of this manual):

CDA-PARAM (1) The name of the TQL program to execute

CDA-TEXT (optional) single initial TQL command

Eg: REP1 IF PART-NO

Example:
MOVE 'TQL' TO PIB-TRID.
MOVE SPACES TO CDA.

MOVE 'PARTINQ' TO CDA-PARAM (1).
CALL 'TIPSUB'.

IF NOT PIB-GOOD
GO TO ERROR-CALLING-TQL.

= '123XV'

the copy

CHAPTER I - INTRODUCTION
CALLING TQL FROM TIP PROGRAM

Page:
Section:

TQL: woRDS

RESERVED WORDS

1.8 RESERVED WORDS TQL: words
The folowing words have reserved meaning to TQL and may not be
used as data field names.
ACCEPT ADD ADD ALL
ALLOW AND AT
BY
CALL CASE CASEQF CHANGE
CLOSE COMPUTE COPY COUNT
DATA DATE DAY DEFAULT
DELETE DISPLAY DIVIDE DIVISION
DECLARATIVES
ELSE END EQUAL EQUALS
ENTER ERROR EXIT
FILE FOR FROM
GIVING GO GOTO GREATER
HIGH-VALUE HIGH-VALUES HOMES$
ID IDENTIFICATION IDENTIFIER IF
IN INSPECT INTO INVOKE
1S
KEY
LESS LIST LOW-VALUE LOW-VALUES
MINUS MOVE MULTIPLY MUST
MORES
Page: 1 TQL Reference Manual
Section: 1.8 Version 2.5R1 (83/06/01)

TQL: WORDS
RESERVED WORDS

NEGATIVE NEXT NLS NO

NOT NUMERIC

OF ON OPEN OR

PERFORM PLUS POSITIVE PROCEDURE

PRINT

QUOTE QUOTES

RANGE READ RECORD REMAINDER

REPLACING REPORT RETURN ROUNDED

SEARCH SECTION SECURITY SELECT

SENTENCE SET SHOW SKIPS

SPACE SPACES SUBTRACT SUM

TABS THAN THEN THROUGH

THRU TIME TIMES TO

UNTIL 922 UPON USING

VARYING VERIFY VIA

WHEN WHERE WRITE

ZERO ZEROES ZEROS
CHAPTER I - INTRODUCTION Page: 2
RESERVED WORDS Section: 1.8

TQLINT

INITIALIZING TQL DICTIONARY

1.9

INITIALIZING TQL DICTIONARY TQLINT

This section describes the maintenance of the TQL dictionary
(control) file. It 1is of interest primarily to the systems
programmer.

The dictionary file is known by the logical file name TQLSCTL.
It is a direct access file. It may be created by the user as DAM,
or direct MIRAM (DMIRAM). It should be allocated at least 5
cylinders with a three cylinder increment. This file is generated
into TIP/30 as follows.

FILE TQLSCTL,DMIRAM BLKSIZE=512 RECSIZE=512 HOLD=UP.

The file is formatted using an online program called TQLINT.
This program should be catalogued for master use only. It will
prompt for a password to control access to the file. If a password
is supplied, the password is then required whenever the dictionary
file is updated (compilation etc...).

The user who 1initializes the control file (by executing the
transaction TQLINT) is entered as the only user who may update the
control file., If other wusers (programmers) are to be allowed to
modify the control file, then the TQL monitor program (TQLMON) "UC"
command may be used by the initializing user to add other user-ids
to the list of those authorized to modify the control file.

If TQL is to be heavily used you may wish to make the file
resident to reduce TIP/30 swapping load.

One technique for testing new TQL programs is to have a second
control file catalogued in the programming group:

In TIPGEN:

FILE TQLSTST,DMIRAM BLKSIZE=512 RECSIZE=512 HOLD=UP.

In TIP Catalogue:

FILE TQLSCTL LFD=TQLSTST SECUR=PROG GROUP=EDP.

Page: 1 TQL Reference Manual

Section: 1.9 Version 2.5R1 (83/06/01)

QBSLST
LISTING THE TQL DICTIONARY FILE

1.10 LISTING THE TQL DICTIONARY FILE QBSLST

The TQL dictionary file (TQLSCTL) may be listed by a batch
utility program supplied by Allinson-Ross. This batch program is
capable of 1listing record definitions, file definitions, and TQL
programs.

