Xerox Data Systems

701 South Aviation Boulevard

El Segundo, California 90245
213 679-4511

Xerox Operating System (XO0S)

Sigma 6/7/9 Computers

Batch Processing

Reference Manual

FIRST EDITION
90 17 65A

December 1971

Price: $9.00

18.SER1972

XEROX

Printed in U.S.A.

NOTICE

This publication documents the AOO version of the Xerox Operating System,

RELATED PUBLICATIONS

Title Publication No,
Xerox Sigma 6 Computer/Reference Manual .901713
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Operating System (XOS)/BP User's Guide 90 17 67
Xerox Operating System (XOS)/UT Reference Manual 90 17 69
Xerox Operating System (XOS)/SM Reference Manual 90 17 66
Xerox Operating System (XOS)/OPS Reference Manual 90 17 68
Xerox ANS COBOL (for XOS)/LN Reference Manual 90 18 37
Xerox ANS COBOL (for XOS)/OPS Reference Manual 90 18 38
Xerox Sort (for XOS)/Reference Manual 90 18 39
Xerox Data Management System (DMS)/Reference Manual 90 17 38
Xerox Extended FORTRAN IV/LN Reference Manual 90 09 56
Xerox Extended FORTRAN IV (for XOS)/OPS Reference Manual 90 18 40
Xerox Meta-Symbol/LN, OPS Reference Manual 90 09 52

Manual Content Codes: BP - batch processing, LN = language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

CONTENTS

PREFACE - viii

GLOSSARY ix

1. INTRODUCTION 1-1
Job Classes -

. JOB CONTROL

Multiprogramming and Tasks
Memory Management
Monitor Residence
Virtual Memory and the Memory Map —
Nonresident Monitor Area
Symbionts
Resource Allocation
Shared Resources
Common Resources
Job Classes Versus Resource Limitations
Job Scheduling
General Notation Conventions

I
1
N NV00ONNNOOLUOWW —

SYSTEM FACILITIES

N
1
—

Introduction
Facilities Provided by Monitor
System Services
File Management Services
Communication Management Services
Facilities Provided by Processors
Language Processors
Service Processors
Utility Processors
System Generation

1
OB WNNN -t

NNMNI}JMNNMM

w
1.
L

Introduction
General Syntax
Special Syntax Notation
Continuation of Commands
Processor Commands
Control Command Interpreter (CCI)
1JOB Command
Job Classes and Superjob
Cataloging
IRUN Command
IEXEC Command
ILIMIT Command
ISLIMIT Command
IRESOURCE Command
TASSIGN Command
Syntax
Common !ASSIGN Operands
OPL-Type Assignment
DUM-Type Assignment
Meaning of the FIL-Type Options
Meaning of the DEV-Type Options
DCB Parameters

WWWWWWWWwWwWwWwWwWwWwWwwWwWwwWwWwwWwww

1
-t 0NNV OONNOOOCOWWMNNNDN — ——

NN

Usage Examples 3-12
Predefined Operational Labels — 3-15
ISWITCH Command . 3-15
ITITLE Command 3-16
IMESSAGE Command 3-16
ICOMMENT Command 3-16
IProcessor-Call Command 3-16
IDATA Command 3-17
IEOD Command 3-17
LINK EDITING 4-1
Introduction 4-1
System Interface 4-2
Link Editor Commands 4-4
ILINK Command 4-4
:OPTION Command 4-4
:TREE Command (Segmentation)—___ 4-14
:MODIFY Command 4-16
:INSERT Command 4-16
:REDEF Command 4-17
Load Map Format 4-17
Link Editing Examples 4-18
Diagnostic Messages 4-20
DEBUG AIDS 5-1
Introduction -

5

Debug Processor Usage 5
Special Debug Syntax 5
Debug Commands and Procedures — 55—
5

5

5

:DCB Command
:PMD and :PMDI Command
:SNAP Command and M:SNAP Procedure
:SNAPC Command and M:SNAPC
Procedure i '
:IF Command and M:IF Procedure
:AND Command and M:AND Procedure
:OR Command and M:OR Procedure
:COUNT Command and M:COUNT
Procedure 5-5
:MODIFY Command 5-5
:INSERT Command 5-6
Debug Service Usage 5-6

FILE ORGANIZATiON AND MANAGEMENT 6-1

General Concepts and Facilities—_ 6~1
Types of Input/Output and Storage Devices— 6-1
Logical Versus Physical Files.— 6~1
Access Methods and File Organizations 6-2
Allocation of Space on Direct-Access

Media 6-4
Account Volume and File Retrieval —_____ 6-4
File Deletion and Utility Processor

Services 6-4

eee
(K1

File Characteristics and Classifications_____ 6-4

Logical Structure 6-5 i
Record Formats 6-5
Block Formats 6-7
File Organization 6-9
Temporary and Permanent Files —_____ 6-14
Categories of File Media 6-16
Nonmagnetic Media 6-16
Magnetic Storage Media 6-17
Super, Account, and Volume Catalogs_______ 6-18
Supercatalog 6-18
Account Catalog 6-18
Volume Catalog 6-18
File/Volume Relationships 6-18
Physical File/Volume Structures___ 621
Disk Pack Structures 6-21
Magnetic Tape Structures 6-21
Cataloged Files 6-21
Absolute File Generations and Versions 6-21
Relative File Generations 6-22
IASSIGN Command Usage : - 6-25
Program/File Relationship 6-25
Assignment Types 6-26
DEV-Type Assignments 6-26
FIL-Type Assignments 627
Space Allocation 6-30
Consecutive Organization : 6-30
Indexed-Sequential Organization— 6-30
Partitioned Organization 6-31
Direct Organization 6-31
Rule for Allocation of Multivolume
Direct-Access Files 6-31
Password Protection 6-31
Volume/File Sharability and Access
Authorization 6-32
Volume Sharability 6-32
File Sharability 6-32
File Access Authorization 6-32
I/O PROCESSING FACILITIES 7-1
Introduction 7-1
Initialization and Termination of 1/O
Processing 7-1
Creating and Modifying the DCB_____ 7-1
Applicability and Cross=Relationships of the
Access Methods 7-2
Abnormal, Error, and Abort Conditions 7-2
Buffer Usage : 7-2
Assisted Access Methods ‘ 7-2
Unassisted Access Methods 7-3
Special Syntax Conventions 7-4
ASAM (Assisted Sequential Access Method)—_7-4
General Usage Rules 7-4
M:DCB 7-4
M:MOVEDCB 7-7
M:SETDCB 7-7
M:ASSIGN 7-8
M:OPEN 7-9
M:CLOSE 7-12
M:GET i 7-16
M:PUT 7-16

M:TRUNC 7-17
M:DELREC 7-17
M:CVOL 7-17
M:NOTE 7-18
M:POINT 7-18
M:DEVICE 7-18
AIAM (Assisted Indexed Access Method) 7-19
General Usage Rules 7-19
M:DCB 7-19
M:MOVEDCB 7-21
M:SETDCB 7-21
M:ASSIGN 7-21
M:OPEN 7-22
M:CLOSE 7-24
M:GET 7-24
M:PUT 7-25
M:TRUNC 7-26
M:DELREC 7-26
APAM (Assisted Partitioned Access Method) 7-26
General Usage Rules 7-26
M:DCB 7-27
M:MOVEDCB 7-28
M:SETDCB 7-28
M:ASSIGN 7-29
M:OPEN 7-30
M:CLOSE 7-31
M:STOW 7-32
M:FIND 7-33
M: GET 7-33
M:PUT 7-34
M:TRUNC 7-34
M:DELREC .7=35
M:NOTE 7-35
M:POINT 7-35
VSAM (Virtual Sequential Access Method) 7-35
General Usage Rules 7-36
M:DCB 7-36
M:MOVEDCB 7-37
M:SETDCB 7-38
M:ASSIGN 7-38
M:OPEN 7-39
M:CLOSE 7-42
M:READ 7-43
M:WRITE 7-44
M:CHECK 7-45
M:CVOL 7-45
M:NOTE 7-45
M:POINT 7-45
M:DEVICE 7-45
VDAM (Virtual Direct Access Method) 7-46
General Usage Rules 7-46
M:DCB 7-46
M:MOVEDCB 7-47
M:SETDCB 7-47
M:ASSIGN 7-48
M:OPEN 7-49
M:CLOSE 7-50
M:READ 7-51
M:WRITE 7-51
M:CHECK 7-52
BDAM (Basic Direct Access Method) 7-53
General Usage Rules 7-53
Processing of Abnormal and Error Conditions— 7-53

Abnormal and Error Handling Routines 7-54
Abnormal Conditions During Open and
Close 7-54
Error Conditions During File Opening—__ 7-56
Abnormal Conditions During File Processing—. 7-56
Error Conditions During File Processing 7-56
Errors Causing the Program to Abort 7-56
SYSTEM SERVICES 8-1
Introduction - 8-1
Conventions 8-1
Syntax 8-1
Memory Management 8-2
Organization of Memory Space 8-2
Space Allocation Procedures 8-4
M:GL 8-4
M:GP 8-4
M:FP 8-4
M:GSP 8-4
M:FSP 8-4
Dynamic Overlay and Program Loading 8-5
M:SEGLD 8-5
M:LDTRC 8-5
M:LINK 8-6
Program Management 8-6
Program Initial Conditions 8-7
CPU-Detected Program Abnormal Conditions = -
(Abnormal Traps) 8-7
M:TRAP 8-7
M:RETURN 8-9
M:ERR 8-10
M:WAIT 8-10
Job Switch Management 8-10
M:SSS 8-11
M:RSS 8-11
M:TSS 8-11
External Communication 8-11
M:KEYIN 8-11
M:TYPE 8-12
M:PRINT 8-12
M:INT 8-12
Time and Date Facilities 8-12
M:TIME 8-12
M: GETDAY 8-13
M:STIMER 8-13
M:TIMER 8-13
TELECOMMUNICATION FACILITIES 9-1
Introduction 9-1
Terminology 9-1
Transmission Line 9-1
Group of Lines 9-1
Terminal and Component 9-1
Station and Network 9-1
Data Structure 9-2
Transmission Modes 9-4
Transmission Protocol 9-4
Supervisory Sequences 9-4
Telecommunications Access Method 9-5

Program-Line Relationship

- Resource Allocation

Data Control Block

Terminal and Component Lists

Opening and Closing a Line
Buffer Management

Buffer Areas

Access Method

Job Priority Assignment
Debugging

Error and Abnormal Processing
Statistics and Accounting

Message Mode
Component List

Input/Output Procedures

Abnormal and Error Conditions

Operator Communications in Message Mode___

9-5
9-6
9-6
9-8
9-8
9-9
9-9
9-9
9-10
9-10

9-10

9-10
9-11
9-11
9-13

9-16

9-20

Character Mode 9-20
Character Mode Component Lists 9-21
Input/Output Procedures 9-22
Abnormal and Error Conditions 9-28

INDEX Index-1
APPENDIXES
A. SYNTAX CHARTS FOR IASSIGN COMMAND,
M:DCB/M:SETDCB PROCEDURE, AND
ACCESS METHOD PROCEDURES A-1
ASSIGN Control Command A-3
M:DCB/M:SETDCB Procedure A-5
Assisted Sequential Access Method
(ASAM) Procedure A-7
Assisted Indexed Access Method
(AIAM) Procedure A-7
Assisted Partitioned Access Method
(APAM) Procedure A-9
Virtual Sequential Access Method
(VSAM) Procedure A-11
Virtual Direct Access Method (VDAM)
Procedure A-13
Basic Direct Access Method (BDAM)
Procedure A-13
B. ABNORMAL, ERROR, AND ABORT
CONDITIONS B-1

General XOS Abort Codes B-1
Abort Conditions B-1

Device and Volume Allocation B-2
Abort Conditions - B-2

User Services B-3
Abort Conditions B-3

Job Management B-3
Abort Conditions B-3

Loader B-4
Abort Conditions B-4

File Processing B-4
Abnormal Conditions (ABN) B-4
Error Conditions (ERR) B-4
Abort Conditions B-5

Open/Close

Abnormal Conditions (ABN)

Error Conditions (ERR)

Abort Conditions

TAM Message Mode

Abnormal Conditions (ABN)

Error Conditions (ERR), Recoverable
Error Conditions (ERR), Irrecoverable

TAM Character Mode

Abnormal Conditions (ABN).
Error Conditions (ERR), Recoverable
Error Conditions (ERR), Irrecoverable

TAM Open/Close

Abort Conditions
TAM 1/O Procedures

Abort Conditions

STANDARD VOLUME AND FILE LABELS

Volume Labels on Magnetic Tape
Volume Labels on Disk

File Labels on Magnetic Tape: HDR1, EOFI,
EOVI

File Labels on Magnetic Tape: HDR2, EOF2
EOV2

7

File Labels on Magnetic Tape: HDR3, EOF3,
EOV3

File Labels on Disk

Entries in the Primary Portion of the

Catalog
Entries in the Secondary Portion of the
Catalog

USER LABEL PROCESSING

Terminology

General Introduction

Establishing the User Label Processing
Preconditions

Occurrence of an Abnormal Label Condition
System Response to an Abnormal Label
Condition

User Label Processing Routine

DATA CONTROL BLOCK (DCB)

The DCB Used by TAM (Transmission Access

Method)

TAM LIST FORMATS

Polling/Selection Lists

Direct Lists

EBCDIC 8-BIT COMPUTER CODES

ANSCII 7-BIT COMMUNICATION CODES

TEETETTTITCET
W OWOWONNNNOGO OO

(o)

B-8
B-9
B-9

C-1
C-1

C-2

c-3
C-4

C-4

LI Y R N B B |
0
G WN—O

NGO OO0 0N O
ottt —

3
N}

0 00
—_——

OPYP
Laxown

m m
N —

[% ey
—r —

SN

W N —

* . FIGURES
Generalized XOS Capabilities and

Resources 1-2
Conceptual illustration of XOS Job and

Task Management 1-4
Memory Map Operation 1-6

XOS Job Scheduler — Scheduling Flow

Example 1-10
Source, Object, Library, and Load Module

Relationships 4-3
GCeneralized Load-Module Creation and

Execution Sequence 4-5
Core Memory Layout 4-7
Variable-Length (V) Record Format - 6-6
Undefined (U) Record Format 6-6

Structure of a Fixed Format Block on

Magnetic Tape with BHR Defaulted

and NBC Specified 6-8
Structure of a Fixed Format Block on

Magnetic Tape with Default 4-Byte

Header 6-8
F-Format Block Header on Magnetic Tape,
with BHR Value, n, Specified ____ 6-8

Structure of a Variable Format Block on
Magnetic Tape with BHR Defaulted

and NBC not Specified 6-10
V-Format Block Header on Magnetic Tape

with BHR Value, n, Specified— 6-10
Structure of a Direct-Access Data Block

(Assisted Methods) 6~11
Indexed-Sequential Organization— 6-13
Partitioned Organization 6-15
Super, Account, and Volume Catalogs 6-19
Structure of Volumes on Magnetic Tape 6-20

Relative File Generation Group—_ 6-23
Relative-Generation-File Command Sets 6-24
Open-Loop Relative Generation Group 6-25
Pre~positioning of Tape Volume During
M:OPEN 7-11
Flowchart of M:OPEN Action for File
Creation on Magnetic Tape—_______7-13
Tape File Positioning at Close Time—_ 7-15
User's Virtual Memory. 8-3
Basic Elements of Telecommunications
System 9-
Network and Station Example 9-
Control Characters Appended by TAM 9-
Flowchart of the States 9-
D
E-~
E-

1
4

2
3
1
2
Example of Tape Volume with User Labels -1

Data Control Block
TAM Data Control Block

1
6

TABLES

Example Job-Class Resource Limits—_____ 1-8
Predefined Operational Labels and

Corresponding IASSIGN Commands 3-15
Link Edit Inputs and Outputs 4-2
:OPTION-Command Option Usage — 46
Error Severity Levels 4-13

Effect of BHR and NBC Parameters for 9-11 Device Controller Error Codes_____ 9-30

F-Format 6-9 9-12 Adapter Error Codes 9-30
Effect of BHR and NBC Parameters for A-1 ASSIGN Control Command A-3

V-Format i 6-11 A-2 M:DCB/M:SETDCB Procedure________ A-5
Relative Generation Numbers of File A-3 Assisted Sequential Access Method (ASAM)

DAILY. 6-24 Procedure A-7
File Access Authorization: Effect of A-4 Assisted Indexed Access Method (AIAM)

PRT-Option Combinations — 6-32 Procedure A-7
Applicability and Cross-Relationships of A-5 Assisted Partitioned Access Method (APAM)

the Access Methods 7-3 Procedure A-9
Format Control Codes, Sigma Buffered A-6 Virtual Sequential Access Method (VSAM)

Line Printers, Models 7440/7445_______ 7-7 Procedure A-11
Abnormal Conditions on M:OPEN and . A-7 Virtual Direct Access Method (VDAM)

M:CLOSE -~ 7-54 Procedure A-13
Error Conditionson MiOPEN_________ 7-56 A-8 Basic Direct Access Method (BDAM)
Abnormal Conditions During Processing .7-56 Procedure A-13

Error Conditions During Processing—_____ 7-57 E-1 Standard DCB Parameter Fields E-2
Allowable Data Codes 9-7 E-2 DCB Fields Unique to TAM E-7
Abnormality Codes 9-17 E-3 Special TAM Values for Standard DCB

Error Codes 9-17 Parameters E-7
DCB Open and Close Aborts 9-18 .
Procedure Aborts 9-19

Message Mode Errors 9-20 ,

Transmission Mode Errors 9-20 EXAMPLES

Echoplex Mode in Function 9-26

Abnormalities During File Processing— 9-29 1. Library Generation 4-8
Errors During File Processing 9-29 2. Library Updating 4~10

vii

PREFACE

The purpose of this manual is to
e Describe the functional aspects and capabilities of the Xerox Operating System (XOS) — Chapters 1 and 2,

e Provide complete reference information necessary fo the preparation and submission of batch and remote=batch
jobs under XOS — Chapters 3 through 8.

e Describe the facilities available for the development of telecommunications applications — Chapter 9.

The primary intended audience of this manual is the applications programmer. For the experienced applications
programmer, this manual should provide sufficient reference information when used in conjunction with the XOS
Utilities Reference Manual, 90 17 69, and programming language reference manuals (see "Related Publications").
For the device programmer, or one unfamiliar with any comparable operating system, it is recommended that the
XOS Batch Processing User's Guide, 90 17 67, be used as a starting point instead of this manual and the XOS
Utilities Reference Manual. (The appropriate language publications will still be required, however.)

For the system programmer and system manager, the information in this manual is prerequisite to a thorough compre-
hension of the XOS System Management Reference Manual, 90 17 66,

In addition to this and the above-mentioned publications, the remote-batch user who needs to act as his own
operator at a remote-batch terminal site must refer to the XOS Operations Reference Manual (Chapter 9), 90 17 68,

In this manual, Chapters 1 through 4 are of equal interest to all language users; at least portions of Chapters 5 and 6
(especially the latter) are also applicable to all users, Chapter 6-in particular (File Organization and Management)
contains information that is closely related and supplementary to subjects covered in Chapters 3 and 4. (Chapter 6

is also prerequisite to Chapter 7.) Chapters 7 and 8 need be referred to only by users of the Meta-Symbol pro-
gramming language, and Chapter 9 only by users of the Telecommunications Management (TMS) facilities.

GLOSSARY

access method: any of the file management techniques
available to the user for transferring data between
main storage and an input/output device. The access
methods are

ASAM — assisted sequential access method.,

AJAM — assisted indexed sequential access
method.

APAM — assisted partitioned access method.
VSAM - virtual sequential access method.
VDAM — virtual direct access method.

BDAM

basic real direct access method.
TAM - telecommunications access method.

account catalog: a catalog that resides on an account
volume and contains entries that point to the permanent
files the owner has cataloged. The account catalog
contains all the information necessary to completely
and uniquely describe a file, including the actual lo-
cation of the file.

account volume: a disk pack or pseudo-volume (an area
on the system disk) that belongs to an authorized ac-
count and on which resides the account catalog. The
system file management software has access to the files
of an account via the account catalog.

ACK: the acknowledge character usually used in commu-
nications systems to indicate error free receipt of a
transmission. (Contrast with "NAK".)

assisted access method: an access method that automatically
synchronizes the transfer of data between the program
using the access method and an input/output device,
allowing logical-record processing by the user program,

asynchronous transmission: transmission in which each in-
formation character is individually synchronized (usu-
ally by the use of communication terminal determined
elements).

attended operation: a remote terminal mode of operation
in which individuals are required at both stations to
establish the connection and transfer the data sets
from talk (voice) mode to data mode. (Compare with
"unattended operation".)

automatic volume recognition (AVR): the preprocessing of
labels on a magnetic storage volume, initiated by the
operator,

AVR: see "automatic volume recognition",

block (records): 1. (v) to group records for the purpose of
conserving storage space or increasing the efficiency
of access or processing. 2. (n) A physical record
defined to be a unit of data transmission.

buffer (input/output): an area of storage info which data
is read, or from which it is written by the system, on
behalf of the user.

catalog: 1. (n) a directory to locations of magnetic stor-
age media and/or files. 2. (v) to enter an item (e.g.,
a file) into a catalog.

cataloged procedure: a set of job control commands that
has been placed in a special cataloged file, and can
be retrieved by naming it in a IEXEC (execute)
command.

central station: the central computer site in relationship
to remote (telecommunications) stations.

command processing: the reading, analyzing, and performing
of commands submitted via an input job stream or the
console device.

common dynamic area: dynamically acquirable memory
space, allocated downward from the upper end of the
user's available dynamic space,

common volume: synonymous with "public volume".

console: the interface, or communication device, between
a user or operator and the computer (e.g., operator's
console, remote terminal console).

control program: a group of programs that provides such
functions as the handling of input/output operations,
error detection and recovery, program loading, and
communication between the program and the operator.

data control block (DCB): a table that groups the parameters
defining the logical structure of a file. Thisinformation
is used fo interpret the 1/O requests given by the user,

DCB: see "data control block",

deblocking: isolating the individual logical records within
a blocked (see physical record "block").

default option: an option that will automatically be assumed
if not overridden by an explicit specification.

device name: the general name for a device, specified at
the time the system is generated, and used for all
symbolic references to the device.

device type (1/O): a mnemonic symbol used to describe
class of I/O media having common physical charac-
teristics, such as magnetic tape (MT), diskmedia (DM),
etc,

diagnostic: 1. pertaining to the detection and isolation
of syntactical or procedural errors. 2. a message
noting the occurrence of a syntax error, coding error,
etc,

direct-access media: file storage space on RAD or disk
pack, i.e., file storage space to which access is not
inherently sequential.

duplex: in communicatidns, pertaining to a capacity for

simultaneous independent two-way fransmission on a
A single line. (Contrast with "half duplex"; synonymous
with "full duplex".)

dynamic space: memory space that the user can request
dynamically, i.e., during program execution,

ECB: see "event control block".

echoplex: in communications, a mode of operation wherein
data is echoed back to the transmitting station by the
receiving stations (on a duplex line),

end-of-file mark: a code signaling that the last record of
a file has been read.

end-of-message (EOM): the specific character or sequence
of characters that indicate the termination of a mes-
sage of record.

end-of~-tape marker: a marker on a magnetic tape used to
indicate the end of the permissible recording areaq; for
example, o photo-reflective strip, a transparent sec-
tion of tape, or a particular bit pattern,

end-of-text character: a communication control character
used to indicate the end of a message text,

end-of-transmission (EOT): the specific character or se-
quence of characters that indicates termination of
transmission to or from a remote terminal.

error severity code: a code indicating the severity of errors
noted by an assembler, compiler, or link editor and
used to determine the possibility of subsequent pro-
cessing of the resulting object or load module,

event: an occurrence of significance to a task; typically,
the completion of an asynchronous operation, such as
input/output.

event control block (ECB): a one-word element associated
with each event that contains information relative to
the status of that event,

file: a collection of related records treated as a unit. The
records in a file may or may not be sequenced ac-
cording to a key contained in each record.

file management: a general term that collectively describes
those functions of the operating system that provide ac-
cess to files, enforce data storage conventions, and
regulate the use of input/output devices,

fixed length record: a logical record having the same
length as all other records in the same file, (Contrast
with "variable-length record".)

file protection: preventing unauthorized access to a file.
The protection may be based on read access authoriza-
tion, and/or write access authorization, or password
protection, or any combination of these.

full duplex: in communications, pertaining to a capacity
for simultaneous independent two-way transmission on
a single line. (Contrast with "half duplex"; synony-
mous with "duplex".)

group of lines: two or more communication lines allocated
as a unit to a program DCB.

half duplex: in communications, pertaining to an alternate,
one way at a time, independent transmission. (Con-
trast with "full duplex".)

header label: the record at the beginning of a file or vol-
ume containing control information about the file or
volume., (See also "trailer label".) ‘

idle characters: control characters interchanged by a
synchronized transmitter and receiver to maintfain
synchronization during nondata periods.

indexed sequential: a file organization in which record lo-
cations are determined from an index of key values
contained in the records.

job: a specified group of program steps prescribed as a unit
of work for the computer in that they must be scheduled
as an entity. By extension, a job includes all neces-

, sary programs, files, and instructions to the operating
system. A job consists of one or more job steps.

job class: a parameter that permits a measure of control
over the relative priority of program scheduling and
execution,

job control command: a command in a job that is used to
identify the job or describe its requirements to the
operating system,

job step: a unit of work for the system from the standpoint
of the user, presented as a request for execution of an
explicitly identical program, and a description of re-
sources required by it, A job step consists of the ex-
ternal specifications of work that is to be done as a
task or subtask.

key: a unique identifier associated with a record or a par-
tition of a file that can be used to locate or access the
record or partition,

link editor: a processor that produces a load module by
transforming object modules into a format acceptable
for execution and resolving all intermodule linkages.

load module: a complete program in a format suitable for
loading into memory for execution.

local dynamic area: dynamically acquirable memory space,
allocated upward from the lower end of the user's
available dynamic space.

logical record: the unit of information processed in a single
operation via an assisted access method.

message: in communications, a meaningful unit of trans-
mission usually delineated communication control
characters,

multiprogramming: the concurrent execution of two or
more independent programs by a single central pro-
cessing unit,

NAK: the negative acknowledge character usually used
in communications to indicate the receipt of a trans-
mission and some form of error indication. (Contrast

with "ACK".)

network: a series of points interconnected by communica-
tions channels. (A private line network is a network
confined to the use of one customer, while a switched
telephone network is a network of telephone lines nor=-
mally used for dialed telephone calls.)

nonswitched line: a private communication line that does
not connect with a common carrier switchboard.

operational label: a one-to-four character identifier that
associates a logical file and a physical file resource.

owner: the creator of a file, who may control access'to the
file by other users. (See "file protection".)

parallel class: the highest priority job class. Jobs in this
class must contain only one job step. They may be
executed as they are brought into the system or may
be cataloged when they are brought into the system
and executed at a later time,

password: a word used to protect against unauthorized
access to standard files.

permanent file: a file, recorded on a magnetic device,
that endures, in principle, beyond the execution, pe-
riod of the program that creates it. A file identifier
(i.e., afilename) is associated with the file, which
permits it to be located symbolically.

physical record: the unit of information transferred in
single operation between memory and an I/O device,
which may include more than one logical record.

polling: a technique by which each of the terminals sharing
a communications line is periodically interrogated to
determine whether it requires servicing.

private volume: a removable volume belonging to the
user(s) of a given account number,

production class: jobs of other than the parallel class, that
may include several job steps. The possible production
classes are named A, B, C, D, E, and T,

pseudovolume: a portion of the system disk allocated to a
user account as an account volume,

public volume: a removable volume that can be assigned
to any user account for the creation of files (usually
temporary). Synonymous with "common volume".

quantum: the minimum unit for disk space allocation

(8K bytes).

real address: an instruction address that refers to a physical
location in main storage. (Compare with "virtual
address".)

record: a collection of related items of data, treated as a
unit for processing or I/O transmission,

record length: a measure of the size of a record, specified
in bytes (characters).

remote station: a telecommunications terminal, (normally)
connected to the control computer site by a communi=
cations line.

resource: any facility of the computing system or operating
system required by a job. These include main storage,
secondary storage, input/outputdevices, and the cen-
tral processing unit,

resource allocation: reservation of a system resource for
the use of a job or job step.

resource deallocation: freeing of a previously allocated
system resource,

scheduler: a system component whose function is to allo-
cate all resources for a job and to select the next job
to be entered into the system for execution,

sequential access: a method of accessing data such that
consecutive records are processed in the order that they
are presented to the system.

shared file: a file which may be accessed by two or more
users concurrently.

station: either a remote or central station in a communica-
tions network.

supercatalog: a table on the system disk containing a num-
ber of entries, each of which associates an account
number to the serial number of an account volume, or
to the system-disk address of a pseudovolume (an ac-
count volume by definition).

Xi

superjob: a series of jobs that are logically treated as one
job for purposes of scheduling and conditional execu-
tion of the jobs in the sequence. This facility is avail-
able only to production classes A - E.

switched line: a communications line connected with a
common carrier switchboard (i.e., dial-up line).

symbiont: a system program that executes concurrently with
_user and other system programs and applies to data
transfers between disk and low-speed peripherals.

synchronous transmission: transmission in which the sending
and receiving units are operating continuously at sub-
stantially the same frequency and are maintained, by
means of automatic correction, in a desired phase re-
lationship.

SYSGEN: see "system generation",

system generation (SYSGEN): a process that tailors XOS
to meet the needs of the specific installation.

system startup: the process (and point in time) of loading
and initializing the operating system.

task management: those functions of the control program
that regulate the use by independent tasks of the cen-
tral processing unit,

telecommunication: data transmission between a computing
system and remotely located devices via a unit that
performs the necessary format conversion and controls
the rate of transmission.

temporary file: the same as a permanent file except that
no identifier is associated with the file on its recording
media. The file is identified only by an operational
label, which is significant only during the execution
of the job that creates it; the file is therefore "lost"
to the system at end of job.

trailer label: a record placed at the end of a file or volume
that contains control information about the file or vol-
ume. (See also "header label™.)

unattended operation: the automatic features of a remote
station's operation that permit the transmission and
receipt of messages on an unattended basis. (Compare
"attended operation".

undefined-length record: a logical record having an un-
specified length that is automatically equated to
physical record length.

variable length record: a logical record having a length
independent of the length of other records in the same
file (contrasted with "fixed-length record").

virtual address: an instruction address that refers to a
location in virtual memory and must be algorithmically
converted to a real address before the instruction is
executed (contrast with "real address").

virtual memory: a conceptual arrangement of main storage
achieved via a hardware/software technique that per-
mits memory addressing without regard to the program's
physical location in memory. Each address reference
is automatically translated (mapped) from where the
program appears to be located (virtual address) to an
actual location (real address). This technique further
allows programs to be broken into noncontiguous blocks
(pages) for better memory utilization.

volume: all that portion of a single unit of storage media
that is accessible to a single read/write mechanism,
e.g., areel of tape, removable disk pack, etc.

volume protection: protection of a volume against un-
authorized multiple concurrent access.

1. INTRODUCTION

The Xerox Operating System (XOS) is a large-scale multi-
programming operation system for Xerox Sigma 6, 7, and 9
computers. It provides both local and remote batch
processing, and includes facilities for telecommunications
applications. XOS employs the Sigma external priority
interrupt system, the memory map, and the access protection
feature associated with the map, for highly efficient per-
formance of its basic supervisory functions.

e Up to eight levels of external priority interrupt auto-
matically distribute central processing unit (CPU) time
to active jobs (according to user defined priorities).

e Memory mapping hardware performs automatic program
relocation, mapping the user's contiguous virtual mem-
ory space into noncontiguous physical memory.

e Memory access protection hardware provides selective
access control for individual memory pages, protecting
the system from the users, one user from another, and
a user from himself.

Use of combined hardware and software supervisory tech-
niques based on the facilities described above results in
significant economies of system overhead and a high level
of overall system efficiency.

Significant functional features of XOS include the
following:

e Flexible control of job scheduling through the user's
ability to assign his job to one of several (up to seven)
job classes. The relative priority of, and resource
|imitations associated with, each job class are deter-
mined by the individual installation during system
generation.

e Efficient concurrent utilization of system resources,
especially of secondary storage and peripheral 1/0
devices.

e Efficient handling of large data files.

e A powerful and easy-to-use job control command
language, allowing conditional execution of both
job-steps and jobs, specification of total job and
individual job-step resource requirements, communi-
cation between job-steps, etc.

e A full range of file management services.

e Sequential, indexed-sequential, partitioned, and
direct file organizations.

e ANS compatible standard volumes and files.

e Symbiont controlled peripheral 1/O devices and re-
mote batch terminals.

1-1

Figure 1-1 illustrates the capabilities and primary resources
of XOS. Some of the major aspects of the system are de-
scribed in more detail below.

JOB CLASSES

XOS provides for up to seven separate job classes, each
having a distinct priority. The classes may be categorized
into (1) the parallel job class and (2) up to six production
classes. (The class to which a given job is assigned is spec-
ified in the ! JOB control command.) The number of sep-
arate production classes actually used is an option of the
individual installation.

The parallel job class inherently has the highest scheduling
and execution priority. Jobs in this class may be executed
as they are submitted to the system, or cataloged when they
are submitted and executed later upon operator command.
(The latter option is only available for parallel class.)
There is a single restriction on parallel class jobs: they may
contain only one job-step. The number of parallel jobs
active concurrently is limited only by the available system
resources.

The six production classes are identified as follows:
Production class A
Production class B
Production class C
Production class D
Production class E
Production class T

The relative priority of each production class is established
by the installation at system generation time, i.e., at the
time that XOS is tailored to meet the needs of the partic-
ular installation. For example, the classes could be prior-
itized in alphabetical order, as shown above, with class A
having the highest priority and class T the lowest. Alterna-
tively, class T might fall between classes C and D. In gen-
eral, the priorities need not be established in alphabetical
order.

There are actually two types of priorities established at
system generation time. One type determines the relative
order in which jobs of the production classes are initiated,
i.e., brought into memory and prepared for execution: this
is the scheduling priority. The other type determines the
order in which the corresponding tasks are to be activated,
i.e., given control of the CPU, relative to other tasks
awaiting activation: this is the execution priority.

LOCAL BATCH OPERATIONS

CENTRAL SITE
OPERATOR

Business/administrative data
processing and scientific
data reduction.

BATCH JOB STACK

Payroll

Accounts payable

Work in process

Scientific data reduction

Billing/accounts receivable

Production control

Personnel records

REMOTE BATCH

REMOTE BATCH TERMINAL

Scientific data reduction from
a remote ‘research laboratory.

REMOTE BATCH TERMINAL

Inquiry/response/update from a
remote manufacturing facility.

REMOTE BATCH TERMINAL

Inventory control from
branch outlets.

RAD TAPE UNITS REMOVABLE DISK
STORAGE SYSTEM
i
|
!
4
'l
/
———
SIGMA 6/7/9
A3
\,
\
K
¢
’
+ TELECOMMUNICATIONS N,
V4 3

COMMUNICATION
NETWORK USER

Character-mode
communications

NETWORK USER

Character-mode
communications

COMMUNICATION

COMMUNICATION
NETWORK USER

Message-mode
communications

Figure 1-1. Generalized XOS Capabilities and Resources

1-2

In addition to the installation determined class priorities,
jobs within the T class can be given a user assigned sched-
uling priority. That is, T class jobs can be prioritized rel-
ative to other T class jobs competing for initiation. This
priority internal to the T class is specified also on the ! JOB
command.

The basic scheduling philosophy (described in more detail
under "Scheduling") is as follows: '

e If all queued parallel class jobs have been initiated
(or none are queued), the system will examine the
highest priority production class.

e If one job of a given production class hasbeen initiated
(or none are queued), the next lower priority produc-
tion class will be examined. That is, only one job
from each production class can be active at the same
time.

o If a job of a given class cannot be initiated due to
unavailability of required resources, then no job of a
lower priority class will be examined for possible
initiation.

e Except for the T class, no job other than the first in a
production class queue (i.e., the "oldest" job in the
class) will be examined for possible initiation. When
the T class is examined, the complete queue will, if
necessary, be examined — in priority order —to find a
possible candidate for initiation.

Limits on the number, type, and extent of resources that a
job may request are also established for the classes at sys-
tem generation time. For each class, both default require-
ments and maximum limits are established for memory and
temporary disk space, number and type of peripherals, max-
imum CPUtime, and amount of output via symbiont devices.

The user selects the class in which his job should be run
based upon his resource requirements. If several classes are
appropriate, a good rule to follow is that I/O-bound jobs
should be assigned to a higher priority class and compute-
bound jobs to a lower priority class. In the multiprogram-
ming environment of XOS, this helps increase system
throughput.

A convenient feature of XOS is the ability of the user to
chain several related jobs of one production class (other
than T) into a superjob. The series of jobs constituting a
superjob are executed sequentially. Each is executed only
upon the proper completion of the preceding job. If any
job of a superjob aborts, all remaining member jobs are
ignored.

MULTIPROGRAMMING AND TASKS

Multiprogramming is defined as the concurrent operation
of two or more jobs that reside simultaneously in memory.
Multiprogramming is accomplished essentially by allowing

the 1/O operations of as many jobs as possible to be per-
formed simultaneously while CPU control for internal opera-
tions is distributed among the several jobs on a priority basis.
(It is not possible for the CPU to simultaneously execute the
instructions of more than one job.) Multiprogramming al-
lows total system resources to be used more efficiently and
maximizes job throughput.

When a job has been initiated (i.e., taken from a queue of
jobs to be scheduled, initialized for execution, and loaded
into memory) it becomes a "task" to the system. Although all
tasks within the system do not correspond to user jobs (e.g.
system tasks), for our current purpose we will consider only
tasks originating from such jobs. The number of tasks al-
lowed in the system at one time depends on the amount of
available resources and certain scheduling restrictions (see
"Scheduling" below). In effect, a variable number of tasks
may be performed. Figure 1-2 illustrates the general flow
of job and task management functions, showing the time re-
lationship between the two.

Once a task is activated, it will execute until it requests
1/0, voluntarily enters a wait state, terminates, or is
interrupted by some event initiated by a higher priority
task. In any of these cases, the task becomes inactive and
the CPU is free to process the instructions of the highest
priority task waiting to execute. When the interrupted task
is again activated, it will resume execution at the point at
which it was interrupted. This is possible because XOS
saves the total environment of each task when it is inter-
rupted and restores that environment when the task resumes
execution. Note that a user task corresponds to a complete
job, but in the case of jobs consisting of multiple job-
steps — i.e., independently processable portions of a job —
only the program module required by a single job-step will
be active at any given time.

Each job class is associated with one level of the Sigma
external priority interrupt system. (The external interrupt
system is distinct from interrupts associated with 1/O opera-
tions, arithmetic overflows, instruction faults, etc.) The
tasks automatically derive their execution priorities from
the interrupt level with which they are associated. (Two
or more production classes may share the same interrupt
level.)

Use of the priority interrupt system to distribute CPU time
among the tasks significantly reduces the amount of software
required for multiprogramming control.

MEMORY MANAGEMENT

The multiprogramming of a variable number of tasks, each
of variable size, inherently results in the fragmentation of
available physical memory space during system operation.
Under conventional operating systems, currently loaded
programs must often be physically redistributed in memory
in order to provide enough continuous space to load another
program, or the loading must wait until enough continuous
space becomes available on a contingent basis. Under

Input stream - Call XOS

.

o job scheduler, _I-
Y — —_
N '_ —I
Read and interpret , | Execute task v
input stream. Schedule a using services l
job that is | provided by Task | Initiate job step
qualified for - l Management I termination. -
Evaluate the resource execution,
requirements of each I |
iob. \ | | Close files
Y ' I | release space,
Allocate the v release OP-labels
Place each job in the required resources I | and peripherals,
waiting queue accord- (peripherals and
ing to job class. 1 storage). I I
| I
Sample Priorities Waiting Queues '
. P P P Initiali ' End of job?
Highest Parallel Class n |-————- 2 1 nitialize l Pass control to |
Priority the job step. l Task Management |
Prod. Class A A3 A2 A] V I_ . —_— —-I
Load the Output accounting
Prod. Class B B, B, job step. information.
Prod. ClassT | o 4| T3 Tof T 7 !
[(n) = Prior“'y] (]0) (]]) (]5) (]5) ’ CQ” SchedUler.
Prod. Class C C4 C3 C2 Cl
- D D Initiate next
Prod. Class D 2 1 job step and
] continue until
Lowest E E E job completion.
Priority Prod. Class E —™ 3 2 1 J

Priorities are SYSGEN dependent
except for parallel class.

Figure 1-2. Conceptual Illustration of XOS Job and Task Management

XOS, however, a user program can automatically be frag-
mented at load time, as necessary (that is, be made to oc-
cupy noncontinuous memory space). The areas of physical
memory occupied by a program module are dynamically
determined by the circumstances of memory utilization —
by other users and by the system — that prevail at the mo-
ment the module is loaded. The ability to "page" programs
into many small noncontiguous areas of memory at actual
load time is vital to an efficient operating system.

By means of the concept of virtual memory, all user pro-
grams (and most of the operating system itself) are planned
and programmed as if they were always to operate in the
same fixed and continuous area of memory without regard
for the probable fragmentation of the programs as actually
loaded. Use by XOS of the Sigma hardware memory
mapping feature makes possible the concept that all of the
user's memory space is logically continuous and, in a sense,
multilayered (from the viewpoint of multiple concurrent
users).

A brief describ\fion of memory usage by the control elements
of the system follows, prior to a further discussion of the
user's virtual memory space.

\

|MONITOR RESIDENCE

|

1
The control elemen}rs of the operating system, referred to
collectively as the/monitor, direct all program processing.
During processing they perform many services that are either
transparent to the/user or explicitly called for by the user.
The monitor is org/anized in two parts (with respect to mem-
ory residence); 4 small resident monitor that remains in
memory at all/idmes, and a nonresident portion that resides
on secondary/storage and is brought into memory as needed.

/

The XOS monitor is divided into resident and nonresident
portions because, due to the large number of services it
provides, it is not practical to keep all of it permanently
resident in memory. Relatively few of these services are
required frequently enough to justify being made resident;
the majority are made nonresident, thus saving space for
additional user tasks.

The nonresident monitor is physically divided into a number
of elements that are independently loaded into memory as
required. When one of these elements that was loaded into
memory is no longer in use, it remains in memory but is
marked "disengaged". The resident monitor maintains sta=-
tistics on the frequency of use of these "disengaged" ele-
ments, and when additional memory is required the least
frequently used element(s) are overlaid by the program or
element that requires space. Using this technique, the
system is able to make the most efficient use of "unused"
memory and significantly reduce the number of requests for
loading nonresident monitor elements.

The range of virtual addresses of the nonresident monitor
area is established when the system is generated for an
installation. Although the nonresident monitor area is

1-5

assigned addresses in high virtual memory, the nonresident
monitor elements are actually loaded anywhere in the same
area of real memory space also used to contain user pro-
gram modules.

The resident monitor occupies a fixed area of real memory
beginning at real address zero, and also a corresponding
amount of one-for-one virtual memory space (i.e., real
and virtual addresses are identical in the resident monitor).
Virtual versus real memory isorganized as illustrated below.

Virtual Memory

-~

N
Resident User's Virtual Nonresident Monitor
Monitor Area Virtual Area

————— !

Fixed real

memory

VIRTUAL MEMORY AND THE MEMORY MAP

All user programs and system processors are automatically
origined, during link editing or SYSGEN, at a fixed virtual
address (normally at the beginning of the user's virtual
space). Obviously, if several program modules must occupy
memory concurrently (which is commonly the case), they
cah not be stored in the same physical location,

Memory mapping allows the program modules to be divided
into virtual pages, each being 512 words long, and stored
by page wherever physical space is available (without re-
gard to logical organization). Physical memory is divided
into corresponding physical pages of 512 contiguous words.
When the program is loaded into memory, the logical pages
of the program are mapped into available physical pages.
The contiguous logical pages of the program need not oc-
cupy contiguous physical pages of memory. At execution
time, the hardware memory map automatically translates
the program's virtual address references, instruction by
instruction, into an appropriate set of physical addresses so
that the program will execute as if it had been stored into
one contiguous area. This process is shown in Figure 1-3.
This technique enables XOS to maximize the use of memory
space, especially for concurrent operation of many small to
moderate size programs.

All of memory is mapped in XOS, even that part occupied
by the resident monitor. However, the resident monitor
area is mapped one-to-one real to virtual so that within
the resident monitor, virtual addresses always reference the
corresponding physical location.

NONRESIDENT MONITOR AREA

The virtual area that is reserved for the nonresident seg-
ments of the monitor must be two pages or larger in size.

In addition to a corresponding number of reserved real phys-
ical pages, the monitor will use any other free physical
memory available for loading additional nonresident

Real
Physical
Memory

Low

Real
Addresses

User,
Processor, and
Nonresident
Monitor Space

4

\

Resident
Monitor

real address
references

Memory

Map

virtual
address

references

User A's

Virtual Memory

4.

Nonresident
Monitor
Module]

By

Nonresident
Monitor

Module2

High
Real
Addresses

Image
Low
Virtual
Resident Addresses
Monitor
)
Al
A
2 page
——¢ boundaries
Az
. ——
Ay
.
Nonresident
Monitor
Modulet

High
Virtual
Addresses

1-6

Figure 1-3. Memory Map Operation

| segments as required. This free area is made available as

 follows: when a user's job enters the system, he will indi-
cate either by a | LIMIT command or by class default values

the maximum number of 512-word pages that his program
may ever use.” These pages are not dedicated to him when
resources are allocated. Rather, pages are given to the

. job on a demand basis up to the limitsgiven by the ILIMIT
i command or default value. Suppose the job's ILIMIT com-
. mand indicates 50 pages as a maximum available to the job,

" but the job actually uses only 30 pages.

' resident monitor modules to occupy the free space.

The monitor is
aware of the 20 free pages of memory and will load non-
The

! user program in this example may dynamically acquire (and
" release) up to 20 pages of additional memory. If the user

asks for memory that currently contains nonresident monitor
elements, the resident monitor will determine whether or
not a given element is currently being used and how often
in the past it has been used. In this way, the monitor can
release to the user the memory occupied by the least used
nonresident elements. In certain operating environments,
some nonresident elements may become pseudoresident ele-
ments in that they are loaded into memory and the memory
they occupy may never be subsequently required.

SYMBIONTS

Symbionts are system programs that asynchronously buffer —
on disk —1/O operations for the following peripheral de-
vices: card reader, card punch, line printer, and remote
batch terminal. When a user job requests symbiont /O —
taking the case of output — the 1/O takes place between
memory and disk, rather than directly between memory and
the peripheral device actually requested. The program is
thus freed of the necessity of executing essentially at de-
vice speed. The appropriate symbiont independently trans-
fers the data between disk and the peripheral device so
that job throughput is not delayed by time consuming 1/0O
on a slow device. Symbionts operate concurrently with
other system and user programs, and normally operate one
level above the highest user-priority level (P class). They
are initiated by the computer operator.

For program initiated input/output, the user makes the
choice between symbiont 1/O or direct device access in a
control command (!ASSIGN) that describes the device as-
signment for a given data file. Since symbionts greatly
decrease job execution time, they should be used whenever
feasible.

All jobs are entered into the system through the system card
reader (IN) symbiont. This action is initiated and con-
trolled by the operator. Each job is stored as a series of
card images in a separate file on disk. A system program
called the Control Card Interpreter (CCI) reads the file's
control cards and adds information at the end of the file to
be used by the system scheduler. The scheduler then deter-
mines when the job should be brought into memory for op-
eration. Conversely, all listing=log information (job

control output written by the system) is output via the
system line printer (OUT) symbiont.

RESOURCE ALLOCATION

The allocatable system resources are categorized under XOS
as follows:

e Shared resources. Core storage space and secondary
storage space (temporary file space on system disk).

e Common resources. All input/output devices when
specified simply by media type (e.g., any 9-track
magnetic tape drive, any disk drive, any card reader).
Also peripheral devices specified by symbiont name

(e.g., IN, OUT, SCP).

® Reserved resources. Any specific input/output device
specified by type and logical address, such as a spe-
cific line printer, or a group of transmission lines.

The reserved resources are so called because they must be
reserved unconditionally for the job before the job can be
initiated (i.e., scheduled for execution). The user can
exercise no control over the scheduling of his job in regard
to this type of resource (if any such is required), and there-
fore it will not figure in the following discussion. In the
case of shared and common resources, however, the user
can favorably affect the scheduling of his job —and overall
system efficiency —by a judicious combination of job class
assignment and control command usage, specifically the
ILIMIT, ISLIMIT, and IRESOURCE commands. (These com-
mands are described in detail in Chapter 3.)

In general, a submitted and queued job will not be initiated
until (1) it is eligible — by virtue of its relative priority — to
be examined for scheduling and (2) when examined, its re-
quired resources are available for allocation. The user's
means of control over condition 1 is his choice of an appro-
priate job class; guidelines for making this choice were
given under "Job Classes, " above. Whenever condition 1
is satisfied but condition 2 is not, the job effectively "loses
one turn" in the scheduling cycle, since the next scheduling
cycle will start again with the top priority job class, not
the last class that could not be initiated (see "Job Sched-
uling", below). Therefore it is often imperative for best
scheduling that the system know (1) the actual extents of
shared resources required to initiate the job —rather than
the sometimes excessive default values, and (2) the min-
imum common resources required to initiate the job — rather
than the common resources required for the entire job.

(The latter is applicable only to multistep jobs.) Each of
these cases is discussed separately below.

SHARED RESOURCES

In lieu of user specified values for the actual memory and
temporary file space requirements of the job, the system

assumes the default values for its job class (as distinct from
the maximum values for the class). The user can specify
his actual overall job space requirements (plus maximum
CPU time and maximum number of cards to be punched/pages
to be printed) on the !LIMIT control command. These spec-
ifications can be less than or greater than the class default
values, but cannot exceed the maximums imposed on the
class.

It is important to note that the shared resource require-
ments of a later step of the job can exceed the !LIMIT (or
default) value if the ISLIMIT command is employed for that
individual step. This command allows the requirement limits
to be temporarily raised for one or more steps that represent
peaks in the overall job requirement profile. Since sched-
uling and initiation of the job itself depend upon the !LIMIT
or default values, use of ISLIMIT commands in conjunction
with the 'LIMIT command (or default values) can favorably
affect job scheduling. (This command must be used with
caution, however, especially with regard to releasing tem-
porary disk space exceeding the job limit prior to-job-step
end.) If the ISLIMIT command foragiven job-step requests
more resources than are available at that point in time, the
job is placed in a wait state until such resources are freed.

COMMON RESOURCES

The system learns the exact total job requirement for com-
mon resources directly by inspection of the job control

commands (specifically the !ASSIGN commands) for the
job. In a multistep job, it may often happen that the num-
ber of common resources required to begin the job (e.g., to
execute the first two job-steps) is significantly less than
the total job requirement. The user can inform the system
of this circumstance by means of the IRESOURCE command.
This allows the job to be initiated before the common re-
sources required by the whole job are available.

This command must be used with considerable restraint,
however. Unjustified use of this command by several con-
current jobs could cause the system to become locked in a
condition sometimes referred to as a "fatal embrace". In
this condition one job is waiting for resources allocated to
other jobs which in turn are waiting for the very resources
already allocated to the job waitingfor... . Clearly, users
should employ this facility with some caution.

JOB CLASSES VERSUS RESOURCE LIMITATIONS

Table 1-1 shows a set of sample values for default and max-
imum resource limits, by job class, for a system incorpo-
rating five job classes. The values shown are purely for
purposes of example, and thus are somewhat arbitrary. How-
ever, the values illustrate what an installation might estab-
lish, given the mix of job types represented in the table.

Table 1-1. Example Job-Class Resource Limits

Temporary ‘
CPU Time Disk Space Core Space
Job (minutes) (quanta) (pages) Peripheral
Class | Sample Job Types Def. | Max. Def. | Max. Def. | Max. Usage
E} P Operator initiated utilities (PREP,
2 LISTCTG, FMGE-COPY). 2 5 0 15 15 50 very low
A Small user programs with high 1/O activity
(report generators, media conversions). 5 15 0 20 15 50 high
2 B Larger user programs but still largely 1/O
g > bound (SORT jobs, accounts receivable :
25 application). 5 30 0 50 15 75 high
=
T Assemblies, compilations, and link edits
(COBOL, FORTRAN, Meta-Symbol, LINK). 10 20 75 200 50 100 moderate
C Large assemblies and compilations; compute=
§ bound user programs (scientific analysis no all
3 programs, inventory/sales trend analysis). 15 | limit 75 200 75 | core moderate

JOB SCHEDULING

Figure 1-4 is a functional flow diagram of XOS job sched-

uling. (The production job scheduling priorities shown

have been arbitrarily chosen for the sake of example.) As

illustrated therein, XOS schedules jobs according to the
following rules:

1. Parallel (P) class jobs always have the highest sched-

uling priority. As many P class jobs as are possible

within the constraints of available resources are initi-
ated concurrently. If the scheduler cannot initiate a
given queued P class job because of lack of resources,

it will wait for the necessary resources to become
available. The scheduler will not examine a job of
any production class until initiation of all currently
queued parallel class jobs has been achieved.

2. Production class job queues are examined for job
initiation according to the class scheduling priority

established by the installation. (Once initiated, the

corresponding tasks are executed, relative to one
another, following another priority, which may or

may not be the same as the scheduling priority.) Only
one job of each class is initiated at a time. However,
one job from each of the classes may be initiated con-

currently if enough system resources are available.

3. The parallel class queve and all production class

quevues except T operate on a first=in, first-out basis.
If, for example, the first job in the production class A
queue cannot be initiated, the scheduler will not look

at the next job in the A queue. It will wait for re-
sources to become available for the first job in the

queue. For production class T, however, the sched-

uler will attempt to find any one job in the T class
queue for which enough resources are available. It
will examine the jobs according to a priority within

the T class, which is assigned in the job control com-

mand ! JOB for each job. (These subpriorities are
only available for production class T.)

4. If the scheduler can not initiate a waiting job of a

given class, it will not examine any lower priority job

class. Rather, it will wait for any resource to be

freed, and will then repeat the cycle with the highest

priority queue, normally the parallel class.

When a job is loaded into memory, it must be loaded in its
entirety (by job-step, if several), rather than by pages as

the pages are needed. If core space is not available for

all of the pages of a particular job (the requirement being

determined by the class default, !LIMIT command, or
ISLIMIT command), the job will not be initiated until
enough core space becomes available.

1-9

GENERAL NOTATION CONVENTIONS

The following conventions are used in control command and
procedure syntax descriptions and examples throughout this
manual:

1.

Uppercase Characters. A symbol in uppercase char=-
acters (e.g., KEY) is a keyword &and, if used, must
appear exactly as shown.

Lowercase Characters. A symbol in lowercase char-
acters (e.g., name) is an element to be replaced by a
user chosen value (decimal integer, character string,
keyword, etc.), as appropriate.

Brackets []. An element between brackets is
optional.

Braces { } Elements placed one under the other be-
tween braces require the selection of only one of those
shown if the element group is selected. See also con-
vention 6.

Ellipsis An element followed by three succes-
sive periods is a repeatable element. The required
separator character, if any, is shown preceding the
ellipsis.

Vertical Stroke |. Elements (generally keywords) sep-
arated by the vertical stroke character require the
selection of only one of those so separated if the ele-
ment group is selected. A series of elements so sep-
arated is equivalent to the same elements displayed
vertically between braces (see convention 4, above).

Except as noted in rules 8-10, all special characters
suchas | $, . : () are necessary syntactical elements
and must appear as shown in the syntax descriptions.

The hyphen (=) does not have any syntactical meaning
except in the :TREE command (Chapter 4) and, with
that exception, should be considered as part of the
substitution symbol (e.g., acct-number) in which it
appears.

The percent sign (%) has a special syntactic meaning;- -
its use is optional, and is described in Chapter 3.

The combined plus-minus sign () implies that either
a plus or minus sign should be employed in its place.

for scheduler
?

Parallel
job waiting

System
resources

Class A
production job
active?

Class A
production job
waiting?

System
resources
available

available
?

yes

Select job:
Remove from queue;

Look at next lower
priority class.

Select job:
Remove from queue;

Look at next parallel
job in queuve in
chronological order.

Waiting Queues

Parallel
Class

n | — — — — —(f31F

Clos; A —T

Prod.
Class B

Prod.
Class T]
(n)=priority

Prod. —=
Class C

Prod. _ |
Class D

Prod. —=
Class E

E E E

3 2 1

The production class order shown (A, B, T,C,D,E)
is variable, The ordering of classes is established
at SYSGEN.,

Highest
Priority

Lowest
Priority

Class B
production job
active?

Class B
production job
waiting?

System
resources
available

Select job:
Remove from queue;

Look at next lower
priority class.

Class T
production job
active?

Class T
production job
waiting?

System
resources avail-
able for highest
priority job

Any more
jobs waiting
?

resources avail-

able for next lower

priority job
?

yes

Select job:
Remove from queue;

Look at next lower
priority class,

Classes C, D and E
examined in same
fashion as A and B,

Figure 1-4, XOS Job Scheduler — Scheduling Flow Example

1-10

2. SYSTEM FACILITIES

INTRODUCTION

XOS is an efficient and flexible multiprogramming system
that maximizes data throughput of production jobs and
minimizes turn-around time of high-priority jobs. The first
function is accomplished by efficient sharing of system re-
sources (CPU time, memory, secondary storage, and pe-
ripheral devices) among many jobs. The second function is
made possible through the establishment of priority schedul-
ing procedures. These installation-defined and hardware-
implemented procedures assure that high priority jobs are
processed first.

FACILITIES PROVIDED BY MONITOR

SYSTEM SERVICES

System services enable the user's program to request a
variety of system functions. When a service call is en-
countered during the assembly or compilation of a program,
the processor responds by retrieving a symbolic calling
sequence from the XOS procedure library, modifying it
according to the parameters specified in the procedure call,
and inserting the modified instructions into the user's object
program. At execution time, the calling sequence calls
the appropriate system routine, which in tum performs the
desired functions.

FILE MANAGEMENT SERVICES

The XOS File Management System (FMS) is comprised of a
collection of system programs responsible for the movement
of data between memory and external storage for user pro-
grams and system tasks. These programs provide the facilities
to locate data, manage buffers and external storage, read
data, and write data.

FMS provides a comprehensive set of services to coordinate
the transfer of information between user programs and data
files:

e FMS handles all types of physical files consistent with
the 1/O devices on XOS systems. These include unit-
record devices, magnetic tapes, disk packs, and RADs.

e For magnetic tapes and disk packs FMS handles all
combinations of single or multiple volume filesor multi-
file volumes.

2-1

e FMS handles both standard and nonstandard labels on

magnetic tape. The standard tape label is ANS com-
patible. For nonstandard labeled files (user labels),
the entire volume is treated as data.

e In order to achieve maximum flexibility, FMS supports

a variety of file organizations and record formats. File
organizations include sequential, indexed sequential,
direct, and partitioned. Record formats include fixed,
variable, and undefined lengths. Fixed and variable
formats on tape are ANS compatible.

e FMSprovides file=sharing and file protection functions.

Shared files may be read by several tasks or processes
concurrently. However, in order to write on a shared
file, the user must obtain exclusive use of the file. A
shared file may be protected by the file owner against
unwarranted access. This protection is achieved by
means of a password specified at the file's creation and
by a list of users who are authorized to read or write
the file.

e FMS permits tape file concatenation. This facility en-

ables the user to logically connect several data files
into a single consecutive file. FMS will automatically
process from the end of one file to the start of the next
file without any intervention from the user.

XOS provides facilities for six different methods of file pro-
cessing, referred to as access methods. These access
methods are divided into two groups according to the gen-
eral techniques involved in their use.

The assisted access methods operate at the logical record
level and are characterized by a high degree of system
service and control: record blocking/deblocking, error
checking, volume switching, etc. They are

e Assisted sequential access method (ASAM), intended for
the creation and sequential processing of files on any
type of media.

o Assisted indexed access method (AIAM), intended for
the creation and direct-access processing of indexed
files.

e Assisted partitioned access method (APAM), intended
for the creation and processing of files that are seg-
mented into partitions.

The basic access methods operate at the physical record
(block) level and are characterized by a high degree of
user control and relatively little system intervention. They
are

e Virtual sequential access method (VSAM), intended for
the creation and sequential processing of files, at the
block level, on any type of media.

e Virtual direct access method (VDAM), intended for the
creation and direct-access processing, at the block
level, of files on direct-access storage media.

e Basic direct access method (BDAM), intended for access

to a private or unlabeled direct-access volume by rela-
tive sector addressing.

COMMUNICATION MANAGEMENT SERVICES

The Communications Managements Services (CMS) is that
portion of XOS that controls all remote communications. It
includes TAM, the telesymbionts, and the communications
interrupt processors. '

TELECOMMUNICATIONS ACCESS METHOD (TAM)

TAM provides the applications programmer with the means
for complete control of a communications network, through
use of a set of specialized system procedures (macros). The
objective of TAM is to relieve the user of the burden of
handling actual data transmission and to allow him to work
indépendently of the transmitting device or activity.

REMOTE BATCH PROCESSING & TELESYMBIONTS

Remote Batch Processing is an integral part of XOS and is
made possible by the telesymbionts. The telesymbionts are
system routines that read programs, data, and control mes-
sages from, and send program results to, remote terminals.
Telesymbionts are a logical extension of the central site
symbionts (i.e., they move data between slow remote
peripherals and fast central site RAD and disk pack devices).
The RAD and disk pack files may then be accessed by the
control and processing elements of the system, taking full
advantage of the high transfer rates of the RAD and disk
pack devices. Jobs entered through the telesymbionts are
treated like those submitted through the central site sym-
bionts. Accounting information for remote batch jobs is
reported to the user on his remote printer and is entered
into the system's accounting log.

COMMUNICATIONS INTERRUPT PROCESSOR
The Communications Interrupt Processor (in the 1/O super-

visor) handles the actual hardware interface between TAM
and the remote terminal as directed by TAM.

FACILITIES PROVIDED BY PROCESSORS

The standard XOS processors are divided into language pro-
cessors, service processors, and utility processors.

The language processors are those elements of the system
that accept a user's symbolic source-program code and trans-
late it into a standard object language form.

The service processors are those elments of the system that
assist the user in

e Preparing object-language program elements for load-
ing and execution.

e Debugging, or trouble-shooting, of executable program.

e Sorting/merging of data file.

Utility processors operate on user files, supplementing the
file management facilities of the monitor.

LANGUAGE PROCESSORS

The following language processors are offered to assist com-
puter users with varying background in preparing tasks on

. Sigma 6/7/9 computers

2-2

e XOS ANS COBOL
o XDS Extended FORTRAN 1V
o XDS Meta-Symbol

XOS ANS COBOL

XOS ANS COBOL is based on the American National
Standards Institute (ANSI) definition of the language. The
compiler's design permits rapid compilation of source code
as well as generation of efficient object code for minimum
program execution time.

The following features summarize the advantages of XOS
ANS COBOL as an important tool for the programmer:

e Maximum use of high-speed secondary storage (RAD/
disk pack file).

e Overlay organization for minimal core memory usage
during compilation.

e Table handling feature permits tables up to three
dimensions.

e Extensive diagnostic information and cross reference
listings.

e High compilation and execution speeds.

e Extended language features.

XOS ANS COBOL greatly increases programmer produc-
tivity. Less time is required to produce a given program or

series of programs than is needed when various different
programming languages are used. Time is saved not only

in the development and debugging of the original programs
but also in modifications and maintenance.

Because of the language structure, systems and logic changes
can be made easily and rapidly in programs prepared in
XOS ANS COBOL. The required changes fall into clearly
defined sections of the source code and do not necessarily
cause the entire program to be revised. XOS ANS COBOL
accepts compressed (encoded) source input and can generate
compressed source output. This feature reduces source-
program storage requirements and maintenance effort.

XDS EXTENDED FORTRAN 1V

XDS Extended FORTRAN 1V is a comprehensive algebraic
language that provides the user with a powerful and easily
learned method of stating computational processes. This
system conforms to the standard version of FORTRAN IV
defined and maintained by ANSI. It has been extended to
provide more complete capabilities and fewer syntactic
restrictions.

XDS Extended FORTRAN 1V is compatible with other
FORTRAN systems and contains (as subsets) most other
FORTRAN languages.

The XDS Extended FORTRAN IV processor makes optimum
use of storage during compilation and for generated machine
instructions. Compiler tables are dynamically assigned and
readjusted during compilation to provide maximum use of
available space. Intermediate output from the compiler is
retained in storage as long as space is available, thereby
eliminating unnecessary 1/O operations. These and other
advanced compiler techniques provide exceptionally rapid
compilation of source language programs.

XDS Extended FORTRAN 1V includes many features not
found in many other FORTRAN compilers:

e Control of specialized 1/O and interface equipment by
using in-line assembly language instructions.

e Compiler generates reentrant object code.

e Conditional compilation allows a single copy of a pro-
gram's source statements to be maintained for both de-
bugging and production purposes

XDS Extended FORTRAN 1V accepts source input and gen-
erates source output program files in a compressed (encoded)
format. This significantly reduces source program storage
and greatly eases the effort required to update source pro-
gram files.

XDS META-SYMBOL

The Meta-Symbol assembler is a multipass, high-level

language assembler. The most important advantage offered
by Meta-Symbol is its powerful procedural (PROC) capa-
bility. Procedures (bodies of code similar to subroutines)

have their effect during the assembly of a program rather
than during its execution. Particularly powerful is the
ability of Meta=Symbol procedures to generate instructions
conditionally based upon their calling statements. For
example, a single procedure may add a series of numbers
when called in one manner and average a series of numbers
when called in another. Procedures correspond somewhat to
macros in the sense that, when called, machine instructions
are generated in-line based upon the arguments that are
provided. Procedures of general value can be placed into
the system library and be automatically retrieved at assembly
time.

Other Meta-Symbol features include the following:

e Full use of lists and subscripted elements in procedure
references.

e Argument fields can contain both arithmetic and
Boolean expressions, using constant or variable

quantities.

e Command procedures permit generation of many units
of code for a given procedure call line.

e Procedures can be nested and one PROC may call
another.

e Symbol tables and concordance listings.
e Comprehensive error messages during assembly.

The ability to accept and generate compressed (encoded)

" source similar to that described for COBOL and FORTRAN

is also provided with Meta-Symbol. This reduces source
program storage and eases source program maintenance
procedures.

SERVICE PROCESSORS

LINK EDITOR

The Link Editor (Link) is an XOS processor that transforms
program modules in object-language format, as produced
by compilers, assemblers, and other language processors,
into a loadable and executable form (load module).
Optionally, it will transform object modules into library
modules, a specialized form for convenient storage of com-
monly used program elements, such as generalized sub-
routines. Link provides for the following kinds of flexibility
in the production of complete, functioning programs:

e The combination of several separately compiled or
assembled object modules, each constituting a sub-
division of a functional program, into a single load
module.

@ The inclusion of pre-prepared library subroutines in a
load module, along with one or more object modules.

o Overlay structuring of the resultant programs, allowing
conservation of memory space.

e Modification of load-module code during link editing,
allowing fewer recompilations or reassemblies.

DEBUG PROCESSOR

Debug aids assist in locating program errors. They may be
activated by either the XOS control command language or
by the program itself using XOS system services.

To activate debug services through the XOS control com-
mand language, the DEBUG processor is invoked by appro-
_.priate commands placed into the control job stream. Orders
corresponding to the commands are incorporated, by the
DEBUG processor, into the executable load module in the
form of calls to the appropriate XOS system services.

To activate debug services from the program, calls to the
required system services are placed by the user at the appro-
priate locations in the program.

XOS SORT

XOS SORT, in standard form, is a generalized parameter
sort program that utilizes either magnetic tape or disk for
intermediate files. Its input and output files are device
independent; sort input and output can, alternatively, be
dynamically supplied and received by a concurrently execut-
ing COBOL or Meta=-Symbol program. In overall structure,
it is a polyphase sequential sort, employing backward read-
ing of intermediate files, thus providing optimal performance
as either a tape or disk sort.

SORT can be employed as an overlay-structured subprogram
of a COBOL or Meta-Symbol program. In addition to the
standard-form sort, more specialized sorts can easily be
generated by each installation, incorporating application-
specific parameter defaults and user-developed input, out-
put, and duplicate-record handling routines.

UTILITY PROCESSORS

To assist the user in the overall maintenance of his files,
XOS provides six file/device oriented utility processors
that supplement. the facilities of the File Management
System. A seventh utility allows convenient generation of
test files via a COBOL-like language. (Detailed informa-
tion is provided in the XOS Utilities Reference Manual,

90 17 69.)

PREP — VOLUME PREPARATION

PREP prepares an XOS standard volume for subsequent pro-
cessing by writing a standard tape volume label on magnetic

tape or a standard disk volume label and volume catalog on
disk packs.

During magnetic tape preparation, PREP does not check for
existance of old labels. It writes a new volume label fol-
lowed by a tape mark, rewinds the tape, reads the just-
written label, and displays this label on the printer.

Disk preparation consists of writing a standard volume label
and the volume catalog. The size of the catalogisspecified
by the user and may contain 64, 128, or 256 file labels.
The catalog is intialized with empty file labels and two
special file labels :FDY and :PIL. File :FDY represents the
catalog itself and :PIL represents the space on the volume.

PREP checks disk packs for existing labels and displays the
old labels. PREP requests operator verification before over-
writing a disk label and catalog. For tape, this verification
is not performed to prevent overwriting.

FMGE — FILE MAINTENANCE

FMGE provides the user with eight major services: COPY,
SAVE-RESTORE, COMPRESS, DISPLAY, INCLUDE, EX-
TRACT, LIST, LISTCTG, and DELETE. These services may
be performed on file segments, individual files, or groups
of files from a device. FMGE operations always include at
least one magnetic device; at the time of file creation or
save, it may use a card reader or printer. FMGE services
are described as follows:

e COPY — Permits copying a file from one device to
another (only magnetic devices). The structure of the
copy is the same as that of the original file. The user
may, at his option, delete the original at the end of the

- copying process freeing the space occupied by the
original file.

e SAVE-RESTORE — With SAVE, the user may save a tape
or disk file on tape or cards. Either single files or
groups of files may be saved. The entire contents of a
disk file may be saved by specifying the files FDY or
PIL (discussed under PREP, above) are to be saved. PIL
implies the entire disk will be saved. In specifying
FDY, the user may also specify an expiration date.
Then, only the unexpired files are saved.

e RESTORE — Rebuilds files, in original format, that are
saved by the SAVE function. Saved files are directly
processable only by RESTORE. They are intermediate
files destined to be processed by RESTORE.

e COMPRESS — Allows the user to create on magnetic
tape or disk a standard format compressed file for sym-
bolic cards or card images.

® DISPLAY — Displays on the line printer or card punch
the contents of a compressed file.

e INCLUDE — Creates a member of a partitioned file
from a sequential file. The user may specify both a
keyword and synonyms by which the new file is to be
known.

o EXTRACT — Creates a sequential file from a partitioned
file member. The user has the option of deleting the
partitioned file segment at the end of the operation.

e LIST — Lists files in hexadecimal form.

e LISTCTG — Enables the user to list the contents of a
catalog on a printer. From the catalog, the following
can be obtained:

o Available space on the disk.

o Number of files he may create.

o Number of secondary blocks available in the
secondary part of the catalog.

The following items are displayed for each file:

o Identification (name, number, absolute generation
number, version number, creation and expiration
dates).

o Size (in quanta and blocks, 8K bytes per quanta).

o File organization.

o Format.

o Block length

o Record length.

o Key length and position of key in the record.

o Number and address of the last block.

o Number of overflow blocks.

® DELETE — Enables a user to erase his files regardless of
the expiration date.

REORG — FILE REORGANIZATION

REORG comprises two processors: REORGI, to reorganize
indexed sequential files and REORGP, to reorganize par-
titioned files.

In the frequent updating of an indexed sequential file, the
user normally creates overflow blocks and blocks containing
deleted information both of which increases file access

time. The REORGI processor builds a new file from the old
by incorporating the overflow blocks and not copying the
deleted blocks. The reorganization is generally done in

two phases. In the first phase, a sequential file is made

from the old indexed sequential file. Deleted records are
not copied and overflow blocks are inserted. The sequential
file is then used to build a new indexed sequential file.

The processor REORGP is used to reorganize partitioned
files. Reorganization consists of

1. Discarding partitions marked as deleted in the parti-
tioned file's directory.

2. Resorting the directory in ascending order.

3. Reordering the remaining partitions based on the order
of the newly sorted directory.

Reorganization eliminates wasted file space and reduces
file access time.

GENER — MEDIA CONVERSION PROGRAM GENERATION

The Media Conversion Program Generator (GENER) provides
routines that simplify the movement of data between any
combination of card, tape, disk, and RAD devices. The
data conversion is a two-step process (i.e., conversion-
program generation and actual execution of the program
generated).

In the program-generation step, the user supplies control
commands describing the formats of the input and output
files, the types of devices to be used, the data translation
tables to be used (if any), and indicates the presence of any
user-supplied routines to be used for the processing of non-
standard labels. GENER then uses these parameters to gen-
erate object modules ready to be processed by the Link
Editor. GENER also prepares a file describing the tree
structure to be used by the Link Editor in selecting conver-
sion program modules from the GENER library of object
modules. The Link Editor is then called to form a loadable
program from the modules.

To execute the generated conversion program, the user must
define the input and output files via IASSIGN commands
and must provide a IRUN command. The user may execute
his conversion program immediately, or he may catalog the
IASSIGN and IRUN commands for a later execution of the
program.

DEFG — FILE GENERATION GROUP DEFINITION

The DEFG processor allows the user to define and maintain
a set of files as a relative generation group. This permits
the system to perform certain of the functions of job setup
and volume retention normally done manually; functions
can be quite burdensome for certain applications run on a
cyclical basis: daily, weekly, and monthly runs of an
accounts receivable program, for instance.

If a file generation group is established, the system can
"keep track" of the volume serial numbers associated with
specific generations of a given file and optionally, can
decide which of the volumes retained as backup to a current
file may be reused. This capability of XOS frees the user
of the need to supply, for each run of a program, the volume
serial numbers to be assigned to specific files, and relieves
him of the responsibility of deciding when each of the vol-
umes associated with an application becomes available for
reuse.

Through use of DEFG, the user initially establishes the set
of storage volumes to be used for a relative generation
group, and subsequently can modify the set as the need
arises.

GEF — TEST FILE GENERATOR

Preparing adequate test files for testing large, new, data-
based programs can often be a difficult problem. The Test
File Generator (GEF) helps ease this problem by assisting
the userin generating test files. Through control commands,
the user defines the files he wishesto build. His description
will include the block and record length for the file. The
record may be subdivided into fields and these fields may,
themselves, be further subdivided. The user also describes
the types of data that will eventually fill the fields. The
fields may contain EBCDIC, binary, single and double pre-
cision floating point, and packed decimal data. The manner
in which data fields are described follows very closely the
form used in the PICTURE clause in COBOL.

Once the file format has been established, the user then
supplies the data values to be used in actually building the
file. The statements used in filling record fields with data
values allow the use of iteration techniques. This enables
the user to initialize many records through the repeated exe-
cution of a few GEF statements. As a check on the files
being built, the user may request the records be listed on

the line printer along with a listing of the GEF commands
used to define the file.

SYSTEM GENERATION

The System Generation process (SYSGEN) produces a work-
ing XOS system that supports an installation's hardware con-
figuration and its software requirements. The generation
process consists of

e Adapting the monitor's program modules to the
installation.

e Linking the modules into elements and overlays.

e Relocating language processors and other programs sup-
plied with the system.

e Writing a loadable image of the new system on tape, to
be known thereafter as the system tape.

The results of system generation are similar for most operat-
ing systems. However, the method of generating a system
varies extensively. Many systems require SYSGEN fo be
one continuous process from start to finish. In XOS, a sys-
tem may be generated in one continuous process or may be
generated as a series of related but distinct steps. Also,
generation may be performed under either a full sized exist-
ing XOS system or a smaller, skeletal system (in the case of
a new installation). At many points in the SYSGEN process,
it is possible to generate "save" tapes. These tapes are gen-
erated by the FMGE processor and enable the user to save
the current status of the system generation. These tapes
may be used as restart points if an installation's requirements
should change. This saves the user from restarting from the
beginning any time a failure occurs (even minor failures)
during the generation process.

3. J0B CONTROL

INTRODUCTION

The XOS monitor receives job descriptions from control
commands. They are a means of communication between
user and system; they describe the sequence of the different
steps comprising a job. Data may be placed after each step
for use during execution of that step.

The collection of control commands and data forms a job,
which is entered into the system by the input symbiont.

Job initiation does not necessarily occur in order of presen-
tation to the input symbiont. The system schedules jobs and
job steps by job class, by user-assigned priorities (T class),
and by required resources, as described by the control
commands.

The XOS control command language consists of fourteen
commands.

1JOB ISWITCH

IRUN ITITLE '
1EXEC IMESSAGE

ILIMIT ICOMMENT

ISLIMIT Iprocessor-call

IRESOURCE IDATA

IASSIGN IEOD

General characterisitcs common to all commands are de-
scribed in the following section. Subsequent sections dis-
cuss syntax and options for each command and present
examples.

GENERAL SYNTAX

Syntax rules common to all XOS commands are presented
herein. Commands have the following general form:
comment field

! command option field

where

I isunique to the job-control commands; the system
recognizes such commands by this character and re-
quires it to be placed in character position 1.

command is an alphanumeric keyword identifying
the command. It must beginin character position 2
and ends with a sequence of one or more blank
characters with a maximum of 12 characters in
length.

3-1

option field is a list of elements, separated by
commas, which specifies the parameters of the
command. No blank characters are permitted in
this field. An element of the list may take one
of the following forms:)

1. A sublist having the same form as the option
list and placed between parentheses.

2. An alphanumeric keyword recognizable to the
system. ’
3. A value -

e Decimal integer: the maximum size of
which is determined by the requirements
of the particular command

o Symbol: a sequence of alphanumeric
characters, the maximal length of which
is specified by individual command re-
quirements. Acceptable characters are
the 26 letters, 10 digits, minus sign,
and colon

o Character string: a sequence of any »
characters of the set defined by a speci-
fic command (e.g., OPTION parameter
of IRUN). When such a sequence ap-
pears in the option field, it must be the
last element of the option list.

. Opﬁbn (i.e., a symbol, as defined above)
limited to 18 characters.

4. A symbolic parameter (i.e., a symbol, as de-
fined above) has a percent sign (%) as the
first character and is limited to a total of nine
characters.

The option field is terminated by a blank char-
acter or by the first semicolon, in the case of
continuation,

comment field
option field.

includes all characters following the

SPECIAL SYNTAX NOTATION

Control command descriptions use a special syntax notation.
An element shown as prefixed with a percent sign (%) may
be made a symbolic parameter, allowing later substitution
at the time of command set execution. (See "Cataloging"
under 1 JOB Command).

CONTINUATION OF COMMANDS

The option field of a control command can extend over one
or more records. The command to be continued must end
with a semicolon (;). The subsequent record must begin in
character position 1 with an exclamation mark (!) and may
be followed by any number of blanks prior to the option
field continuation. The continuation record may itself be
continued, by the same rules.

PROCESSOR COMMANDS

The commands for calling the following XOS processors are
explained in detail in the indicated chapter or manual:

Link Editing — This manual, Chapter 4.
Debug Aids — This manual, Chapter 5.
Utilities — XOS/UT Reference Manual, 90 17 69.

System Generation — XOS/SM Reference Manual,
90 17 66.

Compilers, Assemblers and other processors — Appli-
cable processor manual.

The general syntax of a ! processor-call command isdescribed
later in this chapter.

CONTROL COMMAND INTERPRETER (CCI)

The CCI processes commands read in by the input symbiont
and creates a file that is used later for scheduling and
control of the corresponding job. The file created by CCI
contains the information in a format suitable for efficient
scheduling. This information also becomes a convenient
source of information for the process of mounting and dis-
mounting volumes and releasing devices during job
execution.

The CCI can also catalog sets of commands to be later
called and activated as parallel jobs or to be called and
effectively inserted into a job command set with an
EXEC command. The syntax of each type of command is
processed such that it is generally known if a string, deci-
mal number, or delimiter is expected. Although it is an
important part of the monitor, the CCI may be considered
as a parallel job, and it is scheduled as such.

The Mini=CCI is required to initiate a parallel job. It uses
the cataloged commands previously prepared by CCI when
requested by the operator. Mini~CCI provides requests to
the operator to allow substitution for previously defined
symbolic parameters, if necessary. When the parallel job
is ready (i.e., its required resources are available), it is
scheduled with the highest job level priority. Mini-CCI
may be considered as a parallel job and is scheduled as
such,

3-2

1J0B COMMAND

The ! JOB command must be the first command of every job.
In the case of batch processing, it also defines the end of
the preceding jobs except in the particular case when com-
mands (1JOB included) are being used (read) as data (see
IDATA command).

The 1JOB command specifies the execution type expected
by the user:

1. Syntactic analysis of commands and subsequent
execution.

2. Syntactic analysis of commands without execution.

3. Syntactic analysis and cataloging of commands without
execution.

The !1JOB command must be present; if it is absent, the job
is either considered to be part of the preceding job or
ignored (in the case of the first job of batch processing).

Syntax

-
5 A
iob-id,accounf,user-id[,{ . . }]
: priority
!JOB[,closs-id] X

ADD (
name,account, (CATLG,[DEL 1)
REP

L)

where

class-id is an alphabetic character identifying the
class under which the job must be executed (ig-
nored when using the CATLG or D option). The
correspondence is as follows:
A Class A production job.
B Class B production job.
C Class C production job.
D Class D production job.
E Class E production job.
P Parallel job.

T Class T production job (default option).

$ Super job (predicate job link).

(See "Job Classes and Super Jobs".)

job-id is the job identity. This is the name by
which the system identifies the job for execution
(a maximum of 12 characters).

account is the user account number. This is an
identifier consisting of a maximum of four alpha-
numeric characters, assigned to a user by the
installation, which identifies the account under
which the job is to be processed.

user-id is user identity. This is an identifier con-
sisting of a maximum of 12 alphanumeric characters.

D is the DEBUG option. Requests syntactic anal-
ysis of subsequent commands without execution.

priority is the external priority for class T jobs
only. This is a decimal integer from 0 to 15.
The priority is increasing from 0 to 15. The de-
fault value is 15.

name is the name (maximum of eight characters)
under which the command set is to be cataloged or
under which such a set has already been cataloged.

ADD indicates the addition of a new set to the
catalog of control command sets. The name
(job-id) must not already have been allocated.

ADD is the default option (see "Cataloging").

DEL indicates that a command set, already cata-
loged under the identifier of the current 1JOB
command, is to be deleted from the catalog of

command sets.

REP indicates that a command set, already cata-
loged under the identifier of the current !JOB
command, is to be replaced by the command

set following the 1 JOB command.

