
u

se
_CLJX_TM
Programmer's and User's

Reference Manual

INTE~?l\?H

DSYS18410

CLIX Programmer's & User's Reference Manual

January 1990

DSYS18412
Edition 1

~
'"1111m•"J

2 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Warranties and Liabilities

All warranties given by Intergraph Corporation about equipment or software arc set forth in your purchase

contract.

The information and the software discussed in this document are subject to change without notice and should

not be considered commitments by Intergraph Corporation.

Intergraph Corporation assumes no responsibility for any errors that may appear in this document.

The software discussed in this document is furnished under a license and may be used or copied only in accor­

dance with the terms of this license.

No responsibility is assumed by Intergraph for the use or reliability of software on equipment that is not sup­

plied by Intergraph or its affiliated companies.

Trademarks

Intergraph is a registered trademark of Intergraph Corporation.

CLIX, IGDS, and CLIPPER are trademarks of Intergraph Corporation.

Other brands and product names are trademarks of their respective owners.

Classifications

This equipment is designed to comply with the requirements in Part 15 of the FCC rules for a class A comput­

ing device.

3

Copyrights

© 1989, 1990 INTERGRAPH CORPORATION

INCLUDING THIS DOCUMENTATION, AND ALL SOFTWARE AND ITS FILE FORMATS AND

AUDIO-VISUAL DISPLAYS DESCRIBED HEREIN; ALL RIGHTS RESERVED; MAY ONLY BE

USED PURSUANT TO THE APPLICABLE SOFTWARE LICENSE AGREEMENT; CONTAINS CON­

FIDENTIAL AND PROPRIETARY INFORMATION OF INTERGRAPH AND/OR OTHER THIRD PAR­

TIES WHICH IS PROTECTED BY COPYRIGHT, TRADE SECRET AND TRADEMARK LAW AND

MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE WITHOUT PRIOR WRITTEN

AUTHORIZATION.

RESTRICTED RIGHTS LEGENDS

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subdi­

vision (c)(l)(ii) of the rights in technical data and computer software clause at 52.227-7013.

Unpublished-rights reserved under the Copyright Laws of the United States.

Intergraph Corporation

One Madison Industrial Park

Huntsville, AL 35807-4201

This software and documentation is based in part on the Fourth Berkeley Software

Distribution under license from The Regents of the University of California.

Portions of this manual Copyright© 1986, 1987, 1988 Lachman Associates, Incorporated (LAI) All Rights

Reserved

Portions of this manual Copyright © 1984, 1985, 1986, 1987, 1988 AT&T

4 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

-

Additional References

The following UNIX System V documentation is required reference material. These
documents can be purchased individually or in sets from Intergraph:

Title

AT&T UNIX System V User's Reference Manual
AT&T UNIX System V User's Reference Addendum
AT&T UNIX System V Administrator's Reference Manual
AT&T UNIX System V Administrator's Reference Addendum
AT&T UNIX System V Programmer's Reference Manual
AT&T UNIX System V Programmer's Reference Addendum

Release V.3

DSYS08110
DSYS19410
DSYS08310
DSYS19710
DSYS08510
DSYS19510

The following UNIX System V documentation is suggested reference material. The fol­
lowing documents can be purchased individually or in sets from Intergraph:

Title

AT&T UNIX System V User's Guide
AT&T UNIX System V Programming Guide
AT&T UNIX System V Administrator's Guide

Ordering Information

To order any of these documents:

Release V.3

DSYS08010
DSYS08410
DSYS08210

o Within the United States contact your Customer Engineer or Sales Account
Representative. ·

o For International locations, contact the Intergraph subsidiary or distributor where
you purchased your workstation.

Support Information

If you have trouble with the workstation/server or the procedures described in this
guide, contact Intergraph Customer Support at 1-800-633-7248. International custo­
mers should contact the Intergraph subsidiary or distributor where the workstation was

purchased.

5

c

Introduction

The CLIX Programmer's & User's Reference Manual describes the com­
mands that constitute the basic software running on an Intergraph work­
station or server. as well as system calls. library routines. file formats, and
miscellaneous facilities used by programmers and users of a CLIX system
running on an Intergraph workstation or server.

This manual supplements the AT&T UNIX System V documentation and
thus includes only additions and changes found in the CLIX System.

The following documents provide related information:

• The CLIX System Admimstrator's Reference Manual describes the
commands and special interfaces used by those who administer a
CLIX system.

• The CLIX System Guide contains procedures and tutorials designed
to give instructions in how to perform tasks and background inf or­
mation about when and why these tasks are desirable.

The CLIX Programmer's & User's Reference Manual is divided into the fol­
lowing sections:

(1) Commands

(2) System Calls

(2B) BSD System Calls

(21) Intergraph System Calls

(3) Library Routines

(3C) and (3S) C Programming Language Utilities

(3B) BSD Library Routines

(JN) Intergraph Network Library Routines

(JR) RPC/XDR/YP Library Routines

(3A) Intergraph Synchronous/ Asynchronous Library Rou­
tines

INTRODUCTION 1

Introduction

(4) File Formats

(5) Miscellaneous

The CLIX System Administrator's Reference Manual is divided into the
following sections:

(1M) System Administrator Commands

(7) Special Interfaces

(7S) Special Files

(7B) BSD Network Interfaces

(1 A) Asynchronous Interfaces

The CLIX System Guide is divided into the following sections:

Part 1: System Administrator"s Tutorials

1. FFS Tutorial

2. FFS Check Tutorial

3. BSD LP Spooler Tutorial

4. NQS Tutorial

5. YP Tutorial

Part 2: System Administrator"s Procedures

1. System Rebuild

2. New Product Delivery

3. System Reconfiguration

4. FFS Installation

5. BSD Network Configuration

6. NFS/YP Installation

7. NQS Installation

2 PROGRAMMER'S 6 USER'S REFERENCE MANUAL

Introduction

Part 3: Programmer·s & User·s Tutorials

1. Technical Programming Tutorial

2. PROC Debugging Tutorial

3. Network Programming Tutorial

4. BSD Porting Tutorial

5. Introductory Socket Tutorial

6. Advanced Socket Tutorial

7. NQS Tutorial

8. RCS Tutorial

9. RPC/XDR Tutorial

References

Throughout this manual. numbers following a command are intended for
easy cross-reference.

• Look up references followed by (1). (2B). (21). (3C). (3B). (3N).
(3R). (3A). (4). or (5) in this document.

• Look up references followed by (1M). (7S). (7B). or (7 A) in the in
the CLIX System Administrator's Reference Manual.

• Look up all other references in the appropriate CLIX document.

If the references are not in the CLIX document, refer to the appropri­
ate UNIX System V manual.

Format

Most sections begin with a page labeled intro. Entries following the intro
page are arranged alphabetically and may consist of more than one page.
Some entries describe several routines. commands. etc. In such cases. the
entry appears only once. alphabetized under its .. primary .. name. (An
example of such an entry is chown(l). which also describes the chgrp com­
mand.) To learn which manual page describes a secondary command.

INTRODUCTION 3

Introduction

locate its name in the middle column of the .. Permuted Index .. and follow
across that line to the name of the manual page listed in the right column.

All entries are based on a common format. but each part appears only
where applicable:

• NAME gives the name(s) of the entry and briefiy states its purpose.

• SYNOPSIS summarizes the use of the program being described. A
few conventions are used. particularly in Section (1) (Commands):

o Boldface strings are literals and are to be typed just as they
appear.

o ltal.ic strings usually represent substitutable argument and pro­
gram names found elsewhere in the manual.

o Brackets[] around an argument indicate that the argument is
optional.

o Braces {}around arguments indicate that one of the arguments
should be chosen.

o Ellipses ••• are used to show that the previous argument may be
repeated.

• DESCRIPTION provides an overview of the command.

• EXAMPLES gives examples of usage. where appropriate.

• FILES gives the file names that are built into the program.

• SEE AI.SO offers pointers to related information.

• DIAGNOSTICS discusses the diagnostic indications that may be pro­
duced. Messages that are intended to be self-explanatory are not
listed.

• NOTES gives information that may be helpful under the particular
circumstances described.

• WARNINGS points out potential pitfalls.

• BUGS gives known bugs and sometimes deficiencies.

• CAVEATS gives details of the implementation that might affect
usage.

4 PROGRAMMER'S It USER'S REFERENCE MANUAL

Introduction

• IDENTIFICATION gives the author of the program.

Table of Contents It Penruted Index

Preceding Section (1) is a .. Table of Contents .. (listing both primary and
secondary command entries) and a .. Permuted Index.·· Each line of the
.. Table of Contents .. contains the name of a manual page (with secondary
entries, if they exist) and an abstract of that page. Each line of the .. Per­
muted Index .. represents a permutation (or sorting) of a line from the
.. Table of Contents .. into three columns. The lines are arranged so that a
keyword or phrase begins the middle column. Use the .. Permuted Index''
by searching this middle column for a topic or command. When the
desired entry has been found, the right column of that line lists the name
of the manual page on which information corresponding to that keyword
can be found. The left column contains the remainder of the permutation
that began in the middle column.

INTRODUCTION 5

c

Table of Contents

1. Commands
intro(l) .. introduction to commands and application programs

ab(l) ... Ada program heautifier

Ac(l) .. Ada compiler

acctcom(l) .. search and print process accounting files

adb(l) ... absolute debugger

adep(l) .. Ada program makefile generator

aligntrap(l) ... set/report alignment trap disposition per executable

all(1) .. Ada library tool

ansitape(I) ... ANSI-standard magtape label program

as(l) .. common assembler

backup(I) ... incremental file system backup

cc(l) .. Ccon1piler

chmod(l) .. change mode

chown, chgrp(l) .. change owner or group

ci(l) .. check in RCS revisions

clh(l) ... Intergraph network clearinghouse management program

co(l) .. checkout RCS revisions

compress, uncompress, zcat(l) ... compress and expand data

cpflop(l) ... copy floppy disk

cpio(l) , ... copy file archives in and out

crm(l) .. CLIXResource Monitor

csh(l) .. a shell (command interpreter) with C-like syntax

cumail(l) .. DNP mail transport program

dbg(1) ... symbolic debugger

dls(l) ... list contents of MS-DOS directory

domname(l) .. set or display name of current YP domain

dtu, utd(l) ... copy between MS-DOS and CLIX

efl(l) .. Extended FORTRAN L1nguage

errors(l) .. error logging report generator

177(1) .. FORTRAN compiler

find (1) .. find files

fmu(l) ... network file management utility

format(l) .. floppy disk formatting utility

ftp(l) ... ARPANET file transfer program

hostname(l) .. set or print name of current host system

ident(l) ... identify files

jbconfig(l) .. report the configuration of the jukeboxes

TABLE OF CONTENTS 1

Table of Contents

khmap(l) .. change the keyhoard layout
kennit(l) ... kermit file transfer

ksh, krsh (l) she II, the standard/restricted command programming language

ld(I) .. link editor for common object files

ln(I) ... link files

lpq(l) .. BSD spool queue examination program

lpr(1) ... BSD oftline print

lprm(l) ... remove jobs from the BSD line printer spooling queue

lptest(l) ... generate line printer ripple pattern

Is(l) ... list contents of directory

machid: clipper, ns32000, vax(l) .. get processor type truth value

mailq(l) ... display a listing of the mail queue used by sendmai/(1M)
mailstats(l) .. display mail statistics

man(l) ... _ print entries in this manual

mergc(l) .. three-way Hie 1ncrgc

mkshlib(l) .. create a shared library

monparam(l) .. CRM utility for monitoring system parameters

monproc(l) .. CRM utility for monitoring a process

monregion(l) .. CRM utility for monitoring memory regions

mt(l) ... magnetic tape manipulation program

ncp(1) .. DNP network control program

netaddr(l) ... display network address

netcp(l) ... DNPcopy command

netex(l) ... DNP remote file execution utility

netlpr(l) ... DNP command to print file(s) on remote printers

netls(l) .. DNP command that lists the directory contents on a remote system

netmsg(l) .. send a message to console devices on the local XNS network

netmv(l) ... DNP command that moves or renames one or more files

netrm (1) .. D NP command that removes files

newaliases(l) ... rebuild the database for the mail aliases file

npmount, npumount(l) ... mount and unmount file system

odcd(l) ... set the current default directory used by optical disk commands

odchgrp(l) ... change the file group of optical disk files or directories

odchmod(l) ... change the file protection of optical disk files or directories

odchown(I) .. change file ownership of optical disk files or directories

odcp(1) .. copy optical disk files

oddf(l) ... report number of free blocks and i-nodes on an optical volume ~

odintro(l) ... introduction to the optical disk f1le system """'1Jlfl

odln(l) .. associate another name with an existing optical disk file

odls(1) .. list contents of optical disk directories

odmkdir(l) .. create optical disk directories

2 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Table of Contents

odmv(l) ... rename optical disk files or directories

odpwd(l) display the current default directory used by optical disk commands

odrm(l) ... delete optical disk files

odrmdir(l) ... delete optical disk directories

odt(l) .. examine and modifies files

pc(l) ... Pascal compiler

qdel(l) .. delete or signal NOS requests

qdev(l) .. display the status of NOS devices

qlimit(l) ... show supported batch limits and shell strategy for the local host

qpr(l) ... submit a hardcopy print request to NOS

qstat(l) ... display the status of NOS queues

qsub(l) .. submit an NOS batch request

ratfor(l) ... rational FORTRAN dialect

rcmd(l) .. remote command

rcp(l) ... remote file copy

rcs(l) ... change RCS file attributes

rcsclean(l) .. clean up working files

rcsdiff (1) ... compare RCS revisions

rcsmerge(l) .. merge RCS revisions

restore(!) ... incremental file system restore

rlog(l) .. print log messages and other information about RCS files

rlogin(l) ... remote login

rm, rmdir(l) .. remove files or directories

rpcgen(l) ... an RPC protocol compiler

rpipe(l) ... remote pipe program

rtape(l) ... > ... remote tape manipulation program

rtc(l) ... remote tape control

ruptime(l) .. show host status for each machine on the local network

rwho(l) .. lists users Jogged in to machines on the local network

sccstorcs(l) ... build RCS file from SCCS file

scpio(1) ... multibuffering and asynchronous 1/0 cpio(l)

sdb(l) .. symbolic debugger

sethost(l) ... DNP remote login DECnet or CLIX node.