The program accepts control stream options that may be used to
select programs by group affiliation or records by file membership.

If no control stream options are specified the program assumes
that the entire TQL dictionary is to be listed.

If control stream options are given dictionary information will
be listed only for the specified group(s) or file name(s).

Syntax:
// JOB TQLPRINT, ,C000
// TIPFILES
// LBL TIPS$TQL
// DD ACCESS=SRD
// LFD TQLS$CTL
// EXEC OQBSLST,TIP
/$
GROUPS=grp(s)
FILES=file(s)
/%
/&
Where:
grp(s) A list of group names (separated by a comma). If
this keyword 1is wused only programs which may be
accessed by one of these groups will be listed.
Standard prefix notation may be employed to
specify a group name. Eg: *P means all groups with
names starting with "P",
file(s) A list of file names (separated by a comma). If
this keyword is used record and file definitions
will be listed only for the files specified.
Standard prefix notation may be employed to
specify a file name.
CHAPTER I - INTRODUCTION Page: 1

LISTING THE TQL DICTIONARY FILE Section: 1.10

OBSLST
LISTING THE TQL DICTIONARY FILE

Example:
GROUPS=ARC ,EDP

This group specification directs the QBsLST program to list only
programs that are available to groups "ARC" and/or "EDP",

Page: 2 TQL Reference Manual
Section: 1.10 Version 2.5R1l (83/06/01)

REORGANIZING THE TQL DICTIONARY FILE

QBSDMP

1.11 REORGANIZING THE TQL DICTIONARY FILE QBSDMP

The TQL dictionary file (TQLSCTL) may be reorganized by using
the supplied utility program QB$SDMP. This program can "dump" the
TQL dictionary file to either tape or disk and perform the

corresponding "restore" operation. The '"restore" operation

have the effect of condensing the TQL dictionary file.

For a DUMP operation, the program requires an output file

will

with

an LFD name of "TQLS$DMP". This file may be either tape or disk

(sequential or non-indexed MIRAM).

For a RESTORE operation, the file "TQLS$DMP" (that was produced

by a prior DUMP operation) becomes the input.

The type of operation (DUMP or RESTORE) and the type of device

used for the TQLSDMP file must be specified by control stream
parameters.
Syntax:
// JOB TQLREORG, ,10000
// GBL TYPE,MEDI UM
// TIPFILES
// LBL TOLSCTL
// DD ACCESS=EXCR
// LFD TQLSCTL
// DVC 30
// VOL 2?2?2727
// LBL TQL $DMP
// LFD TQLSDMP
// OPTION SCAN, SUB
// EXEC QBSDMP, TIP
/$
TYPE=LTYPE
MEDIUM=&MEDIUM
/%
/&
Where
&type The type of operation to be performed. Choose
either "DUMP" or "RESTORE". Eg: TYPE=DUMP.
This keyword is required.
CHAPTER 1 - INTRODUCTION Page: 1
REORGANIZING THE TQL DICTIONARY FILE Section: 1.11

OB$DMP
REORGANIZING THE TQL DICTIONARY FILE

&medium The device type of the TQLSDMP file. Choose either
"TAPE" or "DISK". Eg: MEDIUM=TAPE.

This keyword is required.
Additional Considerations:

The job log for the program gives the count of each type of
dictionary record that has been processed. There may be
discrepancies between the number input and output for a given type
of record (on a DUMP operation). Unless there are explicit error
messages, such discrepancies are not a problem. The TQLSDMP file is
a seguential file.

Page: 2 TQL Reference Manual
Section: 1.11 Version 2.5R1 (83/06/01)

TQL$SPRO

TQL PROTOTYPING

1.12 TQL PROTOTYPING TQLSPRO

File prototyping is a feature provided by TQL to facilitate the
design of new applications. TQL allows the programmer to define
files with a type "PROTOTYPE". Such a file is mapped into a real
file, known by 1logical file name TQLSPRO. One TQLSPRO file may
contain many logical prototype files. All data 1is stored in an
internal format. This allows the programmer to change the size or
position of data fields without affecting the logical file or the
data already stored in a logical file.