JOB CLASSES AND SUPERJOB

All production class jobs are executed on a first=in, first-
out basis within a given job class. Class T jobs may be
prioritized with the priority option on the !JOB command,
which can cause the first-in, first-out sequence to be over-
ridden if priorities are different for individual class T jobs.
Only one job per class is initiated at any given time.
Overall, the job classes A, B, C, D, E, and T are initiated
according to their relative priority which is assigned during
system generation, and by the available resources of the
system. -

Class P jobs are initiated first-in, first-out and by available
resources. They have the highest relative priority of all

job classes, and if present in the job stream, are always
initiated first,

Superjobs may be formed within the production job classes
A, B, C, D, and E by the following method:

Given several jobs, each of which is dependent on the
execution of a prior job or jobs, the first job should
be given a normal class assignment (A, B, C, D, or E)
and subsequent jobs to be linked should be given the
predicate job assignment, dollar sign. The net effect
of this scheme is that an abort of an upstream (predicate)
job causes all downstream jobs to be aborted.

CATALOGING

XOS allows the cataloging of control commands into groups
called command sets.

A set to be cataloged is syntactically analyzed and is then
filed on the system disk in a specialized file.

The set can be retrieved for execution in two different ways:

1. Insertion into a set of commands. This execution is
made with the aid of the !EXEC command. The com-
mand set to be executed can represent one or several
job steps, or part of a job step.

2. Initiation of a parallel job from the operator control
device. The cataloged command set must contain all
the commands necessary to execute the same job in a
production class. Such a job is then limited to a single
job step as are all parallel jobs.

CONTROL COMMAND PARAMETERS

Certain elements appearing in the option field of a com-
mand may remain undefined until execution. These elements
are indicated by a percent sign (%) prefix in the syntax.
If the element is to be used as a symbolic parameter, an
actual % must appear preceding the element in the com-
mand. If the % does not appear, the element is assumed to
be an actual value.

The symbolic parameters are replaced by their effective
values for execution from a list of equivalences given either
by the IEXEC command, or by the operator in the case of

a parallel job.

A parameter equivalence has the following format:

%parameter = actual element value.

If it is desired that the element default value be used
instead of specifying an actual element, the expression is
written

Y%parameter = % %

In any case, the format and the nature of the actual
elements must be identical to what they would have
been if they had been placed directly on the command
card.

In this manual the elements which can be parameterized
are indicated by the optional % prefix in the command
syntax. -

A single symbolic parameter can replace part of an option
field or an entire set of sublist elements.

A single sublist element may be parameterized. The param-
eter symbolizes the entire sublist. For example, the VOL
option of the !ASSIGN command has the syntax

(VOL, % serial-no ,...)

the serial-no sublist elements may be represented by only
one symbolic parameter.

Incorrect usage:

(VOL, %A, V125)

Correct usage:

(VOL, %A)

Substitution for the above could be

%A =V124,V125

Example of parameterization of elements of different type:
The SIZ option of the !ASSIGN command has the syntax

(S1Z, %size, %incr)

Incorrect usage:

(S1Z,%C)

with implied substitution of the form
%C =100, 25
Correct usage:
(SI1Z,%C, %D)
where the implied substitution would be of the form

%C =100

%D =25

Exorﬁple 1: Class T Production Jobs

1JOB, T TRIALI, XDS, DOE, 10

This command.indicates a job identified as TRIALl in class T;
the job is to be executed under the account-id XDS, the
user-id isDOE, and the priority level is 10 withinthe class T
scheduling queue.

Example 2: Cataloging of a Job

1JOB TRIAL2, DSB, (CATLG)

The set of the commands which follow (up to the next JOB
command), are cataloged under the name TRIAL2. This
name must not already exist in the catalog or the job will
be errored. The cataloged commands may be inserted into
another job by means of an IEXEC card bearing the name
TRIAL2, or may be executed as a single step parallel job by

" the operator (see XOS/OPS Reference Manual, 90 17 68).

Example 3: Replacing a Cataloged Job

1JOB CATID,ACCT, (CATLG, REP)

new command set

A previously cataloged command set, CATID, will be re-
placed by the new command set under the same identity.

Example 4: Deletion of a Cataloged Job

1JOB TRIAL3, V010, (CATLG, DEL)

The set cataloged under the name TRIAL3, will be deleted
from the catalog.

Example 5: Superjob

1JOB,A FIRST,XDS,R:LAVER
commands/data

1JOB,$ SECOND,XDS, J:NEWCOMBE
commands/data

1JOB,$ LAST,XDS, K:ROSEWALL

commands/data

This set of commands shows the structure of a superjob,
where job FIRST is the predicate for execution of jobs
SECOND and LAST. .

'RUN COMMAND

The 'RUN command calls an executable load module into
memory and initiates its execution as a job step.

IRUN [%step][, (LMN,%module)][,(UNLESS;
I %value, . . .)][,OPTION,%option, . . J
where
is a parameter of up to four alphanumeric

characters which identifies job step for further ref-
erence by the IASSIGN command OP suboption.

step

module is a parameter of up to 17 alphanumeric
characters, It identifies the file containing an
executable load module of the program to be
executed. This file is assumed to be on the ac-
counting volume (volume or pseudo volume for
user account on which file information is main-
tained) of the job that uses it. If not, a !ASSIGN
command with operational label LM must precede
the IRUN command to specify the means of access
to the file. If the option LMN is omitted, the sys-
tem assumes that the user wishes to execute the
last load module built during the current job by
the Link Editor.

value is a decimal integer ranging from 2 to 31,
designating a bit of the Job Switch Word (JSW).
If (at least one of) the specified JSW bit(s) is set
(i.e. is1), the IRUN command is not executed.

option is a string of any EBCDIC characters (blanks
not allowed) with a maximum size of 119 charac-
ters that is transmitted to a table, the first byte of
which is a byte count of the number of characters
actually in the string. A pointer to the string byte
count word is given to the program module to be
executed, at its initiation, through program reg-
ister 2. The string may be any format with the
exception of symbolic parameters (%) which must
be standard (see "Control Command Parameters").

Example 1:
1JOB TEST,XDS,SMITH
IRUN (LMN,TEST31)
The job loads and executes the load module contained in the
file TEST31 cataloged under account number XDS.
Example 2:
1JOB,B MATRIX,421,PETER

IFORTRAN LO, SI, GO

FORTRAN source module
TLINK
IRUN

data file

Example 2 will cause a FORTRAN program to be compiled
(IFORTRAN), a temporary load module to be created by
the link editor (ILINK) and finally the program loading
and execution (IRUN). The data file will be read dynam- -
ically from the job input stream.

Example 3: Suppose that the following command set has
been cataloged:

1JOB FORT-GO, 421, (CATLG,ADD)
IFORTRAN LO, SI, GO
TLINK

IRUN

To execute this cataloged command set, the following com-
mands may be used:

1JOB, B MATRIX, 421, PETER
IEXEC FORT-GO
FORTRAN source module

data file

The effect of this execution will be identical to that of the
job described in example 2.
Example 4:
1JOB, T EXECUTION, XDS, JOHN
IRUN STP1, (LMN, ADVANCE)
data file
IASSIGN LM, FIL, (STS, OLD), (UNT;
! ,AC,103), (NAM, DELAY)
IRUN STP2, (UNLESS, 10, 11, 12)
data file
The first step (STP1) will be the execution of the load mod-

ule in a file named ADVANCE cataloged under the account
XDS.

In the second step (STP2), the IASSIGN command specifies
that the load module to be executed is located in the file
DELAY and is cataloged under the account 103. The second
step will be executed only if bits 10, 11, and 12 of the

JSW are 0.

'EXEC COMMAND

The IEXEC command executes a previously cataloged com-
mand set.

Syntax -
IEXEC %name[, (UNLESS, %value, ...)] [, %list]

where

name is the identifier (maximum of eight characters)
given to the cataloged command set during its
cataloging (job-id).

value is a decimal integer ranging from 2 to 31
that designates a bit of Job Switch Word (JSW).
The specified value(s) will be substituted in the
UNLESS options of all the IRUN commands in the
cataloged command set. (The values previously
specified in the IRUN commands are not inter-
rogated.) Thus, if at least one of the correspond-
ing bits is set to 1 in the JSW, all the cataloged
job steps will be skipped.

list is an equivalence list which, at execution,
transmits actual values to the symbolic parameters
declared during the cataloging. The list is a
series of parameter sets, separated by commas,
each set having the form

Y%symbolic-parameter = value

Example: Suppose the following job has been cataloged:
1JOB DESIGN, XDS, (CATLG,ADD)
ISWITCH (S, %KEY)
IASSIGN FIL1,FIL, (STS, OLD);
I ,(UNT,MT,(VOL, %N));
I, (DSP, %T), (NAM, %NAME)
IRUN (LMN,DESIGNT)
The command set following the job command is cataloged

under the name DESIGN. The cataloged commands are
invoked by a !EXEC command.

The following sample !EXEC command illustrates the types
of parameter values that may be substituted for the symbolic
parameters defined in the cataloged command set:

IEXEC DESIGN, %KEY =10,11,12;

I, %N =12, %T = %%, ;

I %NAME = DATA

The commands effectively executed are:

ISWITCH (S, 10,11,12)
IASSIGN FILI, FIL, (STS, OLD), ;
I (UNT, MT, (VOL, 12)),;

I (DSP,DMT), (NAM, DATA)
IRUN (LMN, DESIGNT)

Note that the DSP parameter (%T) assumes the default, which
which is DMT.

ILIMIT COMMAND

The ILIMIT command transmits two types of information to
the system:

1. It specifies the limiting values for the number of.printed
pages and punched cards to be produced by the output
symbionts during the execution of a job.

2. It specifies the maximum amounts of the shared resources
(CPU time, memory space, temporary disk space) that a
job will require.

If these estimates are exceeded, the job is aborted.

There can be only one ILIMIT command per job, and it must
immediately follow the 1JOB command. All the parameters
of the ILIMIT command are optional, as is the |LIMIT com-
mand itself. The system assumes default valuesfor all param-
eters that do not appear; default and maximum values are
established for each job class during system generation,

Syntax

ILIMIT [(TIME%duration)][, (SPDISC, %quanta)];
! [(CORE, %space)] [, (CARDS, %cards)];

I [, (PAGES, %pages)]

where

duration is the maximum amount of execution time
(in minutes) allocated to the job. The system ini-
tializes a timer to the specified value for each job.
This timer is decremented only when the job takes

control of the CPU; decrementing stops each time
the job loses control.

quanta is the space allocated to the job to create
temporary files on the system disk. One quantum
equals 8192 bytes.

space is the memory space allocated to the job for
its execution. This space is expressed in memory
pages (1 page = 512 words).

cards is the maximum number of cards that may be
punched for the job on the SCP device (symbiont
card punch).

pages is the maximum number of pages that may be
printed for the job on the OUT and/or SLP devices
(symbiont line printers).

If the values specified for the CORE or SPDISC options are
exceeded during execution, the job is aborted unless a new
allocation of higher value has been made for the current
job step by means of an ISLIMIT card.

Example: Assume the following !LIMIT command:

ILIMIT (PAGES, 200), (CARDS, 100), (SPDISC, 50)

The above command shows that if the job under consider-
ation attempts to output more than 200 pages on the line
printer or more than 100 punched cards, it will be aborted.

The job is given 50 quanta of temporary disk space (409,600
bytes). If this value is execeeded, the job will be aborted
unless a higher value has been given to the current job step
by an ISLIMIT card. Because the TIME and CORE options
are not specified, their values will default to values speci-
fied during system generation. Exceeding the default values
will have the same effect as exceeding values actually
specified. ‘

ISLIMIT COMMAND

The ISLIMIT command redefines, for the duration of the job
step to which it applies, the limiting values of CPU memory
and temporary disk space.

If the ISLIMIT command is to be used, it must be placed
immediately prior to the command that activates the job
step (IRUN or !processor call). The jobscheduler checks to
see if the requested resources are available; if not, the job
is placed in a wait state until resources become available
at which point the job becomes active.

At the end of the job step, limit values return to those
specified in the ILIMIT command, or to the default values
of the system, unless a new ISLIMIT command specifies
other values for the next job step. If the amount of

3-7

resources in use at the end of a job step is higher than the
value specified in the ILIMIT command (e.g., temporary
disk files are using more quanta than specified in the SPDISC
option), the job will be aborted.

Syntax
ISLIMIT [(SPDISC, qucmfcu)] [, (CORE, space)]

where

quanta is the space allocated to the job step to
create temporary files on the system disk. One
quantum equals 8192 bytes.

space is the memory space allocated to the ioE step
for its execution. This space is expressed in mem-
ory pages (1 page = 512 words).

The ISLIMIT command is optional as each of its parameters
is optional.

If the ISLIMIT command is used, resource limits not speci-
fied on the !SLIMIT command default to the corresponding
limits on the !LIMIT command; if omitted in the !LIMIT com-
mand, the system default values are used. If the values
specified on the ISLIMIT command are lower than the cor-
responding value on the !LIMIT command (or the jobdefault
value), the SLIMIT value is ignored.

The job is aborted if any of the resource limits effective
for a particular job step are exceeded.

Example: Assume the two following commands within a job:

ISLIMIT (SPDISC, 50)
IRUN STP3, (LMN,ABC)

Suppose that for this job the temporary disk space limit
value was set to 30 quanta in the ILIMIT command. This
value will be increased to 50 quanta at job step STP3. At
the end of STP3 the limit will be brought back to 30 quanta
unless a new !SLIMIT command specifies a higher value for
the next job step.

If at the end of STP3 the temporary disk space actually in
use is higher than the next limit value to be used, the job
will be aborted.

IRESOURCE COMMAND

The 'RESOURCE command specifies the minimum amounts of
common resources (I/O devices) required for initiation of a
job. The system default value is used for any peripheral
type not specified in the IRESOURCE command; this value
indicates the maximum number of units that may be simul-
taneously active during the job process.

The values shown on the IRESOURCE command may be
exceeded during execution. However, the scheduler places
the job in a wait state if the request cannot be fulfilled
immediately until such time as resources are available, at
which point the job will be placed in the active state.

If the value shown on the IRESOURCE command (or the de-
fault value) is greater than currently necessary for execu-
tion, the system will use the lower value actually required.

Syntax

IRESOURCE (yy, %number)(,...]

where
yy is a mnemonic of two alphanumeric characters
designating a type of peripheral as follows:

MT 9-track magnetic tape unif.
7T 7-track magnetic tape unit
DM removable disk (7246/7242)
cp card punch ‘
CR card reader
LP line printer

number is a decimal integer stating the minimum

number of peripheral units of type yy that must be
allocated to the job before initiation.

The IRESOURCE command must be placed immediately after
the !'LIMIT command or, if the latter is absent, after the
1JOB command. The !RESOURCE command is optional.

If one of the values on the |RESOURCE command is ex-
ceeded, the job scheduler puts the job into a wait state.
This is done before execution of the step that would cause
the excess demand. The job is reinitiated at that job step
by the job scheduler as soon as the resources on which the
excess demand was made are available.

Example: Assume the following command:
IRESOURCE (MT, 2)

The job scheduler initiates the job as soon as at least two
9-track magnetic tape units are available, unless the job
or job step actually requires fewer than two tape units.

TASSIGN COMMAND

The 1ASSIGN command allows the user to assign a logical
file, identified by an operational label, to a physical file

as described in the command. The logical file is defined
by a data control block (DCB) in the user's program; asso-
ciated with a given DCB is a one~ to four-character oper-
ational label that is unique within the program. (Logical
files and DCB's are described in detail in Chapter 6, where
the DCB/!ASSIGN relationship is also further discussed
under " ! ASSIGN Command Usage." Creation and modifica-
tion of DCB's is described fully in Chapter 7.) A maximum
of 20 !ASSIGN commands is allowed per job step.

The IASSIGN command defines the physical resource, i.e.,
the type of 1/O device and, where applicable, the specific
storage media volume(s), to which the operational label is
to be assigned, either for creation of a new physical file or
access to an existing physical file. Therefore, the process-
ing program can be independent of specific 1/O devices,
and if carefully designed can be independent of 1/O-device
type also.

Many other characteristics of a physical file (besides the
corresponding physical resource) may also be defined in the
IASSIGN command, such as file name, size, mounting mode
(for multivolume files), end-of-processing disposition, etc.
The assignment of an operational label allows the establish-
ment of an association, at the time the DCB is opened (see
Chapter 7, "Introduction"), between the DCB and the de-
fined physical file. This permits the system to utilize, at
execution time, the externally (1ASSIGN command) estab-
lished characteristics of the physical file. Optionally, the
user can also specify DCB parameters — defining aspects of
the logical file — in the 'ASSIGN command, which modify
or complete the DCB when it is opened, analogously allow-
ing the program to utilize at execution time externally de-
fined characteristics of the logical file.

The use of predefined operational labels, for which the sys-
tem will make an implicit assignment, is described later in
this section under "Predefined Operational Labels".

SYNTAX

The full syntax of the four basic types of IASSIGN com-
mands is shown on foldout Chart A-1 in Appendix A. The
four basic types of !ASSIGN commands correspond to

e File-type (FIL) assignments: labeled permanent files,
or temporary files, on magnetic file media. (FIL op-
tions and DCB parameters apply.)

® Device-type (DEV) assignments: files on nonmagnetic
devices, or unlabeled files on magnetic tape volumes.
(DEV options and DCB parameters apply.)

e Indirect-type (OPL) assignments: essentially an in-
direct form of a FIL or DEV assignment, referring to
another 'ASSIGN command. (DCB parameters apply
only.)

e Dummy-type (DUM) assignments: a null or "dummy"
physical file assignment. (No options or parameters
apply-)

The meaning of the options applicable respectively to
the FIL and DEV types of IASSIGN command, as shown
on fold-out Chart A-1, are described separately below.
Immediately following are descriptions of the two fields
common to all four !ASSIGN command types, and of the
OPL and DUM types of assignment.

COMMON 'ASSIGN OPERANDS

The meaning of the two operand fields common to all forms
of the ASSIGN command are as follows:

op-label This mandatory field, which must appear in the
position shown, specifies the one- to four-character
operational label to be assigned in order to establish
the characteristics of a physical (or dummy) file.

MTN (maintain) specifies that the file assign-
ment for op-label is to be maintained, i.e., is
to remain in effect, through subsequent job steps until
replaced or freed by another IASSIGN command spec-
ifying the same op-label. (The defined physical re-
source, if any, remains allocated until such time or
until end-of job.)

{MTN}
FRE

FRE (free) specifies that the assignment for op-label is
to be effective only for the job step with which the
command is associated; the association is "freed" at the
end of the job step, and the corresponding physical re-
source, if any, is released unless the FIL-option DSP,
RET is specified.

If neither MTN or FRE is specified, FRE is assumed by
default. (Exception: see "OPL-Type Assignment"
below.)

OPL-TYPE ASSIGNMENT

The indirect type of assignment, distinguished by the key-
word OPL, is simply a reference to anotheractive !ASSIGN
command. The op-label-1 field identifies the primary
operational label (op-label field) specified in another
IASSIGN command that either appears in the same job step
or is still active from a previous job step (with MTN op-
tion). The primary operational label specified in the refer-
encing command thus takes the physical file assignment
made in the referenced command. (DCB parameters of the
reference command do not apply.)

The OPL type of !ASSIGN command essentially allows for
the creation of a synonym of an operational label assigned
with another command. This allows multiple op-label
assignments o a given volume/device. Were each assign-
ment made separately, a separate resource request would
be implied by each assignment, i.e., several devices would

3-9

be allocated for a single volume. This situation would be
wasteful of the system's 1/O resources.

In the syntax
1. IASSIGN op-label, OPL, op-label-1

op-label effectively defines a synonym of op-label-1. The
assignment of op-label is effective for one job step only;
assignments made via OPL cannot be maintained. The
original assignment of op-label-1 remains in effect if MTN
was specified therein.

Optionally the user creates a synonym operational label
and also frees the referenced operational label (at the end
of the current job step) by the use of the syntax

2. IASSIGN op-label,FRE, OPL, op-label-1

Note that in this form FRE effectively refers to op-label-1,
since the op-label assignment is effective only for the cur-
rent job step in any case.

SPECIAL CASE OF THE OPL-TYPE ASSIGNMENT

A special case of the OPL-type !ASSIGN command allows
the user to free a previously assigned and maintained opera-
tional label at the end of the current job step. The syntaxis

IASSIGN op-label, FRE

This is the default case of form 2 above, where OPL is the
type-keyword default and op-label-1 is assumed by the sys-
tem to be identical to op-label.

DUM-TYPE ASSIGNMENT

The DUM type of !ASSIGN command assigns the operational
label to a "dummy" or simulated physical file; no actual
I/O device is defined for the operational label. An attempt
to open the corresponding DCB for input, update, scratch,
or backward operations results in an abnormal return (X1-
class, abnormal code X'01'). The DCB can be opened
normally for output, and output operations requested through
the DCB are simulated but result in no actual 1/O
transmission.

MEANING OF THE FIL-TYPE OPTIONS

The meaning of the options applicable to the FIL type of
assignment are given below.

STS introduces the status of the file being assigned:
NEW specifies that a new file is to be created.

The system requires that the account number of
the job be the same as the account number (if

LNK

UNT

any) associated with the volume on which the file
is to be created, i.e., excepting public volumes.
The system also verifies, at the time the DCB is
opened, that no file of the same name already
exists on the volume if direct-access media; if
magnetic tape, the name verification is optional
(see options available with M:OPEN).
OLb specifies that an existing file is to be read or
rewritten. The file owner and other authorized
users (see PRT option) can read the file, but only
the file owner can rewrite it. If rewritten, only
the file content is changed; the original logical
and physical file characteristics as described in
the file's labels are not modified.

MOD specifies that a file is to be modified (read,
updated, and/or extended). The file owner and
authorized users (see PRT option) can read, update,
and/or extend the file, as authorized. For se-
quential files, only extensions are allowed. If the
file does not exist at file opening time, the status
evolves to NEW and processing is as described
thereunder.

specifies that the existing file currently being de-
fined is to be linked (logically concatenated) to a pre-
viously defined file:

op-label-2 is the operational label of the first file
of the linked sequence, by which label the entire
set of linked files can be read (status OLD, input
processing mode only). Any number of files can
be so linked, but these files must be on magnetic
tape and have the same physical characteristics.
The order in which the ASSIGN commands appear
in the job step determines the order of linking and
access.

specifies the physical resource(s), i.e., device
type and volume(s), on which the file exists or is to be
created:

DM . .
MT defines a removable-volume device type;
DM =7242 disk, MT =9-track magnetic tape.

VOL introduces the serial number(s) of the vol-
ume(s) to be mounted (a maximum of 12 per
ASSIGN). Default = a public volume — if a per-
manent file is created thereon (NAM option speci-
fied), the volume automatically becomes private.
serial-no is a one- to six-character volume serial
number.
SQN introduces a volume-list sequence number.
sequence-no is a positional index into the volume-
serial-number list (see VOL above) that points to
the number of the first volume to be processed in
a multivolume sequence. For example: given a

3-10

MNT

multivolume magnetic tape file comprising volumes
A001, A002, and AQ03; if it were desirable to be-
gin processing with A003 and bypass mounting of
A001 and A002, the UNT option would be

(UNT,MT,(VOL,A001,A002,A003),(SQN,3))

This applies to sequential files only. The default
value for SQN is 1.

AC introduces the account number corresponding to
an account volume from which the file is to be
accessed (in the mode or modes authorized by the
account volume owner).

acct-number is a one- to four-character account

number.

op specifies that the file is on, or is fo be created
on, a device/volume that has already been defined
and is still allocated to the job, the purpose being
to prevent unnecessary mountings and dismountings.

op-label-3 is the operational label that identifies
the I ASSIGN command in which the device/volume
has previously been defined; this operational label
need not be actively assigned in the job step in
which it is referenced, i.e., it may be currently
free.

identifies the job step containing the IASSIGN
command identified by op-label-2; the job step
identifier may be the IRUN command step param-
eter or the relative step number (first step = 1).
If step is omitted, the current job step is assumed
unless the referenced label is active, i.e., has
been maintained from a prior job step.

step

The default for the entire UNT option for a permanent
file (NAM option specified) is UNT, AC, acct-number
where acct-number is the account number specified on
the corresponding ! JOB command; i.e., the user's own
account volume is implied. The default for a temporary
file (NAM option also omitted) is secondary storage — a
portion of system disk space.

specifies parallel volume mounting; i.e., all vol-
umes are to be mounted concurrently on different phys-
ical devices. PAR is valid only for removable volume
disk devices, for which it is the default option; PAR is
mandatory for multivolume files to be processed by
AIAM, APAM, and VDAM. Parallel mounting is not
relevant to public volumes.

specifies serial mounting of volumes; mounting and
processing of the volumes will therefore be sequential.
For magnetic tape files, MNT is the default, with one
physical unit reserved for volume mounting:

number is the number of physical units to be re-
served for mounting of some or all of a serial-
mounted volume sequence.

DEF

DSP

VA

specifies deferred volume mounting. In this case,
the system will not reserve additional physical units but
will use the physical unit(s) assigned to another file by
another ASSIGN command. The corresponding physi-
cal unit(s) must be available (i.e., not associated with
an open or temporarily closed DCB) when the subject
file is opened. Several deferred mountings may occur
in sequence within a job step. The mounting type spec-
ified on the referenced ASSIGN command must be serial
(MNT), and applies to all mountings deferred to it:

op-label-4 is the operational label of the referenced
ASSIGN command; both ASSIGN commands must ap-~
pear in the same job step. The volume assigned via op-
label may not be used in a subsequent job step.

introduces the option specifyingdesired volume dis-
position following closing of the DCB corresponding to
op-label. The default for the DSP option is DSP, DMT:

DMT requests dismounting of volume(s). (Default
option.)
KEP requests no dismounting of volume(s); they will

remain mounted for possible subsequent use by other

jobs or job steps but may be dismounted if the sys-

tem needs the corresponding physical units.
RET requests that the volume(s) are not to be dis-
mounted during the job unless a deferred mounting
is requested on the same device(s). The corre-
sponding device(s) will remain allocated to the
job unless released by a subsequent deferred-
mounting assignment.

introduces the size parameters of a file to be created
on direct-access media (recognized for status-NEW
files only):

RST

specifies that the unused space remaining after
file creation is to be returned to the system.

SEP specifies that the overflow area of a multi-
volume indexed file is to be created on a volume
separate from the volume(s) on which the base
data blocks have been written. (Permanent, multi-

volume, indexed-organization files only.)

size is the initial (C or P organization) or total
(I or D organization) size of the file, expressed in

quanta of 8192 bytes.

increment is the increment of space by which a
sequential or partitioned file is to be extended
when necessary (and possible), or the portion of
the total space of an indexed file that is to be
reserved for index and overflow blocks; both ex-
pressed in quanta of 8K bytes. (See Chapter 6,
"Space Allocation.") This optionis notrecognized
for direct-organization files.

NAM

PRT

introduces the name (i.e., file identification) of
the physical file to be created or retrieved; presence
of this option implicitly defines the file as a permanent
file:

name is the name of the file, consisting of 1 to 17
alphanumeric characters (see Symbol under "Gen-
eral Syntax" earlier in this chapter).

introduces suboptions specifying the access protec-
tion, by means of account authorization control desired
for a file to be created; and, implicitly, the nature of
file sharability, if any (see "Volume/File Sharability"
in Chapter 6):
NCT specifies no control of file access, i.e., that
no account authorization control is to be per-
formed. Use of NCT excludes use of any of the
following PRT suboptions.

R introduces an explicit or implicit list of accounts
authorized to read the file.

account is the account number of an account so
authorized.
ALL implies all accounts are so authorized. ALL

is the default for the R suboption.

NO implies no accounts are so authorized.
W introduces an explicit or implicit list of accounts
authroized to write in (modify or extend) the file.

account is the account number of an account so
authorized.

ALL

implies all accounts are so authorized.

NO implies no accounts are so authorized. NO is

the default for the W suboption.

PAS specifies that a password composed of any eight
characters supplied by the creating program is to
be attached to the file; if so attached, the pass-
word will be required of any authorized program
(including the file owner's) attempting subsequent
access. The password is supplied, either for file
creation or for subsequent access, during opening
of the file via abnormal condition processing.
Failure to select the X1 abnormal condition class,
or to supply the correct password, results in a pro-
gram abort. (See "Password Protection" in Chap-
ter 6, and "Processing of Abnormal and Error Con-
ditions" in Chapter 7.)

The PRT option is recognized only for file creation,
i.e., file-status NEW. The default for the entire PRT
option is PRT, (R, ALL), (W, NO); that is, if PRT is omit-
ted all other users have read access and no other users
have write access. Note that unless the NCT suboption
is specified, some degree of regulated access is implied.

RET introduces a value specifying the file's nominal
retention period, i.e., a projection of the file's useful
life span; this option is recognized for file creation

(File~-status NEW) only:

period specifies the retention period, expressed in
number of days following creation. The default
period is O days.

MEANING OF THE DEV-TYPE OPTIONS

The meaning of the options applicable to the DEV type
of assignment are given below.

Option 1: A removable magnetic medium, specified by

volume number, where
MT
7T defines a removable-volume device type;
DM MT = 9-track magnetic tape, 7T = 7-track
magnetic tape, DM = 7242 disk (BDAM only).
VOL introduces the serial number(s) of the vol-
ume(s) to be mounted.
serial-no
number.

PAR
[MNT,number] specify parallel, serial, or de-
DEF, op-label-4 ferred volume mounting, as for
the FIL-type assignment.

is a one- to six-character volume serial

Option 2: Any medium, specified by class of device, where

CR

cp

Lp . . .
MT defines a class of input or output device;
7T CR=card reader, CP=card punch, LP=line
DM printer, etc. The operator will be asked

to supply a logical device address when
the device is needed.

Option 3: Any medium, specified by logical device ad-
dress, where

ADR introduces the logical address of a specific

I/O device.

logical-address is the logical address of the desired
device, consisting of four characters of the form
yyee; yy is designator of the device type and can
be MT, 7T,DM, CR, CP, or LP; ee is nomally a
numeric designator of a specific device within that
type (installation determined).

Option 4: A symbiont-controlled nonmagnetic medium, by
symbiont name, where

IN specifies the symbiont card reader associated
with the job control input stream. By use of

this option the user program can obtain access
to data files included in the job control deck.
Refer to the IRUN, IDATA, and !EOD control
command descriptions for information on defining
such data files. Only one DCB associated with
an IN assignment can be active at any one time
within a job step.

ouTt specifies the symbiont line printer associated
with the listing log (job control listing output) for
the job. Assignment of a file to OUT causes the
user-produced records to be printed in the same
print file as is the system-produced information,
on a first-in, first-out basis. Only one DCB asso-
ciated with an OUT assignment can be active at
any one time within a job step.
SLP specifies a symbiont line printer other than
OUT. Several DCBs each associated with an SLP
assignment can be active in the same job step; for
each such assignment the system creates a separate
print file, each independent of one another and of
job=control output.
Scp specifies a symbiont card punch. Several DCBs
each associated with an SCP assignment can be
active in the same job step; as with SLP the system
creates a separate file for each such assignment.
NKP specifies that printing (SLP) or punching (SCP)
is to begin after the job step has completed its
output and closed the file (effected either by
M:CLOSE...,RLS or by job step termination). If
this suboption is omitted, actual printing or punch-
ing takes place as soon as the symbiont is able to
acquire an LP or CP type device, as applicable.
Not applicable to the IN or OUT symbionts.
STA introduces the identifying number of a remote
terminal where printing (SLP) is to be performed.

terminal-id a two-digit identifier designating a
specific remote terminal.

DCB PARAMETERS

The FIL, DEV, and OPL types of assignment allow the
specification of a subset of the M:DCB/M:SETDCB procedure
parameters; these are to be imposed on the assigned DCB at
open time. See the descriptions of the M:DCB procedure,
under the several access methods in Chapter 7, for the
meanings and applicability of the parameters.

USAGE EXAMPLES

The following examples illustrate the sets of ophons appli-
cable to specific types of files.

TEMPORARY DISK FILE
A temporary file to be placed in the temporary file area of

secondary storage must be created; no device need be
specified.

IASSIGN op-label [, {2’:&“‘}] ,FIL [, (S1Z, size;

I [,increment])] [, DCB, parameters]

TEMPORARY REMOVABLE VOLUME FILE

Temporary file creation is requested on magnetic tape or
removable disk. The file must be monovolume and the
medium used must be a public volume.

IASSIGN op-label [,{I';JEEN}],FIL, (UNT, type);

! [, (S1Z,size [, incremenf])][, (DEF,op-Iobe|—4)];

I [,DCB, (parameters)]

PERMANENT FILE ON THE USER'S ACCOUNT VOLUME

This is a permanent file since the NAM option appears. In
the absence of any specified media type (UNT option), it is
located on the account volume corresponding to the account
number under which the job is submitted.

For File Creation:

MTN

FRE }]I F”—l (NAM,name);

IASSIGN op-label [{
! I:,(STS,{'\I\/I\E)Vé})][, (PRT, suboptions)];
I [, (RET, period)] [, (SIZ [, (RST)] , size;

I [,iner)]][, DCB, parameters]

Note that the PRT, RET, and SIZ are recognized only when
the file status is NEW.

For File Reference:

MTN

] -
IASSIGN op label[,{FRE

}], FIL,(NAM, name);

1 ,(STS, {l\ol\l(—DDD}) [, DCB, parameters]

PERMANENT FILE ON AN ACCOUNT VOLUME OTHER
THAN THE USER'S

This is a permanent file since the NAM option appears. The
UNT option is necessary in order to specify the account
number of the desired account volume.

MTN

FRE }}, FIL, (NAM, name);

IASSIGN op-label [,{

OoLD

! ’(STS’{N\OD

}), (UNT, AC, number);
I [, (DSP,suboptions)] [, DCB, parameters]

Note that it is not possible to create a file on any volume,
account or private, other than the user's own (i.e., one
in his own account). It is possible to modify if so
authorized.

PERMANENT FILE ON EXPLICITLY IDENTIFIED REMOV-
ABLE VOLUME

This is a permanent file since the NAM option appears.
The UNT option is necessary in order to specify the media
type. In creation, if the serial number(s) of the volume(s)
are not specified, the system uses public volumes which
then become private volumes.

For File Creation:

MTN

| -
IASSIGN op-label [,{FRE

}] JFIL, (NAM, name);

I, (UNT,type[, (VOL,serial-no, . ..)]);

PAR
I [,(STS,{ A’:I\Eovl\;})] , ([MNT,number]) ;
DEF, op-label-4

I [, (DSP, suboptions)] [, (SIZ, suboptions,)];

! [, (PRT,suboptions,] [, (RET,period,)];

I [,DCB, parameters)

For File Reference:

MTN

IASSIGN op-label [,{FRE

}] ,FIL, (NAM, name);

MOD

! ,(STS,{OLD]),(UNT, type, (VOL;

! ,serial-no, ..

.)[, (SQN, sequence-no)]);

PAR
! [,(LNK,op-Iabel-Z)] ; ({ MNT, number]) ;
.DEF, op-label-4

! [,(DSP, suboptions)] [,DCB, parameters]

PERMANENT FILE ON REMOVABLE DEVICE DESCRIBED
IN A PRECEDING !ASSIGN COMMAND

For File Reference:

MTN

il }] JFIL, (NAM, name)

IASSIGN op-label [{

I ,(UNT,OP, op-label-3[,step]);

OoLD

! ,(STs,{MOD

P L (NK, op-label-2));

I [, (DSP, suboptions)] [, DCB, parameters)

ACCESS TO MAGNETIC REMOVABLE-MEDIA DEVICES

_ MT
IASSIGN op-label [,{m'\'}],oev,lﬂ];
DM

! ,(VOL, serial-no,...);

PAR
MNT, number ’) ;
.DEF,op-label-4,

! o

! [,DCB, parameters]

This is a permanent file since the NAM option is used. The

. DIRECT ACCESS TO NONMAGNETIC-MEDIA DEVICES
UNT option is necessary in order to specify the operational

label of the 'ASSIGN command on which the device was .
described.
MTN R
IASSIGN op-label[,{ }],DEV, cpri;
: FRE
LP
For File Creation:
1 [,DCB, parameters)

MTN

FRE }] ,FIL, (NAM, name);

IASSIGN op-label [[

! ,(UNT,OP, op-label-3[,step]); ACCESS TO PERIPHERALS REFERENCED BY ADDRESS

MTN

! [,(STS,{;\,I‘EOVg})] [, (DSP, suboptions)]; R

IASSIGN op-label [{ }],DEV,(ADR;

I [,DCB, parameters] : 1

,logical-address) [, DCB, paramefers]

3-14

SYMBIONT ACCESS TO NONMAGNETIC-MEDIA
DEVICES

IASSIGN op-label [,{MTN}],DEV;

FRE
IN
: out .
b ysee Y
{SCP} [, NKP] [, (STA, terminal-id)]

! [,DCB, parameters]

CREATING SYNONYM OPERATIONAL LABELS

IASSIGN op-label[,FRE], OPL [, op-label-1]
I [, DCB, parameters]

DUMMY DEVICE SPECIFICATION

IASSIGN op-label[,{ﬁg:.N}],DUM

PREDEFINED OPERATIONAL LABELS

The system recognizes certain predefined operational labels.

They must be defined during system generation and are ref-
erenced by the standard XOS processors. Therefore, the
user does not have to include the corresponding !ASSIGN
commands in his command sef; but he may do so to redefine
the implicit assignment made by the system for one or
several steps of a job.

Table 3-1 shows the list of standard predefined operational
labels and the corresponding implied IASSIGN commands.
Each installation may add to this list, and/or may change
the assignments shown, to suit its individual needs.

ISWITCH COMMAND

The ISWITCH command allows setting and resetting of each
of the 32 bits of the JSW (Job Switch Word) associated
with a job.

Table 3-1. Predefined Operational Labels and
Corresponding ASSIGN Commands

Label Corresponding Assign Command
SI IASSIGN SI,MTN,DEV, IN -
LO IASSIGN LO,MTN, DEV, OUT
GO IASSIGN GO, MTN,FIL,(S1Z,3,1)
LM IASSIGN LM, MTN, FIL,(S1Z,3, 1)
TREE IASSIGN TREE, FIL, (S1Z, 3, 1)

Bits 2 to 31 of the JSW may also be interrogated and set by
the system procedures:

M:TSS, M:RSS, and M:SSS

(See Chapter 8.) The JSW bits are referenced by the
UNLESS option of the |RUN and !EXEC command and by
the :IF command (debug control).

Syntax

ISWITCH [(S,%v,...)][,(R.%v,...)]

where

S specifies that the bits of the JSW specified by the
following values are to be set to 1 by the system
prior to job step activation.

v is a decimal integer between 0 and 31 specifying
a bit of the JSW

R specifies that that the bits of the JSW specified
by the following values must be set to 0 by the
system prior to the job step activation.

At job initiation all bits of the JSW are set to 0. Through-
out job execution, setting and resetting of the JSW bits is
controlled only by the user, -either through the ISWITCH
command or by program control. Switch seftings remain in
effect across job step boundaries and also across superjob
boundaries. Bits 0 and 1 have fixed system functions. If
a job step aborts and bit 0 is set, job execution continues
with the next step. Otherwise the entire job is aborted.

If a job step aborts and bit 1 is set, a postmortem dump is
automatically taken, Bits 0 and 1 can only be set by the
ISWITCH command.

ITITLE COMMAND

The ITITLE command specifies printing of a page heading
at the beginning of each logical output page on the OUT
file.

Syntax
ITITLE[, CONT] title

where

CONT specifies that page numbering is not to be
reinitialized to 1 for the new title (i.e., fora
change in title).

title is a sequence of any characters (including
blank) which may not be continued to a subsequent
command.

During a job the title changes each time that a new ITITLE
command is encountered, but if several ITITLE commands
appear in the same job step, only the last one is used. In

addition to the title, the date and the logical page number
are printed on the heading of each logical output page on

the OUT file.

IMESSAGE COMMAND

The | MESSAGE command allows the sending of a message to
the operator (on the operator control device) during execu-
tion of the job step in which it appears.

Syntax
IMESSAGE [, WAIT] message

where

WAIT specifies that job execution be interrupted
after the message is sent to the operator. The
operator can reactivate the job by using the
INTERRUPT command.

message is any string of characters (including
blanks), which may not be continued to a subse-
quent command.

One or more |MESSAGE commands are permitted per job
step. However, a maximum of eight are actually output to
the operator's control device per job step.

ICOMMENT COMMAND

The ICOMMENT command permits insertion of any kind of
commentary into a job's control command deck. This com-
mentary appears in the job's OUT file.

Syntax

ICOMMENT commentary

where

commentary isthe text of the command to be written
on the job's OUT file. The commentary field may
not be continued to another command.

Example:

ICOMMENT THIS IS THE COMMENT

Any number of ICOMMENT commands may be used in a
job or job step.

IPROCESSOR-CALL COMMAND

The !processor-call command allows the invocation of
programs cataloged under the system account number (com-
pilers, assemblers, or possibly programs unique to the
installation that are frequently used and adhere to the rules
governing processors).

Syntax

Iprocessor [option,...]

where

processor is the 3~ to 12-character name under
which the program file has been cataloged in the
accounting volume (:SYS) of the system,

option is a string of characters that is pointed to
(in register 2) at activation of the processor (see

IRUN command OPTION).

Processor-call commands are equivalent to IRUN commands
of the following form:

IRUN (LMN, processor) [, OPTION, option, . .]

IDATA COMMAND

Within a job control command set the user may include data
records that are accessible during execution through the IN
device. Normally, the user cannot use data records begin-
ning with !; the system would confuse it with a command
marking the end of the data-record file. To avoid this
restriction, the user may begin the data-record file with
the IDATA command; he then must end it with a |EOD
command.

Syntax
IDATA
The reading of a job file is performed automatically by

the IN input symbiont; only EBCDIC encoded data is
accepted.

A job step including the UNLESS option (see !RUN and’
1EXEC commands) cannot have input-symbiont data files.

IEOD COMMAND

The 1EOD command allows the user to separate his data files
with "end-of-file" indications. This is necessary because
only one data file can be accessed at a time.

Syntax

IEOD

When the IEOD command is encountered, the system trans-
mits an end-of-file indication to the user; the user must
then close the current DCB to be able to access a subsequent
data file. If he does not do this and attempts a new read
operation, the job step is aborted.

The |EOD command may not be input as part of a data file.

The |EOD command must be used in conjunction with a
IDATA command or | DATA will cause all subsequent control
commands to be read, including 1JOB commands, up to the
next 1EOD command.

Absence of both the IDATA and !EOD commands will in-
dicate that the first encountered command (! in column 1)
will signify "end-of-file" for the user.

4. LINK EDITING

INTRODUCTION

The Link Editor (Link) is a service processor that prepares
language processor output for execution. In addition to the
direct language processor output, Link incorporates other
information (e. g., library subroutines) as necessary, accord-
ing to the user's requests, and combines the whole to form a
loadable and executable program module.

Compilers, assemblers, and other language processors gen-
erate object modules. Each object module is essentially a
translation of a source module, whichisa logical unit of code
written in a source language such as COBOL, FORTRAN,
or Meta=Symbol. This unit of code may be a functionally
complete program (excepting possibly library subroutines),
or may be a subroutine or subprogram that must be joined
together with other program elements to become a function-
ally complete program. Essentially, the link editing process
allows for this joining of separately compiled or assembled
program elements into a functional program.

Obiject modules are the primary input to Link. They consist
of a collection of records in Xerox Data Systems Sigma stan-
dard object language. Object modules are themselves not
loadable or executable. They contain unresolved expres-
sions’ in many cases. They are generally relocatable in
nature, i.e., they have no assigned origin in memory nor
do they reference fixed virtual addresses. Object modules
may contain symbolic references to locations in other mod-
ules that were undefined during the compilation or assembly;
these are called external references. They may also contain
symbolic definitions of locations within themselves so that
other modules may reference. These are called external
definitions. It is one of the possible tasks of Link Editor to
establish a linkage between modules via their external ref-
erences and definitions and fo resolve incomplete object-
language expressions containing such references. The re-
sultant output of a Link operation is called a load module.

Load modules are, by definition, independent program mod-
ules, whose entire set of expressions have been evaluated
and resolved; they are capable of being loaded into memory
and executed by the system loader. The origin of an exe-
cutable load module may consist of one or more (unedited)
object modules and by one or more specially-edited modules
that, although not executable, have been partially processed
by Link. These modules have had their expressions partially
resolved and their external definitions and referencesplaced

t . .
An unresolved object language expression represented as a
source language expression might be:

REF A
LW,1 A

Where the value for A has not yet been established since it
is part of another module.

4-1

in a relocation dictionary (described below). The latter of
these two origin types are called library modules.

Library modules are, as the name implies, normally refer-
enced many times by object modules and other library mod-
ules; they are utilitarian in nature. They may be considered
as subroutines or subprograms to a main program. The struc-
ture of a library module is basically the same as a load mod-
ule, (i.e., they both originate from object modules). By
itself, a library module is not normally functional. It usually
operates only upon the request of the load module to which
it has been linked.

Essentially, Link allows the user to maintain modularity in
his programs. He may elect to have many object and library
modules linked info one load module. He may call fibrary
modules explicitly by referencing the library module name.
Or he may elect to have the Link Editor selectively link
library modules by means of external references (in the object
modules) to external definitions in the library modules. The
first method is explicit reference (to other object modules or
to library modules). The second method, implicit reference
to library modules, isan unsatisfied reference search in which
the editor actually searches a file of library modules for
matching definitions.

Both object modules and library modules must be on magnetic-
storage media before Link usage (see Table 4-1). There are
two types of files to be considered. The first is the sequential
file which may exist on either magnetic tape or disk. The
sequential file consists of a continuous set of records that,
as a whole comprises one or more object modules. The sec-
ond type is the partitioned file. The partitioned file consists
of a set of partitions, or subsections, each separately iden-
tifiable by @ name called a key, and of a dictionary con-
taining the keys. Partitioned files are unique to disk de-
vices. They are described in detail in Chapter 6.

Object modules may exist on sequential tape or disk files
as single modules per file or as multiple modules per file.
Whether the object modules are single or multiple per file,
Link interprets a sequential object module file as being one
continuous object module. Object modules may also be on
partitioned disk files in the form of one object module per
partition,

Library modules must always be partitions of a file, one mod-
ule per partition, although one library module may have been
constructed from several object modules. The user actually
has no choice in that Link automatically creates a library,
and updates it, as a partitioned file.

Figure 4-1 shows the relationship of source, object, library,
and load modules in the link editing process.

Table 4-1. Link Edit Inputs and Outputs

Default Allowed
Operational Operational Access
Inputs Label Labels Method File Characteristics
Object Module GO Any except VSAM ORG=C, must be a disk file (temporary
(Sequential file) LM,GENf or permanent).
Object Module GO GO or APAM ORG=P, GO is used with either tempo-
(Partitioned file) GEN rary or permanent disk file; GEN is used
with permanent disk file only.
Library Module None Any except ASAM ORG=P, must be permanent disk file
LMmF created by Link Editor as a library.
Control Commands SI SI ASAM ORG=C, must be a card reader symbiont
:OPTION, :TREE, file.
:REDEF, :MODIFY
Predefined tree~ TREE TREE ASAM ORG=C, must be a disk file.
structure specification
, Default Allowed
Operational Operational Access
Outputs Label . Labels Method File Characteristics
Executable Load LM LM VSAM ORG=C, must be a disk file.
Module
Library Module LM LM ~APAM ORG=P, must be a disk file.
Diagnostics and LO None ASAM ORG=C, line printer symbiont file.
Load Map
F.TREE card must be used to identify op~label.

SYSTEM INTERFACE

Load modules are always output by Link as sequential
magnetic tape ordisk files. Loading and execution of these
modules is requested via the IRUN command (see Chapter 3).
However, the user does have a means of controlling the
selective loading and execution of specified portions of his
program. He can direct Link to structure his program into
several sections, known as segments. One segment, the
controlling portion of the program, resides in memory through-
out execution, and is called the rootsegment. At any given
point in time, the other segments may either be resident in
memory with the root of the program or maybe nonresident
(stored on temporary secondary storage) for subsequent load-
ing and execution. Loading and execution control of non-
resident segments can be provided automatically by Link or
can be achieved directly by user-programmed procedures.

A segment of a load module is defined as a portion of the
module that is loadable as a separate unit and is executable

or can be referenced by other segments of the load module.
Program segments may be constructed from one or more ob-
ject modules and from one or more library modules. The
primary advantages of program segmentation are space con-
servation and program modularity.

Space conservation is achieved by indicating to Link that
certain segments are not needed simultaneously during exe-
cution and may serially occupy the same (approximate)
memory space. This process of sharing memory space is
called overlay structuring, where segments sharing space are
stored on disk and are loaded one at a time, as needed, into
a common area of memory, each overlaying the preceding
segment.

Program modularity is achieved by the user's capability of
saving his separate object modules as permanent files. He
may then elect to recreate one or more of these object mod-
ules for the purpose of program modification, and to use the
new object module(s) plus the remaining unchanged modules

Source

Module 1
Language
Processor Object
Module
A
Source
Module
[
Source - Language Object Link
Module Processor Module Editor Load
| Module
I
I
|
I
|
(Prior Process) _}
Figure 4-1. Source, Object, Library, and Load Module Relationships

4-3

to form a new load module. This process saves the user time
and effort by eliminating the necessity of complete program
reconstruction when only a small portion of the program ac-
tually needs modification.

An alternative provided by Link for effecting changes to a
program is through its capability to directly modify load
module expressions, insert new expressions, and redefine
the module's externally defined symbols during the editing
process. (The user should exercise care when modifying his
executable code.) Another feature of Link is that, by de-
fault, it forms load modules in a (virtually) absolute form.
That is, no relocation dictionary is included with the mod-
ule. The relocation dictionary serves the purpose of main-
taining a list of all external references and definitions
within a module, leaving any expressions involving such
. references unresolved. An absolute module has already had
all expressions resolved by Link and has no need of the
space-consuming relocation dictionary. Consequently, a
considerable amount of disk space is saved for the storage
of load modules. Library modules are by default created
with a relocation dictionary and must be so created.

The user does have the option of creating load modules in a
relocatable form (i. e., with dictionary), which allows pro-

cessing by the SYSREL processor, which is generally associ-
ated with system generation (see XOS/SM Reference Manual,
90 17 66). .

Figure 4~2 illustrates the complete sequence of load module
creation and execution.

LINK EDITOR COMMANDS

The Link processor itself is invoked by the job control com-
mand ILINK. All specific Link Editor processes are invoked
and controlled by Link Editor commands.

The Link Commands are:
:OPTION Indicates to Link which of its optional fa-
cilities are being requested by the user.

:TREE Indicates the desired structure of the load
module to be created.

:MODIFY
are to be directly modified in the load
module to be created.

:INSERT Specifies the instructions and/or data that

are to be inserted into the load module

to be created.

:REDEF Indicates the external definition symbols
that are to be changed to new symbols
by Link.

Each of the above Link commands may contain user-selected
options which determine the specific course Link Editor will
take in creating a load or library module. Those options are
defined below, along with their default values asapplicable.

Specifies the instructions and/or data that

ILINK COMMAND

The ILINK control command calls the Link Editor. It is
generally preceded by one or more 1ASSIGN control com-
mands defining inputs and outputs. It is optionally followed
by Link Editor commands, which specify the functions to be
performed, in terms of

1. Modules to be link-edited.

2. Procedures for changing the content and definitions of
the load module.

3. Structure of the resulting program.

Syntax

ILINK comments
Note that the ILINK command itself has no options field.

General Link=-command syntax follows the rules defined in
Chapter 3, "Job Control" (section on General Syntax). The
individual Link commands, their structure, and usage are
defined below.

:0PTION COMMAND

The syntax of the :OPTION command is as follows; the
command~continuation points (marked by a semicolon) indi-
cated below are purely arbitrary, as is the ordering of the
options. Botharestrictly a matter of the user's convenience.
Note that since all of the parenthesized elements of the
option field shown below are optional, the square brackets
indicating optionality are omitted at that level for the sake
of clarity.

:OPTION (BIAS,address),(LIB,lib-module name);

((CREATE),(UNSAT, op-label[, ... 1), { Meywap)

’({rsxlyosgfsus})' ({QI?LS });

+(SL,value),(START,external symbol),(TSS,value)

NOMAP

The default form of the :OPTION command, i.e., the op-
tions effectively assumed by the system if the command is
omitted, is:

:OPTION (NOMAP),(SYSLIB),(ABS), (SL,7),(TSS, 20) '

Some of the options shown above are mutually exclusive,
and some imply others by default, as is shown in Table 4-2,

Definitions of the : OPTION-command optionsand indications
of usage are given below.

(BIAS,address) where address of this option is a
hexadecimal value indicating the virtual address

Source Module
Language Processor — (may be cards, tape,

or disk)

Object Module

Link Control Commands
(card reader symbiont file)

Link Editor - —-L
= "7
| Library Module |
(disk file)

Load Module
(disk file)

- TRUN Command

System Loader

(invoked by IRUN
Command)

Resident Monitor

User's Load Module
(while executing)

——————— — User's Virtual Space

Nonresident Monitor

Figure 4-2. Generalized Load-Module Creation and Execution Sequence

4-5

Low

High,

Memory
Addresses

Resident Monitor

Real Memory

ITCB (Virtual)

ITCBBST (Real)

BIAS address

'+
|

User
Area

—_— ——— —

. — — — — - — — — — .. — — — —

(Arrows indicate
direction of core
allocation)

—_—,—_—— e— — — — e — — — — — e —

Common

Virtual
Memory

\

Non-Resident Monitor

A
Real Memory

I

Figure 4-3.

47

Core Memory Layout

5. They may have a COMMON area to allow
communication between modules. However,
the protection code of COMMON (and of
the entire module) must be 0. A library mod-
ule cannot generally contain labeled
COMMON; blank COMMON must be used.
If labeled COMMON is to be used, it must
by itself constitute the entire module.

6. There must be only one segment per library
module.

Each library module is a partition of a partitioned
(library) file (see Chapter 6). Each time a library
module is formed via a Link operation, the follow-
ing occurs:

The Link Editor uses the specified library mod-
ule name as the principal partition key for that
module. All external definitions contained

therein are used as synonyms of the module
name., All of these module identifiers are

placed in the library (i.e., partition) direct-
tory when a module is added to a library file.

If the library file status is NEW (not yet existent),
the CREATE option must be used in addition to the
LIB option to indicate that the library file is to be
created. If the library file exists (status MOD), a

(CREATE)

search is made in the library's directory to find a
library module with the same module name (parti-
tion key) as the one being entered. If a matching
library module name exists, the existing library
module name is deleted as well as all of the module
name synonyms. The new library module is added
to the library as a new partition, i.e., it does not
physically replace the old module. Its name is
added to the library as a new partition, i.e., it
does not physically replace the old module. Its
name is added to the library's directory as well as
all of the module's external definitions. The space
taken by the module being replaced remains used
but inactive. The method for regaining the lost
space is to periodically use the REORGP processor
(see XDS Utilities Reference Manual). If a match-
ing library module name is not found in the library
dictionary, the new module is simply added to the
library file as described above.

is effective only in conjunction with the
LIB option and indicates that the library file iden-
tified by the LM operational label assignment is
new. The absence of this option indicates that the
library file identified by the IASSIGN command
specifying op-label LM is to be updated (must be
STS, MOD), by either addition of new modules or
replacement of old ones (see Example 1: Library
Generation and Example 2: Library Updating).

Example 1: Library Generation

Given three object modules A, B, and C with the following external definitions:
Module A definitions are A1, A2
Module B definitions are B1, B5, B10

Module C definitions are CC, CX

Let us assume no library file exists and that one is going to be created using the above object modules as input. The illus-
tration below shows the steps necessary to achieve the complete library of the modules.

Let us assume that object modules used in this example were created via assemblies of Meta=Symbol source modules into
the following permanent sequential files on the user's account volume.

Module A = FILEA
Module B = FILEB
Module C = FILEC

Also assume that the name of the library file to be created is LIBFILE.

4-8

The following is representative of the control commands and options necessary to achieve the sample results:

!ASSIGN
!ASSIGN
! LINK

:OPTION

!ASSIGN
!ASSIGN
!LINK

:OPTION

lASSIGN
! LINK
:OPTION

LM,FIL,(NAM,LIBFILE), (STS,NEW)
GO,FIL,(STS,OLD), (NAM,FILEA) Step 1

(LIB,A), (CREATE)

LM,MIN,FIL, (STS,MOD), (NAM, LIBFILE) |
GO,FIL, (STS,0LD), (NAM, FILEB) Step 2

(LIB,B) J

GO,FIL, (STS,0LD), (NAM,FILE).
Step 3

(LIB,C) J

Note that in Step 2, op=label LM is maintained (MTN option) for Step 3.

The above :OPTION commands do not use all applicable options and only serve to demonstrate the minimum requirements
to build a library file.

Step 1

Object Module A
with Definitions A1,A2

Y

Link Editor using LIB
and CREATE Options

LIB name = A
[

A Al A2

partition name (key) A

Library directory with {
and synonyms Al and A2

Module A Partition

Library File

Library
File]

Step 2

Object Module B with
Definitions B1, B5, B10

Link Editor using
LIB Option

LIB name =B

[

A Al A2

B B1 B5 B10

Module A Partition

-
_]

Note: The above diagrams are not physically representative of the process of library building or of the actual library

- Module B Partition

Library)

File

structure. Its intent is only to be schematically instructive.

Step 3

Object Module C with
Definitions CC, CX

Link Editor using
LIB Option

LIB name = C

A Al A2 —

B1 B5 Bio

c| cc | cx

Module A Partition

Module B Partition

Module C Partition

Example 2: Library Updating

IMETASYM SI,GO(B1,B2,B3)

Source Modules for B1,B2, and B3

Step 1

4-10

Given the library file created in the previous example, an update will be made to the library. One of the existing par-
titions will be replaced by a library module, B, formed from several object modules, in partitioned form, named B1, B2,
and B3. The illustration below schematically illustrates the process.

The following commands illustrate the entire cycle of updating a library file (from the previous example) including assem-
bly of source modules to a temporary partitioned GO file (created by Meta=Symbol).

.

IASSIGN LM,FIL,(STS,MOD),(NAM,LIBFILE)

I LINK Step 2
:0PTION (LIB,B)
:TREE GO.B1-GO.B2-GO.B3

Step 1 consists of the assembly (Meta=Symbol) of three source modules, each of the corresponding object modules to be
placed in separate partitions on the temporary GO file. (GO is a predefined op-label, invoking an implicit assignment.)

Step 2 is the Link operation which forms the three partitions from the GO file into a single library module of three con-
tiguous segments which, as a whole, will replace an existing library module named B as well as its associated external
definitions (synonyms). The function of the :TREE command is described later in this chapter. Suffice it to say here that
it serves to identify Link's input and structures the corresponding output.

Object Module B3

Object Module B2

Object Module B1.
DEFs BA, BB, and BC

i
Link Editor Using

LIB Option
LIB name = B
|

A Al A2

—deleted- ~=———— Old directory entry for Module B.
B BA BB BC [=——— New directory entry for Module B inserted (in sorted

order).
C CC CX
Module A Partition
(Effectively Old Module B Partition. For space to be regained, the
Deleted) user must use the REORGP processor.

Module C Partition

Module B Partition

(UNSAT,op-label ,op-label,...)

where op-label
is the operational label assigned to a library file
to be searched during the Link operation to satisfy
(primary) external references of object modules
being linked. For each operational label used in
the UNSAT option, there must be a corresponding
IASSIGN command that references a library file
(op-labels are selected for search on left-to-right
basis). A maximum of five libraries can be
searched during one Link operation, including
the system library if authorized (see SYSLIB/
NOSYSLIB option).

If the search of libraries specified in the UNSAT
option does nof exhaust (satisfy) the modules ex-
ternal references, the search is continued in the
system library (by the name of SYSLIB, in account
:SYS, read through op-label SYSL). The same
search is made if the UNSAT option is not used.

Any primary references not satisfied by the library
search will generate a severity level of 7 (see SL
option and MAP), and although a module will still
be generated, it will be impractical to execute.

(NOTCB)

specifies that a Task Control Block (TCB)
is not to be created by the Link Editor. The TCB
table is normally created in the following order:

1. Program status doubleword at exit of the
TRAP routine.

2. Status of the 16 registers.

3. Doubleword pointer of the user's temporary
stack.

It is stored at the beginning of the first page of
the program, or before the "0" protection of
the user's root.

The minimum table is always generated for a load
module because it is required at execution time.
NOTCB is implied by the LIB option for a library
module.

({RAEBf}) ABS, the default, specifiesthat no reloca-
tion dictionary is to be created, and im-

Usage of the MAP option causes the plies that the load point, or bias, of the load

NOSYSLIB

({MAP })

NOMAP Link Editor to produce a map of the
loaded program. The load map provides the fol-
lowing information:

1. List of external definitions, external refer-
ences, and program sections.

2. Hexadecimal addresses or values of external
definitions and program sections.

3. Memory locations of segments and of areas
with different protection types.

The default option is NOMAP,

The format of the map is described in a later
subsection.

SYSLIB }) SYSLIB, which is the default,

allows a search of the system library
(SYSLIB) to satisfy any unsatisfied reference re-
maining after the search of user-specified libraries
(see UNSAT option). The system library may be
accessed by filename SYSLIB in the :SYS account,
via the fixed operational label SYSL (in the cor-
responding !ASSIGN command).

The NOSYSLIB option prevents a search of the
system library during Link's attempt to satisfy the
external references of a module being link-edited.
Any references remaining unsatisfied are errors of
severity level 7 (see SL option).

4-12

(SL,value)

module is the system's default initial progrdm load
point (set by SYSGEN). The ABS option isignored
if LIB is also specified.

REL specifies that a relocation dictionary is to be
included so that the load module is (virtually) re-
locatable (under special circumstances). This dic-
tionary is required for a library module: the LIB
option implies REL.

establishes the severity level of errors in
object modules that the Link Editor will tolerate.
If the severity of an error encountered in an input
module is greater than the specified value, Link
processing will be aborted. If the severity of errors
encountered is less than the specified value, Link
will attempt to continue processing. The specified
value must be between X'0' and X'F', inclusive.
The default value is X'7°'.

Error severity levels are posted by compilers, as-

semblers, and other language processors as well as
by Link.

At the end of object module generation, the com-
piler, assembler, etc., posts the severity level of
any source errors. The Link Editor compares these
values with that indicated by the user (or the de-
fault value). Table 4-3 shows the meaning associ-
ated with various points in the severity level range.

Link itself will detect (and indicate) possible or
definite errors arising in the link editing process;

Table 4-3. Error Severity Levels

Severity Level Meaning of the Code Example
0 - No abnormality or error. No detected errors.
1 Abnormality.
2 Possible error.
Minor assembly errors.
3
4 Probable error. Double definition.
5
6
7 Error detected: local effect. Unsatisfied primary reference.
8
9
A
B Error detected: no local effect. Invalid DO loop.
C
D
E Fatal error.
F Syntax error on :OPTION card.

it will also compare these with the specified or
default severity level. These errors are:

e An error in the :OPTION command, an un-
known command, or a missing continuation
card — severity level is F.

e An error in the :MODIFY command or the
:REDEF command, or remaining unresolved
primary references — the severity level is 7.

e Multiple external definitions — severity level

is 4.

e An error in the :TREE command — the link edit
operation is aborted.

(START, external symbol £ value) specifies the start
address, i.e., the location of the first executable
instruction. The optional value is in hexadecimal.
The external symbol is an external definition that

By default, the start address is determined by the
compiler or assembler in a module of the root seg-
ment. If several object modules have a start ad-
dress (e.g., several Meta-Symbol assemblies, each
with the assembly instruction END address) the'start
address of the first object module of the root
segment is used.

If the starting point must be in a library module to
be included in the root segment, the START option
must be used to reference an external definition in
the module.

(TSS,value) specifies the number of words (hexa-
decimal) in the user's temporary storage stack. The
default attribute is X'20'.

Note: Option TSS is not compatible with LIB.

COMMAND ORDERING

e Indicates an address in the root of the program.
The

:OPTION command, if used, must appear before any

o Does not exceed 11 characters. other Link command.

:TREE COMMAND (SEGMENTATION)

This command describes the structure of the program to be
produced. A tree structure allows the user to minimize the
program's core requirements. If there is no :TREE command,
the GO file is the only one to be edited and the program
will contain a root segment only.

Definitions: Several critical definitions follow.

e Segment: a named unit of code and/or data that can
be separately loaded into memory at execution time,
composed of one or more object modules.

e Roof segment: the segment of a program that resides
in memory throughout program execution.

e The name of the segment is obtained from the opera-
tional label of the object module (if only one) or of
the first object module (if there are several that con-
stitute the segment).

e A segment can also contain library modules.

e When the first module is a partition (whether an object
or library module), the name of the segment is the par-
tition name. Example: For GO.XYZ or L.LMED36,
the name of the segment is XYZ or LMED36, respectively
(for use in the M:SEGLOAD procedure and the :MODIFY
and :INSERT commands).

e A path consists of those segments that may simultaneously
occupy core storage.

Example:

j

h i
k
—
[of
S —
where
ab, ...k are object modules.

atb,c,d,e,f+g,h+i,j k constitute the segments
named after the operational labels, A, C, D,
E, F, H, J, K, respectively. A is the root
segment.

The following terms are used to describe portions of a tree
or overlay structure:

o Backward path of a segment: A is the backward path
of C (see example above).

o Forward path of a segment: D and E are two forward
paths of C.

o Overlay segment: E is the overlay segment of D.

e A+C+E, A+C+D, A+F, etc., are the paths of the
tree.

Syntax

REF[(value))
:TREE [r SEG specification
FIL

where

REF indicates that the user relies on the system to
load the segments that are not in core at the time
of their execution. In this mode, any reference
in a segment to an external definition located in
another segment further from the root but on the
same path is replaced by a branch to a subprogram.
This subprogram generates an M:SEGLD that loads
in memory the corresponding segment and all of its
backward path as necessary. The value in hexa-
decimal, specifies the number of such references
to be allowed for (default=X'10", i.e., 16
references).

SEG indicates that it is the user's responsibility to
explicitly load each segment from disk storage to
core storage (specified in advance by means of the
M:SEGLD Meta-Symbol procedure). The tree
structure thus produced is rigid because it is fixed
at the time the program is written, contrary to the
use of REF which makes structure changes easy.

The SEG and REF options are mutually exclusive
and SEG is assumed by default.

FIL indicates that if the overlay tree specification
is contained in a file, i.e., one generated by
a language processor such as COBOL, :TREE,FIL
and an ASSIGN command are used with the
operational label TREE identifying the file de-
scribing the tree.

specification specifies the overlay tree structure,
as described below. The specification field of the
:TREE command is separated from the foregoing by
one or more blanks.

TREE STRUCTURE SPECIFICATION
The delimiters used have the following meanings:

-~ The operational labels separated by this delimiter
correspond to segments loaded in contiguous virtual
memory.

; The two segments separated by this delimiter are
to overlay one another in memory; they begin at
the same virtual memory location.

Parentheses indicate the limits of an overlay level.

The symbol that follows this delimiter identifies a
partition of a file named by the operational label
that precedes the symbol.

Usage Rules

e Two overlay segments cannot communicate with each
other.

o When two overlay segments reference the same library
module, this module is incorporated in both segments.

o When two or more segments located on the same path -
reference the same library module, this module is in-
corporated in the segment furthest from the root.

o The use of COMMON is possible with library modules.
This technique allows communicating the same data

to several modules. The storage protection code of a
COMMON module must be 0.

Contraty to blank COMMON, labeled COMMON presents
the following problems:

1. If they are initialized and are of different length, they
are handled correctly by the Link Editor. But if the
initialization concerns areas of the same length, the
values of the last module edited prevails.

2. A library module cannot contain labeled COMMON
as a subdivision; blank COMMON must be used.

3. Labeled COMMON can be stored in a library only if
it constitutes by itself a library module.

Operational Label Assignments: The usage of several dif-
fering operational labels on the :TREE card is restricted, by
file characteristics, as follows:

GO Must be used for temporary partitioned object
module files; may be used for permanent par-
titioned object module files.

GEN Must be used for permanent partitioned object

module files unless GO is used.

xxxx Any valid operational label (including GO) ex-
cept LM or GEN may be used for sequential ob-
ject module files, either temporary or permanent.

yyyy Any valid operational label except LM may be
used for library module files.

Example 1:

' The overlay tree described in the foregoing is represented by:

4-15

:TREE A-(C~(D,E),F,H-(J,K))

Example 2:

The following tree must be link edited:

SINUS
B
C
L
'—-—-——_
A
PF1
OM2
7

The tree inputs consist of

e Three permanent sequential object modules a, b, and ¢,
with operational labels A, B, and C.

o Three object module partitions called OM1, OM2,
OM3 in the GO temporary partitioned file.

o Two object module partitions called PF1 and PF2 in a

permanent partitioned file referenced by operational
label GEN.

e The library subprogram SINUS contained in a library
file reference by operational label BIB.
The required :TREE command is

:TREE A-(GO.OM2-(GEN.PF1,GEN.PF2);
,B-(C,BIB.SINUS))

The names of the segments are as indicated:
A,OM2,PF1,PF2,B,C,SINUS.

The object modules on the GO file named OM1 and OM3
were not declared and are not edited.

Library subprograms other than SINUS that might be called
to implicitly satisfy external references(UNSAT option)
are incorporated in the corresponding segment.

COMMAND ORDERING

The :TREE command, if used, must follow the :OPTION
command, if any, and precede any other Link command.

:MODIFY COMMAND

The :MODIFY command allows the user to modify Link
input during its editing, i.e., without reassembling. These
modifications remain in the load module indefinitely. The
command MODIFY and the LIB option of the :OPTION
command are mutually exclusive. :MODIFY is only valid
for load modules; and the operational label LM must, in
addition, be assigned to a disk file.

Syntax

:MODIFY [,segment-name] location,value[,value, . ..]
where

segment-name indicates the segment to be modi-
fied, according to the definitions given under
:TREE. It must not appear if the program consists
of only a root segment.

location specifies the location of the first word to
be modified; generally expressed as an external
definition plus or minus an optional hexadecimal
offset value. It can also be expressed as a plus
sign followed by a hexadecimal value directly
designating the virtual address at execution time
of the first word to be modified.

value specifies the value(s) to be placed in the
indicated location(s). The values are unsigned
hexadecimal valuves, optionally followed by a
plus or minus sign and an external definition. For
an appropriate address resolution, the address
resolution function (BA, HA, WA, or DA) must
precede the external definition name enclosed in
parentheses. By default, word resolution is
assumed.

If more than one value follows the location specification,
ascending sequential locations are modified accordingly.

Example 1:

:MODIFY LOC+A1,0001234E+BA(ALPHA)
The value X'1234E' is added to the va |Iue of the external

definition ALPHA, treated as a byte address, and the result
is stored at the address LOC+A1, e.g., LOC+161 10°

4-16

Example 2:

:MODIFY,SEGA +328A,32380000+DEF,68300004+BETA

The two words of segment SEGA located at virtual addresses
X'328A' and X'328B' are replaced by the specified values
at execution time.

COMMAND ORDERING

:MODIFY commands, if used, must follow the : OPTION and
:TREE commands, if any, may be intermixed with :INSERT
commands in any order and must precede the :REDEF com-
mand, if any.

:INSERT COMMAND

The :INSERT command allows the user to insert new informa-
tion into the Link input during link editing. The insertions
are effective indefinitely. The insertion process produces
an out-of-line 'patch area' that becomes a permanent part
of the load module.

Syntax

:INSERT[,segment-name] location,value[,value, . . J
where

segment-name indicates the segment to be modi-
fied, according to the definitions given under
:TREE. It must not appear if the program consists
of only a root segment.

location specifies the insertion point: the inser-
tion(s) will effectively precede the instruction
word specified. The location is generally speci-
fied as an external definition plus or minus an
optional hexadecimal offset value. It can also
be expressed as a plus sign followed by a hexadec-
imal value directly designating the virtual address
of the insertion point.

value specifies the value(s) to be placed in the
indicated location(s). The values are unsigned
hexadecimal values, optionally followed by a
plus or minus sign and an external definition. For
an appropriate address resolution, the address
resolution function (BA, HA, WA, or DA) must
precede the external definition name enclosed in
parentheses. By default, word resolution is
assumed.

If more than one value follows the location specification,
effectively ascending sequential insertions are made accord-
ingly. Inany case, the instruction currently occupying the
specified location is replaced by a branch instruction that
transfers control to an out-of-line patch area created by
Link. This patch area will contain the specified insertion(s)
followed by the replaced instruction, in turn followed by
another branch to the specified location+1.

Example:

Given the :INSERT command
:INSERT +3483,69303484,32100006

and the following program code (in symbolic form) before

insertion

3482 w1 7
3483 LD 0

the same program area following
as

insertion would appear

3482 Lw,1 7
3483 B PATCH

Note that the instruction that occupied the specified
(virtual) location, 3483, is replaced by a branch to an area
where the insertions are located, e.g., PATCH. This patch
area would appear as follows:

PATCH BCS,3 3483
LW,1 6
LL,D 0
B 3484

The instruction that originally occupied location 3483 (and
was replaced by the branch instruction) now follows the in-
serted instructions. The patch area ends with a branch back
to the next sequential location in the program (3484).

COMMAND ORDERING

:INSERT commands, if used, must follow the :OPTION and
:TREE commands, if any, may be intermixed with :MODIFY
commands in any order and must precede the :REDEF com-
mand, if any.

4-17

:REDEF COMMAND

The :REDEF command allows the user to replace exter-
nal definition or reference symbols appearing in either

object or library modules with new symbols during link
editing, while forming either a load or library module.
If the :REDEF command is used, :MODIFY and/or :INSERT
commands and the START option must use the new symbol

when referring to an altered definition.

The redefinition capability is particularly important in the
following cases:

1. For resolving the problem of two different library sub-
programs with identical external definitions (definition
symbols must be unique within a library file).

2. For replacement of external-definition symbols of more
than 11 characters (unacceptable in library modules)
with new, shorter symbols.

Syntax
:REDEF (oldsymbol,newsymbol) [, (oldsymbol, ;
newsymbol), . . .]
where
oldsymbol is the external definition or reference
symbol to be replaced.
newsymbol is the replacement symbol.
Example:

:REDEF (COS,COSINE),(LONGNAMEOFDEF, ;
SHORTNAME)
All external definitions or references occurring in any of
the modules being edited that correspond to COS or

LONGNAMEOFDEF are replaced by COSINE or SHORT-
NAME, respectively.

LOAD MAP FORMAT

The load map produced by Link when the MAP option
is specified (see MAP/NOMAP option under :OPTION

command, above) consists of multiple entries of the fol-
lowing form:

SEGMENT NAME: sss...s

aaaa XXxxxxxx y bbb...bp
where
$554 4 oS is the current segment name or ROOT

(in the case of no :TREE command)

aaaa

is a code indicating the type of element, as
follows:
DEF external definition
UDEF unused definition
LDEF library satisfied definition
’ DDEF doubly defined external definition
PREF unsatisfied prirﬁury reference
SREF nonsatisfied secondary reference
CSEC control section
DSEC dummy section

Note that PREF implies that a search was made
and that this referencé could not be satisfied.
SREF, by definition, implies that there was no
search, and therefore that the corresponding defi-
nition may or may not exist.

XXXXXXXX y is the hexadecimal address of the
element, where y represents a byte displacement
(y=0,1, 2, or 3).

If y is not present, xxxxxxxx represents the value
rather than the address of bbb. . .b.

bbb. . .b

is the symbolic name of the element.

If bbb.,..b = SEGLOp or = SEGHIp

then bbb. . .b represents the lower and upper bound-
aries of segments of code with different protection
codes. SEGLOp is the first word of the segment
lower limit and SEGHIp is the last word of the
segment upper limit. The protection type, in-
dicated by p, may be 0, 1, or 2. (Protection areas
always begin on page boundaries.)

LINK EDITING EXAMPLES

Example 1:

1JOB TRAVAIL,1234,JONES
IMETASYM SI,L0,GO

.
.

symbolic cards

! LINK
|RUN

Example 1 illustrates the implicit assignments accepted by
XOS. The predefined operational labels SI, LO, and GO,

- used for the first job step, imply the card reader input sym-

biont file, IN, the printer output symbiont file, OUT, and
a temporary file (normally disk), op-label GO, created by
Meta-Symbol. Note that no IASSIGN commands are
needed if the implied assignments are desired.

The.Link Editor, by default (i. e., no options), edits the GO
file and creates a temporary output file with the operational
label LM. Finally, with no load module file name having
been specified in the |RUN command, the module found
under the label LM is loaded and executed.

Example 2:

1J0OB EXERCISE1,119,KELLY,2
IMETASYM SI,LO,GO(PART1,PART2,PART3)

.
.
.

3 symbolic decks

IASSIGN LM,MIN,FIL,(STS,NEW), (NAM,ARBRE)
! LINK

:TREE GO.PART1-(GO.PART2,GO.PART3)

IRUN -(LMN,ARBRE)

Example 2 shows three successive assemblies in the course of
one jobstep. Note that it is not necessary to use three sep-
arate METASYMcards if the names of the several object
modules produced by the assembly are specified as partitions

of a partitioned file, e.g., ... GO(PARTI, PART2, PART3).
The Link output is specified as a simple tree structure to be
created on the permanent file named ARBRE, since the
implicit temporary file assignment for LM is overridden by
an explicit assignment. :

Example 3:

1JOB PROBLEM,115,VALDEZ,2
IMETASYM SI,LO,GO

.

symbolic deck

1ASSIGN
IASSIGN OM2,FIL,(STS,OLD),(NAM,ROOT),;

! (UNT,AC,121)

IASSIGN BIBL,FIL,(STS,OLD), (NAM,PRIVATE)
JASSIGN LM,MTN,FIL,(NAM, PROGRAM)

I LINK

:0PTION (SLS,7)

:TREE OM2-(OM1-GO,BIBL.TRI)

:REDEF (ANTICONSTITUTIONAL, IRREGULAR)
IRUN (LMN, PROGRAM)

The result of the link editing in Example 3 isa tree-structured
load module stored on a permanent file, PROGRAM, under
account 115,

The step following the link editing is the running of
PROGRAM, consisting of a root and two overlay segments.
The library routine TRl forms part of one of the two segments.

The modules for editing are:

e ROOT cataloged under account 121 with a
password.
e AB a permanent file in account 116.

e The temporary file assigned to GO in account 115,
which was built during the Meta-Symbol job
step preceding the Link step.

e TRI a library module from the user's library PRIVATE

(account 115),

Example 4:

1JOB RESULT,119,GOLDBERG,2
IEXEC COMPILGO
I DATA

symbolic deck

'EOD

:OPTION (UNSAT,CLIB)
:TREE,FIL

1EOD

data cards

{EOD

OM1,FIL, (STS,OLD), (NAM,AB), (UNT,AC,116)

4-19

The job shown in Example 4 involves three steps:

e A COBOL compilation resulting in three object mod-
ules. The COBOL compiler segments the generated
program according to the user's request (SEG option).
The overlay tree specification is contained in a file
generated by COBOL (indicated by the FIL option of
:TREE), which for example might contain:

:TREE GO.00-(G0.01,G0.02)

e Link editing: Linking the object modules and satisfying
external references froma COBOL library named COBLIB,

e Execution (the data will be read dynamically onto a
symbiont file).

The cataloged command set COMPILGO contains the fol-
lowing control commands:

ICOBOL LS,LO,XREF,DEBUG,GO,SI,SEG
IASSIGN CLIB,FIL,(NAM,COBLIB),(STS,OLD);
! (UNT,AC, :SYS)

1LINK

IRUN

Example 5.

1JOB EXAMPLE, 32,WONG,F
ILIMIT (TIME,20),(PAGE,1000)
IFORTRAN SI,LO,GO

symbolic deck

'ASSIGN EI,FIL,(STS,0LD),(NAM,BINARY1), ;

! (UNT ,MT, (VOL, 1234))
1ASSIGN EO,MIN,FIL
IFMGE COPY

1ASSIGN ABC,FIL,(STS,OLD), (NAM,BINARYS),
IASSIGN LIBR,FIL,(STS,OLD),(NAM,MYLIBRARY)
| LINK

:OPTION (UNSAT,LIBR),(SL,7)

:TREE GO-ABC-EO

IRUN

The job in Example 5 consists of compiling a FORTRAN
source deck and linking the object module produced (on a
temporary file) to the other already existing object modules—
one residing on magnetic tape and the other on permanent
disk storage. A IFMGE COPY step is employed to copy the
tape file BINARY1 to a temporary disk file (op-label EO).

External references are to be satisfied by the library file
MYLIBRARY (op-label LIBR).

The load module produced on a temporary file (implicitly
labeled LM) created by the Link Editor is executed.

CONTROL CARD MISSING.

ILLEGAL LMED IDENTIF.
ILLEGAL LMED * COMMON
ILLEGAL LMED * OVERLAY
ILLEGAL LMED * PROTECTION

ILLEGAL LMED * RELOCATIONJ

ILLEGAL SYNTAX:

DIAGNOSTIC MESSAGES

The diagnostic messages produced by Link on the listing log
are listed below.

ABNORMAL FILE (RECORD=0)
ABNORMAL 1/O

BIAS TOO LARGE

BINARY AFTER OPTIONS
PROCESSED -

. CONTROL CARD MISSING. UNEXPECTED BINARY

IGNORED

END OF BI BEFORE LAST CARD OF ABOVE MODULE

ERROR: ABS AND LIB
ERRORED TREE

ILLEGAL ARG
ILLEGAL CARD IN ABOVE BI MODULE

ILLEGAL DSECT * NAME:

> (LMED = library module)

ILLEGAL OBJECT LANGUAGE
ILLEGAL OM IDENTIFIED
ILLEGAL SEQUENCE OF CARDS

ILLEGAL SIZE OF FIELD

(One of the parameters has too many characters.)

(followed by the portion of the command between the
end of the last correct option and the current character
at the time the error was detected — for : OPTION,
:MODIFY, and :REDEF commands only.)

4-20

ILLEGAL SYNTAX AFTER:
(followed by the name of the last module processed —
for :TREE command only.)

ILLEGAL SYNTAX * REF(20) SUPPLIED

ILLEGAL VALUE

ILLEGAL VALUE IN:
(followed by the name of the option — for :OPTION
command values of BIAS, SL, or TSS.)

IMPROPER BOUND

LIB OPTION ABS IGNORED

LIB OPTION * MODIFY IGNORED

NO MODIFY WITH LM ASSIGNED TAPE

NO TYPE 3 PROTECTION

OVERFLOW PASS2

REPEAT ERROR. END OF CARDS SUPPLIED

REPEAT. UNK. CARDS

SEV. LEV.