showfiles(l) .. CRM utility for monitoring open files

showmcmory(l) .. CRM utility for monitoring process memory regions

stty (1) .. set the options for a terminal

telnet(l) .. user interface to the TELNET protocol

test(l) .. condition evaluation command

tftp(1) ... trivial file transfer program

to_flop, fr_flop(l) .. continuous floppy disk niters

topcpu(l) .. CRM utility for monitoring CPU time

TABLE OF CONTENTS 3

Table of Contents

topfault(l) ... CRM utility for monitoring page faults
topio(l) .. CRM utility for monitoring 1/0 activity

topmem(l) .. CRM utility for monitoring physical and virtual memory

topsys(l) .. CRM utility for monitoring system activity

ucpnice(l) .. run a process at UCP priority

visit (1) ... Intergraph remote login program

vmsbackup(l) .. read a VMS backup tape

watcher(I) .. CRM utility for monitoring system calls and faults

ypcat{l) ... print values in a YP database

ypmatch(l) ... print the value of one or more keys from a YP map

yppasswd(l) .. change login password in YP

2. System Calls
intro(2) .. introduction to system calls and error numbers

exit, _exit(2) .. terminate process

fcntl (2) .. file control

mount(2) ... mount a file system

read (2) .. read from file

setpgrp(2) .. set process group ID
signa1(2) ... specify what to do on receipt of a signal
sigsct, sighold, sigrelse, sigignore, sigpause(2) ... signal management

write(2) ... write to a file

accept(2B) ... accept a connection on a socket

bind (2B) ... bind a name to a socket

connect(2B) ... initiate a connection on a socket

ftruncatc(2B) ... truncate a file to a specified length

getdtablcsize(2B) ... get descriptor table size

gethostid, sethostid (2B) ... get/set unique identifier of current host

gcthostnamc, scthostnamc(2B) .. get/set name of current host

gctitimer, sctitimcr(2B) .. get.lset value of interval timer

gctpagesize(2B) ... get system page size

gctpeername(2B) ... get name of connected peer

getpgrp2(2B) .. get process group

getsockname (2B) ... get socket name

getsockopt, setsockopt(2B) ... get and set options on sockets

gettimeofday(2B) ... get date and time

killpg(2B) ... send signal to a process group

listen(2B) ... listen for connections on a socket

lstat(2B) .. get file status

readlink(2B) ... read the value of a symbolic link

rcadv(2B) ... read input from a socket

4 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Table of Contents

recv, recvfrom, rccvmsg(2B) .. receive a message from a socket

rename(2B) .. change the name of a file
sclcct(2B) ... synchronous 1/0 multiplexing

send, scndto, sendmsg(2B) ... send a message from a socket

setpgrp2(2B) ... set process group

shutdown(2B) ... shut down part of a full-duplex connection

sockct(2B) ... create an endpoint for communication

socketpair(2B) .. create a pair of connected sockets

symlink(2B) ... make a symbolic link to a file
vfork(2B) .. spawn a new process in a virtual memory efficient way

wait3(2B) .. wait for process to terminate

writev(2B) ... write output to a socket

exedata(21) .. setup for code execution in the process data section

getcpuid(21) .. return CLIPPER processor identifier

getmcmsize, getfrccmcm, getavailsmem(21) ... return memory information

kbmap(2I) ... change the keyboard layout

rcadinfo(2I) ... read system activity information

setnodcnamc(21) ... set nc\v node nan1e

sigcld(21) ... modify SIGCLD on stop signal option

swap(21) ... s\vap space control

sysid(21) .. get the system hardware identification number

~ ucpclr(21) ... clear process UCP priority

ucpinq(21) .. return the UCP priority

ucppri(21) .. check if a UCP priority is already in use

ucprelse(21) .. reset a process's priority after handling a signal

ucpset(2I) ... set a process to a UCP priority

ucpsig(21) ... set process to a UCP priority on receipt of a signal

vlock(21) .. lock an area of mcn1ory

vunlock(21) .. unlock an area of mcn1ory

wait2(21) ... wait for process to tcrn1inatc

3. Library Functions
intro(3) ... introduction to functions and libraries

t77initio, t77uninitio(3F) initialize or terminate FORTRAN J/O from C
fdtounit(3F) ... return FORTRAN logical unit associated with a file descriptor

l1ush(3F) ... flush the output for the specified FORTRAN logical unit

fnum(3F) return the file descriptor associated with a FORTRAN logical unit

getgrent, getgrgid, gctgrnam, setgrcnt, endgrent, fgetgrent(3C) get group file entry

gctpwcnt, getpwuid, gctpwnam, sctpwcnt, cndpwcnt, fgetpwent(3C) get password file entry

intro(3B) .. intrnduction to BSD library functions

bstring: bcopy, hemp, bzcro, ffs(3B) ... bit and byte string operations

TABLE OF CONTENTS 5

Table of Contents

byteorder: htonl, htons, ntohl, ntohs(3B) convert values between host and network byte order

gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent(3B) get network host entry

getnetent, getnetbyaddr, getnetbyname, setnetent, endnctent(3B) get network entry

gctprotocnt, getprotobynumber, getprotobyname, setprotocnt, endprotocnt(3B) get protocol entry

getservent, gctservbyport, getscrvbynamc, sctservcnt, cndscrvent(3B) get service entry

incl: inct_addr, inct_nctwork, inet_ntoa, inet_makeaddr, inet_lnaof,

inet_netof(3B) .. Internet address manipulation routines

insque, remque(3B) ... insert/remove element from a queue

ndbm: dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_dclcte, dbm_firstkey,

dbm_nextkcy, dbm_error, dbm_clearerr(3B) ... database subroutines

random, srandom(3B) .. better random number generator

rcmd, rresvport, ruserok(3B) routines for returning a stream to a remote command

rexec(3B) ... return stream to a remote command

string: index, rindex (38) ... string operations

intro(3N) ... introduction to Intergraph communications environment

clh_ vbyop(3N) ... lookup value by object and property

fmu_conncct, fmu_tlisconncct(3N) connect/disconnect to remote FMU server

fmu_rcmd(3N) ... execute the specified command on remote system

fmu_reccivc(3N) ... receive files from a remote system

fmu_scnd(3N) .. send files to a remote system

fn1u_sct(3N) ... set FMU modes ~

rtc_allocatc, rtc_tleallocate, rtc_notify(3N) ... remote tape control ~

sni_accept(3N) ... accept a connection

sni_close(3N) ... close a connection

sni_connect(3N) ... connect to a server program

sni_rxw(3N) ... receive a data buffer

sni_txw(3N) .. transmit a data butler

intro(3R) .. introduction to RPC/XDR/YP service functions and protocols

getdomainname, setdomainname(3R) .. get/set name of current domain

getrpcent, getrpcbyname, getrpcbynumbcr, setrpcent, endrpcent(3R) get RPC entry

gctrpcport(3R) ... get RPC port number

ypclnt: yp_get_c.lcfault_uomain, yp_hind, yp_unbind, yp_match, yp_first, yp_next, yp_all,

yp_order, yp_mastcr, ypcrr_string, ypprot_crr(3R) ... YP client interface

yppasswd(JR) .. update user password in YP

intro(3A) .. introduction to the synchronous/asynchronous 1/0 library

aux_hrcak(3A) ... generate a break on a serial port

au~_canccl_modcm(3A) .. cancel modem change state on a serial port

aux_cancel(3A) .. cancel outstanding read on a serial port

aux_closc(3A) .. close a serial port

aux_modcm, aux_moucm_nw(3A) .. get modem change from a serial port

aux_opcn(3A) .. open a serial port

6 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Table of Contents

aux_rawrd, aux_rawrd_nw(3A) .. read data with error byte from a serial port
aux_read, aux_read_nw(3A) ... read data from a serial port
aux_ write, aux_write_nw(3A) .. write data to a serial port
cnv_close(3A) .. close a CNV channel
cnv _open{3A) ... open a CNV channel
csi_cance1(3A) .. cancel outstanding asynchronous 1/0 on a CSI port

csi_ccan(3A) ······v········ ... cancel a specific command on a CSI port
csi_close(3A) .. close a csr port
csi_cmd, csi_cmd_nw(3A) .. send command packets to a CSI port
csi_death, csi_death_nw(3A) ... wait for a CSI communication to fail
csi_dstat_nw(3A) ... receive delayed status from a CSI port
csi_open(3A) ... open a csr port
csi_rcset(3A) .. , ... reset hardware on CSI port
csi_status(3A) .. read the CSI port DRll status lines
csi_ucan(3A) ... cancel unsolicited status requests on a CSI port
csi_ustat, csi_ustat_nw(3A) ... receive unsolicited status from a CSl port
fg_alloc(3A) ... allocate a frame grabber
fg_blank(3A) .. blank the output signal of the frame grabber
fg_dealloc(3A) .. deallocate a frame grabber
fg_fbmode(3A) ... set the mode of a frame buffer
fg_fbstat(3A) .. get the mode of a frame buffer
fg_lut_in, fg_lut_out(3A) ... load the lookup tables of a frame grabber
fg_priority(3A) determine frame buffer output priority of the frame grabber
fg_resct(3A) .. force the frame grabber to a known state
fg_size(3A) ... determine the frame grabber window size
fg_vidco_in, fg_video_out(3A) .. select the video signal types for 1/0

fg_viw_start, fg_viw_stop(3A) ... start and stop video in a window
fpe_canccl_dma(3A) ... cancel write request to an FPE coprocessor
fpe_coproc_alloc(3A) .. allocate an FPE coprocessor
fpc_coproc_dealloc(3A) ... deallocate an FPE coprocessor
fpc_did_load(3A) ... load an FPE coprocessor image
fpc_did_unload(3A) .. unload an FPE coprocessor image
fpc_write_dma, fpc_write_dma_nw(3A) .. write data to an FPE coprocessor
gpib_cancel(3A) .. cancel all outstanding requests on a GPIB channel
gpib _ clear(3A) .. clear a GPIB channel or device
gpib_close(3A) .. close a GPIB channel

gpib_cmd, gpib_cmd_nw(3A) ... send commands lo a GPIB channel
gpib_loca1(3A) ... return a GPIB device to local control

gpib_lockout(3A) ... issue a local lockout to a GPlB channel

gpib_open(3A) ... open a GPIB channel
gpib _ppconf (3A) .. configure the parallel poll response of a GPIB device

TABLE OF CONTENTS 7

Table of Contents

gpib_ppreq(3A) ... perform a parallel poll of a GPIB channel

gpib_ppuconf(3A) ... unconfigure a GPIB device's parallel poll response

gpib_read, gpib_read_nw(3A) .. read data from a GPIB device

gpib_remote(3A) ... put a GPIB channel in a remote state

gpib_reset(3A) ... conduct an IFC operation on a GPIB channel ~\
gpib_servicc, gpib_servicc_nw(3A) request notification for a GPIB SRQ condition

gpib _spreq(3A) ... conduct a serial poll of a GPIB device

gpib_triggcr(3A) .. trigger a GPIB device

gpib_write, gpib_write_nw(3A) ... write data to a GPIBdevice

nlf_close(3A) .. close an NLF channel

nlf_opcn(3A) ... open an NLF channel

pdi_canccl(3A) ... cancel outstanding asynchronous 1/0 on a PDI port

pdi_close(3A) ... close a POI port

pdi_itb, pdi_itb_nw(JA) .. move data from a POI port to a window

pdi_open(3A) .. open a POI port

pdi_rcad, pdi_rcad_nw(3A) .. read data from a POI port into memory

pdi_sctup(3A) ... establish parameters for a POI port

pdi_write, pdi_writc_nw(3A) ... write data from memory to a POI port

plot_ctrl_rop: rplt_ctrl, rplt_ctrl_nw(3A) send a control word to the ROP parallel port

plot_ctrl: plt_ctrl, plt_ctrl_nw(3A) ... send a control word to the parallel port

plot_data_rop: rplt_data, rplt_data_nw(3A) write data to the ROP parallel port

plot_ data: pit_ data, plt_data_nw(3A) ... write data to the parallel port

rle_cancel(3A) .. cancel outstanding asynchronous 1/0 on an RLE channel

rlc_close(3A) .. close an RLE channel

rle_open(3A) ... open an RLE channel

rle_pipc_mcm, rlc_pipc_mcm_nw(3A) ... RLE from pipe to memory

rlc_sctup(3A) .. establish parameters for an RLE channel

sif_canccl(3A) .. cancel outstanding asynchronous I/Oona SIF channel

sif_closc(3A) ... close a SIF channel

sif_mcm_pipc, sif_mcm_pipe_nw(3A) .. transfer data from memory to pipe

sif_open(3A) .. open a SIF channel

sif_scan_mem, sif_scan_mcm_nw(3A) transfer data from scanner to memory

sif_scan_pipc, sif_scan_pipe_nw(3A) ... transfer data from scanner to pipe

sif_sctup(3A) ... establish parameters for a SIF channel

xio_allocef, xio_dcallocef(3A) ... allocate/deallocate an event flag number

xio_notify(3A) .. notify a process of an asynchronous request completion

xio_readef, xio_clref, xio_setef(3A) .. event flag mask functions

xio _ waitfr, xio _ wtland, xio _ wflor(3A) .. asynchronous event control

4. File Formats
intro(4) ... introduction to file formats

8 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Table of Contents

a.out(4) ... common assembler and link editor output

aliases(4) ... aliases file for sendmail(1 M)

ansitape(4) ... ANSI standard magtape labels

backup, dumpdates(4) .. incremental dump format

bootheader(4) ... hoot Ille header format

~ certnote.com(4) .. Intergraph software certification documentation lilc

clh(4) ... Intergraph network clearinghouse database

core(4) .. formal of core image file

diskpar(4) ... disk partition header formal

disktab(4) .. diskdescriplion file

errord.rc(4) ... error log configuration file

exports(4) ... NFS file systems being exported

ffsfs(4) .. format of file systetn volun1e

ffsinode(4) ... structure of an FFS disk i-node

fixes.com(4) ... Intergraph software delivery documentation lite

floppypar(4) ... partitioned floppy header format

fstab(4) .. file systen1 table

group(4) .. group file

hosts(4) .. host nan1e database

hosts.equiv(4) .. host equivalency name database

JBCFG(4) .. optical disk jukebox configuration Jilc

kbmap(4) .. keyboard 111ap file

limits(4) .. file header for implementation-specific constants

master(4) ... master configuration database

mnttab(4) .. mounted file system table

networks(4) .. network name database

pass\vd(4) ... pass\vord file

printcap(4) ... BSD printer capability database

protocols(4) ... protocol name database

rcsfile(4) ... format of RCS file

rcloc(4) ... relocation information for a common object tile

.rhosts(4) .. remote user access list

rmtab(4) .. remotely mounted NFS file system table

rpc(4) ... RPC program number database

server.dat(4) ... XNS server information file

services(4) .. service nan1e database

STANDCFG(4) ... optical disk standalone configuration file

statmon: record, recover, state(4) ... status daemon directory and 11le formats

ypfiles(4) .. the YP database and directory structure

ypmapxlate(4) .. translation table to handle long map names

TABLE OF CONTENTS 9

Table of Contents

5. Miscellaneous
intro(5) ... introduction to miscellaneous facilities
tent I (5) .. file control options
stat(5) ... data returned by stat system call
typcs(S) ... primitive system data types ~
valucs(S) ... machine-dependent values ~·

10 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

"'U
(1)

3 ,,,,...... c:: co
c.. '--' :;-
c..
(1)
x

Permuted Index

ab(!) Ada program beautifier .. ab(l)

adb(l) absolute debugger .. adb(l)

Ac(l) Ada compiler .. ac(l)

accept(2B) accept a connection on a socket accept(2B)

sni_accept(3N) acceptaconnection .. sni_accept(3N)

a socket accept(2B) accept a connection on acccpt(2B)