Once the file design 1is complete the programmer may then
allocate disk space for the file, define the file to TIPGEN, and
update the TIP/30 JCL for the new file(s). Then update the file
definition in TQL changing the type to MIRAM or ISAM as
appropriate. Now re-compile any TQL programs developed using the
COMP command of TQLMON. Your existing TQL program will now work on
the real file.

There 1is no interface between user written COBOL programs and
TQL prototype files.

To remove data from a prototype file there is a command PURGE
available in TQLMON. Enter 'PURGE filename'. You will be prompted
if it 1is OK to proceed. When you reply YES all data for the named
prototype file is deleted from TQLSPRO. Note that you should
periodically un-load and re-load TQLSPRO to recover space from
deleted records.

Just as one TQLSPRO file may contain many logical prototype
files, so your system may have several TQL$SPRO files by taking
advantage of the TIP/30 catalogue.

The TQLSPRO file must be generated in your TIP system as
follows:

FILE TQLS$SPRO,MIRAM BLKSIZE=2048 RECSIZE=2047 JOURNAL=NO
INDSIZE=768 DELETE=RCB HOLD=UP
KEY1=(49,001,NDUP,NCHG)
KEY2=(49,050,DUP, CHG)
KEY3=(49,099,DUP, CHG)
KEY4=(49,148,DUP,CHG)
KEY5=(49,197,DUP,CHG).

CHAPTER I - INTRODUCTION Page: 1
TQL PROTOTYPING Section: 1.12

TQL ExampLE

TQL EXAMPLE

1.13

(1]

[2]

TQL EXAMPLE TQL Example

This section illustrates many of the features of TQL. The
example shows the file and record definitions for a simple
inventory file and associated order file. The programs 1illustrated
provide the capability to maintain the inventory file (INV) and the
order file (ORD) and to enter orders, change orders, display
orders, print orders etc, while keeping track of inventory.

The inventory file has a logical file name of "INV" in the
TIP/30 catalogue and has the following characteristics (obtainable
from the TIP/30 generation parameters):

FILE INV,MIRAM BLKSIZE=500
RECSIZE=50
KEY1l=(4,0,NDUP,NCHG)
KEY2=(16,4,DUP,CHG)
KEY3=(2,20,DUP,CHG)
ACCESS=EXCR.

RECORD INVREC

01 INVREC. ’
05 INV-PART PICTURE 9(4).
05 INV-DESC PICTURE X(16).
05 INV-LOC PICTURE 99,
05 INV-QOH PICTURE 9(5).
05 INV-PRICE PICTURE 9(5)Vv99.

ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

[1] The primary key of a MIRAM file must not allow
duplicates or changes (TIP/30 restriction).

[2] The primary key is the inventory part number.

Page: 1 . TQL Reference Manual
Section: 1.13 Version 2.5R1 (83/06/01)

TOL ExaMPLE
TQL EXAMPLE

This example system also makes use of an order file (logical
file name "ORD") which has the following characteristics:

FILE ORD,MIRAM BLKSIZE=1000
RECSIZE=100
KEY1l=(16,0,NDUP,NCHG)
ACCESS=EXCR.

The order file contains two types of records. The first type |is
a header record (one per order). The second type is a detail record
(one or more per order - representing items ordered):

RECORD ORDHDR
01 ORDHDR.
05 HDR-KEY.
10 HDR-ORD.
15 HDR-CUST PICTURE X(8).
15 HDR-NUM PICTURE 9(4).
10 HDR-LINE PICTURE 9(4).
05 HDR-PO-NUM PICTURE X(8).
05 HDR-LAST-LINE PICTURE 9(4).
[1] ID IS HDR-LINE = 0,
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

(1] A header record 1is distinguished by the field
HDR-LINE equal to zero.