.SEV. LEV. EXCEEDED IN OM

STACK OVERFLOW

TOO MANY REFS

TOO MANY UNSATS

TREE CARD ERRORED

UNEXPECTED END

UNEXPECTED EOD

UNEXPECTED OM END

UNKNOWN CARD

UNKNOWN LOAD IN ABOVE CARD
UNKNOWN OPTION

W CANNOT VALUE START ADDRESS

W MODIFY: IGNORED REL

5. DEBUG AIDS

. INTRODUCTION

XOS furnishes the user with a collection of debugging aids
grouped into a system service called Debug. Its principal
components are

e A set of system procedures for use at assembly time to
incorporate specific calls for Debug services in the
user's program.

e A system processor, also called Debug (invoked by a
IDEBUG control command), for use at run time to in-
corporate specific calls for debug services in the user's
program.

o A set of modules within the monitor that services calls
generated by the aforementioned components

Two methods, not mutually exclusive, are available for
the user to request debug services.

1. With direct modification of his source program: the
user may include, within his program source deck,
references to the various XOS system procedures that
automatically generate calls for the desired debug
services. These procedures should be treated as ex-
ecutable but program-transparent statements to be
located in the user program at the exact places where
their execution is desired.

2. Without direct modification of his source program: the
user may invoke the Debug processor, using a IDEBUG
command rather than the IRUN command, fo execute
his program. The Debug processor reads a set of Debug

- processor commands, which define the specific debug
services desired. It also reads the user program as an
executable load module (LMEX) using the op-label LM.
The Debug processor then modifies the user program to
include calls for the debug aids specified by the Debug
processor commands and copies the modified program
onto a temporary file. It then transfers control to the

modified user program using the system service M:LDTRC

(see Chapter 8).

DEBUG PROCESSOR USAGE

Debug processor command usage follows the same rules as
for system control commands. The !IRUN command of a
normal execution is replaced by

® Assigning the LM op-label to the load module corres-
ponding to the user program.

o A call to the Debug processor.

5-1

e Debug processor commands that specify calls for debug
services (e.g., :SNAP,:SNAPC, :PMD, :PMDI) or mod-
ifications for the user code (:MODIFY, :INSERT).

The Debug processor reads the Debug processor commands
as data in the job input file, assigned to op-label SI.
These commands must follow the IDEBUG command and must
be terminated by a !EOD command if the user program reads
subsequent data from the same file (SI). If the user pro-
gram is normally initiated by a !processor-call command
with options, these options should be included on the
IDEBUG command, in the same form as for the !processor
call command.

The Debug processor call influences the job resource re-
quirement. It creates a temporary file that may require the
user to increase the SPDISC value in his |LIMIT command.

User programs executed via !|DEBUG occupy more memory
space than those executed via IRUN. The space difference
is about one-half to a full page.

During the job step involving invocation of the Debug pro-
cessor, op-label LM corresponds to the initial user program,
op-label *LMN corresponds to the Debug processor, and
op-label **LM identifies the temporary modified version of
the user program. Diagnostics output by the File Manage-
ment System are in accordance with these op-label
conventions.

Generally, all values used in Debug processor commands
are in hexadecimal. The only exceptions are the :COUNT
command and certain condition=-specification (SWITCH
option) parameters,

SPECIAL DEBUG SYNTAX

The syntax of a Debug processor command is identical to
that of a system control command (see Chapter 3) except as
follows:

1. The first character is a colon (:). If Debug commands
are used, the Debug processor must first be invoked
with a IDEBUG command. The Debug processor then
reads the Debug processor commands through the op~

label SI.

2. If an overlay segment is to be modified, the name of a
command can be followed immediately by a comma and
a segment name.

The syntax of the Debug procedures is identical to that of
the other system procedures (see Chapter 8) or input/output
procedures except for an extended syntax used to specify a

DCB address in the M:SNAP and M:SNAPC procedures.

Throughout this chapter, the restrictions on explicit value
syntax (e.g., hexadecimal address, decimal :COUNT and
SWITCH specifications) apply only to the Debug processor
commands. In the Meta=-Symbol procedures, an integer is
always an integer, regardless of its type (hexadecimal,
decimal, octal, etc.). To simplify the syntax notations,
the address syntax is not detailed each time. Generally,
the address form is

+hexadecimal constant
or

externol[;hre_lafive hexadecimal constant]

where

hexadecimal constant specifies an absolute address.
This address format necessitates foreknowledge of
loading. This is possible with the map furnished
by the Link Editor.

external is a symbol declared external at assembly
time by the assembler directive DEF.

relative hexadecimal constant gives a displacement
with respect to an externally defined symbol.

DEBUG COMMANDS AND PROCEDURES
Warning: In the Debug commands that specify an initializa-
tion address, i.e., where the command is to be
executed, the specified location must contain an
executable instruction which is neither altered
norreplaced during program execution. The user
is specifically cautioned against specifying the
address of an instruction that refers to the current
location counter such as a BAL (Branch and Link)
instruction. Thisis necessary because, at memory
loading, the contents of this address are replaced
by a branch to the debug service. The replaced
instruction is executed after the debug service
is performed, but at a different memory location.

This applies to all Debug processor commands
except :DCB, :PMD, and :PMDI,

:DCB COMMAND
This command allows the user to specify a user DCB to be
used for the output of requested debug information.
Syntax
:DCB address

where

address is the address of the DCB to be used for
output generated by other DEBUG commands.

This command is optional but, if present, it must immediately
follow the |DEBUG command. If omitted, the analysis in-
formation is printed automatically on the listing log (OUT
file) associated with the job. The DCB must be opened by
the user program before any possible execution of the debug
processor commands. Furthermore, it must be specified

for use with the ASAM access method and no record move-
ment (LOC).

There is no corresponding system procedure. However, the
Debug procedures M:SNAP and M:SNAPC permit an optional
DCB address parameter.

:PMD AND :PMDI COMMANDS

These postmortem dump commands allow the user to specify
that portions of his program area be dumped (in hex) at the
end of its execution.

The :PMD command is conditional in its operation. It
causes the output of the specified dumps only when the
user's program is aborted or terminated with the execution
of an M:ERR system procedure.

:PMDI is an unconditional command. It causes the output
of the specified dumps regardless of the program's condi-
tion upon termination (i.e., normal, abort, or exit with

M:ERR).

Syntax

.{PMD

[(sfurf address, end address)] P
PMDI} [se9] [

[(pp)]

where

specifies the name of an overlay segment (valid
only if program has tree structure).

seg

start address and end address give the beginning and
ending word address of an area to be printed. A
single command may include multiple area speci-
fications. If no area is specified on the command,
the complete memory area occupied by the program
is printed.

is a number which can be 00 (all access), 01

. (no write), or 10 (read only). It indicates that

the area corresponding to that protection type is
to be printed.

PP

Multiple :PMD, :PMDI commands, and redundant or over-
lapping area specifications are honored except for the de-
fault (no area specified) case. Area and pp specifications
may not both appear in the same command.

There are no corresponding PMD or PMDI procedures.

:SNAP COMMAND AND M:SNAP PROCEDURE

The :SNAP command causes the printing (dumping) of one
or more memory areas just before the execution of the
instruction at the address indicated on the :SNAP command.

The M:SNAP procedure reference functions like an execut-
able statement whose execution resultsin printing (dumping)
one or more memory area.

Command Syntax

:SNAP[,seg] address,comment(, (start-address, ;

end-address),. . .]

Procedure Syntax
[labels] M:SNAP[,dcb-adr] 'comment'
[, (start-address,end-address), . . .]

where

seg specifies the name of an overlay segment.
(Valid only if the program has a tree structure.)

address specifies the initialization address. The
Debug service is performed just before the execu-
tion of the instruction at this address. The initial-
ization address must be in the designated segment.
The branch (of the tree) in memory when the snap

> occurs must include whatever externals are used

to define the area(s) to be printed. The area
printed can be outside of the segment.

comment is a mandatory string of one to eight
alphanumeric characters which is to be printed
just before the image of the specified memory
area(s). When'using M:SNAP, this must be en-
tered as a character string constant (i.e., with '’
qualifiers).

start and end address give the beginning and end-
ing addresses of an area to be snapped.

dcb-adr specifies the address of the DCB through
which the information is to be output. If speci-
fied, the user must open the DCB prior fo the first
M:SNAP or M:SNAPC using it. If the DCB address
option is not used, the data output automatically
occurs on the OUT device (listing log).

When a link edit is performed with the REF option in the
:TREE command, use of the M:SNAP procedure to print an

area in another segment can cause unpredictable results.
See Chapter 4, Link Editing.

:SNAPC COMMAND AND M:SNAPC PROCEDURE

The :SNAPC command and the M:SNAPC procedure have
the same action as the :SNAP command and the M:SNAP
procedure except that their operation is conditional.

Command Syntax
:SNAPC[,seg] flag,address,comment;

[, (start-address,end-address),. . J

Procedure Syntax

[labels] M:SNAPC[,dcb-adr] flag,'comment"
[, (start-address,end-address), . . .]

where flag is the name of a switch that is tested for set or
reset (on or off) status. '

Except for flag, all parameters have the same meaning as
for the :SNAP command and the M:SNAP procedure.

For the Debug processor commands, flag is a string of one
to eight alphanumeric characters. The monitor does not
associate this flag with symbols in the user program, hence
there is no possible confusion with those symbols. It creates
its own switch tables (transparent to the user) in which the
switches are initialized to the set state. For M:SNAPC,
flag is the address of a data word in the user program.

The request is honored only if the specified flag is set. A
flag can be set or reset by using other commands or system
procedures of the Debug system.

:IF COMMAND AND M:IF PROCEDURE
The :IF command and the M:IF procedure request the Debug
service to test a specified condition and fo set or reset the

associated flag according to whether the tested condition is
true or false.

Command Syntax

:IF[,seg] flag, address, (condition)

Procedure Syntax

(labels] M:IF flag, (condition)

where
seg specifies the overlay segment, if any.
flag is the name of the switch that is to be set or
reset (for subsequent testing by :SNAPC or
M:SNAPC).
address specifies the initialization address. . The
test is made just before the execution of the in-
struction found at this address.
condition is either an arithmetic relation to be
tested or a specification of bits in the job switch
word (JSW) to be tested. The syntax is
[*] i]lx] [Ib]] ,I', [*] i21)(2 [lbz]
SWITCH,v] [rvgre--]
where

i1 and ip specify the addresses of the fields to
be compared. The addresses may be indirect,
and either absolute or relative and may have

addends.

x7 and x9 specifies the user's index registers
to be used to modify the i and i, addresses
(hexadecimal) respectively. If there is to be
no indexing, zero must be specified for either
or both registers as appropriate. The legal
range of values of x and xg for effective
indexing is 1 through 7 only.

by and by indicate the number of bytes in the
fields to be compared. The values of by and
b2 can be different (e.g., a 2-byte field can
be arithmetically compared with an 8-byte
field). If one or the other of the values is
not specified, 4 is taken by default. The
acceptable values are

1 byte
2 halfword
4 word

8 doubleword

r specifies the type of comparison. The accept-
able relations are

GT greater than
LT less than
EQ equal to
GE greater than or equal to
LE less than or equal to
NE not equal to
v is a decimal integer where 2<v <31. If at

least one of the corresponding binary bits in
the Job Switch Word is set, the condition is
frue.

:AND COMMAND AND M:AND PROCEDURE

The :AND command and the M:AND procedure request the
Debug service to test a specified condition if the specified
flag is already set. If the test condition is true, the flag
remains set; otherwise, the flag is reset.

In an AND, if one of the conditions is known initi-
ally to be false (e.g., flag initially reset), the
evaluation of the second condition is superfluous;
the result of the AND is known (to be false).

Note:

Command Syntax

:AND [,seg] flag, address, (condition)

Procedure Syntax

[Iabels] M:AND flag, (condition)

The parameters have the same meaning as defined for the
:IF command and the M:IF procedure.

:0R COMMAND AND M:OR PROCEDURE

The :OR command and the M: OR procedure request the Debug
service to test a specified condition if the corresponding
flag is reset (off). If the test condition is true, the flag is
set; otherwise, the flag remains reset. If the flag is initially
set, it remains set,

In aninclusive OR, if one of the conditions is known
initially to be true (e.g., flag initially set), the
evaluation of the second condition is superfluous;
the result of the OR is known (to be true).

Note:

Command Syntax

:OR[,seg] flag, address, (condition)

Procedure Syntax

[labels] M:OR flag, (condition)

The parameters have the same meaning as for the :IF com-
mand and the M:IF procedure.

:COUNT COMMAND AND M:COUNT PROCEDURE

The :COUNT command and the M:COUNT procedure allow
the setting or resetting of a flag depending upon the number
of times the specified command or procedure has been
executed.

Command Syntax

:COUNT[,seg] flag,address, start,end, step

Procedure Syntax

[labels] M:COUNT flag, sch, end, step

where

seg and flag have the same meaning as in the :IF
command and the M:IF procedure.

address designates the initialization address. The
test is made just before the execution of the in-
struction found at this address.

specifies the smallest decimal value of the in-
ternal counter for which the flag is to be set.

start

end specifies the greatest decimal value of the in-

ternal counter for which the flag can be set.

specifies the decimal count intervals (within
the inclusive range designated by start and end)
at which the flag is to be set.

step

The Debug service constructs an internal counter initialized
at zero and increments it by one each time the command is
executed. The flag is set if the value of the counter less
the starting value is a multiple of the specified step and

also is within the specified range; otherwise, the flag is
reset. Therefore, the flag is set if the count is between

start and end, inclusively, and the quotient count minus
start divided by step is an integer.

The values of step and start must be smaller than the value
of end. For :COUNT, the internal counter is incremented
just before the execution of the instruction found at the
designated address.

:MODIFY COMMAND

Beginning at the designated address, the :MODIFY command
specifies the replacement of one or more consecutive memory
words in any area of a program (instructions or data).

Syntax
:MODIFY [,seg] address, value[, value, .. .]
where
seg designates the overlay segment name (valid only
when the program has a tree structure). It is op-
tional when the segment is the root of the program.
The modified words must be within the specified
segment.
address designates the word address of the first word
to be modified.
value is one of the following three forms:
hexadecimal constant
hexadecimal constant + external
hexadecimal constant + resolution (external)
where -

hexadecimal constant is a hexadecimal number
varying from one to eight digits. It defines
the value to be inserted in the specified word.
It is right-justified and filled with zeros when
less than eight digits.

external represents an externally defined pro-
gram symbol.

resolution may be used to specify the resolution
to be used if an external value is an address.
The external address value is added to the
value word with the indicated resolution. The
keywords for address resolution specification are

BA Byte address

HA Halfword address
WA Word address

DA Doubleword address

:INSERT COMMAND

The :INSERT command specifies the logical insertion of
one or many consecutive memory words at a specific word
address in any area of a program (normally used with instruc-
tions only).

Syntax
:INSERT[,seg] address, value [, value,...]

where

seg designates the overlay segment name (valid
only when the program has a tree structure). It is
optional when the segment is the root of the pro-
gram. The insertion address must be in the speci-
fied segment.

address specifies the word address where the inser-
tion is o be made. The instruction originally in
that address is executed following the execution
of the insertion; it is not executed in its initial
location. ’

" value is one of the following three forms:

hexadecimal constant
hexadecimal constant * external

hexadecimal constant + resolution (external)
where

hexadecimal constant is a hexadecimal number
varying from one to eight digits. It defines a
value to be inserted at the specified location.
It is right-justified and filled with zeros when
less than eight digits.

external represents an externally defined pro-
gram symbol.
resolution may be used to specify the resolution

to be used if an external value is an address.
The external address value is added to the
value word with the indicated resolution.

The

keywords for address resolution specification are:

BA Byte address

HA Halfword address
WA Word address

DA Doubleword address

The effect of INSERT is to

e Place the specified insert values (instructions) in
contiguous locations in the user's common dynamic
area.

5-6

e Replace the value (instruction) at the specified location
with a branch to the insert code.

e Append the value (instruction) originally at the speci-
fied location to the end of the inserted code.

e Follow that with a branch back to the specified loca-
tion plus one.

Following the execution of an insertion, the instruction
originally at the insertion address is executed at a location
elsewhere in memory. Hence, the insertion address must be
carefully selected. The addresses of location-dependent
instructions must not be specified. For example, it is not
possible to perform an insertion on a BAL (Branch and Link)
instruction when the called subprogram can return to ad-
dresses BAL+2, BAL+3, etc.

DEBUG SERVICE USAGE

This example is not designed to detail all the syntactic
possibilities of the Debug commands and procedures. It is
intended to illustrate how the commands of the Debug pro-
cessor are used for the case of a program which does not
have a tree structure.

IDEBUG

:SNAP ADRT, SNAPT, (+34A0, +35FF)

:COUNT FLAGI,+2A12,22,102,5

:SNAPC FLAG1, +28F5, COMPUTER,
(DEB1-A, FINT)

IF FLAG2, ADR2+D, (*CHAINEI, 3,2, GT,
CHAINE2, 0)

:OR FLAG2, ADR3-4, (CONDI, 5, 4, LE,
*COND?2, 5, 4)

:AND FLAG2, ADR4, (SWITCH, 4, 6, 28)

:SNAPC FLAG2, ADR5, LOGICAL, (DEB2,
FIN2+12)

:PMDI (DEB1-A, FINT), (DEB2, FIN2+12)

:PMD (00), (01)

1EOD

Since this example does not use the :DCB command, the
data output automatically occurs on the OUT device
(listing log).

The :SNAP card causes the output of the comment "SNAP1"
followed by the image of the memory area between absolute
addresses +34A0 and +35FF. This output is unconditional,

and occurs just before execution of the instruction refer-
enced by the external label ADRI.

The :COUNT command creates an intemal counter. This
counter is incremented by 1 (starting at 0) each time pro-
gram execution arrives at absolute address +2A12. The
flag, FLAG1, is set if the counter value is 22 or some
multiple of 5 plus 22 (i.e., 22+ N*5) in the interval
22 to 102, inclusive. (These are decimal values.)

The first :SNAPC command causes the output of the com-
ment "COMPUTER" followed by the memory area contained
between relative addresses DEB1-A (A is a HEX number)
and FINT1. This output is performed just before executing
the instruction located at absolute address +28F5. It is
conditional and occurs only if the flag, FLAGI1, is set.
FLAGI is set in its initial state; its state is changed via
the :COUNT command.

The :IF command compares two memory fields: two bytes af
the indirect address CHAINET indexed by the contents of
register 3, and fourbytes (default value) at address (CHAINE2)
not indexed (value 0). This comparison is made just before
the execution of the instruction located at relative address
ADR2+D (D is a HEX number). If the first field is greater
than the second, the flag FLAG2 is set, if not it is reset

to 0.

The :OR command compares two memory fields: four bytes
at address COND1 indexed by register 5 and four bytes at
indirect address COND2indexed by register 5 (the field size 4

may be omitted from the two fields, since it is the default
size). The comparison is made just before executing the
instruction located at relative address ADR3-4. If FLAG2
is set, it remains set; otherwise, it is only set if the first
field is less than or equal to the second.

The :AND command tests the state of bits 4,6, and 28 in the
Job Switch Word (see !SWITCH command, Chapter 3, and
the M:TSS, M:RSS, M:SSS procedures, Chapter 8); the con-
dition is true if at least one of these bits is set to 1.
This test is made just before executing the instruction at
relative address ADR4. If the flag FLAG2 is initially not
set, it remains reset; otherwise, it remains set only if one

of bits 4,6, or 28 of the JSW is set.

The second :SNAPC command outputs the comment
"LOGICAL" followed by the area of memory contained
between the relative addresses DEB2 and FIN2+12. Thisout-
put occurs just before the execution of the instruction loca-
ted at relative address ADR5. It is conditional and occurs
only if FLAG2 is set.

The :PMDI unconditionally dumps two memory areas at
the end of execution; the first is contained between the
relative addresses DEB1-A and FIN1, and the second be-
tween relative addresses DEB2 and FIN2+12.

The :PMD command dumps the memory areas of protection
type 00 and O1 at the end of execution if the jobis either
aborted or terminated by the execution of the M:ERR system
service.

6. FILE ORGANIZATION AND MANAGEMENT

GENERAL CONCEPTS AND FACILITIES

This section presents an overview of XOS file management
facilities and the basic concepts underlying these facilities.

TYPES OF INPUT/OUTPUT AND STORAGE DEVICES
The types of input/output devices supported XOS are:

e The low-speed, nonmagnetic, peripheral 1/O
devices:

Card readers, 80-column
Card punches, 80-column

Line printers, 132-column

o The high-speed, magnetic storage devices:
Magnetic tape units, 9- and 7-track
Removable disk storage units

Rapid Access Data (RAD) storage units (several
models).

The latter two types of devices are referred to collectively
as direct-access devices.

(Remote terminal devices, typically connected through’com-
munication lines, are managed by the Telecommunications
Management System, and are described separately in

Chapter 9.)

Data files input from or output to nonmagnetic devices must
be assigned with a DEV (device) type of assignment. (See
the !ASSIGN control command.) Although files on mag-
netic media may also, in certain cases, be assigned as DEV
type, the usual assignment type for files on magnetic media
is FIL, corresponding to standard labeled files.

Standard labeled volumes and files allow uniform file
management facilities, i.e., permit automatic volume and
file identification, automatic retrieval of named files on
multifile volumes, and in general facilitate the file security
features provided by XOS. Volume and file labeling con-
forming to ANSI standards are automatically provided by
the system.

The differences between the several types of input/output
devices, and the files assignable thereto, are described
in detail in a subsequent section, "Categories of File
Media".

6-1

LOGICAL VERSUS PHYSICAL FILES

The concept of a logical file as opposed to a physical file
allows for a degree of flexibility and physical device inde-
pendence at job execution time.

A logical file, in XOS usage, is a definition in the user's
program of the logical characteristics of the file to be
created or accessed. The definition includes such informa-
tion as record and block structure, file organization (which
relates the logical file to an access method), data-encoding
mode, etc. This information is contained in a table in the
user's program called a Data Control Block, or DCB. The
Meta-Symbol user must create, via standard system services,
one such DCB for each logical file that he wishes to process.
Several distinct physical files, however, of identical
logical characteristics, may be created or accessed serially,
through one DCB.

All necessary DCBs are automatically created for the
COBOL and FORTRAN user.

Lacking in the description of the file in the DCB are
the physical attributes of the file: such items as physical
device type, identification of the volume(s) on which the
file resides or is to reside, the file name (if any),

file storage space required (creation-time), etc. In short,
all information pertaining to the physical and device-
oriented aspects of the file is specified externally to, and
kept separate from, the user's program.

We may define a physical file as a collection of related
items of information existing on (or to be created on) a
specific extent of file storage media, whether that media
be, for example, cards or a portion of a disk storage device.

.

The kind of information needed to identify a specific phy-
sical file is typically given by the user in a !ASSIGN con-
trol command at job execution time. (The !ASSIGN com-
mand is described in Chapter 3; its usage is further de-
scribed later in this chapter.) Thus, in programming terms,
the point of definition of the physical file is the IASSIGN
command.

The DCB and the !ASSIGN command both specify one
common item of information: an operational label. This
label serves to identify a DCB and therefore a logical
file, and constitutes the link between the logical and the
physical file: specification of an operational label in a
IASSIGN command associates a logical file to the spec-
ific physical resource identified and described in the
command. ‘

The procedures for creating, completing, and modifying a
DCB are described in Chapter 7.

ACCESS METHODS AND FILE ORGANIZATIONS
XOS provides facilities for six different methods of file
processing — referred to as access methods — and four types
of file organizations. The six access methods can be
divided into two groups, according to the general tech-
niques involved in their use.
o The assisted methods:

Assisted Sequential

Assisted Indexed

Assisted Partitioned

o The basic methods:
Virtual Sequential
Virtual Direct

Basic Direct

The assisted methods operate at the logical record level,
and are characterized by a high degree of system-provided
services and control: record blocking/deblocking, error

checking, volume switching, etc. The basic methods oper--

ate at the physical record — or block — level, and are char-
acterized by a high degree of user control and relatively
little system service, allowing a corresponding degree of
flexibility.

The primary correspondences between the several file organ-
izations and access methods are as follows:

Sequential organization — Assisted Sequential

Access Method (ASAM)

— Virtual Sequential

Access Method (VSAM)

o Indexed organization — Assisted Indexed Access
Method (AIAM).
e Partitioned organization — Assisted Partitioned

Access Method (APAM)

e Direct organization — Virtual Direct Access

Method (VDAM)

The sixth access method, Basic Direct, does not correspond
to, nor is limited by, any defined file organization.

ASSISTED VERSUS BASIC METHODS

The unit of data transmitted between memory and an 1/O
device is referred to as a physical record or block. Depend-
ing upon the type of device involved, the length of the
block transmitted may be device-determined or may be
program-determined. For the nonmagnetic unit-record de-
vices, the length of the block is fixed at the data capacity
of the punched card or limited by the maximum length of a
print line.

For these devices the logical record (as defined below) is
always equivalent to the physical block.

In the case of magnetic-media devices, there is no inherent
limit — for most practical purposes —on the length of an in-
put or output block. (The XOS-defined maximum is 32,767
bytes.) An input record read from magnetic tape is limited,
however, to a single tape block, as originally written.

The assisted access methodsrequire that the user impose a uni-
form physical block length foreach block of a file assigned
to a magnetic medium. Essentially this is done so that a
subunit of the block, calledalogical record, can be defined.
The size (and the type) of the logical record is also user
specified. By means of the input/output procedures M: GET
and M:PUT, which characterize the assisted methods, the
user program works with logical records and the physical
blocks. Thesystem assumes responsibility for the management
of the physical records; itwill block logical records on output
and will deblock logical records on input performing the phys-
ical block transfers as required. The physical I/O operations
themselves are in general transparent to the user program.

If multiple 1/O buffers are provided (controlled by the user),
the system will anticipate the user's needs on input by per-
forming physical reads in advance of the logical-record re-
quests where access techniques permit; on output it is able

to overlap the physical record transmissions with user program
execution. Testing for proper completion of 1/O operations,
and switching from volume to volume of a multivolume file,
are functions performed automatically by the assisted
methods.

The basic access methods, characterized by the M:READ
and M:WRITE input/output procedures, operate solely at
the physical block level, and provide the user with direct
control of the physical block transfers. Each M:READ or
M:WRITE execution requests a physical data transfer. On
direct-access media, the amount of data transferred by a
single 1/O operation is not restricted to the defined block
length. No logical record structure is recognized by these
methods, and no "buffering ahead" is performed. The user
must test for proper completion of each 1/O operation re-
quested, using the M:CHECK procedure, and must request
any required volume switching.

ASAM AND THE SEQUENTIAL FILE ORGANIZATION

The assisted sequential access method (ASAM) is intended
for the creation and sequential processing of files on any
type of media.

Sequential processing implies that one logical record after
the other is accessed from the file in the order in which they
were created (and recorded on the storage medium).

This type of processing and the corresponding file organiza-
tion is appropriate for the files that can conveniently be
created in the natural order of subsequent processing. This
type of processing mandatory for files on media that is se-
quential by nature: card files, print files, and magnetic
tape files. (Direct-access media can readily be accessed in
a sequential manner.) The primary advantage of the se-
quential method and organization is device independence:
one program can be so planned as to be applicable to a
variety of device types. The system will automatically
adjust block size, if necessary, when a file is assigned to a
nonmagnetic device.

Update processing is defined as the modification of existing
records in place. In ASAM, it is restricited to the replace-
ment of records, without length change, on direct-access
media only. Update processing must therefore be restricted
to programs intended exclusively for use with disk/RAD
files. Portions of an existing magnetic tape file may not be
rewritten, but such a file is considered as always extend-
able. A more detailed description of the sequential file
organization is presented under "File Organizations", later
in this chapter.

AJAM AND THE INDEXED-SEQUENTIAL FILE
ORGANIZATION

The assisted indexed access method (AIAM) is intended for
the creation and direct-access processing of indexed-
sequential files. The records of such files each contain an
identifying key value, supplied by the user as part of the
record during file creation. The position and length of the
key field within the records are specified by the user (via
DCB parameters). The system automatically creates and
maintains a key index that allows the user to directly access
any individual record by key value, regardless of its posi-
tion relative to the previously accessed record. All or part
of an indexed-sequential file may also be accessed sequen-
tially (increasing key values) provided that the first such
access is by key value.

An indexed file must be created in order of increasing key
values, but higher-value records may subsequently be
added, intermediate-value records may be inserted, and
existing records may be modified, with or without length
change in variable-length format.

AIAM and the indexed-sequential file organization are
applicable only to direct-access storage media. The
indexed-sequential organization is described in detail under
"File Organizations", later in this chapter.

APAM AND THE PARTITIONED FILE ORGANIZATION

The assisted partitioned access method (APAM) is intended
for the creation and processing of sequential-like files that

6-3

are subdivided into individually accessible portions called
partitians. The beginning of each partition is identified by
one or more user-assigned names, referred to as partition
keys. An individual partition is referred to by key in order
to enable access to the first logical record contained in it.
Thereafter, logical records are accessed from the file se-
quentially, i.e., in the order of their creation. A complete -
partitioned file, or any number of contiguous partitions
within the file, can be accessed sequentially. If read ac-
cess is to cease at the end of a given partition, the user is
responsible for recognizing his own previously written end-
of-partition signal. Hence partitions may be arranged in

a nested, or hierarchical, structure.

Update processing, i.e., logical record replacement with-
out length change, is permitted in APAM. Partitions may

be added after initial file creation, existing partition keys
may be given synonyms, and partition keys may be deleted.

The partitioned file organization is extremely useful for a
library-like arrangement and storage of similar groups of
information, analogous to the arrangement of books relating
to the same subject on a library shelf. An example of parti-
tioned file usage is for the storage of program or subprogram
libraries.

APAM and the partitioned organization are applicable only
to direct-access storage media. The partitioned organiza-
tion is described in detail under "File Organizations",
later in this chapter.

VSAM AND THE SEQUENTIAL FILE ORGANIZATION

The virtual sequential access method (VSAM) is intended
for the creation and sequential processing of files, at the
block level, on any type of media. (Not applicable to
symbiont files.) The file organization produced is similar
to that produced by ASAM, but no logical record structure
is recognized or provided by the system. On direct-access
media, however, the length of the physical records read or
written via VSAM is not constrained by the defined block
length, but reads or writes must always begin on a block
boundary.

The sequential organization is described further under "File
Organizations", later in this chapter.

VDAM AND THE DIRECT FILE ORGANIZATION

The virtual direct access method (VDAM) is intended for the
creation and direct-access processing, at the block level,
of files on direct-access storage media. Blocks of a direct-
organization file may be accessed in any order, by specifi-
cation of a block sequence number. (Block sequence num-
bering is not dependent on the order of creation of the
blocks of the file.) Typically, the user will set up a rela-
tionship between a given block sequence number and the
contfent, or range of content, of the block so identified.
The length of physical record read or written is not

constrained by the defined block length, but in any case
each 1/O operation always begins on a block boundary. The
direct file organization is further described under "File
Organizations", later in this chapter.

BASIC DIRECT ACCESS METHOD (BDAM)

The basic direct access method (BDAM) is intended for
access to a private or unlabeled direct-access volume by
real physical sector addressing. No file structure or volume/
file labeling is recognized. It is completely physical
device oriented, and its use requires a thorough knowledge
of the "hardware" characteristics of the disk unit being ac-
cessed. Ii is, however, the most efficient access method
for direct-access media. (The system disk, i.e., anydevice
assigned for system control and use, is protected from access
via this method.) Under BDAM, the concept of file organi-
zation is completely user determined; none of the XOS-
defined file organizations preclude use of BDAM however.

ALLOCATION OF SPACE ON DIRECT-ACCESS MEDIA

At file creation time, the user must inform the system of the
maximum amount of space that a file on disk pack or on RAD
will require. This is done by means of the SIZ option of the
TASSIGN command (or other form of assignment) that de-
fines the physical attributes of the file to be created. When
the file is opened for creation, the system will reserve space
according to SIZ values specified and the file organization.
This space reservation function is called space allocation.
The specified amount of space may be allocated as one -
continuous area on the volume, or as 2 numkar of smaller,
noncontiguous areas, as dictated by the size of the indivi-
dual areas available at the time of allocation and the type
of device. (On disk pack the system allocates storage in
such a way as to minimize arm movement during processing.)

Space is allocated in units of 8,192 bytes (2,048 words);
this unit is defined as a quantum. The SIZ option allows
the specification, in quanta, of two parameters: the size
of a primary amount of space to be allocated at open time,
and the size of the supplementary space(s) to be added in
case of overflow or extension. The precise sense of the SIZ
parameters depends on the organization of the file to be
created. This is described in detail under "Space Alloca-
tion", later in this chapter, where methods of calculating
space requirements for indexed and partitioned files are also
presented.

If the user omits the SIZ option on the !ASSIGN command
for a file to be created, the system will assign installation-
determined default values.

ACCOUNT VOLUME AND FILE RETRIEVAL

At the time an account number is authorized, the user (or
group of users sharing a single account number) is assigned
an account volume, which may be a disk pack or a defined
portion of system-disk space. (See "Categories of File
Media", below.) If volume information is not specified on
the ASSIGN control command used to assign a permanent
file, the file will automatically be created on or retrieved
from the user's account volume.

If a permanent file is to be created on a volume other than
the user's account volume, the media type and possibly the
volume serial number must be specified. If such a file, when
created, is cataloged via the user's account volume, on sub-
sequent access the system can automatically retrieve the file
simply by file name, locating the file's volume of residence
by reference to the user's account volume. The cataloging
of files is fully described under "Cataloged Files", below.

FILE DELETION AND UTILITY PROCESSOR SERVICES

Once having created a number of disk, RAD, or magnetic
tape files, the user will eventually want to delete some of
these files as they become obsolete, -either in favor of newer
ones, or simply to free the occupied space in the case of
disk or RAD files. Disk, RAD, and magnetic tape file space
can be reused by creating a new file that overwrites the old
one. Caution is needed in the case of multifile tape vol-
umes, however, as all files subsequent to the file

will be lost. Note that no new space allocation can be
made for a disk/RAD file that is to be rewritten, i.e., a
new file replacing an identically named old one will occupy
the space allocated to the original file.

In the case of disk or RAD files, the DELETE function of the
utility processor FMGE can be used to simply delete the file
(regardless of expiration date). FMGE cannot delete a pass-
word protected file, however.

In addition to file deletion, file reorganization may period-
ically be required in the case of indexed-sequential and
partitioned files. Due to repeated extension and/or updat-
ing (record or partition deletion, modification, orinsertion),
the physical arrangement of these files may become ineffi-
cient, thereby wasting space and causing increases in file
processing time. The two utility processors REORGI and
REORGP physically reorganize indexed-sequential and parti-
tioned files respectively.

The FMGE and REORGI/REORGP processors are described in
the XOS/UT Reference Manual, Publication 90 17 69.

FILE CHARACTERISTICS AND CLASSIFICATIONS

This section describes the logical structure and organization
of the several kinds of files defined by the system as stan-
dard, i.e., those for which XOS provides processing facil-
ities. It also defines the several classifications of these
files in relationship to other elements of the file system

environment; that is, in relationship to storage media, ac-
count catalogs, labeling, etc. Some of the structures and
organizations apply only to files on direct-access media
(RAD and disk packs), some apply to these as well as to
magnetic tape files, and some include nonmagnetic (orunit-
record) files also. The range of applicability will be noted
in the following descriptions.

LOGICAL STRUCTURE

The logical structure of a file includes both (1) the form
of the logical records that constitute the file, and (2) the
optional grouping of the records into blocks within the file.
Both of these file characteristics, record format and block-
ing, are defined by the program that creates the given file.

These characteristics are defined in the user's Meta=Symbol
program by means of the DCB-related system procedures dis-
cussed below under "Program/File Relationship", and/or
the !ASSIGN command. The system, however, will supply
default values inlieu of programmer-supplied specifications,
and when reading a standard labeled file the system will
automatically obtain the necessary information from a label
associated with the file.

File organization is, in a broad sense, also an aspect of a
file's logical structure, but it is separately described in
a following subsection.

The specific compiler-language programming facilities
for supplying file structure information are described in the
appropriate language reference manual; the relevant sys-
tem procedures for the Meta-Symbol programmer are de-
scribed in Chapter 7.

PRELIMINARY DEFINITIONS

The following definitions are presented as a preliminary to
the specific record and block format descriptions.

Data. We may intuitively take data to mean information to
be processed. To facilitate the system's handling of the
actual 1/O transmissions for the user, additional information
describing certain characteristics of the original data may
be added by the system. This added data-describing infor-
mation is transparent to programs using assisted access
methods.

Logical Record. A logical record is defined as a collection
of related data items that constitutes the basic unit of data
for input/output processing.

Note: Hereafter the word "record" will be employed
exclusively to mean logical record unless
"physical record" is specified.

6-5

Block. A block is defined as a set of one or more contig-

vous records, plus control information (if any), that con-
stitutes a unit of data for input/output transmission.

File. A file in the general case is defined as a collection
of records.

RECORD FORMATS

There are three possible record formats; fixed length (F),
variable length (V), and undefined (U). All of the data
records within a file must have the same format. Format F
and V records may be grouped into blocks on magnetic
storage media at the user's discretion. A format U record
is by definition equivalent to a block. The length of a
record in any format may not exceed 32,767 bytes, regard-
less of storage device.

The record-level parameters of the DCB, described in
detail in Chapter 7, are identified here for reference in the
following text:

FRM = record format parameter (F, V, or U)

REL — record length parameter

KYL — key length parameter (for indexed-sequential
and partitioned files)

KYP — key position parameter (for indexed-sequential
files)

DLC — record-deletion control parameter

MXL — maximum 1/O-transmission length parameter
(for basic access methods only)

FIXED LENGTH (F) FORMAT

The fixed length (F) record format implies that the length of

all records in the file is constant and is defined by the REL

parameter of the DCB. Only F format records are applicable
to punch-card files.

Usage Rules.

1. Applicable to all devices (magnetic and nonmagnetic

media).

2. Applicable to sequential, indexed, and partitioned
file organizations.

3. Recognized only by assisted access methods.

4. The entire record contains only user data (but see
rule 6, below).

5. For files on direct-access media only, the first byte
(byte 0) of the record may be specified as a record-
deleted control byte via the DLC parameter of the
DCB, during file creation only, when using an assisted
access method.’

6. The deletion control byte (if specified) may be utilized
as a data byte, but if it is either created as or modi-
fied by the user to the value X'FF', the record is con-
sidered deleted by the assisted access methods.

7. If DLC is specified for an indexed-organization file,
The record-key field must not overlap the deletion
control byte (i.e., KYP # 0), or a program abort will
occeur.

VARIABLE LENGTH (V) FORMAT

The yariable length (V) record format is shown in Figure 6-1.
This format implies that the length of all records in the file
may not be constant, and that the length of the individual
record is defined within the record. The maximum length
of the record body, i.e., the user-supplied portion of the
record is defined by the REL parameter of the DCB.

Usage Rules.
1. Applicable to magnetic storage media and to print files.

2. Applicable to sequential, indexed-sequential, and
partitioned file organizations.

3. Recognized only by assisted access methods.

4. The record contains both system data (record header)
and user data (record body): the user builds or other-
wise supplies only the record body for output and re-
ceives only the record body on input; the system man-
ages the 4-byte record header.

5. For direct-access files, the deletion control byte may
be specified and used as stipulated for F-format,
rules 5-7.

6. Zero-length records may be written and read.

UNDEFINED (U) FORMAT

The undefined (U) record format is shown in Figure 6-2.
This format implies that the length of all records in the file
may ‘not be constant, and that record length and actual

block length are equivalent. The maximum record length
is defined by the REL parameter of the DCB. The REL value
may be less than or equal to the BKL parameter value.

record
header
U 7/
4 % record body
) /7
<—4 bytes < REL
4

Figure 6-1. Variable-Length (V) Record Format

= REL < BKL

Figure 6-2. Undefined (U) Record Format

6-6

Usage Rules.
1. Applicable to magnetic storage media only.

2. Applicable for file creation to sequential file organiza-
tion only.

3. Recognized by assisted sequential access method

(ASAM) only.
4. The entire record contains only user data.

5. Record and block length are equivalent and on
sequential-access media are equal to the physical
record length.

BLOCK FORMATS

A block on magnetic media can contain one or more logical
records; its length is program defined (BKL parameter of the
DCB). A block on a nonmagnetic device, e.g., card
punch, line printer, can contain only one record; its length
is limited by the physical-record size intrinsic to the par-
ticular device. In the case of the card punch, the block
length is fixed, and depends upon the data-encoding mode
(80 for EBCDIC, 120 for binary). The corresponding pro-
gram definition (BKL parameter) may not be less than 80
for card reader or card punch files.

On magnetic tape, the actual length of the blocks within a
file may vary; the length of a tape block may be less than
or equal to the BKL parameter value. ("Short blocks" are
caused by data transmissions of less than BKL length.)

On direct-access media, a block is of fixed length, and
always starts on a sector boundary. (Each sector can con-
tain only one complete or partial block.) The block size
for direct-access media is defined by the BKL parameter of
the DCB.

The default values for the BKL parameter are:

e 1024 bytes for files on magnetic media.
e 133 bytes/characters for line printer files.
e 80 bytes/characters for card files.

The length of a block cannot exceed 32K-1 bytes in any
case, including block header, record headers, and any
other system-required information.

The possible block formats, which vary with differing com-
binations of record format, user block-header options, and
storage media, are shown in Figures 6-3 through 6-8 and
are further described below. (Note that block formats are
given only for files on magnetic media; block control infor-
mation is never affixed to card- or print-file records.)

In certain instances there may be unused space in a block
on direct-access media. For example, if the number of
records written is insufficient to fill the last block com-
pletely, and the file is closed at that point, the system
will write the block even though the block contains only
one record. Intentional residual space may be introduced
by use of the M:TRUNC procedure, described in Chapter 7.
One reason for using M:TRUNC in this manner is to leave
space in an indexed-organization file so that additional
records may be inserted into the file without creating over-
flow blocks within the file.

In general it is desirable to explicitly define the block size
as an even multiple of record size (plus block and record
headers, if any) to avoid introducing residual space into
every block. This provides the most efficient utilization

of both file space and /O buffer space (see Chapter 7).
For files on direct access media, it is also important to
determine block size in relationship to the sector size of
the device in question; see "Space Allocation" later in
this chapter.

The block-level parameters of the DCB, described in detail
in Chapter 7, are identified here for reference in the fol-
lowing text:

BKL — block length.
BHR — block header length, for F or V record formats.

NBC — indicates that block sequence numbering (on
magnetic tape) is to be suppressed.

FIXED FORMAT MAGNETIC TAPE BLOCKS

Blocks on magnetic tape containing fixed (F) format records
can contain either (1) records only, or (2) block header in-
formation and records. The user may eliminate the block
header by specifying the NBC (No Block Count) parameter
and defaulting the BHR parameter (or specifying BHR, 0).
Note that the default value for BHR in F-format is O only
if NBC is specified also. Figure 63 shows an F-format
magnetic tape block with block header eliminated.

Figure 6-4 shows an F-format magnetic tape block with the
4-byte block header produced by accepting the defaults for
the BHR and NBC parameters. The two bytes contain a
binary block sequence number, relative to the first block

(block 0) of the file.

The general form of the F-format block header is shown in
Figure 6-5; the results of varying combinations of BHR- and
NBC—option specifications are given in Table 6-1.

Note that the block length valie (BKL) must allow for the
additional length of the block header in order to achieve
the desired blocking factor for a given record length.

g

~e——— REL REL fe—— REL —

BKL

Figure 6-3. Structure of a Fixed Format Block on Magnetic Tape with BHR Defaulted and NBC Specified

4—byfe
header

7z /-

7

REL REL < REL

- BKL

bsn = block sequence number.

Figure 6-4. Structure of a Fixed Format Block on Magnetic Tape with Default 4-Byte Header

T
«——————— (n-2) space characters —————— bsn
1
2
\ ~“bytes™ |
2=n<99

(@) With NBC Parameter Not Specified and n = 2

n space characters

1Sn<99

(b) With NBC Parameter Specified and n = T

Figure 6-5. F-Format Block Header on Magnetic Tape, with BHR Value, n, Specified

6-8

Table 6-1.

Effect of BHR and NBC Parameters for F-Format

Results for F-Format Magnetic Tape Blocks

(BHR,n) NBC not Specified NBC Specified
Header Contents

n No. of Header Bytes Leftmost Bytes Rightmost 2 Bytes No. of Header Bytes Header Content
default 4 2 spaces bsn 0 none
0 Same as default Same as default
1 Error (abort) —_ — 1 space
2<n<99 | n (n-2) spaces bsn n n spaces
Legend: bsn - block sequence number

VARIABLE FORMAT MAGNETIC TAPE BLOCKS

Blocks on magnetic tape containing variable (V) format
record always contain block header information. The
minimum size V-format block header consists of a 2-byte
field containing the actual block length (in binary), includ-
ing the length of the header itself. The minimum block
header is obtained by defaulting the BHR parameter (or
specifying BHR,0) and specifying the NBC parameter.

The default form of V-format block header, obtained

by defaulting both the BHR and NBC parameters, is four
bytes long, the left two containing the actual block length
(including header length) and the right two containirg the
block sequence number, in binary, relative to block 0 of
the file. This block format is shown in Figure 6-6. The
general forms of the V-format block header are shown in
Figure 6-7. The results of varying combinations of BHR-
and NBC-parameter specifications are given in Table 6-2.

Note that the maximum length of a V-format block is de-
fined by the BKL-option value; the block header length
must be allowed for when specifying this value in order to
achieve an optimum blocking strategy. Although the block-
ing factor of an individual V-format block cannot in gen-
eral be predetermined, a mean can be estimated on the basis
of average record length expected.

BLOCKS ON DIRECT-ACCESS MEDIA

The blocks of a file on direct-access media are of fixed
length (defined by the BKL of the creating program) and
contain a 4-byte block header, if created by an assisted
access method. The leftmost two bytes contain the effec-
tive block length, i.e., the length of the useful data

6-9

actually written in the block, plus 4 for header length.
The right two bytes of the header are zero. When the file
is created by a basic access method, the block header is
absent.

If the file is created in indexed-sequential organization,
the last four bytes of each block will be reserved by the sys-
tem for block linkage purposes, and must be accounted for
in the BKL value in order to optimize blocking strategy.

The general format of an assisted-method created block (for
F or V format records) on direct-access media is shown in
Figure 6-8. Note that the only valid BHR parameter speci-
fications are BHR,0 and BHR, 4: these are both equivalent
to the default; note also that the NBC option is not relevant.
The user's block length (BKL) specification should allow for
the 4-byte header, and also possibly for the 4-byte linkage
field at the end of block, depending upon the access method
and record format used for file creation.

When using the basic virtual access methods, VSAM and
VDAM, the virtual physical record written or read may
extend over a number of contiguous, i.e., virtually sequen-
tial, blocks of the file.

FILE ORGANIZATION

The organization of a file is determined by the user's choice
of access method for file creation. From the user's view-
point, file organization concerns the logical ordering of,
and relationships between, the data blocks and system-
supplied blocks containing control information (if any). The
logical ordering of the blocks also reflects the physical
organization of the information on the storage media, but in

T T
bkl bsn 7 . Z

~—4 bytes —=t=— ,ﬂ] 2, 13 n
bkI<BKL

bsn = block sequence number

record length < REL

LS
I

Figure 6-6. Structure of a Variable Format Block on Magnetic Tape with BHR Defaulted and NBC not Specified

T |
bkl |«—————— n-4 space characters—————{ bsn
! !
2 bytes 2 bytes
4<n<99

(@) With the NBC Parameter Not Specified and n =4

I
bkl |e——————— n-2 space characters

2 bytes

2<n <99

(b) With the NBC Parameter Specified and n = 2,

Figure 6~7. V-Format Block Header on Magnetic Tape with BHR Value, n, Specified

6-10

Table 6-2. Effect of BHR and NBC Parameters for V-Format

Results for V-Format Magnetic Tape Blocks

(BHR,n) NBC not Specified NBC Specified
Header Content Header Content
No. of Leftmost Middle Rightmost No. of Leftmost Rightmost
n Header Bytes 2 Bytes Bytes 2 Bytes Header Bytes 2 Bytes Bytes
default 4 bkl none bsn 2 bkl none
0 Same as default Same as default
1 Error (abort) Error (abort)
2 Error (abort) 2 bkl none
3 Error (abort 3 bkl 1 space
4<n<99 n bkl (n-4) spaces | bsn n bkl (n-2) spaces
Legend: bkl — block length (always < BKL)
bsn — block sequence number
BKL -
T T \ T T
'l NN\\H
4 bytes
~—4 bytes n records ~

(useful block length)

4

possible

unused
space

possible linkage
field (Indexed
files)

Figure 6-8. Structure of a Direct-Access Data Block (Assisted Methods)

6-11

the case of direct-access media the actual physical disposi-
tion of information is determined solely by the system and

thus is transparent to the user. (The use of the basic direct

access method, BDAM, implies no file structure or organi-

zation whatever, and can only be used with private or non-
standard disk packs.)

The four possible file organizations, and the media to which
they apply, are .

e Sequential (C) — all media.

e Indexed-Sequential (I) — direct-access only.
e Partitioned (P) — direct-access only.

o Direct (D) — direct-access only.

Although, in general, each file organization corresponds to
a particular access method for file creation, several access
methods may apply for subsequent access to a file of given
organization. For example, a partitioned file can be
read by the assisted sequential, assisted partitioned, virtual
sequential, and virtual direct access methods.

SEQUENTIAL (C) ORGANIZATION

The sequential file organization permits sequential access
to the records or blocks of a file. It is created by either
ASAM or VSAM, and is the only organization applicable
to nonmagnetic device files as well as to files on magnetic
media.

Depending upon file media restrictions, any of the three

record formats, F, V, or U, are allowed with use of the -

assisted sequential access method. Although a sequential
file can be written or read at fhe |oqrca|-record level by
ASAM, it can be read (or w.i* :n) iy ~t ine block level
by VSAM.

Existing sequential files on magnetic tape are always ex-
tendable — at the cost of losing any subsequent files on the
same volume. On direct-access media, they may be ex-
tended up to the limits of the possible space allocation; also
individual records may be deleted, or modified if the record
length is not changed.

INDEXED-SEQUENTIAL (I) ORGANIZATION

The indexed-sequential file organization permits either
direct access to individual logical records identified by
record key, or sequential access to records in ascending
order of their keys, starting with a specified record. A
record key is a data item within the record body, pro-
vided by the user, which serves to uniquely identify the
record. The location of a record specified by key is deter-
mined (by the system) via an index mechanism that is con-
structed and maintained by the system as part of the file.

Indexed-sequential organizationis applicable only to direct-
access media. Either F- or V-format records are allowed.
An indexed-sequential file is created using the assisted
indexed access method (AIAM).

The indexed-sequential organization is shown schematically

in Figure 6-9. The file is composed of data blocks, index
blocks, and (possibly) overflow blocks. Upon creation, the

file will consist of one or more data blocks, and at least one
index block. The index may be multilevel, as illustrated

in Figure 6-9 (1st and 2nd level index blocks). The number
of index blocks and number of levels thereof is a function

of block size, number of data blocks, and record-key length
(as described below).

Prior to file creation, the user must request allocation of
sufficient file space to allow for all of the data, index, and
overflow blocks that may eventually be needed. The method
for calculating this space requirement is described below
under "Space Allocation". Also prior to creation, he must
describe to the system both the beginning byte position,
relative to byte 0 of the record body, and the length of the
record key by means of the DCB parameters KYP and KYL
respectively.

During file creation, the user must create the record keys
and write the logical records in ascending record-key
order (binary collating sequence), if a record is presented
out of ascending key order it is not accepted and an ab-
normal condition occurs.

For each base data block written, a record-index entry is
automatically created. It is composed of the record key
corresponding to that of the last record in the data block
and a pointer to the beginning of that block. The record-
index entries are blocked as are user records, and the set of
these blocks constitute the first-level index.

For each first-level index block written an index entry is
created. It is composed of the record key corresponding
to that of the last record-index entry in the first-level
index block and a pointer to the beginning of that block.
These index entries are blocked, similarly, into the second-
level index.

Given enough data blocks, the above process applies re-
cursively with third, fourth, ..., 255th level indices pro-
duced. In general, at least one (partial) index block exists
at any level when two or more blocks exist at the next lower
level — including the "data block level™.

Overflow data blocks are created if, during subsequent up-
dating, either inserted or lengthened records cause original
records to be "pushed down" beyond the boundary of a data
block. The resulting overflow is automatically moved to an
overflow block which is linked between the two data blocks
as shown in Figure 6-9. Two or more overflow blocks can
be linked between two data blocks in this manner. Note
that overflow blocks do not appear explicitly in the index,
and are undesirable from the viewpoint of access speed and
storage space utilization. A utility processor, REORGI, is
provided to effect a reorganization of overflowed indexed
sequential files. (See the XDS Utilities Reference Manual.)

AA

2nd level

AZ
.
.
Fz | - BA
FZ
.
FZ .
Pz =~ Kz - oA
LZ -
Jzz

1st level

Index Blocks

QA

\74

o2

—

g

Base Data blocks

KZ

[

J

g

Overflow Data blocks

Figure 6-9. Indexed-Sequential Organization

6-13

At the end of the file creation process, the system auto-
matically inserts a dummy record having the maximum
possible key value (X'FF...F'). This permits subsequent
insertion of records with keys greater than that of the last
record originally written, effectively allowing file exten-
sion. The dummy last record cannot be accessed by the
user program, however.

Care must be taken that the key field does not overlap the
deletion control character (byte 0), if the latter is speci-
fied; a program abort on file opening will occur if KYP =0
(default value 0) in this case.

If the ICY (index copy) option of the M:OPEN procedure
is specified, the system will automatically copy the index
portion of an existing file to a temporary file in secondary
storage. This will generally result in faster direct-access
processing time, especially if the secondary-storage media
is appreciably faster than the media upon which the entire
file resides, e.g., RAD vs. disk pack.

PARTITIONED (P) ORGANIZATION

The partitioned organization permits either sequential
access to the records of a file, or direct positioning to the
beginning of a named partition of a file for subsequent
sequential access to the records thereof. This organization
is essentially an arrangement of a sequential file into
uniquely locatable subfiles.

A partitioned file is created with the assisted partitioned
access method (APAM). It is applicable only to direct-
access media. Either F or V record format may be utilized.

The partitioned organization is shown schematically in
Figure 6-10. Note that the user's data blocks are preceded
by, and possibly interspersed with, system-constructed
partition key (name) and a pointer to the first logical record
in the associated partition. The directory blocks are,
however, transparent to the user's program as they are
not accessible via assisted access methods. For example,

if either APAM or ASAM is used to read a partitioned file,
they will "skip over" the directory blocks. However, the
user must, prior to file creation, request allocation of
sufficient file space to allow for both data and directory
blocks. The method for calculating and specifying this
space requirement is described below under "Space
Allocation".

To create a partitioned file, the user must begin by assign-
ing a partition key (with the M:STOW procedure); that is,
the file must contain at least one partition. During crea-
tion, the user may create as many partitions as desired. In
addition to principal (i.e., first-assigned) partition keys,
the user may assign synonym keys, i.e., aliases of a
given partition name. The keys may be up to 255 bytes in
length.

During subsequent processing of the file, synonym keys

may be added, any key may be deleted, and new parti-
tions created. In addition, existing records may be deleted,
or be modified if the record length is not changed.

It is important to note that when reading a partitioned file
(either with APAM or ASAM), the system does not detect
an end-of-partition condition: the user may read to end-
of-file, across partition boundaries, whether starting from
a partition boundary or from beginning-of-file. A partition
key locates the beginning of a partition, but not the end of
the preceding one: therefore a partitioned file may be
given a hierarchical, or "nested", structure by the appro-
priate ordering of subsumed partitions. (End-of-partition -
may, of course, be signaled by a user datum detected by
the program, e.g., a zero-length record in V-format.)

The pointer portion of a directory entry contains the rela=-
tive block number of the block in which the associated

- partition begins, and the byte displacement of that parti=-

6-14

tion's first record. (Synonym entries contain, in addition,
a synonym indicator.) The partition keys are sorted, when
necessary, and maintained in ascending order of key value
within the directory block chain.

DIRECT (D) ORGANIZATION

The direct organization permits direct access to blocks of a
file by relative block number (in relation to the beginning
of the file, block 0), via the VDAM access method only. It
is an "unmanaged" organization relative to the C, I, and P
organizations.

A direct-organization file is composed of blocks of BKL
defined (or default 1024-byte) length, and transmission
must begin on a block boundary. However, the length of
the data actually transmitted is specified in the M:READ or
M:WRITE procedure by the transfer-length (TRL) option
(default = 1 block). The length of data transmitted may be
less than the block length, or may extend over several con-
tiguous blocks, but it is limited by the maximum-transfer-
length (MXL) parameter of the DCB associated with the file.

No block header is created in D organization; no logical
record structure within the block is recognized by VDAM.

Files created by VDAM are accessable by VSAM and also
by ASAM using U record format.

TEMPORARY AND PERMANENT FILES

Files on magnetic media can be either temporary or per-
manent files. (The distinction is not relevant for nonmag-
netic device files, for a number of reasons.) In principle,
a permanent file is one that continues to exist in a re-
trievable form after the execution of the job that creates
it; a temporary file does not. That is, a permanent

MMM ¢

NNN
Directory block
000
PPP .

7

Data block Partition MMM

Partition PPP

Directory
block

linkage —— Partition PPP (continued)

Partition NNN

QQQ .

Partition RRR

Partition QQQ

Figure 6~10. Partitioned Organization

6-15

file is reusable by another job. In terms of system usage,
the following operational definitions apply:

e A permanent file is a named physical file.

e A temporary file is an unnamed physical file.

The permanent-file definition above implies, also, that
a permanent file is a labeled file recognizable as such

under XOS.

TEMPORARY FILE

A temporary file is generally used for intermediate, or
"scratch", storage within a job or job step. It is assigned
at creation time with a FIL-type assignment without the
NAM option. The file may be created on a public tape or
disk volume, but in the absence of any specification to the
contrary, the file is automatically assigned to a portion of
the system disk reserved for temporary files, known as tem-
porary secondary storage. Thus the simple assignment

IASSIGN op-label, FIL

is sufficient to define a temporary file of installation-
defined default size that is valid for one job step only (the
FRE option is assumed by default). To maintain the same
file over several job steps, one only need write instead:

IASSIGN op-label, MTN, FIL

The file space reserved for such a file is released auto-
matically at the end of the job step or job, depending upon
the usage of the MTN/FRE options.

If assigned to a public volume, a temporary file must be
monovolume (contained within one volume). In any case,
it may be noted that during execution of the job or job
step in which it is defined, the file is known only by the
operational label that associates it with a program DCB.
Thus upon completion of the step or job, i.e., upon deac-
tivation of that label, the physical file created is "lost" to
the system.

PERMANENT FILE

A permanent file is assigned with both the FIL and NAM
option specified in the assignment. It may be created on
the user's account volume or on a private or public volume;
a public volume will automatically become private under
the user's account if the creating job-step terminates
successfully.

A permanent file may be multivolume except when assigned
to the user'saccount volume (see "File/Volume Relationships"
below).

6-16

If an existing permanent file is to be accessed from one or
more private volumes, the user must specify the volume
serial number(s) in the referencing assignment unless the -
file has been cataloged; whereas the location of a file
created on an account volume is inherently known to the
system.

CATEGORIES OF FILE MEDIA

This section defines the two major categories, and several
subcategories, of file media, from the viewpoint of XOS
usage. The purpose of these categories is descriptive:
certain sets of file management facilities, file character-
istics and classifications, etc., apply to one media category
or subcateogry and not to others. The two major categories
are (1) nonmagnetic media and (2) magnetic media, the
later category dividing into several operational subcategories.

NONMAGNETIC MEDIA

The nonmagnetic media (strictly speaking) supported by
XOS are punch-card decks, both for input and output,
and printer listings. The devices corresponding to these
media are the card reader (input), card punch (output),
and line printer (output). The characteristics of the files
associated with these devices are device dependent, that
is, determined by the inherent physical limitations of
device, e.g., the printer's unit line length. Therefore,
such files are assigned as device type (DEV) files, via the
IASSIGN control command.

Other devices included in this category are the telecom-
munications terminals, including remote teletypewriter
terminals and remote batch terminals. The processing of all
telecommunications devices, however, is treated separately
in Chapter 9, as specialized facilities are provided
f.herefore.

Nonmagnetic device files differ in several important oper-
ational aspects from files on magnetic media: they have low
relative transmission speeds, are not dynamically reusable
(i.e., switchable from input to output or vice-versa), and

— most important from the viewpoint of system usage —
standard labeling does not apply. In contrast, all standard

magnetic storage volumes, described below, contain only
labeled files.

It is important to note that when a magnetic tape file (or
disk pack) is to be accessed as unlabeled, it is assigned
with a device-type (DEV) assignment even though it is
magnetic media. Thus, the distinction between the DEV
and the FIL assignment is actually made on the basis of
unlabeled vs. labeled files.

Nonmagnetic device files are also commonly spoken of as
"unit record" or "peripheral device" files.

MAGNETIC STORAGE MEDIA

Magnetic storage media includes magnetic tape volumes,
disk volumes (demountable disk packs), and system-disk
space (secondary storage) which may consist of RAD or disk
pack or both. The major operational subcategories are

(1) magnetic tape, an intrinsically sequential-access media,
and (2) direct-access media, which includes disk and RAD.
1A secondary distinction is that between demountable vol-
tumes and nondemountable volumes, or pseudo-volumes,
?defined below. ("Demountable" as used here is not synony-
mous with "physically removable"; see "System Disk", below.)

VOLUME CLASSIFICATIONS

There are four classes of standard volumes: public, pri-
vate, account, and pseudo-volume. A standard volume
is one with standard volume labeling, either as created
under XOS or recognizable by XOS, and that contains
only standard labeled files. (XOS magnetic tape label
standards are ANS compatible.) Hereafter, the tem vol-
ume, unqualified, will be employed exclusively to mean
a demountable standard volume. A nonstandard volume
must be assigned with a DEV (device) — rather than a
FIL (file) — assignment. The user is restricted to the BDAM
access method for the processing of nonstandard disk
volumes.

VOLUME PREPARATION

A utility processor, PREP, is provided for standard-volume
preparation. This preprocessing of a volume intended for
standard usage is mandatory. PREP may also be used to
delete all files on a tape or disk volume and/or change
volume ownership. Use of the PREP processor is normally
restricted to the computer-center operations staff. It is
described in the XOS/UT Reference Manual, 90 17 69.
Functionally, it writes and initializes the volume header,
which includes the volume label, volume catalog, and the
allocation table for disk volumes, and comprises the volume
label group and tape mark(s) for tape volumes. Any volume
can be prepared as either a public or private volume (see
below).

PUBLIC VOLUME

A public volume is a tape or disk volume that does not
belong to any user account: it does not carry an account
identification in its volume label. It can be used by
any account for the creation of temporary or permanent
files. If a permanent file is created on a public volume,
however, the volume automatically becomes a private vol-
ume under the file creator's account. The account num-
ber of the user is recorded in the volume label during
creation of the permanent file.

The volume serial number of a public volume must not appear-
in the 1ASSIGN assignment for a temporary file, i.e., one
would specify FIL,(UNT,type) only. (A command syntax
error occurs otherwise.) At program exeuction time, a
public volume — either chosen by the system from among
those already mounted or for which it issues a mounting
request — will be allocated to the file.

If a permanent file is to be created, the volume serial num-
ber(s) may be specified but need not be. If not specified,
a volume is selected on the same basis as for a temporary
file.

Public volumes containing temporary files are released to
the system, without being systematically dismounted, when
the job or job step (depending on MTN/FRE option usage)
has finished. They can then be assigned immediately to
another job or job step.

PRIVATE VOLUME

A private volume is a tape or disk volume belonging to a
given user account. The account identification appears in
the volume label. Only the owner of a private volume may
create files on it, although access can be granted to other
accounts for the purpose of modification or extension of a
specific file thereon. Only permanent files may be created
on a private volume; the volume serial number(s) must be
specified in the file assignment.

ACCOUNT VOLUME

An account volume is a direct-access volume that contains
the account catalog for a given account. The account vol-
ume is known to the 'system, since its identification is asso-
ciated with the account number in the system's super-
catalog. ‘

In addition to the account catalog (which is simply a special
form of volume catalog), the account volume can also con-
tain premanent files. In general, any file residing on an
account catalog can be accessed simply by file idenfifica-
tion and account number in the case of another user.

Each account may have only one account volume, and only
monovolume files may be created on it.

PSEUDO-VOLUME

A pseudo-volume is by definition an account volume, but
one that resides in a dedicated portion of secondary storage
(which is in turn a portion of system disk). All usage rules
applying to the account volume apply equally to a pseudo-
volume, the only distinction between the two being that the
latter is not physically demountable.

SYSTEM DISK AND SECONDARY STORAGE

The system disk is that set of RAD and/or disk units that is
defined as being reserved for system use. (Any disk pack
that constitutes any portion of system disk is logically non-
demountable.) Although system disk is under the exclusive
control of the system, a portion of it may be defined as
secondary storage, which can contain space reserved for
temporary files, space reserved for pseudo-volumes, and/or
space reserved for symbiont files. The user has access to
the temporary-file and pseudo-volume space (if these por-
tions exist); his access to symbiont file space is indirect as
its usage is generally transparent to the user.

The amount of system disk reserved for secondary storage,
and the size of each of its subdivisions, is installation
dependent.

SUPER, ACCOUNT, AND VOLUME CATALOGS

The supercatalog, account catalog, and volume catalogs
together provide a "trail" for the system's use in locating
user's files efficiently and economically. These catalogs
have a number of other functions as well, but these are
ancillary from the user's viewpoint. See Figure 6-11 for a
schematic representation of this chain of catalogs.

SUPERCATALOG

The supercatalog is maintained on system disk; essentially
it is a list of all authorized users of the system, by account
number. Each entry in the supercatalog associates an
account number with either (1) the volume serial number
of an account volume, or (2) the location in secondary
storage of an account pseudo-volume.

ACCOUNT CATALOG

The account catalog is essentially a table of entries repre-
senting the files that have been cataloged under the ac-
count. The account catalog resides solely upon the account
volume belonging to a particular account.. The account
catalog provides information which the system may use to
locate a given file specified by file name alone (or by file
name and account number). Any file entered into an ac-
count catalog can be automatically so located. A file
name can be entered into the account catalog under two
conditions. When the user creates a file on the account
volume the file name is automatically entered into the
account catalog. When the user creates a’file on a stan-
dard labeled volume and specifically requests for the file
to be cataloged (via the !ASSIGN control command), the
file name and volume serial number are entered into the
account catalog. The account catalog is a special case of
a disk volume catalog.

6-18

It should be noted that a limit upon the number of files that
may be entered into the account catalog is established when
the account volume is prepared. This limit can be set at
either 64, 128, or 256 catalog entries as determined during
PREP processing.

VOLUME CATALOG

For a given standard disk volume, the volume catalog is
essentially a table of entries representing the files contained
thereon. An entry consists of a file's labels along with
information concerning file space within the volume. (See
"Disk Pack Structures", under Physical File/Volume Struc-
tures, and also Appendix C, for further details.)

FILE/VOLUME RELATIONSHIPS

On private magnetic tapes and disk packs, i.e., removable
volumes, several file/volume relationships are possible:

e Monovolume file — a file contained within one volume.

o Multivolume file — a file that extends over more than
one volume.

o Multifile volume — a volume that contains two or more
files (or portions thereof).

e Multifile multivolume — a set of files extending over
two or more volumes, the set including at least one
multivolume file.

These structures on magnetic tape are illustrated in
Figure 6-12.

The system provides several volume mounting options for
multivolume files, with either automatic or program-
directed (M:CVOL) transition between volumes. For
moltifile volumes, extensive positioning and identification-
checking facilities are provided; these are explained in
the M:OPEN and M:CLOSE procedure descriptions in
Chapter 7.

Serial mounting of multivolume files implies sequential
access to volumes; it is the only mode possible for magnetic
tape volumes. Several physical drive units may be reserved,
however, permitting premounting of two or more volumes of
the sequence. Volume sharing is not possible for disk vol-
umes in serial mounting mode.

Parallel mounting is possible for a set of disk pack volumes;
it implies, though does not necessitate, nonsequential
access to the volumes (relative both to creation order and to
volumes already accessed). Parallel mounting also allows
for volume sharing and/or file sharing of multivolumes (if the
volumes are sharable); see "File Protection and File Sharing"

Supercatalog : SYSTEM DISK

Account No. 1001 1383

Disk addr NO0O1

L

Serial No. or
disk address {

Y Pseudo-volume
Account i
catalog
File on -
pseudo-
volume
' REMOVABLE VO LUMES
Account volume
Account
catalog
File on
account
volume
- Multivolume file
: serial No. PO1
d P02
[2 files o
on same
volume
P02
PO1
Volume
catalog
Private
volumes Magnetic
tape file
Y
\

Figure 6-~11. Super, Account, and Volume Catalogs

6-19

Monovolume File

‘ VOL | HDR | * Data blocks *| EOF | * | *
]

Load point
Multivolume File
VOL HDR * Data blocks * EQV * *
VOL HDR * Data blocks * EOF * *

Multifile Volume

Data blocks) * Data blocks)

VOL HDR |* (

* *
file A EOF HDR | * (file B EOF
Multifile Multivolume
HDR |, (Data blocks) « | EOF | .| HDR |, (Data blocks) N
VOL | a) file A (A) (8) file B EOV
HDR . . . x| %
VOL * Data blocks, continuation of file B * | EQV
®
VOL HDR |, | Data bl?cks, « | EOF |, | HDR |, D.c:l‘o blocks | , | EOF
(B) end of file B (B) @) file C (@)
Note: When the end-cf .olume coincides with the end-of-file, the configuration is the following:
i .| EOF |, | HOR |,
Z ... file A) ®) EOV
HDR |,
fi ces
VOL (3) ile B Z
Legend
represents the tape-mark record
VOL : the volume header-label group
HDR : the file header-label group
EOF : the end-of-file trailer label group
EOV : the end-of-volume trailer label group

Figure 6-12. Strucfure of Volumes on Magnetic Tape

6-20

below. Under this mode, all volumes of a multivolume set
must be mounted before processing begins.

The mounting options of the !ASSIGN command, includ-
ing a deferred serial-mounting option, are decribed in
Chapter 3.

PHYSICAL FILE/VOLUME STRUCTURES

The physical structures described below are those of volumes
and files either created under XOS or recognized as stan-
dard by XOS (see also "Volume Classifications").

DISK PACK STRUCTURES

The structure of a disk pack volume is completely defined
by its volume header, which contains:

1. The volume label, whose contents includes the volume
serial number and, if a private volume, the owner's
account number.

2. The volume catalog, which contains the labels of all
the files on the volume. Each label describes the
location of the file on the volume, as well as adescrip-
tion of the file characteristics.

3. An allocation table, which represents the available

(i.e., unused) space remaining on the volume.

The location of these elements of the volume header are
as follows:

Sector Address
(1024 bytes/sector)

Element

Reserved for system 0

Volume Label 1

Volume Catalog 3 through n
(variable length)

Allocation Table n+1

The remainder of the volume consists of allocated file space
and/or available space. A detailed description of disk-
volume and file labels may be found in Appendix C.

MAGNETIC TAPE STRUCTURES

A standard magnetic tape volume has a volume label group
(recognizable as such by XOS); a nonstandard magnetic tape
volume does not. The volume-label group contents include
the volume serial number and, if a private volume, the

6-21

owner's account number. Each standard file is delimited
by a header label group and a trailer label group. Non-
standard files have no label groups (recognizable as such by
XOS). Each label group is followed by a tape mark. For
both standard and nonstandard files, the data portion of the
file is followed by a tape mark. There is an additional tape
mark at the logical end-of-tape. Each file label group
includes file identification and protection information as
well as some logical structure descriptors. A detailed
description of tape volume and file labels may be found in
Appendix C.

CATALOGED FILES

The XOS user, should he desire to reference an existing file
residing on his account volume, need not supply the identi-
fication of the volume in his IASSIGN command. The
absence of the volume specification in the !ASSIGN com-
mand causes the system to perform a search of the super-
catalog, from which it extracts the identification of the
account volumes. In a similar fashion, XOS provides the
user with the ability to reference files residing on volumes
other than the account volume, such references being made
by file name only, by providing the ability to make entries
for such a file in the account catalog. The term used for a
file for which an account catalog entry has been made is a
"cataloged file". The function of making the entry in the
catalog is termed "cataloging" the file.

An option on the !ASSIGN command, CTG, is provided
to indicate to XOS that the file is to be cataloged. This
option must be present at the time the file is created in
order to catalog the file. Upon encountering this option,
XOS enters in the user's account catalog sufficient informa-
tion to locate the file on any subsequent reference. Since
all files on the user's account volume are by definition
cataloged files, the CTG option has no effect when creat-
ing files on the account volume.

Once a file has been created and cataloged, a reference to
the file need not contain the location of the file, i.e., the
volume serial number. The necessary information will be
extracted from the account catalog (via the supercatalog)
when reference to the file name is made. A reference to a
cataloged file always produces the most recent absolute
generation and version, unless a generation and version are
entered as part of the file name.

In short, cataloged files free the user from keeping track of
where a file is located, transferring that responsibility to
the system.

ABSOLUTE FILE GENERATIONS AND VERSIONS

A set of files known by a single file name, each member
of which is distinguishable one from another by an ab-
solute generation number, is called a set of absolute file

generations. Each member thereof is referred to as a gen-
eration; a generation version number can be used to further
distinguish between differenct versions of the same (absolute)
generation.

For example, PAYMASTER, GO0O1 might identify one gen-
eration and PAYMASTER, G0005 another generation belong-
ing to the absolute generation group known by the file name
PAYMASTER. The generation number, of the form Gnnnn
(n =1 through 9) is assigned at file creation time, and
specified when retrieving an existing generation, via the
IASSIGN command. If a generation number is not speci-
fied when referring to a cataloged set of file generations,
the most recently cataloged generation is always retrieved.
A generation number is, therefore, an extension of the file-
name; its default at file-creation time is 0001, and is (for
cataloged files) the number of the last cataloged generation
when referring fo an existing file, i.e., status OLD or
MOD. (Any permanent file created under XOS isimplicitly
a member of a generation set containing at least one
member i.e., generation 0001, version 00.) Note that
although file generations need not be cataloged, the file-
generation facilities are intended specifically as a comple-
ment of the cataloging capability, so as to provide as much
flexability as possible in the establishment and maintenance
of a, set of absolute generations. For uncataloged files, the
user must consider the generation number (and also the ver-
sion number discussed below) simply as part of the filename,
and that general filename-usage rules apply to the total
identification.

A two-digit version number functions as a further qualifica-
tion of the file generation. All permanent files are assigned
a version number of 00 by default, but a version number may
be specified in conjuncation with an explicit generation
number, either when creating or retrieving a file. The ver-
sion number specifically allows for the replacement of a
cataloged generation with another version of the same gen-
eration, i.e., another file with the same generation num-
ber but a different version number. Thus, two identically
numbered files may exist in the same job step, e.g., one
OLD and one NEW file, distinguished by differing version
numbers. On cataloging of the new file, however, it re-
places (rather than coexists with) the already-cataloged
generation, since only one version of a generation can
exist, i.e., be known, in an account catalog at a time —
except during the cataloging process itself. (Note that
deletion of a version entry from the catalog does not cause
deletion of the actual file if it exists on a private volume;
the user must perform the actual file deletion in this case.)

RELATIVE FILE GENERATIONS

which of the volumes retained as backup to a current file
may be reused. This capability of XOS frees the user of
the responsibility of supplying the volume serial numbers
associated with specific files (normally supplied in the
1ASSIGN command), and of the responsibility of deciding
which volumes are available for reuse.

For instance, a typical daily job might require one input
tape and one output tape, the output tape to be used as the
input tape for the next day's run. Further, the job requires
that all tapes used for the job must be saved five days. The
user may specify to XOS, through DEFG, the set of six
magnetic tape volumes to be used for the job by theirvolume
serial numbers, and XOS will automatically request the cor-
rect input and output tape each time the job is run. See
Figure 6-13, for an illustration of this example.

In the example shown in Figure 6-13, all six files are refer-
red to by the same file name, DAILY. Such a set of files,
once specified to the system via DEFG, is called a relative

" generation group. The name of the generation group is the

Relative file generations, established through the use of the

DEFG utility processor, allow the user to specify that XOS
is to perform certain of the functions of job setup and vol-
ume retention normally done manually. If so specified,
XOS will "keep track" of the volume serial numbers asso-
ciated with specific files, and optionally, XOS will decide

6-22

name of the file managed by the group, in this example,
DAILY. Within a generation group, the user may refer to

a specific file, or generation, by its relative chronological
position within the group, i.e., =nor +n. See Figure 6-13
and Table 6-3. After the run for day 3, the current file is
on volume TAPEO4 and may be referred to by relative gen-
eration number 0. The other files in the generation group
may be referred to at that time by their position in the group
relative to generation 0. Thus, the last, or oldest, tape in
the generation group is referred to as relative generation -5
— or relative generation +1 when viewed as the next tape
to be reused.

After the run for day 4, TAPEO3 becomes relative genera-
tion 0, TAPEO4 relative generation number - 1, and TAPEO2
relative generation -5. Figure 6-14 shows the IASSIGN
commands required for execution of a program EVERYDAY,
which uses the current and oldest files in the generation
group DAILY, and the program WEEKEND which requires
reference to all tapes in the generation group DAILY.

In the preceding discussion and examples, the closed~loop
type of generation-file management is employed. The
closed-loop generation group always assumes that relative
generation +1 refers to the oldest generation in the group.
Opposed to the closed-loop type is the open-loop type of
generation group, which functions as a "push-down" table.
When a new generation is established, the user must specify
the relative generation number +1 and the volume serial
number, device type, etc., of the new generation. At job
conclusion, the new generation becomes relative genera-
tion 0, relative generation O becomes -1, etc., and the
previously oldest generation is dropped from the generation
group. Refer to Figure 6-15, in which an open-loop is
employed for the program EVERYDAY.

In the preceding discussions and examples, the volumes

used to contain the file DAILY have been magnetic tape.
Generation files may also be used in a similarmanner to
refer to RAD or disk storage. The user need only specify
the media type to DEFG at the time the group is created
(closed-loop) or in his IASSIGN command” (open-loop).

DEFG also provides a means of maintaining and listing the e Maintain backup copies of files on a cyclical
generation group, should such operations become necessary. basis

In summary, generation files

e Provide the user with the ability to automatically reuse file e Reduce the control command coding required for repeti-
space on a cyclical basis, whether tape, disk, or RAD tive jobs (hence eliminating errors)

The user specifies to XOS, through DEFG, the following:
1. File name: DAILY
2. Number of volumes required: 6

3. The volume serial numbers:

a. TAPEOI d. TAPEO4
b. TAPEO2 e. TAPEOS
c. TAPEO3 f. TAPEO6

4. That the oldest volume is available for output, and is to be used as such when the user requests the next volume.
5. That the current tape volume serial number is TAPEOT, the oldest TAPEQé.

Schematically, XOS manages the volumes as follows:

RUN DAY 1 TAPEO6

TAPEQ6 RUN DAY 2

RUN DAY 3 TAPEO4

TAPEO4 | RUN DAY 4

RUN DAY 5

RUN DAY 6

PPPPPE
bobdbE

Figure 6-13. Relative File Generation Group

6-23

Table 6-3. Relative Generation Numbers of File DAILY

Generation group DAILY after run day 3

Volume. Serial Number Relative Generation Number
TAPEO4 0
TAPEO5 ~lor+5
TAPEO6 -2or+4
TAPEO1 -3or+3
TAPEO2 -4or+2
TAPEO3 =50r+1

Generation group DAILY after run day 4

Volume Serial Number Relative Generation Number

TAPEO3 0

TAPEO4 -lor+5

TAPEOS -2or+4

TAPEO6 -3or+3

TAPEO1 4 -4or+2

“TAPEOQ2 - -50r+1 B
| JOB EVERYDAY
IASSIGN INPT,FIL,(NAM,DAILY,0),(STS,OLD) Input File
IASSIGN OPUT,FIL,(NAM,DAILY,+1),(STS,NEW) Output File

IRUN EVERYDAY

The above job uses the current file (relative generation 0) as input, and the oldest file (relative generation +1) as
output. Both files are members of the generation group DAILY. ‘At job conclusion, the file referred to as a relative
generation +1 becomes relative generation 0, relative generation 0 becomes relative generation -1, etc.

1JOB WEEKEND

!ASSIGN INP1,FIL,(NAM,DAILY,0), (STS,OLD) Input File 1
IASSIGN INP2,FIL,(NAM,DAILY,-1),(STS,0LD) Input File 2
IASSIGN INP3,FIL,(NAM,DAILY,-2),(STS,0LD) Input File 3
IASSIGN INP4,FIL,(NAM,DAILY,-3),(STS,OLD) Input File &
1ASSIGN INP5,FIL,(NAM,DAILY,-4),(STS,OLD) Input File 5
IASSIGN OPUT,FIL, (NAM,DAILY,+1),(STS,NEW) Output File
IRUN WEEKEND

The above job uses the five most current files (relative generations 0, =1, =2, =3, and -4) as input, and the oldest
file (relative generation +1) as output. All files are members of the generation group DAILY. At job conclusion, the
file referred to above as relative generation +1 becomes relative generation 0, relative generation 0 becomes -1, etc.

Figure 6-14. Relative-Generation-File Command Sets

6-24

1JOB EVERYDAY

IRUN EVERYDAY

IASSIGN INPT,FIL,(NAM,DAILY,0),(STS,0LD)

!ASSIGN OPUT,FIL,(NAM,DAILY,+1),(STS,NEW), (UNT,MT,(VOL,TAPEQ7))

Relative Generation Group DAILY Before Above Job is Run

Volume Serial Number
TAPEOI1
TAPEO2
TAPEO3
TAPEO4
TAPEO5

TAPEO6

Relative Generation Number

Relative Generation Group DAILY After Above Job is Run

Volume Serial Number
TAPEO7
- TAPEO1
TAPEOQ2
TAPEO3

TAPEO4

TAPEOS

Relative Generation Number

Figure 6-15. Open-Loop Relative Generation Group

TASSIGN COMMAND USAGE

The chain of program and job control elements that con-
stitutes the relationship between a program and an actual
physical file of information that it creates or accesses is
(1) a Data Control Block (DCB) in the user's program,

(2) a name, called an operational label, associated with
that DCB, and (3) a !ASSIGN control command in the
job-control deck for that program. The function of the
IASSIGN command is to define the physical medium and
associate it, via the operational label, with the logical
file defined by the DCB. This logical chain and the opera-
tional flexibility it affords is described in more detail in the
next subsection. The several types of file assignments (i.e.,
definitions) are described in the subsequent subsections,
as well as related topics: file identification, file=status

6-25

specification, volume-mounting options, and the optional
specification of DCB parameters via the lASSIGN command.