.rhosts(4) remote user access list .. rhosts(4)

search and print process accounting files acctcom(l) ... acct com(l)

process accounting files acctcom(l) search and print .. acct com(1)

readinfo(21) read system activity information ... readinfo(21)

CRM utility for monitoring 1/0 activity topio(l) ... topio(l)

CRM utility for monitoring system activity topsys(l) ... topsys(l)

Ac(l) Ada compiler .. ac(1)

alt(!) Ada library tool .. alt(l)

ab(!) Ada program beautifier .. ab(1)

adep(1) Ada program makefile generator .. adep(1)

adb(l) absolute debugger ... adb(l)

/inet_netof(3B) Internet address manipulation routines ... inet(3B)

netaddr(1) display network address ... netaddr(1)

generator adep(l)Ada program makefile ... adep(l)

ali~es(4) aliases file forsendmail(lM) ... aliases(4)

rebuild the database for the mail aliases file newaliases(l) .. newaliases(I)

sendmail(lM) aliases(4)aliases file for .. alinscs(4)

aligntrap(l) set/report alignment trap disposition per/ aligntrap(J)

trap disposition per executable aligntrap(l) set/report alignmt:nt align trap(l)

fg_alloc(3A) allocate a frame grabber .. fg_alloc(3A)

fpe_coproc_alloc(3A) allocatean FPE coprocessor fpe_coproc_alloc(3A)

xio _allocef(3A) xio _ deallocef(3A) allocate/deallocatean event flag/ xio _allocef(3A)

check if a UCP priority is already in use ucppri(21) .. ucppri(21)

alt(1) Ada library tool ... alt(L)

ansitape(4) ANSI standard magtape labels .. ansitape(4)

program ansitape(l) ANSI-standard magtape label ... ansitape(l)

label program ansitape(l) ANSI-standard ma gtape ansitape(I)

labels ansitape(4)ANSI standard magtape ansitape(4)

link editor output a.out(4) common assembler and .. a.out(4)

introduction to commands and application programs intro(!) .. intro(I)

cpio(l) copy file archives in and out .. cpio(l)

vlock(2I) lock an area of memory .. vlock(21)

vunlock(2I) unlock an area of memory .. vunlock(21)

ftp(1) ARP ANET file transfer program ... ftp(l)

as(1) common assembler .. as(I)

a.out(4) common assembler and link editor output .. a.out(4)

as(l) common assembler .. as(J)

existing optical disk/ odln(l) associate another name with an .. odln(I)

/return FORTRAN logical unit associate(with a file descriptor fdlounit(3F)

unit /return the file descriptor associated with a FORTRAN logical fnum(3F)

/xio _ wlland(3A) xio _ wflor(3A) asynchronous event control xio _ waitfr(3A)

PERMUTED INDEX 1

Permuted Index

scpio(l) multibufferingand asynchronous 1/0 cpio(l) ... scpio{l)
csi_ cancel(3A) cancel outstanding asynchronous 1/0 on a CSI port csi_ cancel(3A)
pdi_ cancel(3A) cancel outstanding asynchronous 1/0 on a PDI port pdi_ cancel(3A)
sif _cancel(3A) cancel outstanding asynchronous 1/0 on a SIF channel sif _cancel(3A)
rle _ cancel(3A) cancel outstanding asynchronous 1/0 on an RLE/ rle _ cancel(3A)

/notify a process of an asynchronous request completion xio _notify(3A)
rcs(l) change RCS file attributes ... rcs(l)

a serial port aux_ break(3A) generate a break on aux_ break(3A)
read on a serial port aux_cancel(3A)cancel outstanding aux_cancel(3A)

change state on a serial port aux_cancel_modem(3A)cancel modem aux_cancel_modem(3A)
aux_ close(3A) close a serial port aux_ close(3A)

get modem change from a serial/ aux_modem(3A) aux_modem_nw(3A) aux_modem(3A)
from a serial port aux_modem(3A) aux_modem_nw(3A)get modem change aux_modem(3A)

aux_ open(3A) open a serial port aux_ open(3A)
read data with error byte from a/ aux_rawrd(3A) aux_rawrd_nw(3A) aux_rawrd(3A)

error byte from a/ aux_rawrd(3A) aux_rawrd_nw(3A)read data with aux_rawrd(3A)
data from a serial port aux_ read(3A) aux_ read_ nw(3A) read aux _read(3A)

serial port aux_read(3A) aux_read_nw(3A)read data froma aux_read(3A)
write data to a serial port aux_ write(3A) aux_ write_ nw(3A) aux_ write(3A)

serial port aux_write(3A) aux_write_nw(3A)write data to a aux_write(3A)
backup(l) incremental file system backup .. backup(l)

vmsbackup(l) read a VMS backup tape ... vmsbackup(l)
backup backup(l) incremental file system ... backup(l)

incremental dump format backup(4) dumpdates(4) .. backup(4)
for the/ qlimit(1) show supported batch limits and shell strategy ... q limit(l)

qsub(l) submit an NQS batch request .. qsub(l)
and byte/ bstring(3B) bcopy(3B) bcmp(3B) bzero(3B) ffs(3B) bit .. bstring(3B)
ffs(3B) bit and byte/ bstring(3B) bcopy(3B) bcmp(3B) bzero(3B) ... bstring(3B)

ab(l) Ada program beautifier ... ab(l)
random(3B) srandom(3B) better random number generator .. random(3B)

bind(2B) bind a name to a socket ... bind(2B)
bind(2B) bind a name to a socket .. bind(2B)

/bcmp(3B) bzero(3B) ffs(3B) bit and byte string operations .. bstring(.JB)
frame grabber fg_blank(3A) blank the output signal of the ... fg_blank(3A)

oddf(l) report number of free blocks and i-nodes on an optical/ .. oddf(l)
bootheader(4) boot file header format .. bootheader(4)

format bootheader(4)boot file header ... bootheader(4)
aux_brcak(3A) generate a break on a serial port ... aux_break(3A)
intro(3B) introduction to BSD library functions ... intro(3B)

lpnn(l) remove jobs from the BSD line printer spooling queue ... lprm(l)
lpr(l) BSD offiine print .. lpr(I)

printcap(4) BSD printer capability database .. printcap(4)
progmm lpq(l) BSD spool queue examination .. lpq(l)

bzcro(3B) trs(3B) bit and byte/ bstring(3B) bcopy(3B) bcmp(3B) bstring(3B)
set the mode of a frame buffer fg_tbmode(3A) .. fg_fbmodc(3A)
get the mode of a frame buffer fg_tbstat(3A) .. fg_fbstat(3A)

fg_priority(3A) determine frame buffer output priority of the/ ... fg_priority(3A)
sni_rxw(3N) receive a data buffer ... sni_rxw(3N)

sni_txw(3N) transmit a data buffer ... sni_txw(3N)

2 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

sccstorcs(l) build RCS file from SCCS file sccstorcs(I)

/read data with error byte from a serial P.ort ... aux_rawrd(JA)

values between host and network byte order /ntohs(3B) convert byteon.lcr(3B)

bzero(3B) ffs(3B) bit and byte string operations /bcmp(3B) bstring(38)

ntohl(3B) ntohs(3B) convert/ byteorder(38) htonl(3B) htons(3B) byteorder(38)

bstring(3B) bcopy(3B) bcmp(3B) bzero(38) ffs(3B) bit and byte/ bstring(38)

cc(l) C compiler .. cc(I)

or terminate FORTRAN I/O from C /t77uninitio(3F) initialize .. t77initio(ff)

data returned by stat system call stat(5) .. stat(5)

intro(2) introduction to system calls and error numbers .. intro(2)

CRM utility for monitoring system calls and faults watcher(!) .. watcher(l)

CSI port csi_ccan(3A) cancel a specific command on a csi_ccan(3A)

on a GPIB/ gpib_cancel(3A) cancel all outstanding request~ gpib_cancel(3A)

serial port aux_cancel_modem(3A) cancel modem change state on a aux_canccl_modem(3A)

1/0 on a CSI port csi_ cancel(3A) cancel outstanding asynchronous csi_ canccl(JA)

1/0 on a POI port pdi _ cancel(3A) cancel outstanding asynchronous pdi _cancel(3A)

1/0 on a SIF/ sif_cancel(3A) cancel outstanding asynchronous sif_cancel(3A)

1/0 on an RLE/ rle_cancel(3A) cancel outstanding asynchronous rle_cancel(3A)

serial port aux_ cancel(3A) cancel outstanding read on a aux_ cancel(3A)

requests on a CSI/ csi_ucan(3A) cancel unsolicited status .. csi_ucan(JA)

coprocessor fpe_canccl_dma(3A) cancel write request to an FPE fpe_cancel_dma(3A)

printcap(4) BSD printer capability database .. print cap(4)

cc(l) C compiler ... cc(I)

/Intergraph software certification documentation file cert note.com(.t)

software certification/ certnote.com(4) Intergraph cert note.com(..i)

disk files or/ odchown(I) change file ownership of optical odchown(I)

/aux_modem_nw(3A) get modem change from a serial port nux_modcm(3A)

yppasswd(l) change login password in YP yppasswd(I)
chmod(l) change mode .. chmotl(I)

chown(l) chgrp(l) change owner or group .. chown(I)

res(1) change RCS file attributes ... res(I)

aux_cancel_modcm(3A)cancel modem change state on a serial port aux_canccl_modcm(JA)

disk files or/ odchgrp(l) change the file group of optical otlchgrp(I)

optical disk files or/ odchmod(l) change the file protection of ... odchmod(l)

kbmap(1) change the keyboard layout ... khmap(I)

kbmap(21) change the keyboard layout ... khmap(2I)

rename(2B) change the name of a file ... rename(28)

cnv _close(3A) close a CNV channel ... cnv _closc(3A)

cnv _ opcn(3A) open a CNV channel .. cnv _ opcn(3A)

outstanding requests on a GPIB channel /cancel all ... gpih _cancel(3A)

gpib _ close(3A) close a GPIB channel ... gpih _ closc(3A)

send commands to a GPIB channel /gpib_cmd_nw(3A) gpih_cmd(JA)

issue a local lockout to a GPIB channel gpib _lockout(3A) gpib _lockout(3A)

gpih _ open(3A) open a GPIB channel ... gpib _ open(JA)

perform a parallel poll of a GPIB channel gpib _ppreq(3A) .. gpih _pprcq(3A)

an IFC operation on a GPIB channel gpib _rcset(3A) condrct gpih _rcset(JA)

gpib _rcmote(3A) put a GPIB channel in a remote state gpib _rcmotc(JA)

nlf_closc(3A) close an NLF channel ... nlf_ closc(3A)

nlf_open(3A) open an NLF channel .. nlf_opcn(3A)

PERMUTED INDEX ~

Permuted Index

gpib _clear(3A) clear a GPIB channel or device ... gpib _clear(3A)
asynchronous l/0 on an RLE channel /cancel outstanding .. rle_cancel(3A)

rle _ close(3A) close an RLE channel ... rle _ close(3A)
rle_open(3A) open an RLE channel ... rle_open(3A)

establish parameters for an RLE channel rlc_setup(3A) ... rlc_setup{.~A)
asynchronous 1/0 on a SIF channel /cancel outstanding .. sif_cancel(3A)

sif_close(3A) close a SIF channel ... sif_close(3A)
sif_open(3A) open a SIF channel ... sif_open(3A)

establish parameters for a SIF channel sif_setup(3A) ... sif_setup(3A)
already in use ucppri(2I) check if a UCP priority is .. ucppri(21)

ci(l) check in RCS revisions ...•.................... ci(l)
co(l) check out RCS revisions ... co(I)

chown(I) chgrp(l) change owner or group .. chown(I)
chmod(l)changc mode .. chmod(l)

group chown(l) chgrp(l) change owner or chown(I)
ci(1) check in RCS revisions .. ci(I)

rcsclean(l) clean up working files .. rcsclcan(I)
gpih _clear(3A) clear a GPIB channel or device gpih _clcar(3A)

ucpclr(21) clearprocess UCP priority ... ucpclr(21)
clh(4) Intergraph network clearinghouse database ... clh(4)
clh(l) Intergraph network clearinghouse management program .. clh(I)

clearinghouse management program clh(l) I ntcrgraph network .. cl h(l)
clearinghouse database clh(4) Intergraph network .. clh(4)

object and property clh_ vbyop(3N) lookup value by clh _ vbyop(3N)
ypprot_crr(3R) YP client intcrfac /yperr_string(3R) .. ypclnt(3R)

shell (command interpreter) with C-like syntax csh(l) a .. csh(I)
getcpuid(21) return CLIPPER processor identifier .. getcpuid(21)

processor type truth/ machid(l) clipper(!) ns32000(1) vax(l) get ... machid(I)
utd(l)copybetweenMS-DOSand CLIX dtu(l) .. dtu(l)

DNP remote login DECnet or CLIX node. sethost(l) ... sethost(I)
crm(l) CLIX Resource Monitor ... crm(I)

cnv _closc(3A) close a CNV channel .. cnv _close(3A)
sni_close(3N) close a connection ... sni_closc(3N)
csi_closc(3A) close a CSI port ... csi_closc(3A)

gpih _close(3A) close a GPIB channel .. gpib _closc(3A)
pdi_close(3A) close a POI port .. pdi_close(3A)
aux_close(3A) close a serial port .. aux_close(3A)
sif_close(3A) close a SJF channel .. sif_closc(3A)
nlf_close(3A) close an NLF channel .. nlf_close(3A)
rlc _ close(3A) close an RLE channel .. rle _ close(3A)

cnv _close(3A)close a CNV channel .. cnv _close(3A)
cnv _ open(3A) open a CNV channel .. cnv _ open(3A)

cnv _ close(3A) close a CNV channel cnv _ close(3A)
cnv _open(3A) open a CNV channel cnv _open(3A)
co(l) check out RCS revisions .. co(I)

syntax csh(l) a shell (command interpreter) with C-like .. csh(I)
netcp(l) DNP copy command .. netcp(l)

csi _ ccan(3A) cancel a specific command on a CSI port .. csi _ ccan(3A)
/execute the specified command on remote system .. fmu_rcmd(3N)

4 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

csi_cmd(3A) csi_cmd_nw(3A)send command packets to a CSI port csi_cmd(JA)

/shell, the standard/restricted command programming language .. ksh(I)

rcmd(1) remote command ... rcmd(I)

returning a stream to a remote command /ruserok(3B) routines for n:md(JB)

return stream to a remote command rexec(3B) ... rcxcc(JB)
test(l) condition evaluation command .. test(I)

contents on a/ netls(l) DNP conunand that lists the directory .. nctls(I)

or more files netmv(l) DNP command that moves or renames one nctmv(I)

netrm(l)DNP conunandthatremovesfiles ... nctrm(I)

remote printers netlpr(l) DNP command to print file(s) on .. nctlpr(I)

intro(!) introduction to commands and application programs intro(I)

directory used by optical disk commands /set the current default oded(I)

directory used by optical disk commands /the current default ... odpwd(I)

gpib_cmd(3A) gpib_cmd_nw(3A)send commands to a GPIB channel gpih _cmd(3A)

output a.out(4) common assembler and link editor a.out(4)

as(1) common assembler ... as(I)

relocation information for a common object file reloc(4) ... reloc(4)

ld(l) link editor for common object files .. Id(I)

socket(2B) create an endpoint for communication .. sockct(28)