CHAPTER I - INTRODUCTION Page: 2
TQL EXAMPLE Section: 1.13

TOL ExaMmPLE

TQL EXAMPLE

RECORD ORDDTL

01 ORDDTL.
05 ORD-KEY.
10 ORD-CUST
10 ORD-NUM
10 ORD-LINE

05 ORD-PART
05 ORD-QTY
[1] ID IS ORD-LINE > 0.
MUST ADD ORD-QTY.
ALLOW CHANGE ALL.
ALLOW ADD.
ALLOW DELETE.

[1] A detail
ordered)

for each
item).

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

order

record (representing on item

is distinguished by the field ORD-LINE
greater than 0. The field is incremented by one
item in the order (items 1 through last

Page: 3
Section: 1.13

TQL Reference Manual
Version 2.5R1 (83/06/01)

- TQL ExampLE
TQL EXAMPLE

The following TQL program was written to provide maintenance
capabilities for the inventory file. Two pre-defined displays are
defined by the program:

- "PART " - display (all fields) in a single inventory
(part) record

- "PARTS" - display (all fields) in 5 inventory records.
The screen formats "DEMOINV1" and "DEMOINV2" are shown following
the program source.
IDENTIFICATION DIVISION.
PROGRAM-ID. 1INV 'INVENTORY UPDATE'.
DATA DIVISION,

FILE INV.
RECORD INVREC.

DISPLAY DIVISION,

PART: READ INVREC
INVREC
USING DEMOINV1.

PARTS: 5 (READ INVREC
INVREC)
USING DEMOINV2,

CHAPTER I - INTRODUCTION Page: 4
TQL EXAMPLE Section: 1.13

TOL ExampLE
TQL EXAMPLE

rDEMOINV1
INV-PART INV-DESC INV-LOC INV-QOH INV-PRICE

‘F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu
Page: 5 TQL Reference Manual

Section: 1.13 Version 2.5R1 (83/06/01)

TQL ExaAmPLE
TQL EXAMPLE ,

DEMOINV2
INV-PART INV-DESC INV-LOC INV-QOH INV-PRICE

i

1

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

)

CHAPTER I - INTRODUCTION

Page: 6
TQL EXAMPLE

Section: 1.13

TQL ExampLE
TQL EXAMPLE

The main processing program (shown following) is used to enter
new orders, perform maintenance operations on existing orders and
(in all cases) adjust the quantity on hand in the inventory file
according to the number of items ordered or returned.

IDENTIFICATION DIVISION.
PROGRAM-ID. ORD.

DATA DIVISION.

FILE ORD.
RECORD ORDHDR.
RECORD ORDDTL.

FILE INV.
RECORD INVREC.

FILE TSPFILE.
RECORD TQLTSPR.

WORKING-STORAGE SECTION.

01 WORK-AREA.
05 TOT-PRICE PIC 9(5)V99.
05 PREV-QTY PIC 9(4).

Page: 7 TQL Reference Manual
Section: - 1.13 Version 2.5R1 (83/06/01)

TQL EXAMPLE

TOL ExaMPLE

DECLARATIVES SECTION.

ON READ OF ORDHDR
READ TQLTSPR VIA HDR-CUST.

[1] ON READ OF ORDDTL
MOVE ORD-QTY TO PREV-QTY
READ INVREC VIA ORD-PART.

ON WRITE OF ORDHDR
READ TQLTSPR VIA HDR-CUST
ON ERROR 'INVALID CUSTOMER #'.

[2] ON WRITE OF ORDDTL

READ INVREC VIA ORD-PART

ON ERROR 'BAD PART NUM'
READ TQLTSPR VIA ORD-CUST

ON ERROR 'INVALID CUST #'
MOVE ORD-CUST TO HDR-CUST
MOVE ORD-NUM TO HDR-NUM
MOVE 0 TO HDR-LINE
READ ORDHDR VIA HDR-KEY

ON ERROR 'MISSING HEADER RECORD'
IF INV-QOH < ORD-QTY

ERROR 'NOT ENOUGH GOODS'

COMPUTE INV-QOH = INV-QOH + PREV-QTY - ORD-QTY
MOVE ORD-LINE TO HDR-LAST-LINE.

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

1.13

TQL ExaAmPLE
TQL EXAMPLE

DISPLAY DIVISION.