The reference syntax of the |ASSIGN command is shown on
foldout chart A1, Appendix A, and described in detail
in Chapter 3. :

PROGRAM/FILE RELATIONSHIP

The principal reason for the indirect chain of elements,
described briefly above, that defines the program/file
relationship is file and device independence: it provides
not only file name independence but also, given a measure
of forethought on the user's part during program design, a

large degree of program independence of 1/O-device type,
where this is desirable.

The data control block that is assembled in the user's pro-
gram — typically one per program file — defines the file
in terms of its logical characteristics: logical structure
and file organization. (As noted under "File Character-
istics", several combinations are compatible with more
than one category or subcategory of file media.) The
DCB is created with the M:DCB procedure. During pro-
gram execution, the DCB may be modified, in terms of
individual parameters, with the M:SETDCB procedure.
Upon execution of an M:OPEN procedure that references
the DCB, a connection is established between the pro-
gram and the file defined by the corresponding !ASSIGN
command. Also during file opening, DCB parameters
specified in the IASSIGN command may be used to com-
plete or modify fields in the DCB prior to the reading of the
file labels (existing file). If the file is an existing perma-
nent file opened for reading, modification, extension, or’
rewriting, some or all of the file's characteristics (de-
pending upon record format) as recorded in the file label
are written into the DCB, overlaying any corresponding
information previously filled in.

Usage of the M:DCB and M:SETDCB procedures is described
in detail in Chapter 7.

The set of IASSIGN commands associated with a job step
defines for the system the combination of device resources
that must be allocated to the job step before it is initiated
for execution.

Several quite simple but nontrivial examples of the flexi
bility offorded by this mechanism are the ability at run-
time to

1. Assign either of two different types of device, e.g.,
card reader or magnetic-tape drive, as a program
input.

Assign a program output to a device or media other
than the one intended as normal, e.g., assignment of
card punch output to the line printer during program
testing.

Assign a program output to a "dummy" file (DUM-type
assignment), effectively nullifying this output when it
is not required.

This kind of run-time variability without program modifica-
tion can be of paramount value under both program-testing
and production conditions. In general, the degree of flexi-
bility that can be achieved is limited by the user's choice
of, and nonrestrictive or generalized usage of, an appro-
priate access method.

ASSIGNMENT TYPES

The terms in which a physical file is defined in a !ASSIGN
command differ according to the type of file involved.

6-26

Thus there are two basic types of assignments: the DEV
or device type, and FIL or file type. (The OPL type assign-
ment is effectively an indirect form of either DEV or FIL;
the DUM type is @ "null" assignment.) Within each basic
type, several subtypes corresponding to different media
catagories can be distinguished by characteristic syntax
differences. The various forms of !ASSIGN usage are
described in the following subsections.

DEV-TYPE ASSIGNMENTS

The DEV, or device, type of assignment is used for assign-
ing a nonmagnetic device file, or for assigning a file on
a nonstandard magnetic storage volume, e.g., a nonlabeled
magnetic tape volume. (A standard volume may be assigned
for processing as nonstandard with the device assignment

also.) In either case, a common characteristic of the DEV

assignment is that a file name is not specified.

NONMAGNETIC DEVICE ASSIGNMENTS

Nonmagnetic device files can be assigned via a symbiont.
A symbiont is a system program that automatically creates
an intermediate disk file — essentially either an input or
output card-image file or an output print-image file —
corresponding to the actual device input or output. The
purpose of symbionts is to improve system throughput and
operational flexibility; their existence, and operation is
completely transparent to the user's progmm. Symbionts are .
applicable to ASAM only. The names of the symbionts and
the devices to which they correspond are;

IN - the job-stream card reader. .

OUT — the line printer associated with'the job-output
file (a listing produced thereon may be inter-
spersed with the system-produced print lines).

SLP — a line-printer output stream alternative to OUT
that produces a contiguous listing (may be
printed on the same physical device, but as a
separate file). '

SCP — the card punch.

Thus, a sample assignment to read a data file from the
job-input stream, e.g., a card deck immediately following
a IRUN-command, would be:

IASSIGN F1,DEV, IN

To print output on the line printer associated with the job-
output file in which system-produced control and account-
ing information also appears:

IASSIGN F2,DEV, OUT

To assign a contiguous print file:

IASSIGN F3,DEV,SLP

To assign a card output file:

!ASSIGN F4,DEV, SCP

In the case of SLP and SCP, the symbionts normally
operate in "catch-up" mode: they attempt to transmit the
file records to the destination device — printer or punch,
respectively — before the file is closed, i.e., as the
symbiont file on disk is being written by the user program.
The NKP option, if used, prevents the symbiont from writ-
ing to the output device until the user's program closes
the file.

The sample operational labels F1, F2, etc., are of course
arbitrary, one-to-four characters, programmer-chosen
symbols.

The user can, alternatively, gain nonsymbiont access to a
nonmagnetic device file by specifying a symbolic device
code in place of a symbiont name:

CR — card reader
LP — line printer

CP — card punch

The symbiont versus nonsymbiont assignment does not imply
any programming differences in the user's program. It is
purely an operational consideration; the choice may be
dictated by installation practice. Symbiont access to non-
magnetic device files is the more efficient mode, however.
(Symbiont access is not available under VSAM.)

For direct device assignments, a device code (CR, LP, or
CP) would be substituted for the symbiont name in the

above examples; the NKP option does not apply in this case.

NONSTANDARD VOLUME ASSIGNMENTS

Although the DEV-type assignment is equally applicable
to nonstandard magnetic tape or disk pack volumes (or such
volume to be processed as if nonstandard), the most common
usage is for the assignment of nonlabeled tape files.

One mandatory use of the DEV-type assignment is for the
assignment of disk volumes, either standard or nonstandard,
for processing via the BDAM access method. In any case,

a volume specified in a device-type assignment does not
undergo Automatic-Volume-Recognition (AVR) processing.
That is, no validity checking of volume identification or
ownership is attempted.

6-27

The syntax (excluding DCB parameters) of a nonstandard
volume: assignment is

MTN

IASSIGN op-label [,{FRE

}], DEV,media-type;

I (VOLserial-no [, ...]) [mounting-option]

where

media-type is MT for 9-track magnetictape, 7T for
7-track magnetic tape, and DM for disk pack
(7242).

mounting-option is as described under "ASSIGN
Command" in Chapter 3 (PAR, MNT, or DEF
option).

A sample assignment for a nonlabeled file on 9-track mag-
netic tape would be

IASSIGN F5,DEV, MT, (VOL, ABC123)

FIL-TYPE ASSIGNMENTS

The FIL-type assignment is used for either temporary or
permanent files on magnetic storage media. For permanent
files the assignment may be made to any standard volume;
for temporary files, the assignment may be only to a public
volume or to temporary file space on secondary storage.
The syntactic distinction between a permanent and a tem-
porary file assignment is the presence or absence, respec-
tively, of the NAM option.

(See foldout chart A-1 of Appendix A for the complete
syntax of the IASSIGN command.

TEMPORARY FILE ASSIGNMENTS

On Secondary Storage. The form (excluding DCB param-
eters) of the FIL assignment for a temporary file on secondary
storage space is

MTN

1 -
IASSIGN op-label [, {FRE

}], FIL[,(S1Z-option)]

Therefore, an example of the minimum required form of
such an assignment would be:

IASSIGN F1,FIL

This simple assignment reserves an installation-defined
default amount of direct-access file space (minimum = 8,
192 bytes), associated with the operational label F1. Since
the default for the MTN/FRE (read "maintain/free") field
is FRE, this assignment would remain in force only for the
job step with which it is associated. (Specification of MTN

would cause the assignment to remain in force over sub-
sequent job steps until superseded or suppressed. Thus the
same file could be reopened in subsequent job steps, assum-
ing a prior M;:CLOSE with MTN specified.) Use of the
.SIZ option is described in a separate section, "Space
Allocation", below.

On a Public Volume. The form (excluding DCB parameters)
of the FIL assignment for a temporary file on a public
volume is

MTN (UNT, type)],
IASSIGN op-label [{FRE }],FIL,{(DEFIO p—|qbe|2)}'

I [,(S1Z-option)]

where

may be MT for 9-track magnetic tape, or DM
for disk pack.

type

is the label of another 1ASSIGN com-
in force during the same job step.

op-lcbelg

man

(See "Space Allocation" for SIZ-option usage, which op-
tionally applies only in the case of a disk volume.)

The minimum forms reduce, therefore, to

MT

1. IASSIGN op-labeI,FIL,(UNT,{DM})

2. 1ASSIGN op-label 1o FIL, (DEF,op-chelz)

Form 1 causes the reservation of a system-selected public
tape or disk volume arid corresponding deices for the
job step, associated with the specified operational label.
In the case of a disk volume (type = DM), the default
amount of file space is allocated.

Form 2 causes a deferred association of the resource
assigned to op-label, by another IASSIGN command, if
that resource is avaﬁable (i.e., free) at the time the
DCB associated with op-label, is opened. The !ASSIGN
command referenced by op-lcﬁaelz must be in force during
the same job step, and must define the resource directly,
as in form 1.

An example of form 1 would be
IASSIGN F2,FIL, (UNT,MT)

which allocates some public tape volume to the job step,
associated with label F2.

An example of form 2 would be

IASSIGN F3,FIL, (DEF, F2)

6-28

which will cause the same tape volume and drive unit that
was reserved by the first example assignment to be associated
with label F3, if that volume is available when the DCB
defining logical file F3 is opened — i.e., if no other
DCB is open to that volume at the time. Several such defer-
red assignments, referring to the same resource definition
(e.g., F2), may be made within one job step. The refer-
enced assignment may have been maintained for a pre-
vious job step.

Note that the status option (STS, NEW/OLD/MOD) is

not relevant, insofar as only its default, NEW, is applic~
able to a temporary file; if reopened for input subsequent
to file creation, its status automatically becomes MOD.
The reopening must, of course, be within the same job and
the identifying op-label must have been maintained con-
tinuously. See M:OPEN, in Chapter 7, for information on
automatic evolution of a file to MOD status.

Also, the disposition (DSP), protection (PRT), retention
(RET), linking (LNK), and PAR/MNT multivolume mounting
options are not relevant to temporary-file assignments.
Public disk volumes are not sharable, i.e., only one DCB
at a time can be open to a given public volume. (Mag-
netic tape volumes are inherently unsharable.)

PERMANENT FILE ASSIGNMENTS

Permanent file assignments are characterized syntactically
by the appearance of the NAM option, since all permanent
files are labeled files. A syntactic distinction exists be-
tween the assignment for a permanent file on an account
volume and that for a permanent file on a private or public
volume. The VOL suboption (of UNT option) does not
appear in the former case, and does appear in the latter.

Common FIL-Assignment Options with Defaults. The follow-
ing options have default values and therefore need not ap-
pear in any case for which the default is acceptable. (See
Chapter 3, "ASSIGN Command", for full descriptions.)

PAR .
({ MNT, n) This option gives a choice
DEF, logical-label of mounting modes: parallel,

serial, or deferred, in the case of multivolume files;
the default for magnetic tape is MNT: serial vol-
ume mounting on one drive unit.

RET
(DSP,[KEP]), This option allows control over the
DMT dismounting of volumes and retention

of allocated resources; the default is DMT: dis-
mount volume(s) and release device(s).

Eé; Thisoption allows
control of the
amount of the file space to be allocated for a new
direct-accessfile, plus special-case suboptions; the
default space allocation isinstallation-determined.

(siz [,(

)] ,size[, increment])

See "Space Allocation" for usage description.
(Usage varies by file organization.)

(PRT, suboptions) This option allows control, during
file creation, of file protection facilities (access
control, password) for the new file; the default
conditions are that all other accounts may subse-
quently read the file, no other account can modify
or rewrite it, and no password is attached. See
"Volume and File Sharability" for usage description.

(RET, period) This option allows control, during file
creation, of the retention period (i.e., nominal
useful lifetime) to be assigned to the new file.
The default value is installation determined.

The above options will not be shown in the two basic for-
‘mats given below for permanent file assignments, although
they may be added to the essential elements shown, as
appropriate, at the user's discretion. (Note: the mounting
option PAR is mandatory in the special case of a multivol-
ume disk file assigned for nonsequential processing and is
the default for disk media).

Permanent File on Account Volume. The basic form of an
assignment of a file on an account volume, excluding com-
mon options and DCB parameters, is as follows:

MTN

| -
IASSIGN op-label [,{FRE

}], FIL, (NAM, filename);

NEW
oo |
MOD

where acctno is a four-character account number.

I [, (UNT, AC, acctno)], [(STS,

The UNT option need only be specified in the case of refer-
encing an existing file on another user's account volume.
The default value is the submitting user's own account num-
ber, identifying his account volume. The system automat -
ically locates the account volume by account number,
implicit or expressed. The STS (status) option need be spec-
ified only in the case of an existing file (OLD or MOD);
the default status is NEW. Note that when either UNT or
STS is omitted the other may be omitted also, since a file
may be created on an account (or private) volume only by
the owner of the volume.

A sample minimum-form assignment of a new file, i.e.,
one to be created, on the user's own account volume is
as follows:

IASSIGN F4,FIL, (NAM, TESTFILE1)
To reference the above-assigned file, subsequent to its
creation, only the status option need be added:

IASSIGN F5,FIL, (NAM, TESTFILET), (STS, OLD)

6-29

The status MOD would be used instead of OLD if the file
was being referenced for updating rather than reading
(see the M:OPEN procedure description, in Chapter 7,
for status/processing-mode relationships). However, if the
new-file assignment were made in one step of a job and the
assignment was maintained (MTN specified) over subsequent
steps, the status of the fite would automatically evolve to
MOD on closing of the file in the file creation step. A
subsequent job step could then open the file in input or up-
date mode using the same operational label, thereby mak-
ing use of the original |ASSIGN command as automatically
modified (effectively) by the system.

To reference a file on another user's account volume, the
other user's account number, e.g., A107, would be speci-
fied as follows:

TASSIGN Fé,FIL, (UNT, AC, A107), (NAM, PROGS5);

I, (STATUS,OLD)

Note that the parenthesized FIL options may be given in
any order following the positional keyword FIL, as is true
of the options following DEV and DCB also.

Permanent File on Private or Public Volume. For file crea-
tion, the volume serial number is always specified in the
case of a private volume; it may be specified in the
case of a public volume, or the system may be allowed
to select the specific public volume. (The public vol-
ume automatically becomes private to the file creator's
account.)

In a reference to an existing file (necessarily on a private
volume), the volume serial number is always specified.
The basic form of the assignment, again excluding com-
mon options and DCB parameter, for either case is

MTN

1 -
IASSIGN op-label [,{FRE

}] ,FIL, (NAM, filename);

I, (UNT,type[,(VOL,serial-no,...)]) [, (STS, status)]

where type is MT for (9-track) magnetic tape, DM for
7242 disk pack. The media-type specification is the min-
imal requirement for the UNT option (file creation on un-
specified public volume). The status option need not be
specified for file creation; default in NEW.

An example of a minimum-form assignment for file creation
on a private disk volume follows:

IASSIGN F7,FIL, (NAM, XYZFIL), (UNT,DM(VOL;

I, 117354))

An assignment for creation on a public volume might either
be the same as above, or with the VOL suboption omitted
from the UNT option. To use the above sample assignment

for file reference, only the STS option — with OLD or
MOD specified — need be added.

SPACE ALLOCATION

Space is allocated for the creation of a new disk or RAD
file according to the specified or default values of the
SIZ parameter of the 1ASSIGN control command (or of
the M:ASSIGN procedure, if used). The syntax of the SIZ
parameter is described in Chapter 3.

The meaning and effect of the SIZ parameter values vary
according to the organization of the file to be created.
They are described for each organization in the following
subsections.

Note that no new space allocation can be made for a disk/
RAD file that is to be rewritten, i.e., a file replacing an
existing identically-named one will occupy the same
space allocated to the original file. (Status OLD; Output
processing mode.)

CONSECUTIVE ORGANIZATION

Valuel of the SIZ parameter specifies, in quanta of 8K
bytes, the initial amount of space to be allocated to the
new file. Value2 specifies the size of the increments to
be added to the file in case of either overflow of the initial
allocation during creation, or extension of the file during
subsequent status~MOD, Output-mode processing.

If all of the space specified by valuel is not available on
the first of a series of volumes specified, the remainder will
be allocated on succeeding volume(s). '

INDEXED-SEQUENTIAL ORGANIZATION
For an indexed-sequential file:

valuel specifies, in quanta, the space to be
allocated for base data blocks.

value2 specifies in quanta, the space to be
allocated for (1) the creation of index blocks, and
(2) overflow blocks.

Note that unlike C and P organization files, the entire
and final amount of file space — including possible over-
flow space — is allocated at file creation time; no sub-
sequent extensions are allowed.

If value2 is omitted or given a zero value, the system
reserves index-block space as if all of the file were to
be allocated for base data blocks (less index space), and
does not allow any space for overflow.

METHOD OF CALCULATING THE NUMBER OF INDEX
BLOCKS REQUIRED

Since the indexed-sequential organization is relatively com-
plex, a method is presented for the calculation of the num-
ber of index blocks that will be needed (assuming that the
substantive file grows to full size), given a specified
amount of space for base data blocks (valuel — value2 X
8, 192 bytes).

Preliminary Definitions. BKL defines the block length of
base data blocks, overflow data blocks, and index blocks,
in bytes. Since blocks of an indexed-sequential file, re-
gardless of record format, contain a 4-byte block header
and a 4-byte linkage field, the usable block size, b, is
defined as follows:

b =BKL -8

* KYL defines the record key length, in bytes.

6-30

Both BKL and KYL are specified in the DCB corresponding
to the file to be created.
Values to be computed:

No' the number of base data blocks.

Ex’ the number of index entries per index block.

N], the number of firsf—level index blocks.

Ni’ the number of ifh level index blocks.

Equations. Assuming that (value 1-value 2) > 0, the value

No is derived as follows:

b(volue 1-value 2)‘
[BKL x 8192

_ integer

N portion of

o

Any index, entry is composed of a record key plus a
3-byte pointer to a late block. Therefore, the index-entry
length, 1, is given by

| = KYL +3

and the number of entries per index block, Ex' by

Ex = integer [Tb]

The number of nfh level index blocks, N, is given by
the number of base data blocks divided by the number of

entries in an index block, the result being rounded
upwards to an integer, i.e.,

No
N] = integer T
x

Similarly

Ny
N2 = integer o
X

Therefore, the total number of index blocks, N, that will
be created is

N zi:N

and the total amount of space that will be reserved there-
fore, is in bytes

N x BLK

The excess of value2 x 8,192 over the amount of space
derived above will be available for overflow blocks. By
making a preliminary estimate of value 1 and value 2, based
on the prediction size of the data portion of the file, and
then performing the calculations described above, the values
of value 1 and value 2 may be adjusted to produce the
most efficient allocation.

Since blocks on direct-access media always
being on a sector boundary and take up as
many full sectors as are required to accommodate
the block length, the user must carefully relate
BKL and the sector size of the device involved
in order not to waste direct-access media space.
Specifically, if BKL is not equal to of a multi-
ple of sector size, the equation given above
for deriving N, and thus the entire calcula-
tion, is invalidated.

Caution:.

PARTITIONED ORGANIZATION

Valuel of the SIZ parameter specifies, in quanta, the
initial amount of space to be allocated to the new file.
Value2 specifies the size of the increments to be added
to the file in case of either overflow during creation, or
extension during subsequent status-MOD, Output-mode
processing.

6-31

To arrive at appropriate SIZ parameter values for a parti-
tioned file the user should note that

1. The directory entries and the data records are kept
in separate blocks and that in both cases the effective

block length is BKL-8.

To compute the number of partition key entries a
block can contain, Eq4. one must consider that the
length of each entry is, in bytes

KYL +5

Thus

~ b
Ed = m'reger[KYL " 5]

The probable maximum number of partition keys, both
principal and synonym, to be stowed is therefore a factor in
estimating the best allocation.

DIRECT ORGANIZATION

Valuel is the total amount of space, in quanta, to be
allocated to the direct-organization file. Value2 is not
significant for thisorganization; i.e., a direct-organization
file is not extendable beyond its creation-time allocation.

RULE FOR ALLOCATION OF MULTIVOLUME
DIRECT-ACCESS FILES

For all files necessitating parallel mounting, i.e., mulfi-
volume direct-access files (I,P, or D organization), the
amount of space specified by valuel of the SIZ parameter
must be available exclusively on the volumes specified for
mounting or the allocation request will be refused.

PASSWORD PROTECTION

When creating a file that is to be password protected, or
when accessing a file that has been password protected,
an Xl-class abnormal return occurs at OPEN time. The
abnormal return routine must detect abnormal code X'19
and must then load registers 6 and 7 with a value represent-
ing the password before executing an M:RETURN. If the
file is being created, the password is entered into the HDR3
label. If an existing file is not being accessed, then the
value is compared with the file's password in the HDR3 label;
and if the values are identical, processing continues nor-
mally. When the passwords do not match, the job step is
aborted.

Atfile creation time, the user informs the system that o pass-
word is to be applied to the file by means of the PAS option
of the PRT (protection) field of the !ASSIGN command.

In either case (file creation or reference), the user must
specify the X1 abnormal class code in the ABN parameter
of the DCB in order to receive the abnormal return.

VOLUME/FILE SHARABILITY AND
ACCESS AUTHORIZATION

XOS includes a utility program called PREP which is used
to prepare a removable storage volume (tape, disk pack) for
utilization in the system as a standard volume. In essence,
PREP writes a volume label (VOL1) and other system control
information as necessary on the volume.

For a disk pcxckf one of the fields of VOLI is the "shar-
ability" field which contains a one-byte code representing
the sharability or nonsharability of the volume in its
entirety.

VOLUME SHARABILITY

When a volume is sharable, more than one file on the vol-
ume can be accessed by one or more user jobs (under one or
several accounts) concurrently. When a volume is not
sharable, only one user job at a time is permitted to access
that volume. The single user can access only one file
on that volume at a time, i.e., only one DCB is permitted
to be open to any file on the volume. The owner of a file
to be created on either a sharable or nonsharable volume
can choose to employ both password protection and file
access authorization by account number.

t
A tape volume is inherently nonsharable.

FILE SHARABILITY

When a volume is sharable, the files residing thereupon are
potentially sharable. More than one user (or job) is permit-
ted by the system to access that volume concurrently and
file-sharing operates essentially as follows:

1. More than one DCB can be open to the same file for
concurrent input-mode processing (including more
than one DCB in a given user program).

2. The system regulates multiple access to a single file
whenever one or more (authorized) users wish to modify
it (i.e., for record update or file extension). User
requests for opening in differing modes are queued in
order of receipt by the system.

3. Account authorization and password protection control
apply.

FILE ACCESS AUTHORIZATION

Authorization for read and/or write access to a given file
can be granted or denied to other users (i.e., other
accounts) by the owner of the file at file creation time
(only). This is done by means of the PRT (protection) field
of the 1ASSIGN command. Read and write authorization
can be separately granted (or denied) on the basis of (1)
specified accounts, (2) "all" accounts, or (3) "no" accounts.
The default authorizations, when the PRT field of !ASSIGN
is omitted, are that all other accounts can read the file and
no other accounts can write in, i.e.. modify or extend the
file. The special option NCT (no control) implies both read
and write authorization for all other accounts and precludes
password protection (the NCT and PAS options are mutually
exclusive). Table 6-4 tabulates the effects of the possible
¢ombinations of PRT options.

Table 6-4. File Access Authorizatian: Effect of PRT-Option Combinations

File Accessibility Code in HDR1 Disk File Accessibility
No Password With Password
PRT Protection Protection OUTPUT, Status OUTPUT, Status MOD
Options (without PAS) (with PAS) INPUT, Status OLD NEW or OLD or UPDATE, Any Status
NCT Space (char- any account volume owner only | any account
acter space)
R,ALL A J any account volume owner only | any account
W, ALL
R,ALL B K any account volume owner only | volume owner only
W, NO
R,NO C L volume owner only volume owner only | any account
W, ALL

Table 6-4. File Access Authorization: Effect of PRT-Option Combinations (cont.)

File Accessibility Code in HDRI1

Disk File Accessibility

No Password

With Password

PRT Protection Protection OUTPUT, Status OUTPUT, Status MOD
Options (without PAS) (with PAS) INPUT, Status OLD NEW or OLD or UPDATE, Any Status
R,NO D M volume owner only volume owner only | volume owner only
W, NO
R,acent,... E N volume owner and volume owner only | any account
W, ALL authorized

accounts only
R,acent,... F ©) volume owner and volume owner only | volume owner only
W, NO authorized

accounts only
R,acent,... G P volume owner and volume owner only | volume owner and
W, acent,... authorized authorized accounts

accounts only only
R,NO H Q volume owner only volume owner only | volume owner and
W, acent,... authorized accounts

only
R,ALL I R any account volume owner only | volume owner and
W, acent,... authorized accounts
only
0 any account volume owner only | any account
(zero)

Note: The password, if any, and/or authorized account numbers, if any, appear in the file's HDR3 label.

6-33

1. 1/0 PROCESSING FACILITIES

INTRODUCTION

This chapter describes in detail all of the DCB-related and
I/O-processing procedures that constitute the six access
methods available under XOS. For clarity, each procedure
that is applicable (in a specific form) to a given access
method is described separately in that form under that
method, even though many of the procedures (in generalized
form) are applicable to more than one of the methods.

The following subsections briefly describe the initialization
and termination steps required for 1/O processing of a file
(common to all access methods); the general characteristics
of the different access methods; and the general handling
of abnormal, error, and abort conditions that may occur
during file processing. The subsequent section contains a
generalized description of buffer usage, preparatory to the
descriptions of the specific access methods.

INITIALIZATION AND TERMINATION OF I/0 PROCESSING .

Prior to the execution of any of the 1/O processing pro-
cedures, M:GET or M:PUT for example, certain initial -
conditions must be satisfied:

e A data control block (DCB) must have been created,
describing the logical file to be created/processed,
the access method to be used, and the general condi-
tions that are to be in effect during processing. The
procedures that explicitly achieve the creation and
(minimum) completion of the DCB are M:DCB or
M:MOVEDCB, and M:SETDCB. The control commands
and procedures that optionally or implicitly effect the
completion of the DCB are the !ASSIGN command and
the M:OPEN procedure (in the case of existing labeled
files).

o The physical file space, volume, or device must have
been identified and the corresponding resources must
have been allocated to the job by the system. This is
achieved explicitly by use of the 1ASSIGN command
and/or M:ASSIGN procedure (the latter having a
limited role), or implicitly by use of predefined opera-
tional labels (SI, LO, LM, etc.). The IASSIGN
syntax and usage is described in Chapters 3 and 6.

e A linkage between the logical file (the DCB) and the
physical file (represented by the information given in
the IASSIGN command) must be established. This is
effected by means of the M: OPEN procedure, whereby
the user activates a specified DCB and, implicitly, the
correspondingly physical file, At this point the user
also specifies the processing mode desired: input, out-
put, update, etc., and sets certain other conditions.
The M:OPEN procedure performs many functions (some
invariably and some conditionally) in activating the
logical/physical file for processing. Among the functions

7-1

performed are the setting up of communications be-
tween the DCB and the access method selected, con-
sistency checking of the DCB parameters and the
completion of these with default values if necessary.
Also, in most cases of processing an existing file,
record/block structure parameters and certain processing-
condition parameters are read from the file's HDR2
header label, these values being substituted for those
(if any) in the DCB. For the assisted access methods,
/O buffer space is also acquired if necessary.

e At the conclusion of 1/O processing, the user may
deactivate the DCB, and possibly the corresponding
physical file, with the M:CLOSE procedure. This
closure may be definite or temporary. A definite
closing of the DCB severs the DCB/file linkage, freeing
the DCB for further use and optionally freeing the
physical file resource(s) also. A temporary closing of
the DCB suspends but does not sever the DCB link, and
allows a repositioning (within the file) to either end
of a sequential file on magnetic media, and/or permits
a change of processing mode on subsequent reopening.
(For example, an intermediate work file often will be
temporarily closed after output processing, repositioned
to the beginning, and reopened in input mode.)

If the user does not definitely close a given DCB prior
to the end of job-step, the system automatically
closes it with certain default assumptions.

CREATING AND MODIFYING THE DCB

A DCB is a table of system defined size and format that
exists functionally as a DCB only when located in a read-
only (or read-and-execute) area of the user's virtual memory
space. The system provides a standard set of facilities for
assembly-time and/or execution-time creation of DCBs, for
the "saving" of DCBs in an overlay structured program, and
for direct or indirect modification of DCBs at various points
during program execution. The set of DCB related facilities
is as follows:

e M:DCB Procedure. Allows assembly-time creation of
either a partially specified or complete DCB.

e M:MOVEDCB Procedure. Allows dynamic creation of
a DCB, essentially by execution-time replication, and
allows the "saving" of an inactive DCB that would
otherwise be overlaid.

e M:SETDCB Procedure. Allows execution-time modifi~
cation or completion of a DCB prior to opening, and
modification of error- and abnormal-return addresses
subsequent to opening.

e !ASSIGN Command. Allows run-time specification of
certain DCB parameters, which modify the DCB at
open-time (see below).

® M:OPEN Procedure. Effects (as one of many functions)
both explicit DCB modification as specified by the
IASSIGN command and/or implicit modification by
information contained in the label of a file opened
for input,

SUMMARY OF THE DCB CREATION, MODIFICATION,
AND COMPLETION SEQUENCE

Assembly-Time Creation. Using the M:DCB procedure the
user can cause a DCB to be created in a read-only area of
his assembled program. (The M:DCB procedure is not exe-
cutable.) Within the procedure, the user can specify values
for some, all, or none of the set of DCB parameters that
will eventually be required. System default values are
applied to a limited set of basic parameters: an EBCDIC-
encoded, fixed-format sequential file, to be processed by
ASAM (move mode), is assumed. (No record or block size
is assumed at this point.)

Execution-Time Creation. Using the M:MOVEDCB pro-
cedure the user can copy (duplicate) either a DCB "model"
somewhere in his nonprotected program area or an actual
unopen DCB (created via M:DCB). In either case the
DCB is moved to a system selected location in common
dynamic storage, with read-only protection type.

Execution~Time Modification Pricr to Opening. The
M:SETDCB procedure can be used to complete or modify

a DCB created with either M:DCB or M:MOVEDCB. This
procedure allows the user fo specify any or all of the DCB
parameters, as in M:DCB. If the referenced DCB is not
open, all specified parameters will be written into the DCB
overriding any previously assigned value. (No parameter
coherence checking is done during M:SETDCB execution.)

APPLICABILITY AND CROSS-RELATIONSHIPS
OF THE ACCESS METHODS

Each access method, excepting BDAM (which matches no
file organization), describes in its name the type of file
organization to which it primarily applies, i.e., C, I, P,
or D. Beyond this primary file creation correspondence,
the ASAM, VSAM, and VDAM access methods are appli-
cable in other than output processing mode to other file
organizations. Table 7-1 summarizes both the primary and
cross—related applicability of all of the methods by type of
processing (again excepting BDAM),

7-2

ABNORMAL, ERROR, AND ABORT CONDITIONS

A large number of circumstances may occur during file
opening, 1/O processing, and file closing which either
interfere with, partially inhibit, or unconditionally pre-
clude the normal continuance and completion of operations
on a file. These circumstances are classified as abnormal
conditions, error conditions, or abort conditions, respec-
tively. An example of an abnormal condition would be the
encountering of end-of-file, or of end-of-volume (under

a basic access method), or the attempt to access a non-
existent record by key value. Such conditions are gen-
erally of a contingent nature. Error conditions are
associated either with a hardware error or a serious but
possibly recoverable software or programming error. Abort
conditions are associated in general with irrecoverable job-
initialization and programming errors.

At the user's option, abnormal and error conditions can
cause a return to be made from the I/O procedure encoun-
tering or detecting the condition to a special abnormal or
error routine in the user's program, This routine can deter-
mine what specific condition has occurred, can perform
any contingency processing that may have been provided
for the condition, and in most cases can decide whether

or not to continue with further processing of the file.

The option of processing abnormal and error conditions is
exercised through the ABN and ERR parameters of the DCB.
If the user chooses not to provide either or both such special
routines, the occurrence of any of the conditions not pro-
vided for automatically becomes a program abort condition,
halting execution of the job-step. The last section of this
chapter deals with abnormal and error processing in detail.
Appendix B lists the program abort conditions.

BUFFER USAGE

The 1/O operations requested via the access methods all
involve physical records (or blocks) that are transmitted
from or to buffers located in user memory. Two types of
buffers must be distinguished: 1/O buffers, managed by the
system, for the assisted methods; and user buffers, managed
by the user, for the basic methods.

ASSISTED ACCESS METHODS

Under assisted methods, three means of reserving I/O buf-
fers are available to the user, He can choose between

1. Specifying at assembly time the symbolic address of
one or a series of buffers as a parameter of the M:DCB
procedure,

2. Dynamically loading at execution time the address of
one or a series of buffers in the DCB using the
M:SETDCB procedure.

Table 7-1.

Applicability and Cross-Relationships of the Access Methods

Extension
Creation
—_— MOD, explicit . . .
Type of NEW or OLD, or implicit on Reading Updating Undefined Backward Read
Processing File | First a new OLD or MOD, | MOD, NEW or MOD, | OLD or MOD,
Organization M:OPEN, O M:OPEN, O M:OPEN, 1t M:OPEN,U | M:OPEN, S M:OPEN, B
C ASAM Same access ASAM ASAM (F or ASAM (For U
(Record vsAmtt method and VSAM V format) format)
structure) organization VDAM
as at Creation

ctt ASAM ASAM VSAM ASAM
(No record (U format) (U format) (U format)
structure) VSAM VSAM VSAM

VDAM
I AIAM AIAM AIAM

ASAM ASAM

VSAM

VDAM
P APAM APAM APAM

ASAM ASAM

VSAM

VDAM
D VDAM VDAM VDAM

VSAM

ASAM

(U format)

i'ln VSAM or VDAM only the block length parameter is taken from the HDR2 label, If record structure information exists,
it is not used.
HThe DCB must include an F or V format indication and a nonzero record length; the user must create his logical record
structure,
t"A record structure is indicated by a nonzero record length and an F or V format indication in the DCB at creation, and
in the HDR2 label afterwards.

3. Letting the system perform the buffer reservation

USE OF BUFFERS BY THE ASSISTED ACCESS METHODS

The record blocking-deblocking functions applicable to
assisted access methods are effected in one of the two fol-

dynamically when the DCB is opened. When no buffer
address exists in the DCB at open time, the system re-
serves a number of buffers equal to the value specified
by the NBF parameter of the DCB, each buffer equal
in length to the block length (BKL parameter of the
The release of such buffers is automatic and

DCB).

occurs at the definite close of the DCB.

lowing modes:

1.

Move-Record (MOV) mode.

The system transfers the

2. Locate-Record (LOC) mode. The system returns the

address of the current record location within the 1/0O
buffer to the user in a word of his program (whose ad-
dress is specified in the 1/O procedure). In the case
of M:PUT, the user must subsequently construct the
record, origined to the address so returned.

In both these modes, for variable (V) record format it is
the body of the record (record header excluded) that is
transmitted to or from the user program work area. The
record length passed between the user and the system for
all formats is the length of the body of the record. In F
and U formats the record and the body of the record are
equivalent,

UNASSISTED ACCESS METHODS

logical record between a work area in the user program

(whose address is specified in the 1/O procedure) and

the 1/O buffer,

Transfers between memory and devices are executed directly
to or from areas (user buffers) in the user program. The

address of such a buffer is specified directly in the 1/O
procedure, There is no automatic buffering as for the
assisted access methods.

SPECIAL SYNTAX CONVENTIONS

The following syntax conventions are employed in the pro-
cedure syntax description in this chapter:

o Byte Addresses. A syntax symbol of the form

badr . . .
indicates a value taken as a byte address,

e Word Addresses. A syntax symbol of the form

adr . .
indicates a value taken as a word address.

o Nonaddress Values, A syntax symbol of the form

valve ., . .
indicates a value of the form descr: bed in the text for
the given symbol.

e Optional Indirectness. Optional indirectness is indi~
cated by a bracketed asterisk, [*] Use of the asterisk
prefix always implies that the argument actually speci-
fied is a word address of a word containing a value of
the form indicated in the syntax, whether that value is
a byte address, word address, or a nonaddress value,

e Mandatory Indirectness. Mandatory indirectness is in-
dicated by an unbracketed asterisk, *. The asterisk
prefix must be used and must be followed by a word
address (exceptingas specifical ly noted) of a word whose
contents are as described in the text for the given
symbol.,

Note that indicated indirectness at the source-code
level (i.e., in the procedure call), does not necessarily
imply a corresponding indirectness at the machine-
instruction level (i.e., in the procedure expansion).

ASAM (ASSISTED SEQUENTIAL ACCESS METHOD)

ASAM is the most generally applicable of the assisted
methods, in terms of file organization, record format, and
range of storage media. It is the only assisted method that
is applicable to card reader, card punch, printer, and
magnetic tape files, and to device type (DEV assignment)
files in general. (VSAM is the only other access method
applicable to nonmagnetic devices and magnetic tape files.)

See foldout Chart A-3 of Appendix A for the syntax of the
ASAM I/O processing procedures, in reference form.

7-4

GENERAL USAGE RULES
The general usage rules for ASAM are listed below.

1. Creates sequential-organization files (output mode).

2, Can be used to read or modify sequential, indexed, and
partitioned files (input or update mode for I and P files;
input, update, or backward-read mode for C files).

3. Applicable to all media categories as follows:
a. Input and output mode (all media).
b. Backward-read mode (magnetic media only).

c. Update mode (direct-access media only).

. 4. Not applicable to nonstandard (DEV type) disk volumes.

5. Applicable to F, V, or U format records, blocked or
unblocked in the case of F or V format.

6. Applicable to nonstandard magnetic tape files,
i.e., unlabeled or otherwise nonstandard (DEV) -
‘type) assignments.

7. Is compatible,in U format, with VSAM/VDAM created

files.

8. Applicable 1/O processing procedures:

M:GET M:CVOL
M:PUT M:NOTE
M:TRUNC M:POINT
M:DELREC M:DEVICE

9. Usage of either M:DCB or M:MOVEDCB and of
M:OPEN and M:CLOSE is mandatory for a given DCB/
file; usage of M:SETDCB and M:ASSIGN is optional.

M:DCB Assembly-Time DCB Creation

Syntax:

[label(s)]M:DCB (OPL, 'op-label')

, dcb-parameter, . . .
p

Refer to foldout Chart A-2 in Appendix A for the general
syntax of M:DCB in reference form, showing the syntax of
all DCB parameters, The parameters and values applicable
under ASAM are described below, grouped by type of
parameter.

FILE PROCESSING PARAMETERS

(ABN, address[, class-code, . ..]) — Abnormal Return Param-
eter. Specifies the address of the user's routine to which
control is to be returned if certain abnormal conditions
occur during file opening, processing, and closing. Also
specifies the class(es) of conditions for which control is to
be returned. None, some, or all of the following abnormal
class codes can be specified:

Code Class

X1 File opening/closing abnormalities.
X2 End-of-file/volume abnormalities.
X3 File processing abnormalities.

X4 BOF user tape label processing.

X5 EOF/EQV user tape label processing.
X6 BOV user tape label processing.

The address field is mandatory if this parameter is specified.
If no class code is specified, no abnormal conditions are
returned for user routine handling (see M:SETDCB descrip-
tion for special usage). The section "Processing of Ab-
normal and Error Conditions" later in this chapter describes
all abnormal conditions and corresponding codes in detail,
and provides information on the type of processing allowed
in user's abnormal- and error-handling routines. Occur-
rence of an abnormal condition that has not been selected,
by class, for user routine handling will cause a program
abort,

(AM, AS) — Access Method Parameter. The value AS speci-
fies usage of ASAM for 1/O processing via this DCB. This
parameter need not appear, since AS is the default value,

(BFA, byte-address) — Buffer Address Parameter. Specifies
the byte address of the first of a set of user reserved 1/O
buffers, if any. If more than one such buffer exists (BFA #0
and NBF > 1), the set is assumed to be contiguous. The
length of each buffer is assumed to equal the block length
(BKL parameter), If this parameter is omitted (or the ad-
dress specified is zero) at opening time, the system will re-
serve sufficient buffer space in an amount related to the
BKL and NBF values in force at that time, or 256 x NBF
words in the case of symbiont files {see "Buffer Usage" for
further details).

(ERR[, address]) — Error Return Parameter, Specifies the ad-
dress of the user's routine to which conftrol is to be returned
if any error conditions occur during processing via this DCB,
If this parameter is omitted or the address is omitted, the
occurrence of any error condition will cause a program abort.
See the section "Processing of Abnormal and Error Condi-
tions" later in this chapter for a detailed description of the
possible error conditions and corresponding codes,

(MOD, BIN | BCD | EBC | PK | UPK) — Data Mode Parameter.,
Specifies the mode of data encoding to be expected on

input or produced on output. The meaning and appli-
cability of the alternative mode keywords (select .one)
are as follows:

Key Mode Applicable To

BIN Binary 7-track magnetic tape.

BCD "Qld" (026) BCD 7-track magnetic tape.

EBC EBCDIC Cards, 7=-track tape,
disk, and printer,

PK Packed 7-track magnetic tape.

UPK Unpacked 7-track magnetic tape.

The default mode is EBC. Mode must be EBC for symbiont
files (IN, OUT, SCR, SCP, SLP). BCD, PK, and UPK are

primarily for compatibility with second generation equipment.

(NBF, value) — Number Of Buffers Parameter. Specifies

the number of 1/O buffers (either user- or system-provided)
to be used by the M: GET/M:PUT procedures. The default
is 1 in the case of the input symbiont IN (NBF forced to 1
if #1 at open time); 2 in all other cases.

Note: A minimum of two buffers is required for any card

punch file (CP or SCP) (see "Buffer Usage").

(NRT) — No Retry Parameter. This parameter specifies that

the system is not to execute the standard error recovery
procedure (i.e., repeated retries of the same 1/O opera-
tion) in case of a device or fransmission error,

(ORG, C) — File Organization Parameter, Specifies the

organization of the file to be created or accessed. If this
parameter is specified, C (sequential) must be specified for
file creation (output mode), or for any magnetic tape or
nonmagnetic device processing C is the default. 1 (indexed)
or P (partitioned) may be specified if the respective indexed
or partfitioned file is to be opened in input or update mode
only (U format not compatible with update mode). D (direct)
may be specified along with U format (FRM parameter) only,
for reading disk files created by VDAM. When accessing
an existing disk file with FRM, F or FRM, V specified, the
actual file organization will override any ORG specification.

(TLB, address) — User Label Area Parameter. Specifies the

address of a user program area into which the system will
read a user label from magnetic tape, or from which the
system will write a user supplied tape label (if so directed)
at open, volume-switching, or close time. At least one of
the ABN class codes X4, X5, or X6 must also be specified
for this parameter to be meaningful (see previous discussion
of ABN parameter).

BLOCK LEVEL PARAMETERS

(BHR, value) — Block Header Parameter. Specifies the size

of the data block header; it is applicable only to F or V
record format files on magnetic media. If specified for
disk files, the value 0 or 4 must be specified (see "Block

Formats" in Chapter 6 for the results of various combinations
of BHR values and the NBC parameter for magnetic tape
files). The default values for magnetic tape files are

F Format {0 if NBC is specified.
O™MAT 14 if NBC is not specified.
2 if NBC is specified.
V Format {4 if NBC is not specified.
These defaults also represent the minimum allowable (non-
zero) specifications (a zero value always produces the de-
fault result).

(BKL, value) — Block Length Parameters. Specifies the block
length, in bytes. The length specified must include the
block header, if any. The default value, by media type,
are

80 for EBCDIC card reader/punch files.
133 for printer files.
1024 for magnetic tape and disk files.

If a value greater than the applicable default is specified
for nonmagnetic device files, the specified value will be
replaced by the default value (open time). If a value less
than the applicable default (80) is specified for card punch
files, a program abort will result. For magnetic media files,
a value less than or greater than the default value may be
specified (up to a maximum of 32K-1 bytes),

(NBC) — No Block Count Parameter. Presence of this key-
word parameter specifies that no block sequence numbering
(on output) and no block counting (on input) will be per-
formed. It is applicable to magnetic tape files only. The
presence or absence of this parameter affects the default
value of the BHR parameter (see BHR); its presence at file
creation time effectively suppresses two bytes of the normal
default tape-block header.

RECORD LEVEL PARAMETERS

(DLC) — Deletion Control Parameter. Presence of this key-
word parameter specifies that the first byte of the record
body (i.e., the user data) is to function as a deletion con-
trol character, It is applicable to disk files only. This
parameter is effective only when specified at file creation
time; an existing file's HDR2 label value for DLC will
override in all other cases (excepting access in U for-
mat). See M:DELREC procedure for description of DLC
character function. ‘

(FRM, F|V|U) — Record Format Parameter. Specifies the
record format of the file to be created or accessed: fixed,
variable, or undefined. The default is F (fixed format).
For card input files, only F may be specified. When access-
ing a labeled ‘file and F or V is specified, the actual

record format (as described in the file's HDR2 label) will
override the format specified.

(LOC | MOV) — Locate/Move Record Parameter. This
alternative-keyword parameter specifies that the records
are to be accessed either in locate mode (LOC), i.e., no
record movement, or in move mode (MOV). MOV is the
default.

Note: M:PUT does not operate LOC mode when the DCB
is opened for update (U) processing.

(REL, value) —Record Length Parameter, Specifies the
length of the records to be processed, in bytes (the actual
length for F format records or maximum length for V or

U format). In V format, the length specified is that of the
maximum size record body, excluding record header bytes.
The default REL value is calculated (at open time) as
follows:

Tape/disk file, F or U format — REL = BKL - BHR.
Tape/disk file, V format —REL = BKL - BHR - 4.

Printer/card-punch file — REL = BKL - (DTA-1),
(DTA default value = 1.)

Card input file — REL = BKL.

DEVICE LEVEL PARAMETERS

The following parameters apply only with respect to the
specific type of device for which they are meaningful.
They are otherwise ignored.

(CNT, value) — Page Count Parameter. Indicates, for line
printer output, that a page number be printed starting in
the column specified (1 < value £129) at the top of each
page of printed output.

(DTA, value) — First Print/Punch Column Parameter. Speci-
fies, for printer or card punch files, the device column in
which printing/punching of data records is to begin. De-
fault value is 1.

(HDR, value, byte-address) — Page Header Parameter. Indi-
cates, for line printer output, that a page header (i.e.,
title) is to be printed at the top of each page, starting in
the specified column (1 < value <131). The second vari-
able specifies the byte address of a character string in the
user's program that constitutes the title. The string must be
in TEXTC format (see the TEXTC directive, Meta=Symbol
Reference Manual, 90 09 52),

(LIN, value) — Lines Per Page Parameter. Specifies the
number of lines per page of printer output (256 maximum),
exclusive of page header if any. The default valus is in-
stallation dependent (set by SYSGEN),

(SEQ, ‘'identifier') — Sequence Numbering Parameter.
Specifies that an eight-character identifier-plus—sequence-
number field is to be punched in columns 73 through 80 of
each record of a card output file; the specified four-
character identifier is to be punched as the first four char-
acters (columns 73-76) of this field; columns 77 through 80
will contain an automatically incremented decimal sequence
number,

(SPC, value-1, value=2) — Line Spacing Parameter. Speci-
fies both line spacing and effective top-of-page line, for
line printer output., Value-1 specifies the number of blank
lines that are to separate printed lines, i.e., transmitted
(blank or nonblank) data records. Value-2 specifies the
line number, counted from the physical top-of-page, at
which printing of data records is to begin. The .default for
both values is 1.)

(TAB, value, . ..) — Tab Settings Parameter. Specifies a
list of up to 16 horizontal tabulation settings; each value
represents a printer-page column number used for left-
justification of data. The change from one tabulation set-
ting to the next is friggered by the occurrence of an X'05'
(horizontal tab) character in the output data. The tab
setting values can range from 1 through 131,

(VFC/NVF) — Vertical Format Control Parameter. VFC
specifies, for a print file, that the first character of each
record body is a vertical format control character., NVF
specifies that the first character of the record is not to be
so interpreted. NVF is the default value, See Table 7-2
for specific format control codes for Models 7440/7445
Sigma Buffered Line Printers.

Table 7-2, Format Control Codes, Sigma Buffered
Line Printers, Models 7440/7445

Hexadecimal

Code Function

60, EO Inhibit Automatic Space after printer
Cl1 Space 1 line

C2 Space 2 lines

c3 Space 3 lines

CF Space 15 lines

FO Skip to channel 0 (bottom of page)
F1 Skip to channel 1 (top of page)

F2 Skip to channel 2

F7 Skip to Channel 7

USAGE RULES

1. M:DCB is not an executable procedure. DCB space
reservation and explicit parameter setting is performed
at assembly time,

2. None of the parameters are indirectly addressable,

M:MOVEDCB Dynamic DCB Creation/Retention

The M:MOVEDCB procedure causes the allocation, during
program execution, of a 19-word DCB area with read-only
protection in the common-dynamic portion of the user's
virtual memory space; the address of this area is returned

to the user's program. It also causes the contents of a
user specified sending area to be copied into the newly
allocated DCB area. For example, the sending area may
be a nonprotected area of the user's program where a DCB
image or "skeleton" has been built, or a write protected
DCB that is not open when the M:MOVEDCSB is executed.
Effectively, this procedure allows the user to create DCBs
during program execution, and/or to move and thereby save
inactive DCBs that would otherwise be overlaid or destroyed.

Syntax:
[label(s)] M:MOVEDCB [*]adr-1, (PTR, adr-2)
where

adr-1 is the word address of a 19-word sending
area which is to be copied into the newly allocated
DCB space.

adr-2 is the word address of a one=-word pointer in
the user's program into which the address of the
newly allocated DCB is to be stored by the system,

USAGE RULES _ .

1. No default values are supplied for any parameter field
by M:MOVEDCB.

2. The effect of M:SETDCB, M:ASSIGN, M:OPEN, and
M:CLOSE procedures referencing a dynamically created
or saved DCB is identical to the effect of the same pro-
cedures on an assembled DCB,

M:SETDCB Execution-Time DCB Modification

The M:SETDCB procedure allows the user, during program
execution, to (1) "fill in" empty parameter fields in a-non-
open DCB, i.e., specify previously unspecified DCB pa-
rameters, (2) modify previously specified or defaulted
parameters in a nonopen DCB, and (3) modify the ABN and
ERR parameters in an open DCB. The effective parameters
in cases 1 and 2 are all of the parameters that may be speci-
fied in the M:DCB procedure. See foldout Chart A-2 of
Appendix A for the complete general syntax of M:SETDCB
in reference form, The parameters applicable under ASAM
are as previously described for the M:DCB procedure,

M:SETDCB also allows modification of the operational label
associated with a DCB.

Syntax:

(label(s)] M:SETDCB [*dcb-adr,

*adr-label

(OPL, {'op-lobel' }) [, dcb-parameter, . . .]

where
dcb-adr is the address of the DCB to be modified.

adr-label is the address of a word containing an
operational label, left-justified and space filled,
to be associated with the DCB being modified.

'op-label' is a one- fo four-character constant
specifying an operational label to be associated
with the DCB being modified.

dcb-parameter is a DCB parameter as described
previously for the M:DCB procedure.

USAGE RULES

1. All of the DCB parameter addresses and values can be
indirectly addressed.

2, If the OPL option appears, the operational label speci-
fied therein will replace the operational label (if any)
previously specified in the referenced DCB,

3. If the referenced DCB is open at the time of M:SETDCB
execution, only the ABN and/or ERR parameter will
be effective; any other parameters will be ignored.

4, A DCB closed with the HLD option (temporary close)
is considered as open for the purposes of rule 3.

5. If the ABN parameter appears, the set of abnormal
class codes specified will replace any such set pre-
viously in effect, including the null case where no
class code is specified (i.e., any class codes pre-
viously in effect can be "turned off" by not specifying
any class code).

M:ASSIGN Execution-Time DCB Assignment

The M:ASSIGN procedure allows the user, during program
execution, to (1) define a temporary file in secondary
storage and assign an operational label to it, or (2) define
a permanent file on a physical resource specified by a
IASSIGN command. Effectively, case 1 allows the user
to eliminate from the job control deck !ASSIGN commands
for invariant "scratch file" assignments,. or to define addi-
tional temporary files to satisfy dynamically determined
program requirements (as M:MOVEDCB can be used to
create additional DCBs). Case 2 allows the user to make
an execution time choice between several IASSIGN

commands each specifying a different resource, or fo
redefine a file assignment (status, file name, or space
allocation) made by a IASSIGN command. In case 2,
the IASSIGN command referred to must itself define a
permanent, i.e., named, file.

Syntax:

Format 1, for temporary files

*adr-1
[label(s)] M:ASSIGN (OPL, {'op-label'})

[12 () e

where

adr-1 is the address of a word containing the opera-
tional label that identifies the DCB being assigned.

'op~label’ is the character constant form of that

label.

adr-2 is the address of a word containing the value
specifying the primary size of the file.

size is the constant form of that size value.

adr-3 is the address of a word containing the value
specifying the file increment (where applicable).

increment is the constant form of that increment
value.

Format 2, for permanent files

[label(s)] M:ASSIGN (OPL, {*adr-l }),

‘op-label’

*adr-4

(UNT, OPL, {,op_lqbel_] ,},(NAM,

NEW

[*adr-5
- .),(STS,,OLD })[,(srz,
{ fulename} MOD

{*adr-Z} {*qdr-3 })
size " lincrement
where

adr-1, 'op-label', adr-2, size, adr-3, and increment
have the same meaning as in format 1.

adr-4 is the address of a word containing the opera-
tional label that identifies a ASSIGN command

specifying the desired physical resource.

'op-label-1" is the character constant form of the
operational label described immediately above.

7-8

adr-5 is the word (or byte) address of a TEXT-format
field containing the name of the file to be created
or accessed. The name must be terminated by one
or more blanks (see the TEXT directive, Meta-
Symbol Reference Manual, 90 09 52).

'filename' is the character constant form of the

file name.

USAGE RULES

1. Assignments made via M:ASSIGN are valid only for
the job-step in which the procedure is executed, they
cannot be maintained over succeeding steps. (Effec-
tively the 1ASSIGN option FRE is implicit in the use
of an M:ASSIGN procedure.)

2. The usage of M:ASSIGN in format 1 is identical to the
usage of a IASSIGN command with corresponding
options specified.

3. Informat 2, the UNT, OPL option implies use of the
resource (device and volume) defined and allocated
to the job-step by the operational label specified. |

4. The IASSIGN command referred to by the UNT, OPL
option in format 2, must specify a permanent, i.e.,
named, file assignment and it must be in force during-
the job-step in which the M:ASSIGN is executed.

5. In format 2, all options other than UNT have the same
meaning and usage as the corresponding options ap-
pearing in a ASSIGN command, assuming the option
FIL.

6. The M:ASSIGN procedure in format 1 may redefine an
implicit assignment via a (installation dependent) pre-
defined optional label, typically SI, LO, GO, etc.

7. Inall cases, the optional label specified by the OPL
keyword field establishes the link between a DCB and
the file named by the procedure.

8. In format 2, the DCB parameters (if any) specified in
the referenced 'ASSIGN command are not applied to
the DCB assigned via the procedure,

M:OPEN Opening a File

The M:OPEN procedure activates the link between a DCB

and a physical file. The DCB is placed in an active, or

open, status. ("Opening a file" is equivalent to "opening

a DCB".) This procedure must be successfully executed

before any 1/O operation can be performed on a given file.

The M:OPEN procedure performs some or all of the fol-

lowing steps while opening a file:

1. Location of the file to be processed, if it exists.
2. Creation of the file if it does not exist, which implies

allocation of resources: volume and space on the
volume, and creation of the file labels.

3. Positioning of magnetic tape.

4. Various initializations as necessary: reservation of
buffers, completion of the DCB, reservation and com-
pletion of communication tables (IOBs) between the
access methods and the I/O supervisor, etc. DCB
parameter values from an existing file's HDR2 label
are written into the DCB (exceptingaccess in U format).

5. Validation and control of file identity, file expiration,
file protection, and file sharing; checking for coher-
ence among the DCB parameters, and consistency of
these with the processing mode specified in M:OPEN
and with the storage media.

is the address of the DCB to be opened.

Syntax:

CID
NID
PID

[label (s)] M:OPEN [*]dcb-adr, model:,

where
dcb-adr

mode specifies the desired processing mode, as
follows:

I Input mode (forward reading).
B Backward reading.
O Output mode (forward writing).
Update mode (reading and modification),

CID specifies file identify checking with no tape
positioning (default option).

NID specifies no file identity checking (for tape
only).

PID specifies file identity checking with fape
positioning.

USAGE RULES

1. Processing mode B is applicable to magnetic media
files only. Tape files must be monovolume.

2. Processing mode U is applicable to direct access
media files only.

3. The file identity checking and positioning option (CID,
NID, or PID) is meaningful for standard magnetic tape
files only; for DEV assigned files it is ignored; for disk/
RAD files CID is always assumed.

4. The effect of a given processing mode specification
(and identity checking option, if tape) is conditioned
by the declared status of the file versus the file's actual
status. These interrelationships are described below.

RELATIONSHIP OF PROCESSING MODE AND FILE STATUS

The status of a file (NEW, MOD, or OLD) is declared in
the file assignment. For each declared file status there is
one or several normal combinations of status, file existence/
nonexistence, and processing mode., The normal combina-
tion(s) does not occasion any abnormal return to the user's
program during opening. Certain abnormal combinations
(described below) are acceptable but will result in an X1
class abnormal return to the user's program during opening
if the DCB specifies an abnormal return with the X1 class
set (abort otherwise). Any combination other than those
described below will result in a program abort,

The several normal and abnormal combinations are described
for each declared file status in the following paragraphs.

o NEW

Normal combination. Nonexistent file and output
mode — the usual case for original file creation; output
operations allowed only.

Abnormal combination. Existent file and output mode
—in this case an abnormal return to the user's program
occurs. The user can then request recreation of the
file by a special exit from his abnormal routine. If
the expiration date of the file to be rewritten has not
been reached, a further abnormal return occurs; an-
other special exit will allow processing to continue,
overriding the nonexpired condition,

MOD

Normal combinations,

1. Existent file and update mode — input and updating
operations allowed.

Existent file and output mode — file extension
output allowed only.

3a.

Existent file and input mode — input operations
allowed only.

3b.

Existent file and backward-read mode — input
operations allowed only,

Nonexistent file and output mode — status is
changed to NEW; output operations are allowed.

OoLD

Normal combinations.

la. Existent file and input mode — input operations

are allowed.

1b.

Existent file and backward-read mode — input
operations are allowed.

7-10

2, Existent, expired, labeled file and output mode —
output operations allowed (i. e., the file may be

rewritten).

Abnormal combination. Existent, nonexpired, labeled
file — in this case an abnormal return to the user's
program occurs, A special exit from the user's ab=
normal routine allows processing to continue. The file
can then be rewritten.

Note: See the section "Processing of Abnormal and Error

Conditions" later in this chapter for specific ab-
normal codes and further details on normal/special
exit results,

AUTOMATIC EVOLUTION OF FILE STATUS

The automatic evolution of the status of a file during a
job=step when opened for output is shown below.

Declared Status Prior to First
M:OPEN, Output
NEW, MOD, OLD,
Nonexistent | Nonexistent | Existent
File File File
Status after NEW NEW NEW
successful
opening
Status after | MOD MOD MOD
M:CLOSE

Note: Does not apply to DEV assigned magnetic tape.

MAGNETIC TAPE POSITIONING AND FILE IDENTITY
CHECKING

If a standard magnetic tape volume has not been previously
processed since its mounting, its initial position (relative to
the tape unit read/write heads) during the opening process
is between the standard-volume-label group, SVL (or user=-
volume-label group, UVL) and the first standard-file-
header-label group, SHL. This position is shown in
Figure 7-1 as position A,

If the volume has been previously processed since mounting,
its initial positioning will depend upon the action taken
during the previous M:CLOSE operation: between two files
(position B in Figure 7-1), in front of the first data block
(position C), or after the last data block (position D), of
some file on the volume,

The open process will then perform testing and positioning
functions from these initial magnetic tape positions. These
functions are controlled by the CID, NID, and PID options.
The default option is CID. Only the CID option is sig-
nificant for disk/RAD files, Several cases exist, as de-
scribed in the following paragraphs.

Data blocks Data blocks

Load Linr ® ® @© O)

* = tape mark

Volume With No User Labels

Data blocks Data blocks

STL

A

Load loinf @ (Bb

Volume With User Labels

©
©

Figure 7-1. Pre-positioning of Tape Volume During M:OPEN

7-11

First Case, File Opened for Creation (STS, NEW: Processing
Mode Out)

e CID

For disk files, this option ensures that the identifica-
tion assigned to the file being created does not al-
ready exist in the volume or account catalog.

For magnetic tape files, no positioning is executed.
There is a verification that a file having the same
identification as the file being created does not al-
ready exist at the current position on the tape, If the
file at this location has a different identity and its
expiration date has been reached, it is written over
by the new file. In the cases where the file has the
same name and/or the expiration date has not been
reached, a return is made to the user's abnormal rou-
tine. This permits the user to request creation of a
new file replacing the old (special exit), or not to
complete the open (normal return), (See "Processing
of Abnormal and Error Conditions".)

If there is no file at the initial position on the magnetic
tape, the opening of the file to be created continues
normally. .

e NID

There is no checking of file identification; only a test
of the expiration date of the file at the initial position
is performed,

e PID

This option causes automatic creation of the new file
following all of the old files contained on the tape.
A test of the file identification is made during posi-
tioning against all files encountered between the
initial position and the final old file. If one of the
files encountered has the same identity as the file to
be created, a return is made to the user's routine.
Then, using a special exit, the user can write over
this old file; otherwise the M:OPEN is not executed.

Figure 7-2 summarizes the positioning and identifica-
tion test functions caused by these options,

Second Case, File Opened in Forward Read.

e CID

For magnetic tape, this option causes testing of the
current file idenfification. For disk, the catalog is
searched for the corresponding file.

When the identifications are not equal, a return is
made to the users abnormal routine. For a magnetic
tape file, the user can request reading of the present
file (special exit); otherwise the open is not executed
(normal exit).

7-12

e NID

No checking or positioning is executed. The opening
is to the first file encountered.

e PID

This option causes a forward search for the identifica-
tion specified by the !ASSIGN command, starting
from the initial location on magnetic tape at opening
time. If the two tape marks identifying the end of
volume are encountered, a tape rewind is executed
and a return is made to the user's abnormal routine.
Using a special exit, the user can reinitialize a for=-
ward search for the file to be processed. If the file is
not found after this second search, an abnormal return
is again made but the open will not be executed.

Third Case, File Opened in Backward Read. In this case,
the testing refers to the file preceding the one at which the
tape is initially positioned. The initial positioning to end-
of-file is the responsibility of the user program.

e CID
This option causes identification checking of the pre-
ceding file.

e NID

No checking is performed.
e PID

This option, associated with Bprocessingmode, isidenti-
cal to CID. That is, nobackwardsearchis performed.

Note: See the M:CLOSE positioning options LVE and RRD for
end-of-file position on a temporary (HLD) file closing.

M:CLOSE Closing a File

This procedure causes the closing of a file. The close
effects a suspension or halt of activity via a DCB and
possibly via the processed file. Its main functions are:
1. Waiting for and testing the last I/O operation(s).

2. Writing current (last) buffer where necessary.

3. Checking or writing the end-of-file labels on mag~
netic tape.

4. Updating and validating disk file labels.
5. Temporary or definite closing of the DCB.

6. Partial restitution of disk space or deletion of the file
created by the job.

7. Releasing devices, buffers, tables, etc.

Functions é and 7 are conditional upon the type of closing.

yes

Expiration date
reached or absence of

file (CID, NID)?

sequence ?

NID (¢ >
[

PID

\

Identification testing
at current position.

Positioning and
identification testing.

User
sequence ?

Abort

no

User

Special
return?

Y

Open not
executed

Same name file
encountered?

Positioning after
" last file.

P

\

Open and file
creation continued

Figure 7-2,

7-13

Flowchart of M:OPEN Action for File Creation on Magnetic Tape

Syntax:
HLD
(label(s)] M:CLOSE [*]dcb=adr|,{ MTN]
RLS

RRD
LVE
RWD

e] el

where dcb-adr is the address of the DCB to be closed.

TYPES OF CLOSE
HLD specifies a temporary closing of the files. The
DCB-file link is maintained. A new M:OPEN applied
to the DCB will only permit changing of the processing
mode of the file, because only a small portion of the
open functions will then be executed.

MTN specifies a definite close. It cancels the DCB-
file link but maintains the job-file link. In the same
job another DCB can be used to process the same file,
The resource is not released even if the FRE option
was specified in the assignment,

RLS specifies a definite close. It cancels the DCB-

file link and the job-file link. The resource(s) alloca-

ted for the file is released if the FRE option was
specified in the assignment,

POSITIONING AFTER CLOSING

The options controlling positioning, RRD (reread), LVE
(leave), and RWD (rewind), are significant only for se-
quential organization files on magnetic media (refer to
Figure 7-3).

The significance of these options depends on the type of
close: temporary (HLD) or definite (MTN or RLS), It also
depends on the processing mode of the file: forward (I, O,
and U) or backward (B). The options have significance for
a disk file only on a temporary close.

Temporary Close (HLD). Upon closing a file, positioning
remains within the file being accessed, or within the vol-
ume of the file being accessed in the case of a serially
mounted multivolume file. This means the file is positioned
(in the case of tape) somewhere between the two tape marks
delimiting the data blocks.

For I or O processing (see Figure 7-3):

RRD requests postioning before the first data block
of the file (or portion of the file).
LVE requests positioning after the last data block

of the file (or portion of the file).

RWD is not meaningful in this type of close. In

this case this option is equivalent to RRD.

For B processing (see Figure 7-3), the RRD and LVE options

have positioning meanings in reverse of those for forward

processing:
RRD requests positioning after the last data block

of the file (or portion of the file).

LVE requests positioning before the first data block

of the file (or portion of the file).

RWD

is equivalent to LVE in this case.

Definite Close (MTN or RLS). Positioning is always made
outside the file limits (the labels and tape marks delimiting
the file), or the volume limits in the case of a serially
mounted multivolume file.

For I or O processing on magnei‘icAtape (see Figure 7-3):
RRD requests positioning before the SHL of the file

(or portion of the file).

LVE requests positioning after the STL of the file

(or portion of the file).

-

RWD requests rewinding and positioning after the

volume SVL.

For B processing on magnetic tape (see Figure 7-3), the
RRD and LVE options have positioning meanings in reverse
of those for forward operations:

RRD signifies positioning after the STL of the file
(or portion of the file).
LVE requests positioning before the SHL of the file

(or portion of the file).
RWD requests rewinding and positioning after the
volume SVL.

The positioning described never crosses over volume bound-
aries for serially mounted multivolume files.

A rewind operation is used by M:CLOSE only for the RWD
option in an RLS or MTN closing. In the other cases the
positionings are executed using only tape-mark-search and
skip=block operations.

LABEL VALIDATION AND FILE DISPOSITION

The KEP and NCG options specify the disposition of the
permanent file. These are significant only for the O pro-
cessing mode (file creation).

KEP Requests validation of the file labels for a disk/RAD
file, and cataloging of the file if CTGwasspecifiedin the
assignment (or the file was created on the account volume).

Volume 1

(See Notes)
A

e e ——
S|U|IS|U S|U S|U S {U
VIVIH|H|*|FileA | *|T|{T |*|H|H|[*|FileB | *|T|T|*]|*
L L |[L]|L L|L L|L L]|L

£
s (©) ® ® ® G
Point

Volume 2
S|U|S|U S (U S |uU S|U
VIV[H|H|* | FileB |*|T |T | *|H|H|*|FileC|*|T|T|*]|*

T L{L|L|L LI L (L LiL
i O ® ® @ ®
Point

Mode Close Option

OISEN Definite Temporary

RRD | LVE | RWD | RRD | LVE | RWD

I, O, or S A B C D E D

Backward B A C E D D

In all cases, File B is the file being} closed.

Case 1:

Case 2:

Case 3:

Notes:

Multifile standard volume — consider volume 1 alone or volume 2 alone. °

Multifile nonstandard volume — same as case 1, but considering only the braced
portions of the diagrams. ‘

Multifile multivolume — consider that volume 1 contains the first portion of File B
and volume 2 the second (and last) portion of File B where volume 2 is being processed.

For an unlabeled tape volume, all label groups (SVL, UVL, SHL, UHL, STL, and UTL)
are eliminated as are the tape marks which demarcate the end of each label group.
The braces show the portions which do appear for an unlabeled volume.

For a standard tape volume, any user label group (UVL, UHL, or UTL) which is not
created by the user does not appear.

Figure 7-3. Tape File Positioning at Close Time

7-15

NCG requests deletion of the file for a file created on
a disk/RAD volume and suppression of cataloging if
cataloging has been requested or implied. This option
is applicable only in conjunction with RLS and if the
status of the file is NEW prior to closing.

USAGE RULES

1. If no type-of-close option is specified, RLS (release)
is assumed by default. Both the DCB-file connection
and the job-file connection are severed (i.e., another
job can attempt access to the file whether the file/
volume is sharable or not). All device (i.e., common)
resources allocated for the processing of this file are
released if MTN was not specified in the assignment,

2. I no positioning option is specified, RWD (rewind) is
assumed by default,

3. If no validation/disposition option is specified, KEP
(keep) is assumed by default,

4, If a definite close (MTN or RLS) is not issued for a
given DCB/file before the end of the job-step, the
system forces an unconditional (RLS) close, disposi-
tion KEP.

M:GET Get Next Sequential Record

The M:GET procedure permits reading of the next logical
record of an existing file, relative to the record last
accessed, if any; otherwise the first sequential record of

the file. (Exception: see M:POINT procedure.) The ac-
cessed records will either be moved into a work area speci=
fied in the procedure, or be located (i.e., pointed to in the
I/0 buffer) at the user's option (MOV/LOC mode parameter
of the DCB).

Syntax: See foldout Chart A-3 in Appendix A,

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
records are to be read.

(+] badr-l]

specifies the byte address (badr-1) of

the user'sreceiving areain MOV mode,
or the address (adr=2) of a word into which a byte ad-

dress pointer to the accessed record is to be stored by

the system in LOC mode.

REC'ladr-Z

RSA, [*adr-3 optionally specifies the address (adr-3)
of a word into which the byte length of the accessed
record is to be stored (by the system).

USAGE RULES

1. If MOV mode is in effect (in the referenced DCB) a
byte address (optionally indirect) must be specified for

7-16

If LOC mode is in effect, a word
address (direct only) must be specified.

the REC parameter,

2. If the RSA parameter is specified, the length of the
logical record moved or located is reported for all
record formats, For V format records, the length of
the record body only is reported.

3. For V format records, the record body only is moved
or located (i.e., the four-byte record header is not
included).

4. In backward-read processing mode, only F or U record
format is applicable.

5. M:GET is not valid in output processing mode.

M:PUT Put Next Sequential Record

The M:PUT procedure permits writing of the next logical
record of a file being created or rewritten, or, in update
processing mode, rewriting of the logical record last ac=
cessed via M: GET. This procedure operates in either MOV
mode (with record movement) or LOC mode (no record move-
ment) except in update processing where MOV mode is
implicit,

Syntax: See foldout Chart A-3 in Appendix A.

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
records are to be written,

REC, [[*] badr-l]

adr-2 specifies the byte address (badr-1) of

the user's sending area in MOV mode,
or the address (adr-2) of a word into which a pointer to
a record position (in the 1/O buffer) is to be stored by
the system in LOC mode.

ARS, (value specifies, for output processing only, the
length of the V or U format record to be written.

USAGE RULES

1. If MOV mode is in effect (in the referenced DCB), a
byte address must be specified directly or indirectly for
the REC parameter. If LOC is in effect, a word ad-
dress (direct only) must be specified.

2, M:PUT operates only in MOV mode when the DCB is
open for update processing. The MOV/LOC parameter
in this case is significant only for M: GET.

3. M:PUT operates only in MOV mode for line printer and

card punch files; the MOV/LOC parameter must be
MOV,

4. The ARS option is effective only in output processing
mode, and only for V and U format records; it is
ignored in update processing and for F format records.

5. For F format records, the effective record length is
taken from the DCB (REL parameter).

6. In update processing mode, the record to be written
replaces the last record accessed with the M: GET pro-
cedure; the length of the latter record automatically
determines the length of the record to be written.

7. In MOV mode, the REC parameter specifies the initial
byte location of the record that is to be moved to the
I/O buffer, In V format, the record body only is to
be supplied by the user (the system affixes the record
header).

8. In LOC mode, the REC parameter specifies the location
of a word in the user's program into which the system
stores a byte-address pointer to the beginning of the
next available record space in the 1/O buffer (where
the user may build his record),

9. In LOC mode, the ARS parameter (when effective) |
specifies the length of the record to be constructed at
the point indicated by the pointer returned (at adr-2)
by the M:PUT execution.

10. In LOC mode, any execution of M:PUT returns a pointer
to the origin in the buffer for the record to be built
(subsequently) by the user. It establishes, explicitly
or implicitly, the length of that record and causes it
to be "written". That is, n executions of M:PUT in
LOC mode cause n records to be written,

11. Following an opening in output mode of an existent
file whose declared or evolved status is NEW, M:PUT
executions cause the existing file to be overwritten
(i.e., the existing file is recreated).

12. Following an opening in output mode of an existing
file whose status is MOD, M:PUT executions cause
the existing file to be extended (i. e., initial posi-
tioning for M:PUT is to end-of-file).

M:TRUNC Truncation of a Block

The M:TRUNC procedure permits termination of sequential

operations on a partially processed block and passage to

the next sequential block for subsequent processing. In

output processing mode the current block is truncated (i.e.,

the partially completed block is written to the physical file).

In input or update processing mode, the record accessed by

the first M: GET following an M:TRUNC execution is the

first record of the next sequential block. In update mode,
the complete current block (with modifications, if any) is
rewritten to the file.

This procedure is in general meaningful only for files con-
taining blocked records (i.e., more than one record per
block); it has no effect when used in conjunction with

U record format.

7-17

Syntax:
[label(s)] M:TRUNC [*]dcb-adr

where dcb-adr is the address of the DCB.

USAGE RULES

1. M:TRUNC is not applicable to backward-read pro-
cessing mode.

2, For For V format records, if no record has yet been
read from or written to the current block (i.e., the
current 1/O buffer), M:TRUNC has no effect. For
U format record processing M:TRUNC is ignored.

3. M:TRUNC does not cause physical truncation of the
current buffer in update processing mode.
M:DELREC Delete a Record
The M:DELREC procedure permits deletion of the last logi-
cal record accessed with M: GET in update processing mode
(disk/RAD files only) when the DLC parameter is in effect
in the DCB, Execution of this procedure causes the value
X'FF' to be placed in the first byte of the record body, the
first byte being defined as a deletion control character,

This effectively deletes that record for the assisted access
methods.

Syntax:

[label(s)] M:DELREC [*ldcb-adr
where dcb-adr is the address of the DCB.

USAGE RULES

1. To be effective, the DLC parameter, specifying exist-
ence of the deletion control character, must be speci-
fied at file creation time (see M:DCB). On subsequent
file accesses the value carried in the HDR2 label of the
file overrides the setting in the DCB prior to open time.

2., M:DELREC is applicable only in update processing
mode. Therefore it is applicable to disk/RAD files
in F or V format only.

Mm:cvoL Switch To Next Volume

The M:CVOL procedure permits switching to the next
sequential volume during the processing of a multivolume
file. It can be executed at any time during the processing
of a given volume, in input, output, or update mode, if
there is a subsequent volume to process. If the subsequent
volume is not already mounted, the system will issue a
mounting request to the operator.

Syntax:
[label (s)] M:CVOL [*]dcb-cxdr

where dcb-adr is the address of the DCB.

USAGE RULES

1. If no subsequent volume of the file exists (or has been
allocated) at the time of an M:CVOL execution, an
X2-class abnormal return is made to the user's program
during input processing. (If the appropriate abnormal
class is not set in the DCB, a program abort occurs.)

2. During output processing, an M:CVOL request will
cause a public volume to be mounted if no more as-
signed volumes remain to be switched (serial mounting
mode only),

M:NOTE Note Current Position

The M:NOTE procedure permits the user to obtain a pointer

to his current block/record position during input or update

processing of a file. This pointer can then subsequently be
used with the M:POINT procedure, described below, to
reposition to the point at which the M:NOTE was issued.

Syntax:

[label(s)] M:NOTE [*ldcb-adr, (RCI, [Jadr-1)

where
deb-adr is the address of the DCB,
adr-1 is the address of a two-word area in the

user's program into which the currenf—posuhon
pointer is to be stored by the sysfem

USAGE RULES

1. The address specified in the RCI parameter must refer-
ence the first of two contiguous words, into which the
system will store a pointer to the last record accessed
with an M:GET procedure.

2. On return, word adr=1 contains the relative block
number of the current block and word adr-1 + 1 con-
tains the byte displacement of the current record rela-
tive to the beginning of the block.

3. This procedure is applicable fo input and update pro-
cessing modes only.

M:POINT Reposition by Pointer

The M:POINT procedure permits repositioning, within the

file being processed, to a record pointed to by information

obtained via a previously issued M:NOTE. This reposition-

ing can extend across block boundaries, forward or
backward.

Syntax:

[label(s)] M:POINT [*Jdcb-adr, (RCI, [*]adr-1)
where

dcb-adr is the address of the DCB.

adr-1 is the address of a two-word pointer contain-
ing repositioning information of the following
form:

relative block number

byte displacement

USAGE RULES

1. The pointer returned by the M:NOTE procedure may
be used to supply the positioning information required
by M:POINT.

2. If the pointer supplied to M:POINT refers to a position
outside the limits of the file currently being processed,
an X3-class abnormal return will occur. (If the X3 ABN
class is not set in the DCB, a program abort will
result,)

3. This procedure is applicable to input and update pro-
cessing modes only.

M:DEVICE Device Dependent Operations

The M:DEVICE procedure permits the user to request device

dependent operations (i.e., operations having a meaning

specific to a certain type of device). This procedure is

applicable either to line printer files or to magnetic tape
files, depending on the chosen option.

The operations that may be specified are page ejection and
print-form changing for printer files, and block level reposi-
tioning for magnetic tape files,

Syntax: See foldout Chart A-3 of Appendix A,

MEANING OF THE OPTIONS

(CHF, [Jbadr) specifies the byte address (optionally
indirect) of a user-supplied message to the operator,
in TEXTC format, requesting a change of print forms.
(See the TEXTC directive, Meta-Symbol Reference
Manual, 90 09 52.)

(PAG) requests a page ejection during the printing of a
file.

(POS,BKS|FWS|BOF|EOF) requests repositioning of a
magnetic tape file as specified by one of the suboptions
listed below:

BKS specifies a one~block backspacing.

FWS specifies a one-block forward spacing.

BOF specifies positioning to the first block of
the file.

EOF specifies positioning behind the last
block of the file (i.e., to end-of-file).

USAGE RULES

1. If the requested operation does not have a defined
meaning for the type of device currently assigned, the
request is ignored,

2. The POS suboptions BKS, FWS, and BOF effect posi-
tioning at the beginning of the block implied.

3. The POS suboption BKS results in positioning to the
block immediately preceding the block at or within
which the file was positioned when M:DEVICE was
executed,

4, The POS suboption FWS results in positioning to the
block immediately following the block at or within
which the file was positioned when M:DEVICE was
executed.,

5. Following a CHF (change forms) request, a return is
made to the user's program only after the request has

been satisfied (if a print file is in fact being processed),

AIAM (ASSISTED INDEXED ACCESS METHOD)

AIAM is oriented toward directaccess processing of indexed-
sequential (I) organization files (i.e., files whose records
are ordered according to the relative value of a key field
contained in each record). (See Chapter 6 for a descrip-
tion of indexed-sequential file organization.) AIAM also
allows sequential accessing of indexed files, starting from
an initial record accessed by key value,

See foldout Chart A-4 of Appendix A for the syntax of the
AIAM I/O procedures in reference form,

'GENERAL USAGE RULES
The general usage rules for AIAM are listed below.
1. Creates and processes indexed-sequential organization

- (direct access) files only. (Multivolume files must be
parallel mounted.)

2. Applicable to direct access (disk/RAD) storage media
only,

3. Not applicable to nonstandard (DEV assigned)
volumes,

4. Applicable processing modes:

Output
Input
Update

5. Applicable to F or V format records only.
6. Applicable 1/O processing procedures:
M:GET M:TRUNC
M:PUT M:DELREC
7. Usage of either M:DCB or M:MOVEDCB and of
M:OPEN and M:CLOSE is mandatory for a given
DCB/file; usage of M:SETDCB and M:ASSIGN is

optional,

m:DcB Assembly-Time DCB Creation

Syntax:

[label(s)] M:DCB (OPL, ‘op~label')[, dcb-param, .. .]

Refer to foldout Chart A-2 in Appendix A for the general
syntax of M:DCB, in reference form, showing the syntax of
all DCB parameters. The parameters and values applicable
under AIAM are described below, grouped by type of
parameter.

FILE PROCESSING PARAMETERS

(ABN, address [, class-code, . ..]) — Abnormal Return Param-
eter, Specifies the address of the user's routine to which
control is to be returned if certain abnormal conditions
occur during file opening, processing, and closing. Also
specifies the class(es) of conditions for which control is to
be returned. None, some, or all of the following abnormal
class codes can be specified:

Code Class

X1 File opening abnormalities,

X2 End-of-file/volume abnormalities.
X3 File processing abnormalities.

The address field is mandatory if this parameter is specified.
If no class code is specified, no abnormal conditions are
returned for user routine handling (see M:SETDCB descrip-
tion for special usage). The section "Processing of Ab-
normal and Error Conditions" later in this chapter describes
all abnormal conditions and corresponding codes in detail,
and provides information on the type of processing allowed
in users' abnormal- and error-handling routines. Occur-
rence of an abnormal condition that has not been selected,
by class, for user routine handling will cause a program
abort.

(AM, Al) - Access Method Parameter, The value Al
specifies usage of AIAM for 1/O processing via this DCB,
This parameter must be specified.

(BFA, byte-address) — Buffer Address Parameter. Specifies
the byte address of the first of a set of user reserved buffer
areas, if any. If more than one such buffer exists (BFA #0
and NBF > 1), the set is assumed to be contiguous. The
length of each buffer is assumed to equal the block length
(BKL parameter). If this parameter is omitted (or the ad-
dress specified is zero) at opening time, the system will
acquire buffer space in an amount related to the BKL and
NBF values in force at that time. (See "Buffer Usage" for
further details.)

(ERR, address) — Error Return Parameter. Specifies the
address of the user's routine to which control is to be re-
turned if any error condition occurs during processing via
this DCB. If this parameter is omitted or the address is
omitted, the occurrence of any error condition will cause
a program abort, See the section "Processing of Abnormal
and Error Conditions" later in this chapter for a detailed
description of the possible error conditions and correspond-
ing codes.