/csi_dcath_nw(3A) wait for a CSI communication to fail ... csi_death(3A)

/introduction to Intergraph communications environment ... intro(3N)

rcsdiff(l) compare RCS revisions ... rcsdiff(I)

Ac(l)Ada compiler .. ac(L)
cc(l)C compiler .. cc(I)

f77(1) FORTRAN compiler .. l77(J)

pc(l) Pascal compiler ... pc(l)

rpcgcn(l) an RPC protocol compiler ... rpcgcn(1)

of an asynchronous request completion /notify a process xio _notify(3A)
compress(1) uncompress(1) zcat(1) compress and expand data .. compress(I)

compress and expand data compress(!) uncompress(1) zcat(l) compress(l)
test(l) condition evaluation command .. tesl(l)

notification for a GPIB SRQ condition /request ... gpib_service(3A)

device gpib _spreq(3A) conduct a serial poll of a GPIB gpih _spreq(JA)

GPIB channel gpib _reset(3A) conduct an IFC operation on a gpib _ reset(3A)
master(4)master configurationdatabase ... master(4)

errord.rc(4) error log configuration file .. errord.rc(4)

JBCFG(4) optical disk jukebox configuration file .. jhcfg(4)

optical disk standalone configuration file ST ANDCFG(4) standcfg(4)

jbconfig(l) report the configuration of the jukeboxes jhconfig(I)

response of a/ gpib _ppconf(3A) configure the parallel poll gpih _ppconf(3A)

sni_connect(3N) connect to a server program sni_conncct(3N)

on a socket connect(2B) initiate a connection conncct(2B)

server /fmu_disconnect(3N) connect/disconnectto remote FMU fmu_conncct(3N)

getpeername(2B) get name of connected peer ... getpecrnamc(2B)

socketpair(2B) create a pair of connected sockets ... socketpair(2B)

accept(2B) accept a connection on a socket ... accept(2B)

connect(2B) initiate a connection on a socket .. conncct(2B)

shut down part of a full-duplex connection shutdown(2B) ... shutdown(2B)

sni_accept(3N) accept a connection .. sni_acccpt(3N)

PERMUTED INDEX 5

Permuted Index

sni_close(3N) close a connection ... sni_close(3N)
listen(2B) listen for connections on a socket .. listen(2B)

netmsg(1) send a message to console devices on the local XNS/ .. netmsg(l)
for implementation-specific constants limits(4) file header ... limits(4)

ls(1) list contents of directory ... ls(L)
dls(l) list contents of MS-DOS directory .. dis(I)

directories odls(J) list contents of optical disk ... odls(l)
command that lists the directory contents on a remote system /DNP ... net ls(I)

to_tlop(l) fr_flop(l) continuous floppy disk filters ... to_flop(l)
fcntl(2) file control .. fcntl(2)

return a GPIB device to local control gpib _local(3A) ... gpib _local(3A)
fcntl(5) file control options .. fcntl(5)

ncp(1) DNP network control program ... ncp(l)
rte(1) remote tape control ... rte(I)

rtc_notify(3N) remote tape control /rtc_deallocate(3N) .. rtc_allocate(3N)
swap(2I) swap space control ... swap(2I)

/plt_ctrl_nw(3A) send a control word to the parallel port plot_ctrl(3A)
port /rplt_ctrl_nw(3A)send a control word to the ROP parallel plot_ctrl_rop(3A)

xio_wflor(3A) asynchronous event control /xio_wfland(3A) ... xio_waitfr(3A)
/htons(3B) ntohl(3B) ntohs(3B) convert values between host and/ byteon.ler(JB)

cancel write request to an FPE coprocessor fpe_cancel_dma(3A) fpe_cancel_dma(3A)
allocate an FPE coprocessor fpe_coproc_alloc(3A) fpe_coproc_alloc(3A)

/deallocate an FPE coprocessor ... fpe _ coproc _ dealloc(3A)
write data to an FPE coprocessor /fpe_write_dma_nw(3A) fpe_write_dma(JA)

fpe_did_load(JA) load an FPE coprocessor image ... fpe_did_load(JA)
fpc_did_unload(3A) unload an FPE coprocessor image ... fpc_did_unload(3A)

dtu(l) utd(l) copy between MS-DOS and CLIX .. dtu(l)
netcp(l) DNP copy command ... netcp(l)

cpio(1) copy file archives in and out .. cpio(I)
cpflop(1) copy floppy disk .. cptlop(1)

odcp(1) copy optical disk files .. odcp(I)
rcp(L) ren1ote file copy ... rcp(l)
corc(4) format of core image tile .. core(4)

core(4) format of core image file .. core(4)
cptlop(1) copy floppy disk .. cptlop(l)

out cpio(1) copy file archives in and .. cpio(1)

and asynchronous I/O cpio(1) scpio(l)multibuffering .. scpio(I)
CRM utility for monitoring CPU time topcpu(l) .. topcpu(I)

sockets socketpair(2B) create a pair of connected .. socketpair(2B)
mkshlib(1) create a shared library .. mkshlib(1)

communication socket(2B) create an endpoint for ... socket(2B)
odmkdir(l) create optical disk directories .. odmkdir(l)

process monproc(l) CRM utility for monitoring a .. monproc(l)
time topcpu(l) CRM utility for monitoring CPU ... topcpu(l)

activity topio(l) CRM utility for monitoring 1/0 ... topio(1)

regions monregion(l) CRM utility for monitoring memory monregion(l)
files show files(1) CRM utility for monitoring open show files(l)
faults topfault(l) CRM utility for monitoring page .. topfault(l)

physical and virtual/ topmem(l) CRM utility for monitoring ... topmem(l)

6 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

process memory I showmemory(1) CRM utility for monitoring show memory(I)

activity topsys(1) CRM utility for monitoring system topsys(I)

calls and faults watcher(!) CRM utility for monitoring system watcher(I)

parameters monparam(l). CRM utility for monitoring system monparam(l)

crm(1) CLIX Resource Monitor .. crm(I)

interpreter) with C-like syntax csh(l) a shell (command ... csh(I)

/csi_death_nw(3A) wait for a CSI communication to fail ... csi_<leath(lA)

outstanding asynchronous 1/0 on a CSI port csi_cancel(3A)canccl csi_canccl(3A)

cancel a specific command on a CSI port csi_ccan(3A) .. csi_ccan(3A)

csi_close(3A)close a CSI port .. csi_closc(JA)

send command packets to a CSI port 1csi_cmd_nw(JA) ... csi_cmd(3A)

receive delayed status from a CSI port csi_dstat_nw(JA) csi_dstat_nw(3A)

csi _ open(3A) open a CSI port .. csi_ open(JA)

csi_reset(3A) reset hardware on CSI port ... csi_resct(JA)

unsolicited status requests on a CSI port csi_ucan(3A) cancel csi_ucan(3A)

receive unsolicited status from a CSI port /csi_ustat_nw(3A) .. csi_ustat(JA)

csi_status(3A) read the CSI port DRll status lines .. csi_status(3A)

a<>ynchronous 1/0 on a CSI port csi_cancel(3A)cancel outstanding csi_canccl(JA)

command on a CSI port csi_ccan(3A) cancel a specific csi_ccan(3A)

csi_close(3A) close a CSI port csi_closc(3A)

command packets to a CSI port csi_cmd(3A)csi_cmd_nw(3A) send csi_cmd(3A)

packets to a CSI/ csi_cmd(3A) csi_cmd_nw(3A)send command csi_cm<l(3A)

wait for a CSI communication to/ csi_ death(3A) csi_ death_ nw(3A) csi _ <leath(3A)

communication to/ csi_<leath(3A) csi_death_nw(3A)wait for a CSI csi_dcath(3A)

status from a CSI port csi_dstat_nw(3A) receive delayed csi_dstat_nw(3A)

csi_open(3A)open a CSI port csi_opcn(3A)

CSI port csi_reset(3A) reset hardware on csi_reset(JA)

DRU status lines csi_status(3A) read the CSI port csi_status(3A)

status requests on a CSI port csi_ucan(3A)cancel unsolicited csi_ucan(3A)

receive unsolicited status from/ csi_ ustat(3A) csi_ ustat_nw(3A) csi_ ustat(3A)

unsolicited status/ csi_ustat(3A) csi_ustat_nw(3A)receive ... csi_ustat(3A)

program cumail(l) DNP mail transport ... cumail(1)

optical disk/ oded(1) set the current default directory used by .. oded(1)

optical/ odpwd(l) display the current default directory used by odpwd(l)

setdomainname(3R) get/set name of current domain getdomainname(3R) getdomainname(3R)

get/set unique identifier of current host /sethostid(2B) ... gethostid(2B)

sethostname(2B) get/set name of current host gethostname(2B) gethostname(2B)

hostname(l) set or print name of current host system ... hostname(l)

domname(l) set or display name of current YP domain ... domnamc(1)

/recover(4) state(4) status daemon directory and file formats statmon(4)

sni_rxw(3N) receive a data buffer .. sni_rxw(JN)

sni_txw(3N) transmit a data buffer .. sni_txw(3N)

zcat(l) compress and expand data compress(!) uncompress(!) compress(l)

/gpib_read_nw(3A) read data from a GPIB device ... gpib_read(JA)

pdi_read(3A)pdi_read_nw(3A) read data from a POI port into memory pdi_rcad(3A)

pdi_ifb(3A) pdi_ifb _nw(3A) move data from a POI port to a window pdi_itb(3A)

aux_read(3A) aux_read_nw(3A) read data from a serial port ... aux_read(3A)

/pdi_ write_nw(3A) write data from memory to a POI port pdi_ writc(3A)

/sif_mem_pipe_nw(3A)transfer data from memory to pipe sif_mem_pipe(3A)

PERMUTED INDEX 7

Permuted Index

/sif_scan_mem_nw(3A) transfer data from scanner to memory sif_scan_mem(3A)
/sif _scan _pipe_ nw(3A) transfer data from scanner to pipe ... sif_ scan _pipe(3A)

stat(5) data returned by stat system call .. stat(5)
for code execution in the process data section exedata(21) setup .. exedata(2J)

/gpib_ write_nw(3A) write data to a GPIB device ... gpib _ write(.~A)
/aux_write_nw(3A)write data to a serial port ... aux_write(3A)

/fpe_write_dma_nw(3A)write data to an FPE coprocessor fpe_write_dma(3A)
/plt_data_nw(3A) write data to the parallel port .. plot_data(3A)

/rplt_data_nw(3A) write data to the ROP parallel port plot_data_rop(3A)
types(5) primitive system data types ... types(5)

serial/ /aux_rawrd _ nw(3A) read data with error byte from a .. aux_rawrd(3A)
ypfiles(4) the YP database and directory structure ... ypfiles(4)

Intergraph network clearinghouse database clh(4) ... clh(4)
file newaliases(l) rebuild the database for the mail aliases .. newaliases(l)

hosts(4) host name database .. hosts(4)
host equivalency name database hosts.equiv(4) .. hosts.equiv(4)

master(4) m<lSter configuration database .. master(4)
networks(4) network name database .. nctworks(4)

BSD printer capability database ptfotcap(4) .. printcap(4)
protocols(4) protocol name database .. protocols(4)

rpc(4) RPC program number datab<L'\e ... rpc(4)
scrviccs(4)scrvice name database .. scrviccs(4)

/dbm _ error(JB) dbm_ clearerr(3 B) databases ubroutines ... ndbm(38)
ypcat(l) print values in a YP database ~ .. ypcat(I)

gettimeofday(2B) get date and time ... gettimcofday(2B)
dbg(l) symbolic debugger .. dbg(I)

/dbm_nextkey(3B)dbm_error(3B) dbm_clearerr(3B)database/ .. ndbm(3B)
ndbm(3B) dbm_open(3B) dbm_close(3B)dbm_fetch(3B)/ ... ndbm(JB)

/dbm_fetch(3B) dbm_store(3B) dbm_dclete(3B)dbm_firstkey(3B)/ ndbm(3B)
/dbm_firstkey(3B) dbm_nextkey(3B) dbm_error(3B)dbm_clearerr(3B)/ .. ndbm(JB)

/dbm_open(3B) dbm_close(3B) dbm_fetch(3B)dbm_store(3B)/ .. ndbm(3B)
/dbm _ store(3B) dbm_ delete(3B) dbm_firstkey(3B) dbm _nextkey(3B)/ ndbm(JB)

/dbm_ <lelete(3B) dbm_lirstkey(3B) dbm_ nextkey(3B)<lbm _ error(3B)/ ndbm(JB)
dbm_fctch(3B)/ ndbm(JB) dbm_open(3B) dbm_close(3B) ... ndbm(3B)

/dbm_ close(3B) <lbm_fetch(3B) dbm_ store(3B) dbm_ delete(3B)/ .. ndbm(3B)
fg_dealloc(3A) deallocate a frame grabber .. fg_dealloc(3A)

fpe _ coproc _ dcalloc(3A) deallocate an FPE coprocessor fpe _ coproc _ dealloc(3A)
adb(1) absolute debugger .. adb(1)

dbg(1) symbolic debugger ... dbg(l)
sdb(I) symbolic debugger .. sdb(I)

sethost(l) DNP remote login DECnet or CLIX node ... set host(I)
disk/ oded(l) set the current default directory used by optical ... oded(l)
odpwd(l) display the current default directory used by optical/ ... odpwd(I)

csi_dstat_nw(3A) receive delayed status from a CSI port csi_dstat_nw(JA)
odrrndir(l) delete optical disk directories ... odrmdir(l)

odrm(l) delete optical disk files ... odnn(l)
qdel(l) delete or signal NQS requests .. qdel(l)

fixes.com(4) Intergraph software delivery documentation file ... fixes.com(4)
disktab(4) disk description file ... disktab(4)

8 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

FORTRAN/ fnum(3F) return the file descriptor associated with a .. fnum(3F)
unit associated with a file descriptor /FORTRAN logical fdtounit(3F)

getdtablesize(2B) get descriptor table size .. getdtablesize(2B)
priority of the/ fg_priority(3A) determine frame buffer output fg_priority(3A)

window size fg_size(3A) determine the frame grabber .. fg_sizc(3A)
clear a GPIB channel or device gpib _ clear(3A) ... gpib _ clcar(3A)

parallel poll response of a GPIB device /configure the .. gpib _ppconf(3A)
read data from a GPIB device /gpib _read _nw(3A) gpih _rcad(3A)

condu~ a serial poll of a GPIB device gpib _spreq(3A) ... gpib _ sprcq(3A)
gpib _trigger(3A) trigger a GPIB device .. gpib _triggcr(JA)

write data to a GPIB device /gpib _write _nw(3A) gpib _ writc(3A)
gpib _local(3A) return a GPIB device to local control .. gpib _local(3A)