[3] NEWORDER: READ ORDHDR
HDR-CUST HDR-NUM HDR-PO-NUM
USING DEMOORD1 ON ENTER ORDER.

[4] ORDER: MOVE HDR-CUST TO ORD-CUST
MOVE HDR-NUM TO ORD-NUM
MOVE HDR-LAST-LINE + 1 TO ORD-LINE
READ ORDDTL
ORDDTL
USING DEMOORD2,

[5] ORDDISP: READ ORDHDR
HDR-CUST HDR-NUM HDR-PO-NUM CM-COMPANY NLS$
8 (READ ORDDTL FROM HDR-ORD
ORD-LINE ORD-PART INV-DESC ORD-QTY INV-PRICE
COMPUTE TOT-PRICE = INV-PRICE * ORD-QTY
TOT-PRICE NLS
) USING DEMOORD3.

Page: 9 TQL Reference Manual
Section: 1.13 Version 2.5R1 (83/06/01)

TQL ExampLE
TQL EXAMPLE

Notes to "ORD" program:

[1] Whenever an order detail record is read, the
number of items ordered (ORD-QTY) 1is saved in
working-storage field "PREV-QTY". This is done so
that the gquantity on hand in inventory can be
recomputed if the detail item 1is updated (or
deleted).

[2] Whenever an order detail record is written this
coding validates the part number and the cutomer
number according to the data in other files.

It also verifies that there is an existing header
record for this detail record.

If the quantity-on-hand in the INV file (INV-QOH)
is not sufficient an error message is produced
("NOT ENOUGH GOODS")

Finally, the inventory quantity on hand is
recomputed and the inventory file is updated too.

[3] The display "NEWORDER" is used to enter a new
order. The "ON ENTER" clause specifies that when
the user has entered the data in screen "DEMOORD1"
he/she 1is to be taken (in data entry mode) to
pre-defined display "ORDER".

The display "ORDER" therefore, is chained to the
entry of a new order.

[4] The display "ORDER" is used as described above (as
a secondary activity of order entry). It may also
be used directly to perform maintenance activities
on order detail records.

[5] The display "ORDDISP" displays the header
information for an order and displays (on the same
screen) up to 8 order detail records.

CHAPTER I - INTRODUCTION Page: 10
TOL EXAMPLE Section: 1.13

TOL ExampLE
TQL EXAMPLE

DEMOORD 1 ‘
HDR-CUST HDR-NUM HDR=-PO-NUM

F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu
Page: 11 TQL Reference Manual

Section: 1.13 Version 2.5R1 (83/06/01)

TQL EXAMPLE

TOL ExampPLE

DEMOORD2
ORD-CUST ORD-NUM ORD-LINE ORD-PART ORD-QTY

iF1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

)

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

12
1.13

TOL ExampLE '
TQL EXAMPLE

rDEMOORD3
HDR-CUST HDR-NUM HDR-PO-NUM CM-COMPANY

ORD-LINE ORD-PART INV-DESC ORD-QTY INV-PRICE TOT-PRICE

LI EET

EERRRRN
T

~F1/5:Refresh screen F2/6:Next screen F4:Update Msg-wait:Menu

Page: 13 TQL Reference Manual
Section: 1.13 _ Version 2.5R1 (83/06/01)

TQL EXAMPLE

TOL ExampLE

The following TQL program was written to generate invoices from
the orders in the order file. A number of sample invoices produced

by this program (using test data) are shown following

source.

IDENTIFICATION DIVISION,
PROGRAM-ID. INVOICE.

DATA DIVISION,
FILE ORD.

RECORD ORDHDR,
RECORD ORDDTL.

FILE INV.
RECORD INVREC.

FILE TSPFILE.
RECORD TQLTSPR.

WORKING-STORAGE SECTION.

01 WORK-AREA,.
05 TOT-PRICE PIC 9(5)Vv99.
05 GRAND PIC 9(6)V99.
05 TaAX PIC 9(6)V99.
05 FINAL PIC 9(6)V99.
05 SUM-TAX PIC 9(7)Vv99.
05 SUM-DUE PIC 9(7)Vv99.
05 SUM-GOODS PIC 9(7)Vv99.