(MOD, EBC) — Data Mode Parameter. Specifies the mode
of data encoding to be expected on input or produced on
output, The mode keyword EBC specifies EBCDIC encoding,
the only mode applicable. The default mode is EBC.

(NBF, value) — Number Of Buffers Parameter. Specifies
the number of buffers (either user- or system-provided) to
be used by the M:GET/M:PUT procedures. The default
value is 2, The minimum specifiable value for output and
update mode is 2. The minimum value for input mode is 1.

(NRT) — No Retry Parameter. Specifies that the system is
not to execute the standard error recovery procedure (i.e.,
repeated refries of the same 1/O operation) in case of a
device or fransmission error.,

(ORG, I) — File Organization Parameter. Specifies the
organization (indexed-sequential) of the file to be created
or accessed,

BLOCK LEVEL PARAMETERS

(BHR, value) — Block Header Parameter. Specifies the size
of the data block header. Only the value 4 (or 0) may be
specified (see "Block Formats" in Chapter 6). The default
value is 4,

(BKL, value) — Block Length Parameters. Specifies the block
length, in bytes. The length specified must include the

7-20

header. The default value, by media type, is 1024 for
disk/RAD files. A block length value less than or greater
than the default value may be specified (up to a maximum
of 32K-1 bytes). See "Block Formats" in Chapter 6 for a
discussion of block length. Note that both a four-byte
block header and a four-byte linkage word are included in
each I-organization data and overflow block.

RECORD LEVEL PARAMETERS

(DLC) — Deletion Control Parameter, Presence of this key=
word parameter specifies that the first byte of the record
body (i.e., the user data) is fo function as a deletion con=
trol character. This parameter is effective only when speci-
fied at file creation; an existing file's HDR2 label value

for DLC will override in all other cases. See M:DELREC
procedure for description of DLC character function.

(FRM, F | V) — Record Format Parameter, Specifies the
record format of the file to be created or accessed, fixed
or variable. The default is F (fixed format). When ac-
cessing a labeled file and F or V is specified, the actual
record format (as described in the file's HDR2 label) will
override the format specified.

(KYL, value) — Key Length Parameter. Specifies the length

of the record key, in bytes. The length value may range
from 1 through 255,

(KYP, value) — Key Position Parameter. Specifies the ini-
tial byte position of the record key, relative to the first
byte of the record body. The first byte of the record body
is numbered 0 (zero). The maximum value specifiable is
equal to the maximum size of the record body less the key
length. The default value is 0.

Note: If DLC is specified, the KYP value may not be 0
(i.e., must not be defaulted to or specified as 0),
otherwise, the program will abort.

(LoC | MoV) - Locate/Move Mode Parameter. This
alternative-keyword parameter specifies that the records
are to be accessed either in locate mode (LOC), i.e., no
record movement, or in move mode (MOV). MOV is the
default,

Note: M:PUT does not operate LOC mode.

(REL, value) — Record Length Parameter. Specifiesthe length
of the records to be processed, in bytes (the actual length
for F format records or maximum length for V format). In

V format, the length specified is that of the maximum size
record body, excluding record header bytes. The default
REL value is calculated (at open time) as follows:

F format — REL = BKL - BHR - 4.
V format — REL = BKL - BHR - 8.

Note that if the REL parameter is not specified for F format
records, unblocked records (i.e., one record per block)
are implied. ’

USAGE RULES

1. M:DCB is not an executable procedure. DCB space
reservation and explicit parameter setting is performed
at assembly time,

2. None of the parameters are indirectly addressable.

M:MOVEDCB Dynamic DCB Creation/Retention

The M:MOVEDCB procedure causes the allocation, during
program execution, of a 19-word DCB area with read-only
protection in the common-dynamic portion of the user's
virtual memory space; the address of this area is returned
to the user's program. It also causes the contents of a user
specified sending area to be copied into the newly allo-
cated DCB area. For example, the sending area may be

a nonprotected area of the user's program where a DCB
image or "skeleton" has been built, or a write protected
DCB that is not open when the M:MOVEDCB is executed.
Effectively, this procedure allows the user to create DCBs
during program execution, and/or to move and thereby
save inactive DCBs that would otherwise be overlaid or
destroyed.

Syntax:
[label(s)] M:MOVEDCB [*Jadr-1, (PTR, adr-2)
where

adr-1 is the word address of a 19-word sending
area which is to be copied into the newly allo-
cated DCB space.

adr-2 is the address of a one-word pointer in the
user's program in which the address of the newly
allocated DCB is to be returned.

USAGE RULES

1. No default values are supplied for any parameter field

by M:MOVEDCB,

2. The effect of M:SETDCB, M:ASSIGN, M:OPEN, and
M:CLOSE procedures referencing a dynamically
created or saved DCB is identical to the effect of the
same procedures on an assembled DCB.

M:SETDCB Execution-Time DCB Modification

The M:SETDCB procedure allows the user, during program

execution, to (1) "fill in" empty parameter fields in a non-

open DCB, i.e., specify previously unspecified or unde-
faulted DCB parameters, (2) modify previously specified or
defaulted parameters in a nonopen DCB, and (3) modify the

7-21

ABN and ERR parameters in an open DCB, The effective
parameters in cases 1 and 2 are all of the parameters that
may be specified in the M:DCB procedure for AIAM, See
foldout Chart A-2 of Appendix A for the complete general
syntax of M:SETDCB in reference form. The parameters
applicable under AIAM are as described for the M:DCB
procedure.

M:SETDCB also allows modification of the operational label
associated with a DCB.

Syntax:

[label(s)] M:SETDCB [*]dcb—adr[(OPL,

*adr-~label
{'c(:p:loqbele' })] [,dcb-pqramefer, o]

where

dcb-adr is the address of the DCB to be modified.

adr-label is the address of a word containing an
operational label, left-justified and space filled,
to be associated with the DCB being modified.

. 'op-label' is a one- to four=character constant
specifying an operational label to be associated
with the DCB being modified,

dcb-parameter is a DCB parameter as described for
the M:DCB procedure.

USAGE RULES

1. All of the DCB parameter addresses and values can be
indirectly addressed.

2. If the OPL option appears, the operational label speci-
fied therein will replace the operational label (if any)
previously specified in the referenced DCB,

3. If the referenced DCB is open at the time of M:SETDCB
execution, only the ABN and/or ERR parameter will be
effective; any other parameters will be ignored.

4. A DCB closed with the HLD option (temporary close)
is considered as open for the purposes of rule 3.

5. If the ABN parameter appears, the set of abnormal
class codes specified will replace any such set pre-
viously in effect, including the null case where no
class code is specified (i.e., any class codes previously
in effect can be "turned off" by not specifying any
class code).
M:ASSIGN Execution-Time DCB Assignment
The M:ASSIGN procedure allows the user, during program
execution, to (1) define a temporary file in secondary stor-
age and assign an operational label to it, or (2) define a

permanent file on a physical resource specified by a
IASSIGN command. Effectively, case 1 allows the user
to eliminate from the job control deck TASSIGN commands
for invariant "scratch file" assignments, or to define addi-
tional temporary files to satisfy dynamically determined
program requirements (as M:MOVEDCB canbe used to create
additional DCBs). Case 2 allows the user to make an exe-
cution time choice between several 1ASSIGN commands,
each specifying a different resource, or to redefine a file
assignment (status, file name, or space allocation) made by
a IASSIGN command. In case 2, the !ASSIGN command
referred tomust itself define a permanent (i. e., named) file,

Syntax:

Format 1, for temporary files

. * -
[1obel 6] MeASSIGN (opL, {21}

*adr-3

[, (s1z, {;C:ir-z} ’{incremenf}):l

where

adr-1 is the address of a word containing the opera-

tional label that identifies the DCB beingassigned.
'op-label' is the character constant form of that
label.

adr-2 is the address of a word containing a value
specifying the size of the data block portion of
the file.

size is the constant form of that size value.

adr-3 is the address of a word containing a value
specifying the size of the index/overflow (incre-
ment) portion of the file,

increment is the constant form of that increment

value,

Format 2, for permanent files

*adr-1

[label(s)] M:ASSIGN (OPL’{'op-lqbel'})'
*adr-4
(UNTI OPL’ {'op-lqbel-l l}

NEW
OoLD
MOD

*adr-5

(NAM, {'fi lename')

}) (sTs,

(s1Z [*adr-Z] {*adr-3 })
’ " U'size' J ' lincrement
where .

adr=1, 'op~label', adr-2, size, adr-3, and increment
have the same meaning as in format 1,

7-22

adr-4 is the address of a word containing the
operational label that identifies a IASSIGN com-
mand specifying the desired physical resource.

'op-label-1' is the character constant form of the
operational label described immediately above.

adr-5 is the word (or byte) address of a TEXT-format
format field containing the name of the file to be
created or accessed. The name must be terminated
by one or more blanks. (See the TEXT directive,
Meta-Symbol Reference Manual, 90 09 52,)
'filename' is the character constant form of the
file name.

USAGE RULES

1. Assignments made via M:ASSIGN are valid only for
the job-step in which the procedure is executed; they
cannot be maintained over succeeding steps. (Effec-
tively, the ASSIGN option FRE is implicit in the use
of an M:ASSIGN procedure.)

2. The usage of M:ASSIGN in format 1 is identical to the
usage of a IASSIGN command with corresponding
options specified.

3. In format 2, the UNT, OPL option implies use of the
resource (device and volume) defined and allocated to
the job-step by the operational label specified.

The IASSIGN command referred to by the UNT, OPL
option in format 2, must specify a permanent (i.e.,
named) file assignment on direct access media and

must be in force during the job-step in which the
M:ASSIGN is executed. :

5. In format 2, all options other than UNT have the same
meaning and usage as the corresponding options ap-
, pearing in a IASSIGN command, assuming the

option FIL,
6. The M:ASSIGN procedure in format 1 may redefine
an implicit assignment via a (installation dependent)
predefined operational label, typically SI, LO, EI, etc.
7. Inall cases, the operational label specified by the

OPL keyword field establishes the link between a DCB
and the file named by the procedure.

8. In format 2, the DCB parameters (if any) specified in
the referenced IASSIGN command are not applied to
the DCB assigned via the procedure.

M:0PEN Opening a File

The M:OPEN procedure activates the link between a DCB
and a physical file. The DCB is placed in an active, or
open, status. ("Opening a file" is equivalent to "opening
a DCB".) This procedure must be successully executed

before any 1/O operation can be performed on a given file,
The M:OPEN procedure performs some or all of the follow-
ing steps while opening a file:

1. Location-of the file to be processed, if it exists.

2. Creation of the file if it does not exist, which implies

allocation of resources: volume and space on the
volume, and creation of the file labels.

Various initializations as necessary: reservation of
buffers, completion of the DCB, reservation and com-
pletion of communication tables (IOBs) between the
access methods and the 1/O supervisor, etc. DCB
parameter values from an existing file's HDR2 label
are written into the DCB.

Validation and control of file identity, file expiration,
file protection, and file sharing; checking for coher-
ence among the DCB parameters, and consistency of
these with the processing mode specified in M: OPEN
and with the storage media.

5. Optional creation of a temporary copy of the file index
on secondary storage (i.e., system disk) for improved

access speed.

Syntax:

[label(s)] M:OPEN [#]dcb-adr, mode[, CID][, ICY]

where
dcb-adr is the address of the DCB to be opened,
mode specifies the desired processing mode, as
follows:
I Input mode (reading).
O Output mode (wri‘ring).‘
U Update mode (reading and modification).
CIb specifies file identity checking (see Usage
Rule 1).
ICY requests a system-disk copy of the file index

(see Usage Rule 3).

USAGE RULES

1. The file identity checking and positioning option NID
and PID (see ASAM) are meaningful for magnetic tape
files only. For AIAM (disk/RAD files only) this field

is effectively ignored. CID is always assumed.

2. The effect of a given processing mode specification is
conditioned by the declared status of the file versus
the file's actual status. These interrelationships are
described below.

7-23

3. If the access speed of the system disk device is signif-
icantly faster than that of the device on which the
private volume is based, the ICY optionwill generally
result in an improved processing rate.

RELATIONSHIP OF PROCESSING MODE AND FILE STATUS

The status of a file (NEW, MOD, or OLD) is declared in
the file assignment. For each declared file status there is
one or several normal combinations of status, file existence/
nonexistence, and processing mode. The normal combina-
tions do not occasion any abnormal return to the user's
program during opening. Certain abnormal combinations
(described below) are acceptable but will result in an X1
class abnormal return to the user's program during opening
if the DCB specifies an abnormal return with the X1 class
set (abort otherwise). Any combination other than those
described below will result in a program abort,

The several normal and abnormal combinations are described
for each declared file status in the following paragraphs.

e NEW

Normal combination. Nonexistent file and output
mode — the usual case for original file creation; output
operations allowed only.

Abnormal combination, Existent file and output mode —
in this case an abnormal return to the user's program
occurs, The user can then request recreation of the
file by a special exit from his abnormal routine, If the
expiration date of the file to be rewritten has not been
reached, a further abnormal return occurs; another
special exit will allow processing to continue, over-
riding the nonexpired condition.

e MOD

Normal combinations.

.

1. Existent file and update mode — input and updating
operations allowed.

2. Existent file and output mode — file extension out-
put allowed only,

3. Existent file and input mode — input operations
allowed only.

Nonexistent file and output mode — status is
changed to NEW; output operations are allowed.

e OLD

Normal combinations,

1. Existent file and input mode —.input operations are
allowed.

2. Existent, expired file and output mode —output oper-
ations allowed (i.e., the file may be rewritten).

Abnormal combination. Existent, nonexpired file —in
this case an abnormal return to the user's program oc-
curs. A special exit from the user's abnormal routine
allows processing to continue. The file can then be
rewritten,

Note: See the section "Processing of Abnormal and Error
Conditions" later in this chapter for specific ab-
normal codes and further details on normal/special
exit results,

AUTOMATIC EVOLUTION OF FILE STATUS

The automatic evolution of the status of a file during a job-
step when opened for output is shown below.

Declared Status Prior to First
M:OPEN, Output
NEW, MOD, OLD,
Nonexistent | Nonexistent | Existent
File File File
Status after NEW NEW NEW
successful
opening
Status after MOD MOD MOD
M:CLOSE
M:CLOSE Closing a File
This procedure causes the closing of a file. The close

effects a suspension or halt of activity via a DCB and pos-
sibly via the processed file. It main functions are:

1. Waiting for and testing the last 1/O operation(s).
2. Writing current (last) buffer where necessary.

3. Updating and validating disk file labels,

4. Temporary or definite closing of the DCB,

5. Partial restitution of disk space or deletion of the file
created by the job.

6. Releasing devices, buffers, tables, etc.

Syntax:

HLD

|5

[label(s)] M:CLOSE [*]dcb-adr[,
RLS

where dcb-adr is the address of the DCB to be closed.

7-24

TYPES OF CLOSE
HLD specifies a temporary closing of the file. The
DCB-file link is maintained. A new M:OPEN applied
to the DCB will only permit changing of the processing
mode of the file, because only a small portion of the
open functions will then be executed.

RLS specifies a definite close. It destroys the DCB-
file link and the job-file link. The device resource(s)
allocated for the file are released if the FRE option
was specified in the assignment,

MTN specifies a definite close, It cancels the DCB-
file link but maintains the job=file link. In the same
job another DCB can be used to process the same file.
The resource is not released even if the FRE option
was specified in the assignment.

LABEL VALIDATION AND FILE DISPOSITION

The KEP and NCG options specify the disposition of a
newly created permanent file. They are significant only
for the O processing mode (file creation).

KEP requests validation of the file labels, and cata-
loging of the file if CTG was specified in the assign-
ment (or the file was created on the account volume).

NCG requests deletion of the file and suppression of
cataloging if cataloging has been requested or implied.
This option is applicable only in conjunction with RLS
and if the status of the file is NEW prior to closing.

USAGE RULES

1. If no type-of-close option is specified, RLS (release)
is assumed by default, Both the DCB-file connection
and the job-file connectionare severed (i. e., another
job can attempt access to the file whether the file/
volume is sharable or not). All device (i.e., common)
resources allocated for the processing of this file are
released if MTN was not specified in the assignment.

2. If no validation/disposition option is specified, KEP
(keep) is assumed by default.

3. If a definite close (MTN or RLS) is not issued for o
given DCB/file before the end of the job-step, the
system forces an unconditional (RLS) close, disposi-
tion KEP.

M:GET Get Logical Record

The M:GET procedure permits reading of a record having a

specified key value, or of the next logical record of an

existing file relative to the last record accessed. The first
record read must be accessed by its key value. The records
will either be moved to an area specified by the procedure,
or be located (i.e., pointed to in the I/O buffer), at the
user's option (MOV/LOC mode parameter of the DCB),

Syntax: See foldout Chart A-4 in Appendix A,

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
records are to be read.

*
REC,[E}rE;dr-]} specifies the byte address (badr-1) of
the user's receiving area in MOV
mode, or the address (adr-2) of a word into which a
byte address pointer to the accessed record is to be
stored by the system in LOC mode.

RSA, [*adr-3 optionally specifies the address (adr-3)
of a word into which the byte length of the accessed
record is to be stored (by the system).

KEY,[[:;’I Egdr-"'l optionally specifies the byte address
aar (badr-4) of a byte string containing the
key value of the record to be read, or the direct word
address (adr-5) of such a string (will be converted to
byte address).

USAGE RULES

1. If MOV mode is in effect (in the referenced DCB) a .
byte address (optionally indirect) must be specified for
the REC parameter. If LOC mode is in effect, a word
address (direct only) must be specified.

2. If the RSA parameter is specified, the length of the
record moved or located is reported for all record for=-
mats. For V format records, the length of the record
body only is reported,

3. For V format records, the record body only is moved
or located (i.e., the four-byte record header is not
included).

4. The KEY parameter must be specified in the first exe-
cution of M:GET following opening of the file.

5. If the KEY parameter is not specified in any execution
of M:GET subsequent to the first, the next sequential
record having the next higher key value relative to
the last record accessed will be read.

6. The length of the key string is fixed by the KYL param-
eter of the DCB.

7. M:GET is not valid in output processing mode.
8. A minimum of one 1/O buffer is required, in either
MOV or LOC mode, for input processing; a minimum

of two is required for update processing.

M:PUT Put Logical Record

The M:PUT procedure permits writing of a key-ordered se-
quence of logical records of a file being created, rewritten,

7-25

or extended; or, in update processing mode, rewriting of
the logical record last accessed via M:GET or insertion of
a new record. This procedure operates only in MOV mode
(with record movement).

Syntax: See foldout Chart A-4 in Appendix A.

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
records are to be written,

REC, [*]badr-1 specifies the byte address (badr-1) of
the user's sending area (from which the record is to
be moved).

ARS, [*]value specifies, for output or update processing,
the length of the V format record to be written,

NWK specifies, for update processing mode, that the
record to be written is a new insertion record (rather
than a replacement for the last record accessed).

DFW specifies, for update processing mode, that the

block being processed is not to be written to the file

until the next 1/O operation implying a block change
and/or an M:PUT without DFW is executed.

USAGE RULES

1. MOV mode is always in effect for M:PUT (regardless
of the setting of MOV/LOC in the referenced DCB).
A byte address (optionally indirect) must be specified
for the REC parameter. The MOV/LOC parameter is
significant only for M: GET.

2. If NWK (New Key) is specified in update mode, the
record to be written must have a key value not already
present in the file; the record will be inserted into the
file in its proper key-value position.

3. The ARS parameter is effective both in output and up=
date processing mode, and only for V format records.
If specified in update processing, it indicates a length
change for record modification (NWK not specified) or
the length of an insertion record (NWK specified).

4, For F format records, the effective record length is
taken from the DCB (REL parameter).

5. In update processing mode, unless NWK is specified
the record to be written replaces the last record
accessed with the M:GET procedure; the length of
the latter record automatically determines the length
of the record to be written if ARS is not specified
(in V format).

6. The REC parameter specifies the location of the initial
byte of therecord that is tobe moved to the 1/O buffer.
In V format the record body only is to be supplied by
the user (the system affixes the record header).

7. The ARS parameter must be specified in output
processing mode for V format.

8. Following an opening in output mode of an existent
file whose declared or evolved status is NEW, M:PUT
executions cause the existing file to be overwritten,
(i.e., recreated).

9. Following an opening in output mode of an existing
file whose declared or evolved status is MOD, M:PUT
executions cause the file to be extended (i.e., only
records having key values higher than those already
present in the file may be written),

10. Each M:PUT in update mode implies a physical write

operation unless the DFW option is employed.

M:TRUNC Truncation of a Block

The M:TRUNC procedure permits termination of sequential

operations on a partially processed block and passage to

the next sequential block for subsequent processing. In

output processing mode the current block is truncated (i.e.,

the partially completed block is written to the physical

file). This allows space for subsequent insertion of records
without immediate creation of overflow blocks.

In input or update processing mode, the record accessed
by the first sequential M:GET (i.e., no key specified) fol-
lowing an M:TRUNC execution is the first record of the
next sequential block. In update mode, the complete cur-

rent block (with modifications, if any) is rewritten to the
file.

This procedure is in general meaningful only for files con-
taining blocked records (i.e., more than one record per

block).
Syntax:
[label(s)] M:TRUNC [*ldcb-adr

where dcb-adr is the address of the DCB through which
processing is being conducted.

USAGE RULES

1. If no record has yet been read from or written to the
current block (i.e., the current 1/O buffer),
M:TRUNC has no effect,

2, M:TRUNC does not cause actual truncation (i.e.,
shortening) of the current buffer in update processing
mode.

M:DELREC Delete a Record

The M:DELREC procedure permits deletion of the last
logical record accessed with M: GET in update processing
mode when the DLC parameter is in effect in the DCB,
Execution of this procedure causes the value X'FF' to be

7-26

placed in the first byte of the record body, the first byte
being defined as a deletion control character. This effec-
tively deletes that record for any assisted access method.

Syntax:

[label(s)] M:DELREC [*Jdcb-adr

where dcb-adr is the address of the DCB.

USAGE RULES

1. To be effective, the DLC parameter, specifying exist-
ence of the deletion control character, must be speci-
fied at file creation time (see M:DCB). On subsequent
file accesses the value carried in the HDR2 label of
the file overrides the setting in the DCB at open time.

2. M:DELREC is applicable only in update processing
mode. It is applicable to both F and V format records.

APAM (ASSISTED PARTITIONED ACCESS METHOD)

The assisted partitioned access method (APAM) creates and
processes partitioned-organization files. These are essen-
tially sequential files subdivided into individually acces-
sible segments called partitions. (See the section "File
Organization" in Chapter é for a detailed description of
the partitioned file organization.) A file partition is iden-
tified by one or more user assigned partition names, or keys.
The initially assigned key is called the principal partition
key; subsequently assigned keys (for the same partition) are
called synonyms.

The procedures M:STOW and M:FIND, unique to APAM,
are used to name and access an individual partition during
file creation, reading, and updating, as applicable, Par-
titions may be added to or deleted from existing files in
output processing mode. For record processing, all proce-
dures applicable to disk/RAD files under ASAM, except
M:CVOL, are also applicable under APAM, Except for
direct accessing of partitions (i.e., positioning by key to
the beginning of a partition) file processing is essentially
sequential, both within a partition and across subsequent
partition boundaries,

Partitioned files are particularly useful for program and
subroutine libraries.

See foldout Chart A-5 of Appendix A for the syntax of the
APAM 1/O procedures in reference form,

GENERAL USAGE RULES
The general usage rules for APAM are listed below.
1. Creates and processes partitioned-organization (direct

access) files only, Multivolume files must be parallel
mounted.

2. Applicable to direct access (disk/RAD) storage media
only.
3. Not applicable to nonstandard (DEV assigned) volumes.
4. Applicable processing modes:
Output
Input
Update
5. Applicable to F or V format records only.
6. Applicable 1/O processing procedures:
M: GET M:TRUNC
M:PUT M:DELREC
M:FIND M:NOTE
M:STOW M:POINT
7. Usage of either M:DCB or M:sMOVEDCB and of M:OPEN
and M:CLOSE is mandatory for a given DCB/file; usage
of M:SETDCB and M:ASSIGN is optional.
Mm:DCB Assembly-Time DCB Creation
Syntax:

[label(s)] M:DCB (OPL, 'op-label')[, dcb-param, . ..]

Refer to foldout Chart A-2 in Appendix A for the general
syntax of M:DCB, in reference form, showing the syntax
of all DCB parameters. The parameters and values appli-
cable under APAM are described below, grouped by type
of parameter,

FILE PROCESSING PARAMETERS

(ABN, address[, class-code, . . .]) — Abnormal Return Param-
eter. Specifies the address of the user's routine to which
control is to be returned if certain abnormal conditions occur
during file opening, processing, and closing. Also speci-
fies the class(es) of conditions for which control is to be
returned. None, some, or all of the following abnormal
class codes can be specified:

- X1 File opening abnormalities.
X2 End-of-file/volume abnormalities.
X3 File processing abnormalities,

The address field is mandatory if this parameter is specified.
If no class code is specified, no abnormal conditions are
returned for user routine handling (see M:SETDCB description

7-27

for special usage. The section "Processing of Abnormal
and Error Conditions" later in this chapter describes all
abnormal conditions and corresponding codes in detail, and
provides information on the type of processing allowed in
user's abnormal- and error-handling routines, Occurrence
of an abnormal condition that has not been selected, by
class, for user routine handling will cause a program abort.

(AM, AP) — Access Method Parameter. The value AP speci-

fies usage of APAM for I/O processing via this DCB. This
parameter must be specified.

(BFA, byte-address) — Buffer Address Parameter. Specifies

the byte address of the first of a set of user reserved /O
buffer areas, if any. If more than one such buffer exists
(BFA # 0 and NBF > 1), the set is assumed to be contiguous.
The length of each buffer is assumed to equal the block
length (BKL parameter). If this parameter is omitted (or the
address specified is zero) at opening time, the system will
acquire buffer space in an amount related to the BKL and
NBF values in force at that time. (See "Buffer Usage" for
further details.)

(ERR[, address]) — Error Return Parameter. Specifies the
address of the user's routine to which control is o be re-
turned if any error condition occurs during processing via
this DCB, If this parameter is omitted or the address is
omitted, the occurrence of any error condition will cause

a program abort. See the section "Processing of Abnormal
and Error Conditions" later in this chapter for a detailed
description of the possible error conditions and corresponding
codes.

(MOD, EBC) — Data Mode Parameter. Specifies the mode
of data encoding to be expected on input or produced on
output. The mode keyword EBCspecifies EBCDIC encoding,
the only mode applicable. The default mode is EBC.

(NBF, value) — Number of Buffers Parameter. Specifies the

number of I/O buffers (either user- or system=-provided) to be
used by the M:GET/M:PUT procedures. The defaultvalueis 2.

(NRT) = No Retry Parameter. This parameter specifies that
the system is not to execute the standard error recovery pro-
cedure (i.e., repeated retries of the same 1/O operation)

in case of a device or transmission error,

(ORG, P) — File Organization Parameter. Specifies the

organization (partitioned) of the file to be created or ac-
cessed. This parameter must be specified.

BLOCK LEVEL PARAMETERS

(BHR, value) — Block Header Parameter. Specifies the size
of the data block header. For disk/RAD files only the
value 4 (or 0) may be specified (see "Block Formats" in
Chapter 6). The default value is 4,

(BKL, value) — Block Length Parameter, Specifies the block
length, in bytes. The length specified must include the
block header. The default value, by media type, is 1024
for disk/RAD files. A block length value less than or
greater than the default value may be specified (up to a
maximum of 32K-1 bytes). See "Block Formats" in Chap-
ter 6 for a discussion of block length. Note that a four-
byte block header is included in each P organization data

block.

RECORD LEVEL PARAMETERS

(DLC) — Deletion Control Parameter. Presence of this key-
word parameter specifies that the first byte of the record
body (i.e., the user data) is to function as a deletion con-
trol character. It is applicable to disk files only. This
parameter is effective only when specified at file creation;
an existing file's HDR2 label value for DLC will override
in all other cases. See M:DELREC procedure for descrip-
tion of DLC character function,

(FRM, F | V) — Record Format Parameter. Specifies the
record format of the file to be created or accessed, fixed
or variable. The default is F (fixed format). When ac-
cessing a labeled file and F or V is specified, the actual
record format (as described in the file's HDR2 label) will
override the format specified.

(KYL, value) — Key Length Parameter. Specifies the length
of the partition key, in bytes. The length value may range
from 1 through 255.

(LoC | MoV) — Locate/Move Mode Parameter. This
alternative-keyword parameter specifies that the records
are to be accessed either in locate mode (LOC), i.e., no
record movement, or in move mode (MOV) (see "Buffer
Usage" for details). MOV is the default.

Note: M:PUT does not operate in LOC mode when the file
is opened for update (U) processing.

(REL, value) — Record Length Parameter. Specifies the
length of the records to be processed, in bytes (the actual

length for F format records or maximum length for V format).

In V format, the length specified is that of the maximum
size record body, excluding record header bytes. The de-
fault REL value is calculated (at open time) as follows:

F format — REL = BKL - BHR.
V format — REL = BKL - BHR-4.
Note that if the REL parameter is not specified for F format

records, unblocked records (i.e., one record per block)
are implied,

USAGE RULES

1. M:DCB is not an executable procedure. DCB space
reservation and explicit parameter setting is performed
at assembly time,

2. None of the parameters are indirectly addressable.

M:MOVEDCB Dynamic DCB Creation/Retention

The M:MOVEDCB procedure causes the allocation, during
program execution, of a 19-word DCB area with read-only
protection in the common-dynamic portion of the user's
virtual memory space; the address of this area is returned to
the user's program. It also causes the contents of a user
specified sending area to be copied into the newly alloca-
ted DCB area. For example, the sending area may be a
nonprotected area of the user's program where a DCB image
or "skeleton" has been built, or a write protected DCB that

" is not open when the M:MOVEDCB s executed. Effectively,

7-28

this procedure allows the user to create DCBs during pro-
gram execution, and/or to move and thereby save inactive
DCBs that could otherwise be overlaid or destroyed.

Syntax:

[label(s)] M:MOVEDCB [*ladr-1, (PTR, adr-2)

where

adr-1 is the word address of a 19-word sending
area which is to be copied info the newly allo-
cated DCB space,

adr-2 is the address of a one-word pointer in the
user's program in which the address of the newly
allocated DCB is to be returned.

USAGE RULES

1. No default values are supplied for any parameter field

by M:MOVEDCB,

2. The effect of M:SETDCB, M:ASSIGN, M:OPEN, and
M:CLOSE procedures referencing a dynamically created
or saved DCB is identical to the effect of the same pro-
cedures on an assembled DCB,

M:SETDCB Execution-Time DCB Modification

The M:SETDCB procedure allows the user, during program
execution, to (1) "fill in" empty parameter fields in a non-
open DCB, i.e., to specify previously unspecified DCB
parameters, (2) modify previously specified or defaulted
parameters in a nonopen DCB, and (3) modify the ABN and
ERR parameters in an open DCB. The effective parameters
in cases 1 and 2 are all of the parameters that may be speci-
fied in the M:DCB procedure for APAM, See foldout
Chart A-2 of Appendix A for the complete géneral syntax

of M:SETDCB in reference form. The parameters applicable
under APAM are as described for the M:DCB procedure,

M:SETDCB also allows modification of the operational label
associated with a DCB.

Syntax:

[label(s)] M:SETDCB [#]dcb-adr [, (OPL,

*adr-label}
{'Op-label')] [; dcb-parameter, .. .]
where
dcb-adr is the address of the DCB to be modified.
adr-label is the address of a word containing an
operational label, left-justified and space filled,
to be associated with the DCB being modified.
'op-label’ is a one- to four-character constant

specifying an operational label to be associated
with the DCB being modified.

dcb-parameter is a DCB parameter as described
previously for the M:DCB procedure.

USAGE RULES

1. All of the DCB-parameter addresses and values can be
indirectly addressed.

2. If the OPL option appears, the operational label speci-
fied therein will replace the operational label (if any)
previously specified in the referenced DCB,

3. If the referenced DCB is open at the time of M:SETDCB
execution, only the ABN and/or ERR parameter will be
effective; any other parameters will be ignored.

4. A DCB closed with the HLD option (temporary close)
is considered as open for the purposes of rule 3.

5. If the ABN parameter appears, the set of abnormal
class codes specified will replace any such set pre-
viously in effect, including the null case where no
class code is specified (i.e., any class code previously
in effect can be "turned off" by not specifying any
class code).

M:ASSIGN Execution-Time DCB Assignment

The M:ASSIGN procedure allows the user, during program

execution, to (1) define a temporary file in secondary stor-

age and assign an operational label to it, or (2) define a

permanent file on a physical resource specified by a

IASSIGN command. Effectively, case 1 allows the user

to eliminate from the job control deck !ASSIGN commands

for invariant "scratch file" assignments, or to define addi-
tional temporary files to satisfy dynamically determined

program requirements (as M:MOVEDCB can be used to
create additional DCBs). Case 2 allows the user to make
an execution time choice between several !ASSIGN com-
mands, each specifying a different resource, or to redefine
a file assignment (status file name or space allocation) made
by a !ASSIGN command. In case 2, the IASSIGN com-
mand referred to must itself define a permanent, i.e.,
named, file.

Syntax:

Format 1 for temporary files

[label(s)] M:ASSIGN (OPL, {*“d"' })

'op-label’

*adr-2} {*adr-3 }]
['(SIZ’{size " lincrement)

where

adr-1 is the address of a word containing the opera-

tional label that identifies the DCBbeing assigned.
'op-label’ is the character constant form of that
label.

. adr-2 is the address of a word containing a value
specifying the size of the data block portion of
the file, :

size is the constant form of that size value.
adr-3 is the address of a word containing a value
specifying the size of the index/overflow portion

of the file.

increment is the constant form of that increment

value.

Format 2, for permanent files

[label (s)] M:ASSIGN (OPL, {f::f,':bel})r

*adr-4
(UNT, OPL, {'op-label-l '])’

NEW
(NAM, {ff‘;‘l";gme,}), (sTs, !ow])
MOD

o512, ;5872 {2 1]

where

adr-1, 'op-label', adr-2, size, adr-3, and increment
have the same meanings as in format 1.

adr-4 is the address of a word containing the
operational label that identifies a |ASSIGN com-
mand specifying the desired physical resource.

'op=-label-1' is the character constant form of the
operational label described immediately above.

adr-5 is the word (or byte) address of a TEXT-
format field containing the name of the file to be
created or accessed. The name must be terminated
with one or more blanks. (See the TEXT directive,
Meta-Symbol Reference Manual, 90 09 52.)
'filename' is the character constant form of the
file name.

USAGE RULES

1. Assignments made via M:ASSIGN are valid only for
the job-step in which the procedure is executed, they
cannot be maintained over succeeding steps. (Effec-
tively the IASSIGN option FRE is implicit in the use
of an M:ASSIGN procedure.)

2, The usage of M:ASSIGN in format 1 is identical to the
usage of a IASSIGN command with corresponding op-
tions specified,

3. Informat 2, the UNT, OPL option implies use of the
resource (device and volume) defined and allocated
to the job-step by the operational label specified.

4. The IASSIGN command referred to by the UNT, OPL
option in format 2 must specify a permanent, i.e.,
named, file assignment on direct access media and
must be in force during the job-step in which the
M:ASSIGN is executed.

5. In format 2, all options other than UNT have the same
meaning and usage as the corresponding options ap-
pearing in a !ASSIGN command, assuming the option
FIL.

6. The M:ASSIGN procedure in format 1 may redefine an
implicit assignment via a (installation dependent) pre-
defined operational label, typically SI, LO, EI, etc,

7. Inall cases, the operational label specified by the
OPL keyword field establishes the link between a DCB
and the file named by the procedure.

8. In format 2, the DCB parameters (if any) specified in
the reference !ASSIGN command are not applied to
the DCB assigned via the procedure,

M:OPEN Opening a File

The M:OPEN procedure activates the link between a DCB
and a physical file, The DCB is placed in an active, or
open, status. ("Opening a file" is equivalent to "opening
a DCB",) This procedure must be successfully executed

7-30

before any 1/O operation can be performed on a given file,
The M:OPEN procedure performs some or all of the fol-
lowing steps while opening a file:

1. Location of the file to be processed, if it exists.

2. Creation of the file if it does not exist, which implies
allocation of resources: volume and space on the
volume, and creation of the file labels.

3. Various initializations as necessary: reservation of
buffers, completion of the DCB, reservation and com-
pletion of communication tables (IOBs) between access
methods and the I/O supervisor, etc, DCB parameter
values from an existing file's HDR2 label are written
into the DCB.

4, Validation and control of file identity, file expiration,
file protection, and file sharing; checking for coherence
among the DCB parameters, and consistency of these
with the processing mode specified in M:OPEN and
with the storage media. .

Syntax:

[label(s)] M:OPEN [*dcb-adr, mode[, CID]

where
dcb-adr is the address of the DCB to be ope‘ned.
mode specifies the desired processing mode, as
follows:

I Input mode (reading).

O Output mode (writing).

U Update mode (reading and modification).
CID specifies file identity checking (see Usage

Rule 1),

USAGE RULES

1. The file identity checking and positioning option NID
and PID (see ASAM) are meaningful for magnetic tape
files only. For disk/RAD files this field is effectively
ignored. CID is always assumed.

2. The effect of a given processing mode specification is
conditioned by the declared status of the file versus
the file's actual status. These interrelationships are
described below,

RELATIONSHIP OF PROCESSING MODE AND FILESTATUS

The status of a file (NEW, MOD, or OLD) is declared in
the file assignment. For each declared file status there is
one or several normal combinations of status, file existence/
nonexistence, and processing mode. The normal combinations

do not occasion any abnormal return to the user's program
during opening., Certain abnormal combinations (described
below) are acceptable but will result in an X1 class abnor-
mal return to the user's program during opening if the DCB
specifies an abnormal return with the X1 class set (abort
otherwise). Any combinations other than those described
below will result in a program abort.

The several normal and abnormal combinations are described
for each declared file status in the following paragraphs.

NEW

Normal combination. Nonexistent file and output
mode — the usual case for original file creation; output
operations allowed only., '

Abnormal combination. Existent file and output mode —
in this case an abnormal return to the user's program
occurs, The user can then request recreation of the

file by a special exit from his abnormal routine. If

the expiration date of the file to be rewritten has not
been reached, a further abnormal return occurs; another
special exit will allow processing to continue, over-
riding the nonexpired condition.

MOD

Normal combinations.

1. Existent file and update mode — input and updating

operations allowed.

Existent file and output mode — file extension out-
put allowed only.

Existent file and input mode — input operations
allowed only.

Nonexistent file and output mode — status is
changed to NEW; output operations are allowed,

OLD

Normal combinations.

1. Existent file and input mode — input operations
are allowed.

2. Existent, expired file and output mode — output

operations allowed (i.e., the file may be rewritten).

Abnormal combination. Existent, nonexpired file —in
this case an abnormal return to the user's program oc-
curs, A special exit from the user's abnormal routine
allows processing to continue; the file can then be
rewritten.

Note: See the section "Processing of Abnormal and Error
Conditions" later in this chapter for specific abnormal
codesand further details on normal/special exit results.

7-31

AUTOMATIC EVOLUTION OF FILE STATUS

The automatic evolution of the status of a file during a
job-step when opened for output is shown below.

Declared Status Prior to First
M:OPEN, Output
NEW, MOD, OLD,
Nonexistent | Nonexistent | Existent
File File File
Status after NEW NEW NEW
successful
opening
Status after MOD MOD MOD
M:CLOSE
M:CLOSE Closing a File

This procedure causes the closing of a file. The close ef-
fects a suspension or halt of activity via a DCB and possibly
via the processed file. Its main functions are:

1. Waiting for and testing the last I/O operation(s).

2. Writing current (last) buffer, where necessary,

3. Updating and validating disk file labels.

4. Temporary or definite closing of the DCB,

5. Partial restitution of disk space or deletion of the file
created by the job.

6. Releasing devices, buffers, tables, etc.

HLD
[label(s)] M:CLOSE [*Jdcb-qdr[,[

MTN
RLS

I

where dcb-adr is the address of DCB to be closed.

<)

TYPES OF CLOSE
HLD specifies a temporary closing of the file, The DCB-
file link is maintained. A new M:OPEN applied to the
DCB will only permit changing of the processing mode
of the file, because only a small portion of the open
functions will then be executed.

MTN specifies a definite close. It eancels the DCB-
file link but maintains the job-file link. In the same
job another DCB can be used to process the same file,
The resource is not released even if the FRE option was
specified in the assignment.

RLS specifies a definite close. It cancels the DCB-file
link and the job-file link. The device resource(s)
allocated for the file are released if the FRE option

was specified in the assignment,

LABEL VALIDATION AND FILE DISPOSITION

The KEP and NCG options specify the disposition of a newly
created permanent file, They are significant only for the

O processing mode (file creation).

KEP requests validation of the file labels and cataloging
of the file when requested or implied.

NCG requests deletion of the file suppression of cata-
loging if cataloging has been requested or implied.
This option is applicable only in conjunction with RLS
and if the status of the file is NEW prior to closing.

USAGE RULES

1. If no type-of-close option is specified, RLS (release)
is assumed by default. Both the DCB-file connection
and the job-file connection are severed (i.e., another
job can attempt access to the file whether the file/
volume is sharable or not). All device resources al-
located for the processing of this file are released if
MTN was not specified in the assignment,

2. If no validation/disposition option is specified, KEP
(keep) is assumed by default.

3. If a definite close (MTN or RLS) is not issued for a
given DCB/file before the end of the job step, the
system forces an unconditional (RLS) close, disposition
KEP.

M:STOW Create/Delete Partition Key

The M:STOW procedure stores principal and synonym par-
tition keys into the directory associated with a partitioned
file or deletes such keys from the directory during output
mode processing of a new or existing file. When a princi-
pal partition key is created (ADD option), positioning to
the end of the existing file (if any) also occurs.

Synonym partition keys may be created (SYN option) fol-
lowing creation of the principal partition key (i.e., any
time during creation of the partition). Either principal
and/or synonym keys may be deleted at any time during
output mode processing.

Effectively, this procedure allows the user to establish par-
tition boundaries during sequential file creation (status
NEW or OLD, output mode) or to add new partitions, at

the current end-of-file, during file extension (status MOD,
output mode). Each partition boundary is associated with
one or more user chosen names. During either file creation
or extension, such partition boundaries can also be deleted,
by name. (The records previously constituting the "deleted"
partition are not thereby deleted, however. A subsequent

7-32

sequential reading of the file across the deleted boundary
will access those records.

Note that (as discussed in Chapter 6 under "File Organi-
zation") a partition boundary, indicating the beginning of
a given partition, does not also delimit the previous parti-
tion. That is, the system does not maintain or recognize
any end-of-partition boundaries for accessing of the file.
(A partitioned file may therefore be given an hierarchical
structure.)

Syntax:

[label(s)] M:STOW [*dcb-adr, (KEY,

(52 ble|sm]

DEL
where

dcb-adr is the address of the DCB.

badr-1 is the byte address (optionally indirect) of
the initial byte of the partition key to be added
to or deleted from the directory.

adr-2 is the word address (direct only) of the initial
byte of the partition key (will be converted to a
byte address).

ADD specifies creation of a principal partition key

(default option).

SYN

specifies creation of a synonym partition key.
DEL specifies deletion of the indicated partition
key, principal or synonym.

USAGE RULES

1. Applicable only to output mode processing of either
new or existing files.

All partition keys created must be unique within the
file,

The length of a partition key is defined by the DCB
parameter KYL (255 maximum). On each M:STOW
execution, the system will read KYL bytes starting at
the address badr=1 or adr~2 specified for the KEY
parameter,

Partition keys are sorted and stored in the directory in
ascending binary order. (Note that this provides a
normal collating sequence for the EBCDIC alphanumeric
characters, with the space and special graphic char-
acters sorting lower than the alphabetics, and the
numeric characters sorting higher.)

5. At least one M:STOW (ADD) must be executed, during
either file creation or extension, prior to the first exe-
cution of M:PUT,

6. An M:STOW. .. (SYN) execution adds a synonym key
to the partition established or referred to by the last
effective M:STOW (ADD) procedure executed (since
opening the file. That is, the synonym key refers to
the last principal key effectively processed.

7. M:PUT and M:TRUNC procedure executions may inter-
vene between a given M:STOW (SYN) execution and
the previous M:STOW (ADD) execution to which it
refers,

8. M:STOW (ADD) causes repositioning, if necessary, to
the currently effective end-of-file for subsequent
M:PUT executions.

9. M:STOW (DEL), referring to any partition in the file,
can be executed at any time regardless of current
positioning.

10. Neither M:STOW (SYN) nor M:STOW (DEL) cause

repositioning to a new partition boundary.

11. During file creation, the creation of keys in an
ascending binary order sequence resulfs in apprecmbly
faster processing of the file.

M:FIND Find a Partition Boundary

The M:FIND procedure permits, during input or update
processing of a partitioned file, positioning to a partition
boundary selected by either principal or synonym key. A
subsequent M: GET procedure will read the first record of the
partition so selected. Optionally, the procedure can also
return to the user's program a pointer to the first record of
the partition to which positioning is effected. This pointer
can be utilized subsequently e.g., in an M:POINT proce-
dure execution,

Effectively, the M:FIND procedure allows the user to di-
rectly access a partition of an existing file,

Format:

[*]badr-]l)

[label ()] M:FIND [*]dcb-adr,(KEY,L 12

[, (RC1, [*]qdr-3)]
where

dcb-adr is the address of the DCB.

badr-1 is the byte address (optionally indirect) of

the initial byte of the partition key to be used for
positioning.

adr-2 is the word address (direct only) of the initial
byte of the partition key (it will be converted to a
byte address).

7-33

adr-3 is the address of a two-word area in the
. user's program in which the first-record pointer
is to be returned.

USAGE RULES

1. The address specified in the RCI parameter must refer-
ence, directly or indirectly, the first of two contiguous
words into which the system will store a pointer to the
first record of the selected partition.

2. On return, word adr-2 contains a relative block num-
ber and word adr-2 + 1 contains the byte displacement
of the first record of the partition selected, relative
to the beginning of the block.

3. Applicable to input and update processing modes only.

M:GET Get Next Sequential Record

The M:GET procedure permits reading of the next logical
record of an existing file, relative to the record last ac~
cessed; the first record of a partition previously selected
via M:FIND; or the first sequential record of the file. (Ex-
ception: see M:POINT procedure.) The records will either
be moved to an area specified by the procedure, or be lo-
cated (i.e., pointed to in the 1/O buffer) at the user's
option (MOV/LOC mode parameter of the DCB).

Syntax: See foldout Chart A-5 in Appendix A.

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
records are to be read.

REC ‘[3 lz;dr]] specifies the byte address (badr-1) of
r the user's receiving area in MOV
mode, or the address (adr-2) of a word into which a
byte address pointer o the accessed record is to be
stored by the system in LOC mode.

RSA, [*]adr-3 optionally specifies the address (adr-3)
of a word in which the byte length of the accessed
record is to be stored (by the system).

USAGE RULES

1. If MOV mode is in effect (in the referenced DCB) a
byte address (optionally indirect) must be specified for
the REC parameter, If LOC mode is in effect, a word
address (direct only) must be specified.

2. If the RSA parameter is specified, the length of the
logical record moved or located is reported for both
record formats. For V format records, the length of
the record body only is reported.

3. For V format records, the record body only is moved
or located (i.e., the four-byte record header is not
included).

The first M: GET executed after an execution of M:FIND
reads the first record of the partition selected by the
M:FIND,

5. If no prior M: GET or M:FIND procedure has been
executfed since opening of the file, M:GET will read
the first record (of the first partition) of the file,

6. M:GET is not valid in output processing mode.

M:PUT Put Next Sequential Record

The M:PUT procedure permits writing of the next logical
record of a file being created or rewritten or, in update
processing mode, rewriting of the logical record last
accessed via M: GET. This procedure operates in either
MOV mode (with record movement) or LOC mode (no re-
cord movement), except in update processing where MOV
mode is implicit,

Syntax: See foldout Chart A=5 in Appendix A,

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
records are to be written,

REC,[[*] badr-]]

adr-2 specifies the byte address (badr-1) of

the user's sending area in MOV mode,
or the address (adr-2) of a word into which a pointer
to a record position (in the 1/O buffer) is to be stored
by the system in LOC mode.

ARS, (*Jvalue specifies, for output processing only, the
length of the V format record to be written,

USAGE RULES

1. If MOV mode is in effect (in the referenced DCB), a
byte address must be specified, directly or indirectly,
for the REC parameter, If LOC is in effect, a word
address (direct only) must be specified.

2. M:PUT operates only in MOV mode when the DCB is
open for update processing. The MOV/LOC parameter
in this case is significant only for M: GET,

3. The ARS option is effective only in output processing
mode, and only for V format records; it is ignored in
update processing and for F format records,

For F format records, the effective record length is
taken from the DCB (REL parameter),

5. In update processing mode, the record to be written
replaces the last record accessed with the M:GET

7-34

procedure; the length of the latterrecord automatically
determines the length of the record to be written,

In MOV mode, the REC parameter specifies the initial
byte location of the record that is to be moved to the
/O buffer. In V format the record body only is to be
supplied by the user (the system affixes the record
header).

7. In LOC mode, the REC parameter specifies the loca-
tion of a word in the user's program in which the sys-
tem stores a byte-address pointer to the beginning of
the next available record space in the 1/O buffer where
the user may build his record.

8. In LOC mode, the ARS parameter (when effective)
specifies the length of the record to be constructed at
the point indicated by the pointer returned (at adr-2)
by the M:PUT execution.

9. In LOC mode, any execution of M:PUT returns a pointer
to the origin in the buffer for the record to be built
(subsequently) by the user. It establishes, explicitly
or implicitly, the length of that record and causes it
to be "written", That is, n executions of M:PUT in
LOC mode causes n records to be written,

10. In output processing mode, the first M:PUT execution

after opening the file must be preceded by an M:STOW

procedure.

11. Following an opening in output mode of an existing

file whose declared or evolved status is NEW, M:STOW

and M:PUT executions cause the existing file to be

overwritten (i.e., the existing file is recreated).

M:TRUNC Trunction of a Block

The M:TRUNC procedure permits termination of sequential

operations on a partially processed block and passage to the

next sequential block for subsequent processing. In output

processing mode, only, the current block is truncated (i.e.,

the partially completed block is written to the physical file).

In input or update processing mode, the record accessed by

the first M: GET following an M:TRUNC execution is the

first record of the next sequential block. In Update mode,
the complete current block (with modifications, if any) is
rewritten to the file,

This procedure is in general meaningful only for files con-
taining blocked records (i.e., more than one record per

block).

Syntax:

[label(s)] M:TRUNC [*ldcb-adr

where dcb-adr is the address of the DCB through which
processing is being conducted.

USAGE RULES

1. M:TRUNC may immediately follow an M:STOW or
M:FIND procedure.

2. If no record has yet been read from or written to the
current block (i. e., the current 1/O buffer), M:TRUNC
has no effect. '

3. M:TRUNC does not cause physical truncation of the
current buffer in update processing mode.

M:DELREC Delete a Record

The M:DELREC procedure permits deletion of the last logi-
cal record accessed with M: GET in update processing mode
when the DLC parameter is in effect in the DCB. Execu-
tion of this procedure causes the value X'FF' to be placed
in the first byte of the record body, the first byte being
defined as a deletion control character. This effectively
deletes that record foraccess by any assisted access method,

Syntax:

[label(s)] M:DELREC [*Jdcb-adr

where dcb-adr is the address of the DCB.

USAGE RULES

1. To be effective, the DLC parameter, specifying exist-
ence of the deletion control character, must be speci-
fied at file creation time (see M:DCB). On subsequent
file accesses the value carried in the HDR2 label of
the file overrides the setting in the DCB at open time. .

2. M:DELREC is applicable only in update processing
mode,
M:NOTE Note Current Position

The M:NOTE procedure permits the user to obtain a pointer
to his current block/record position during input or update
processing of a file. This pointer can then subsequently be
used with the M:POINT procedure, described below, to
reposition to the point at which the M:NOTE was issued.

Syntax:

- [label (s)] M:NOTE [*]dcb-adr, (RCI, [adr-1)

where
dcb-adr is the address of the DCB,
adr-1 is the address of a two-word area in the user's

program into which the current-position pointer is
to be stored by the system,

7-35

USAGE RULES

1. The address specified in the RCI parameter must refer-
ence, directly or indirectly, the first of two contiguous
words info which the system will store a pointer to the
last record accessed with an M:GET procedure.

2. On return, word adr-1 contains the relative block
number of the current block and word adr-1 + 1 con-
tains the byte displacement of the current record rela-
tive to the beginning of the block.

3. This procedure is applicable to input and update pro-
cessing modes only,

M:POINT Reposition by Pointer

The M:POINT procedure permits repositioning, within the
file being processed, to a record or partition pointed to by
information obtained via a previously issued M:NOTE or
M:FIND. This repositioning can extend across block bound-
aries, forward or backward.

Syntax:

(label(s)] M:POINT [#]dcb-adr, RCI, [*]adr-1)

where
dcb-adr is the address of the DCB,
adr-1 is the address of a two-word pointer contain-

ing repositioning information of the following
format:

relative

block number

USAGE RULES

1. The pointer returned by the M:NOTE or M:FIND pro-
cedure may be used to supply the positioning informa-
tion required by M:POINT,

2, If the pointer supplied to M:POINT refers to a position
outside the limits of the file currently being processed,
an X3 class abnormal return will occur. (If the X3 class
is not set in the DCB, a program abort will result,)

3. This procedure is applicable to input and update pro-

cessing modes only,

VSAM (VIRTUAL SEQUENTIAL ACCESS METHOD)

VSAM is the most generally applicable of the basic access
methods in terms of range of storage media. It is the only
basic method that is applicable to nonmagnetic device and
magnetic tape files, as well as to FIL-assigned direct access

media. (ASAM is the only other access method applicable
to the same range of media categories.) It creates files of
the same sequential organization at the block level as
ASAM, but no logical record structures are provided for
or recognized. Undefined (U) record format is implicit in
this access method.

GENERAL USAGE RULES

The general usage rules for VSAM are listed below.
1. Creatfes and processes sequential-organization files,
2. Applicable processing modes:

Input.

Output,

Backward read (magnetic devices only).

Scratch (reading and writing).
3. Applicable to all media categories.

4. Not applicable to nonstandard (DEV assigned) disk
volumes.

5. Applicable (at the block level) to files created under
ASAM and VDAM.

6. No 1/O buffering is performed by the system. That is,
physical transmission of data is directly to or from the
user program area specified by the M:READ or M:WRITE
procedure.

7. The amount of data transmitted (i.e., the length of
the physical record) is user defined for each 1/O opera-
tion (or defaults to BKL).

8. For magnetic tape files, physical records shorter or
longer than the BKL value can be written (<MXL);
physical records shorter than the actual tape block can
be read.

9. For disk/RAD files, physical records shorter or longer
than the block size (BKL value) can be written and
read. (Transmission length may not exceed the MXL
value,)

10. Testing for successful completion of an 1/O operation
(or sequence of such operations) is not performed by
VSAM. The user must himself check for 1/O operation
completions, successful or otherwise, with the
M:CHECK procedure, possibly in conjunction with
the M:WAIT procedure.

11. Abnormal and/or error returns (if selected) are made
from the M:CHECK procedure only.

12. Requires that the user must himself check for end-of-
volume condition and switch volumes, if necessary

(M:CHECK and M:CVOL).

13. Applies to the following 1/O processing procedures:

M:READ M:NOTE
M:WRITE M:POINT
M:CHECK M:DEVICE
M:CVOL

14. Usage of either M:DCBor M:MOVEDCB and of M:OPEN
and M:CLOSE is mandatory for a given DCB/file; usage
of M:SETDCB and M:ASSIGN is optional.

Refer to foldout Chart A~6 of Appendix A for the syntax of

" the VSAM I/O procedures in reference form.

M:DCB Assembly-Time DCB Creation
Syntax:
[label(s)] M:DCB (OPL, 'op-label'), decb param, ...

Refer to foldout Chart A~2 in Appendix A for the general
syntax of M:DCB, in reference form, showing the syntax of
all DCB parameters, The parameters and values applicable
under VSAM are described below, grouped by type of
parameter.

FILE PROCESSING PARAMETERS

(ABN, address[, class-code, . . .]) — Abnormal Return Param-
eter. Specifies the address of the user's routine to which
control is to be returned if certain abnormal conditions oc-
cur during file opening, processing, and closing. Also
specifies the class(es) of conditions for which control is to
be returned. None, some or all of the following abnormal
class codes can be specified:

X1 File opening abnormalities.

X2 End-of-file/volume abnormalities.
X3 File processing abnormalities.

X4 BOF user tape label processing.

X5 EOF/EQV user tape label processing.
X6 BOV user tape label processing.

The address field is mandatory if this parameter is specified.
If no class code is specified, no abnormal conditions are
returned for user routine handling (see M:SETDCB description

for special usage). The section "Processing of Abnormal
and Error Conditions" later in this chapter describes all
abnormal conditions and corresponding codes in detail,
and provides information on the type of processing allowed
in user's abnormal- and error-handling routines, Occur-
ence of an abnormal condition that has not been selected,
by class, for user routine handling will cause a program
abort.

(AM, VS) — Access Method Parameter. The value VS speci-
fies usage of VSAM for 1/O processing via this DCB, This
parameter must appear since AS is the default value.

(ERR[, address]) — Error Return Parameter. Specifies the ad-
dress of the user's routine to which control is to be returned
if any error condition occurs during processing via this DCB.
If this parameter is omitted, the occurrence of any error
condition will cause a program abort., See the section
"Processing of Abnormal and Error Conditions" later in this
chapter for a detailed description of the possible error con-
ditions and corresponding codes.

(MOD, BIN | BCD| EBC | PK | UPK) — Data Mode Parameter.
Specifies the mode of data encoding to be expected on in-
put or produced on output. The meaning and applicability
of the alternative mode keyword (select one) are as follows:

Key Mode Applicable To
BIN Binary Cards and 7-track tape.
BCD "Old" (026) 7-track magnetic tape.
BCD
EBC EBCDIC Cards, tape, disk, and printer,
PK Packed 7-track magnetic tape.
UPK Unpacked 7-track magnetic tape.

The default mode is EBC.

(NRT) — No Retry Parameter. This parameter specifies that
the system is not to execute the standard error recovery pro-
cedure (i.e., repeated refries of the same I/O operation)

in case of a device or transmission error.

(ORG, C) — File Organization Parameter. Specifies the
organization of the file to be created or accessed. If this
parameter is specified, C (sequential) must be specified for
file creation (output mode) or for any magnetic tape or non-
magnetic device processing. C is the default. When ac-
cessing an existing disk file, the actual file organization
will override any ORG specification.

(SIM, value) — Simultaneous Operations Parameter, Speci-
fies the maximum number of queued 1/O requests to be
accepted by the system through this DCB,

7-37

(TLB, address) — User Label Area Parameter. Specifies the

address of a user program area into which the system will
read a user label from magnetic tape, or from which the
system will write a user supplied tape label (if so directed)
at open or close time. At least one of the ABN class codes
X4, X5, or X6 must also be specified for this parameter to
be meaningful (see previous discussion of ABN parameter).

BLOCK-LEVEL PARAMETERS

(BKL, value) — Block Length Parameters. Specifies the

block length, in bytes. The default values, by media type,
are:

80 for EBCDIC card reader/punch files.

120 for binary card reader/punch files.

133 for printer files.

1024 for magnetic tape and disk files.
If a value greater than the applicable default is specified
for nonmagnetic device files, the specified value will be
replaced by the default value (open-time). If a value less
than the applicable default (80 or 120) is specified for card
punch files, a program abort will result, Otherwise, a

value less than or greater than the default value may be
specified (up to a maximum of 32K-1 bytes).

(MXL, value) — Maximum Transfer Length Parameter, Speci-

fies the maximum length limit to be imposed on physical
record transmissions for both reading and writing. If speci-
fied, the MXL value may be equal to or greater than the
BKL value. The default value is the specified or default
BKL value.

USAGE RULES

1. M:DCB is not an executable procedure. DCB space
reservation and explicit parameter setting is performed
at assembly time.

2. None of the parameters are indirectly addressable.

M:MOVEDCB Dynamic DCB Creation/Retention

The M:MOVEDCB procedure causes the allocation, during
program execution, of a 19-word DCB area with read-only
protection in the common-dynamic portion of the user's
virtual memory space; the address of this area is returned

to the user's program. It also causes the contents of a user
specified sending area to be copied into the newly allocated
DCB area. For example, the sending area may be a non-
protected area of the user's program where a DCB image or
"skeleton" has been built, or a write protected DCB that is
not open when the M:MOVEDCB is executed. Effectively,
this procedure allows the user to create DCBs during program

execution, and/or to move and thereby save inactive DCBs
that would otherwise be overlaid or destroyed.

Syntax:
[label(s)] M:MOVEDCB [#adr-1, (PTR, adr-2)
where
adr-1 is the word address of the 19-word sending
area which is to be copied into the newly allo-
cated DCB space.
adr=2 is the word address of a one=word pointer in
the user's program in which the address of the
newly allocated DCB is to be returned.

USAGE RULES

1. No default values are supplied for any parameter field
by M:MOVEDCB.

2. The effect of M:SETDCB, M:ASSIGN, M:OPEN, and
M:CLOSE procedures referencing a dynamically created
or saved DCB is identical to the effect of the same
procedures on an assembled DCB.

M:SETDCB Execution-Time DCB Modification

The M:SETDCB procedure allows the user, during program
execution, to (1) "fill in" empty parameter fields in a non-
open DCB, i.e., specify previously unspecified or unde-
faulted DCB parameters, (2) modify previously specified or
defaulted parameters in a nonopen DCB, and (3) modify the
ABN and ERR parameters in an open DCB, The effective
parameters in cases 1 and 2 are all of the parameters that
may be specified in the M:DCB procedure for VSAM, See
foldout Chart A-2 of Appendix A for the complete general
syntax of M:SETDCB in reference form. The parameters
applicable under VSAM are as previously described for the
M:DCB procedure.

M:SETDCB also allows modification of the operational label

associated with a DCB,

Syntax:
[label(s)] M:SETDCB [*]dcb-odr[,(OPL,

*adr-label
(jadetsbell] ccbporameter,..]

where

dcb-adr is the address of the DCB to be modified.

adr-label is the address of a word containing an
operational label, left-justified and space filled,
to be associated with the DCB being modified.

7-38

'op-label' is a one- to four-character constant
specifying an operational label to be associated
with the DCB being modified.

dcb-parameter is a DCB parameter as described
previously for the M:DCB procedure.

USAGE RULES

1. Any of the DCB parameter addresses and values can be
indirectly addressed.

If the OPL option appears, the operational label speci-
fied therein will replace the operational label (if any)
previously specified in the referenced DCB.

If the referenced DCB is open at the time of M:SETDCB
execution, only the ABN and/or ERR parameter will be
effective; any other parameters will be ignored.

A DCB closed with the HLD option (temporary close)
is considered as open for the purposes of rule 3.

If the ABN parameter appears, the set of abnormal
class codes specified will replace any such set pre-
viously in effect, including the null case where no
class code is specified (i.e., any class codes pre-
viously in effect can be "turned off" by not specifying
any class code).

M:ASSIGN Execution-Time DCB Assignment

The M:ASSIGN procedure allows the user, during program
execution, to (1) define a temporary file in secondary stor=-
age and assign an operational label to it, or (2) define a
permanent file on a physical resource specified by a ASSIGN
command. Effectively, case 1 allows the user to eliminate
from the job control deck IASSIGN commands for invariant
“scratch file" assignments, or to define additional temporary
files to satisfy dynamically determined program requirements
(as M:MOVEDCB can be used to create additional DCBs).
Case 2 allows the user to make an execution time choice
between several !ASSIGN commands, each specifying a
different resource, or to redefine a file (status, file name,
or space allocation) assignment made by a IASSIGN com-
mand. In case 2, the !ASSIGN command referred to must
itself define a permanent, i.e., named, file.

Syntax:

Format 1, for temporary files

*adr-1

'op-label'})

*adr-2] (*adr-3
[’ (512, [size }' {incremenf] >]

[label ()] M:ASSIGN (OPL,{

where

adr-1 is the address of a word containing the opera-
tional label thatidentifiesthe DCBbeingassigned.

'op-label’ is the character constant form of that

label.

adr-2 is the address of a word containing the value
specifying the primary size of the file.
size is the constant form of that size value.

adr-3 is the address of a word containing the value
specifying the file increment (where applicable).

increment is the constant form of that increment

value,

Format 2, for permanent files

*adr-1

[label(s)] M:ASSIGN (OPL,{-OP_lqbeI‘

h,

*adr-4

(UNT, OPL, {5 er-1i]) (NAM,

NEW
MOD]) [(s1Z,

*adr-5
{ OoLD

'filename'})i (STS, {

I

*adr-3

{ *adr-2 })
increment

size
where

adr-1, 'op-label', adr-2, size, adr-3, and increment
have the same meanings as in format 1.

adr-4 is the address of a word containing the opera-
tional label that identifies a IASSIGN command
specifying the desired physical resource.

" 'op=label-1' is the character constant form of the
operational label described immediately above.

adr-5 is the word (or byte) address of a TEXT-
format field containing the name of the file to be
created or accessed. The name must be terminated
by one or more blanks. (See the TEXT directive,
Meta-Symbol Reference Manual, 90 09 52.)
'filename' is the character constant form of the
file name.

USAGE RULES

1. Assignments made via M:ASSIGN are valid only for
the job-step in which the procedure is executed, they
cannot be maintained over succeeding steps. (Effec-
tively, the IASSIGN option FRE is implicit in the use
of an M:ASSIGN procedure.)

The usage of M:ASSIGN in format 1 is identical to
the usage of a 1ASSIGN command with corresponding
options specified.

7-39

In format 2, the UNT, OPL option implies use of the
resource (device and volume) defined and allocated
to the job-step by the operational label specified.

The IASSIGN command referred to by the UNT, OPL
option must specify a permanent, i.e., named, file
assignment and must be in force during the job-step in
which the M:ASSIGN is executed.

In format 2, all options other than UNT have the same
meaning and usage as the corresponding options ap-
pearing in a IASSIGN command, assuming the option
FIL.

The M:ASSIGN procedure in format 1 may redefine an
implicit assignment via a (installation dependent) pre-
defined operational label, typically SI, GO, LM, etc.

In all cases, the operational label specified by the
OPL keyword field establishes the link between a DCB
and the file named by the procedure.

In format 2, the DCB parameters (if any) specified in
the referenced IASSIGN command are not applied to
the DCB assigned via the procedure.

M:OPEN Opening a File

The M:OPEN procedure activates the link between a DCB
and a physical file. The DCB is placed in an active, or
open, status. ("Opening a file" is equivalent to "opening

a DCB".) This procedure must be successfully executed
before any 1/O operation can be performed on a given file.
The M:OPEN procedure performs some or all of the following
steps while opening a file:

1. Location of the file to be processed, if it exists,

2. Creation of the file if it does not exist, which implies
allocation of resources: volume and space on the
volume, and creation of the file labels,

3. Positioning of magnetic tape.

4. Various initializations as necessary: completion of the
DCB, reservation and completion of communication
tables (IOBs) between the access methods and the 1/0
supervisor, etc.

5. Writing of the BKL value only from an existing file's
HDR2 label into the DCB,

6. Validation and control of file identity, file expiration,

file protection, and file sharing; checking for coherence
among the DCB parameters, and consistency of these
with the processing mode specified in M: OPEN and

with the storage media.

Syntax:

cID
[label(s)] M:OPEN [*dcb-adr, mode [{N]D”

PID
where
dcb-adr is the address of the DCB to be opened.
mode specifies the processing mode in which the

DCB is to be opened, as follows:
I Input mode (forward reading).
B Backward reading.
(@) Ovutput mode (forward writing).
S Scratch mode (reading and writing).

CIb specifies file identity checking, no tape posi-
tioning (default option).

NID specifies no file identity checking (for tape
only).

PID specifies file identity checking with tape
positioning.

USAGE RULES

1. Processing mode B is applicable to magnetic media
files only.

2. The file identity checking and positioning option (CID,
NID, or PID) is meaningful for standard magnetic tape
files only; for DEV assigned files it is ignored; for disk/
RAD files CID is always assumed.

3. The effect of a given processing mode specification
(and identity checking option, if tape) is conditioned
by the declared status of the file versus the file's actual
status. These interrelationships are described below.

RELATIONSHIP OF PROCESSING MODE AND FILE
STATUS

The status of a file (NEW, MOD, or OLD) is declared in
the file assignment. For each declared file status, there
is one or several normal combinations of status, file
existence/nonexistence, and processing mode. The nor-
mal combination(s) does not occasion any abnormal re-
turn to the user's program during opening. Certain
abnormal combinations (described below) are acceptable
but will result in an X1 class abnormal return to the
user's program during opening if the DCB specifies an
abnormal return with the X1 class set (abort otherwise).
Any combination other than those described below will
result in a program abort.

The several normal and abnormal combinations are described

for each declared file status in the following paragraphs.

o NEW

Normal combination. Nonexistent file and output
mode — original file creation; output operations al-
lowed only.

Abnormal combination, Existent file and output mode —
in this case an abnormal return to the user's program
occurs, The user can then request recreation of the

file by a special exit from his abnormal routine, If the
expiration date of the file to be rewritten has not been
reached, a further abnormal return occurs; another
special exit will allow processing to continue, over-
riding the nonexpired condition.

e MOD

Normal combinations.

1. Existent file and scratch mode —read and write
operations allowed,

2. Existent file and output mode — file extension out-
put allowed only.

3a. Existent file and input mode — input operations
allowed only,

3b. Existent file and backward-read mode — input
operations allowed only,

4. Nonexistent file and output mode — status is
changed to NEW; output operations are allowed.

e OLD

Normal combinations.

la. Existent file and input mode — input operations
are allowed.

1b. Existent file and backward-read mode — input
operations are allowed.

2. Existent, expired, labeled file and output mode —
output operations allowed (i. e., the file may be
rewritten),

Abnormal combination. Existent, nonexpired, labeled
file — in this case an abnormal return to the user's
program occurs. A special exit from the user's abnor-
mal routine allows processing to continue. The file
can then be rewritten.

Note: See the section "Processing of Abnormal and Error
Conditions" for specific abnormal codes and further
details on normal/special exit results,

AUTOMATIC EVOLUTION OF FILE STATUS

The automatic evolution of the status of a file during a job-
step when opened for output is shown below.

Declared Status Prior to First
M:OPEN, Output
NEW, MOD OLD,
Nonexistent | Nonexistent Existent
File File File
Status after | NEW NEW NEW
successful
opening
Status after | MOD MOD MOD
M:CLOSE
Note: Does not apply to DEV assigned magnetic tape.

MAGNETIC TAPE POSITIONING AND FILE IDENTITY
CHECKING ,
If a standard magnetic tape volume has not been previously
processed since its mounting, its initial position (relative
to the tape unit read/write heads) during the opening pro=
cess is between the standard-volume-label group, SVL (or
user-volume=-label group, UVL) and the first standard-file-
header-label group, SHL. This position is shown in Fig-
ure 7-1 as position A. ‘

If the volume has been previously processed since mounting,
its initial positioning will depend upon the action taken
during the previous M:CLOSE operation: between two files
(position B in Figure 7-1), in front of the first data block
(position C), or after the last data block (position D), of
some file on the volume.

The open process will then perform testing and positioning
functions from these initial magnetic tape positions. These
functions are controlled by the CID, NID, and PID options,
The default option is CID. Only the CID option is signifi-
cant for disk/RAD files. Several cases exist, as described
in the following paragraphs.

First Case, File Opened for Creation (STS, NEW: Proces-

sing Mode Out).

e CID

For disk files, this option ensures that the identification
assigned fo the file being created does not already
exist in the volume or account catalog.

For magnetic tape files, no positioning is executed.
There is a verification that a file having the same iden-
tification as the file being created does not already
exist at the current position on the tape. If the file

at this location has a different identity and its

7-41

expiration date has been reached, it is written over
by the new file. In the cases where the file has the
same name and/or the expiration date has not been
reached, a return is made to the user's abnormal rou-
tine. This permits the user to request creation of a
new file replacing the old (special exit), or not to
complete the open (normal return). (See "Processing
of Abnormal and Error Conditions".)

If there is no file at the initial position on the magnetic
tape, the opening of the file to be created continues
normally,

NID

There is no checking of file identification; only a test
of the expiration date of the file at the initial position
is performed.

PID

This option causes automatic creation of the new file
following all of the old files contained on the tape.
A test of the file identification is made during posi-
tioning against all files encountered between the ini-
tial position and the final old file. If one of the files
encountered has the same identity as the file to be
created, a return is made to the user's routine. Then,
using a special exit, the user can write over this old
file; otherwise the M:OPEN is not executed.

Figure 7-2 summarizes the positioning and identifica=-
tion test functions caused by these options.

Second Case, File Opened in Forward Read.

CID

For magnetic tape, this option causes testing of the
current file identification, For disk, the catalog is
searched for the corresponding file.

When the identifications are not equal, a return is
made to the users abnormal routine. For a magnetic
tape file, the user can request reading of the present
file (special exit); otherwise the open is not executed
(normal exit).

NID

No checking or positioning is executed, The opening
is to the first file encountered.

PID

This option causes a forward search for the identifica-
tion specified by the IASSIGN command, starting from
the initial location on magnetic tape at opening time.
If the two tape marks identifying the end of volume are
encountered, a tape rewind is executed and a return

is made to the user's abnormal routine. Using a special
exit, the user can reinitialize a forward search for the

file to be processed. If the file is not found after this
second search, an abnormal return is again made but
the open will not be executed,

Third Case, File Opened in Backward Read. In this case,
the testing refers to the file preceding the one at which the
tape is initially positioned. The initial positioning to end-
of-file is the responsibility of the user program.

e CID
Causes identification checking of the preceding file.
e NID
No checking is performed.
e PID
This option, associated with B processing mode, is
identical to CID. That is, no backward search is
performed.

Note: See the M:CLOSE positioning options LVE and RRD
for end-of-file positioning on a temporary (HLD)
file closing.

M:CLOSE Closing a File

This procedure causes the closing of a file. The close ef-

fects a suspension or halt of activity via a DCB and possibly

via the processed file. Its main functions are:

1. Waiting for and testing the last 1/O operation(s).

2. Checking or writing the end-of-file labels on magnetic
tape.

3. Updating and validating disk file labels.
4. Temporary or definite closing of the DCB,

5. Partial restitution of disk space or deletion of the file
created by the job.

6. Releasing devices, tables, etc,
Functions 5 and 6 are conditional upon the type of

closing.

Syntax:

HLD
[label(s)] M:CLOSE [*]dcb-adr[,[MTN”

[five HL (]

where dcb-adr is the address of the DCB to be closed.

RRD
LVE
RWD

7-42

TYPES OF CLOSE
HLD specifies a temporary closing of the file. The
DCB-file link is maintained. A new M:OPEN applied
to the DCB will only permit changing of the processing
mode of the file, because only a small portion of the
open functions will then be executed.

‘\\

MTN specifies a definite close. It cancels the DCB~
file link but maintains the job-file link. In the same
job another DCB can be used to process the same file.
The resource is not released even if the FRE option was
specified in the assignment,

RLS specifies a definite close. It destroys the DCB-

file link and the job-file link. The resource(s) allo-

cated for the file are released if the FRE option was
specified in the assignment,

POSITIONING AFTER CLOSING

The options controlling positioning, RRD (reread), LVE
(leave), and RWD (rewind), are significant only for sequen=
tial organization files on magnetic media (refer to Fig-

ure 7-3).

The significance of these options depends on the type of
close: temporary (HLD) or definite (MTN or RLS). It also
depends on the processing mode of the file: forward (I, O,
and S) or backward (B). The options have significance for
a disk file only on a temporary close.

Temporary Close (HLD). Upon closing a file, positioning
remains within the file being accessed, or within the volume
of the file being accessed in the case of a serially mounted
multivolume file, This means the file is positioned (in the
case of tape) somewhere between the two tape marks de-
limiting the data blocks.

For I, O, or S processing (see Figure 7-3):
RRD requests positioning before the first data block

of the file (or portion of the file).

LVE requests positioning after the last data block

of the file (or portion of the file).

RWD is not meaningful in this type of close. In this

case this option is equivalent to RRD.

For B processing (see Figure 7-3), the RRD and LVE options

have positioning meanings in reverse of those for forward

processing:
RRD requests positioning after the last data block

of the file (or portion of the file).

LVE requests positioning before the first data block

of the file (or portion of the file).

RWD is equivalent to LVE in this case.

K

Definite Close (MTN or RLS). Positioning is always made
outside the file limits (the labels and tape marks delimiting
the file), or the volume limits in the case of a serially
mounted multivolume file,

For I, O, or S processing on magnetic tape (see Figure 7-3):
RRD requests positioning before the SHL of the file

(or portion of the file).

LVE requests positioning after the STL of the file

(or portion of the file).

RWD requests rewinding and positioning affer the

volume SVL.

For B processing on magnetic tape (see Figure 7-3), the RRD
and LVE options have meanings in reverse of those for for-
ward operations:

RRD signifies positioning after the STL of the file
or portion of the file.
LVE requests positioning before the SHL of the file
(or portion of the file).
RWD requests rewinding and positioning after the
volume SVL.

The positioning described never crosses over volume bound-
aries for serially mounted multivolume files,

A rewind operation is used by M:CLOSE only for the RWD
option in an RLS or MTN closing. In the other cases the
positionings are executed using only tape-mark-search and
skip-block operations.

LABEL VALIDATION AND FILE DISPOSITION

The KEP and NCG options specify the disposition of the
permanent file, These are significant only for the O pro-
cessing mode (file creation).

KEP requests validation of the file labels for a disk/RAD
file, and cataloging of the file if cataloging was re-
quested or implied.

NCG signifies deletion of the file for a file created on
a disk/RAD volume and suppression of cataloging where
cataloging has been requested or implied. This option
is applicable only in conjunction with RLS and if the
status of the file is NEW prior to closing.

USAGE RULES

1. If no type-of-close option is specified, RLS (release)
is assumed by default. Both the DCB-file connection
and the job-file connection are severed (i.e., another
job can attempt access to the file whether the volume

is sharable or not). All resources allocated for the
processing of this file are released if MTN was not
specified in the assignmenit,

2. If no positioning option is specified, RWD (rewind) is
assumed by default,

3. If no validation/disposition option is specified, KEP
(keep) is assumed by default.

4, If a definite close (MTN or RLS) is not issued for a
given DCB/file before the end of the job-step, the
system forces an unconditional (RLS) close, disposition
KEP,

M:READ Read Next Sequential Physical Record

The M:READ procedure requests reading of the next (or first)

sequential physical record of a file. (Exception: see

M:POINT procedure). The record read may be a device

determined physical record in the case of card files, or a

program determined physical record in the case of disk/RAD

files. Either a full or partial physical tape block may be
read from magnetic tape files,

For existing permanent files on standard volumes, the block
length (BKL) is determined from the file's HDR2 label. MXL
limits the maximum physical record transfer length. Records
are transmitted from the physical file directly to the user's
buffer area specified in the procedure,

Return from the procedure is made immediately following
the system's acceptance of the request (i.e., not after ini-
tiation or completion of the I/O operation). Successive
I/O requests (via the same DCB) may be issued, prior to
executing an M:CHECK and/or M:WAIT procedure referring
to these requests, up to the limit specified by the SIM pa-
rameter of the DCB,

Syntax: See foldout Chart A=6 in Appendix A,

MEANING OF THE PARAMETERS

dcb-adr ‘specifies the address of the DCB through which
the read is to be performed.

*
BUF,{[d] ligdr-]] specifies either the initial byte ad-
adr dress, badr-1 (optionally indirect), of
the user's buffer area into which the record is to 'be
read; or the word address, adr-2 (direct only), of the
bufferarea (which will be converted to a byte address).

TRL, [Jvalue specifies the number of bytes to be trans-
mitted, i.e., the length of the physical record to be
read (may be indirect). If not specified, the default
value is BKL.

PTR, [*adr-3 specifies the address, adr-3 (optionally
indirect), of a pointer word into which the system

is to return the address of the event control block
(ECB) associated with this 1/O request.

USAGE RULES

1. The TRL value may not exceed the value of the MXL
parameter in the referenced DCB,

2. The TRL value, if specified, must be 80 (EBCDIC) or
120 (binary) for card files.

3. For tape or disk/RAD files, TRL values less than, equal
to, or greater than BKL are valid.

4. A maximum of one physical tape block will be trans-
mitted, i.e., transmissions of less than TRL or BKL
(default for TRL) may oceur,

5. Use of the PTR option causes the system to supply, on
return from the procedure, a pointer to the (system
constructed) ECB associated with the specific request
and the implied 1/O operation. This pointer must then
be used in a subsequent M:CHECK procedure to iden-
tify the operation to be checked.

6. "An abnormal or error return, if selected, for a given
/O operation will be made only from an M:CHECK
procedure referring (explicitly or implicitly) to that
operation,

7. If two or more I/O requests have been queued (i.e.,
accepted by the system for execution) and the nth
implied operation terminates unsuccessfully, and the
system attempts to initiate the nth + 1 implied opera-
tion before an M:CHECK referring to the nth operation
is executed, the nth + 1 and all following requests
will be purged.

8. If the number of queued /O requests, including re-
quests for which 1/O operations have been completed
but not checked, exceeds the value of the SIM param-
eter (in the DCB), a program abort will occur,

9. In scratch processing mode, a read operation may not
immediately follow a write operation without inter-
vening repositioning. That is, for existing files, a
write operation in midfile effectively truncates the
file at the end of the record just written,

M:WRITE Write Next Sequential Physical Record

The M:WRITE procedure requests writing of the next (or first)
sequential physical record of a file in output or scratch
processing modes. (Exception: see M:POINT,) The record
written may be a device determined physical record in the
case of card files, or a program determined physical rec-
ord in the case of magnetic tape and disk/RAD files, Rec-
ords written to a printer may vary in length up to the
device determined maximum, e.g., 133 bytes.

7-44

The maximum data transfer length (MXL parameter in the
DCB) may exceed the block length as defined by the BKL
parameter. Records are transmitted directly from the user's
buffer area specified in the procedure to the physical file.

Return from the procedure is made immediately following
the system's acceptance of the request (not after initiation
or completion of the I/O operation). Successive 1/O re-
quests (via the same DCB) may be issued, prior to the exe-
cution of an M:CHECK and/or M:WAIT procedure referring
to these requests, up to the limit specified by the SIM pa-
rameter of the DCB,

Syntax: See foldout Chart A-6 in Appendix A,

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
the write is to be performed.

*
BUF'[[ciI lj;dr-]] specifies either the initial byte ad-
adr dress, badr-1 (optionally indirect), of
the user's buffer area from which the record is to be
written; or the word address adr-2 (direct only), of the
buffer area (which will be converted to a byte address).