/send a message to console devices on the local XNS network nctmsg(l)
/unconfigure a GPIB device's parallel poll response gpib _ppuconf(3A)

qdev(l) display the status of NOS devices ... qdcv(l)
ratfor(l) rational FORTRAN dialect .. rat for(I)
group of optical disk files or directories /change the file ... odchgrp(J)

of optical disk files or directories /the file protection odchmod(J)
of optical disk files or directories /file ownership .. o<lchown(1)

list contents of optical disk directories odls(l) ... odls(l)
odmkdir(l) create optical disk directories ... odmkdir(l)

rename optical disk files or directories odmv(l) .. odmv(l)
odrmdir(1) delete optical disk directories .. odrmdir(l)
rm(l) rmdir(l) remove files or directories .. rm(l)

/recover(4) state(4) status daemon directory and file formats .. statmon(4)
/DNP command that lists the directory contents on a remote/ .. net ls(l)

dls(l) list contents of MS-DOS directory .. dls(l)
Is(1) list contents of directory .. Is(1)

ypfiles(4) the YP database and directory structure ... yplilcs(4)
oded(1) set the current default directory used by optical disk/ ... oded(L)

/display the current default directory used by optical disk/ .. odpwd(L)
default directory used by optical disk commands /set the current ... oded(l)
default directory used by oplical disk commands /the current .. odpwd(l)

cpllop(l) copy floppy disk ... cptlop(l)
disktab(4) disk description file .. disktah(4)

odls(l) list contents of optical disk directories .. odls(l)
odmkdir(l) create optical disk directories ... odmkdir(l)
odrmdir(1) delete optical disk directories .. odrmd ir(1)

name with an existing optical disk file /associate another ... odln(l)
introduction to the optical disk file system odintro(l) ... odintro(1)

odcp(1) copy optical disk files ... odcp(1)
odrm(l)deleteoptical disk files .. odrm(l)

/change the file group of optical disk files or directories .. odchgrp(I)
the file protection of optical disk files or directories /change odchmod(J)

/change file ownership ofoptical disk files or directories .. odchown(l)
odmv(l) rename optical disk files or directories .. o<lmv(l)

fr_ftop(l)continuous floppy disk filters to_flop(l) ... to_tlop(l)
format(l) floppy disk formatting utility .. format(l)

ffsinode(4) structure of an FFS disk i-node ... ffsinodc(4)

PERMUTED INDEX 9

Permuted Index

JBCFG(4) optical disk jukebox configuration file .. jhcfg(4)
diskpar(4) disk partition header format .. diskpar(4)

file ST ANDCFG(4) optical disk standalone configuration .. standcf g(4)
format diskpar(4)disk partition header ... diskpar(4)

disktab(4) disk description file .. disktah(4)
queue used by I mailq(1) display a listing of the mail .. mailq(1)

mailstats(l) display mail statistics .. mailstats(l)
domname(l) set or display name of current YP domain domname(l)

netaddr(1) display network address .. netaddr(L)
directory used by/ odpwd(l) display the current default .. odpwd(l)

qdev(l) display the status ofNQS devices ... qdev(I)
qstat(1) display the status of NQS queues .. qstat(l)

/set/report alignment trap disposition per executable ... aligntrap(J)
directory dls(l) list contents of MS-DOS .. dls(l)

directory contents on a/ netls(l) DNP command that lists the .. netls(l)
one or more files netmv(l) DNP command that moves or renames netmv(l)

netrm(l) DNPcommand that removes files ... netrm(l)
remote printers netlpr(l) DNP command to print file(s) on .. netlpr(l)

netcp(l) DNP copy command .. netcp(l)
cumail(l) DNP mail transport program .. cumail(l)

ncp(l) DNP network control program .. ncp(l)
netex(l) DNP remote file execution utility .. netex(l)

node. sethost(l) DNP remote login DECnet or CLIX sethost(l)
/Intergraph software certification documentation file .. certnote.com(4)

Intergraph software delivery documentation file fixcs.com(4) fixes.com(4)
set or display name of current YP domain domname(l) ... domname(l)

get/set name of current domain /setdomainname(3R) getdomainname(3R)
current YP domain domname(l) set or display name of domnamc(l)

csi_status(JA) read the CSI port DRll status lines ... csi_status(3A)
and CLIX dtu(l) utd(l)copy between MS-DOS .. dtu(l)

dumpdates(4) incremental dump format backup(4) .. backup(4)
format hackup(4) dumpdates(4) incremental dump ... backup(4)

Id(l) link editor for common object files ... Id(l)
common assembler and link editor output a.out(4) .. a.out(4)

a new process in a virtual memory efficient way vfork(2B) spawn ... vfork(2B)
efl(l) Extended FORTRAN Language ... ell(l)

remque(3B) insert/remove element from a queue insque(3B) insque(3B)
group/ /getgrnam(JC) setgrent(JC) endgrent(JC) fgetgrent(3C) get ... getgrent(3C)

/gethostent(3B) sethostent(JB) endhostent(3B) get network host/ gethostbynarnc(3B)
/getnetbyname(3B) setnetent(3B) endnetent(3B) get network entry getnetent(3B)

socket(2B) create an endpoint for communication .. socket(2B)
entry /setprotoent(3B) endprotoent(3B)get protocol getprotoent(3B)

/getpwnam(3C) setpwent(3C) endpwent(3C) fgetpwent(3C) get/ getpwent(3C)
/getrpcbynumber(JR) setrpcent(3R) endrpcent(3R) get RPC entry .. getrpcent(3R)
/getservbyname(3B) setservent(3B) endservent(JB) get service entry getscrvent(3B)

man(l) print entries in this manual ... man(!)
fgetgrent(3C) get group file entry /setgrent(3C) endgrent(3C) getgrent(3C)

endhostent(JB) get network host entry /sethostentnB) ... gethostbyname(3B)
endnetent(3B) get network entry /setnetent(3B) .. getnetent(JB)

10 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

endprotoent(3B) get protocol entry /setprotoent(JB) .. getprotocnt(.1B)
fgetpwent(3C) get password file entry /sctpwent(3C) cndpwcm(3C) gctpwent(.1C)

endrpcent(3R) get RPC entry /sctrpcent(3R) ... getrpcent(3R)
endservent(3B) get service · entry /setservent(3B) .. getservent(.1B)

to Intergraph communications environment /introduction .. intro(.1N)
hosts.cquiv(4) host equivalency name database .. hosts.ct1uiv(4)

/aux_rawrd_nw(3A) read data with error byte from a serial port aux_rawrd(.1A)
errord.rc(4) errorlog configuration tile ... errord.rc(4)

errors(l) error logging report generator ... errors(I)
introduction to system calls and error numbers intro(2) .. intro(2)

configuration file errord.rc(4) error log .. errord.rc(4)
generator errors(l) error logging report .. errors(I)

port pdi_setup(3A) establish parameters for a POI pdi_setup(JA)
channel sif_setup(3A) establish parameters for a SIF sif_ setup(JA)
channel rle _ setup(3A) establish parameters for an RLE rlc _ setup(3A)

test(l) condition evaluation command .. test(1)
xio _ wllor(3A) asynchronous event control /xio _ wfland(3A) xio _ waitfr(3A)
/xio_clrcf(3A)xio_setef(3A) event flag mask functions .. xio_readef(3A)

/allocate/deallocate an event flag number .. xio_alloccf(3A)
lpq(I) BSD spool queue examination program .. lpq(I)

odt(l) examine and modifies files ... odt(1)
alignment trap disposition per executable /set/report .. aligntrap(l)

remote system fmu_rcmd(3N) execute the specified conunand on fmu_remd(3N)
exedata(21) setup for code execution in the process data/ ... exedata(21)
netex(l) DNP remote file execution utility ... nctcx(I)

execution in the process data/ exedata(21) setup for code .. excdata(21)
/associate another name with an existing optical disk file .. odln(1)

process exit(2) _ exit(2) terminate ... exit(2)
exit(2) _ exit(2) terminate process .. exit(2)

zcat(l) compress and expand data /uncompress(!) ... compress(!)
exports(4) NFS file systems being exported .. exports(4)

exported exports(4) NFS file systems being exports(4)
efl(l) Extended FORTRAN Language .. etl(l)

t77(1) FORTRAN compiler ... t77(1)
initialize or terminate FORTRAN/ t77initio(3F) t77uninitio(3F) t77initio(3F)

terminate FORTRAN/ t77initio(3F) f77uninitio(3F) initialize or ... t77initio(3F)
introduction to miscellaneous facilities intro(5) .. intro(5)

wait for a CSI communication to fail /csi_death_nw(3A) ... csi_death(3A)
CRM utility for monitoring page faults topfault(l) ... topfault(l)
for monitoring system calls and faults watcher(!) CRM utility ... watcher(1)

fcntl(2) file control .. kntl(2)
fcntl(5) file control options ... fcntl(5)

logical unit associated with a/ fdtounit(3F) return FORTRAN f dtounit(ff)
ffsinode(4) structure of an FFS disk i-node ... ffsinode(4) - /bcopy(3B) bcmp(3B) bzero(3B) ffs(3B) bit and byte string/ ... bstring(3B)

volume ffsfs(4) format of file system ... ffsfs(4)
disk i-node ffsinode(4) structure of an FFS ffsinodc(4)

grabber fg_alloc(3A)allocate a frame fg_alloc(3A)
signal of the frame grabber fg_blank(3A) blank the output fg_blank(3A)

PERMUTEDINDEX 11

Permuted Index

grabber fg_dealloc(3A)deallocatc a frame fg_dealloc(3A)
entry /setgrent(3C) endgrcnt(3C) fgetgrent(3C) get group file ... getgrent(3C)

entry /setpwcnt(3C) emlpwcnt(3C) fgetpwent(3C) get password file getpwent(3C)
frame buffer fg_tbmode(3A)set the mode of a fg_fbmode(3A)
frame buffer fg_t11stat(.3A) get the mode of a fg_tbstat(3A)

the lookup tables of a frame/ fg_lut_in(3A) fg_lut_out(3A) load fg_lut_in(3A)
tables of a frame/ fg_lut_in(3A) fg_lut_out(3A) load the lookup fg_lut_in(3A)

._., ..
buffer output priority of the/ fg_priority(3A) determine frame fg_priority(3A)

grabber to a known state fg_reset(3A) force the frame ... fg_resct(3A)
grabber window size fg_size(3A)detennine the frame fg_size(3A)

select the video signal types/ fg_ video_in(3A) fg_ video_out(3A) fg_ video_in(3A)
signal types for/ fg_ video _in(3A) fg_ vidco _ out(3A) select the video fg_ video _in(3A)

start and stop video in a window fg_ viw _ start(3A) fg_ viw _stop(3A) fg_ viw _start(3A)
video in a/ fg_ viw _start(3A) fg_ viw_stop(3A)start and stop fg_ viw _stat1(3A)

cpio(1) copy file archives in and out ... cpio(1)

rcs(l) change RCS file attributes .. res(I)
certification documentation file /lntergmph software ... certnote.com(4)

fcntl(2) file control ... fcntl(2)
fcntl(5) file control options ... fcntl(5)

rep(1) remote file copy ... rep(I)
core(4) format of core image tile .. core(4)

FORTRAN/ fnum(3F) return the file descriptor associated with a ... fnum(3F)
logical unit associated with a file descriptor /return FORTRAN fdtounit(3F)

disktab(4) disk description file .. disktab(4)
fgetgrent(3C) get group file entry /cndgrent(3C) .. getgrent(3C)

fgetpwent(JC) get password file entry /endpwent(3C) ... getpwcnt(3C)
error log configuration lilc errord.rc(4) ... errord.rc(4)

netex(1) DNP remote file execution utility .. nctcx(I)
software delivery documentation file fixcs.com(4) Intergraph .. fixes.com(4)

aliascs(4)aliascs lilcforsendmail(lM) ... aliases(4)
intro(4) introduction to lile formats ... intro(4)

status daemon directory and file formats /recover(4) state(4) ... statmon(4)
sccstorcs(l) build RCS file from SCCS file .. sccstorcs(l)

or/ odchgrp(l) change the file group of optical disk files .. odchgrp(l)
group(4) group file .. group(4)

limits(4) file header for/ .. limits(4)
bootheader(4) boot file header format .. bootheader(4)

disk jukebox configuration file JBCFG(4) optical ... jbcfg(4)
kbmap(4) keyboard map file .. kbmap(4)

fmu(l) network file management utility .. fmu(l)
merge(!) three-way file merge .. merge(1)

the database for the mail aliases file newaliases(1) rebuild ... newaliases(1)
with an existing optical disk file /associate another name .. odln(l)
files or/ odchown(l) change file ownership of optical disk ... odchown(l)

passwd(4) password file ... pass\vd(4)
files or/ odchmod(l) change the file protection of optical disk ... odchmod(l)

rcsfile(4) format of RCS file ... res file(4)
read(2) read from file .. read(2)

information for a common object file reloc(4) relocation .. reloc(4)

12 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

rename(28) change the name of a file .. renamc(2B)
build RCS file from SCCS file sccstorcs(1) ... secs tores(I)

XNS server information file server.dat(4) ... servcr.dat(4)
disk standalone configuration file ST ANDCFG(4) optical ... standcfg(4)

lstat(28) get file status ... lstat(2B)
make a symbolic link to a file symlink(28) ... symlink(2B)

backup(!) incremental file system backup .. backup(I)
mount(2) mount a file system .. mount(2)

npum0unt(l) mount and unmount file system npmount(l) ... npmount(l)
introduction to the optical disk file system odintro(l) ... odintro(l)

restore(I) incremental file system restore ... restore(I)
fstab(4) file system table .. fstab(4)

mnttab(4) mounted file system table .. mnttah(4)
rmtab(4) remotely mounted NFS file system table .. rmtah(4)

lfsfs(4) format of file system volume .. tfafs(4)
exports(4) NFS file systems being exported .. exports(4)

ftruncate(28) truncate a file to a specified length .. ftruncatc(2B)
kermit(l) kermit file transfer ... kcrmit(l)

ftp(l) ARPANET file transfer program .. ftp{l)
tftp{ 1) trivial file transfer program ... tftp(I)

write(2) write to a file .. \vritc(2)
and print process accounting files acct com(1) search ... acct com(I)

find(l) find files .. find(1)
fmu_receive(3N) receive files from a remote system fmu_receive(3N)