DECLARATIVES SECTION.
ON READ OF ORDHDR
READ TQLTSPR VIA HDR-CUST,.

ON READ OF ORDDTL
READ INVREC VIA ORD-PART.

the

program

CHAPTER I - INTRODUCTION
TQL EXAMPLE

Page:
Section:

14
1.13

TQL ExampLE TQL EXAMPLE

REPORT DIVISION.

INVOICE: READ ORDHDR HOME$
TABS$(10) 'SAMPLE ORDER INVOICE'
SKIPS$(4) YYS$S'/'MONS'/'DDS NLS NLS

"CUST # ORD# P.O.# COMPANY NAME' NLS$
HDR-CUST ' ' HDR-NUM ' ' HDR-PO-NUM ' ' CM-COMPANY
NL$ NL$
' LINE PART4$ DESCRIPTION'
TABS(34) 'QUANTITY PRICE TOTAL'
NL$S 50 (READ ORDDTL FROM HDR-ORD
ORD-LINE '
ORD-PART ' '
INV-DESC '
ORD-QTY '
INV-PRICE ' ' .
COMPUTE TOT-PRICE = INV-PRICE * ORD-QTY
TOT-PRICE

ADD TOT-PRICE TO GRAND NL$) NLS$
COMPUTE TAX = GRAND * (.07

COMPUTE FINAL = GRAND + TAX

TABS$(41) 'TOTAL PRICE ' GRAND NLS
TABS$(41) ' SALES TAX ' TAX NLS
TABS$(41) ' AMOUNT DUE ' FINAL NLS

ADD TAX TO SUM-TAX
ADD FINAL TO SUM-DUE
ADD GRAND TO SUM-GOODS
ON PRNTR

AT END HOME$ NLS$ NL$

'TOTAL VALUE OF GOODS SOLD' SUM-GOODS NL$
' TOTAL TAX DUE GOVERNMENT' SUM-TAX NL§
' TOTAL AMOUNT TO COLLECT' SUM-DUE NLS§.

Page: 15 TQL Reference Manual
Section: 1.13 Version 2.5R1 (83/06/01)

TQL EXAMPLE

TOL ExaMPLE

The following report was produced by the program INVOICE.

SAMPLE ORDER INVOICE 83/06/01

CUST # ORD# P.O.#% COMPANY NAME
CoOaA00000 1 BILL CITY OF ARVADA
LINE PART# DESCRIPTION QUANTITY PRICE TOTAL
1 3 RED SHIRT 4 22.50 90.00
2 1 WHITE SHIRT 1 11.95 11.95
3 3 RED SHIRT 4 22.50 90.00
4 7 THIN TIE 3 2.00 6.00
5 11 NEHRU JACKETS 3 1.95 5.85
TOTAL PRICE 203.80
SALES TAX 14.27
AMOUNT DUE 218.07
CHAPTER I - INTRODUCTION Page: 16
TQL EXAMPLE Section: 1.13

TQL ExAMPLE

TQL EXAMPLE

. SAMPLE ORDER INVOICE

83/06/01

CUST # ORD# P.O.# COMPANY NAME
GLO00000 1 DAVID GENERAL LAND OFFICE
LINE PART# DESCRIPTION QUANTITY PRICE TOTAL
1 3 RED SHIRT 5 22.50 112.50
2 5 WIDE TIE 8 6.50 52.00
3 7 THIN TIE 3 2.00 6.00
TOTAL PRICE 374.30
SALES TAX 26.20
AMOUNT DUE 400.50
Page: 17 TQL Reference Manual
Section: 1.13 Version 2.5R1 (83/06/01)

e

TOL EXAMPLE TOL ExampLE

SAMPLE ORDER INVOICE 83/06/01
CUST # ORD$ P.O.# COMPANY NAME
GLO00000 56 XYZ GENERAL LAND OFFICE
LINE PART# DESCRIPTION QUANTITY PRICE TOTAL
1 5 WIDE TIE 4 6.50 26.00
2 1 WHITE SHIRT 7 11.95 83.65
TOTAL PRICE 483,95
SALES TAX 33.88
AMOUNT DUE 517.83
CHAPTER I - INTRODUCTION Page: 18
TQL EXAMPLE Section: 1.13