TRL, [*value specifies the number of bytes to be trans-
mitted, i.e., the length of the physical record to be
written (may be indirect). If not specified the default
value is BKL.

PTR, [*Jadr-3 specifies the address adr-3 (optionally
indirect), of a pointer word info which the system is
to return the address of the event control block (ECB)
associated with this I/O request.

USAGE RULES

1. The TRL value may not exceed the value of the MXL
parameter in the referenced DCB.

2. The TRL value, if specified, must be 80 (EBCDIC) or
120 (binary) for card files.

3. For tape or disk/RAD files, TRL values less than, equal
to, or greater than block length (BKL) are valid.

4, Use of the PTR option causes the system to supply, on
return from the procedure, a pointer to the (system
constructed) ECB associated with the specific request
and the implied 1/O operation. This pointer must then
be used in a subsequent M:CHECK procedure to identify
the operation to be checked.

5. An abnormal or error return, if selected, for a given
I/O operation will be made only from an M:CHECK
procedure referring (explicitly or implicitly) to that
operation, .

6. If two or more 1/O requests have been queued (i.e.,
accepted by the system for execution) and the nth
implied operation terminates unsuccessfully, and the
system attempts to initiate the nth + 1 implied opera-
tion before an M:CHECK referring to the nth operation
is executed, the nth + 1 and all following requests will
be purged.

7. If the number of queued I/O requests, including re-
quests for which 1/O operations have been completed
but not checked, exceeds the value of the SIM param-
eter (in the DCB), a program abort will occur.

8. In Output processing mode, any record structure pa-
rameters present in the DCB will be written into the
file's HDR2 label, if any, permitting subsequent pro-
cessing by ASAM. All logical record structuring,
however, must be performed by the user, including
block and record level headers where applicable.

M:CHECK Check I/O Event Completion

The M:CHECK procedure tests a given 1/O operation for
proper completion, placing the issuing program in a wait
state if necessary to await such completion. If the tested
operation terminates unsuccessfully, an appropriate abnormal
or error return is made to the user's program (if selected in
the user's program, abort otherwise). Optionally, for a
read operation, the actual length of the record (or partial
transmission) read is reported.

The specific operation to be checked may be indicated in
either of two modes:

e Explicitly, in the procedure (PTR parameter), by means
of a pointer to the event control block (ECB) associated
with the operation (obtained via the corresponding
M:READ or M:WRITE request).

e Implicitly (no pointer to the ECB), as the operation

corresponding to the oldest outstanding (i.e., yet
unchecked) 1I/O request.

The program must use one of these two modes exclusively for
all operations via a given DCB.

The M:CHECK procedure may be used in conjunction with
the M:WAIT procedure, described in Chapter 8.

Syntax: See foldout Chart A-6 in Appendix A.

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
the check is to be performed.

PTR, [*]cdr-] specifies the address, adr-1 (optionally
indirect), of a pointer to the ECB associated with the
operation to be checked (see M:READ and M:WRITE).

7-45

RSA, [*]adr-2 specifies the address, adr-2 (optionally
indirect), of a word into which the system is to return
the actual length (in bytes) of the 1/O transmission in
the case of a read operation.

USAGE RULES

1. Between the initial opening and the definite closing
of a DCB, all M:CHECK procedures referring fo the
DCB must either always specify the PTR parameter or
always omit that parameter.

2. If the PTR parameter is specified, all operations via a
given DCB must be checked in the order in which they
were requested.

3. If the PTR parameter is not specified, the earliest re-
quest, still unchecked operation is checked.

4. If the RSA parameter is specified for a write operation,
it is ignored.

5. The M:CHECK procedure, when executed, effectively
releases the system table (IOB) entry associated with
a given operaticn, allowing it to be used for queuing
of subsequent requests.

M:CVOL Switch to Next Volume
The function and usage of M:CVOL is the same as under the
Assisted Sequential Access Method, ASAM,

M:NOTE Note Current Position

Except that the position pointer obtained always refers to
a block boundary, the function and usage of M:NOTE is
the same as under ASAM,

M:POINT

Reposition by Pointer

The function and usage of M:POINT is the same as under
ASAM,

M:DEVICE Device Dependent Operations

The functions and usages of M:DEVICE are the same as
under ASAM, but with the following additional form and

usage rules.

Additional Syntax:

[label(s)] M:DEVICE [*Jdcb-adr, (WEOF)

where
dcb-adr is the address of the DCB through which
the operation is to be performed.
WEOF specifies that a tape mark is to be written

at the current position on the tape.

USAGE RULES

1. The WEOF option is effective only for magnetic tape
files assigned as device type (DEV assignment) files
(see ASSIGN command).

Used under VSAM, any M:DEVICE execution must be
preceded by verification, via M:CHECK, of the com-
pletion of all previously requested 1/O operations.

VDAM (VIRTUAL DIRECT ACCESS METHOD)

VDAM is a direct access method, operating on program
defined physical records, and applicable to files on stand-
ard disk/RAD volumes only. It creates and processes direct
(D) organization files. Access to the physical records of
such files is by relative block number, (Direct organization
files can also be accessed sequentially with VSAM or
ASAM, U format.) No logical record structures are pro-
vided for or recognized; undefined (U) record format is
implicit in this access method.

GENERAL USAGE RULES
The general usage rules for VDAM are listed below.

1. Creates and processes direct organization files.

2. Accesses (in input mode) files of any organization, by
relative block number,

3. Applicable processing modes:

Input.
Output,
Scratch (reading and writing).

4. Applicable to direct access media only.

5. Not applicable to nonstandard (DEV assigned) disk
volumes,

6. No I/O buffering is performed by the system, That is,
physical transmission of data is directly to or from the
user program area specified by the M:READ or M:WRITE
procedure,

7. The amount of data transmitted (i.e., the length of the
physical record) is user defined for each 1/O operation
or defaults to BKL.

8. Physical records shorter or longer than the block size
(BKL value) can be written and read.

9. Testing for successful completion of an 1/O operation

(or sequence of such operations) is not performed by
VDAM. The usér must himself check for 1/O operation
completions, successful or otherwise, with the
M:CHECK procedure, possibly in conjunction with the
M:WAIT procedure,

7-46

10. Abnormal and/or error returns (if selected) are made
from the M:CHECK procedure only.
11. Requires that multivolume files be parallel mounted.
12. Applicable I/O processing procedures:
M:READ
M:WRITE
M:CHECK

See foldout Chart A-7 of Appendix A for the syntax of the
VDAM I/O procedures in reference form.

m:DCB Assembly-Time DCB Creation

Syntax:
[label(s)] M:DCB (OPL, 'op-label’ [, dcb-param, .. .]

Refer to foldout Chart A-2 in Appendix A for the general
syntax of M:DCB, in reference form, showing the syntax
of all DCB parameters. The parameters and values appli=-
cable under VDAM are described below, grouped by type
of parameter.

FILE PROCESSING PARAMETERS

(ABN, address[, class-code, . ..]) — Abnormal Return Param-
eter. Specifies the address of the user's routine to which
control is to be returned if certain abnormal conditions
occur during file opening, processing, and closing. Also
specifies the class(es) of conditions for which control is to
be returned. None, some, or all of the following abnormal
class codes can be specified:

Code Class

X1 File opening abnormalities.
X2 End-of-file/volume abnormalities.
X3 File processing abnormalities.

The address field is mandatory if this parameter is specified.
If no class code is specified, no abnormal conditions are
returned for user routine handling (see M:SETDCB descrip-
tion for special usage). The section "Processing of Abnor-
mal and Error Conditions" later in this chapter describes
all abnormal conditions and corresponding codes in detail,
and provides information on the type of processing allowed
in user's abnormal- and error-handling routines. Occur-
rence of an abnormal condition that has not been selected,
by class, for user routine handling will cause a program
abort.

(AM, VD) — Access Method Parameter. The value VD speci-
fies usage of VDAM for I/O processing via this DCB. This
parameter must be specified.

(ERR[, address]) — Error Return Parameter. Specifies the
address of the user's routine to which control is to be re-
turned if any error condition occurs during processing via
this DCB. If this parameter is omitted or the address is
omitted, the occurrence of any error condition will cause
a program abort. See the section "Processing of Abnormal
and Error Conditions" later in this chapter, for a detailed
description of the possible error conditions and corres-
ponding codes.

(MOD, EBC) — Data Mode Parameter, Specifies the mode
of data encoding to be expected on input or produced on
output. The mode keyword EBC specifies EBCDIC encoding,
the only mode applicable. The default mode is EBC.

(NRT) — No Retry Parameter. This parameter specifies that
the system is not to execute the standard error recovery
procedure (i.e., repeated retries of the same 1/O opera-
tion) in case of a device or transmission error.

(ORG, D lcli] P) — File Organization Parameter, Specifies
the organization of the file to be created or accessed.

D (direct) must be specified for file creation or modifica-
tion (output or scratch mode). C, 1, or P may be specified
for reading disk files created by VSAM, ASAM, AIAM, or
APAM.

(SIM, value) — Simultaneous Operations Parameter. Speci-

fies the maximum number of 1/O requests to be accepted
by the system through this DCB.

BLOCK LEVEL PARAMETERS

(BKL, value) — Block Length Parameter. Specifies the
block length, in bytes. The default value is 1024, A
block length value less than or greater than the default
value may be specified (up to a maximum of 32K~1 bytes).
See "Block Formats" in Chapter 6 for a discussion of block
length, At open time, the BKL value in an existing file's
HDR2 label will override an unlike BKL value .in the DCB
(unless status OLD, output processing mode).

(MXL, value) —Maximum Transfer Length Parameter, Speci-
fies the maximum length limit to be imposed on physical
record transmissions for both reading and writing. The
maximum specifiable value is 32K-1,
the specified or default BKL value.

USAGE RULES

1. M:DCB is not an executable procedure. DCB space
reservation and explicit parameter setting is performed
at assembly time,

2,

None of the parameters are indirectly addressable.

M:MOVEDCB Dynamic DCB Creation/Retention

The M:MOVEDCB procedure causes the allocation, during
program execution, of a 19-word DCB area with read-only
protection in the common-dynamic portion of the user's

The default value is -

7-47

virtual memory space; the address of this area is returned

to the user's program. It also causes the contents of a user
specified sending area to be copied into the newly allo-
cated DCB area. For example, the sending area may be

a nonprotected area of the user's program where a DCB im-
age or "skeleton" has been built, or a write protected DCB
that is not open when the M:MOVEDCB is executed. Ef-
fectively, this procedure allows the user to create DCBs
during program execution, and/or to move and thereby save
inactive DCBs that would otherwise be overlaid or destroyed.

Syntax:

[label(s)] M:MOVEDCB [*ladr-1, (PTR, adr-2)
where

adr-1 is the word address of the 19-word sending
area which is to be copied into the newly allo-
cated DCB space.

adr-2 is the word address of a one-word pointer in
the user's program into which the address of the
newly- allocated DCB is to be stored by the
system.

USAGE RULES

1. No default values are supplied for any parameter field

by M:MOVEDCB.

2. The effect of M:SETDCB, M:ASSIGN, M:OPEN, and
M:CLOSE procedures referencing a dynamically created
or saved DCB is identical to the effect of the same pro-
cedures on an assembled DCB.

M:SETDCB Execution-Time DCB Modification

The M:SETDCB procedure allows the user, during program
execution, to (1) "fill in" empty parameter fields in a non-
open DCB, i.e., specify previously unspecified or unde-
faulted DCB parameters, (2) modify previously specified or
defaulted parameters in a nonopen DCB, and (3) modify the
ABN and ERR parameters in an open DCB. The effective
parameters in cases 1 and 2 are all of the parameters that
may be specified in the M:DCB procedure for VDAM, See
foldout Chart A-2 of Appendix A for the complete general
syntax of M:SETDCB in reference form. The parameters ap-
plicable under VDAM are as previously described for the
M:DCB procedure under ASAM.

M:SETDCB also allows modification of the operational label
associated with a DCB,

Syntax:
[label(s)] M:SETDCB [*]dcb-adr[, (OPL

*adr-label ,
{'op_|qbe]t })] [, dcb-parameter, .. .]
where
dcb=adr is the address of the DCB to be modified.

adr-label is the address of a word containing the
operational label, left-justified and space filled,
to be associated with the DCB being modified.

'op-label’ is a one- to four-character constant
specifying the operational label to be associated
with the DCB being modified.

dcb-parameter is o DCB parameter as described
previously for the M:DCB procedure,

USAGE RULES

1. Any of the DCB parameter addresses and values can be
indirectly addressed.

If the OPL option appears, the operational label speci-
fied therein will replace the operational label (if any)
previously specified in the referenced DCB,

If the referenced DCB is open at the time of M:SETDCB
execution, only the ABN and/or ERR parameter will be
effective; any other parameters will be ignored.

A DCB closed with the HLD option (temporary close)
is considered as open for the purposes of rule 3.

If the ABN parameter appears, the set of abnormal-
class codes specified will replace any such set pre-
viously in effect, including the null case where no
class code is specified (i. e., any class codes previously
in effect can be "turned off" by not specifying any

class code).

M:ASSIGN Execution-Time DCB Assignment

The M:ASSIGN procedure allows the user, during program
execution, to (1) define a temporary file in secondary stor-
age and assign an operational label to it, or (2) define a
permanent file on a physical resource specified by a
JASSIGN command, Effectively, case 1 allows the user
to eliminate from the job control deck ASSIGN commands
for invariant "scratch file" assignments, or to define addi-
tional temporary files to satisfy dynamically determined
program requirements (as M:MOVEDCB can be used to
create additional DCBs). Case 2 allows the user to make
an execution time choice between several 1ASSIGN com-
mands, each specifying a different resource, or to redefine
a file assignment (status, file name, or space allocation)
made by a ASSIGN command. In case 2, the !ASSIGN
command referred to must itself define a permanent, i.e.,
named, file.

7-48

Syntax:

Format 1, for temporary files

* adr-1

[label(s)] M:ASSIGN (OPL, {'op-label'])

e ;2]

where

adr-1 is the address of a word containing the opera-
tional label that identifies the DCB being assigned.
'op-label’ is the character constant form of that
label.,
adr-2 is the address of a word containing the value
specifying the size of the data block portion of
the file.
is the constant form of that size value,

size

Format 2, for permanent files

*adr-1

(label(s)] M:ASSIGN (OPL, {.op_,qbe,.]),

*adr-4
(UNT, OPL, {'op-lqbel—] '})

NEW
MOD})
OoLD

(NAM {*adr-5
" Ufilename'

}), (STS,

[s { 242)]

where
have the same

adr-1, 'op-label’, adr-2, and size
meaning as in format 1.

adr-4 is the address of a word containing the opera-
tional label that identifies a IASSIGN command
specifying the desired physical resource.

'op-label-1' is the character constant form of the
~ operational label described immediately above.

adr=5 is the word (or byte) address of a TEXT-
format field containing the name of the file
to be created or accessed. The name must be
terminated by one or more blanks. (See the
TEXT directive, Meta=Symbol Reference
Manual, 90 09 52.)

'filename' is the character constant form of the file

name,

USAGE RULES

1. Assignments made via M:ASSIGN are valid only for
the job-step in which the procedure is executed; they
cannot be maintained over succeeding steps. (Effec-
tively, the !ASSIGN option FRE is implicit in the use
of an M:ASSIGN procedure.)

2. The usage of M:ASSIGN in format 1 is identical to the
usage of a !ASSIGN command with corresponding op-
tions specified.

3. In format 2, the UNT, OPL option implies use of the
resource (device and volume) defined and allocated to
the job-step by the operational label specified.

4. The IASSIGN command referred to by the UNT, OPL
option must specify a permanent, i.e., named, file
assignment on-direct access media and must be in force
during the job-step in which the M:ASSIGN is
executed,

5. Informat 2, all options other than UNT have the same
meaning and usage as the corresponding options ap~
pearing in a JASSIGN command, assuming the option,
FIL.

6. The M:ASSIGN procedure in format 1 may redefine
an implicit assignment via a (installation dependent).
predefined operational label, typically SI, GO, LM, etc.

7. Inall cases, the operational label specified by the
OPL keyword field establishes the link between a DCB
and the file defined by the procedure.

8. In format 2, the DCB parameters (if any) specified in
the referenced !ASSIGN command are not applied to
the DCB assigned via the procedure.

M:OPEN Opening a File

The M:OPEN procedure activates the link between a DCB
and a physical file. The DCB is placed in an active, or
open, status. ("Opening a file" is equivalent to "opening
a DCB".) This procedure must be successfully executed
before any I/O operation can be performed on a given file.
The M:OPEN procedure performs some or all of the follow-
ing steps while opening a file:

1. Location of the file fo be processed, if it exists.

2. Creation of the file if it does not exist, which implies
allocation of resources: volume and space on the vol-
ume, and creation of the file labels.

3. Various initializations as necessary: reservation of
buffers, completion of the DCB, reservation and com-
pletion of communication tables (I0Bs) between the
access methods and the 1/O supervisor, etc.

4. Writing of the BKL value only from an existing file's
HDR2 label into the DCB.

5. Validation and control of file identity, file expiration,
file protection, and file sharing; checking for coher-
ence among the DCB parameters, and consistency of
these with the processing mode specified in M: OPEN
and with the storage media.

Syntax:

[label(s)] M:OPEN [#ldcb-adr, mode[, CID]

where
dcb-adr is the address of the DCB to be opened.
mode specifies the processing mode in which the

DCB is to be opened, as follows:
I Input mode (reading).
O Output mode (writing).
S Scratch mode (reading and writing).

CID specifies file identity checking (see Usage
Rule 1).

USAGE RULES

1. The file identity checking and position options NID
and PID (see VSAM) are meaningful for magnetic tape
files only. For disk/RAD files this field is effectively
ignored. CID is always assumed.

2. The effect of a given processing mode specification is
conditioned by the declared status of the file versus
the file's actual status. These interrelationships are
described below.

RELATIONSHIP OF PROCESSING MODE AND FILE STATUS

The status of a file (NEW, MOD, or OLD) is declared in
the file assignment, For each declared file status there is
one or several normal combinations of status, file existence/
nonexistence, and processing mode. The normal combina-
tions do not occasion any abnormal return to the user's pro-
gram during opening. Certain abnormal combinations
(described below) are acceptable but will result in an X1
class abnormal return to the user's program during opening
if the DCB specifies an abnormal return with the X1 class
set (abort otherwise). Any combination other than those
described below result in a program abort, The several
normal and abnormal combinations are described for each
declared file status in the following paragraphs.

e NEW

Normal combination. Nonexistent file and output
mode — original file creation; output operations al-
lowed only.

Abnormal combination. Existent file and output
mode — in this case an abnormal return to the user's
program occurs. The user can then request recreation
of the file by a special exit from his abnormal routine,
If the expiration date of the file to be rewritten has
not been reached, a further abnormal return occurs;
another special exit will allow processing to continue,
overriding the nonexpired condition.

e MOD

Normal combinations.

1. Existent file and scratch mode —read and write
operations allowed.,

2. Existent file and input mode — input operations
allowed only.

3. Nonexistent file and output mode — status is
changed to NEW; output operations are allowed.

e OLD

Normal combinations.

1. Existent file and input mode — input operations
are allowed.

2. Existent, expired file and output mode — output
operations allowed (i.e., the file may be
rewritten).

Abnormal combination. Existent, nonexpired file —
in this case an abnormal return to the user's program
occurs, A special exit from the user's abnormal rou-
tine allows processing to continue; the file can then
be rewritten.

Note: See the section "Processing of Abnormal and Error
Conditions" for specific abnormal codes and further
details on normal/special exit results.

AUTOMATIC EVOLUTION OF FILE STATUS

The automatic evolution of the status of a file during a job-
step when opened for output is shown below.

Declared Status Prior to First
M:OPEN, Output
NEW, MOD, OLD,
Nonexistent | Nonexistent Existent
File File File
Status after | NEW NEW NEW
successful
opening
Status after | MOD MOD MOD
M:CLOSE

7-50

M:CLOSE Closing-a File

This procedure causes the closing of a file. The close ef-
fects a suspension or halt of activity via a DCB and pos-
sibly via the processed file. Its main functions are:

1. Waiting for and testing the last 1/O operation(s).

2, Updating and validating disk file labels.

3. Temporary or definite closing of the DCB.

4. Partial restitution of disk space or deletion of the file
created by the job.

5. Releasing devices, tables, etc.

Syntax:
HLD
[label 6)] M:CLOSE [Jdcb-adr |,{ MTN || { X]
WIN |l ince

where dcb-adr is the address of the DCB to be closed.

TYPES OF CLOSE
HLD specifies a temporary closing of the file. The
DCB-file link is maintained. A new M:OPEN applied
to the DCB will only permit changing of the processing
mode, because only a small portion of the open func=
tions will then be executed.

MTN specifies definite close. It cancels the DCB-file
link but maintains the job-file link. In the same job
another DCB can be used to process the same file. The
resource is not released even if the FRE option was
specified in the assignment,

RLS specifies a definite close. It destroys the DCB-

file link and the job-file link. The device resource(s)

allocated for the file are released if the FRE option
was specified in the assignment.

LABEL VALIDATION AND FILE DISPOSITION

The KEP and NCG options specify the disposition of a
newly created permanent file. They are significant only
for the O processing mode (file creation).

KEP requests validation of the file labels, and cata-
loging of the file if requested or implied.
NCG requests deletion of the file and suppression

of cataloging if cataloging has been requested or
implied. This option is applicable only in con-
junction with RLS and if the status of the file is
NEW prior to closing.

USAGE RULES

1.

M:READ

If no type-of-close option is specified, RLS (release)
is assumed by default, Both the DCB-file connection
and the job-file connection are severed (i.e., another
job can attempt access to the file whether the file/
volume is sharable or not). All device (i.e., common)
resources allocated for the processing of this file are
released if MTN was not specified in the assignment.

If no validation/disposition option is specified, KEP
(keep) is assumed by default.

If a definite close (MTN or RLS) is not issued for a
given DCB/file before the end of the job-step, the

system forces an unconditional (RLS) close, disposition
KEP,

Read Virtual Physical Record

The M:READ procedure requests reading of a program deter-
mined physical record, starting from ablock boundary speci-
fied by relative block number. The length of the record to
be read is either specified in the procedure (TRL parameter)

or defaults to block length (BKL).

In either case it is lim-

ited by the maximum transfer length (MXL) specified in the
DCB. A relative block number (ADR parameter) specifying
the block (relative to the beginning of the file) at which
the read is to begin, must always be given,

For existing permanent files, the block length (BKL) is

determined from the file's HDR2 label.

Records are trans-

mitted from the physical file directly to the user's buffer
area specified in the procedure.

Return from the procedure is made immediately following
the system's acceptance of the request (i.e., not after ini-
tiation or completion of the 1/O operation). Successive
I/O requests (via the same DCB) may be issued, prior to
execution of M:CHECK and/or M:WAIT procedures refer-
ring to these requests, up to the limit specified by the

SIM parameter of the DCB.

Syntax: See foldout Chart A-7 in Appendix A.

MEANING OF THE PARAMETERS

dcb-adr

BUF, lqdr-Z

~ user's buffer area into which the record is to be read;

ADR, [*]value-1

specifies the address of the DCB through which
the read is to be performed.

[*]qurq]

specifies either the initial byte address
badr-1 (optionally indirect), of the

or the word address, adr-? (direct only), of the buffer
area (which will be converted to a byte address).

specifies the relative block number

(where block 0 is the beginning of the file) of the
block at which the read operation is to begin (may
be indirect).

7-51

TRL, [*Jvalue-2

PTR, [*Jadr-3

specifies the number of bytes to be
transmitted, i.e., the length of the physical record
to be read (may be indirect). If not specified, the
default value is BKL.

specifies the address, adr-3 (optionally
indirect), of a pointer word into which the system is
to return the address of the event control block (ECB)
associated with this 1/O request.

USAGE RULES

1.

8.

M:WRITE

The TRL value may never exceed the effective value
of the MXL parameter in the referenced DCB.

TRL values less than, equal to, or greater than block
length (BKL) are valid.

Use of the PTR option causes the system to supply, on
return from the procedure, a pointer to the ECB asso-
ciated with the specific request and the implied 1/O
operation. This pointer must then be used in a subse-
quent M:CHECK procedure to identify the operation
to be checked.

An abnormal or error return, if selected, for a given
1/O operation will be made only from an M:CHECK
procedure referring to that operation.

If two or more 1/O requests have been queued (i.e.,
accepted by the system for execution) and the nth
implied operation terminates unsuccessfully, and the
system attempts to initiate the nth + 1 implied opera-
tion before an M:CHECK referring to the nth operation
is executed, the nth + 1 and all following requests will
be purged.

If the number of queued /O requests, including re-
quests for which 1/O operations have been completed
but not checked, exceeds the value of the SIM param-
eter (in the DCB), a program abort will occur,

If a read operation is attempted outside the limits of
the file, an end-of-file return is made from the cor-
responding M:CHECK procedure.

No order is imposed on M:READ/M:WRITE sequences.

Write Virtual Physical Record

The M:WRITE procedure requests writing of a program deter-
mined physical record to a file on direct access media. All
write requests must specify the relative block number of the
first (or only) block to be written. The blocks of the file
can be written (or rewritten) in any order.

The length of the record to be written either is specified in
the procedure (TRL parameter) or defaults to the block length

(BKL).

In either case, it is limited by the maximum transfer

length (MXL) specified in the DCB. Physical record trans-
fers may extend across block boundaries, or may be shorter

than block length.

(For modification of existing permanent

files, the value BKL is determined from the file's HDR2
label.) Records are fransmitted to the physical file directly
from the user's buffer area specified in the procedure,

Return from the procedure is made immediately following
the system's acceptance of the request (not after initiation
or completion of the I/O operation). Successive 1/O re-
quests (via the same DCB) may be issued, prior to execution
of M:CHECK and/or M:WAIT procedures referring to these
requests, up to the limit specified by the SIM parameter of
the DCB.

Syntax: See foldout Chart A-7 in Appendix A,

MEANING OF THE PARAMETERS |

deb-adr specifies the address of the DCB through which
the write is to be performed,

BUF,l[*] badr-l]

adr-2 specifies either the initial byte ad-

dress, badr-1 (optionally indirect), of
the user's buffer area from which the record is to be

written; or the word address, adr-2 (direct only), of the
buffer area (which will be converted to a byte address).

ADR, [*Jvalue-1 specifies the relative block number
(where block 0 is the beginning of the file) of the
block at which the write operation is to begin (may
be indirect),

TRL, [*]vqlue-Z specifies the number of bytes to be
transmitted, i.e., the length of the physical record
to be written (may be indirect). If not specified, the
default value is BKL,

PTR, [*]adr-3 specifies the address adr-3 (optionally
indirect), of a pointer word into which the system is
to return the address of the event control block (ECB)
associated with this 1/O request.

USAGE RULES

1. The TRL value may never exceed the effective value
of the MXL parameter in the referenced DCB,

TRL values less than, equal to, or greater than block
length (BKL) are valid.

Use of the PTR option causes the system to supply, on
return from procedure, a pointer to the ECB associated
with the specific request and the implied I/O opera-
tion, This pointer must then be used in a subsequent
M:CHECK procedure to identify the operation to be
checked.

An abnormal or error return, if selected, for a given
write operation will be made only from an M:CHECK
procedure referring (explicitly or implicitly) to that

operation, except as described in rule 5.

7-52

If a write operation is attempted outside the limits of
the file, an X3 class abnormal return, code 09, is
made from the M:WRITE procedure itself.

If two or more 1/O requests have been queued (i.e.,
accepted by the system for execution) and the nth
implied operation terminates unsuccessfully, and the
system attempts to initiate the nth + 1 implied opera-
tion before an M:CHECK referring to the nth operation
is executed, the nth + 1 and all following requests will
be purged.

If the number of queued 1/O requests, including re-
quests for which 1/O operations have been completed
but not checked, exceeds the value of the SIM param-
eter (in the DCB), a program abort will occur.

All write operations begin on a block boundary.

Rewriting of a record within the limits of an existing
file does not truncate the file at the end of the new
record. More than one originally existing record can
be overwritten (intentionally or inadvertently), how-
ever, depending upon relative lengths of the original
and replacement record. Proper one-for-one record
replacement, if desired, is the user responsibility.
10. -No logical record structures are provided for or recog-
nized either as existing in the file or indicated in the

DCB.

M:CHECK Check 1/O Event Completion

The M:CHECK procedure tests a given 1/O operation for
proper completion, placing the issuing program in a wait
state, if necessary, to await such completion. If the tested
operation terminates unsuccessfully, an appropriate abnor-
mal or error return is made to the user's program (if selected
in the user's program; abort otherwise). Optionally, for a
read operation the actual length of the record (or partial
transmission) read is reported.

The specific operation t. be checked may be indicated in
either of two modes:

e Explicitly, in the procedure (PTR parameter), by means
of a pointer to the event control block (ECB) associated
with the operation (obtained via the corresponding
M:READ or M:WRITE request).

e Implicitly, (no pointer to the DCB) as the operation

corresponding to the oldest outstanding (i.e., yet
unchecked) 1/O request.

The program must use one of these two modes exclusively
for all operations via a given DCB.

The M:CHECK procedure may be used in conjunction with
the M:WAIT procedure, described in Chapter 8.

Syntax: See foldout Chart A-7 in Appendix A.

MEANING OF THE PARAMETERS

dcb-adr specifies the address of the DCB through which
the check is to be performed.

PTR, [*Jadr-1 specifies the address, optionally indirect,
of a pointer to the ECB associated with the operation
to be checked (see M:READ and M:WRITE).

RSA, [*]adr-2 specifies the address, optionally indirect,
of a word into which the system is to return the actual
length (in bytes) of the 1/O transmission in the case of
a read operation.

USAGE RULES

1. Between the initial opening and the definite closing of
a DCB, all M:CHECK procedures referring to the DCB
must either always specify the PTR parameter or always
omit that parameter,

2. If the PTR parameter is not specified, the earliest re=
quested, still unchecked operation is checked.

3. If the RSA parameter is specified for a write operation,
it is ignored.

4. The M:CHECK procedure, when executed, effectively
releases the system table (IOB) entry associated with a
given operation, allowing it to be used for queuing of
subsequent requests,

BDAM (BASIC DIRECT ACCESS METHOD)

The BDAM access method permits reading and writing on a
private direct access volume by reference to relative disk
sector addresses. No record, block, or file level structures
are provided for or recognized. The disk volume must be
assigned with a DEV type assignment; the logical file is
equated to the entire storage volume. System disk cannot
be accessed with this method.

GENERAL USAGE RULES
The general usage rules for BDAM are listed below.

1. Applicable 1/O procedures:
M:READ
M:WRITE
M:CHECK
M:CVOL
2. Usage of all procedures is the same as for VDAM ex-
cept as differentiated by the following rules. See fold-
out Chart A-8 of Appendix A for M:READ, M:WRITE,

and M:CHECK syntax. M:CVOL usage is the same as
for VSAM,

3. Applicable DCB parameters:
AM, BD (Basic Direct)
ERR
BKL
MXL
NRT
SIM

4. Requires that the mandatory ADR parameter of both
M:READ and M:WRITE specify a disk sector by rela-

tive sector number.

5. All reads and writes begin on a sector boundary
(hardware determined).

6. Applicable processing modes as defined, implicitly,
for VDAM:

Input
Output

Scratch

PROCESSING OF ABNORMAL AND
ERROR CONDITIONS

The normal execution of an I/O procedure, or of a file
opening or closing procedure, may be precluded by the
occurrence of any one of a large number of abnormal or
error conditions, including:

1. Programming errors, e.g., the record length specified
by an M:PUT request being greater than the block
length appearing in the DCB.

2. Job initialization errors, e.g., unassigned operational
label, or file status incompatibility with processing
mode.

3. Abnormalities in the file content from the procedure's
point of view, e.g., end-of-volume, or specified
record key not existing in the file,

4, Device related errors, e. g., device locked by operator.

5. Errors in transmission between memory and device during
a physical 1/O operation.

Some of these conditions, primarily instances of categories 1
and 2 described above, always cause the executing program
to be aborted. These are referred to as unconditional abort
conditions. An abort code identifies the specific type of
abort condition on the job control file.

Many other conditions, including all abnormal conditions,
device and transmission errors, and many programming errors
can be handled by the user's program at hisdiscretion. They
are conditional program aborts in that they also cause the
program to be aborted if no user routine has been provided
to process the indicated condition. The presence of an ABN
and/or ERR address in the DCB, and selection of one or more
classes of abnormal condition, by the Xn class codes in the
ABN parameters (see M:DCB), indicates that the user has
provided abnormal and/or error handling routines.

The absence of either the ABN and/or ERR addresses, or
lack of X1, X2, or X3 class codes causes the program to
be aborted if the corresponding conditions occur,

The absence of the X4, X5, or X6 codes relating to user
label processing, simply inhibits the corresponding abnor-
mal condition entry to the user's routine (if any) during
label processing. See Appendix D for full information on
user label processing.

ABNORMAL AND ERROR HANDLING ROUTINES

An abnormal condition or error can cause a user provided
routine to be entered, as explained above., The address of
these routines are specified in the DCB via the ABN and
ERR parameters, respectively.

At the time of entry to either of these routines, certain
registers have been set by the system in the following
manner:

R5 Abnormal or error code (leftmost byte). Return

address (right-justified).

R6 DCB address (right-justified).

R7 Event control block (ECB) address in the case of
an abnormality or error detected by M:CHECK.

Address of the key in the case of an abnormal
condition detected during an access by key of
an indexed sequential file.

Not significant in other cases.

The only 1I/O procedures that can be executed in an
abnormal or error routine are M:CLOSE, M:CVOL, and
M:CHECK. Such a routine must exit by an M:RETURN
procedure,

The exit from the user's routine is a special return when
register 6 is set to zero before the execution of the
M:RETURN procedure. It is a normal return in any other

case (R6 #0).

ABNORMAL CONDITIONS DURI.NG OPEN AND CLOSE

The abnormal conditions that can occur during M:OPEN/
M:CLOSE or end-of-volume processing are selected by the
X1, X4, X5, or X6 class codes at the time the ABN address
is specified in the DCB via M:DCB or M:SETDCB. Class
codes X4, X5, and Xé refer only to user label processing
(see Appendix D), ’

Occurrence of such a condition causes a transfer of control
to the specified ABN address, assuming that the correspond-
ing class code has been selected (abort otherwise in the case
of X1 class only).

For each of these conditions, Table 7-3 describes the speci-
fic abnormal code returned, the controlling ABN class code,
the cause, origin, occurrence condition, and result of a
normal or special return from the user's abnormal routine.

Table 7-3. Abnormal Conditions on M:OPEN and M:CLOSE

ABN Result on Return from User Routine
Condition | ABN Occurrence
Class Code | Cause Condition Origin Normal Special
X1 01 End-of-file Mode I, B, U, | M:OPEN | DCB not opened. | DCB not opened.
(DUM assignment). | or S.
X1 02 End-of-volume. MT only. M:OPEN | DCB not opened. | With PID and I mode, there is

a rewind and the search is
continued on same volume (or
on the following volume if
M:CVOL was executed in user
routine). In other cases,
M:CVOL must be executed in
user routine to permit continua-
tion on the following volume,

7-54

Table 7-3. Abnormal Conditions on M:OPEN and M:CLOSE (cont.)

ABN Result on Return from User Routine

Condition | ABN Occurrence .

Class -Code | Cause Condition Origin Normal Special

X1 0A No more volumes MT or serially | M:CVOL | DCB not opened. |DCB not opened.

to switch, mounted disk. | within
open
abnormal
routine,
X1 14 File not found: I, MT or disk; M:OPEN | DCB not opened. | For disk files, the DCB is not
B, O, or U, but status OLD or opened. For tape files,
not MOD, O. MOD, mode M:CVOL procedure must be
1, B, O, or U, executed in the user routine to
permit continuation on the fol-
lowing volume.

X1 15 File already exists. | MT or disk; M:OPEN | DCB not opened. | The old file is overwritten if
status NEW; it has expired; if not yet
mode O or S; expired, see code 18 below.
CID or PID.

X1 16 File identification | MT only; OLD | M:OPEN | DCB not opened. | Corresponding file is opened

does not match, or MOD; 1, B, to be read, extended, or
O, or S; CID, overwritten,

X1 18 File not expired. MT or disk; M:OPEN | DCB not opened. |File is opened for input, exten-
NEW or OLD; sion, or overwriting as appro-
O or S; CID, priate, depending on status
NID, or PID. and mode.

X1 19 Password requested. | MT or disk; M:OPEN | The contents of - | Same as normal.

| any status dnd registers 6 and 7

mode, are compared with
the password of
the file being read
or placed into the
entry in the label
for a file being
created,

X4 10 Exit for beginning= | MT only. M:OPEN | No read or write | New user label must be read

of-file user labels, of user label has | or written,
to be done.

X6 11 Exit for beginning~ | MT only. M:OPEN | No read or write | New user label must be read or

of-volume user of user label has | written,
labels. to be done.
X5 12 Exit for end-of-file | MT only. M:CLOSE | No read or write | New user label must be read

or end-of-volume
user labels.

of user label has
to be done.

or written,

7-55

ERROR CONDITIONS DURING FILE OPENING

Several error conditions can occur during M:OPEN pro-
cessing. Selection of these conditions for user handling is
by specification of an ERR address in the DCB (prior to
M:OPEN execution). Occurrence of any of these condi-
tions causes a transfer of control to the specified ERR
address,

Table 7-4 describes these error conditions.

ABNORMAL CONDITIONS DURING FILE PROCESSING

Among the abnormal conditions that may arise subsequent
to successful opening of the file, the end-of-file and end-
of-volume conditions, selected by ABN class code X2, can
be distinguished from other miscellaneous processing abnor-
malities selected by class code X3,

For each of these conditions, Table 7-5 describes the ab-
normal code returned, the controlling class code, cause,
origin, and result of a normal or special return from the
user's abnormal routine.

ERROR CONDITIONS DURING FILE PROCESSING

The error conditions that can occur subsequent to successful
opening of the file are related to either data errors, too

many queued 1/O requests, or physical device malfunctions.
Entry fo the user's routine for these conditions is selected
by specification of the ERR address in the DCB.

For each error condition, Table 7-6 describes the error code
returned, the cause, origin, and result of a normal or spe-
cial return from the user's error routine,

ERRORS CAUSING THE PROGRAM TO ABORT

All the error or abnormal codes described previously are
also possible abort codes if no routine was provided in the
user program to process the corresponding conditions. The
specific unconditional abort codes described in Appendix B
can also accompany an abnormal end-of-job or end-of-
task. If the numeric portion of the abort code is less than
X'80', which is the case for all of the abort codes related
to file management, the following steps in the job can be
executed.

An abort always causes a message to be printed on the job
control file. This message has the following format:

ABORT label

program state when abort
condition was detected

symbolic
code

where label indicates the operational label of the file being
processed when the abort condition was detected.

Table 7-4, Error Conditions on M:OPEN
ERR
Code Cause Origin Result on Return from User Routine
23 Permanent device error. M:OPEN DCB not opened.
2A Device locked by operator M:OPEN DCB not opened.
2C Irrecoverable permanent error. M:OPEN DCB not opened.
Table 7-5. Abnormal Conditions During Processing

ABN

Condition ABN

Class Code Cause Origin Result (Normal and Special Return)

X2 01 End-of-file. M:CHECK The DCB is no longer open except for mag-

M: GET netic tapes with DEV assignment accessed
M:CvOL by VSAM,

X2 02 End-of-volume, M:CHECK The DCB remains open only if the M:CVOL
procedure has been executed in the user
routine processing this abnormality.

X3 07 Read length less than | M:CHECK DCB remains open, processing may continue.

tape block length. M:GET
(U format)

7-56

Table 7-5. Abnormal Conditions During Processing (cont.)

ABN
Condition ABN
Class Code Cause Origin Result (Normal and Special Return)
X3 09 Attempt to access M:WRITE (ADR) Normal: DCB closed; no further processing
outside file limits. M:DEVICE (BKS/FWS) allowed. .
M:POINT Special: File extended by secondary incre-
ment; processing may continue.
X3 13 More than 23 ex~ M:PUT DCB is no longer open.
tents required (disk). | M:WRITE
X3 0A File is full or no more | M:PUT The DCB is no longer open if there are no
volumes to switch. M:WRITE more volumes to be switched.
M:CvVOL
X3 0B Key out of sequence. | M:PUT (indexed in DCB remains open, processing may continue,
O mode)
X3 oD Key not found. M:FIND DCB remains open, processing may continue,
M:STOW (DEL)
M: GET (KEY)
X3 OF Key already exists. M:STOW (ADD, SYN) | DCB remains open, processing may continue,
M:PUT (indexed)
Table 7-6. Error Conditions During Processing
Result on Exit
ERR
Codg | Cause Origin Normal | Special
20 Sequence break in the block | M:GET DCB no longer open. Error condition is ignored,
numbers on magnetic tape. M:CHECK processing can continue,
21 Wrong length record. M:GET (F or V DCB no longer open. Error condition is ignored,
format). processing can continue,
22 Queued 1/O }equesf purged M:CHECK DCB open. DCB open.
due to bad termination of
prior operations.
23 Permanent device error, All 1/O procedures DCB no longer open. Error conditions is ignored,
except M:READ and processing can continue.
M:WRITE,
2A Device locked. All 1/O procedures DCB no longer open, DCB no longer open, processing
except M:READ processing cannot cannot contfinue on the device.
and M:WRITE, continue on the
device,
2C Irrecoverable permanent. All 1/O procedures DCB no longer open, DCB no longer open, processing
error, except M:READ processing cannot con=-| cannotf continue on the device.
and M:WRITE, tinue on the device.

7-57

8. SYSTEM SERVICES

INTRODUCTION

The XOS monitor provides the user with an extensive set of
execution-time programming services collectively called
system services. They include facilities that allow the user
to dynamically

e Obtain and release working storage space.

e Load and execute a load module with or without re-
turning to the calling module.

o Load an overlay segment.
e Manage CPU-detected program abnormalities (traps).

e Test and modify the Job Switch Word (a set of control-
command-initialized switches used primarily for com-
munication between job steps).

e Communicate with the system operator,
e Interrogate the system clock.

e Set, suspend, and process clock interrupts within a
job step.

o Specify and manage certain event-triggered interrupts
(e.g., /O completion).

e Specify job step termination in a normal or error state.

A user could invoke a specific system service by executing
a CALI instruction containing a code that identifies the
specific system service desired. Typically, when the CALI
is executed, the user also would make available to the
Monitor a set of parameter specifications in a form required
by the Monitor for the specific service requested.

The detailed coding of system service requests is often ex~
tensive and complex, however. Therefore, a set of Meta-
Symbol system procedures (included in the SYSTEM XOS
procedure library) is provided and described herein. These
procedures interpret a given user source statement as a
functional-level request for a system service. The functional
parameters are then translated into the detailed interface
code required by the Monitor to request the performance of
that function.

CONVENTIONS

In order to use any of the procedures contained in SYSTEM
XOS, it is necessary that the first such use (in statement
number order) in any Meta=Symbol assembly be preceded

by a source statement containing the command SYSTEM
with the argument XOS. That is, the statement

SYSTEM XOS

must precede the first system procedure reference.

SYNTAX

Rules for referencing an XOS system procedure are a subset
of the general rules for referencing any Meta=Symbol pro-

cedure. The subset is bounded by
[label (s)] M:command [parameter list]
where
label (s) is the symbol or list of symbols (up to 255)

to be defined as the address of the first executable
instruction generated by the procedure.

M:command is the name of the system procedure
being referenced. By convention these begin
with M: (letter M and character colon).

parameter list is a set of functional parameters that
specify the manner in which the requested service
is to be performed.

Refer to the Meta-Symbol/LN, OPS Reference Manual

(90 09 52) for the complete general format of a procedure
call. If the asterisk character is used, indirect addressing

is indicated, i.e., the symbol or value following the aster-
isk specifies the location of a value rather than the value
itself. No space is permitted between the asterisk and the
character that follows. If brackets are used the items con-
tained by them are optional. Discussions within this chapter
usually refer to a general register symbolically according

to the following notation:

Register Symbol Register Symbol

0 RO 8 RS

1 R1 9 R9

2 R2 10 R10
3 R3 1 R11
4 R4 12 R12
5 R5 13 R13
6 R6 14 R14
7 R7 15 R15

MEMORY MANAGEMENT

XOS utilizes the Sigma memory map option; user jobs are
executed in virtual memory. All memory addresses used by
a user job are interpreted through the memory map. Memory
mapping is explained in the appropriate Sigma Computer
Reference Manual for Sigma 6, 7, or 9 computers and dis-
cussed in Chapter 1 of this manual.

Most users need not be concerned with virtual memory and
memory mapping. XOS performs the mapping function in

a way transparent to the user, Consequently, virtual mem-
ory appears to the user as a single contiguous set of actual
memory locations. Only the master-mode user need be con-
cerned with the distinction between operation in virtual vs.
physical memory.

The usable memory space available to a given job step ex~
tends over N pages of memory, where N is the greater of
the values shown on the ILIMIT or ISLIMIT control com-
mands, If neither of these commands is used, the default
value specified at system generation is used. If only Ppages
of memory are actually being used by the job step, the re-
maining (N-P) pages constitute the dynamic space (or area)
available to the program. The dynamic space is only allo-
cated to the program upon explicit request; any attempt to
access an address in the dynamic space without its previous
allocation causes the job step to trap with a memory-
protection violation. o

ORGANIZATION OF MEMORY SPACE
A user's program space is divided into two areas
e Program Area
e Dynamic Area
Figure 8-1 diagrams a user's virtual memory. See the ap-

propriate Sigma Computer Reference Manual for a discus-
sion of memory access protection.

PROGRAM AREA
The program area of a job consists of three portions:

1. Variable Data Area. The access protection type for
this area is 00 (all access). This area contains

e Task Control Block (TCB). This is a system table
accessible by the program and contains control
information,

e FORTRAN blank common.

e The (variable) data of the program itself. In the
case of a segmented program, this area is divided
into several parts corresponding to the root and
the different overlays.

2. Instruction Area. The access protection type for this
area is 01 (read or execute only). This area contains

e Data Control Blocks (DCBs) for the program.

e RFLOAD table. This is a table of external refer-
ences created by the Link Editor to enable the
implicit loading of overlay segments when they
are referenced at execution time (see REF option
in Chapter 4 of this manual).

o The program (instructions). In the case of an over-
lay program, this area is divided into several parts
corresponding in size and location to the root and
its various overlay segments,

3. Constant Data Area. The access protection type for
this area is 10 (read only). In case of an overlay pro-
gram, this area is broken into several parts correspond-
ing in size and location to the root and different overlay
segments' constant data areas.

Since the XOS (Sigma 6, 7, 9) memory access protection
feature operates on page (512-word) units, each of the areas
defined above begins on a page boundary.

Variable data, constant data, and instruction areas
are necessarily distinguished on the basis of user-
defined control section protection types. See
CSECT and DSECT commands in Meta-Symbol/
LN, OPS Reference Manual, 90 09 52,

Note:

DYNAMIC AREA

The dynamic area ranges from the first whole page following
the constant data area to the last page of memory assigned
to the job (see !LIMIT and ISLIMIT commands). This area

contains

1. Unallocated Dynamic Area. The access protection
type for most of thisareais 11 (no access). Initially, i.e.
at job initiation, this area includes the whole dynamic
area. Later it may contain a certain number of wordsin
pages also containing words allocated in the common
dynamic area. Those portions of the unallocated dy-
namic area contained in such pages have the same
access protection type as the common dynamic area.

As the user job requests the allocation or deallocation
of local or common dynamic area, the extent of the
unallocated dynamic area diminishes or increases so
the sum of the three areas (LOCAL, COMMON, and
UNALLOCATED) remains constant during a job step.
The size of the unallocated dynamic area, in contig-
vous whole pages between the highest address in the
local dynamic area and the lowest address in the com-
mon dynamic areas is available to the user job via the
M:GL system service.

2. Local Dynamic Area. The access protection type for
this area is 00 (all access). It begins at the first page
of the dynamic area and extends in the direction of

User Access

0
No access } Resident Monitor }
\ Intbemaf] Task 'Confrgll B(Iocl; (ITCB) —
Job Information Table (JIT
Read only Map Access Protection Control Image
+ VL L T 7 7 A 7 7
FORTRAN Blank Common
Root Data Zone
All access / [1st Overlay-Level Data Area] /
[2nd Overlay- Level qua Area] '
P pages T DCBs and RFLOAD Table
Root Code
Read and execute / [1st Overlay-Level Code] /
[2nd Overlay-Level Code]
Gi///////
| 22271
A
Read only Constant Data Area
V//7////7
vy 2.
A !
All access after Local Dynamic Area
dynamic allocation Z (allocated towards high virtual memory) /
N-P
pages
7 ALY, -
No access / Unallocated /
. ————————
* Dynamic Area ‘
722222% Z
All access after
dynamic allocation Common Dynamic Area
l (allocated towards low virtual memory)
Y

!

No access

¢

_
7

No qc'cess

Nonresident Monitor Overlay Area

Page Boundary

Page Boundary

Page Boundary

Page Boundary

Page Boundary

Page Boundary

Page Boundary

Fixed by ILIMIT or
ISLIMIT card

Page Boundary

Page Boundary

Figure 8-1. User's Virtual Memory

8-3

increasing addresses. Allocation is performed in
multiples of a page (512 words). See discussions of
M:GP and M:FP for details of allocation control.

3. Common Dynamic Area. The access protection fype
for this area is 00 (all access). It begins at the highest
address of the last page of the dynamic area and ex-
tends in the direction of decreasing addresses. This
area is called common because it is shared by the user
and the system, It is in this area that the system stores
necessary tables for processing the job and the user
buffers for the assisted access methods. Allocation is
performed in multiples of four words. See discussions
of M:GSP and M:FSP for details of allocation control.

SPACE ALLOCATION PROCEDURES

M:GL Get Limits of Dynamic Space
The M:GL procedure allows the user to obtain the number
of contiguous unallocated whole pages between the highest
address in the local dynamic and the lowest address in the
common dynamic areas.
Syntax

[label(s)] M:GL
The system returns, in register R5, the number of pages cur-
rently in the unallocated dynamic area.
M:GP Get Pages in the Local Dynamic Area
The M:GP procedure permits the user to request the alloca-
tion of a specified number of pages in the local dynamic

aread.

Syntax

[chel(s)] M:GP [* n

where n is an integer that specifies the number of pages
requested in the local dynamic area.

If the number of pages requested is available, they are al-
located, the address of the first word in the allocated area
is placed in R5, and the condition code (CC1) is reset to 0.
If the number of pages requested is not available, no pages
are allocated and the condition code (CC1) is set to 1.

The LOCAL dynamic area may be viewed (by the user) as

a set of contiguous whole pages. Whenever one or -more
pages are allocated they may be thought of as extending
the upper bound (or increasing the highest available ad-
dress) of the contiguous set of whole pages forming the
LOCAL dynamic arga. When one or more pages are
freed (deallocated) the highest available address is re-
duced by some multiple of 512 words thereby lowering
the upper bound of the contiguous set of whole pages forming
the LOCAL dynamic area.

M:FP Free Pages in the Local Dynamic Area
The M:FP procedure allows the user to free (deallocate) a

specified number of previously allocated pages in the local
dynamic area.

Syntax

[label(s)] M:FP [*In

where n is an integer that specifies the number of pages to
be freed in the local dynamic area.

If the number of pages to be freed is less than or equal to
the number of pages currently allocated in the local
dynamic area, they are freed and the condition code (CC1)
is reset to 0,

If the number of pages to be freed is greater than the
number of pages currently allocated to the user in the

local dynamic area, no pages are freed and the condition
code (CC1) is set to 1.

The pages are freed in order of decreasing addresses begin-
ning with the highest address of the currently allocated
pages.

M:GSP Get Space in the Common Dynamic Area

The M:GSP procedure allows the user to request the alloca-
tion of a block of specified size in the common dynamic
area.

Syntax

(label(s)] M:GSP [In

where n is an integer that specifies the number of words
requested in the common dynamic area. If n is not a mul-
tiple of four, it is automatically rounded up to the next
multiple of four (e.g., if 37 is specified, 40 is assumed).

If the space requested is available, it is allocated. The
lowest address of the allocated block is placed in RS and
the condition code (CC1) is reset to 0.

If the space requested is not available, no space is allocated
and the condition code (CC1) is set to 1.

Blocks allocated by two successive requests are not neces-
sarily contiguous since the system may have requested and
received space between two successive user requests,

M:FSP Free Space in the Common Dynamic Area

The M:FSP procedure allows the user to free a previously
allocated block of space in the common dynamic area.

Syntax

[label(s)] M:FSP [#In,adr

where
n is an infeger that specifies the number of words
to free in the common dynamic area.
adr is the address of a memory word or register

containing the first address of the previously al-
located block of space to be freed.

If the exact block of space to be freed had previously been
obtained by the M:GSP procedure, the block is freed and
the condition code (CC1) is reset to 0.

If the exact block of space to be freed had not previously
been obtained by the M: GSP procedure, the block is not
freed and the condition code (CC1) is set to 1.

DYNAMIC OVERLAY AND PROGRAM LOADING

The services described in this section permit a user to ex-
plicitly request

1. The loading into memory of a specified overlay
segment,

2. The loading into memory of, and fransfer of control
to, a specified separate load module.

M:SEGLD Loading of an Overléy Segment

The M:SEGLD procedure allows a user to bring a specified

overlay segment into memory. See Tree Structure in Chap-

ter 4 of this manual for a description of tree structures and
overlays.

Syntax

[label(s)] M:SEGLD [*]address

where address is the word address of a string of characters
giving the name of the segment to be loaded. The first
byte of the string of characters must specify the number of
characters in the string (see TEXTC directive of Meta-
Symbol).

The specified segment is loaded as well as all those not
already loaded which lie on the path of the tree between
the calling segment and the specified segment.

Before using the M:SEGLD procedure, it is necessary that
all I/O operations that have been requested by the calling
segment or any higher level overlay be completed.

The programmer should take the precaution of verifying
(e.g., via M:CHECK) that all requested 1/O is completed.
If any 1/O is still in progress the results of an M:SEGLD
are unpredictable,

Once the M:SEGLD is completed, the user may reference
or execute it just like any previously core-resident section
of his program. Normally, symbolic references in accord-
ance with the Meta-Symbol REF/DEF specifications are used
for intersegment communication.

M:LDTRC Loading and Executing a Program without
Preserving the Calling Program

The M:LDTRC procedure allows an executing program fo
dynamically request the loading into memory of, and
transfer of control to another program without preserving
the calling program,

Syntax

[label(s)] M:LDTRC [*]address

where address is the address of a memory word containing
the operational label of the file containing the load module
of the desired program. The operational label consists of
up to four alphanumeric characters, left justified and blank

filled (X'40').

The memory space occupied by the calling program and the
space allocated to it in the local dynamic area are freed.
The common dynamic area is unchanged, thereby permitting
module-to-module communication. The called load module
is loaded into memory (replacing the calling program) and
activated at the start address specified at the time it was
formed.

The state of the registers upon entering the called program
are as follows:

Register Contents

RO Address of the stack-pointer doubleword
for the user's temporary stack.

R1 Number of whole contiguous pages in
the unallocated dynamic area.

R2 X'80000000' merged with the word ad-
dress of the options specified with the
IRUN command which began this step.
(Starting address of string of characters
in Meta-Symbol TEXTC format).

R3-R15 Their existing state prior to the execution

of M:LDTRC,

In order to access the file containing the desired load
module the user must have employed an IASSIGN control
command (see Chapter 3) specifying the same operational
label that was specified by the procedure argument, or
have otherwise assigned that label (possibly by default,
e.g., LM),

Since the common dynamic area is not affected by the exe-
cution of this procedure, it can be used to transmit informa-
tion from the calling program to the called program.

The M:LDTRC procedure results in a final exit of the calling
program. In the same way as the M:RETURN procedure, it
provides for the execution of a certain number of controls
on the part of the system. The M:LDTRC procedure can be
used only on the principal level of execution. That is, the
M:LDTRC procedure cannot be used in a sequence of ex-
ception processing or asynchronous processing (e.g., user
routines for abnormal returns from M:OPEN, M:CLOSE,
M:CHECK, as well as routines associated with M:TRAP,
M:INT, M:STIMER).

The system waits for the completion of any asynchronous
processing (input/output operations, messages to the oper~
ator) before performing an M:LDTRC, The system closes
any DCB's that are opened. If the M:STIMER, M:INT, or
M:TRAP services are active, they are canceled.

The called load module may terminate its execution with
an M:RETURN procedure just like any other load module
or with another M:LDTRC procedure (initiation of a new
called program) :

M:LINK Loading and Executing a Program with the

Preservation of the Calling Program

The M:LINK procedure allows an executing program to
dynamically request the loading into memory of, and trans-
fer of control to, another program while preserving the
state of the calling program for a later return.

The called load module is loaded into memory and control
is transferred to it at the start address specified at the time
it was formed. If no transfer address is associated with the
called load module, the job is aborted.

Syntax

[abel(s)] M:LINK [(*Jaddress

where address is the address of a memory word containing
the operational label of the file containing the load module
of the desired program. The operational label consists of
up to four alphanumeric characters, left justified and blank
filled (X'40').

The contents of the memory space occupied by the calling
program and the space allocated in the local dynamic area
are copied onto the system disk in a temporary file, for later
reactivation, and that space is then freed. The common
dynamic area is unmodified, thereby permitting module-to-
module communication,

The called program is transferred to memory and initiated
at its entry address, the state of the registers upon entering
the called program are as follows:

Register Contents

RO Address of the stack-pointer doubleword

for the user's temporary stack.

8-6

Register Contents

R1 The number of whole contiguous pages

in the unallocated dynamic area.
R2 X'80000000' merged with the word ad-
dress of the options specified with the
IRUN command which began this step
(starting address of a string of characters
in Meta-Symbol TEXTC format).
R3-R15 Their existing state when the M:LINK
was executed.

In order to access the file containing the load module for
the called program, the user must have employed an
IASSIGN control command (see Chapter 3) specifying the
same operational label that was specified by procedure
argument, or have otherwise assigned that label (possibly
by default, e.g., LM). Since the common dynamic area
is not affected by the execution of this procedure, it can
be used to transmit information from the calling program to
the called program,

The M:LINK procedure results in a conditional exit from

the called program. In the same way as the M:RETURN
procedure, it provides for the execution of a certain num-
ber of controls on the part of the system, The M:LINK pro-
cedure can only be used on the principal level of execution.
That is, the M:LINK procedure cannot be used within a
sequence of exception processing or asynchronous processing
(e. g., user routines for abnormal returns from M: OPEN,
M:CLOSE, M:CHECK, as well as routines associated with
M:TRAP, M:INT, M:STIMER).

The system waits for the completion of any asynchronous
processing (input/output operations, messages to the opera-
tor) before performing an M:LINK. The system closes any
DCB's that are opened. If the M:STIMER, M:INT, or
M:TRAP services are active, they are canceled.

It is possible to nest many M:LINK procedures. The return
from a called program fo its calling program is performed,
in reverse order of calls, by an M:RETURN at the principal
(nonasynchronous) level. The environment of the calling
program is reinstated, except for the registers and common
dynamic area which remain in the state of the called pro-
gram. The temporary file used to save the calling program
is released.

PROGRAM MANAGEMENT

The system services described in this section provide the
user with dynamic control (within the constraints of the
ILIMIT command) of CPU-time utilization and the condi-
tion (normal or error) of job step termination. Thereby,
the user program can determine when it will execute, when
it will wait before continuing execution, and when, how,
and the reasons for which it will terminate execution.

PROGRAM INITIAL CONDITIONS While additional capabilities are provided, there are three
basic occurrences that must be understood by a user before

When a user program is activated, it begins execution attempting to handle his own traps. They are as follows:
without control over the handling of CPU-detected abnormal
conditions (abnormal traps). If an abnormal trap occurs, 1. Request for M:TRAP service. The executing program
while in this condition, the monitor aborts the job or job must inform the system (in advance) that if any of the
step in accordance with the status of bit 0 of the Job Switch specified abnormal traps occur, the program is to be
Word (JSW). At program initiation, the contents of the placed in the "active trap" state., It then is allowed
general registers are as follows: to resume execution at a location specified in the
M:TRAP request.
Register Contents
2. Occurrence of abnormal trap. When the user program
RO The word address of the stack-pointer executes an instruction resulting in an abnormal trap,
doubleword for the user's temporary stack. the system immediately obtains control and determines
if user handling of that specific frap has been requested.
R1 The number of whole contiguous pages If not, the job or job step (depending on bit 0 of the
in the unallocated dynamic area. JSW) is aborted. If user handling has been requested,
via M:TRAP, the system:
R2 The word address where the RUN com-
mand options are stored in Meta=Symbol a. Saves the user's PSD and registers.
TEXTC format. If the keyword OPTION
is not specified on the IRUN command, b. Places the program in the "active trap" state.

this register is zero.
c. Returns control to the user at the location specified

R3-R15 Unpredictable. , in the M:TRAP request.
3. Termination of user trap processing (M:RETURN). When
the user program finishes its trap processing, it must
CPU-DETECTED PROGRAM ABNORMAL C either abort the job step (or job) or request the system
CONDITIONS (ABNORMAL TRAPS) to clear the "active trap" condition and allow it to
return to normal processing. An abort can be effected
The Sigma hardware system is capable of diagnosing those by requesting the M:ERR service (see M:ERR). The
program abnormal conditions resulting from the attempted "active trap" can be cleared and the program returned
execution of instructions that are in some way incompatible to normal execution by requesting the M:RETURN ser-
with their hardware environments. Such instructions are vice (see M:RETURN),
categorized as follows:
Syntax
1. Undefined or implemented instructions, or privileged There are two syntactic forms:
instructions being executed in the slave (normal XOS ' B
user) mode. [label(s)] M:TRAP [adr1, (TRAP, spec(,...])
2. Instructions referencing nonexistent memory addresses
or in some way attempting to use a part of memory in FX
a way not consistent with its protection type. [, (05T, [*]adr2)]] [,(IGNORE, DEC }):I
, BOTH
3. Instructions containing an operand conflict such that
execution of the instruction causes a stack overflow
or an arithmetic fault. [lqbef(s)] M:TRAP (RESTORE, [*]adr3)
Certain CAL instructions (all of which are programmed where
traps), are treated as abnormal traps because they result
in undefined branches into the monitor. CALI instructions, adrl is the entry address of the user's routine to be
which are defined by the system, result in normal traps to used for processing the traps specified with the
the monitor, TRAP option. This address must be specified if,

and only if, TRAP is specified.

M:TRAP Trap Management
TRAP is the keyword that introduces the list of

The M:TRAP service enables an executing user program to traps for which the system is to give control fo
specify that it be allowed to handle certain CPU-detected the user's program. If specified, adrl must also
program abnormal conditions. be specified.

spec is a mnemonic listed below corresponding to

a given frap:

PS Stack overflow.

Ul Unimplemented instruction.

NI Nonexistent instruction,

NMA Nonexistent memory address.

PSM Privileged instruction in slave
mode,

MPV Memory protection violation.

FP Floating=point fault.

DEC Decimal arithmetic fault,

FX Fixed=-point arithmetic fault,

CL2 CAL2 instruction.

CL3 CALS instruction,

CL4 CAL4 instruction,

NAO Nonallowed operation (i.e., all
of MPV, PSM, NMA, and NI).

ALL All traps listed above.

OsT specifies that a copy of the current abnormal
condition processing specifications is to be saved
prior to their modification by the current M:TRAP,
adr2 is the location into which the system is to

place a pointer to the information saved by OST,

IGNORE is the keyword that infroduces the arith-
metic faults that are to be ignored.

FX is the keyword that specifies that the fixed-

point arithmetic fault is to be ignored.

DEC is the keyword that specifies that the decimal

arithmetic fault is to be ignored.

BOTH is the keyword that specifies that both the
fixed-point and decimal arithmetic faults are to
be ignored.

RESTORE specifies that a set of abnormal condition
processing specifications, that were previously
saved using OST, are to be reinstated.

adr3 is the location from which the system is to
obtain a pointer to a set of specifications pre-

viously saved using OST,

USAGE CONSIDERATIONS

The execution of an M:TRAP request does not disturb the
user's registers; his condition codes are modified, however.

TRAP Option,

1. At M:TRAP execution time, the user informs the system
which abnormal traps he wants to handle. He then
specifies the entry point of his trap handling routine.

2. At trap time, the system saves the user's PSD and gen-
eral registers for later restoration (at M:RETURN time).
Then it places the program in the "active trap" state,
changes the contents of R5-R8, and returns to the user
at the address specified with the TRAP option.

When the system transfers control to the user's trap
handling routine the contents of R5 are:

ABN CODE WORD ADDRESS OF PSD

0 78 31

The first byte is an abnormal code that identifies which
abnormal trap has occurred. The last three bytes con-
tain the word address of an image of the PSD that was
active when the trap occurred. The address field of
the PSD image points to the instruction whose execu-
tion was trapped.

The legal abnormal codes are:

X'38! Nonexistent instruction.

X'3A' Privileged and nonexistent instruction,

X'3B! Nonexistent instruction and memory
protection violation.

X'3C' Nonexistent address.

X'3E' Privileged instruction.

X'3F' Memory protection violation,

X'41' Unimplemented instruction.

X'42' Stack overflow.

X'43' Fixed-point overflow.

X'44' Floating=-point overflow.

X'45' Decimal arithmetic fault.

X'49* CAL2 instruction.

X'4A' CALS3 instruction.

X'4B' CAL4 instruction.

If the user's trap handling routine needs to change the
contents of the registers that are to be restored at
M:RETURN time, it must make those changes to the
appropriate register save locations, These save loca-
tions may be found as follows:

RO-R4 and R?-R15. Assuming the user has already
found the saved PSD (using the pointer returned

in R5), he can find RO through R15 saved, in
order, in the next 16 memory locations. However,
the R5-R8 saved here have been changed and are
not the images that will be restored.

R5-R8. If it is necessary to adjust the contents of
R5-R8, their save locations must be found imme-
diately upon initiation of the user's trap handling
routine. At that time, R5-R8 are the last four
words on the user's temporary stack. Hence, he
must have saved, at program start-up time, the
address of the stack's stack-pointer doubleword
that was initially presented in RO. By inter-
preting that stack-pointer doubleword, he can
locate the four saved registers in the user's pro-
gram stack.

3. At M:RETURN time, the user's trap handler requests
the M:RETURN service to clear the active trap and
reinstate the user's PSD and general registers that were
saved at frap fime. Reinstatement of the PSD implies
a transfer of control to the user program beginning
with the previously trapped instruction. If the exe-
cuted M:RETURN request specifies an address, control
is then transferred to that location, If the user has
adjusted any of the saved registers as described in
item 2 above, the reinstated registers reflect those
adjustments. As an alternative, the user can request
the M:ERR service to abort his program's execution.

IGNORE Option. At M:TRAP time the user requests the
system to reset the fixed-point arithmetic mask (AM) to
zero and/or reset the decimal mask (DM) bits in the PSD.
By default, every M:TRAP requests that these bits be set

to 1 unless the IGNORE option is used to specify otherwise.
The IGNORE option precludes the occurrence of the speci-
fied traps.

OST Option.

1. At M:TRAP time, before implementing the concurrently
specified TRAP and IGNORE specifications, the system
saves a copy of the currently active specifications for

" those options in the user's memory.

2. At trap time, processing is according to the TRAP and
IGNORE options also specified.

3. At M:RETURN time, processing is according to the
TRAP and IGNORE options also specified.

RESTORE Option,

1. At M:TRAP time, the system reinstates the specifica-
tions previously saved by an OST option. In effect,
the RESTORE option again requests the TRAP and
IGNORE options that were in effect when the specifi-
cations were saved.

The RESTORE option may designate one of many sets
of specifications, each saved by a previous use of

OST.

2. At frap time, processing is according to the reinstated
TRAP and IGNORE options,

3. At M:RETURN time, processing is according to the
reinstated TRAP and IGNORE options.

M:RETURN Return Control to the System

An executing user program can return control to the system
in a normal (i.e., nonerrored) condition only by executing
a request for the M:RETURN service. The system will, de-
pending on the context of the request, either terminate the
job step or return control to the executing user program.

With an Active Trap. An executing user program has an
active trap if a trap specified in a current M:TRAP request
has occurred and the user program has not requested the
system to clear that trap. If a program with an active trap
executes a request for the M:RETURN service, the system
clears the trap and transfers control to the user-specified
address. If no address is specified, control is returned to
the instruction that was executing when the trap occurred.
Hence, execution of an M:RETURN with an active trap is
a request fo clear the active trap and return control to the
user. Simulated traps (i.e., M:STIMER, M:INT) and ab-
normal returns (i.e., from M:CHECK, M:READ, etc.) areto
be viewed in the same way. Execution with an active trap
is frequently referred to as abnormal processing.

Without an Active Trap. A program executing without an
active trap is referred to as being at the main program level
or at program-level 0. Execution of an M:RETURN without
an active trap is interpreted as an explicit request for a
normal (nonerrored) job step termination.

Syntax

[chei(s)] M:RETURN [*]cddress

where address is meaningful only when there is an active
trap. In this case it is the return address for the trapped
sequence. If this information is omitted when there is an
active trap, the operation of the trapped routine is resumed
at the address contained in the PSD when the trap occurred.

If there is an active trap, i.e., in the case of abnormal
processing, the system restores the registers to the condition

at the time of the trap and returns to the trapped sequence.
Otherwise, the system terminates the job step. In
particular:

1. It cancels M:STIMER and M:INT if active.

2. It permanently closes (M:CLOSE procedure with the
RELEASE option) all DCB's which are still open or
temporarily closed (M:CLOSE procedure with the
HOLD option).

3. Initiates the next job step or job.

M:ERR Error Job Step

The M:ERR procedure is used to signal the system that the
user has specified an abnormal job step termination.

Syntax

[label(s)] M:ERR [*Jvalue

where value is an integer, ranging from 0 to X'FF', which
is sent as the abort code with the prefix G to the user on
the job control file. For example, X'7C' is reported as

'G7C',

If bit zero 0 of the JSW (see " ISWITCH Command" in Chap-
ter 3) is zero, the job is aborted. If this bit isa 1, only
the job step in process is aborted and the system proceeds
normally to the next job step.

M:WAIT Program Wait

The M:WAIT procedure allows the user to place his pro-
gram in a wait state until one or more events occur. This
is necessary when the user has initiated one or more asyn-
chronous processes (input/output for example) and wishes
to synchronize his program with the terminating process(es).

Syntax

[Iabel(s)] M:WAIT p,[*]address] (..., [*]oddressn]

where
p is an integer specifying that p events of the n
events indicated in the address list that follows
must be completed before the system is to allow
the program to regain control.
address is the address of a word containing the

event control block (ECB) associated with an
asynchronous process. A maximum of 16 ECB ad-
dresses may be specified in a single M:WAIT.

If the specified conditions are not fulfilled the program is
placed in a wait state. When the specified conditions are
fulfilled, control is returned to the program if its prioriry is
greater than the program currently in execution.

8-10

To ensure system integrity, the ECB is in a read-only
memory protection area; the user can only see what it

contains, The ECB format follows:
alb Reserved for the System
01 2 31

The binary bits a and b indicate the event state:

a =1 Event not completed.

b =1 Event completed.

JOB SWITCH MANAGEMENT

Associated with each job is a Job Switch Word (JSW),
Each of the 32 bits in this word is available to the user as
a software managed switch (pseudo-switch). Except for
bits 0 and 1, which have special meaning to the system,
the user has complete freedom to set, reset, test, and
associate meaning with the status of the bits in the JSW.

Special meanings of bits 0 and 1 for the system are

e If an abort occurs and bit 0 is set (on), job execution
resumes with the next job step, if any., Otherwise,
the entire job is aborted.

e If an abort occurs and bit 1 is set (on), a postmortem

dump (PMD) of the user area is automatically taken,
whether a :PMD command was or was not used (see
Chapter 5).

Therefore, if a user runs a job with bits 0 and 1 both set,

it is possible to have more than one job step abort with an
associated PMD.,

The user can define status of the JSW by using the ISWITCH
command (see Chapter 3) or, except for bits 0 and 1, the
system procedures M:SSS and M:RSS. He can test the status
of bits in the JSW by using the UNLESS option of the IRUN
and IEXEC commands (see Chapter 3) or the system proce-
dure M:TSS,

Except for job initiation when all the bits are reset (0), the
system does not modify the JSW except in accordance with
an explicit user request. Consequently, the JSW is a de-
vice by which parameters may be communicated between
job steps as well as between the job control language and
and executing user program.

This section describes the use of M:SSS, M:RSS, and M:TSS
system procedures,

M:SSS Setting of Pseudo-Switches

The M:SSS procedure allows an executing user program to
specify that one or more bits of the JSW are to be set
(turned on).

Syntax

[label(s)] M:SS v][,vz, ce ,vn]

where v is an integer value, such that 2 < v < 31, which
is used to specify a bit position in the JSW.

The specified bifs (pseudo-switches) are set. Bits not
explicitly specified remain unchanged. The status of bits 0
and 1 may be specified only with the ISWITCH control
command.
M:RSS Resetting of Pseudo-Switches

The M:RSS procedure allows an executing user program fo

specify that one or more bits of the JSW are to be reset
(turned off).

Syntax

[label(s)] M:RSS v][,vz, el ,vn]

where v is an integer value, such that 2 <v < 31, which is
used fo specify a bit position in the JSW.

The specified bits (pseudo-switches) are reset. Bits not
explicitly specified remain unchanged. The status of

bits 0 and 1 may be specified only with the ISWITCH con-
trol command,

M:TSS Test of Pseudq-Swi tches

The M:TSS procedure allows an executing user program to
test the status of one or more bits of the JSW.

Syntax

[label(s)] M:TSS v][,vz, .., vn]

where v is an integer value, such that 0 < v <31, which is
used to specify a bit position in the JSW.

The status of the tested bits in the range 1-31 is returned
in CC3. If any bit in this range is both specified and on,
CC3 is also sef to on, Otherwise, CC3 is reset to 0.

The status of bit 0 of the JSW is returned in CC4, whether
requested or not, If it is on, CC4 is set toa 1. Other-
wise, CC4 is reset to 0. (The settings of CC1 and CC2
are unspecified.)

CC3 | CC4 | Tested Condition of JSW
- 1 Bit 0 on whether specified or not
- 0 Bit O off whether specified or not

CC3 | CC4 | Tested Condition of JSW

1 - At least one of bits 1-31 both specified
and on

0 - None of bits 1-31 both specified and on

In addition to setting the condition codes, M:TSS also re-
turns the fest detail word in R5. This detail word is a mask
containing 1's for all bits except 0 that were both specified
and on,

EXTERNAL COMMUNICATION

The procedures described in this section provide communica-
tion capabilities between the user and the operator.

M:KEYIN Message to the Operator With Reply

The M:KEYIN procedure permits a user program to display

a message on the operator console and then wait for the
operator to reply to the message.

Syntax

~ [label(s)) M:KEYIN (MESS, [*]adr1)
,(REPLY, [*] adr2), (SIZE, [*]n)

where

MESS is a keyword that introduces the message
address.
adrl is the word address of the starting location of
the message to be sent to the operator, This mes-
sage is a string of EBCDIC characters. The first
byte specifies the fotal number of bytes in the
message (legal range: 0-127). (See Meta=Symbol
TEXTC directive.)

REPLY is a keyword that introduces the reply
address.

adr2 is the address of the first word where the

operator's reply is fo be stored. When the reply

is received, the first byte of this area indicates

the total number of bytes in the reply (mandatory

minimum of one byte).

SIZE is a keyword that introduces the maximum size

of the reply.

n is a decimal integer indicating to the monitor
the maximum number of characters to be allowed
in the response (legal range: 1-31). The response
will be truncated if necessary.

The message is sent to the operator console preceded by a
message number (supplied by the system) and by the system
ID of the job. The message and reply are also output to the

OUT symbiont file (see M:PRINT), The operator console
then changes to the sending mode to accept the reply. The
carriage-control and character-delete characters are in-
tercepted by the system and not transmitted. The end of
message is designated by the EOM character (X'80').

The operator may defer his response to this message just as
in the case of system-issued messages that require a reply.

M:TYPE Message to the Operator

The M:TYPE procedure permits the user's program to send
a message fo the operator. In contrast to the M:KEYIN
procedure, the monitor does not solicit a reply for the user
program,

Syntax

[label(s)] M:TYPE (MESS,[*] adr)

where
MESS is the keyword that introduces the message
address.
adr is the word address where the message to be

sent to the operator begins. This message is a
string of EBCDIC characters, The first byte
designates the total number of bytes in the mes-
sage (legal range: 0-127).

The message is sent to the operator's console after the sys-
tem has appended two exclamation points, and the job's
system ID to the beginning of the message. These appended
characters are used to identify the source of the message.
The message is also output to the OUT symbiont file (see
M:PRINT),
M:PRINT Writing on the Listing Log

The M:PRINT procedure permits writing a record on the

listing log (job control file), normally output to the symbiont
line printer,

Syntax

(label(s)] M:PRINT (MESS, [*]adr)

where
MESS is the keyword that infroduces the message
address,
adr is the word address where the record to be

written begins. This record must consist of a string
of printable EBCDIC characters, The first byte
indicates the total number of bytes in the record
(127 maximum; a zero value causes a line space).

The record is printed on the OUT symbiont-printer file as-
sociated with the job. Printing occurs either at job end or
during its progress, Writing in the OUT output stream can

be done either by an M:PRINT procedure or by the standard
I/O procedures via a DCB assigned fo the OUT device (see
Chapter 3).

M:INT Interrupt Initiated by the Operator
The M:INT procedure allows the user's program to receive
control (at a specified user routine) from the system upon

occurrence of a console interrupt sent by the operator (see
XOS/OPS Reference Manual, 90 17 68).

Syntax
[Iabel(s)] M:INT address

where address is the entry point of a user's routine that is
entered in response to the operator interrupt.

After the M:INT service has been executed, the system
recognizes that the user program is prepared to receive
control if the operator presses the INTERRUPT button. When
the user routine receives control after an operator interrupt,
an abnormal code X'4C' is contained in the first byte of
register R5,

The monitor prevents reentrance of the user routine if the
operator repeats the interrupt before the user routine is
exited,

The interrupt processing is terminated two ways:

1. By the M:ERR procedure, which aborts the job or step
depending upon bit 0 of the JSW.

By the M:RETURN procedure, which returns control to
the system for restoration the program state and registers
as they were before the interrupt and to restart the user
. program at one of two possible addresses. If no address
is supplied in the argument field of the M:RETURN pro-
cedure, control is returned to the point of interruption.
Otherwise, control is returned to the specified address.

TIME AND DATE FACILITIES

The services. described in this section enable an executing
user program to obtain the absolute time and/or to initialize
and test a relative time counter,

M:TIME Obtain Absolute Time

The M:TIME procedure allows an executing user program to
obtain the date and time of day, to within one second.

Syntax
[label(s)] M:TIME [*]address
where address is the address of a block of five words

where the system stores the date and time as shown
below. The date and time are sent to the user program,

in the form of 20 EBCDIC characters, in the specified five
words of the procedure argument:

Word1 h h m
Word 2 ‘ m s s
Word 3 c ¢ b
Word4 d d m'
Word5 m' y ¥

Two decimal characters specify each of the following:

hh — hour

mm — minute

ss — second

cc — hundreth of a second

dd — day

m'm' — month

Yy - year
also

— period

b — blank (X'40')

M:GETDAY Obtain the Date

The M: GETDAY procedure allows the user program to obtain
the date (year and day), in a contracted form during program
operation.

Syntax

(label(s)) M:GETDAY [*]number

where number is an integer specifying the number of days by-
which tomodify the current date before itsreturn to the user.

The date, modified by the value of the procedure argument,
is transferred to the user program in Ré and R7 in the form of
a series of eight EBCDIC characters:

R6 register — b y d

b b

yy — two decimal characters specifying the year.

)4

R7 register—d d

ddd — three decimal characters specifying the number
of the day in the year.

Note: The contents of register R5 are also modified by this
procedure; the result in R5 is unpredictable.

M:STIMER Start Countdown Timer

The M:STIMER service requests that the system initialize a

job-unique clock counter for a specified interval, activate
it only while the requesting program is running, and branch
to a user-specified routine when the interval has elapsed.

Syntax

(MIN, value)
(SEC, value)
(TUN, value)

(label(s)] M:STIMER

], [(*] address

where
value is an integer specifying the number of time
units in the interval, Depending upon the key-
word, the time unit adopted is
MIN — minute
SEC —second
TUN — elementary interval. (One pulse on
hardware clock 3; normal for XOS is
500 Hz,)
address is the starting address of the user routine.

The clock counter is started at a specified value. It is
regularly decreased only while the user program is executing.
When the counter reaches zero, the system simulates a trap
(see M:TRAP) and transfers control to the user specified
address. The abnormal code value X'4D' is contained in

the first byte of register R5.

If several calls to M:STIMER are executed in a program,
the most recent call cancels the effect of the previous calls.

An M:STIMER time out (interval elapse) is treated by the
system the same as a trap whose handling has been requested
by the user via M:TRAP. - Hence, as with M:TRAP, the user
must exit his interval-elapse "trap" handling routine with
either an M:RETURN or M:ERR. Since the considerations
are the same, refer to the discussion of M:TRAP for
particulars.

M:TIMER Test Countdown Timer

The M:TIMER procedure allows the user program to obtain
the time remaining before a clock counter, previously
initialized by M:STIMER, reaches zero. Optionally, -an
active M:STIMER may be canceled.

Syntax

MIN
SEC
TUN

[label(s)] M:TIMER [, CANCEL]

The following keywords specify the units in which the TUN — elementary interval (one pulse on hardware
time remaining in the interval is returned to the user: clock 3; normal for XOS is 500 Hz).

CANCEL — is an optional keyword. If present, the
MIN — minute. active M:STIMER is canceled.

The time remaining in the interval is returned to the user
SEC —second. in R5 (in the units specified).

9. TELECOMMUNICATION FACILITIES

INTRODUCTION

Fundamental aspects of computer-based data communica-
tions systems of the type accommodated by the XOS
Telecommunications Management System (TMS) are ex-
plained in this chapter. This description explains tele-
communications systems for the TMS user; it does not
attempt to encompass all types of telecommunications sys-
tems. Moverover, concepts and terminology are presented
from the programmer's viewpoint and presupposes knowledge
of telecommunications.

A telecommunications system consists basically of

e Central computer and associated transmission control
equipment.

® Remote stations.

e Electrical circuits (transmission lines or data links) that
connect remote stations to the central computer (see
Figure 9-1).

The equipment by which the CPU is connected to the trans-
mission lines is called the Transmission Control Unit.

TERMINOLOGY

The términology defined herein applies to telecommunica-
tions system usage within this chapter.

TRANSMISSION LINE

A transmission line is the media of data exchange between
two stations. It can be classified according to whether it
connects two or more than two stations and whether the
connection between the central computer and the station is
continuously established.