- ident(l) identify files ... ident(l)
link editor for common object files ld(l) .. ld(l)

ln(l) link files ... In(1)
that moves or renames one or more files netmv(l) DNP command ... netmv(l)

netrm(l) DNP command that removes files ... netrm(l)
odcp{ 1) copy optical disk files ... odcp(1)

odrm(l) delete optical disk files .. odrm(1)
odt(l) examine and modifies files ... odt(I)

netlpr(l) DNP command to print file(s) on remote printers ... netlpr(1)

the file group of optical disk files or directories /change ... odchgrp(I)
file protection of optical disk files or directories /change the odchmod(1)
file ownership of optical disk files or directories /change .. odchown(l)
odmv(l) rename optical disk files or directories ... odmv(l)

rm(l) rmdir(l) remove files or directories .. rm(l)
rcsclean(1) clean up working files .. rcsclean(1)

and other information about RCS files rlog(l) print log messages ... rlog(J)
CRM utility for monitoring open files showfiles(l) .. showfilcs(l)

fmu_send(3N)send files to a remote system ... fmu_send(3N)
fr_flop(l) continuous floppy disk filters to_flop(l) ... to_tlop(l)

find(1) find files ... find(1)
find(!) find files ... find(l)

delivery documentation file fixes.com(4) Intergraph software fixes.com(4)
/xio_clref(3A) xio_setef(3A) event flag mask functions ... xio_readct{3A)

allocate/deallocate an event flag number /xio_deallocef(3A) xio_alloccf(3A)
cptlop(1) copy floppy disk ... cp llop(I)

PERMUTEDINDEX 13

Permuted Index

to_ftop(l) fr_flop(l) continuous floppy disk filters ... to_flop(l)

format(1) floppy disk formatting utility ... format(1)

lloppypar(4) partitioned floppy header format ... floppypar(4)

header format floppypar(4) partitioned noppy ... tloppypar(4)

specified FORTRAN/ tlush(3F) flush the output for the .. flush(3F)

the specilied FORTRAN logical/ tlush(3F) tlush the output for .. tlush(3F)

fmu_set(3N)set FMU modes .. fmu_set(3N)

connect/disconnect to remote FMU setver /fmu_disconnect(3N) fmu_connect(3N)

utility fmu(1) network file management ... fmu(1)

fmu_disconnect(3N)/ fmu_connect(3N) .. fmu_conncct(3N)

fmu_connect(3N) fmu_disconnect(3N)/ ... fmu_connect(3N)

spccilicd command on remote/ fmu_rcmd(3N)execute the .. fmu_rcmd(3N)

from a remote system fmu_receive(3N)receive files fmu_receive(3N)

remote system fmu_send(3N) send files to a .. fmu_send(3N)

fmu_set(3N)sct FMU modes .. fmu_set(3N)

descriptor associated with a/ fnum(3F) return the file .. fnum(3F)

known state fg_reset(3A) force the frame grabber to a .. fg_reset(3A)

dumpdates(4) incremental dump format backup(4) .. backup(4)

bootheader(4) boot file header format .. bootheadcr(4)

diskpar(4) disk partition header format .. diskpar(4)

partitioned floppy header format t1oppypar(4) ... lloppypar(4)

core(4) format of core image file .. core(4)

ffsfs(4) format of file system volume ... ffsfs(4)

rcsfile(4) format of RCS file ... rcsfile(4)

utility format(1) floppy disk formatting .. format(1)

intro(4) introduction to file formats .. intro(4)

status daemon directory and file formats /recover(4) state(4) ... statmon(4)

format(!) floppy disk formatting utility .. format(I)

t77(1) FORTRAN compiler .. t77(1)

ratfor(l) rational FORTRAN dialect ... ratfor(l)

/initialize or terminate FORTRAN 1/0 from C ... t77initio(3F)

efl(l) Extended FORTRAN Language ... efl(l)

with a file/ fdtounit(3F) return FORTRAN logical unit associated fdtounit(3F)

the output for the specified FORTRAN logical unit /flush .. tlush(3F)

file descriptor associated with a FORTRAN logical unit /return the .. fnum(3F)

/cancel write request to an FPE coprocessor .. fpe_cancel_dma(3A)

fpe_coproc_alloc(3A)allocate an FPE coprocessor .. fpe_coproc_alloc(3A)

/deallocate an FPE coprocessor ... fpe_coproc_dealloc(3A)

/write data to an FPE coprocessor .. fpe_ write_dma(3A)

fpe_did_load(3A) load an FPE coprocessor image ... fpe_did_load(3A)

fpe_did_unload(3A) unload an FPE coprocessor image ... fpc_did_unload(3A)

request to an FPE coprocessor fpe_cancel_dma(3A)cancel write fpe_cancel_dma(3A)

FPE coprocessor fpc_coproc_alloc(3A)allocate an fpe_coproc_alloc(3A)

an FPE coprocessor fpe _ coproc _ dealloc(3A)deallocate fpe _ coproc _ dealloc(3A)

coprocessor image fpe_did_load(3A) load an FPE fpe_did_load(3A)

coprocessor image fpc _did_ unload(3A) unload an FPE fpe _did_ unload(3A)

fpe_ writc_dma_nw(3A)write data/ fpe_write_dma(3A) .. fpc_ write_dma(3A)

to an FPE/ fpc_writc_dma(3A) fpc_writc_dma_nw(3A)write data fpc_write_dma(3A)

fg_lbmode(3A) set the mode of a frame buffer ... fg_tbmo<le(3A)

14 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

fg_tbstat(JA) get the mode of a frame buffer .. fg_thstat(JA)

the/ fg_priority(3A) detennine frame buffer output priority of fg_priority(JA)

fg_alloc(3A) allocate a frame grabber .. fg_alloc(3A)

blank the output signal of the frame grabber fg_ blank(3A) fg_hlank(JA)

fg_ dcalloc(3A) deallocate a frame grabber .. fg_ dcalloc(3A)

load the lookup tables of a frame grabber /fg_lut_out(3A) fg_lut_in(3A)

hufferoutput priority of the frame grabber /determine frame fg_priority(3A)

fg_rcset(3A) force the frame grabber to a known state fg_rcsct(3A)

fg_size(3A) detenninc the frame grabber window size ... fg_ size(3A)

optical/ oddf(I) report number of free blocks and i-nodes on an ... odd[(I)

filters to_flop(l) fr_tlop(l)continuous floppy disk to_llop(l)

fstab(4) file system table .. fstab(4)

program ftp(l) ARPANET file transfer ... ftp(I)

a specified length ftruncate(2B) truncate a file to flruncatc(28)

shutdown(2B) shut down part of a full-duplex connection ... shutdown(28)

intro(3) introduction to functions and libraries .. intro(3)

/to RPC/XDR/YP service functions and protocols .. intro(3R)

introduction to BSD library functions intro(3B) .. intro(3B)

xio_sctef(3A) event flag mask functions /xio_clref(3A) .. xio_rcadcf(3A)

aux_break(3A) generatea break on a serial port aux_brcak(3A)

pattern lptest(l) generate line printer ripple .. lptest(l)

adep(1) Ada program makefile generator ... adep(l)

errors(1) error logging report generator ... errors(l)

srandom(3B) better random number generator random(3B) .. random(3B)

getmemsize(21) getfreemem(21) getavailsmem(2I)return memory/ getmemsize(21)

processor identifier getcpuid(21) return CLIPPER getcpuid(21)

setdomainname(3R) get/set name/ getdomainname(3R) .. getdomainname(3R)

table size getdtablesize(2B) get descriptor getdtablesize(2B)

return memory/ getmemsize(21) getfreemem(21)getavailsmem(21) getmemsizc(2I)

getgrnam(3C) setgrent(3C)/ getgrent(3C) getgrgid(3C) .. getgrcnt(3C)

setgrent(3C)/ getgrent(3C) getgrgid(3C) getgrnam(3C) .. getgrent(3C)

getgrent(3C) getgrgid(3C) getgrnamt3C) setgrent(3C)/ ... gctgrent(3C)

sethostent(3B)/ gethostbyname(3B) gethostbyaddr(3B) gethostent{3B) gcthostbyname(3B)

gethostbyaddr(3B) gethostent(3B)/ gethostbyname(3B) .. gethostbynamc(3B)

endhostent(3B)/ /gethostbyaddr(3B) gethostent(3B)sethostent(3B) gcthosthynamc(3B)

get/set unique identifier of/ gethostid(2B) sethostid(2B) gcthostid(2B)

get/set name of current host gcthostname(2B) scthostnamc(2B) gcthostname(2B)

get/set value of interval timer getitimer(2B) setitimer(2B) .. gctitimcr(2B)

getavailsmem(21) return memory/ getmemsize(21) getfreemem(21) getmcmsizc(2I)

setnetent(3B)/ getnetent(3B) getnetbyaddr(3B) getnetbyname(3B) getnctcnt(3 B)

getnetent(3B) getnetbyaddr(3B) gctnetbyname(3B)sctnetent(38)/ getnetcnt(3B)

getnetbyname(3B) setnetent(3B)/ gctnetent(3B) getnetbyaddr(3B) getnctcnt(3B)

size getpagesize(2B) get system page gctpagcsize(2B)

connected peer gctpeemame(2B) get name of getpcemamc(2B)

gctpgrp2(2B) get process group gctpgrp2(2B)

/getprotobynumber(3B) getprotobyname(3B)/ ... gctprotocnt(3B)

getprotocnt(3B) getprotobynumber(3B)/ ... getprotocnt(3B)

getprotobynumber(3B)/ getprotoent(3B) .. getprotocnt(3B)

getpwnam(3C) setpwent(3C)/ getpwent(3C) getpwuid(3C) gctpwcnt(3C)

PERMUTEDINDEX 15

Permuted Index

getpwent(3C) gctpwuid(3C) gctpwnam(3C) sctpwcnt(3C)/ .. gctpwent(3C)
setpwent(3C)/ gctpwent(3C) getpwuid(3C) getpwnam(3C) .. getpwcnt(3C)

getrpcbynumber(3R)/ gctrpccnt(3R) getrpcbynamc(3R) .. gctrpccnt(3R)
gctrpccnt(3R) getrpchyname(3R) gctrpchynumber(3R)setrpcent(3R)/ getrpcent(3R)

gctrpcbynumber(3R)setrpcent(3R)/ getrpccnt(3R)getrpcbyname(3R) getrpcent(3R)
number getrpcport(3R) get RPC port .. getrpcport(3R)

getservcnt(38) getservhyport(38) getservhyname(38)setservent(38)/ getscrvent(38)
gctscrvhyname(.38)/ getscrvent(38) getscrvhyport(38) .. getservent(38)
gctservhynamc(38) sctscrvcnt(.38)/ getscrvcnt(38)gcrservhyport(38) getservent(38)

/setdomainnamc(3R) get/set name of current domain gctdomainnamc(3R)
gcthostnamc(28) sethostnamc(28) get/set name of current host gethostnamc(28)

gethostid(28) sethostid(28) get/set unique identifier of/ .. gcthostid(28)
getitimer(28) sctitimer(28) get/set value of interval timer .. getitimcr(28)

getsocknamc(28) get socket name gctsocknamc(28)
and set options on sockets gctsockopt(28) sctsockopt(2B) get getsockopt(28)

time gettimcofday(2B) get date and gettimeofday(2B)
all outstanding requests on a GPIB channel /cancel ... gpib_cancel(3A)

gpih _ close(3A) close a GPIB channel .. gpib _ closc(3A)
send commands to a GPIB channel /gpib _cmd_nw(3A) gpib _cmd(3A)

issue a local lockout to a GPIB channel gpib _lockout(3A) gpib _lockout(3A)
gpib_open(3A)open a GPIB channel .. gpib_open(3A)

perform a parallel poll of a GPIB channel gpib _ppreq(3A) gpib _ppreq(3A)
conduct an IFC operation on a GPIB channel gpib _reset(3A) gpib _reset(3A)

gpib _remote(3A) put a GPIB channel in a remote state gpib _remote(3A)
gpib_clear(3A)clear a GPIB channel or device .. gpih_clear(3A)

the parallel poll response of a GPIB device /configure ... gpib_ppconf(3A)
gpib _read_nw(3A) read data from a GPIB device gpib _read(3A) .. gpib _read(3A)

conduct a serial poll of a GPIB device gpib _spreq(3A) gpib _spreq(3A)
gpib _ trigger(3A) trigger a GPIB device ... gpib _ trigger(3A)

gpib _write_nw(3A) write data to a GPIB device gpib _write(3A) gpib _write(3A)
gpib_local(3A) return a GPIB device to local control ... gpib_local(3A)

gpib _ppuconf(3A) unconfigure a GPIB device's parallel poll/ gpib _ppuconf(3A)
/request notification for a GPIB SRQ condition ... gpib_servicc(3A)

outstanding rcq uests on a GPIB/ gpib _ cancel(3A) cancel all ... gpib _ cancel(3A)
channel or device gpib _ clear(3A) clear a GPIB ... gpib _ clcar(3A)

channel gpib _ close(3A) close a GPIB gpib _ close(3A)
commands to a GPIB channel gpib _cmd(3A) gpib _cmd_nw(3A) send gpib _cmd(3A)

a GPIB channel gpih_cmd(3A) gpib_cmd_nw(3A)send commands to gpib_cmd(3A)
device to local control gpib _local(3A) return a GPIB gpib _local(3A)

lockout to a GPIB channel gpib _lockout(3A) issue a local gpib _ lockout(3A)
gpib _ open(3A) open a GPIB channel gpib _ open(3A)

parallel poll response of a GPIB/ gpib_ppconf(3A) configure the gpib_ppconf(3A)
poll of a GPIB channel gpib _ppreq(JA) perform a parallel gpib _ppreq(3A)

GPIB device's parallel poll/ gpib _ppuconf(3A) unconfigure a gpih _ppuconf(3A)
read data from a GPIB device gpib_read(3A) gpib _read_ nw(3A) gpib _read(3A)
GPIB device gpib _read(3A) gpib _read _nw(3A) read data from a gpib _re~d(3A)

channel in a remote state gpib_remote(3A)put a GPIB gpih_remote(JA)
operation on a GPIB channel gpib _resct(3A)conduct an IFC gpih _rcset(3A)

gpih _service_ nw(3A) request/ gpib _ service(3A) ... gpih _scrvicc(JA)

16 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

notification/ gpib _service(3A) gpib _service_nw(3A)requcst gpib _servicc(3A)

poll of a GPIB device gpib _spreq(3A)conduct a serial gpib _spreq(3A)

device gpib_trigger(3A)triggera GPIB gpib_triggcr(3A)

write data to a GPIB device gpib_ write(3A) gpib_write_nw(3A) gpib_writc(3A)

GPIB device gpib_write(3A) gpib_writc_nw(3A)write data to a gpib_writc(3A)

fg_alloc(3A) allocate a frame grabber ... fg_alloc(3A)

the output signal of the frame grabber fg_blank(3A) blank fg_blank(.~A)

fg_de<t11Hc(3A) deallocate a frame grabber ... fg_dcalloc(3A)

load the lookup tables of a frame grabber /fg_lut_out(3A) ... fg_lut_in(3A)

output priority of the frame grabber /determine frame butler fg_priority(3A)

fg_reset(3A) force the frame grabber to a known state .. fg_rcset(3A)

fg_size(3A) determine the frame grabber window size .. fg_size(3A)

chown(l)chgrp(l)changeowneror group ... chown(J)

endgrent(3C) fgetgrent(3C) get group file entry /setgrent(3C) getgrent(3C)

group(4) group file .. group(4)

getpgrp2(28) get process group ... getpgrp2(2B)

setpgrp(2) set process group ID ... setpgrp(2)

send signal to a process group killpg(2B) .. killpg(2B)

odchgrp(l) change the file group of optical disk files or/ .. odchgrp(l)

setpgrp2(2B) set process group ... setpgrp2(2B)

group(4) group file .. group(4)