TAL ExampLE TQL EXAMPLE

TOTAL VALUE OF GOODS SOLD 1062.05
TOTAL TAX DUE GOVERNMENT 74.35
TOTAL AMOUNT TO COLLECT 1136.40

Page: 19 TQL Reference Manual
Section: 1.13 Version 2.5R1 (83/06/01)

DE** FORMS=ALROS1,END;

INDEX

KWIC INDEX

2. KWIC INDEX

ad, ADD LINES TQLEDT:

add, ADD RECORD TQL:

add, FIELDS WHICH MUST BE ADDED TQL: must
allow, ALLOWING RECORDS/FIELDS TO CHANGE TQL:
ADD LINES TQLEDT: ad

ADD RECORD TQL: add

ADDED TQL: must add, FIELDS WHICH MUST BE
ALLOWING RECORDS/FIELDS TO CHANGE TQL: allow

_B..

BE ADDED TQL: must add, FIELDS WHICH MUST

..C...

call tgl, CALLING TQL FROM TIP PROGRAM TQL:
co, COPY LINES TQLEDT:

comp; cp, COMPILE PROGRAM TQLMON:

count, COUNT RECORDS TQL:

cp, COMPILE PROGRAM TQLMON: comp;

CALLING TQL FROM TIP PROGRAM TQL: call tqgl
CHANGE TQL: allow, ALLOWING RECORDS/FIELDS TO
CHAPTER I - INTRODUCTION

COMPILE FILE/RECORD TQLMON: c

COMPILE PROGRAM TQLMON: comp; cp

CONTENTS TOC, TABLE OF

CONTROL HEADER TQLMON: uc, UPDATE

COPY LINES TQLEDT: co

COUNT RECORDS TQL: count

CREATE SCREEN FORMATS TQLMON: mcs

(DISPLAY) LINES TQLEDT: pr, PRINT

data division, DATA DIVISION TQL:

de, DELETE LINES TQLEDT:

declaratives, DECLARATIVES SECTION TQL:
delete, DELETE FILE/RECORD TQLMON:
delete, DELETE RECORD TQL:

display, DISPLAY DIVISION TQL:

INDEX

o e
L] . L) . . L 3 L] L]
WWOoUTWWaoa U
L) L) - L] . . . L)
OV W b 01 W

BTN B NN

OO,

KWIC INDEX

Page:
Section:

INDEX

KWIC INDEX
display, PREDEFINED DATA DISPLAY TQL: 1.6.2
division, DATA DIVISION TQL: data 1.3.11
division, IDENTIFICATION DIVISION TQL: id 1.3.10
dp, DELETE PROGRAM TQLMON: 1.4.4
DATA DISPLAY TQL: display, PREDEFINED 1.6.2
DATA DIVISION TQL: data division 1.3.11
DECLARATIVES SECTION TQL: declaratives 1.3.13
DEFINE NEW FILE TQLMON: nf 1.4.11
DEFINE NEW PROGRAM TQLMON: np 1.4.12
DEFINE NEW RECORD TQLMON: n 1.4.10
DEFINITION TQL: file, FILE 1.3.2
DEFINITION TQL: record, RECORD 1.3.3
DEFINITION TQLMON: g, EDIT RECORD 1.4.16
DEFINITION TQLMON: u, UPDATE RECORD 1.4.21
DEFINITION TQLMON: uf, UPDATE FILE 1.4.23
DELETE FILE/RECORD TQLMON: delete 1.4.3
DELETE LINES TQLEDT: de 1.5.3
DELETE PROGRAM TQLMON: dp 1.4.4
DELETE RECORD TQL: delete 1.6.5
DICTIONARY FILE QBSDMP, REORGANIZING THE TQL 1.11
DICTIONARY FILE QBSLST, LISTING THE TQL 1.10
DICTIONARY TQLINT, INITIALIZING TQL 1.9
DICTIONARY TQLMON, MAINTAINING THE TQL 1.4
DISPLAY DIVISION TQL: display 1.3.14
DISPLAY HELP INFORMATION TQLMON: help l1.4.6
DISPLAY NEXT SCREENFULL TQL: next 1.6.10
DISPLAY TQL: display, PREDEFINED DATA l.6.2
DIVISION TQL: data division, DATA 1.3.11
DIVISION TQL: display, DISPLAY 1.3.14
DIVISION TQL: id division, IDENTIFICATION 1.3.10
DIVISION TQL: report, REPORT 1.3.15