NONSWITCHED LINE

A nonswitched line continuously links the associated
stations with the central site regardless of the amount of
time it is used. This type of line (e.g., telephone or tele-
graph) is usually provided by a common carrier on a con-
tractural basis.

SWITCHED LINE

A switched line provides a connection between the central
computer and the remote station as established by a dialing
procedure.

TYPES OF OPERATION

Simplex. Permits transmission in only one direction.

Half-duplex. Permits data transmission in two directions
but in only one direction at a time.

Full-duplex. Can accommodate data transmission in both
directions simultaneously.

LINE CONTROL (TRANSMISSION PROCEDURE)

Line control is effected by a group of control characters
framing transmitted data, which allows the control of the
progression of a transmission. Examples of the type of con-

trol are

o Addressing a terminal.
o Verification of data transmitted.

o Assure restarts in the case of an error.

GROUP OF LINES

A group of lines is a set of transmission lines linked fo the
same computer and used in one given applicaton. These
lines, along with the terminals to which they are linked,

must have identical characteristics (essentially, the same

transmission characteristics and data transmission rate).

TERMINAL AND COMPONENT
A terminal consists of a control unit and one or more input

and one or more output devices; each individual device is
called a component of that terminal.

STATION AND NETWORK

The equipment constituting a station can be either a ter-
minal, as defined above, or another computer. Stations

Central
Computer

CPU

Transmission
Control Unit

Transmission Lines

Terminal

Computer

Terminal Remote Stations

Figure 9-1. Basic Elements of Telecommunications System

are usually separated from the central computer by a dis-
tance sufficient to require common carrier facilities and
transmission techniques to accomplish communication
between the central computer and the remote station.
"Station" is synonymous to "terminal. "

A network is a group of one or more stations connected by
a single transmission line (see Figure 9-2).

TYPES OF STATIONS

Central Station. The network station that has the capa-
bility of inviting one of the other stations to send or re-
ceive data.

Remote Station. Any of the other stations of the network
that responds fo the invitation of the central station to send
or receive a transmission.

TYPES OF NETWORKS

Bipoint. A line is called bipoint if it connects the central
computer (station) to a single remote station.

Multipoint. A line is called multipoint if several remote

stations are connected to a single transmission line.

DATA STRUCTURE

Character. Composed of a predefined number of significant
binary digits, or bits.

TRANSMISSION CODE

A transmission code is a finite number of characters each
having the same number of bits.

Example:
EBCDIC, an 8-bit character code.

ANSCII, a 7-bit character code.

(See Appendixes G and H.)

RS

Nonswitched
TC RS > Bipoint
Network
RS
S
Central
Station
o ||
Nonswitched
CPU TC RS > Multipoint
Network
RS
J
Switched
— » Bipoint
:_ cX RS Network
TC CX
\
—————— CX RS
Switched
> Multipoint
Network
RS
J
TC = Transmission Controller
RS = Remote Station
CX = Common Carrier Exchange Unit
Figure 9-2. Network and Station Example

9-3

TRANSMISSION BLOCK
A transmission block is a finite number of characters of the

same code transmitted on the line in groups. A block can
be of fixed or variable length.

MESSAGE
A message is any sequence of data characters considered as

a unit, including any control characters necessary for trans-
mission on a communications line.

RECORD

A record is a collection of related items of data, treated as
a unit of information.

PACKING

Packing consists of eliminating non-significant blanks at the
end of a record, before the transmission of that record.

TRANSMISSION MODES

Character Mode.
character.
fer memory.

Where the data unit transmitted is the
It is used with terminals that do not have a buf-

Message Mode. Where the data unit transmitted is the
block. It is used with terminals having a buffer memory.

TRANSMISSION PROTOCOL

The rules that govern the data exchange on a transmission
line are called transmission protocol. In message mode,
these procedures append special characters framing the text,
permitting transmission of special messages called supervisory
sequences. These supervisory sequences also permit control
of the data transferred and assure proper transmission.

SUPERVISORY SEQUENCES
Supervisory sequences can be classified in two categories:
addressing interrogation sequences and receipt sequences.

Supervisory sequences are normally associated with message
mode transmissions.

ADDRESSING SEQUENCES

These sequences select or identify the station.

SPECIFIC POLLING SEQUENCES

Polling sequences are executed by the central station
and invite a component of a remote station fo transmit a
message. The particular component being polled (a re=-
quest to transmit) is identified by its unique address. An
example of a typical polling sequence follows:

Format:

0. POL. ADS. ENQ

where
0 is a string of synchronization characters (SYN).
POL is a control character that specifies polling
and gives the terminal address.
ADS is a control character that gives the address
of the component.
ENQ is a control character that indicates the end

of the supervisory sequence.

GENERAL AND CONTINGENT POLLING SEQUENCE

This sequence generally concerns the application of con-
centrators of teleprinters or of visual display stations. These
two polling sequences either request a specific component
to transmit or request any component of the remote station
to transmit. A general polling sequence is executed by the
central station. The central station invites the remote sta-
tion to transmit all the messages coming from the different
components having made a transmit request. An example of
a typical general polling sequence follows:

Format:

0. POL. ADG. ENQ

where ADG is a control character that explicitly specifies
general polling.

A contigent polling sequence is executed by the central
station. The central station invites the remote station to
transmit the message of a component determined by the inter-
rogating concentrator.

An example of a typical contigent polling sequence follows:
Format:

0. POL. ADA. ENQ

where ADA is a control character that specifies contigent
polling. ’

NORMAL SELECTION SEQUENCE

This sequence is executed by the central station. It requests
a remote station to prepare to receive a message. Atypical
normal selection sequence follows:

Format:

0. SEL. C2. ENQ

where
SEL is a control character that specifies selection
and gives the address of the terminal.
C2 is a control character that gives the address

of the component.

FAST SELECTION SEQUENCE

This sequence concerns teleprinter concentrators and visual
display applications.

The central station does not send a warning to the remote
station but sends the data in the same sequence. A typical
example of a fast selection sequence follows:

Format:

0. SEL. data block

RECEIPT SEQUENCES

Receipt sequences are sent by a slave station to inform the
master station of the reception of the block sent by the cen-
tral station and the state of the slave station for the contin-
uation of the transmission. The two most frequently used
receipt sequences follow:

Standard format:

X.ACK positive acknowledgement (no errors in
transmission)
X. NAK negative acknowledgement (errors in

transmission)

where X is a control character capable of taking several
configurations (NOB or DLE or SEL).

TELECOMMUNICATIONS ACCESS METHOD

The Telecommunications Management System (TMS) is com-
prised of a collection of system services, provided under
XOS, to manage various telecommunications devices con-
nected through transmission lines. TMS provides the means

by which a user can communicate with various remote
terminals via a set of system procedures called Telecom-
munications Access Method (TAM). TAM enables the user
to work at a level removed from the actual transmission
procedure.

TAM permits the user to work at the block level and ex-
changes logical data blocks with the user managing the
physical blocks transmitted.

TAM corresponds to other XOS access methods in that it
performs functions as a result of a user executing various
system procedures. Although some of the TAM procedures
are similar to those for other access methods, extended forms
are provided for full remote-processing capabilities.

Some of the major functions provided by TAM are as follows:
e Line protocol handling.

e Controller buffering/handling.

e 1/O and external interrupt processing.

o Error detection, notification, and retry processing.

e Request queuing.

e Line time-out processing.

e Polling/selection.

e Automatic data translation.

e Special character recognition and notification.

e Line initialization.

e Network management.

PROGRAM-LINE RELATIONSHIP

It is necessary before performing any input or output opera-
tions on a line or group of lines to establish a connection
between the line and the program using it.

The program using a line or group of lines must define its
usage of the line by means of the M:DCB procedure which,
during assembly time, creates a Data Control Block (DCB).

The final link between the line or group of lines in accom-
plished by the M:OPEN procedure. It establishes the
linkage, by means of the operational label, between the
real line defined by the 'ASSIGN command and the DCB
defined in the program using the line. Once the linkage
has been established the program is allowed to issue read
and write procedures to perform data transmission operations
over a transmission line.

Termination of the program-line connection is accomplished
through the M:CLOSE procedure. Close terminates the

availability of a line or group of lines and causes the fields
in the DCB to be restored to the condition that existed
before the DCB was opened.

RESOURCE ALLOCATION

Allocation of a line or group of lines to a job is accom-
plished through the !ASSIGN command.

This command has a dual role; it

1. Reserves a group of lines, or a unique line, asresources
for the job.

2. Informs the access method of the address of the lines
and terminals of the group.

Format of !|ASSIGN Control Command for TAM:

MTN

| -
IASSIGN op lcbel[,{FRE

}],DEV,(LIN;

| ’{group"id})[, (LLK, op-label)]

line-id

where

op-label is a one- to four-alphanumeric-character
identifier. It assures the link between the phy-
sical resource defined by the IASSIGN control
command and the DCB of the user program (see
"Data Control Block").

MTN is a keyword signifying that the matching
between the operational label of the DCB and
the IASSIGN control command is valid for the
job step in which the IASSIGN control com-
mand appears and for subsequent steps until the
end of job or until the appearance of a new
IASSIGN control command using the same opera-
tional label.

FRE is the option by default. In this case, the
operational label and the corresponding associa-
tion with the IASSIGN control command are valid

only for the current step.

group-id is a four-alphanumeric-character identi-
fier that specifies the symbolic name of the group
of lines defined at system generation.

line-id is a four-alphanumeric-character identifier
that specifies the symbolic name of the line de-
fined at system generation.

9-6

LLK allows the chaining of the operational label
to another operational label defined in another
IASSIGN control command. Therefore, several
lines or groups of lines are linked simultaneously

to the same DCB.

The ASSIGN control command used in transmission does not
allow the definition or redefinition of DCB parameters as is
possible with the other access methods.

The maximum number of resources of the DEV type (lines
included) that can be assigned to a job is 12. However, the
number of lines belonging to the group of lines defined at
system generation is not limited (see XOS/SM Reference
Manual, 90 17 66).

M:ASSIGN PROCEDURE

This procedure allows the dynamic association of an opera-
tional label of the program DCB to an operational label de-
fined in an 1ASSIGN control command.

Syntax

[label(s)] M:ASSIGN (OPLI{I-:SLG_C::LQ'})

[*]addr
UL bk

where
OPL introduces the operational label one- to four-
alphanumeric-characters) providing the link with
the DCB of the user program.
UNT, OPL implies use of the resource (device and

volume) defined and allocated to the job step by
the specified operational label.

DATA CONTROL BLOCK

The Data Control Block (DCB) groups the fixed parameters
defining the line or group of lines along with the specifica-
tions on their usage. The DCB is used in the interpretation
of 1/O requests made by the user.

CREATION OF THE DCB
The DCB is created at assembly time by the M:DCB pro-

cedure. It enables the user to introduce, in a write pro-
tected area, all or part of the following parameters:

[label(s)) M:DCB (OPL, 'op~label')[,(ERR, address)]

[, (ABN, address [, code], ...)]

[, (SIM, value)] ,(AM,{?/TS})

ASC
,(MOD, lEBC
BIN

)

[, (LST,address [, address] [, address)

(---1]

where

OPL introduces the DCB operational label. The
operational label is used in the !ASSIGN com-
mand for the assignment of a line or group of lines
to the user program (a maximum of four alphanu-
meric characters).

ERR specifies the entry point address in case an
error detected upon execution of an M:CHECK
procedure. If this parameter is omitted, the job
is aborted if an error occurs during a transmis-
sion request.

" ABN specifies the address of an abnormal exit.
The absence of this address causes a program
abort if an abnormal condition occurs. The ab-
normal classes are

X2 End of special transmission.
X3 Processing abnormalities.
The absence of one of these codes causes the job

to be aborted if an abnormal condition correspond-
ing to one of these classes is detected.

SIM specifies the maximum number of simultaneous
1/O's which can be performed on the line or group
of transmission lines linked to the DCB.

AM specifies the access method:
BT for TAM

VS for VSAM

9-7

TAM is compatible with the VSAM access method

(i.e., a DCB coded for TAM usage can be used

with TAM or with VSAM). This allows the debug-
ging of a transmission program: read requests ser-

viced by means of a card reader, write requests
serviced by means of a printer.

The user cannot issue any of the special read re-
quests (e.g., read survey), special write options,
or procedures pertaining to data transmissions

(M:DEVICE, M:MDFLST).

MOD specifies the data code used by the user:

BIN Binary (valid only in message mode).
EBC EBCDIC (default option).

ASC ANSCIL

The data codes allowed are dependent upon the
transmission code of the lines assigned to the pro-
gram as shown in Table 9-1.

Table 9-1. Allowable Data Codes

User
Code
Line
Code ANSCII EBCDIC | Binary
ANSCII yes yes no
EBCDIC yes yes yes
Binary . no yes yes

defines the explicit list or lists used. The word
address of one to four component lists can appear
in this case (see Terminal and Component Lists).
The first list coded is activated when the DCB is
opened. Only one list is linked to a DCB at a
given time.

M:MOVEDCB PROCEDURE

This procedure reserves space required for a DCB in the com-
mon dynamic area in read-only protection.

It returns the address of the inactive DCB stored in the com-
mon dynamic area. Default values are assigned to the
parameters not coded in the DCB.

This procedure can be utilized in

Creating, at the execution of a program, DCBs for which
the need is not possible to anticipate at assembly time.

e Saving the content of inactive DCBs in a program
before the loading of another program is called for

by M:LINK.

Syntax

(label(s)) M:MOVEDCB [*]addr, (PTR, dcb-addr)

where

addr is address of the sending area. This field is
either an inactive DCB or a nonprotected field
where a DCB image has been created by the
program.

PTR introduces the address of a pointer where
the address of the dynamically created DCB will

be placed.

DCB MODIFICATION (M:SETDCB)

M:SETDCB allows modification of DCB parameters during
program execution. Before opening the DCB, the
M:SETDCB allows the modification of the DCB content.
Between the opening and the final closing of the DCB
the M:SETDCB procedures allows only the modification
of ABN and ERR DCB parameters (for M:CLOSE option
MTN, RLS, see "Opening and Closing a Line").

Syntax

[label(s)] M:SETDCB [*]adr-l[,(opL

[*]c:dr-2 .
'{'op—label'}) soptions

where
adr-1 is the address of the DCB to be modified.
OPL is a keyword introducing the new operational
label to be given to the DCB to be modified.
options are the same options and have the same

syntax as those described for the procedure M:DCB
(see "System Procedures").

TERMINAL AND COMPONENT LISTS

The user performs 1/O operations by referring to a terminal
or component appearing in a list. The list consists of all

9-8

components for all terminals of a line or group of lines
assigned to the user upon initiation of his job.

There are two types of lists:

e An implicit list is constructed by the system when a line
or group of lines is opened.

e An explicit list is created by the user via the M:LIST
procedure.

An implicit list allows flexible line usage in that the user
can process different lines by changing the assignment of a
line or group of lines.

An explicit list allows the user to specify a subset of com-
ponents of the group or the order in which they appear in
the list.

In either case, once the line or group of lines is opened,
the implicit or explicit lists are processed identically.

OPENING AND CLOSING A LINE

The opening of a line or a group of lines is accomplished
through the M:OPEN procedure which must be executed
before any transmission procedure reference and before
any M:MDFLST procedure reference. The M:OPEN pro-
cedure allows a user to establish a temporary connection
between the program and the line, or the group of lines.

Functions provided are

e Verification of the compatibility between the explicit
lists described by the user in his program and the group
of lines assigned as resources.

e Initialization of the lines: initiation of the transmission
device controller and the line adapters.

e Verification of the connection of the lines and the
operational status of the intermediate telecommunica-
tions equipment.

e Creation in the user area of the list of components or
terminals if it is for an implicit list (see Terminal and
Component Lists).

e Creation of the Data Extension Block (DEB) in which

TAM places the line specific parameters of the line or
group of lines linked to the DCB.

e Reservation and setting up of the communication tables
(10OB) between the access method and the 1/O supervisor;
allocation of the default values for all the parameters
remaining undefined in the DCB; creation of the tables
containing the variable parameters of the transaction
in process.

e Validity checking of the DCB parameters, their co-
herence with the processing mode of the transmission
line.

When specific transmission lines of the group linked to the
DCB cannot be initialized correctly, the opening of the
group is performed normally. The lines that are not ini=
tialized are brought to the attention of the user, when the
first /O on these lines is performed, by an abnormal
code during the execution of the M:CHECK procedure. The
user can attempt to open the line not initialized by using
the M:DEVICE procedure (option OPN — see Input/Output
Procedures).

Syntax

[label(s)) M:OPEN [*]dcb-address, S

where S indicates the processing mode: Scratch; it is the
only mode recognized for opening a line or group of lines.

The M:CLOSE procedure terminates the program line and
causes the closing of the DCB (i.e., breaks the linkage).

Functions performed are

o Wait and test for completion of the last 1/O operations.
e Temporary or final DCB locking.

e Releasing the memory space reserved for the tables
constructed when the DCB was opened.

o Disconnecting the lines and releasing the transmission
device controllers and line adapters.

.

Syntax

[label(s)) M:CLOSE [*]dcb-address
HLD

,[(‘RLS)]
MTN

HLD specifies temporary close which allows the
user to wait on all the 1/O events currently active
on the DCB.

where

RLS causes the release of the DCB-group connec-
tion of lines (or line) and job-group of lines.
The resources constituted by the lines of the group
are released when the option FRE appears in the
IASSIGN command (see "Resource Allocation").
MTN indicates the suppression of the connection
DCB-line group but saves the link between job-
group of lines allowing the DCB to be used to

9-9

process this same group of lines within the same
job. The lines are not released, even if the option
FRE appears in the |ASSIGN command.

BUFFER MANAGEMENT

BUFFER AREAS

All 1/O operations performed on transmission blocks are
sent or received from buffers provided by the user.

The handling of these buffers is a user responsibility. The
user must reserve their location and specify their address at
the 1/O procedure reference level.

ACCESS METHOD

TAM (Telecommunications Access Method) is a basic access
method that performs 1/O operations on remote devices.
This access method is composed of a group of services to
which the user refers by the following procedures:

e M:READ, M:WRITE to execute transmit or receive
operations to a terminal.

e M:DEVICE to specify a mode change or perform a
specific operation on a terminal.

e M:LIST, M:MDFLST to dynamically construct or modify
the terminal lists.

. M:CHECK fo test the progression of the 1/O while
waiting for its completion.

e M:WAIT to wait for the end of one or several 1/O
events.

An event control block (ECB) may be associated with each
of these procedures to enable the user to perform other
asynchronous processing while issuing several READs or
WRITEs (up to a maximum of the SIM parameter specified in
the DCB). When the user has performed an M:CHECK
procedure on this event, the user is set in a wait state to
regain control when the block has been transmitted. The
contents of register 5, upon return, contains a code that
indicates the manner in which the transmission was performed
(specifically, if an error occurred).

Two data transmission modes exist:
character mode.

message mode and

o Message mode for handling terminals having a buffer
memory.

o Character mode for handling terminals when the data

unit transmitted is the character.

JOB PRIORITY ASSIGNMENT

The telecommunications jobs are generally characterized by
a high content of input and output operations.

It is desirable to assign them to a high interrupt priority
level in relation to the other classes of jobs. To avoid
a job controlling the CPU time at the expense of other
jobs, there is a systematic rotation between these jobs based
on the regular progression of an interval timer. If the user
wishes to use this procedure, the time quantum allocated is
fixed at the system generation.

DEBUGGING

The dubugging of a telecommunications program is a
delicate operation. Such a program must be executed in a
serial job class and should take advantage of the XOS de-
bugging aids (DEBUG processor). Thus, various telecom-
munications processing points of the program can be cor-
rectly covered; the terminal lists and the corresponding
index values can be simulated.

The interface requires usage of the following two steps:

STEP ONE

Hardware simulation by replacing the lines and teminals
with local devices accepting the same data formats. This
is made possible by a local assignment in an IASSIGN com-
mand by means of the similarity between TAM procedures
and conventional 1/O procedures.

There can be no special operations as in DEVICE and
MDFLST procedures.

STEP TWO

Debugging of the program connected to the device control-
ler and to the real terminals first locally through lines of
reduced length then remotely through real lines.

ERROR AND ABNORMAL PROCESSING

The normal execution of an I/O operation, and opening or
closing of a transmission file can be interrupted for the fol-
lowing reasons:

e Programming error (e.g., transfer length greater than
the maximum length permitted for the component de-
clared at system generation).

e Initiation error of a job, invalid DCB.

o Abnormal conditions arising during the processing of a
file (e.g., initial polling or selection rejected).

e Errors during file processing (e.g., an invalid response

from a terminal.

The occurrence of an abnormal or error condition during the
processing of a transmission file causes the execution of
a user exit specified by the address in the DCB under ABN
and ERR parameters.

The abnormal conditions and errors lead to an abort of the
user program if no user exit address has been provided to
process the condition either by omission of the ABN or ERR
address, or nonselection of the corresponding abnormality
class (ABN parameter in the DCB —see "Data Control
Block").

Upon entry the following registers are loaded by TAM:

Register 5 Error or abnormal code, left justified; return
address right justified.

Register 6 DCB address, right justified.

Register 7 Event Control Block address (ECB) associated

with the M:CHECK procedure.

The user may initiate other 1/O procedures within the exit
routine, with the exception of the M:CHECK procedure.
The user must exit via the M:RETURN procedure.

STATISTICS AND ACCOUNTING

TAM records all the errors and their characteristics in the
job accounting file. The error characterisites saved are:
line name, terminal name, type of operation performed,
number of retries, and status of the line.

Accounting information produced by TAM includes the
number of blocks exchanged during transmission, the
elapsed time between opening and closing of the lines,
the number of calls to the 1/O supervisor, the number of

characters transferred, and the number of on-line frans-
mission errors. :

MESSAGE MODE

Successful communication with a message mode remote
station requires that the data stream between the central
station and the remote station contain the appropriate line
control characters and character sequences (see Figure 9-3).
TAM assumes responsibility for processing the control char-
acters which are appended to the data block being transmit-
ted on the line. If the block is a multirecord block, it is
the user's responsibility to provide record header characters
and record separators. It is also the user's responsibility to
provide page formatting or line number characters contained
in each record.

Transmission Block

Header Record Record Record Ender
1 2 3

Multirecord
User Text

T

Managed by TAM

Figure 9-3. Control Characters Appended by TAM

TAM provides the facilities, called error recovery pro-
cedures, that diagnose a variety of error conditions that
occur during message transmission, and attempt fo recover
those conditions that are considered recoverable so that the
transmission can continue.

TAM provides the code translation between the transmission

code employed by the remote station and that which the
user has specified as a working code.

COMPONENT LIST

Message mode utilizes a component list. The user can pro-
cess two types of component lists:

e Implicit list constructed at the opening of the line by
the system (M:OPEN procedure).

e Explicit list defined by the means of the M:LIST pro-

cedure at assembly time. The user specifies in this DCB

by the keyword parameter LST the address of the list.

POLLING/SELECTION LIST

The transmission procedure in message mode uses specialized
characters called supervisory sequences to control and chain
the transfer of data. These sequences are referred to as

e Polling sequence (an invitation to the terminal to
transmit data).

e Selection sequence (an invitation to the terminal to
receive data).

List definitions:

e A polling list is one in which the components appear
for the different stations capable of transmitting data
to the central station.

A list appears as a table that consists of as many entries as
there are components in the list. The list consists of a
header containing an index that points to the operational
entry at the time considered. The indexes include

e Polling index in the case of a polling list.

o Selection index in the case of a selection list.

Header Polling Index

Selection Index I

| CROI
CR 02
Polling List 4 TR O1
| TR 02

CR 03

(| cpPOl

LP 01
CP 02
Selection List <

LP 02

CP 03

\ LP 03

Depending on the type of transmission line (multipoint or
bipoint) there are two types of component lists:

o Sequential access list. In the case of a multipoint
line, a list in which the user can access the various

components of the list sequentially. The user cannot
perform simultaneous I/O on several components of the
list.

Mixed list. A list in which the user can access directly
certain components located on different lines and
sequentially other components located on the same
line. :

In this type of list, the user cannot use automatic pol-
ling (see M:READ procedure, SUR option).

M:LIST PROCEDURE

The declaration of an explicit list is accomplished by means
of the nonexecutable M:LIST procedure. This procedure re-
serves, in a read-only area, the space necessary for the
list. The list is partially constructed at assembly time and
completed at execution time when the DCB is opened.

Syntax

.

OPN

[label 6] McLIST NS00

},na‘me[,nqme][. .

,(OUT,name[,name][. . .])

where

IN describes the polling list. Using automatic
polling, the user can specify if the list is OPN or
WRP.

OPN (linear) TAM scans the component list of the
different stations of a multipoint line only once,
even if a station has answered. When the polling
index reaches the end of the list, any subsequent
1/0 request causes an abnormal return unless the
user has forced the index to another entry in the
list. When a selected terminal is not ready to
receive, the selection index list is not changed,
and no return is made to the next terminal list,
The user is warned by an abnormal exit,

WRP (looped) TAM interrogates the various com-
ponents of the list until one of the stations inter-
rogated answers. The list index is automatically
repositioned at the beginning of the list when the
end of the list is reached.

Note: Automatic polling can only be used with a
sequential list, all the components of which
must belong to the multipoint line.

name - corresponds to the symbolic name of the com-
ponent defined at system generation. It can be
cited explicitly by a string of four characters

between brackets or implicitly by the user program
word address where a string of four EBCDIC char-
acters is located.

This last method enables the user to keep the
component name and to be able to reference it
symbolically.

describes the selection list.

ouTt

An explicit list can consist of as many as 254 polling entries
and 255 selection entries. (See Appendix F for explicit for-
mat of a list after assembly.)

M:MDFLST PROCEDURE

Implicit or explicit lists are reserved in read-only memory.

The M:MDFLST procedure enables the user to modify these
lists during the execution of his program.

Syntax
(label(s)] M:MDFLST [*]DCB-address
W

SKP POL
,([ACT][,[*)VCI'I ve]), {SEL][,(LST, [*lword-address)]
IND PS
1 >
,(RSP)

,(NEW), (LST, [Jword-address)
\

where
LST is the address of the list. When this option is
not specified, the active list of the DCB is used.
When the option NEW is present, the list specified
becomes the active list attached to the DCB. The
address of this new list must have been previously
specified in the DCB (LST option). The new option
is accepted, between OPEN and CLOSE only when
no 1/O is in progress or waiting. Otherwise, the
user program is aborted. Therefore, it is prefer-
able for the user to execute a CLOSE HLD before

trying to activate a new list.

,SA\lél?l' __ SRUeF;fp;fess} a specified component either (1)

by the index value of his entry in

the polling list (POL) or selection list (SEL), or (2)
by a user program word address where the index
value of the entry is located. In this case, the
value must be left justified in the word. The
suppression (or restoration) of a component in a

list can be done either in the polling list, in the
selection list, or in the polling and selection

list (PS).

IND the index of a selection list (SEL) or of a pol-
ling list (POL) or of polling and selection list (PS)
is to be changed to a value specified directly
or by a word address of the index value. In
this last case, the index value must be left justi-
fied in the word.

This operation is refused when there is automatic
polling in progress. In this case, the condition

code is set to 01 (CC3 CC4 =01).

PS when the list comprises a polling list and a
selection list, it is possible to designate, at the
same fime, a component in the polling list and
the same component (or its equivalent) in the
selection list, on the condition that there is cor-
respondence of the polling and selection index.

The value of the index must not be greater
than 255. If the value indicated is erroneous,
the operation requested is not performed and the
condition code is set to 01. (CC3 CC4 =01). An
active component, one that has 1/O outstanding,
cannot be suppressed. In this case, the operation
requested is not performed and the condition code
set to 01 (CC3 CC4 =01).

RSP stop automatic polling operation on a looped
(WRP) list. In this case, the list concerned is
the active list. When the option LST is coded, it
is ignored.

When an automatic polling operation is in progress
and all the components of the list answer nega-
tively, the operation is stopped at the end of the
list. Upon the execution of the corresponding
M:CHECK procedure, a negative polling abnor-
mality code and the index of the last station inter-
rogated is returned to the user. The index value
is only returned if IND option is specified in the
M:CHECK procedure.

INPUT/OUTPUT PROCEDURES

The 1/O operations on terminals are performed by means
of M:READ and M:WRITE procedures. The user issues one
of these procedures each time he wishes to receive a
message from a remote station or send a message to a re-
mote station. The read and write procedures have special
options that are dependent on whether the line is bipoint
or multipoint.

9-13

M:READ

Syntax

PROCEDURE

(label(s)] M:READ [*]dcb-address, (BUF,[*]byte~adr)

where

[, TRL, [¥lvalue)][, (PTR, []word-adr)]

[, (SUR)I[,IND, [FJvalue)]

dcb-address is the address of the DCB that specifies

BUF

TRL

PTR

SUR

the line on which the read operation is to be
performed.

defines the byte address of the memory area
where the transfer is to be performed.

defines the maximum number of bytes to trans-
fer. This transfer length must be equal to or ex-
ceed maximum fransfer length defined for the
compcnent at system generation, When this option
is absent, the default value assigned is the maxi-
mum component transfer length fixed at system
generation.

defines the address of the event pointer (ECB)
associated with the 1/O at the execution of the
procedure. This option is necessary if the user
wants to perform an 1/O wait M:WAIT procedure
or a M:CHECK on multiple 1/O requests.

requests an automatic polling operation on a
multipoint line. The user requests receipt of a
message from the component corresponding to the
index specified by IND or if the index is omitted
on the active component in the polling list.

In a loop list when a terminal has no message to
send, it answers negatively, and a new polling
operation is automatically initiated to the com-
ponent corresponding fo the next entry of the list,
etc., until one of the components interrogated
answers positively or, for linear lists, when end

of the list is encountered.

For a loop list, the polling index is reinitialized,
at the end of list and the operation resumes. Pol-
ling ceases in this case only upon the acquisition
of a message or at the end of the list after the
execution of an M:MDFLST procedure with the

RSP option.

The detection of a nonrecoverable error stops the
automatic polling operation. If the user is in a

wait state for the 1/O event after issuing an

M:CHECK, he regains control af the address spec-

ified by the ERR parameter in the DCB.
IND forces the request to the component identified
by the index value of the active list associated
with the DCB. When this option is absent, the
entry is the one corresponding to the value of the
polling index contained in the list. The value of
the polling index of the list is not disturbed by the
value of the IND option of the procedure refer-
ence. The IND value range is from 1 to 254.
When it is specified indirectly in a word of the
user program, it must be placed in the left-most
byte of the word.

Note: The polling list index is the users responsi-
bility. The list index can be modified by
the execution of an M:MDFLST procedure
(IND) or M:READ(SUR). In the last case,
the list index points the component which
has answered positively to the automatic
polling. The user can specify the com-
ponent on which he wants to execute an
M:READ procedure, but in no case will the
value specified by IND affect the value of
the list index.

M:WRITE PROCEDURE

Syntax

[label(s)) M:WRITE [*]dcb-address, (BUF,[*] byte-adr)
,(TRL, [F]value)[, (PTR, []word-adr)]

LAND, [4] value)] [, (FINJ][, REP)]

where

BUF, PTR have the same meaning as for the M:READ
procedure.

TRL defines the effective number of characters to
transfer. This value cannot be zero or exceed the
maximum transfer length defined for the component
at system generation.

IND defines the component in the active list to

which the message is to be transmitted. When this
option is absent, the entry is the one corresponding
to the value of the selection index contained in
the list. The value of this index is not affected by
the value of the IND option, The IND value range
is 1 to 256. When it is specified indirectly in

9-14

a word of the user program, it must be placed in
the left byte of the word.

REP allows the user to reinitiate a WRITE request
that could not be executed because of a transmis-
sion problem. The user buffer that has already
been translated during the first request, in the
case of an on-line transmission code different
from the user code, is transmitted without a new
code translation.

FIN indicates last block of message. Nof used for
terminals that accept only one block per message
or do not uniquely identify the last block.

M:CHECK PROCEDURE

The M:CHECK procedure awaits the end of an 1/O event if
it has not occurred, and controls the progress of a transmis-
sion request. When a transmission error occurs, control
is passed to the user at the address specified in the DCB
(option ERR).

When this option is not present, the program is aborted. In
the case where an abnormality occurred during processing
and it corresponds to an abnormality class anticipated by
the user in his DCB (option ABN), control is passed to the
address specified, otherwise the program is aborted.

Syntax

(label(s)] M:CHECK [*]dcb—address[,(PTR,[*]address)]

[, (RSA,address)][, (IND,address)]

where

PTR, address indicates the event pointer address
specified in the user's M:READ or M:WRITE pro-
cedure. If this option is present in READ or WRITE
procedure reference, it must be present in the cor-
responding M:CHECK; if absent in a READ or
WRITE procedure reference, it must be absent in
M:CHECK for all M:CHECK procedure references
applicable to the DCB.

RSA, address indicates the address where the effec-
tive number of bytes transferred in a read re-
quest is placed.

IND, address indicates an address where the user
wants to recover the index in the polling or selec-
tion list, corresponding to the event.

M:DEVICE PROCEDURE

This procedure enables the user to specify a transmission
mode change or to perform a specific operation on a
component.

Syntax

BEL
[label(s)] M:DEVICE [*]dcb-addr[,([sus H
ABO

,(IND,{gaL},[[*]vqlue])[,(Moo,{Eg‘c'})]

where

BEL allows the user to send an alarm to a compo-
nent. For some terminals, this sequence blocks
the terminal and requires intervention by the local
operator. '

SUS suspends transmission with a component. After
execution of a READ procedure, the suspension
implies that the last transmission block has been
currently received (i.e., execution of the
M:DEVICE SUS acknowle:iges the last block sent
by the terminal). The suspension resets the line to

the inactive state.

ABO ceases fransmission with a component. After
execution of a READ procedure, the execution of
-this procedure with the ABO parameter requests
the component to save the block previously sent
for the next transmission (next READ on this

component),

defines the entry of the polling (POL) or
selection (SEL) list, specifying the component on
which the operation must occur. When the param-
eter value is absent, the value of the index is
that of the active list.

IND

The value of IND must be greater than zero and
less than 256. When it is placed in a word of the
user program it must be left-justified in the word.

MOD enables the user to redefine the code of his
data dynamically in the case where the code
specified by the option MOD of the DCB is EBCDIC
or binary. Some terminals have the capability of
transmitting blocks in EBCDIC or binary depend-
ing on the type of data read on punched cards.
Therefore, the user can be warned as soon as the
block is received, that the next block is a binary
block. By changing his working mode, the user
does not receive the abnormal code at the return
of the M:CHECK procedure after the reception of
the binary block.

Note: Operations BEL, SUS, and ABO re-
quested by the execution of M:DEVICE
are systematically executed on the active

component of the multipoint line, even if

9-15

the value of the index specified by IND
corresponds to a different component.

In the case of a bipoint group of lines, IND
specifies the active component on which
the operation occurs.

If the 1/O request cannot be performed, or
the index specified is erroneous, the con-

dition code is set to 1 (CC3, CC4 =01).

MULTIPOINT LINE MANAGEMENT

Before a transmit or receive operation can be performed on
an idle line, the line must be initialized by sending a pol-
ling or selection sequence. TAM is responsible for this ini-
tialization. The user does not have to specify the first
read or write request. However, the first read or write
must be followed by an M:CHECK procedure which tests the
progression of the M:READ or M:WRITE procedure and the
acceptance of the polling or the selection sequence. When
the user does not adhere to this rule, he risks an abnormal
exit to the address indicated in his DCB (ABN parameter),
upon the execution of the M:CHECK test corresponding to
the 1/0O procedure.

Successive M:READs. If the result of the test for the
M:CHECK procedure is correct, the user can initiate a num-
ber of successive reads, equal to the value of the SIM param-
eter coded in his DCB, on the same component of the polling
list. The user must initiate reads, on the same entry of the
list until the reception of the End of Message code or an
error code upon the execution of the corresponding M:CHECK
procedure. The user cannot initiate an 1/O (read or write)
on a different component as long as the line has not been

set to idle by the access method.

Therefore, the line is set to idle upon the reception of the
End of Message code or an error occurrence.

The user can also suspend or release the transmission by exe-
cuting the M:DEVICE procedure. The line is then set to
idle.

Successive M:WRITEs. If the result of the test for the

M:CHECK procedure is correct (i.e., the message cor-
responding fo this first write has been accepted), the user
can initiate a number of successive writes equal to the value
of the SIM parameter coded in his DCB on the same com-
ponent of the selection list. He must specify if it is the

last transmission block (option FIN of the M:WRITE pro-
cedure) for the access method indicates end of transmission
and resets the line to idle. The user can then initiate an
I/O (read or write) on a different component.

BIPOINT LINE MANAGEMENT

As for a multipoint line, the first procedure reference
(M:READ or M:WRITE) which initializes the transmission on
a bipoint line must be followed by an M:CHECK procedure
testing the progression of the 1/0.

However, as soon as all the lines of the group are ini-
tialized, the user can initiate a successive number of reads
(or writes) equal to the value of the SIM parameter, on
the different components of the list (SIM can be equal
to the number of lines related to the DCB). On a given
line, the user cannot change the direction of the trans-
mission as long as the line has not been set to idle fol-
lowing the reception of end of message on a read
(M:READ) or at the execution of the M:WRITE procedure
with the FIN option, or at the execution of the M:DEVICE
procedure (option SUS, ABO).

ABNORMAL AND ERROR CONDITIONS

FILE PROCESSING ABNORMALITIES

End of transmission abnormalities, not anticipated, are
subject to being processed by a user routine for which
the ABN address is related to the code X2 upon its intro-
duction in the DCB. User handling abnormalities are
processed by a user routine for which the ABN address
is related to the code X3 upon its introduction in the

DCB (see Table 9-2).

FILE PROCESSING ERRORS

These errors assume a bad operation on the lines or the as-
sociated devices. They can be processed by a user routine,
the address for which is introduced in the DCB following
the keyword ERR. The exit to the user routine occurs only
when the number of retries is reached, and the error per-
sists, The I/O error code enables the user to decide
whether to attempt a retry, warn the operator, or exit from
his program (see Table 9-3).

The transmission errors are classed in two types

1. Recoverable errors for which the error code is less
than X'2A'.

2. Irrecoverable errors for which the error code is greater
than or equal to X'2A',

When an irrecoverable error occurs, it is indicated to the
user-during the 1/O test by an M:CHECK procedure, which
exits to the user routine that isspecified by the ERR parameter

9-16

of the DCB. If the user initiates a new 1/O operation

on the same line, a new /O is attempted on the line only
when there is at least one line of the group linked to the
DCB, which is not in an irrecoverable error state, Other-
wise, the user program is aborted.

Example:

The user has requested the execution of three M:READ
procedures simultaneously,

M:READ. . . ,(PTR, adl)

M:READ. . . ,(PTR, ad2)
M:READ. . . ,(PTR, ad3)
M:CHECK , (PTR, ad1)
M:CHECK ,(PTR, ad2)
M:CHECK , (PTR, ad3)

The execution of M:READ. . . ,(PTR, ad2) ends on an
error or an end transmission. At the execution of
M:CHECK PTR, ad2), the user program regains control at
the address associted with the parameter ERR or ABN.
M:READ (PTR, ad3) cannot be executed; the I/O request is
purged from the wait queue and the code X'22' is passed to
the user upon the execution of M:CHECK (PTR, ad3).

PROGRAM ABORT ERRORS

All the error and abnormal codes described are also possible
abort codes when no special processing has been anticipated
in the user program to process the conditions to which they
correspond. The specific abort codes (see Tables 9-4 and
9-5) can also accompany abnormal end of jobs. All abort
codes lower than the value X'80' are related to TMS pro=
cedures and operations (when TAM is being used).

An abort always causes the emission of a message on the job
control file in the following format:
ABORT

literal symbolic

code

program status at time
abort condition was
detected

where literal indicates the operational label of the DCB
processed at the fime the abort condition is detected.

Table 9-2. Abnormality Codes

Hexadecimal
Code Description Origin Class
X'on End of transmission of message. M:READ X2
X'03' Suspension at the request of the M:READ or X2
terminal. M:WRITE
X'04' Initial polling or selection M:READ or X2
refused. M:WRITE
X'06' Binary block received but not M:READ X2
anticipated.
X'1A! Initial read or write in progress. M:READ or X3
M:WRITE
X'1B' Line busy on another component. M:READ or X3
M:WRITE
X'1C! Line does not authorize the use of M:READ or X3
this procedure reference. M:WRITE
X'1D' Component deactivated in the list. M:READ or X3
M:WRITE
X'1E' Polling, selection index greater than M:READ X3
the number of components.

Table 9-3. Error Codes

Hexadecimal

Code

Description

Origin

X'22'

X'23'

X'24'

X'25!

X'26'

X'27'

X'28'

X'29'

X'2A"

X'2B'

I/O request purged (see "File Processing Errors")
Line in permanent error.

No response from the terminal.

Incorrect block or acknowledgement.

Invalid block or receive acknowledgement.
Synchronization error.

Transmission error.

Modem carrier default.

Line locked by the operator.

Modem not ready.

M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE
M:READ or M:WRITE

M:READ or M:WRITE

Table 9-4. DCB Open and Close Aborts

Symbolic Internal
Literal | Code Code Description
'OPL! S30 30E2 The lines of the group belong to different modes (character and message).
'OPL! S3A 3AE2 Erroneous explicit |ist address.
'OPL S3B 3BE2 Total number of components related to the DCB greater than 254 in message mode.
'OPL' S3C 3CE2 Nonconforming usage of the component cited in the list (in message mode).
'OPL S3D 3DE2 A component cited in the list does not belong to an assigned list.
'OPL! S3E 3EE2 A component was cited twice in a direct list.
'OPL! S3F 3FE2 No Iine; could be activated (character mode).
'OPL! S41 41E2 Unauthorized access method.
'OpL! S43 4302 Mode prohibited (binary or ANSCII).
'OPL! S50 50E2 One of the lines is already in use by another DCB.
'OPL! S51 51E2 Operational label not assigned.
'OPL! 555 55E2 - One of the ope.rufionol labels is already in use by another DCB.
1) S5E 5EE2 Invalid DCB address.
'OPL! S6A 6AE2 Too much memory space requested.

FIn this case of abort, the 'OPL' operational label, which cannot be found (since the DCB is not valid), is replaced by
the following literals:

OPCL when abort has OPEN/CLOSE procedure for origin.
RDWR when abort has READ/WRITE procedure for origin.
DEVC when abort has DEVICE procedure for origin.

RMDF when abort has MDFLST procedure for origin.

CHCK when abort has CHECK procedure for origin.

9-18

Table 9-5. Procedure Aborts

Symbolic Internal
Literal Code Code Description Origin
'OPL! R51 51D9 Zero transfer length. M:WRITE
'OPL! R54 54D9 Transfer length greater than (in case of M:READ
write) or less than (in case of read) the or
maximum length of the component. M:WRITE
'OPL! R59 59D9 Erroneous address of the buffer or the event M:READ,
pointer, or of the byte count or index. M:WRITE,
M:CHECK,
M:DEVICE
or
M:MDFLST.
'OPL! R5A 5AD9 No I/O in progress. M:CHECK '
'OPL! R5B 5BD?9 Too many 1/O requests in progress (number M:READ,
of current 1/0O > SIM), M:WRITE,
or
M:DEVICE.
'OPL' R5C 5CD9 DCB closed. M:READ or
M:WRITE.
(t) R5E 5ED9 DCB invalid (e.g., erroneous address). M:DEVICE,
M:CHECK,
or
M:MDFLST.
'OPL' R63 - 63D9 Operation prohibited. M:MDFLST
or
M:DEVICE.
'OPL! R64 64D9 Unknown list in the DCB. M:MDFLST.
'OPL! R67 67D9 BIN/EBC mode request prohibited. M:DEVICE.
'OPL’ R68 68D9 All the lines of the group are in irrecover- M:READ or
able error. M:WRITE
'OPL! R69 69D9 Nonidentical use of the pointers. M:CHECK.

Mn this case of abort, the 'OPL' operational label, which cannot be found (since the DCB is not valid), is replaced
by the following literals:

OPCL when abort has OPEN/CLOSE procedure for origin.
RDWR when abort has READ/WRITE procedure for origin.
DEVC when abort has DEVICE procedure for origin.
RMDF when abort has MDFLST procedure for origin.

CHCK when abort has CHECK procedure for origin.

OPERATOR COMMUNICATIONS IN MESSAGE MODE

HARDWARE ERRORS
These messages are labeled as follows:

I110S ERR xy 'line-id' ?

where
Xy is the error number.
line-id is the symbolic name of the lines.
? appears only for messages with answers.

Messages with answers allow the operator to restart the 1/0
if desired.

Answer R The operator requests restart of 1/O from
the system.
Answer V The operator, judging the device nonopera-

tional, locks it, thus prohibiting any new

I/0.

Errors of this type that could appear in message-mode trans-
mission are shown in Table 9-6.

TRANSMISSION ERRORS
These messages are labeled in the following manner:

I'1 TEL IOS ERR xy 'line-id" 'terminal-id"

where
Xy is the error number.
line-id is the symbolic name of the transmission
line.
terminal-id is the symbolic name of the terminal.
Table 9-6. Message Mode Errors
Code | Meaning Op. Response
ERRO2 | 1/O address not recognized RorV
during a SIO, TIO, HIO.
ERRO3 | Response from the device con- \%
troller not anticipated during
a SIO, TIO, HIO.

9-20

Table 9-6. Message Mode Errors (cont.)

Code | Meaning Op. Response

ERRO5 | Transmission adapter busy. RorV

ERRO6 | Nonoperational adapter or RorV
modem default.

ERRO8 | Extraneous interrupt. None

ERRO? | AIO address supplied by the None
TDV not recognized.

These messages require no response. They are sent on the
operator's console after the standard number of retries have
been executed and the error is found to be irrecoverable.
The errors of this type are shown in Table 9-7.

Table 9-7. Transmission Mode Errors

Code | Meaning Op. Response

ERR30 | Timing error in memory None

ol transfers.

ERR31 | Transfer error between mem- None
ory and device controller.

ERR32 | Carrier default (Modem). None

ERR33 | Modem not ready. None

ERR40 | 1/O outstanding without a re- None
sponse from the terminal.

ERR41 | Incorrect response from the None
terminal.

ERR42 | Invalid response from the None
terminal.

The operator always has the ability to lock the line on
which frequent errors appear by a UNIT command.

CHARACTER MODE

TAM allows the user to perform 1/O operations on terminals
without a buffer; data transmission is done at the char-
acter level.

TAM offers, for character mode, the same transmission

procedures as in message mode: M:DCB, M:LIST, M:OPEN,
M:CLOSE, M:SETDCB, M:MOVEDCB, M:MDFLST, M:READ
M:WRITE, M:DEVICE, M:CHECK, and M:WAIT. However,

some options of the procedure are specific to the character
mode. This section describes the procedure in question and
given various handling tharacteristics of character mode
operations.

TAM provides the user with the following capabilities
in character mode:

1. Read Capabilities:
Verification of character parity.

Correction of the record upon detection of function
characters reserved for reading.

Code translation of the characters received.
Characters that are filtered by the temminal.
Detection of end of record characters.

Telecommand for the paper tape reader.

2. Write Capabilities:

Code translation of characters transmitted.

Format control for keyboard records.

Telecommand for the paper tape reader.

Format control for paper tape records.
The format capability for write requests are performed only
at the request of the user. This allows him to work with

records of several print lines with form control being his
responsibility.

CHARACTER MODE COMPONENT LISTS

As in message mode, the user can operate with two types
of component lists:

1. An implicit list constructed by the system when a line
or group of lines is opened (M:OPEN procedure).

2. An explicit list defined by means of the procedure
M:LIST in the user program. The user specifies in his
DCB, by the list option, the address of that list.

CHARACTER MODE LIST

TAM character mode allows the processing of a group of
bipoint lines connected to teletypewriters.

9-21

The user can communicate simultaneously with several
components of the list. The term assigned this type of list
is a direct access list.

Syntax
(label(s)] M:LIST (DIR,name[,name][. . .]

where name represents a transmission line name in character
mode. It can appear as a string of four characters en-
closed in.apostrophes or a user-program word address where
a string of four characters in EBCDIC is located.

This last method enables the user to refer to a component
name symbolically. (See Appendix F for explicit list for-
mat after assembly.)

M:MDFLST PROCEDURE

As in the message mode, the M:MDFLST procedure allows
the user to modify the active list during the execution of
his program. :

Syntax

[label(s)] M:MDFLST [*]dcb-address

 (SKP A
, ({AC T][,[:*] value))[,(LST,[*]word-address)]
IND
< >
,RSS, [[*]value])
L, (NEW), (LST, [*Jword-address) J

where

LST is the list address. When this option is absent,
the DCB active list is used. When the option
NEW is present, the specified list becomes the

active list linked to the DCB.

This option is accepted between OPEN and CLOSE
only when 1/O is not in progress or waiting.
Otherwise, the user program is aborted. Thus, it
is preferable for the user to perform an M:CLOSE
HLD before executing this procedure.

SKP

suppresses a terminal designated by the index
value of its entry in the direct access |ist.

ACT

restores a terminal designated by the index
value of its entry in the direct access list.

forces the index of the direct access list to a
given value.

IND

RSS stops a supervision operation (see M:READ pro-

cedure, SUR option) on the terminal designated
by the value of the index, which must concern
the active list.

INPUT/OUTPUT PROCEDURES

M:READ PROCEDURE

Syntax

(label(s)] M:READ [¥]dcb-address
,(BUF, [*]byfe-qddress)[, (TRL, [*]value)]
[, (PTR,[¥]word-address)][, (l ND,[*]V;: lue)]

[r({éLILRV},[*]byte oddress,[*]byfe Iengfh)]

where

BUF defines the byte address of the memory area

where the transfer occurs.

TRL defines the maximum number of bytes to trans-
fer. This value must be at least equal to the ter-
minal's maximum transfer length, fixed at system
generation. If TRL is not specified, the value
assigned at system generation is used.

PTR defines the address of the event pointer (ECB)
associated with the 1/O at the execution of the
procedure. This option is necessary if the user
wants to perform an I/O wait (M:WAIT) or a test
(M:CHECK) on multiple I/O events.

IND defines the entry of the active list. When
this entry is absent, the active entry in the list is
used. The value of the list index is not affected
by the value of the IND option.

Note: The'list index is the user's responsibility.
The list index can be modified only by
the execution of the M:MDFLST (IND)

procedure.

9-22

SUR

places the transmission line in a supervisory
watch state for the reception of the Attention char-
acters (characters defined at system generation).
The I/O event is ended when the system detects
one of these characters on the transmission line.

CNV defines a "conversational read" allowing the
characters contained in the area whose address and
the length are specified as parameters to be writ-
ten before placing the line in reception for the
message transmitted by the terminal.

M:WRITE PROCEDURE

Syntax

(label(s)] M:WRITE [*]dcb-address
,(BUF, [*]byte-address), (TRL, [*]value)
[, (PTR, [*]word-address)][, (IND, [*]value)]

[OIS)[, (FIN)]

where

BUF

defines the byte address of the memory area
from whence the transfer occurs.

defines the number of characters to effectively
transfer. This value cannot be zero or exceed the
maximum transfer length defined for the terminal
at system generation.

TRL

PTR defines the event pointer address related to
the I/O at the execution of the procedure. This
pointer is necessary if the user wants to perform
an I/O wait (M:WAIT) or a test (M:CHECK) for
multiple 1/O requests,

IND defines the entry in the active character
mode list specifying the transmission line involved
with the 1/O. When this option is absent, the
entry is the one defined by the value of the index
contained in the list. The value of the index in
the character mode list is not affected by the

value of the IND option

indicates the end of vacation of the terminal.
The effect of this option is to reset the line to
the wait status for a call in the case of a switched
telephone line equipped with automatic answering
(disconnection of the line).

DIS

FIN indicates the logical end of the message.

M:DEVICE PROCEDURE

Syntax

[label(s)] M:DEVICE [*]dcb-address;

ON

))

:(TRD’{OFF})_

(3]

(IND,{E?IG'%})][, (OPN)]

oG]

(ECH {ON

OFF}Z 4

where

TRD requests (ON) the initiation of the paper tape
reader for each record read by a read on the

component or stops it (OFF).

TPH requests (ON) the edit of the paper tape punch
for each record by a write on the terminal, or stops

(OFF) the edit.

MTR requests (ON) the initiation of the terminal
motor telecommand (generally used on rented lines)
or stops it (OFF). When the option is ON, the
motor starts upon the first write following the

M:DEVICE procedure.

FRM specifies if the access method must add (ON)
the format command (line skip and carriage re-
turn) to the records output by writes. The op-
tion (OFF) stops this consideration by the acéess
method. When the paper tape punch is used, the
access method edits the tape for an automatic

reread of the tape.

ECH requests (ON) or stops (OFF) the return of

characters received from the component in echo-

plex mode.

Note: When the M:DEVICE procedure is omitted,
the access method initializes the com-
mands TRD, TPH, MTR, FRM to OFF, and

the command ECH to ON.

IND, value defines the value of the list index
specifying the transmission line involved by the
operation. When this option is absent, the index
value is equal to the index value contained in the
list.

ALL

indicates that the specified operations are valid
for all lines of the active list.

9-23

OPN allows the reinitialization of the initializa-
tion of a line operation which could not occur at
the time of the M:OPEN. This option is valid only
when several lines are linked to the DCB.

The lines of the group that could not be initialized
at the M:OPEN are subject to an abnormal return
during the execution of the M:CHECK procedure
corresponding to the first I/O initiated on each
line in error. The OPN option cannot be used with
the ALL option.

M:CHECK PROCEDURE

The processing and the syntax are the same as in message
mode (see M:CHECK under "Message Mode").

LINE MANAGEMENT

Each line can occupy different states. A state change can
occur either by a user issuing a procedure or by a transmis-
sion event.

Line States (See Figure 9-4).

Disarmed State. In this state, the various lines can
neither fransmit nor receive characters. The only pro-
cedure accepted is M:OPEN which initializes the dif-
ferent lines and activates them.,

Inactive State. The line has been initialized and all
characters received on the line are entered in memory
but ignored by the access method. The accepted pro-
cedure references are

READ (SUR) which sets the line in the supervisory
watch state,

READ which sets the line in the Input state.
WRITE which sets the line in the Output state.
CLOSE which sets the line in the Disarmed state,

Supervisory State. In this state only the 'Attention'
characters entered by the local operator are detected
and cause the user routine whose address is specified

in the DCB (ABN — (class X2)) to be scheduled. All
other characters entered are ignored. The reception of
an attention character resets the line fo an inactive
state.

When the user is not waiting via the M:CHECK procedure,
but initiates another 1/O request (M:READ or M:WRITE),
the line passes into the Input or Output state. The M:READ

Disarmed

OPEN CLOSE
=1 Inactive |-==
End of End of
Message Output
READ ATTENTION
ATTENTION (SUR)
or Break
READ WRITE
End of message + End of Output +
READ (SUR) in wait READ (SUR) in wait
Surveil- |
lance
READ WRITE
Y | [|
End of Message + WRITE in Wait
- Input Ovutput
Output end + READ in Wait
READ WRITE

Figure 9-4. Flowchart of the States

9-24

(SUR) is then placed in a wait position of which the
transition priority will be less than all the M:READ or
M:WRITE procedure references. The execution of this pro-
cedure is not subjectto a delay. However, it can be purged
upon request of the user by M:MDFLST (RSS option) or
M:CLOSE.

o Input State. When the user executes an M:READ pro-
cedure, the characters arriving on the line are trans-
ferred into his buffer until

o The detection of an end-of-message character.

o The depletion of the number of characters to read
(specified by TRL option inthe M:READ procedure),

o The end of the delay fixed for the reception of a
message (parameter fixed at system generation),

In this state, the user can initiate several read and
write requests on the same line. These requests are
accepted and placed in a system wait queue in their
order of arrival.

Upon the execution of an M:READ procedure, the reception
of an end-of-message character places the line in the fol-
lowing states:

e Inactive when no read or write is waiting for
execution,

e Output when a write is at the beginning of the wait
queue.

e Sypervisory when a READ (SUR) is waiting.

e Input when a READ is at the beginning of the wait
queuve.

The reception of an Attention character or Break causes the
line to pass to the inactive state.

All 1/O procedures in the wait queue are purged when the
user issues an M:CHECK procedure corresponding to the
read, the control is passed fo the user at the address speci-
fied by ABN with an abnormal code. The 1I/O requests,
then in a wait state, are released with an error code

(IOB purged).

e Output State. When the user executes an M:WRITE pro-
cedure, his buffer is transmitted on the line until the
depletion of the number of characters specified by the
TRL option in the M:WRITE procedure,

In output state, the user can initiate simultaneous read and
write requests on the same line. They are accepted and
placed in a system wait queue in order of their arrival,

Upon the execution of an M:WRITE procedure, the end of
output event (i.e., the depletion of the character count),
or the reception of the ETX character places the line in the
following states:

o Inactive when no READ ‘or WRITE is waiting.
e Input when a READ is heading the wait queue.
e Supervisory when a READ (SUR) is waiting.

e Output when a WRITE is heading the wait queue.

INPUT STATE PROCESSING

Input state processing concerns the execution of the M:READ
procedure. The transmission processing mode for character
mode is described in the following paragraphs.

Echoplexing

The characters entered from the keyboard or read on the
terminal reader are not printed simultaneously on the printer.
The central station returns each character received to ter-
minal output components. This mode of operation is called
echoplexing. In this mode, the system controls the char-
acters returned and can offer more services to the terminal
operation. Two states are possible (on and off) and are com-
manded by the user issuing an M:DEVICE procedure.

In this type of functioning, TAM character mode assumes
the following functions:

1. End of Message Characters Received (see Table 9-1).
The end of message characters recognized by TAM
character mode follow:

CR Carriage return
LF Line feed

ETX End of text
Attention 1

Attention 2

EM End of message

HT Horizontal tabulation

Table 9-8 presents the characters recognized by TAM
on input and the processing characters stored in the
user buffer and response to the terminal,

Table 9-8. Echoplex Mode in Function

Character Recognized

End of Message

Character Placed in the Buffer

Character Returned

Functions

CR
LF

EM (Y°)
HT (TAB)
ETX (C°)

Attention 1

Attention 2

'LONG SPACE'

CAN (X%)

NUL

DEL

DC1 (XON)

DC2 (TAPON)

DC3 (XOFF)

DC4 (TAPOFF)

Normalf 1

AbnormcnlH

tt
Error

No

No

No

No

CR

LF

EM

None

None

None

None

None

None

None

None

None

None

None

None

None

CR+XOFF+LF

CR+XOFF+LF

EM+XOFF

None

CR+XOFF+LF

Attention 1
+CR+LF

Attention 2
+CR+FL

CR+XOFF+LF

One to five
characters

None

None

DC1

DC2

DC3

DC4

End of line and message
End of line and message
End of message
Software tabulation
End of special message

Alarm 1

Alarm 3

Detection of a 'long
space' or a line break

Cancellation of the
preceding character

Cancellation of the
message in progress

Buffer character

Delete or buffer
character

Initiation of the
reader

Initiation of the
punch

Reader stop

Punch stop

t . .
Control is passed to the user with no abnormal or error return.

M ontrol is passed to the user exit routine at the address specified by ABN parameter in the DCB with abnormal code.

™ Control is passed to the user exit routine at the address specified by ERR with an error code.

9-26

Filtered Characters, The following characters, if they
are keyed by the operator or read on the tape reader,
are detected by TAM but are not transmitted in the user
buffer (see Table 9-8):

NUL Null

DEL Delete or erase character.
DC1(XON) Initiate the paper tape reader.
DC2(TAPON) Initiate the paper tape punch.
DC3(XOFF) Stop the paper tape reader.
DC4(TAPOFF) Stop the paper tape punch.

Cancellation Characters (see Table 9-1). During the
execution of an M:READ procedure, the local operator
has the capability to nullify the preceding character
transmitted by keying a specific character (e.g.,\)
defined at system generation (see XOS/SM Reference
Manual 90 17 66). In this case, the last characters
(\) received one after the other, delete as many char-
acters in the user buffer.

During the execution of an M:READ procedure, the local
operator has the capability to delete the entire mes-
sage by keying in a character defined at system genera-

tion; for example, CAN (CAN = X + Control).

In this case, all the user buffer is deleted and TAM
character mode places a sequence of one to five char-
acters defined for the line at system generation (see
XOS/SM Reference Manual, 90 17 66) in the user's
buffer.

Parity Check. During the execution of the M:READ
procedure, the parity of the characters keyed by the
local operator is controlled by the access method.
Upon the detection of a parity error in a character,

the character is replaced by a character defined at sys-
tem generation; for example (}), which is placed in the
user buffer and sent to the terminal printer. The opera-
tor has the capability to cancel the character in error
with the character and to key it again.

Translation. The emission of characters on the line is
executed in ANSCII. During the execution of an
M:READ procedure, the translation of characters re-
ceived (ANSCII — EBCDIC) is performed by the access
method, except if the user has specified that his work

" code is ANSCII,

Attention Characters. TAM character mode recognizes
two Attention characters which are defined at system
generation,

The M:READ procedure (SUR) enables the user to be
warned of the reception of one of these characters by

9-27

an abnormal exit to the address specified by the param-
eter ABN (of the DCB) at the execution of a check of
the read survey.

When the character 'Attention 1 or 2' is received
during the execution of a M:READ or M:READ (CNV),
the M:READ (SUR) then waiting, is given along with
the M:READ in question an abnormal code X'12' or
X'13'. All the I/Os waiting are purged and transferred
to the user with the abnormal code X'22',

Break Detection (Long Space). A Long Space is ini-
tiated by use of the Break Key on the terminal keyboard
or by an untimely line break.

During the execution of an M:READ or M:WRITE pro-
cedure, a Long Space detected on the line is consid-
ered by the access method as an end of message. Upon
issuing an M:CHECK, an error exit occurs at the ad-
dress specified by ERR and an error code (X'27') is
passed to the user exit routine,

Response Timing. At each initiation of the M:READ
procedure, except M:READ (SUR), TAM character mode
initializes a timer. When the timer has elapsed and
the end of message has not occurred, the event is posted
with an error code of X'24',

Upon checking of the 1/O request an error exit occurs
at the address specified by ERR and the error code
X'24' is passed to him. All 1/O requests then waiting
are purged.

Paper Tape Use. The use of paper tape can be initiated
by the user program or at the terminal operator. TAM
character mode performs the same functions whether the
data comes from the paper tape reader or the terminal
keyboard. In character mode, the composition of the
paper tape by the terminal operator is simple.

Example: The operator wants to send the message
"MESSAGE", the characters to type to prepare the
tape are

MESSAGE @[@

where

is the character to type at the beginning

of the text to initiate the paper tape
punch,

MESSAGE

is the text of the message to be sent.

is the end of message.

is required for the off-line control to the

©]

stop the tape.

are the characters correspond-
ing to the time necessary to

The combination of end-of-record characters that

¢an be used are:

@ (@

CR LF
LF CR
EM -
ETX -

QUTPUT STATE PROCESSING

Output State processing concerns the execution of the

M:WRITE procedure. The message contained in the user
buffer is transmitted character by character to the line
specified by the user by means of the direct access list.

1. End of Output. TAM character mode transmits the
characters contained in the user buffer until the char-
acter count is satisfied.

The editing of the records is performed by TAM if the
user requests it by the M:DEVICE procedure (FRM, ON)
otherwise all editing is entirely under control of the
user program.

2. Translation, TAM assures the translation of characters
(EBCDIC — ANSCII) when the user has specified his
working code is EBCDIC, Otherwise, the characters
are transmitted on the line without any translation,

3. Suspension by ETX Character. During the execution
of an M:WRITE procedure, entering of the ETX char-
acter by the local operator ends transmission of the
message. TAM returns the characters CR+XOFF+LF
to the terminal. Upon issuing of a check by the user,
a normal end of transmission is passed to the user,

Paper Tape Usage. The initiation of the tape punch
can be accomplished by the user program executing the
M:DEVICE procedure (option TPH). In this case,
before sending the corresponding message to the execu-
tion of the first M:WRITE procedure, the punch motor

9-28

is started by a TAPON character being transmitted by
TAM and stopped after the transmission of the first
character of the message relative to the WRITE pro-
cedure by a TAPOFF transmitted by TAM. When the
user has also requested editing — M:DEVICE (FRM, ON)
procedure — the edit is assured so that the paper tape
can be automatically reread by the program. The
paper tape punch can also be operated by the terminal
operator by intervening on the manual command and by
keying TAPON and TAPOFF on the keyboard. All the
characters sent to the paper tape punch are also sent
to the printer. Punching cannot occur without
printing.

5. Attention Characters. During the execution of an
M:WRITE procedure the reception of an attention char-
acter does not interrupt the output operation in progress.
Upon the check of the 1/O, a normal condition is pas-
sed to the user. The user is warned of the reception of
this attention character if an M:READ (SUR) is waiting;
upon issuing an M:CHECK, an abnormal condition is
passed to him. When an M:READ procedure is located
in the wait queue at the time the attention character is
received, this attention character is placed in memory
and at the execution of the M:READ procedure the
event associated with it is posted with an abnormal
code corresponding to the Attention type received; all
other procedures following the M:READ procedure in
the wait queue are then purged.

SUPERVISORY STATE PROCESSING

This mode corresponds to the execution of the M:READ (SUR)
procedure with no other 1/O waiting. The only characters
detected by the access method are the characters Attention 1
and Attention 2, for which the configuration was specified

at system generation, Upon the checking of the 1/O, the

user regains control at the address specified by ABN and the
associated abnormal code is passed to him depending on the
character received.

ABNORMAL AND ERROR CONDITIONS

The processing of abnormalities and errors is performed in
an identical manner whether it is the message or character
mode,

The codes specific to the character mode appear in
Tables 9-9 and 9-10.

PROGRAM ABORT ERRORS

The codes passed to the user are the same as in message
mode, .

Table 9-9. Abnormal Codes During File Processing

Hexadecimal
Code Meaning Origin Class
X'10! End of text (ETX) M:READ X2
Xr Null byte count before reception of M:READ X2
the end of message
X'12 End of record: Attention 1 M:READ (SUR)
or
M:READ
or
M:READ(CNV)
X"13! End of record: Atfention 2 M:READ (SUR) X2
M:READ
M:READ(CNV)
X'14! End of record: HT (tabulation) M:READ or X2
M:READ(CNYV)
X' TA! M:READ (SUR) refused because M:READ(SUR) X3
another M:READ (SUR) is already
active or waiting
X'1D! 1/O requested on a line deactivated M:READ X3
in the list by the M:MDFLST (option M:WRITE
SKP) procedure M:DEVICE
X'1E List index greater than number of M:READ X3
terminals in the list M:WRITE
M:DEVICE
M:MDFLST
Table 9-10, Errors During File Processing
Hexadecimal
Error Class Code Meaning Origin

Recoverable

<

X122

X'24'

X126

X'27'

1/O request purged

End of record not
received after the
fixed time delay

Line not activated
during OPEN., The
user must, in this
case, initiate an
M:DEVICE (OPN)

procedure

Detection of a long
space in line

M:READ or M:READ
(SUR) or M:WRITE

M:READ

M:READ
M:WRITE
M:DEVICE

M:READ
M:WRITE

9-29

Table 9-10. Errors During File Processing (cont.)
Hexadecimal
Error Class Code Meaning Origin
Recoverable X'29' Line in permanent M:READ or M:READ
error (SUR) or M:WRITE
X'2A! Line locked M:READ or M:READ
Irrecoverable (SUR) or M:WRITE
error
X'2B! Device controller M:READ or M:READ
in permanent error (SUR) or M:WRITE

OPERATOR COMMUNICATIONS IN CHARACTER MODE

Device Controller Errors. These messages are of the no
response type and are labeled in the following manner:

11 TOS ERR xy CTMC z

where
Xy is the error number,
z is the physical number of the character mode

transmission coupler.

The errors of this type which can occur in the character
mode transmission are shown in Table 9-11,

Table 9-11. Device Controller Error Codes
Code Meaning OP Response
ERRO2 1/O address not

recognized upon an

SIO, TIO, HIO None
ERRO4 Nonoperational '
device controller None

When these error messages appear frequently on the same
coupler, the operator can prohibit 1/Os on all the lines of
the coupler by locking each line by a UNIT command.

9-30

Adapter Errors, These messages are also of the no response
type. They are labeled in the following manner:

11 1OS ERR xy 'line-id'

where
Xy is the error number.
line-id is the symbolic name of the line.

The errors of this type are shown in Table 9-12.

Table 9-12, Adapter Error Codes

Code Meaning OP Response

ERRO6 Nonoperational None
adapter or modem

ERR20 Erroneous adapter None

blocking the opera-
tion of all the others.
The line is automat-
ically locked by the
system in this case.

The operator can lock the line by a UNIT command when
the error 06 appears frequently. In the case of error 20,
the locking is done automatically by the system.

APPENDIX A. SYNTAX CHARTS FOR 'ASSIGN COMMAND,
M:DCB/M:SETDCB PROCEDURE, AND ACCESS METHOD PROCEDURES

Chart A-1.

ASSIGN Control Command

Command

Comments

DCB Parameters

MTN

IASSIGN op-lobel[,{FRE

}}F]L[,opﬁon, ...J[,DCB,parameter, .. .]

See DCB Parameters,

FIL Options:

(CTG[,acct-number])

See "Cataloged Files", Chapter 6.

NEW
(5TS,{OLD })
MOD

Default = NEW.

(LNK,%op-label-2)

(UNT, AC,acct-number

OP,op-label-S[,step]

OMI, (v OL Sserial-nol . . J), (SQN,%esequence-no ml
))

L e

Default = user's account volume.
VOL default = public volume.

PAR
({MNT,number })
DEF,op-label-4

Default = PAR for disk and MNT for
magnetic tapes.

DMT
(DSP,{ KEP])
RET

Default = DMT.

0y
(S1z [,({4:g;})],%size[,%incremenf])

Default = installation-determined
file size.

%absgen[,%version]]])

relgen

(NAM,%name [,{

See Chapter 6 for absolute and
relative generation specifications.

,NCT

r ALL ALL
,(R,[NO])] [,(W,
L "/oaccount[, ..]

(PRT NO

‘)][,PAS])
%account[, ..]

Default = R,ALL and W,NO, If
PRT appears, at least one of the
suboptions must be chosen. (NCT
excludes any others.)

(RET,%period)

NEW

-
IASSIGN op-label ,[m{ENH,DEV[(STS, oLD])][,opfion,. . JLDCB,parametes,...]

OD)

See DCB Parameters.

Unless file status NEW is applicable,
the STSoption must appear in the po-
sition shown in the command syntax,

i.e., immediately following "DEV" and
prior to any other DEV options.

General Processing Parameters:

%C
%l

(ORG,{o.p)
%D

(NBF,%value)

%BIN
%BCD
(MOD,1%EBC })
%PK
%UPK

Block Level Parameters:

(BHR,%value)
(BKL,%value)
(MXL,%value)

NBC

Record Level Parameters:

%DLC

%F
(FRM,{%V
%U

)

(KYL,%value)
(KYP,%value)

(REL,%value)

DEV Options:
f MT PAR A Device Level Parameters:
lM7 [(VOL,serial-nof, ...])] [,({MNT,number })] VOL defoult = public volume.
DM DEF ,op-label-4, (CNT,%value)
{CR
CcP (DTA,%value)
LP
MT
1 m7 r (LIN,%value)
DM
(ADR, logical-address) (SEQ[,%sequence-id))
IN .
out (SPC,%vclue[;%heodmg])
SLP} o . .
 llsce [, NKP][,(STA,%teminal-id)] J (TAB,%value[, ...])
%VFC
IASSIGN op-label [{:ARLN[',OPL,op-IubeI-I[,DCB,paramefer, . See DCB Parameters. ["ZNVF
No options apply. None.

1ASSIGN op-label [,{:"RLN]],DUM

CHART A-1. ASSIGN CONTROL COMMAND
(fold out)

A-3

Chart A-2. M:DCB/M:SETDCB Procedure

PROCEDURE SYNTAX

[Iabel(s)] M:DCB (OPL,‘opIabel')[,paramefer, o]

*adr-label

[label(s)]. M:SETDCB [*]dcb-adr[,(OPL,[,op_lqbel, })][,paramefer, o]

(Parameter addresses and values in M:SETDCB may be indirect.)

PARAMETERS
Parameter Definition Parameter Definition
General Processing Parameters: Record Level Parameters:
(ABN,address[,class-code, . . .]) | Abnormal Return (DLC) Deletion Control
Al F
(FRM,{V{) Record Format
AP
(AM, VS) Access Method U
VD
BD (KYL,value) Key Length
(BFA,byte-address) Buffer Address (KYP,value) Key Position
(ERR[,address]) Error Return
BIN ({I"\A%CV}) Locate/Move
BCD ’
(MOD, EEB) Data Mode (REL,value) Record Length
UPK
(NBF,value) Number of Buffers
(NRT) No Retry Device Level Parameters:
C (CNT,value) Page Count
(ORG, :)) File Organization
D (DTA,value) First Print/Punch Column
(SIM,value) Simultaneous Operations (HDR, value,address) Page Header
(TLB,address) User Label Area (LIN,value) Lines Per Page
Block Level Parameters: (SEQ[/identifier']) Sequence Numbering
(BHR,value) Block Header. (SPC,value-1,value-2) Line Spacing
(BKL,value) Block Length (TAB,value, ...) Tab Setting
(MXL,value) Maximum Transfer Length
VFC } .
(NBC) No Block Count ({NVC) Vertical Format Control

CHART A-2. M:DCB/M:SETDCB PROCEDURE
(fold out)

A-5

Chart A-3. Assisted Sequential Access Method (ASAM) Procedure

Processing Mode Format
1/O Procedures 1 B O] F \% U
[label(s)] M:GET [*]dcb-adr,(REC,[[gf’f;r"}) MOV | X X XXX
@ Loc | x | x X
,(RSA, [*]adr-3) X | x X | X
[label(s)] M:PUT [*]dcb-adr,mfc,[Egbf;"]}) ' MoV XX XX
r LOC X X | X
,(ARS,[*]vulue) X
[(label(s)] M:TRUNC [*]dcb-adr X | x| x | x| x| x
[label(s)) M:DELREC [*]dcb-adr X | x| x
(label(s)] M:CvOL [*]dcb-adr X X | x | x| x | x
[label(s)] M:NOTE [*]dcb-adr,(RCI, [*ladr-1) X | x| x | x| x| x
(label(s)] M:POINT [dcb-adr,RCI,[Jadr-1) X | X X | x| x
(CHF, [*Jbadr) X X | x
(PAG) X X | x
[label(s)] M:DEVICE [Jdcb-adr, 2\';/55 t
(POSA sl X | x | xt] x I x| x |x
EOF
fOnIy BOF or EOF are allowed in this mode, i.e., BKS/FWS are excluded.
Chart A-4. Assisted Indexed Access Method (AIAM) Procedure
Processing Mode | Format
1/O Procedures I O | U F \Y
[label(s)] M:GET [*]dcb-adr,REc,{ng’f’;"']) MoV X
LOC X
[, (RSA, [*ladr-3)] X | x
[(Jbadr-4 '
[e, {Eeir-s) X x | x | x
[label(s)] M:PUT [*ldcb-adr, (REC, []badr-1) MOV only X | x | x | X
[(ARS, [*]value)] X | X X
[, (NWK)] X [x | X
[,(DFW)] X | X | x
[label(s)] M:TRUNC [*dcb-adr X | x | x [x | x
[label(s)] M:DELREC [*Jdcb-adr X | x | x

CHART A-3. ASSISTED SEQUENTIAL ACCESS METHOD (ASAM) PROCEDURE

CHART A-4., ASSISTED INDEXED ACCESS METHOD (AIAM) PROCEDURE

(fold out)

Chart A-5. Assisted Partitioned Access Method (APAM) Procedure

Record.
Processing Mode Format

1/O Procedures I (@] U F Vv
. ADD
[label(s)] M:STOW [*]dcb-adr,(KEY,{[]b"d’"']),(st) X x | x
adr-2 DEL
. [*]badr-1 -
[label(s)] M:FIND []dcb-adr,(KEY,[c Lo b X X | x | x
[,RC1,[adr-3)] X X | x | x
[label(s)] M:GET [*]dcb-adr,(Rec,{ggff;"‘}) MOV | X X | X
LOC | X X | x
[, (RSA,[*adr-3)] X X | x | x
[label(s)] M:PUT [*]dcb-adr,(REC,{E?:iqzdr-]]) mov XX | X |X
LOC X X | x
[, (ARS,[*]value)] X X
[label(s)] M:TRUNC [*]dcb-adr X | X | x | x | X
[label(s)] M:DELREC [*Jdcb-adr X | X | X
[label(s)] M:NOTE [*]dcb-adr,(RCI,[*]adr-1) X | X | x | x |x

[label(s)] M:POINT [*Jdcb-adr,(RCI,[*]adr-1) _ X X | x | x

CHART A-5. ASSISTED PARTITIONED ACCESS METHOD (APAM) PROCEDURE
(fold out)

Chart A-6. Virtual Sequential Access Method (VSAM) Procedure

Processing Mode

1/O Procedures I (@) B S
[label(s)] M:READ [*]dcb—adr,(BUF,{c[’?zdr—]}) X X | x
[,(TRL,[*]value)) X X X
[,(PTR,[*]adr-3)] X x | x
[label(s)] M:WRITE [*]dcb-odr,mUF,{E*gf’fzd"']) X X
[(TRL[*]valve)] o : X X
[, (PTR,[Jadr-3)] X | - | x
[label(s)] M:CHECK [*ldcb-adr[,(PTR,[*Jadr-1)] X | X | x | X
[, (RSA,[Jadr-2)] X X | x
[1abel(s)] M:CvOL [*]dcb-adr X | x
[label(s)) M:NOTE [*]deb-adr, (RCI,[*]adr-1) X | X | x | x
[label(s)] M:POINT [*Jdcb-adr, (RCI,[*]adr-1) X X | X
((CHF,[]badr)) X
(PAG) X
BKS
[label(s)] M:DEVICE [*]dcb-adr,$ (POS, g\g;) , . L x I x|«
EOF
(WEOF)) X X

CHART A-6. VIRTUAL SEQUENTIAL ACCESS METHOD (VSAM) PROCEDURE
(fold out)

A-11

Chart A-7. Virtual Direct Access Method (VDAM) Procedure

1/O Procedures Comments

[label(s)] M:READ [*]dcb-adr,(sur,[g*g'f;"'}),(ADR,[*]volue-l)[,(TRL,[*]value-z)] Input and Scratch modes.
[,(PTR,[*]adr-3)]

(label(s)] M:WRITE [*]dcb-adr,(BUF,[E*gff;"'}),(ADR,[*]value-1)[,(TRL,_[*]vu|ue-2)] Output and Sevateh modes.
[, (PTR,[Jadr-3)]

[label(s)] M:CHECK [*ldeb-adr,[,(PTR,[*]adr-1)][,(RSA,[]adr-2)] RSA effective for read only.

Chart A-8. Basic Direct Access Method (BDAM) Procedure

1/O Procedures

[label(s)] M:READ [:*]dcb-cdr,(BUF,[E*gf_a;r-l}),(ADR,[*]relative-secfor-address)[,(TRL,[*]vo|ue)][,(PTR,[*]adr-3)]

[label(s)] M:WRITE [*]dcb-qdr,(BUF,[Ejl_)gdr_]}),(ADR,[*]reIaﬁve-secfor-c«ddress)[,(TRL,[*]value)][,(PTR,[*]adr-3)]

[label(s)] M:CHECK [#ldcb-adr,[,(PTR,[Jadr-1)][,(RSA,[*]adr-2)]

[label(s)] M:CVOL [*]dcb-aar

CHART A-1. VIRTUAL DIRECT ACCESS METHOD (VDAM) PROCEDURE

CHART A-8. BASIC DIRECT ACCESS METHOD (BDAM) PROCEDURE

(fold out)

A-13

APPENDIX B. ABNORMAL, ERROR, AND ABORT CONDITIONS

This appendix lists the abnormal, error, and abort conditions
which can occur during operation of a user's program. The

abnormal and error conditions cause the user's program either

(1) to be interrupted temporarily for processing of the con-
dition if the user so specifies, or (2) to be aborted.

An dbnormal condition is not considered detrimental to the
user's program if the user elects to process the condition
with an abnormal return routine (specified in his DCB).

An error condition is the result of bad performance of a
device or improper specifications. A message is sent to the
job control file. The user can elect to retain control of
processing by means of an error return routine (specified in

his DCB).

An abort condition is irrecoverable and the user's program
is unconditionally aborted.

Abnormal conditions and error conditions are referred to
collectively as exception conditions. When an exception
condition occurs, the system responds either by

1. Taking a branch specified by the user to a routine
which processes the exception condition. (The routine
addresses are specified in the DCB. For abnormal con-
ditions, the class code of the particular condition must
also be specified in the DCB.)

2. Aborting the job, if no branch was specified by the
user.

Therefore, all abnormal conditions and error conditions are
also possible abort conditions. When a program (i.e., job-
step), -is aborted, the system will either continue processing
the subsequent job-step(s), if any, or abort the entire job.
The ISWITCH card allows the user to predetermine whether
or not the job-steps following the offending step are to be
processed (if possible). The numerical portion of the error
code associated with the particular condition indicates
whether or not processing can continue with subsequent
job-steps. When the numerical value is less than X'80',
the job can continue with the next job-step. Otherwise,
the entire job is aborted.

Whenever a job or job-step is aborted, the following mes-
sage is sent to the job control file:

ABORT literal abort code program status
doubleword
where
literal is either an operational label of the file

being processed when an input/output condition
occurred that caused the abort, or a four letter

code that helps the user identify the origin of the -

condition.

abort code is a code identifying the specific con-
dition that caused the abort.

program status doubleword is the PSD at the time
the condition that caused the abort was detected.

GENERAL X0S ABORT CODES

In addition to listing the abnormal, error, and abort con-
ditions, this appendix provides pertinent information about
each of the conditions. This information may include:

Abort Code. The code given in the ABORT message that
identifies the specific exception or abort condition. All
abort conditions have been given abort codes. All excep-
tion conditions, except those related to TAM, have also
been given abort codes. The first character of the code
(always alphabetic) identifies the monitor module that de-
tected the condition (compare ABN/ERR code).

ABN/ERR Code. A two digit hexadecimal number which is

stored info the leftmost byte of register 5 when an exception
condition occurs and the program is not aborted. Note that
it is always the last two digits of the corresponding abort
code.

Cause. Adescriptive statement of the cause of the condition.

Class. A code (X1, X2, X3, X4, X5, or X6) that indicates
the class to which an abnormal condition belongs.

Origin. A list of the procedures, segments of procedures,
or operations during which the condition can occur. This
information is supplied wherever possible to help the user
pinpoint the specific cause of the condition.

ABORT CONDITIONS

Abort

Code Cause

A36 Privileged and nonexistent instruction.

A38 Nonexistent instruction.

A3B Memory address protected and
nonexistent,

A3C Nonexistent memory address.