/translation table to handle long map names ... ypmapxlatc(4)

reset a process's priority after handling a signal ucprelse(21) ucprclse(21)

qpr(l) submit a hardcopy print request to NQS ... qpr(l)

sysid(21) get the system hardware identification number .. sysid(21)

csi_reset(3A) reset hardware on CSI port .. csi_reset(3A)

limits(4) file header for/ ... limits(4)

bootheader(4) boot file header format ... bootheader(4)

diskpar(4) disk partition header format ... diskpar(4)

floppypar(4) partitioned floppy header format .. ftoppypar(4)

/ntohs(3B) convert values bet.ween host and network byte order byteordcr(3B)

endhostent(3B) get network host entry /sethostent(3B) gethostbyname(3B)

hosts.equiv(4) host equivalency name database hosts.equiv(4)

unique identifier of current host /sethostid(2B) get/set .. gethostid(2B)

get/set name of current host /sethostname(2B) ... gethostnamc(2B)

hosts(4) host name database .. hosts(4)

and shell strategy for the local host /show supported batch limits qlimit(I)

the local/ ruptime(l) show host status for each machine on ruptimc(I)

set or print name of current host system hostname(l) .. host name(l)

current host system host name(1) set or print name of host name(I)

hosts(4) host name database .. hos ls(4)

name database hosts.equiv(4) host equivalency hosts.cquiv(4)

ntohs(38) convert/ byteordcr(38) htonl(38) htons(3B) ntohl(3BJ hytcordcr(38)

convert/ bytcorder(3B) htonl(38) htons(3B) ntohl(38) ntohs(3B) bytcordcr(38)

sctpgrp(2) set process group ID ... sctpgrp(2)

ident(L) identify files .. idcnt(I)

sysid(21) get the system hardware identification number ... sysid(21)

return CLIPPER processor identifier getcpuid(21) .. gctcpuid(21)

/sethostid(28) get/set unique identifier of current host ... gethostid(2B)

PERMUTEDINDEX 17

Permuted Index

ident(1) identify files .. ident(l)
gpib _reset(3A) conduct an IFC operation on a GPIB channel gpib _reset(3A)

corc(4) format of core image file .. core(4)
load an FPE coprocessor image fpe_did_load(3A) .. fpe_did_load(3A)

unload an FPE coprocessor image fpe_did_unload(3A) fpc_did_unload(3A)
limits(4) file header for implementation-specific constants ... limits(4)

backup(4) dumpdates(4) incremental dump format .. backup(4)
backup(l) incremental file system backup ... backup(l)
restore(!) incremental file system restore ... restore(!)

operations string(3B) index(3B) rindex(3B) string .. string(3B)
inet_network(3B) inet_ntoa(3B)/ inet(3B) inet_addr(3B) ... inet(3B)

inet_ntoa(3B)/ inet(3B) inet_addr(3B) inet_network(3B) .. inet(3B)
/inet_ntoa(3B) inet_makeaddr(3B) inet_lnaof(3B)inet_netof(3B)/ ... inet(3B)

/inct_network(3B) inet_ntoa(3B) inet_makeaddr(3B)inet_lnaof(3B)/ ... inet(3B)
/inet_ makeaddr(3B) inet_lnaof(3B) inet_netof(3B) Internet address/ ... inet(3B)

inet(3B) inet_addr(3B) inet_nctwork(3B)inet_ntoa(3B)/ ... inet(3B)
/inet_addr(3B) inet_nctwork(3B) inet_ntoa(3B) inet_makeaddr(3B)/ .. inet(3B)

/print log messages and other information about RCS files ... rlog(l)
server.dat(4) XNS server information file .. server.dat(4)

file rcloc(4) relocation information for a common object .. reloc(4)
getavailsmem(21) return memory information /gctfrcemcm(21) .. getmemsize(21)
rcadinfo(21) read system activity information ... readinfo(21)

t77initio(3F) t77uninitio(3F) initialize or tem1inate FORTRAN/ t77initio(3F)
connect(2B) initiate a connection on a socket .. conncct(2B)

strncturc of an FFS disk i-node tfsinode(4) .. ffsinode(4)
/report number of free blocks and i-nodes on an optical volume ... oddf(l)

readv(2B) read input from a socket .. readv(2B)
queue insque(3B) remque(3B) insert/removeelement from a .. insquc(3B)
insert/remove clement from a/ insque(3B) remque(3B) ... insque(3B)

ypprot_err(3R) YP client intcrfac /yperr_string(3R) .. ypclnt(3R)
tclnet(l) user interface to the TELNET protocol ... telnet(1)

/inet_lnaof(3B) inct_netof(3B) Internet address manipulation/ ... inet(3B)
csh(l) a shell (command interpreter) with C-likc syntax .. csh(l)

setitimer(2B) get/set value of interval timer getitimer(2B) .. getitimcr(2B)
and application programs intro(l) introduction to commands .. intro(l)

calls and error numbers intro(2) introduction to system .. intro(2)
functions and libraries intro(3) introduction to .. intro(3)

synchronous/asynchronous 1/0/ intro(3A) introduction to the .. intro(3A)
library functions intro(3B) introduction to BSD ... intro{38)

Intergraph communications/ intro(3N) introduction to .. intro(3N)
RPC/XDR/YP service functions and/ intro(3R) introduction to ... intro(3R)

formats intro(4) introduction to file .. intro(4)
miscellaneous facilities intro(5) introduction to .. intro(5)

functions intro(3B) introduction to BSD library .. intro(3B)
applical ion programs intro(l) introduction to commands and .. intro(J)

intro(4) introduction to file formats .. intro(4)
libraries intro(3) introduction to functions and ... intro(3)

communications/ intro(3N) introduction to Intergraph ... intro(3N)
facilities intro(5) introduction to miscellaneous .. intro(.5)

18 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

service functions and/ intro(3R) introduction to RPC/XDR/YP ... intro(JR)

error numbers intro(2) introduction to system calls and .. intro(2)

file system odintro(l) introduction to the optical disk ... odintro(I)

intro(3A) introduction to the/ .. intro(3A)

CRM utility for monitoring 1/0 activity topio(1) .. topio(I)

multi buffering and asynchronous 1/0cpio(1) scpio(1) .. scpio(1)

select the video signal types for 1/0 /fg_ video_ out(3A) .. fg_ video _in(JA)

initialize or terminate FORTRAN 1/0 from C /t77uninitio(3F) .. t77initio(3F)

to the synchronous/asynchronous 1/0 library /introduction .. intro(JA)

select(2B) synchronous 1/0 multiplexing ... sclect(2B)

cancel outstanding asynchronous 1/0 on a CSI port csi_ cancel(.lA) csi_ cancel(JA)

cancel outstanding asynchronous 1/0 on a PDI port pdi_cancel(3A) pdi_canccl(3A)

/cancel outstanding asynchronous 1/0 on a SIF channel ... sif_cancel(3A)

/cancel outstanding asynchronous 1/0 on an RLE channel ... rle _ cancel(3A)

channel gpib _lockout(3A) issue a local lockout to a GPIB gpih _lockout(3A)

configuration file JBCFG(4) optical disk jukebox ... jhcfg(4)

configuration of the jukeboxes jbconfig(l) report the .. jbconfig(l)

spooling queue lprm(l) remove jobs from the BSD line printer ... lprm(l)

JBCFG(4) optical disk jukebox configuration file .. jhcfg(4)

report the configuration of the jukeboxes jbconfig(l) ... jhconlig(l)

layout kb map(1) change the keyboanl ... khmap(I)

layout kbmap(2I) change the keyboard khmap(21)

kbmap(4) keyboard map file ... khmap(4)

kcrmit(l) kermit file transfer ... kcrmil(I)

kermit(l) kermit file transfer ... kcrmil(I)

kb map(1) change the keyboard layout ... kb map(I)

kbmap(2I) change the keyboard layout ... khmap(21)

kbmap(4) keyboard map file .. khmap(4)

print the value of one or more keys from a YP map ypmatch(l) ypmalch(I)

process group killpg(2B) send signal to a ... killpg(2B)

force the frame grabbcrto a known state fg_reset(3A) .. fg_rcset(3A)

standard/restricted/ ksh(l) krsh(l) shell, the ... ksh(I)

standard/restricted command/ ksh(l) krsh(l) shell, the .. ksh(I)

ansitape(1) ANSI-standard magtape label program .. ansitape(J)

ansitape(4) ANSI standard magtape labels ... ansitape(4)

efl(1) Extended FORTRAN Language ... ell(I)

command programming language /the standard/restricted ... ksh(I)

kb map(1) change the keyboard layout .. khmap(1)

kbmap(21) change the keyboard layout ... khmap(2l)

object files ld(l) link editor for common .. Id(I)

truncate a file to a specified length ftruncate(2B) ... ftruncatc(2B)

introduction to functions and libraries intro(3) ... intro(3)

intro(3B) introduction to BSD library functions ... intro(1B)

the synchronous/asynchronous 1/0 library /introduction to .. inlro(3A)

mkshlih(1) create a shared library ... mkshlib(I)

alt(1) Ada library tool ... alt(I)

qlimit(I) show supported batch limits and shell strategy for the/ ... qlimit(I)

implementation-specific/ limits(4)111e header for ... limits(4)

lptest(l) generate line printer ripple pattern ... lptcst(I)

PERMUTEDINDEX 19

Permuted Index

lprm(l) remove jobs from the BSD tine printer spooling queue .. lprm(l)
read the CSI port DRU status lines csi_status(3A) ... csi_status(3A)

tiles l<.1(1) linkeditorforcommonobject ... ld(l)
a.out(4) common assembler and link editor output ... a.out(4)

ln(l) link Illes ... ln(l)
read the value of a symbolic link readlink(2B) .. readlink(2B)

symlink(2B) make a symbolic link to a file ... symlink(2B)
ls(l) list contents of directory ... Is(l)

dls(l) list contents of MS-DOS directory ... dis(l)
directories odls(l) list contents of optical disk ... odls(l)

.rhosts(4) remote user access list .. rhosts(4)
socket listen(2B) listen for connections on a .. listen(2B)'

on a socket listen(2B) listen for connections ... listcn(2B)
sendmail(lM) mailq(l) display a listing of the mail queue used by ... mailq(l)

remote/ netls(l) DNP command that lists the directory contents on a ... netls(l)
on the local network rwho(l) lists users logged in to machines .. rwho(l)

In(1) link files ... In(I)
fpe_did_load(3A) load an FPE coprocessor image fpe_did_load(3A)

fg_lut_in(3A) fg_lut_out(3A) load the lookup tables of a frame/ fg_lut_in(3A)
return a GPIB device to local control gpib _local(3A) ... gpib _local(3A)

limits and shell strategy for the local host /show supported batch .. qlimit(l)
gpib _lockout(3A) issue a local lockout to a GPIB channel gpib _lockout(3A)

status for each machine on the local network /show host .. ruptime(l)
logged in to machines on the local network /lists users .. rwho(J)

message to console devices on the local XNS network /send a ... netm'ig{L)
vlock(21) lock an area of memory .. vlock(2l)

gpib _lockout(3A) issue a local lockout to a GPIB channel .. gpib _lockout(3A)
crrord.rc(4) error log configuration file ... errord.rc(4)

information about/ rlog(l) print log messages and other .. rlog(I)
local/ rwho(l) lists users logged in to machines on the .. rwho(l)

errors(l)error logging report generator .. ermrs(l)
file/ fdtounit(3F) return FORTRAN logical unit associated with a ... fdtounit(3F)
output for the specified FORTRAN logical unit llush(3F) flush the ... llush(3F)

associated with a FORTRAN logical unit /the file descriptor ... fnum(."W)
sethost(l) DNP remote login DECnet or CLIX node .. set host(I)

yppasswd(I) change login password in YP .. yppasswd(I)
visit(l) Intergraph remote login program ... visit(I)

rlogin(l) remote login .. rlogin(.I)
/fg_lut_out(3A) load the lookup tables of a frame grabber fg_lut_in(3A)
property clh_ vbyop(3N) lookup value by object and ... clh_ vbyop(3N)

examination program lpq(l) BSD spool queue .. lpq(l)
lpr(1) BSD offiine print ... lpr(l)

line printer spooling queue lprm(l) remove jobs from the BSD ... lprm(l)
ripple pattern lptest(l) generate line printer ... lptest(l)

Is(l) list contents of directory ... Is(l)
lstat(2B) get file status .. lstat(2B)

vax(l) get processor type truth/ machid(l) clipper(!) ns32000(1) .. machid(l)
/show host status for each machine on the local network ... ruptime(l)

valucs(5) machine-dcpendentvalues ... values(5)

20 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

rwho(l) lists users logged in to machines on the local networl< .. rwho(l)
program mt(1) magnetic tape manipulation ... mt(l)

ansitape(l) ANSl·standard magtape label program ... ansitape(1)
ansitape(4) ANSI standard magtape labels .. ansitape(4)
rebuild the database for the mail aliases file newaliases(t) newaliases(l)

mailq(l)display a listing of the mail queue used by sendmail(lM) mailq(l)
mailstats(l) display mail statistics ... mailstats(l)

cumail(l) ONP mail transport program ... cumail(1)
mail queue used by sendmail(lM) mailq(l)display a listing of the .. mailq(l)

statistics mailstats(1) display mail .. mails tats(l)
adep(l) Ada program makefile generator .. adcp(l)

manual man(l) print entries in this .. man(1)
Intergraph network clearinghouse management program clh(l) .. clh(l)

sigignore(2) sigpause(2) signal management /sigrelse(2) .. sigsct(2)
fmu(l) network file management utility .. f mu(I)
mt(1) magnetic tape manipulation program ... mt(l)
rtape(l) remote tape manipulation program .. rt ape(1)

/inet_netof(3B) Internet address manipulation routines .. inct(3B)
man(l) print entries in this manual ... man(1)

kbmap(4) keyboard map file ... kbmap(4)
translation table to handle long map names ypmapxlate(4) .. ypmapxlate(4)
of one or more keys from a YP map ypmatch(l) print the value ypmatch(l)

xio_sctef(3A)event llag mask functions /xio_clref(3A) xio_rcadcf(3A)
mastcr(4) master configuration database ... mastcr(4) - database master(4)masterconfiguration .. mastcr(4)

spawn a new process in a virtual memory efficient way vfork(2B) vfork(2B)
/getavailsmem(2I)rcturn memory information .. getmcmsizc(21)

read data from a POI port into memory /pdi_read_nw(3A) pdi_rcad(JA)
CRM utility for monitoring memory regions monregion(1) monrcgion(I)

utility for monitoring process memory regions showmemory(l) CRM showmemory(I)
RLE from pipe to memory /rle_pipe_mem_nw(JA) rlc_pipe_mcm(JA)

transfer data from scanner to memory /sif_scan_mem_nw(JA) sif_scan_mcm(JA)
/pdi write nw(3A) write data from memory to a POI port .. pdi_ writc(JA)