E

en, END TQL EDITOR TQLEDT: 1.5.4
end/close, END SESSION TQL: 1.6.7
end,. END TQLMON PROGRAM TQLMON: l1.4.5
enter, ENTER RECORDS TQL: 1.6.6
expr, TQL EXPRESSIONS TQL: 1.3.1
Example, TQL EXAMPLE TQL 1.13
EDIT RECORD DEFINITION TQLMON: g l1.4.16
EDIT TQL PROGRAM TQLMON: gp 1.4.17
EDITOR FUNCTION KEYS TQLEDT: fkeys, TQL 1.5.9
EDITOR TQLEDT, THE TQL TEXT 1.5
EDITOR TQLEDT: en, END TQL 1.5.4
EDITOR TQLEDT: he, HELP FOR TQL 1.5.5
EDITOR TQLEDT: gqu, QUIT TQL 1.5.8
END SESSION TQL: end/close 1.6.7
END TQL EDITOR TQLEDT: en 1.5.4

Page: 2
Section: Index

TQL Reference Manual
Version 2.5R1 (83/06/01)

KWIC INDEX

END TQLMON PROGRAM TQLMON: end
ENTER RECORDS TQL: enter

EXAMPLE TQL Example, TQL
EXECUTION TQL: open, TQL PROGRAM
EXPRESSIONS TQL: expr, TQL

fields, SYSTEM FIELDS TQL:

fields, WORKING STORAGE SECTION TQL: work
file, FILE DEFINITION TQL:

fkeys, TQL EDITOR FUNCTION KEYS TQLEDT:
fn keys, USE OF FUNCTION KEYS TQL:

FIELD NAMES TQL: show, SHOW

FIELD VERIFICATION TQL: verify

FIELDS TQL: fields, SYSTEM

FIELDS WHICH MUST BE ADDED TQL: must add
FILE DEFINITION TQL: file :
FILE DEFINITION TQLMON: uf, UPDATE

FILE QBSDMP, REORGANIZING THE TQL DICTIONARY
FILE QBSLST, LISTING THE TQL DICTIONARY
FILE TQLMON: nf, DEFINE NEW

FILE TQLMON: purge, PURGE PROTOTYPE
FILE/RECORD TQLMON: c, COMPILE
FILE/RECORD TQLMON: delete, DELETE
FILE/RECORD TQLMON: list, LIST
FILE/RECORD TQLMON: print, PRINT
FILE/RECORD TQLMON: s, SUMMARIZE
FILE/RECORD TQLMON: write, WRITE

FORMAT LIST TQL: list, FREE

FORMAT PRINT TQL: print, FREE

FORMATS TQLMON: mcs, CREATE SCREEN

FREE FORMAT LIST TQL: list

FREE FORMAT PRINT TQL: print

FROM TIP PROGRAM TQL: call tgl, CALLING TQL
FUNCTION KEYS TQL: fn keys, USE OF
FUNCTION KEYS TQLEDT: fkeys, TQL EDITOR

he, HELP FOR TQL EDITOR TQLEDT:

help, DISPLAY HELP INFORMATION TQLMON:
help, TQL HELP TQL:

HEADER TQLMON: uc, UPDATE CONTROL
HELP FOR TQL EDITOR TQLEDT: he

HELP INFORMATION TQLMON: help, DISPLAY
HELP TQL: help, TQL

i

N e o ¢ FHIHEFHNe o o o Hido o
VO JWOOVWOINWWLTWHOIHOHWN IO NN D

e o e

o e

KWIC INDEX Page:
Section:

INDEX

KWIC INDEX
- I -
id division, IDENTIFICATION DIVISION TQL: 1.3.10
id, RECORD SELECTION