A3E Privileged instruction in the slave mode.

A3F Memory protection violation.

A41 Unimplemented instruction trap.

Abort

Code Cause

A42 Stack overflow trap (second occurrence).

A43 Fixed-point overflow.

Ad4 Floating-point fault.

A45 Decimal arithmetic fault.

A46 Watch dog timer runout.

A47 Stack overflow trap (first occurrence).

A48 Illegal CAL1 or CALI code.

A49 Illegal instruction CAL2,

A4A Illegal instruction CAL3,

A4B Illegal instruction CAL4,

A4C M:INT return,

A4D Return time allocated has elapsed
(M:STIMER return).

A4E Pointer of user stack in error,

A50 Instruction exception trap.

A7F Maximum time allocated was

exceeded,

DEVICE AND VOLUME ALLOCATION

ABORT CONDITIONS

Abort

Code Cause Crigin

DO1 Insufficient memory available to | Volume

(BLAB) update disk volume label. exchange

D02 1/O error reading to update Volume

(BLAB) | disk volume label during vol- exchange
ume exchange.

D03 Required nonsharable volume Device

(APMD) | already in use during device allocation
allocation.

D03 I/O error writing to update Volume

(BLAB) disk volume label during vol- exchange
ume exchange.

Do4 Insufficient memory available Device

(ADCT) | to request reallocation of a allocation
device to a required volume.

Do4 Required device locked by Volume

(CCLK) | computer operator during exchange
volume exchange.

D04 Required volume already in use ‘| Volume

(CAPM) | during volume exchange. exchange

Abort

Code Cause Origin

D04 Insufficient memory available Volume

(CRQ@B) | to request mounting or dis~ exchange
mounting a volume.

D07 Insufficient memory available or | Device

(ASCG) | entry not found in an attempt to | allocation
identify an account volume
through the Supercatalog.

Do8 Required nonsharable pseudo- Device

(APMP) | volume already in use. allocation

D09 Insufficient memory available Device

(ALNA) | to request assignment or con- allocation
firmation of device use.

DoB Insufficient memory available Device

(AGSP) | for work space in allocation of | allocation
devices for volume mounting.

DoC Device required to mount a Device

(ALCK) | volume is locked by the com- allocation
puter operator,

DOF Requested nonsharable volume Device
has been found to be in use allocation
during automatic volume
recognition,

D24 Insufficient memory available Device

(BLAB) | for updating disk volume label release
during device release.

D25 I/O error writing to update Device

(BLAB) | volume label during device release
release.

D26 1/0 error reading to update disk Device

(BLAB) volume label during device

release
release,

D40 Insufficient memory available Volume

(BSCG) | to update Supercatalog after release
pseudovolume release.

D41 I/O error reading to update Volume

(BSCG) | Supercatalog after pseudo- release
volume use.

D42 I/O error writing to update Volume

(BSCG) | Supercatalog after pseudo- release
volume use.

D50 Insufficient memory available Device

(GGSP) | to update device usage ac- usage
counting records, accounting

D51 1I/O error reading or writing Device

(GLLG) | to update device usage ac- usage
counting records, accounting

USER SERVICES
ABORT CONDITIONS

Abort

Code Cause Origin

Gxx User job issued M:ERR, with abort | M:ERR
(xx) code specified by the user.

GO00 User job initiated abort, but did M:ERR
not specify an abort code number,

GO1 Insufficient free pages of dynamic | M:GL
storage available.

G02 Writing on listing log impossible M:PRINT,
during Print, Type, or Key-in M:TYPE,
request. M:KEYIN

GO03 Core space insufficient to process | M:TYPE,
the request. M:KEYIN

G04 A request to type or print a message| M:TYPE,
where message was outside the user | M:KEYIN
program area,

GO05 M:INT or M:STIMER has been issued | M:INT,
in a user program section that was | M:STIMER
entered due fo event occurrence
(i.e., /O ERR, ABN, or M:TRAP),

G06 Incorrect parameters specified. M:INT

M:STIMER

G07 With OST option, the address does | M:TRAP
not indicate an unprotected core
area, '

Go08 Incorrect beginning address for M:FSP
freeing memory space.

G09 With CANCEL option, no previous | M:STIMER
M:STIMER issued.

G10 Number of events expected greater | M:WAIT
than number of ECB addresses
provided,

Gl11 Invalid user data area for M:TIME | M:TIME
date group.

G12 Invalid request for M:IDLE, M:IDLE

G20 M:LDTRC issued within a user ab- | M:LDTRC
normal routine (i.e., I/O ERR, trap,
or interrupt).

G21 Common space not available on M:LDTRC
M:LDTRC.

G40 M:LINK issued in a user abnormal | M:LINK
routine (i.e., I/O ERR or ABN;

M:TRAP or interrupt).

G41 Insufficient memory space to pro- | M:LINK
cess the M;LINK.

G42 Insufficient memory space to pro- | M:LINK

cess the M:LINK,

Abort

Code Cause Origin

G43 1/O error on temporary file M:LINK
creation during save of calling
program environment,

G44 1/O error on temporary file M:LINK
reading during restore of calling
program environment,

G7F Maximum time allocated was M:STIMER
exceeded. as specified on
ILIMIT command.

G80 Maximum number of pages M:PRINT
specified by ILIMIT exceeded.

JOB MANAGEMENT
ABORT CONDITIONS

Abort | .

Code Cause

101 Insufficient core space to initialize job.

102 1/O error when reading system device vol-
ume blocks (DVB) from system disk.

103 Core space insufficient to emit a message to
the operator that job is initialized.

104 1/O error when reading system [ASSIGN
command table (TBASS) from system disk.

105 Error in file generation group catalog entry.
I I/O error when reading system step infor-
mation table (SIT) from system disk.

112 /O error when reading system !MESSAGE
tables from system disk.

113 1/O error when reading system ITITLE

| tables from system disk.

114 I/O error when reading system processor
options tables introduced on !PROCESSOR
command from system disk.

15 Core space insufficient to schedule the
job step.

143 1/O error when reading system !ASSIGN
tables (TBASS) from system disk.

181 Insufficient resources to satisfy |RESOURCE
requests.

182 1/O error when reading system tables con-
taining information to start the job.

183 Insufficient core space to build the operational
label table during mount request.

LOADER
ABORT CONDITIONS

Abort

Code Cause Origin

Jo1 Insufficient core space to build Root
LM DCB or read load module ‘Loader
HEAD/TREE tables into core.

Jo2 Unable to open LM file for Root
reading load module. Loader

Jo3 1/O error when reading load Root
module HEAD and TREE records. Loader

Jo4 The program load "BIAS" is Root
not compatible with that of Loader
the installation.

Jo5 Program too large for the avail- Root
able virtual memory or ILIMIT Loader
too low.

Joé No start address specified for Root
program. Loader

J10 /O error when reading a Segment
load module segment. Loader

Jn Unable to find requested Segment
overlay segment name in Loader
tree table of load module.

J12 Requested segment (protection Segment
type 01) will overlay DCB Loader
(protection type 10). Insuf-
ficient memory space.

J20 /O error on write of requested Debug
debug dump on listing log. Dump

J21 Insufficient core space to write Debug
requested debug dump on listing Dump
log.

J8o Maximum number of printed page | Debug
output exceeded during print of Dump
requested debug dump,

FILE PROCESSING
ABNORMAL CONDITIONS (ABN)

Abort | ABN

Code Code Cause Origin

0O01 01 End of file. M:CHECK

M:GET
M:CVOL
002 02 End of volume. M:CHECK

Abort [ABN
Code Code Cause Origin
007 07 Incorrect length; some | M:CHECK
data ignored because
user read-length spec-
ified was less than
physical record length.
009 09 Access out of file M:WRITE
limits. (ADR)
M:DEVICE
(BKS/FWS)
M:POINT
O0A 0A File saturated or no M:PUT,
more volumes to per- | M:WRITE,
mit switch. M:CvOL
O0B 0B. Key not in order. M:PUT
(indexed
O mode)
O0D 0D Key not present, M:FIND
M:STOW
(DEL)
M:GET
(KEY)
OOF OF Key already present. M:STOW
(ADD, SYN)
M:PUT
(indexed)
0o13 13 More than 23 disk M:PUT
extents required. M:WRITE
ERROR CONDITIONS (ERR)
Abort | ERR
Code Code Cause Origin
020 20 ‘ Invalid sequence in M:GET,
the block numbers on | M:CHECK
tape.
021 21 MT data ignored M:GET
(incorrect length). (formats F
and V)
022 22 Queued 1/O request M:CHECK
purged due to bad
termination of prior
1/0.

Abort | ERR Abort
Code Code Cause Origin Code Cause
023 23 Device permanent All 1/O O58 Number of simultaneous 1/O operations re~
error. procedures quested exceeds DCB SIM specification or
except M:CHECK not issued after SIM 1/O requests.
Zr\:dREAD 05C 1/O operations issued on a closed DCB,
M:WRITE 05D I/O requests issued to a DCB that has been
closed with hold (temporary close) specified.
O2A 2A Device locked by All /O O5E Erroneous DCB address.
operator. procedures
except OS5F I/O request issued is not allowed for the file
M:READ organization/access method specified in the
and DCB.
M:WRITE 060 1/O request issued in a sequence that is
illegal (i.e., M:PUT issued before an
02C 2C Irrecoverable 1/0 All 1/0 M:STOW in APAM file).
error, procedures
except 061 ILIMIT specification for number of cards
M:READ punched or pages printed is exceeded.
(;/r\‘::\l/VRITE O6A Insufficient memory to satisfy 1/O request.
 OPEN/CLOSE
ABORT CONDITIONS
ABNORMAL CONDITIONS (ABN)
Abort
Code Cause Abort | ABN
Code Code Cause Origin
047 Key.posmon or ke)./ length mv::ll.d. Key or 01 01 End of file (DUM M:OPEN
portion of key outside record limits. .
assignment).
050 Negative response given by operator to a .
user issued M:DEVICE change form. 302 02 End of volume. M:OPEN
O51 Attempt to process a null record length. SO0A 0A f/nc:fs::le to switch M:CVOL
052 Record length greater than block length S0C 0C IASSIGN error: cata- | M:OPEN
(REL > DCBBKL). ¢
. loged or generation
053 Record length greater than defined record file not resident on
length (REL > DCBREL). account volume.
054 Transfer length greater than maximum S10 10 User labels at the M:OPEN
length specified (TRL > DCBMXL). beginning of file.
055 Erroneous block length. S11 11 User labels at the M:OPEN
056 During update of AIAM record, the key beginning of volume.
was changed by the user. This may only S12 12 User labels ot the EOF | M:CLOSE
be done by NWK option during write. | or EOV. (M:OPEN)
O57 During update of V or U format record, S13 13 Disk saturated (fields
the record length was changed. or quanta).
058 M:DELREC issued for file created without S14 14 Attempt to open a M:OPEN
DLC option specified in DCB. tape! or disk file with
059 Buffer address or pointer error. Usually si'afus. OLD or MOD.
ns R and file does not exist.
due to not specifying a byte address in n
user program area. The user receives control for this abnormal for tapes
O5A M:WAIT issued with no 1/O in progress. only when opened in OLD or MOD state and the file

positioning parameter PID is specified.

Abort | ABN Abort
Code Code Cause Origin Code Cause
S15 15 Attempt to open an M:OPEN 547 KYL and KYPdefined such that the key extends
existing disk file with beyond record or overlay with DLC character.
status NEW. |)
. 548 File extension attempted with organization dif-
516 16 File ID doesﬂnof agree | M:OPEN, ferent from that used during creation of the file.
(tape only). CID
S18 18 Attempt to overwrite an | M:OPEN 549 Access method requires use of MOV mode.
unexpired file.
4 S4A Number of buffers specified less than that re-
519 19 Password request. M:OPEN quired by access method, mode, or peripheral
type.
M he user receives control for this abnormal only for
files opened in OLD or MOD state with the CID option. 548 Incompatible specification of REL, BKL,
and/or MXL.,
S4C Erroneous justification of title on printer
(i.e., title extends beyond printed line).
S50 Attempt to open a DCB Ausing an operational
ERROR CONDITIONS (ERR) label already associated with an open DCB.
S51 TASSIGN or M:ASSIGN not provided for on
Abort | ERR operational label referenced in M:OPEN,
Code Code Cause
: ' $52 Invalid DCB t ified, .
523 23 Permanent device error. e parameters specitie ;
S53 Designated volume is not available.
S2A 2A Device locked by operator. S54 Attempt to open a file in processing mode not
allowed by access method (i.e., AIAM file
s2C 2C Irrecoverable permanent error, open for read backward).
$55 Nonsharable volume is already in use.
S56 File nonsharable.
557 User attempted to become queuved for write ac-
cess to a file that is already open to his task.
ABORT CONDITIONS S58 File creation forbidden on this volume; it is
Abort write-protected by owner,
or
Code Cause S59 Erroneous buffer address specified.
S40 Incompatibility between access method and
file organization. S5A Sequence error in block numbers on magnetic
tape.
S41 Incompatibility between access method and
peripheral type. S5B File does not conform to XOS standards.
] S5C Creation of a null size temporary file.
S42 Invalid block header length specification,
S5E Invalid DCB address specified.
$43 BIN/EBCDIC mode not compatible with
peripheral type. S5F Macro instruction not allowed for access
method and Open mode being utilized.
545 FIL option used with 7-track magnetic tape
(7-track tapes permitted in DEVice mode only). S60 Unrecognizable disk header label.
S46 Record format not supported by access method 561 The number of files generated under account

or peripheral type (i.e., APAM with undefined
record format).

catalog exceeds limit specified at SYSGEN
or volume preparation time,

Abort

Code | Cause

-565 1/0 error while processing disk file label
record,

S6A Insufficient memory space to satisfy M:ASSIGN
or M:OPEN request.

S6B Insufficient disk space to satisfy request for
parallel mounting, or insufficient space to
contain file on assigned volumes, or for status
OLD file the last assigned volume is not last
occupied volume.

Sé6C Insufficient resources to satisfy mount request.

S6D Attempt to create a temporary file with
(STS,OLD).

S6E Attempt to extend file when volume mounted
is not the last volume of the file,

S6F Volume assignment sequence does not corre-
spond to sequence used during file creation,

S70 Password supplied by user is invalid.

S71 File deleted or file does not exist,

572 Access not allowed.

S73 Nonexistent CFU entry at OPEN time.

574 Nonexistent file at CLOSE time,

S75 Nonexistent CFU entry at CLOSE time.

S76 File extension attempted with null increment
specified on SIZ parameter of IASSIGN or
M:ASSIGN,

S77 More than 23 extensions were required with
IASSIGN or M:ASSIGN increment specifica-
tion provided.

S78 Required space not available within the
parallel-mounted volume set or number of
extents greater than 23,

S79 Unable to locate the desired file after an
M:CVOL request processes a status OLD or
MOD file.

S7A File already exists on new volume after an
M:CVOL request on status NEW file.

S78B Nonexistent file version.

S7C Disk allocation impossible.

S7D Open in AIAM: BKL not a multiple of sector

size, causing index-block algorithm to fail,

TAM MESSAGE MODE

ABNORMAL CONDITIONS (ABN)

ABN Origin
Code | Class | Cause READ |WRITE
01 X2 End of message. X
03 X2 Suspension on terminal X X
request,
04 X2 Initial POL/SEL 1/O X X
refused.
06 X2 Unexpected binary X
block received,
1A X3 Initial 1/O in progress. X X
1B X3 Line occupied by X X
another component,
1C X3 Operation not author- X X
ized for type of line
used,
1D X3 Component deactivated X X
in list,
1E X3 POL/SEL index X X
greater than number
of components,
ERROR CONDITIONS (ERR), RECOVERABLE
ERR Origin
Code Cause READ | WRITE
22 1/O purged. X X
23 Line in permanent error. X X
24 Terminal time=out (no response).’ X X
25 Incorrect response (BCC/ X X
ACK, etc.).
26 Invalid response. X X
27 Synchronization error, X X
28 Transmission error, X X
29 Modem or carrier default. X X
ERROR CONDITIONS (ERR), IRRECOVERABLE
ERR Origin
Code Cause READ |WRITE
2A Line locked (by operator). X X
2B Modem not ready. X X

TAM CHARACTER MODE
ABNORMAL CONDITIONS (ABN)
Origin
ABN READ
Code | Class Cause READ | (SUR) | WRITE
10 X2 Received ETX X
(during read).
11 X2 Null byte X
count before
completion,
12 X2 ATTENTIONI1 X X
received.
13 X2 ATTENTION2 X X
received.
14 X2 HT received X
(tabulation if
SYSGENed).
1A X3 Read survey X
refused (one
already
outstanding).
1D X3 List entry de- X X X
activated (by
M:MDFLST).
1E X3 List index X X X
greater than
number of
components,
ERROR CONDITIONS (ERR), RECOVERABLE
Origin
ERR READ
Code | Cause READ | (SUR) | WRITE
22 1/0O purged. X X X
24 Terminal (line) timed X
out (no response).
26 Line not activated X X X
during open. User must
issue M:DEVICE (opn).
27 Long space detected, X
29 Line in permanent error, X X X

ERROR CONDITIONS (ERR), IRRECOVERABLE

Origin
ERR READ
Code | Cause READ |(SUR) | WRITE
2A Line locked (by operator). | X X X
2B Coupler in permanent X X X
error,
TAM OPEN/CLOSE
ABORT CONDITIONS
Abort
Code | Cause
S30 | The lines of a group belong to different modes.
S3A | Erroneous address of explicit list.
S3B | Total number of components attached to DCB
greater than 254 in message mode.
S3C | Use of component (message mode) does not
conform to the list entry,
S3D | A component in the list does not belong to the
assigned line.
S3E A component has been named twice in a direct
list.
S3F No line could be activated (character mode).
S41 Access method not authorized.
S43 | Mode prohibited (binary or ANSCII),
S50 One of the lines is being processed by
another DCB,
S51 Unassigned operational label.
S55 | The operational label is being processed by
another DCB,
S5E Invalid DCB address.
S6A | Too much memory space requested.

TAM 1/0 PROCEDURES
Origin
ABORT CONDITIONS
—
Origin wlO 6 Y
Abort 2 = AR
B & Code | Cause &|Z2|a|0|=
alEl=V|
Abort) RSC | DCB closed XX [x |x |x
Code | Cause 2|Z|a|0|= closed.
R5E DCB invalid. XX [X|X|X
R51 Null transfer length. X :
Ré3 Operation prohibited X
R54 Transfer length exceeds maximum | X |X
length for component. R64 List unknown in DCB.
R59 Erroneous address (buffer, event | X|X|X|X]|X R67 Mode prohibited (binary or X
pointer, byte count, or index). ANSCII).
R5A No 1/O in progress X R68 All the lines in the group are XX
in permanent error,
R5B Too many I/O's in progress (no. of | X |X [X
current 1/O's greater than SIM). R69 Usage of dissimilar pointers. X

B-9

Word 0 v 0 L 1

APPENDIX C. STANDARD VOLUME AND FILE LABELS

VOLUME LABELS ON MAGNETIC TAPE

] NSV
| Acc |
3
sYs

7
8

SPC

where

10

11 uID

12 |

13

ESP

19 ILS

VOLI1 is the label identifier; it contains the four
characters VOL1,

NSV is the volume serial number; it contains one
to six characters assigned during volume prepara-
tion (PREP Utility Program), left-justified and
padded with nulls, '

ACC is the access control; it contains a space
character meaning "unlimited access" (i.e., no
one is restricted at the volume level).

SYS is unused. it contains 20 space characters.
Reserved for future system use.

SPC is unused; it contains six space characters.
Reserved for future system use.

UID is the owner identification; it contains one
to four characters representing the account num-
ber, left-justified and trailed with space charac-
ters to a total of 14 characters,

ESP is unused; it contains 28 space characters,
Reserved for future system use.

ILS is the standard label identifier; it contains the

character 1 for all labels created by XOS. The 1
signifies that the label adheres to ANS standards.

Word 0 \Y (@] L 1

VOLUME LABELS ON DISK

—

NSV
ACC

uID

Reserved

LONG ENT EDL

EDLS
NQA

DSA
SHR CcO
TMTRA

O VM 00 N o0 O AW DN

—

p—
p—

—
N

Free

19

where

VOL1 is the label identifier; it contains the four
characters VOLT.

NSV is the volume serial number; it contains one
to six characters assigned during volume prepara-
tion (PREP Utility Program), left-justified and
padded with nulls.

ACC is the access control; it contains a space

character meaning "unlimited access" (i.e., no

one is restricted at the volume level).

UiD is the owner identification; it contains one to
four characters representing the account number,
left-justified and trailed with space characters to
a total of 14 characters.

LONG specifies the length of an entry in the
catalog, in number of bytes.

ENT specifies the number of entries being used in
the primary part of the catalog.

EDL specifies the number of free entries in the pri-
mary part of the catalog.

EDLS specifies the size of the secondary part of the
catalog, in multiples of the primary part.

NQM is the maximum number of quanta to be al-
located for the volume (a quanta is 8192 bytes).

NQA

is the number of quanta allocated.

DSA is the disk address of the beginning of the

volume catalog.

SHR is the sharing authorization code (0 = non-
shareable; 1 =shareable).

CcoO is not used; it contains a zero. Reserved for

future system use.

TMTRA is the disk address of the TMTRA table used
for space allocation on this volume.

FILE LABELS ON MAGNETIC TAPE:

HDR1, EOF1, EOV1
LIbS
: -
. FNME
s FEI
6 SECT
7 SECT (cont.) SEQ
8 SEQ (cont.) GEN
9 GEN (cont.) VNG
10 |[VNG (conf.)l cDT

where

12 EXD
13 | rac |
14 BKC
15
. SYS
18
Spaces
19
LIDS is the label identifier; it contains the char-
acters HDR1, EOF1, or EOVI.
FNME is the file name; it contains 1 to 17 char-

acters, left-justified and padded with space
characters.

FEI is the file identifier; it contains the same vol-
ume serial numbers as the first (or only) volume of
the group of files associated at the time the file
was created. Represented in character format.

SECT is the file section number; it contains a
sequence number (0001-9999, in character format)
indicating the order number of this volume within
the volumes containing this file. It contains 0001
for a monovolume file or the first part of a multi-
volume file.

SEQ " s the file sequence number; it contains the
sequence number (0001-9999, in character format)
of the file within a volume or multivolume. At the
point within a volume that a file terminates and
another begins, this field is incremented by one.

GEN

is the absolute generation number.

VNG

is the version number of the generation.

CDT is the creation date; it contains the date that

the file was created in the form
byyddd
where
b is a space.
yy is the last two digits of the year.

ddd is the day of the year (001-366).

EXD is the expiration date; it contains the date
(in the same format as CDT) that the file is
eligible to be overwritten. The file is regarded
as expired when the current data is not earlier
than the expiration date.

FAC is the accessibility; it contains a character
code denoting the restrictions on who may have
access to this file. The default character is B
(see Chapter 6, Table 6-4),

BKC . is the block count; it contains the characters
000000 for HDR1 type labels. It contains the
count of the data blocks (not including labels and
tape marks)since the preceding header label group

for EOV1 and EOF1 type labels.

SYS is the system code; it contains 1to 13 charac-
ters identifying the system that recorded this file,
left-justified and padded with space characters.

Spaces is not used; it contains space characters.
Reserved for future system use. ’

FILE LABELS ON MAGNETIC TAPE:
HDR2, EOF2, EOV2

Word 0 LIDS
1 FMA BSZ
2
3 LNA
4
Reserved
12 BHR
13
Reserved
19
where
LIDS is the label identifier; it contains the

characters HDR2, EOF2, or EOV2. This label
is always written for files created by XOS,

FMA is the record format; it contains a single
character:

F = fixed.
V = variable

U = undefined.

BSZ is the block length; it contains a number (in
character format) specifying the maximum number
of characters per block.

LNA is the record length; it contains a number
(in character format) specifying either the rec-
ord length if the format is F, or maximum record
length if the format is V or U.

Reserved is not used; it contains space characters.
Reserved for future system use.

BHR is the buffer offset; it contains a number
(00-99, in character format) specifying the
length of the data block header field,

Reserved is not used; it contains space characters.
Reserved for future system use.

C-3

FILE LABELS ON MAGNETIC TAPE:
HDR3, EOF3, EOV3

Word 0 LIDS

1 ACCD
2

Other account numbers

15
16 ACCF

17 ACR ACW
18
19

PASS

where

LIDS is the label identifier; it contains the
characters HDR3, EOF3, or EOV3. This label
is written only if special protection is assigned
to the file,

ACCD is the first authorized account number; it
contains an account number and may be followed
by a list of other account numbers. Accounts
authorized for reading are followed by those
authorized for writing. The number of accounts
authorized for reading and the number of accounts
authorized for writing are recorded in the fields
ACR and ACW, respectively (see below).

ACCF is the last authorized account number; it
may contain an authorized account number. If
this field or any preceding authorized account
number fields are unused, they are filled with
space characters,

ACR specifies the number of accounts authorized
for reading (in character format),

ACW specifies the number of accounts authorized
for writing (in character format).

PASS is the password; it contains the password
required for access to the file,

FILE LABELS ON DISK

ENTRIES IN THE PRIMARY PORTION OF THE CATALOG

NONCATALOGED FILES

L L 1
T

Word 0 H D R 1
1
NME

N I FEI

6 VNF
7 | VNF (cont.) GEN

8 | GEN (cont) VNG |

9 CDT
10 EXD
11 FAC CDHS CSHS
12 | CSHS(cont.) LHR CDHF
13 CSHF NZE ADZ
14 ADZ (cont.) AFZ
15 |AFZ (cont.) Second 'érec v
16
17

2 |

where

Sixth area
23 :
(cont.)
HDR1 is the label identifier; it contains the four

characters HDRI1,

NME is the file name; it contains one to 17
characters, lefi-justified and padded with space
characters.

FEI is the file identifier; it contains the volume
number of the first (or only) volume associated
with the group of files at the time the file was
created. Represented in character format.

VNF is the volume number in the file; it contains

a sequence number (00-99, in character format)

indicating the order number of this volume within

the volumes containing this file. It contains 00

for a monovolume file or for the first part of a

multivolume file.

GEN

is the absolute generation number,

VNG

is the version number of the generation,

Note:

CDT is the creation date; it contains the date that
the file was created in the form

yyddd

where
yy is the last two digits of the year,
ddd is the day of the year (001-366).

EXD is the expiration date; it contains the date
(in the same format as CDT) that the file is eligible
to be overwritten. The file is regarded as expired
when the current date is not earlier than the
expiration date,

FAC is the accessibility; it contains a character
code denoting the restrictions on who may have
access to this file. The default character is B
(see Chapter 6, Table 6-4).

CDHS is not used; it contains a zero. Reserved

for future system use.

LHR has two fields of information:

1. The lefimost bit specifies whether or not more
HDRI1 labels exist in the file (0 = yes; I =no).

2. The rightmost seven bits specify the total
number of areas used in the file, including
those described in the EHDR extensions,

CDHF is not used; it contains a zero. Reserved
for future system use.
CSHF is not used; it contains a zero. Reserved

for future system use.
NZE has two meanings:

1. For private volumes. Unconditionally set
to 1; this has no particular meaning.

2. For system volumes. Contains the index to
the DCT (Device Control Table).
ADZ is the sector address of the beginning of the
first area.

AFZ is the sector address of the end of the first
area.

Space has been provided in this label to describe
from one to six areas, the number of areas actually
used being dependent on the size of the file and
the size of the areas. NZE, ADZ, and AFZ de-
scribe the first area. For each of the remaining
five areas, there are fields which are identical in
function and format to NZE, ADZ, and AFZ, If
the file becomes so large that the six areas do not
provide sufficient space, then label extensions are
used to describe additional areas.

. (cont.)

Word 24 H D R 2
25| oOrG BSZ | FrvA
26) LNA KYP
27 LVL ALB
28| cNC SIZE LIN
29 | LiN(cont.) | TAB KYL
30 NBD
31 INC PEXT

where

HDR2 is the label identifier; it contains the four
characters HDR2,

ORG is the organization type of the file; it con-
tains a single character:
C = sequential.
I = indexed.
P = partitioned.

D =direct.

BSZ is the block size, in bytes.

FRMA is the record format; it contains a single
character:
F = fixed.

V = variable.

U = undefined.

" LNA is the record length; it contains the actual
record length for fixed format records, or the
maximum length for variable and undefined format
records.

KYP is the position of the key relative to the be-
ginning of the file. Applicable to indexed
organization,

LVL is the number of index levels. Applicable to
indexed organization,

ALB is the address of the last data block; it con-
tains the sector number with respect to the be-
ginning of the file.

CNC has two fiel ds of information:

1. The leftmost bit specifies whether or not a
delete control character exists in the records
(0 =no; 1 =yes).

2. The rightmost four bits contain the byte length
of the block header (always 4).

SIZE is the size of the file in quanta (8192
bytes).

LIN is the index length, in number of bytes (in
character format). Applicable to indexed and
partitioned files.

TAB specifies the rate of access to the overflow

blocks.

KYL is the key length, in number of bytes. Appli-
cable to indexed and partitioned files,

NBD is the number of overflow blocks.

INC is the disk increment; it contains the number
of quanta (8192 bytes) to be allocated each time
the file is expanded.

PEXT is the pointer to the first extension; it con-
tains the entry number with respect to the be-
ginning of the catalog.

CATALOGED FILES

where

Word 0 H D R 1
' 1
NME
3 ——J FEI
6 VNF
7 | VNF (cont.) GEN
8 | GEN (cont) VNG |
9 ' CDT
10 EXD
1" FAC | CDHS | CSHS
12 | CSHS(cont.) LHR CDHF
13 CSHF NBECTG PTR
14 Free
15 ECTG Free
16
Free
23 ,
(cont.)
HDR1 is the label identifier; it contains the four
characters HDRI.
NME is the file name; it contains one to 17
characters, left-justified and padded with space

characters,

FEI is the file identifier; it contains the same
volume number as the first (or only) volume asso-
ciated with the group of files at the time the file
was created. Represented in character format.

VNF is the volume number in the file; it contains
a sequence number (00-99, in character format)
indicating the order number of this volume within
the volumes containing this file. It contains 00
for a monovolume file or for the first part of a
multivolume file.

GEN is the absolute generation number.
VNG is the version number of the generation.
CDT is the creation date; it contains the date that

the file was created in the form

yyddd

where
yy is the last two digits of the year.

ddd is the day of the year (001-366).

EXD is the expiration date; it contains the date
(in the same format as CDT) that the file is
eligible to be overwritten. The file is regarded
as expired when the current date is not earlier
then the expiration date.

FAC is the accessibility; it contains a character
code denoting the restrictions on who may have
access to this field. The default character is Y
(see Chapter 6, Table 6-4),

CDHS is not used; it contains a zero. Reserved
for future system use.

LHR is an additional HDR1 label indicator. Only
the leftmost bit of this field has meaning:

0 = more HDR1 labels exist in the file.

1 = the last HDR1 label in the file.

CDHF is not used; it contains a zero. Reserved
for future system use.

NBECTG is the number of ECTG entries.

PTR is the pointer to the extension entry; it con-
tains a number relative to the beginning of the
catalog that points to an EHDR or HDR3 label, if
there is any.

ECTG is the pointer to the ECTG extension entry;
it contains a number relative to the beginning of
the catalog.

C-6

Word 24 H D R 2
25 ORG BSZ FRMA
26 LNA KYP
27 ALB
28 CNC SIZE LIN
29 | LIN (cont.) TAB KYL
30 NBD
31 INC PEXT

where

HDR2 is the label identifier; it contains the four
characters HDR2,

ORG is the organization type of the file; it con-
tains a single character:

C = sequential.
I = indexed.

P = partitioned.
D = direct.

BSZ is the block size, in bytes.

FRMA is the record format; it contains a single
character:
F = fixed.

V = variable.
U = undefined.

LNA is the record length; it contains the actual
record length for fixed format records, or the
maximum length for variable and undefined
format records,

KYP is the position of the key relative to the
beginning of the file. Applicable to indexed
organization.

ALB is the address of the last data block; it con-
tains the sector number with respect to the be-
ginning of the file.

CNC has two fields of information:
1. The leftmost bit specifies whether or not a
delete control character exists in the records

(0=no; 1=yes).

2. The rightmost four bits contain the byte length
of the block header (always 4).

SIZE is the size of the file in quanta,

LIN is the index length, in number of bytes.
Applicable to indexed and partitioned files.

TAB specifies the rate of access to the overflow
blocks.

KYL is the key length, in number of bytes.
Applicable to indexed and partitioned files.

NBD is the number of overflow blocks.

INC is the disk increment; it contains the number
of quanta (8192 bytes) to be allocated each time
the file is expanded.

PEXT is the pointer to the first extension; it con-
tains the entry number in respect to the beginning
of the catalog.

ENTRIES IN THE SECONDARY PORTION OF THE CATALOG
EXTENSION OF THE FILE MAP: EHDR

Word 0 E H D R
1 PEXT NB NZE
2 ADZ AFZ
3 | AFZ (cont.)
4 Second area
5
6
7

2 N

30 17th area

31 r Free

where

EHDR is the label identifier; it contains the four

characters EHDR,
PEXT is the pointer to the next extension; it con-
tains the entry number in respect to the beginning

of the catalog.

NB is the number of used areas stored in this
extension.

NZE is the number of the first block in the area.

ADZ is the sector address of the beginning of the
area.

AFZ is the sector address of the end of the area.

C-7

Note: Space has been provided in this label to de-
scribe from 1 to 17 areas, the number of areas
actually used being dependent on the size of
the file and the size of the areas. NZE, ADZ,
and AFZ describe the first area. For each of
the remaining 16 areas, there are fields which
are identical in function and format to NZE,

ADZ, and AFZ,

FILE PROTECTION: HDR3

n N 3
T T

Word 0 H D R . 3
1 PEXT | ack | Acw
2
3 PW
4
ACNL
11
12
ACNE
19
20
Free
31
where

HDR3 is the label identifier; it contains the four
characters HDR3,

PEXT is the pointer to the next extension; it con-
tains the entry number in respect to the beginning
of the catalog of the next label extension of the
file.

ACR specifies the number of accounts authorized
for reading (the maximum number is eight).

ACW specifies the number of accounts authorized
for writing (the maximum number is eight).

PW is the password; it contains the password re-~
quired for access to the file.

ACNL specifies the account numbers authorized
for reading. It contains a list of from one to eight
account numbers that are authorized to read the

file.

ACNE specifies the account numbers authorized
for writing. It contains a list of from one to
eight account numbers that are authorized to
write in the file.

EXTENSION OF THE CATALOG: ECTG

Word 0 E c 1
1 PEXT TYP
2 GNA
3 SRNB | Free
4 SRN (first volume)
5 |
6
20 |
21 SRN (12th volume)
22
Free
31
where
ECTG is the label identifier; it contains the four

characters ECTG.

C-8

PEXT is the pointer fo the next extension entry;
it contains the entry number in respect to the
beginning of the catalog.

TYP is the device type; it contains the type num-
ber of the volumes for which the serial numbers
are specified.

Device Type Number

RAD (7212)

RAD (7204)

RAD (7232)

Disk Pack (7242)

MT (9-Track) 1
MT (7-Track) 12

- O A W O

GNA is the absolute generation number.

SRNB specifies the number of volume serial num-
bers cataloged.

SRN is the volume serial number. A maximum of
12 volume serial numbers may be specified.

APPENDIX D. USER LABEL PROCESSING

User labels are optional labels created specifically by the
user for his own purposes. Volumes and files that are to be
recognized as labeled by the system must always have stan-
dard system labels, these being created by system routines.
User labels are created as additional labels through user
routines,

It is important to note that the capability to create user
labels is only available for magnetic tape.

TERMINOLOGY

SVL (Standard Volume Label Group). SVL is comprised of
the VOL1 label only.

SHL (Standard Header Label Group). SHL is comprised of
HDR1, HDR2, and optionally, HDR3 labels.

STL (Standard Trailer Label Group). STL is comprised of
EOF1, EOF2, and optionally, EOF3 labels for end-of-file;
or EOV1, EOV2, and optionally, EOV3 labels for end-of-
volume.

The standard labels are discussed in detail in Appendix C,
Standard Volume and File Labels.

UVL (User Volume Label Group). UVL is comprised of up
to nine 80-byte records. The first three bytes of each rec-
ord contains the characters UVL while the fourth byte con-
tains a digit that is consecutive within the group starting
at 1, :

UHL (User Header Label Group). UHL is comprised of any
number of 80-byte records. The first three bytes of each
record contain the characters UHL.

UTL (User Trailer Label Group). UTL is comprised of any
number of 80-byte records. The first three bytes of each
record contain the characters UTL,

All remaining bytes of user labels are free for the user to
use as he wishes,

Figure D=1 provides an ‘example of a tape volume with user
labels.

GENERAL INTRODUCTION

The processing of user labels is recognized and facilitated
by the system. However, user labels are considered abnormal
and the user routine that processes them is ¢onsidered an ab-
normal routine. In fact, the user routine is entered with the
aid of the ABN (abnomal) option associated with the DCB,
as will be discussed later,

In order to process user defined labels, two conditions must
be satisfied:

1. Preconditions must have been established. The location
of the user abnormal routine, the abnormal class de-
noting the kind of user label processing desired, and the
location of a label processing area must be specified.

2. The abnormal condition associated with the specified
abnormal class must occur,

When both of the above conditions have been met, the sys-
tem will give control to the user's routine, which has been

written to process user labels as well as other selected ab-

normal conditions. The requirements for meeting the con-

ditions is discussed below.

~Iwn
rITC

File B

— -
— - Cc

S|IU|S|U ¢ fS U
VIVIH|H|* File A [* [T |T
LiL|L|L Li|L
Load
Point

Mhe asterisk signifies a tape mark.

Figure D-1. Example of Tape Volume with User Labels

D-1

ESTABLISHING THE USER LABEL PROCESSING
'PRECONDITIONS

The system allows the user to specify which user label types
he would like to process and the address of the user's ab-
normal processing routine through the use of the ABN option
associated with the DCB. The ABN option has the format

(ABN, address [,class-code, . ..])
where

address specifies the address of a routine which
processes any one (or more) of six possible "ab-
normal" conditions.

class-code is one or more codes that specify which
of the six classes of abnormal conditions are to be
handled by the routine at the given address.
Only three of the six classes apply fo user labels.
They are

Class-Code Kind of User Label Processing

X4 UHL at beginning-of-file.
X5 UTL at end-of-file.
X6 UVLatbeginning-of-volume.

The specification of these classes and the address
of the processing routine can be changed at any
time. (However, while the file is open, they can
only be changed via M:SETDCB.)

The address of the memory area into which the label is read
(input) or from which the label is written (output) is speci-
fied using the TLB option associated with the DCB and must
be specified before an M:OPEN is executed. The TLB op-
tion has the format

(TLB, address)

OCCURRENCE OF AN ABNORMAL LABEL CONDITION

An input abnormal label condition occurs as follows:
1. Beginning-of-volume label condition occurs when

a. AVR(Automatic Volume Recognition) has occurred
and either (1) the first OPEN occurs on the volume,
or (2) the volume-beginning is being processed
due to M:CVOL.

b. The physical record following the SVL (1) is 80
bytes in length and (2) contains the four characters

UVLT in the four byte positions of the record.

2. Beginning-of-file label condition occurs when

a. An M:OPEN or M:CVOL has occurred and the
SHL has been processed.

b. The physical.record following the SHL (1) is 80
bytes in length and (2) contains the three charac-
ters UHL in the first three byte positions of the
record.

3. End-of-file label condition occurs when

a. An M:CLOSE or M:CVOL has occurred and the
STL has been processed.

b. The physical record following the STL (1) is 80
bytes in length and (2) contains the three charac-
ters UTL in the first three byte positions of the
record.

An output abnormal label condition occurs as fol lows:

1. Beginning-of-volume label condition occurs when AVR
has occurred and there are no files on the tape at the
time the first M:OPEN or M:CVOL is being processed
(i.e., the record following the SVL is a tape mark).

2. Beginning-of-file label condition occurs when an
M:OPEN or M:CVOL has occurred and the SHL has

been processed.

3. End-of-file label condition occurs when an M:CLOSE or
M:CVOL has occurred and the STL has been processed.

SYSTEM RESPONSE TO AN ABNORMAL
LABEL CONDITION

Whenever an abnormal label condition occurs, the system
always checks to see if the preconditions have been estab-
lished for the particular user label involved. If they have,
the system passes control to the user's user-label processing
routine. If the preconditions have not been established, the
system handling of the abnormal label condition isas follows:
1. For input

a. UVL. The UVL is bypassed; however, the se-
quencing is verified.

b. UHL. The UHL is bypassed.
c. UTL. The UTL is bypassed.
2. For output
a. UVL. The abnormal label condition is ignored.
b. UHL. The abnormal label condition is ignored.

c. UTL. The abnormal label condition is ignored.

USER LABEL PROCESSING ROUTINE

The user can write only one routine for all abnormal condi-
tions because only one address for such a routine can be

specified with the ABN option. Therefore, if more than
one class of abnormality is preconditioned (this includes
classes X1 through Xé), ‘the user's abnormal routine must

be able to distinguish between and among the classes. A
code is provided left-justified in register 5 which enables
the user to program for this. For abnormal label conditions,
the codes are:

Hex Value of Code

Kind of User Label Class in Register 5
UHL X4 10
uTL X5 12
UVL X6 1

In addition, the return address to the system routine is pro-
vided right-justified in register 5 and the DCB address is
provided right-justified in register 6.

If the user label processing routine is entered during an
input operation, the label that caused the abnormal con-
dition to occur is available to the routine in the location
specified by the TLB option. The tape is positioned follow-
ing that label .

If the user label processing routine is entered during an
output operation, the location specified by the TLB option
is available for label creation. The tape is positioned fol -
lowing the label that has just been written.

The user labels can only be processed one 80-byte record
at a time. The programming considerations for processing
further label records of the same group are discussed
below.

1. Input

After processing the first user label record, the user
routine may require that the next user label record in
the group be processed. If so, the routine merely sets
register 6 to the value zero before executing an M:RE-
TURN. This is called a special return. If another
label record in the group does exist, the user routine
will be entered just as described for initial entry and
that record can thereby be processed.

However, if the user label group has no more labels, the
system will continue processing with no adverse effects.

At some point in this sequence, the user routine may
return control to the system without setting register 6
to zero. The system will bypass the remaining labels
in the group, if any, as if the abnormal label condi-
tion had not been preconditioned. This is called a
normal return.

Output

After creating a label the user routine can cause that
label to be written to tape by setting register 6 to the
value zero and then executing an M:RETURN. This is
called a :pecial return. After having written the label,
the system will enter the user routine as described for
initial entry. This provides the opportunity to process
further labels in the group.

When the user routine returns control to the system
without setting register 6 to zero, the system will con-
tinue processing as if the abnormal label condition
had not been preconditioned. This is called a normal
return.

The user label processing routine must return control to the
system via procedures such as M:RETURN or M:ERR (see
Chapter 8). The choice of which procedure to use depends
upon the logic of the user's routine.

APPENDIX E. DATA CONTROL BLOCK (DCB)

The DCB is a 19-word table that groups the parameters

defining the logical structure of a file and its processing
This information is used to interpret the [/O re-

mode.

quests given by the user.

A diagram of the DCB is shown in Figure E=1. Each of the
fields is described, in alphabetical order, in Table E-1, A
special discussion of the DCB for TAM (Telecommunications
Access Method) is given at the end of this appendix.

Word 0

10
11
12

13

7.8 15 16 23 24 31
DCBCLC I DCBDEB
ocsore | £ §|LIE[8[¥[E]EE[E] moo 4 ocerm
DCBAM DCBMXL
DCBABC DCBABN
DCBSIM DCBERR
DCBSYD
DCBOPL
DCBBCT
DCBKYP DCBREL
DCBFUN DCBCKP
DCBBHR DCBKYL DCBBKL
DCBNBF DCBBFA
DCBDTA DCBTLB .
DCBHDC DCBHDR
" DCBCNT DCBLIN DCBSPC DCBSPL
DCBSID
DCBTABI DCBTAB2 DCBTAB3 DCBTAB4
DCBTABS DCBTAB6 DCBTAB7 DCBTABS
DCBTAB? DCBTAB10 DCBTABT11 DCBTAB12
DCBTAB13 DCBTAB14 DCBTAB15 DCBTAB16

"Note that word 15 has two possible configurations.

Figure E-1.

Data Control Block

E-1

Table E-1. Standard DCB Parameter Fields

Field Name | Length Description

DCBABC 1 byte Specifies how abnormal conditions are handled. Each of the last six bits of this byte have
been assigned to represent one of the six possible abnormal conditions. If an abnormal
condition occurs and its corresponding bit is set to 1, then the abnormal condition is pro-
cessed by the user routine addressed in DCBABN. If an abnormal condition occurs and its
corresponding bit is set to 0, then the job is aborted.

The bit assignments are:
Bit 7 — End of file exit (X1).
Bit 6 — End of volume exit (X2).
Bit 5 — Abnormal process exit (X3),
Bit 4 — User label at beginning of file (X4).
Bit 3 — User label at end of file or volume (X5),
Bit 2 — User label at beginning of volume (X6).
Bit 1 — Not used.
Bit 0 — Not used.

DCBABN 3 bytes Specifies the address of the user routine which processes abnormal 1/O conditions. There
are six possible abnormal conditions and those which are to be processed by this routine
are specified in DCBABC.

DCBAM 1 byte Specifies the access method.

0 — ASAM (sequential assisted).
1 — AIAM (indexed assisted).

2 — APAM (partitioned assisted).
3 — VSAM (virtual sequential).
4 — VDAM (virtual direct).

5 — BDAM (real direct).

6 — TAM (telecommunications).

DCBBCT 1 word Contains the word address of the chain of opened DCBs,

DCBBFA 3 bytes Contains the virtual word address of the first buffer reserved in the program. (If there is
more than one buffer, the buffers must be contiguous.)

DCBBHR 1 byte Contains the number of bytes in the block header and is applicable only to V and F record
formats. The default value is four,

DCBBIT (Not located | Contains a value given by ths system which is a relative pointer to the word in the DCB

within the
DCB.)

that contains all the one-bit fields, (That word is Word 1 at the present time, but has
been parameterized through DCBBIT to facilitate making changes to the system at a later
time.)

E-2

Table E-1. Standard DCB Parameter Fields (cont.)

Field Name | Length Description
DCBBKL 2 bytes Specifies block size in bytes. It corresponds to the maximum transfer length for the
assisted access methods. The default value is 1024 for disks and magnetic tapes, 133 for
the printer, and 80 for punched cards.
DCBCKP 3 bytes Is reserved for future system use.
DCBCLC 1 byte Contains a code depending upon and given by the access method, controlling alternate,
method-dependent branches to common service modules.
DCBCNT 1 byte Indicates when a page number is to be printed (for print files). It is a column number and
must be less than 130, ‘
DCBDEB 3 bytes Contains the virtual word address of the DEB (Device Event Block).
DCBDLC 1 bit Indicates whether or not each record contains a delete control character,
0 — no delete control character.
1 — delete control character.
DCBDTA 1 byte Specifies the number of the column in which printing or punching begins.
DCBERR 3 bytes Specifies the word address of the user error exit procedure. If this address is omitted,
the job is aborted when an error occurs.
DCBFCD 1 bit Indicates whether the DCB is closed or opened.
0 — closed
1 — opened
DCBFCI 1 bit Indicates, when the bit is set to 1, that a temporary close has taken place on this DCB
with MTN. If the bit is set to 0, then this is not the case.
DCBFRM 1 byte Specifies the record format,
’ 0 — Fixed (default)
1 — Variable
2 — Undefined
DCBFUN 1 byte Indicates the processing mode.
0 — Forward reading (1)
1 — Writing (O)
2 — Backward reading (B)
3 — Updating (U)
4 — Scratch (S)
DCBHDC 1 byte Specifies the column number on which header centering is done (for print files).
DCBHDR 3 bytes Contains the virtual word address of the title to be printed at the top of each page (for

print files).

E-3

Table E-1. Standard DCB Parameter Fields (cont.) -

Field Name

Length

Description

DCBHLD

1 bit

Indicates, when the bit is set to 1, that a temporary close has taken place on this DCB
with HLD, If the bit is set to 0, then this is not the case.

DCBKYL

1 byte

Contains the length of the key in bytes.

DCBKYP

2 bytes

Specifies the key position in the record (humber of bytes between the beginning of the
record and the beginning of the key). The maximum value is equal fo the maximum size
of the record less the key size. The default value is 0.

DCBLIN

1 byte

Specifies the number of lines per printed page (for print files),

DCBMOD

3 bits

Indicates the data format. Note that some codes are used twice. This does not create a
conflict because the codes have different meanings for different devices.

0 — EBCDIC (for anything except 7-track tape).
0 — BCD (for 7-track tape).

1 — Binary (for anything except 7-track tape).

1 — Packed (for 7-track tape.

2 — Unpacked (for 7-track tape).

3 — ASCII (for transmission devices).

DCBMOV

1 bit

0 — 1/O is performed without moving the record into a user's word area (LOC mode).

1=1/0 is performed by moving the record into a work area specified by the user
program (MOV mode).

DCBMXL

3 bytes

Indicates the maximum length of memory-peripheral transfer in bytes. This length can be
greateér then the length specified by DCBBKL for the nonassisted methods. The default
value 15 equal to the block length.

DCBNBC

1 bit

Specifies whether or not there is a block count (applicable on magnetic tape).

0 — block count.

1 — no block count.

ASAM creates and uses block counts., This bit is used to flag ASAM that a block count
does not exist (as might be the case in files which are created by other access methods).

DCBNBF

1 byte

Contains the number of buffers used in the assisted access methods. The default value is 2.

DCBNRT

1 bit

Indicates what is to be done in case of an error.

0 — special handling.

1 — standard procedure to retry.

DCBOPL

1 word

Specifies the operational label of the DCB, This label is composed of a maximum of four
alphanumeric characters, left-justified and padded with space characters.

E-4

Table E-1, Standard DCB Parameter Fields (cont.)

Field Name

Length

Description

DCBORG

1 byte

Indicates the type of file organization,

0 — sequential (default).
1 — indexed.
2 — direct.

3 — partitioned.

DCBREL

2 bytes

Contains the record length for V and U format records.

DCBSEQ

1 bit

Indicates whether or not a page count or card count has been requested. If it has been
requested, the system will print page numbers or punch sequence numbers.

0 — no page count or card count,

1 — page count or card count.

DCBSID

1 word

Contains a card count identifier (four EBCDIC characters) to be punched in columns 73-76.

DCBSIG

1 bit

Indicates whether or not a card count identifier is present in Word 15 of the DCB.

0 — no card count identifier is present.

1 — card count identifier is present.

DCBSIM

1 byte

Indicates the maximum number of simultaneous 1/O operations allowed for the file. The
default value is the same as the number of buffers (see DCBNBF),

DCBSPC

1 byte

Indicates the type of spacing to be done for print files.

1 —single spacing (default).
2 — double spacing.
3 — triple spacing.

efc,

DCBSPL

1 byte

Specifies the number of the first printed line (for print files).

DCBSYD

1 word

Contains four EBCDIC characters which are the SYSID. The first character is a letter that
identifies the class under which the job is executed, the class being specified on the 1JOB
card, The last three characters contain the job number (000-999). The job number is set to
000 when the system is booted and is incremented by 1 for each new job.

DCBTABI to
DCBTAB16

1 byte each
(4 words)

Contain column numbers for tab stops (for print files).

DCBTLB

3 bytes

Specifies the virtual word address of the memory area into which a user label may be read
or from which a user label may be written.

DCBVFC

1 bit

Indicates whether or not a vertical spacing control character exists in the record heading.
This control character is only applicable for print files and indicates how much space there
should be between lines. If no vertical spacing control character exists, the system will
provide for single spacing by default.

0 — no vertical spacing character in the record body.

1 — vertical spacing character in the record body.

E-5

The DCB for TAM contains man

parameters and four special parameters

THE DCB USED BY TAM A number of the fields of the standard DCB are not used for
[TRANSM'SS“]N ACCESS METHOD] TAM but the unused fields can not be removed because the

DCBLSTI
DCBLST2

DCBLST3
DCBLST4

TAM DCB would no longer be compatible with the standard

y of the standard DCB DCB macros.

peculiar to TAM:
One DCB is created by the user for a group of lines of the
same characteristics.

A diagram of the TAM DCB is shown in Figure E-2. Only
the characteristics peculiar to the TAM DCB are listed in
Tables E-2 and E-~3,

0 © N o~ O, £ w N — o

T
N o0 - AW N = O

[e<]

1 7 8 15 16 23.24 31
DCBLC DCBDEB
,

DCBAM DCBMXL
DCBABC ' DCBABN
DCBSIM o DCBERR

DCBSYD

DCBOPL

DCBBCT

7

DCBFUN

o3>3

7777777 oKL

//

777 /77777777

///A

0000050300000 0000000%0%0000

DCBLSTI

DCBLST2

DCBLST3

DCBLST4

Figure E-2. TAM Data Control Block

E-6

Table E-2. DCB Fields Unique to TAM

Field Name | Length - Description
DCBLST1 1 word Contains the virtual address of the first list named in M:DCB. (This list is placed in
DCBLST by OPEN. It is the active list at initialization.)
DCBLST2 1 word
DCBLST3 1 word Confaln.s the vnrfuu.l addresses.of any other lists associated to the DCB if there are any.
Otherwise, these fields contain zeros.
DCBLST4 1 word
Table E-3. Special TAM Values for Standard DCB Parameters
Field Name | Length Description
DCBAM 1 byte If VS has been coded it contains a 3 for virtual sequential; if BT has been coded it contains
a 6 for TAM, before the DCB is opened. When the DCB is opened, VS (3) is changed to
BT (6) if a transmission line is assigned.
DCBFRM 1 byte Contains a zero for fixed record format. Zero is the Aefault for this field also.
DCBMOD 3 bits Indicates one of the following data formats:
0 — EBCDIC
1 — Binary
3 — ANSCII
DCBMXL 3 bytes Depends on the transmission mode. In message mode, MXL indicates the maximum transfer
length corresponding to the size of the buffers used in the read. MXL must be greater than
or equal to the greatest transmission length of the components of the lines connected to that
DCB. In character mode, MXL corresponds to the maximum size of the messages received
from the terminals used. MXL must be less than or equal to the shortest length of print lines
of the terminals connected to that DCB.
DCBORG 1 byte Contains a value of zero which stands for sequential. Zero is the default for this field
also.
DCBSIM 1 byte Specifies the maximum number of simultaneous 1/O operations for the group of lines

managed by the DCB

E-7

APPENDIX F. TAM LIST FORMATS

* POLLING/SELECTION LISTS Meaning of the parameters:
This list consists of a two-word header and two-word list) is the number of components that can be polled.
entries. The first word of each entry contains either the For the direct lists, this byte contains the number
component name (four EBCDIC characters, left-justified), of stations of the list.
of the word address of the user program containing the
name of the component. The second word is not used be- f is a list flag byte containing character/message
fore the DCB is opened. Assembly~ and execution-time mode indicators:

formats are shown below.

Loop/linear list.
The p constitutes the polling list and is constructed as the
first entry of the list. The s constitutes selection list Sequential/direct list.
entries.

Active/at-rest list.
Explicit List Format After Assembly

List initialized at OPEN.

List i Word 0
Header P P ip, is are bytes containing the immediate value
s is of the polling index and the selection index,
‘ respectively.
Entry 1 2 s is the number of terminals in the selection list.
Entry 2 3 sl...s4 is the terminal name in EBCDIC characters,
left-justified.
d t e c are indexes in the system tables:
d index of the DEB subtable corresponding
to the transmission line.
p+s t terminal index (TML).
Entry 2(pts)+1
e index of the associated component in the
Explicit or Implicit List Format After Opening polling or selection list.
List ¢ component index (CMP).
HI: de p f ip Word 0
ader s s AD1 is the station address for polling/selection.
u is the status flag for the terminal.
Entry 1 d ADI Y f 2 AD2 is the component address for polling/selection.
e AD2 c 3
DIRECT LISTS
This list consists of a header, one word in length, and ter-
minal entries, one word in length. Word zero of each entry
p+s 2pts)t] has the same r?le as the first word of the entries in the
Entry polling/selection lists.

F-1

APPENDIX G. EBCDIC 8-BIT COMPUTER CODES

Most Significant Digits

Hexadecimal ol 1| 2|3 |4|5|6|7|8|9|Aa|B|c|D|E]|TF

Binary 0000|0001 | 0010|0011 | 01000101 |0110 {0111 |1000{1001 [1010 |1011] 1100|1101 [1110] 1111

0 | 0000 NUL|DLE | ds P | & - , \ |0

1| o001 SOH|DCT | s / ol | Al 1

2 | 0010 sTX |DC2| £ [SYN b | k| s B | K| s | 2

3 | oon ETX |DC3| si c | 1|t clL]| 1|3

4 | 0100 d | m| v D| M| U] 4
5| o HT | LF e | n | v E|N| V]S
2l 6 | o110 BS | ETB fFlolw Flo| w|eé
E 7 | om DEL ESC |EOT gl p | x G| P |x |7
E, 8 | 1000 EOM[CAN hilagly HlQ| Y| s
% 9 | 1001 EM : I T 1 [R |z |9
1 al 100 [t]f

B | 1011 VT s #!

c | 1100 FF | FS pca| < | * | % | @

D | 1101 CR| GS|ENQ|NAK| (|) | _']

E | 1110 sO| RS |ACK s+l > =

Flum st |us |BeL|sus| | "] AT 2]

Mhese graphic symbols have different representations depending on the teletypewriter models.

Notes: 1. The XOS EBCDIC character code set is SYSGEN-dependent; the code assignments shown in the table represent
the SYSGEN default set.

2. The XOS EBCDIC character code set shown in the table differs significantly from the XDS standard set for
several other operating systems, especially in the control-code assignments.

APPENDIX H. ANSCII 7-BIT COMMUNICATION CODES

Most Significant Digits

(rDc')e;s'm“'(co,.s.)_’ ol 1| 23| 4|5}6]| 7

| | Binary x000 [x001 [x010 {x011{x100 |x101 | x110{x111

0 | 0000 NUL|DLE|SP | 0 | @ | P p

1| o001 sonfoct| 1| 1| Al Q| a]q

2 | 0010 stx|pc2l [2 | Bl R | b |

3| oo1l etx|oc3f #t | 3 | c | s | c|s

4 | 0100 EoT|Dc4l $ | 4 | D | T | d |t
AR ENQINAK| % | 5 | E | U | e | u
2l ¢ | oo ACK|[SYN| & | 6 | F | V| f | v
E, 7 | omn BELIETB | ' | 7| G| W| g | w
E.: 8 | 1000 BS [CAN| (| 8 | H | X | h | x
gl 9 | 100 HT{EM |) [9 | T | Y | iy
"o | 1000 LFdsus |« | : |0 | z| | =

NL

1| 1o vilesc| + | 5 | k| ["] «

12 | 1100 FF | FS | , < | L |\ |

13 | 101 cRics| - | =|Mm|]1|nm

14 | 1110 so|Rs | . | >| N| ST n

15 | 1111 st us| /| ? o Yl o |DEL

Mhese graphic symbols have different representations depending on the tele-
typewriter models.

INDEX

Note: For egch entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

A basic direct access method (BDAM), 7-53,2-2, 6~4
BDAM I/O procedures and general usage rules, 7-53

ABN address, parameters, 7-54 BDAM procedure syntax, A-13

abnormal codes, TAM, 9-17 BIAS option, 4-4

abnormal condition processing, 7-53,7-2 bipoint line management, 9-16

abnormal conditions during file processing, 7-56 bipoint network, 9-2

abnormal conditions during Open and Close, 7-54 blank COMMON, 4-15

abnormal traps, 8-7 block definition, 6-5

abnormal, error, and abort codes, B-1 ' block formats, 6-7

abort codes, B-1 block header, 6-7,6-8,6-10

abort conditions, 7-2,7-56 block length, 6-31

ABS option, 4-12 block sequence number, 6~7,6-9,6~10

absolute file generations and versions, 6-21 block size, 6-7

absolute generation group, 6-22 blocks on direct-access media, 6-9

access authorization, 6-32 blocks, fixed format (mag tape), 6-7

access methods, file processing, 6-2 blocks, variable format (mag tape), 6-9

access methods, applicability and cross-relationships, 7-2 break detection (long space), 9-27

account authorization, 3-11 buffer areas, usage of, 7-2,9-9

account catalog, 6-18
account volume, 6-4,6-17

adapter error codes, TAM, 9-30 c
addressing sequences, TAM, 9-4
AIAM (Assisted Index Access Method), 6-3 CAL1 instruction, 8-1
AIAM 1/O procedures and general usage rules, 7-19 cancellation characters, 9-27
AIAM procedure syntax, A-7 cataloged command set, 3-3
allocation of multivolume direct-access files, 6-31 cataloged files, 6-21,6-22
allocation of space, 6-4 cataloged job, 3-3,3-4
AND command, 5-4 ' catalogs, 6-18
ANSCII, 7-bit communications code, H-1 CdClI, 3-2
APAM (Assisted Partitioned Access Method), 6-3 central station, 9-2
APAM 1/O procedures and general usage rules, 7-26 character mode, 9-20
APAM procedure syntax, A=9 character mode component lists, 9-21
ASAM (Assisted Sequential Access Method), 6-2 class-ID, 3-2 '
ASAM 1/O procedures and general usage rules, 7-4 clock counter, 8-13
ASAM procedure syntax, A-7 command cataloging, 3-3
assembly-time DCB creation, 7-2 commands,
ASSIGN command, 3-8, 6-1 IASSIGN, 3-8, 6-25
CTG option, 6-21 ILINK, 4-3
examples, 3-12, 6-26,6-27,6-28, 6-29 :AND, 5-4
operands, common, 3-9 :COUNT, 5-5
syntax, 3-8,A-3 :DCB, 5-2
usage, 3-12,6-25 :IF, 5-3
assignment of an operational label, 3-8 :INSERT (Link), 4-16
assignment types, 6-26 :INSERT (Debug), 5-6
assisted access methods, use of buffers, 7-3 :MODIFY (Link), 4-16
assisted index access method (AIAM), 7-19,6-3,2-1 :MODIFY (Debug), 5-5
assisted partitioned access method (APAM), 7-26,6-3,2~1 :OPTION, 4-3
assisted sequential access method (ASAM), 7-4, 6-2,2-1 :OR, 5-4
assisted versus basic processing methods, 6-2 :PMD, 5-2
attention characters, 9-27,9-28 :PMDI, 5-2
:REDEF, 4-17
:SNAP, 5-3
B :SNAPC, 5-3
:TREE, 4-14
backward path of a segment, 4-14 Debug, 5-2
base data blocks, 6-13,6-30 Link Editor, 4-3

Index-1

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

COMMENT command, 3-16
comment field, 3-1
COMMON, 4-15

IASSIGN operands, 3-9

dynamic area, 8-4

resources, 1-7,1-8,3-7
communications interrupt processor, 2-2
component, 9-1
component list, 9-11
constant data area, 8-2
continuation of commands, 3-2
control command interpreter (CCI), 3-2
control command parameters, 3-3
control command syntax notation, 3-1
control commands, 3-1
control elements, 1-5
COUNT command, 5-5
creating and modifying the DCB, 7-1
cross-relationships of the access methods, 7-3
CSEC (control section), 4-20
CTG option, 6-21

data codes, 9-7
DATA command, 3-17
Data Control Block (DCB), 6-1, 6-26,7-1
Data Control Block, expansions, E-1,E-6
data definition, 6-5
DCB (Data Control Block), 6-1,6-25,6-26,7-1
creating and modifying, 7-1
fields unique to TAM, E-7
parameter fields (expansion), E-2,E-7
parameters, 7-1 through 7-57
parameters in 1ASSIGN, 3-8
used by TAM, 9-6,E-6
DCB command (debug), 5-2
DDEF (doubly-defined external definition), 4-20
Debug
aids, 5-1
commands and procedures, 5-2
processor, 5-1,9-10,2-4
service, 5-1
service usage, 5-6
syntax rules, special, 5-1
debugging, TAM, 9-10
DEF (external definition), 4-20
DEFG - file generation group definition, 2-5
DEV options, 3-12
DEV-type assignments, 6-26
device and volume allocation abort conditions, B-2
device controller error codes, TAM, 9-30
device independence, 6-25
device-type (DEV) assignments, 3-8
direct (D) file organization, 6~13,6-3, 6~31
direct lists, TAM, F-1

direct-access
data block, 6-11
media, allocation of space, 6-4,6-30,6-31
media, blocks on, 6-9

directory blocks, 6-13

disk pack structures, 6-21

DSEC (dummy section), 4-20

DUM-type assignment, 3-9

dummy assignment, 3-9

dynamic area, 8-2

E

EBCDIC, 8-bit character code, G-1
echoplex mode, 9-23

echoplexing, 9-25

end-of-message characters, 9-25

EOD command, 3-17

ERR address, 7-54

error codes, 7-56,9-17, B-1

error conditions, 7-2

error conditions during file opening, 7-56
error conditions during file processing, 7-56
error conditions, processing of, 7-53,7-2,9-10
error job step, M:ERR, 8-10

error severity levels, 4-12

errors causing the program to abort, 7-56, B-1
ETX character, 9-28

EXEC command, 3-6

execution priority, (see Job Classes), 1-1
execution-time DCB creation, 7-2
execution-time DCB modification prior to opening, 7-2
extension of the catalog: ECTG, C-1
extension of the filemap: EHDR, C-7
external communication, 8-11

external definitions, 4-1

external priority interrupt system, 1-3
external references, 4-1,4-12

F

facilities provided by Monitor, 2-1
facilities provided by processors, 2-2

FIL options, 3-9,3-10,3-11,A-1

FIL-type assignments, 3-8, 6-27

file access authorization, 6-32

file accessibility code, 6-32

file and volume relationships, 6-18

file characteristics and classifications, 6-4
file closing, 7-1

file definition, 6-5

file deletion, 6-4

file disposition, 7-14,7-24,7-32,7-50
file-generation-group definition (DEFG), 2-5
file generations, 6-22

file identification, 3-11

Index~2

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

file labels on disk, C-4 hardware clock, 8-13
file labels on magnetic tape: HDR1,EOF1,EOV1, C-2 hardware errors, 9-20
file labels on magnetic tape: HDR2,EOF2,EOV2, C-3 header label group, D-1

file labels on magnetic tape: HDR3, EOF3,EOV3, C-3
file maintenance (FMGE), 2-4
file management facilities, 6-1

file management system (FMS), 2-1 |

file media, categories of, 6-16

file name, 3-11, 6-28 I/O assignment, 3-8

file opening, 7-1 I/O buffers, 7-2 '

file organization, 6-9 I/O procedures, special syntax conventions, 7-4
direct (D), 6-14,6-3,6-31,7-46 1/O processing procedures, 7-1
indexed-sequential (I), 6-12,6~3,6-30,7-19 IF command, 5-3
partitioned (P), 6-14,6-3,6-31,7-26 index blocks, 6-12,6-13,6-30
sequential (C), 6-12,6-2,7-4,7-35 indexed-sequential (I) file organization, 6-12,6-30,7-19

file organizations, 6-2 indirect assignment, 3-9

file processing abnormal conditions, B-4 initialization, file processing, 7-1

file processing abort conditions, B-5 input state processing, TAM, 9-25

file processing error conditions, B-4 input symbiont, 3-1

file protection, 6-31,6-32 input/output devices, 6-1

file protection: HDR3, C-7 INSERT command (Link), 4=15

file reorganization (REORG), 2-5, 6-4 INSERT command (Debug), 5-6

file retrieval, 6-4,6-21 INSERT command ordering (Link), 4-17

file sharability, 6-32 instruction area, 8-2

file status (STS) 3-9, 7-10, 7-23, 7-30, 7-40, 7-49 interrupt initiated by operator, M:INT, 8-12

file-type (FIL) assighments, 3-8) interval timer, 8-13

files

absolute generations and versions, 6-21
cataloged, 6-21

logical structures, 6-5 J
logical versus physical, 6-1
permanent, 6-13,6-16 job abort, 8-10
relative generations, 6-22 job classes, 1-1,1-8,3-3
temporary, 6-13,6-16 JOB command, 3-2
fixed format magnetic tape blocks, 6~7 job control, 3-1
fixed length (F) record format, 6-5 Job Management abort conditions, B-3
flag resetting, 5-4,5-5 job scheduler, 1-10
flag setting, 5-4,5-5 job scheduling, 1-9
FMGE (file maintenance, processor), 2-4 Job Switch management, 8-10
formats, block, 6-7 Job Switch Word (JSW), 8-10
forward path of a segment, 4-14 job and task management, 1-3
free pages in local dynamic area, M:FP, 8-4 job-ID, 3-3
free space in common dynamic area, M:GSP, 8-4 job-step abort, 8-10
full-duplex, 9-1 JSW (Job Switch Word), 8-10

G

GEF (test file generator), 2-5

general and contingent polling sequence, 9-4
general syntax rules, 3-1

generation group, 6-22

get limits of dynamic space, M:GL, 8-4

get pages in local dynamic area, M:GP, 8-4
get space in common dynamic area, M:GSP, 8-4

L

labeled COMMON, 4-15

labeled files, 6-1

labeled volumes, 6~1

language processors, 2-2

LDEF (library=-satisfied definition), 4-20
library file, 4-1,4-4,4-8,4-12

library file dictionary, 4-4

H library modules, 4-1,4-4
library search, 4-12

half-duplex, 9-1 library-module name, 4-4,4-8

hardware abort conditions, B-1 LIMIT command, 1-8,3-6

Index-3

Note: For each entry in this index, the number of the most significant page is listed first, Any pages thereafter are listed in

numerical sequence.

line control, TAM, 9-1

line management, TAM, 9-23
line states, TAM, 9-23

LINK command, 4-3

Link diagnostic messages, 4-22
Link Edit inputs and outputs, 4=2
link editing, 4-1

link editing examples, 4-20
Link Editor, 2-3,4-1

Link Editor commands, 4-3
Link system interface, 4-2
listing log, 8-12

load map, 4-12

load map format, 4-17

load module, 4-1

loader abort conditions, B-4

loading and executing a program, M:LDTRC, 8-5

loading and executing a program, M:LINK, 8-6
loading overlay segment, M:SEGLD, 8-5

local dynamic area, 8-2

locate-record (LOC) mode, 7-3

logical file, 6-1,6-25,6-26,3-8

logical file structure, 6-5

logical record definition, 6-5

logical versus physical files, 6-1

M:AND procedure, 5-4
M:COUNT procedure, 5-5

M:DCB procedure, 6-26,A-5

M:IF procedure, 5-3

M:LIST procedure, TAM, 9-12
M:MDFLIST procedure, TAM, 9-12
M:MDFLST procedure, TAM, 9-21
M:OR procedure, 5-4

M:SETDCB procedure, 6~26,A-5
M:SNAP procedure, 5-3
M:SNAPC procedure, 5-3
magnetic storage devices, 6-1
magnetic storage media, 6-17
magnetic tape positioning, M:OPEN, 7-10,7-41
magnetic tape structures, 6-21

media conversion program generation (GENER), 2-5

memory layout, 4-7

memory management, 1-3,8-2
memory map, 1-5,1-6

memory space organization, 8-2
message, TAM, 9-4

MESSAGE command, 3-16

message mode, TAM, 9-11

message mode errors, TAM, 9-20
message to operator with reply, M:KEYIN, 8-11
message to operator, M:TYPE, 8-12
messages, Link diagnostic, 4-22
Mini-CCI, 3-2

MODIFY command (Link), 4-16
MODIFY command (Debug), 5-5

MODIFY command ordering (Link), 4-16
monitor services, procedures, 8-1
monovolume file, 6-18

move-record (MOV) mode, 7-3
multifile multivolume, 6-18

multifile volume, 6-18

multipoint line management, TAM, 9-16
multipoint network, TAM, 9-2
multiprogramming, 1-3

multivolume file, 6-18

NAM option (file name), 3-11, 6-28
network, TAM, 9-1

noncataloged files, label of, C-4
nonmagnetic device assignments, 6-26
nonmagnetic media, 6-16

nonresident monitor, 1-5

nonstandard volume assignments, 6-27
nonswitched line, TAM, 9-1
nonsymbiont access, 6-27

normal selection sequence, TAM, 9-5
NOSYSLIB option, 4-12

notation conventions, 1-9

NOTCB option, 4-12

object modules, 4-1
obtain absolute time, M:TIME, 8-12
obtain the date, M:GETDAY, 8-13
op~label (see also "operational label"), 3-9
Open/Close abnormal conditions, B-5
Open/Close abort conditions, B-6
Open/Close aborts, 9-18
Open/Close error conditions, B-6
opening and closing a line, TAM, 9-8
operational label, 3-8,3-9,6~1, 6-25
operational label assignments, Link, 4-2,4-15
operator communications

character mode, TAM, 9-30

message mode, TAM, 9-20
OPL~type assignment, 3-9
OPTION command (Link), 4-3
OPTION command ordering (Link), 4-13
option field, 3-1
OR command, 5-4
output state processing, TAM, 9-28
overflow (data) blocks, 6-12,6-13, 6-30
overlay and program loading, dynamic, 8-5
overlay segment, 4-14
overlay structure, 4-14

Index-4

Note: For each eniry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

P

packing, TAM, 9-4
paper tape usage, TAM, 9-27,9-28
parallel job class, 1-1
parallel mounting, 6-18
parity check, TAM, 9-27
partition key, 6-13
partitioned (library) file, 4-1
partitioned (P) file organization, 6-13,6-3,6-31,7-26
password, 3-11,6-31
password protection, 6-31
patch area, 4-17
path, overlay, 4-14
permanent file, 3-11, 6-14, 6-16, 6~28
permanent file assignments, 6-28
permanent file on account volume, 6-29
permanent file on private or public volume, 6-29
physical file, 3-8,6~1
physical file and volume structures, 6-21
physical pages, 1-5
physical resource, 1-7,3-8
PMD and PMDI commands, 5-2
polling/selection list, TAM, 9-11
polling/selection list formats, F-1
positioning of tape volume during M:OPEN, 7-11
postmortem dump, 5-2,8-10
predefined operational labels, 3-15
PREF (unsatisfied primary reference), 4-20
PREP (volume preparation processor), 2-4
primary portion of the catalog, C-4
primary references, 4~12
principal partition key, 4-8
priority, 3=3
private volume, 6-17
procedure aborts, TAM, 9-19
procedures
M:COUNT, 5-5
M:IF, 5-3
M:SNAP, 5-3
M:SNAPC, 5-3
procedures, monitor services, 8-1
processing mode, file, 7-10,7-23,7-30,7-40, 7-49
processor services, utility, 2-4, 6-4
processor-call command, 3-16,3-2
processors,
DEBUG, 2-4,5-1
facilities provided by, 2-2
File-Generation-Group Definition (DEFG), 2-5
File Maintenance (FMGE), 2-4
File Reorganization (REORG), 2-5
language, 2-2
Link Editor (LINK), 4-1,2-3
Media Conversion Generator (GENER), 2-5
service, 2-3
SORT, 2-4
Test File Generator (GEF), 2-6
utility, 2-4
Volume Preparation (PREP), 2-4
production job classes, 1-1

program and file relationships, 6-25
program area, 8-2

program initial conditions, 8-7
program modularity, 4-2

program segments, 4-2

program wait, M:WAIT, 8-10
program=line relationship, TAM, 9-5
program-load address, 4-4

PRT (protection) option, 6-31

PSD (Program Status Doubleword), 8-9
pseudoswitch, 8-10

pseudovolume, 6-17

public volume, 6-17,6-28

push-down storage, registers and PSD, 8-9

real memory space, 1-5
receipt sequences, 9-5
record format
fixed length (F), 6-5
undefined (U), 6-6
variable length (V), 6-6
record keys, 6-12
record length, 6-5
REDEF command, 4-17
register storage, temporary push-down, 8-9
REL option (Link), 4-12
relative file generations, 6-22
relative generation group, 6-22
relocation dictionary, 4-12
remote batch processing and telesymbionts, 2-2
remote station, 9-2
REORG (file reorganization), 2-5
reserved resources, 1-7
resetting of Pseudoswitches, M:RSS, 8-11
resident monitor, 1-5
resource allocation, 1-7
RESOURCE command, 1-8,3-7
resource limits, 1-8,3-6,3-3
return of control, M:RETURN, 8-9
root segment, 4-14
RUN command, 3-5

)

scheduler, 1-9

scheduling flow, 1-10

scheduling priority (see Job classes), 1-1

search of libraries, 4-12

secondary portion of the catalog, C-7

secondary storage, 6-18

sector size, 6-31,6-7

segment, overlay, 4-14,4-2

segmentation, 4-14 ’

sequential (C) file organization, 6-12,6-2, 6~30,7-4,7-35

Index-5

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

sequential processing, 6-2 file processing errors, 9-16

serial mounting, 6-18 input/output procedures, 9-13,9-22
service processors, 2-3 list formats, F-1

services, file management (FMS), 2-1 message mode abnormal conditions, B-7
services, system, 2-1,8-1 message mode error conditions, irrecoverable, B-7
setting pseudoswitches, M:SSS, 8-11 message mode error conditions, recoverable, B-7
severity level (SL), 4-12 Open/Close abort conditions, B-8
shared resources, 1-7,3-6 program aborts, 9-16,9-28

simplex line, 9-1 resource allocation, 9-6

SIZ parameter (file size), 3-11 values for standard DCB parameters, E-7
SLIMIT command, 1-8,3-7 tape file positioning at close time, 7-15
SNAP command, 5-3 tape positioning, M:OPEN, 7-10, 7-41
SNAPC command, 5-3 task, 1-3

space allocation, file, 6-30, 6-4 task control block (TCB), 4-12

space allocation procedures, memory, 8-4 telecommunication facilities, 9-1

specific polling sequences, 9-4 Telecommunications Access Method (TAM), 9-5,9-9
SREF (nonsatisfied secondary reference), 4-20 telecommunications debugging, 9-10
standard file labels, C-1 " Telecommunications Management System (TMS), 9-1,9-5
standard volume labels, C-1 v telecommunications terminology, 9-1
START address, 4-13 temporary file, 6-13,6~16,6-27

start countdown timer, M:STIMER, 8-13 temporary file assignments, 6-27

station, TAM, 9-1 temporary file on a public volume, 6-28
statistics and accounting, TAM, 9-10 temporary storage stack, user's, 4-13,8-9
structure of volumes on magnetic tape, 6~20 temporary stack pointer, user's, 8-9

super, account, and volume catalogs, 6-19 terminal, TAM, 9-1

supercatalog, 6-18 terminal and component lists, TAM, 9-8
superjob, 1-3,3-3 terminal-ID, remote batch, 3-12
superviscry state processing, TAM, 9-28 termination of /O processing, 7-1
SWITCH command, 3-15,8-10 test countdown timer, M:TIMER, 8-13
switched line, 9-1 test file generator (GEF), 2-6

symbiont card punch, 3-12 test of pseudoswitches, M:TSS, 8-11
symbiont card reader, 3-12 time and date facilities, 8-12

symbiont line printer, 3-12 TITLE command, 3-16

symbionts, 1-7,6-26 trailer label group, D-1

symbol redefinition, 4-17 translation, 9-27,9-28

symbolic parameter, 3-3,3-4 transmission block, TAM, 9-4

synonym operational label, 3-9 transmission errors, TAM, 9-20

synonym partition keys, 6-13 transmission line, 9-1

synonyms, 4-8 transmission modes, TAM, 9-4

syntax charts, A-1 trap management, M:TRAP, 8-7

SYSGEN, 2-6 traps, 8-7

SYSLIB, 4-12 TREE command, 4-14

system disk, 6-18 TREE command ordering, 4-16

system generation (SYSGEN), 2-6 tree specification, 4-14

system library (SYSLIB), 4-12 tree structure, 4-14

system services, 2-1,8-1 tree structure specification, 4-15

SYSTEM XOsS, 8-1

UDEF (unused definition), 4-20

T

TAM (Telecommunications Access Method), 9-5,9-9 unallocated dynamic area, 8-2
abnormal and error conditions, 9-16,9-28 unassisted access methods, 7-3
abort condition, B-9 undefined (U) record format, 6-6
character mode abnormal conditions, B-8 UNLESS option, IRUN and I|EXEC commands, 8-10
character mode error conditions, irrecoverable, B-8 UNSAT option, 4-12
character mode error conditions, recoverable, B-8 unsatisfied reference search, 4-1
Data Control Block, 9-6,E-6 ‘ o : update processing, 6-3
file processing abnormal conditions, 9~16 user account number, 3-3

Index=-6

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

user header label group, D-1 volume disposition, 3-11

user label processing, D-1,7-54 volume label group, D-1

user label processing preconditions, D-2 volume labels on disk, C-1

user services abort conditions, B-3 volume labels on magnetic tape, C-1

user trailer label group, D-1 volume mounting, 3-10,3-11

user trap processing, 8-7 volume preparation (PREP), 6-17,2-4

user volume label group, D-1 volume sharability, 6-32

user-1D, 3-3 volume, account, 6-17

user's memory space, 1-5 volume, private, 6-17

user's routine, 7-54 volume, pseudo, 6-17

user's temporary storage stack, 8-7,8-9,4-13 volume, public, 6-17

user's virtual memory, 1-5,8-3 volumes on magnetic tape, structure of, 6-20

utility processors, 2-4 VSAM (Virtual Sequential Access Method), 7-35, 6-3,
6-12,6-30

VSAM I/O procedures, 7-35
VSAM procedure syntax, A-11
V VSAM, general usage rules, 7-36

variable data area, 8-2

variable format magnetic tape blocks, 6-9

variable length (V) record format, é-6 W

VDAM (Virtual Direct Access Method), 7-46,6-3, 6=14,6-31 . . .

VDAM 1/O procedures and general usage rules, 7-46 writing on listing log, M:PRINT, §-12
VDAM procedure syntax, A-13

virtual direct access method (VDAM), 7-46,6-3, 6-14

virtual memory, 1-5 X

virtual pages, 1-5

virtual sequential access method (VSAM), 7-35, 6-3, Xerox Extended FORTRAN 1V, 2-3
6-12, 6-30 Xerox Meta=-Symbol, 2-3

volume catalog, 6-18 XOS ANS COBOL, 2-2

volume classifications, 6-17 XOS Sort, 2-4

Index-7

READER COMMENT FORM

Xerox Data Systems

XEROX.

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter |Title

Current Date

How did you use this publication?

Is the material presented effectively?

O Learning a Installing O Operating O Fully covered O well illustrated
O Reference O Maintaining O sales O cClear O well organized
What is your overall rating of this publication? What is your occupation?

O Very good O Fair O Very poor

O Good O Poor

Your other comments may be entered here. Please be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

Thank you for your interest.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A.

Your name and return address.

2190(5/71) Xerox Data Systems

STAPLE

STAPLE

FIRST CLASS
PERMIT NO. 229
EL SEGUNDO, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
El Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

S PR

CUT ALONG LINE