- - /transfer data f~m memory to pipe .. sif_mem_pipe(JA)
monitoring physical and virtual memory topmem(l) CRM utility for topmem(l)

vlock(21) lock an area of memory .. vlock(21)
vunlock(21) unlock an area of memory .. vunlock(21)

merge(l) three.way file merge ... merge(1)
rcsmerge(l) merge RCS revisions ... rcsmerge(l)

mcrge(l) three.way file merge ... merge(1)
/recvmsg(2B) receive a message from a socket .. recv(2B)

scndto(2B) sendmsg(2B) send a message from a socket send(2B) send(2B)
local XNS/ netmsg(1) send a message to console devices on the net msg(I)
about RCS/ rlog(l) print log messages and other information .. rlog(I)

intro(5) introduction to miscellaneous facilities ... intro(5)
library mkshlib(l) create a shared .. mkshlib(I)

table mnttab(4) mounted file system ... mnttab(4)
chmod(l)change mode ... ch1nod(l)

fg_lbmodc(3A) set the mode of a frame buffer .. fg_tbmode(JA)

PERMUTEDINDEX 21

Permuted Index

fg_tbstat(3A) get the mode of a frame buffer ... fg_tbstat(3A)
/aux_modem_nw(3A) get modem change from a serial port aux_modem(3A)

port aux_cancel_modem(3A)cancel modem change state on a serial aux_cancel_modcm(3A)
fmu_set(3N)set FMU modes .. fmu_sct(3N)

odt(l) examine and modifies files .. odt(l)
option sigcld(21) modify SIGCLD on stop signal ... sigcld(21)

crm(1) CLIX Resource Monitor ... crm(1)
monproc(1) CRM utility for monitoring a process ... monproc(l)

topcpu(l) CRM utility for monitoring CPU time ... topcpu(1)
topio(l) CRM utility for monitoringl/O activity ... topio(l)

monregion(l) CRM utility for monitoring memory regions .. monrcgion(l)
show files(1) CRM utility for monitoring open files ... show files(1)

top fault(1) CRM utility for monitoring page faults .. topfault(1)
memory topmcm(l) CRM utility for monitoring physical and virtual ... topmem(l)

showmemory(1) CRM utility for monitoring process memory regions show memory(1)
topsys(l) CRM utility for monitoring system activity ... topsys(l}

watcher(1) CRM utility for monitoring system calls and/ .. watcher(I)
monparnm(I) CRM utility for monitoring system parameters ... monparam(1)
monitoring system parameters monparam(l) CRM utility for .. monparam(I)

monitoring a process monproc(1) CRM utility for ... monproc(J)
monitoring memory regions monregion(l) CRM utility for ... monregion(I)

mount(2) mount a file system ... mount(2)
npmount(1) npumount(L) mount and unmount file system .. npmount(I)

mount(2) mount a 111e system ... mount(2)
mnttab(4) mounted tile system table .. mnttab(4)

rmtah(4) remotely mounted NFS file system table .. rmtab(4)
pdi_itb(3A) pdi_itb _nw(3A) move data from a POI port to a/ ... pdi_itb(3A)

files netmv(J) DNP command that moves or renames one or more ... netmv(l)
dtu(l) utd(l) copy between MS-DOS and CLIX ... dtu(l)

dls(l) list contents of MS-DOS directory ... dls(l)
progrnm mt(l) magnetic tape manipulation .. mt(l)

1/0 cpio(l) scpio(l) multibufferingand asynchronous ... scpio(l)
selcct(2B) synchronous 1/0 multiplexing .. selcct(2B)

hosts(4) host name database ... hosts(4)
hosts.equiv(4) host cquivalency name database ... hosts.equiv(4)

networks(4) network name database .. networks(4)
protocols(..t) protocol name database .. protocols(4)

services(..t) service name database .. scrviCl'S(4)
getsockname(2B) get socket name .. getsockname(2B)

rcname(2B) change the name of a 111c .. rcname(2B)
gctpeernamc(2B) get name of connected peer ... getpcername(2B)

/setdomainnamc(3R) get/set name of current domain .. getdomainnamc(3R)
/sethostnamc(2B) get/set name of current host ... gethostnamc(2B)
hostname(l) sci or print name of current host system .. hostname(1)

domnamc(I) set or display name of current YP domain .. domnamc(I)
setnodcname(21) set new node name .. sctnodenamc(21)

bind(2B) bind a name to a socket .. bind(2B)
disk/ odln(1) associate another name with an existing optical .. odln(l)

table to handle long map names ypmapxlate(4) translation ypmapxlate(4)

22 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

I H

Permuted Index

program ncp(l) DNP network control ... ncp(l)

dbm_close(3B)dbm_fetch(3B)/ ndbm(3B)dbm_open(3B) .. ndhm(JB)

address netaddr(l)display network .. netaddr(I)
-netcp(1) D NP copy command ... net cp(I)

execution utility nctcx(1) DNP remote file .. netcx(I)

tile(s) on remote printers netlpr(l) DNP command to print .. ncllpr(I)

the directory contents on a/ netls(l) DNP command that lists ... net ls(I)

console devices on the local XNS/ netmsg(l) send a message to .. nctmsg(I)

or renames one or more Hies netmv(l) D NP command that moves net mv(I)

files nctrm(l) DNP command that removes net rm(I)

netaddr(l) display network address .. ncraddr(I)

convert values between host and network byte order /ntohs(3B1 hytcordcr(3B)

clh(4) Intergraph network clearinghouse datahase .. clh(4)

program clh(1) Intergraph network clearinghouse management clh(I)

ncp(l) DNP network control program .. ncp(I)

setnetcnt(3B) endnetcnt(3B) get network entry /getnetbyname(3B) getnetcnt(3B)

fmu(l) network file management utility .. fmu(I)

/sethostent(3B) endhostent(3B) get network host entry .. gethosthyname(3B)

networks(4) network name database ... networks(4)

console devices on the local XNS network /send a message to ... nctmsg(l)

for each machine on the local network /show host status ... ruptime(I)

in to machines on the local network /lists users logged .. rwho(1)

nctworks(4) network name database nctworks(4)

datahasc for the mail aliases/ ncwaliases(l) rebuild the .. newaliascs(I)

rmtah(4) remotely mounted NFS file system table .. rmtah(4)

cxports(4) NFS tile ~ystems being expot1ed exports(4)

nl(_dose(3A)close an NLF channel ... nlf_closc(3A)

nlf_open(3A) open an NLF channel ... nlf_ open(3A)

channel nlf_closc(3A)close an NLF nlf_close(3A)

nlf_open(3A) open an NLF channel nlf_open(3A)

sctnodcname(21) set new node name .. setnodename(21)

DNP remote login DECnet or CLIX node. sethost(l) ... scthost(J)

/gpib _service _nw(3A) request notification for a GPIB SRQ/ gpib _ servicc(3A)

a<>ynchronous/ xio _notify(3A) notify a process of an ... xio _notify(3A)

unmount file system npmount(l) npumount(l) mount and npmount(l)

file system npmount(l) npumount(l) mount and unmount npmount(1)

qsub(l) submit an NQS batch request ... qsuh(l)

qdev(l) display the status of NQS devices .. qdcv(l)

a hardcopy print request to NQS qpr(l) submit .. qpr(l)

qstat(l) display the status of NQS queues .. qstat(l)

qdel(l) delete or signal NQS requests ... qdcl(1)

type truth/ mac hid(l) clipper(l) ns32000(1) vax(l) get processor mac hid(l)

bytcorder(3B) htonl(3B) htons(3B) ntohl(3B) ntohs(3B) convert/ byteorder(3B)

- /htonl(3B) htons(3B) ntohl(3B) ntohs(3B) convert values bet\\een/ byteorder(3B)

rpc(4) RPC program number database ... rpc(4)

srandom(3B) better random number g~nerator random(3B) random(3B)

getrpcport(3R) get RPC port number .. getrpcport(3R)

on an optical/ oddf(l) report number of free blocks and i-nodes oddf(l)

system hardware identification number sysid(2I) get the .. sysid(2I)

PERMUTEDINDEX 23

Permuted Index

allocatc/dcallocatc an event flag number /xio _ dealloccf(3A) ... xio _ alloccf(3A)
to system calls and error numbers intro(2) introduction ... intro(2)

clh_ vbyop(3N) lookup value by object and property .. clh_ vbyop(3N)
information for a common object file rcloc(4) relocation ... reloc(4)

ld(l) link editor for common object Illes .. Id(I)
dir<;ctory used by optical disk/ odcd(l) set the current default ... odcd(l)

ofoptical disk files or/ odchgrp(l) change the file group ... odchgrp(1)
protection of optical disk files/ odchmod(1) change the file .. odchmod(l)

of optical disk tlles or/ odchown(l) change file ownership odchown(I)
odcp(1) copy optical disk files•....................... odcp('I)

blocks and i-nodcs on an optical/ oddf(l) report number of free .. odd f(l)
optical disk Ille system odintro(l) introduction to the .. odintro(L)

with an existing optical disk/ odln(l) associate another name .. odln(I)
disk directories odls(1) list contents of optical .. od Is(I)

directories odmkdir(l)create optical disk ... odmkdir(I)
or directories odmv(l) rename optical disk files .. odmv(l)

default directory used by/ odpwd(l) display the current ... odpwd(I)
odrm(l) delt!te optical disk files ... odrn1(1)

directories odrmdir(l) delete optical disk .. odrmdir(l)
odt(l) examine and modifies files .. odt(l)

lpr(l) BSD oilline print ... lpr(l)
cnv _ open(3A) open a CNV channel ... cnv _ open(3A)
csi_open(3A) open a CSI.port .. csi_open(3A)

gpih _ opcn(3A) open a G PIB channel .. gpih _ open(3A)
pdi_open(3A) open a PDI port ... pdi_open(3A)
aux_open(3A) open a serial port ... aux_open(3A)
sif_open(3A) open a SIF channel ... sif_open(3A)
nlf _ open(3A) open an NLF channel ... nlf_ open(3A)
rle _ open(3A) open an RLE channel ... rle _ open(3A)

CRM utility for monitoring open files showfiles(l) .. showfiles(I)
gpib _reset(3A) conduct an IFC operation on a GPIB channel .. gpih _reset(3A)

ffs(3B) bit and byte string operations /bcmp(3B) bzero(3B) .. bstring(3B)
index(3B) rindex(3B) string operations string(3B) .. string(3B)

current default directory used by optical disk commands /set the ... oded(1)
current default directory used by optical disk commands /the ... odpwd(1)

odls(l) list contents of optical disk directories ... odls(l)
odmkdir(l) create optical disk directories ... odmkdir(1)
odrmdir(l)delete optical disk directories ... odrmdir(l)

another name with an existing optical disk file /associate ... odln(l)
odintro(l) introduction to the optical disk file system .. odintro(l)

odcp(l)copy optical disk files .. odcp(l)
odrm(1) delete optical disk files ... odnn(1)

/change the file group of optical disk files or directories ... odchgrp(l)
/change the file protection of optical disk files or directories ... odchmod(l)

/change file ownership of optical disk files or directories ... odchown(l)
odmv(l) rename optical disk files or directories ... odmv(l)

configuration file JBCFG(4) optical disk jukebox .. jbcfg(4)
configuration file STANDCFG(4) optical disk standalone .. standcfg(4)

of free blocks and i-nodes on an optical volume /report number ... oddf(1)

24 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

modify SIGCLO on stop signal option sigcld(21) .. sigcld(21)
fcntl(S) file control options .. fcntl(S)

stty(1) set the options for a terminal ... stty(l)

/setsockopt(2B) get and set options on sockets .. getsockopt(2B)

between host and network byte order /ntohs(3B) convert values byteorder(3B)

common assembler and link editor output a.out(4) ... a.out(4)

logical unit flush(3F) flush the output for the specified FORTRAN flush(3F)

grabber /determine frame buffer output priority of the frame fg_priority(3A)

grabber fg_ blank(3A) blank the output signal of the frame ... fg_ hlank(3A)

writev(2B) write output to a socket .. writev(2B)

CSI port csi_cancel(3A)cancel outstanding asynchronous 1/0 on a csi_cancel(3A)

POI port pdi_cancel(3A) cancel outstanding asynchronous 1/0 on a pdi_cancel(3A)

SIF/ sif_cancel(3A)cancel outstanding asynchronous 1/0 on a sif_cancel(3A)

an RLE/ rle_cancel(3A)cancel outstanding asynchronous 1/0 on rle_canccl(3A)

aux_ cancel(3A) cancel outstanding read on a serial port aux_ canccl(3A)

gpib _cancel(3A) cancel all outstanding requests on a GPIB/ gpib _cancel(3A)

chown(l) chgrp(l) change owneror group .. chown(l)

or/ odchown(1) change file ownership of optical disk files o<lchown(l)

/csi_cmd_nw(3A) send command packets to a CSI port .. csi_cmd(3A)

CRM utility for monitoring page faults topfault(l) ... top fault(1)

getpagesize(2B) get system page size ... getpagcsizc(2B)

socketpair(2B) create a pair of connected sockets .. socketpair(2B)

gpib _ppreq(3A) perform a parallel poll of a GPIB channel gpib _pprcq(3A)

/uncon11gure a GPIB device's parallel poll response .. gpib _ppuconf(3A)

gpib _ppconf(3A) configure the parallel poll response of a GPIB/ gpib _ppconf(3A)

send a control word to the parallel port /plt_ctrl_nw(3A) plot_ctrl(3A)

send a control word to the ROP parallel port /rplt_ctrl_nw(3A) plot_ctrl_rop(3A)

plt_data_nw(3A) write data to the parallel port /plt_data(3A) ... plot_data(3A)
write data to the ROP parallel port /rplt_data_nw(3A) plot_data_rop(3A)

pdi_setup(3A) establish parameters for a POI port .. pdi_sctup(3A)

sif_setup(3A) establish parameters for a SIF channel sif_sctup(3A)

rle_setup(3A)establish parameters for an RLE channel rle_sctup(3A)

CRM utility for monitoring system parameters monparam(l) .. monparam(1)

shutdown(2B) shut down part of a full-duplex connection shutdown(2B)

diskpar(4) disk partition header format ... diskpar(4)

floppypar(4) partitioned floppy header format floppypm(4)

pc(l) Pascal compiler .. pc(l)

passwd(4) password file ... passwd(4)

endpwent(3C) fgetpwent(3C) get password file entry /setpwent(3C) getpwent(3C)

passwd(4) password file .. passwd(4)

yppm;swd(l)change login password in YP .. yppasswd(l)

yppasswd(3R) update user password in YP ... yppasswd(3R)

gencrnte line printer ripple pattern lptest(l) , ... lptest(l)
pc(l) Pascal compiler ... pc(1)

/pdi_read_nw(JA) read data from a POI port into memory ... pdi_rca<l(3A)

outstanding asynchronous 1/0 on a POI port pdi_cancel(3A) cancel pdi_cancel(3A)

p<li_closc(3A)closc a POI port ... pdi_close(.1A)

pdi_opcn(3A)opcn a POI port .. p<li_opcn(3A)

establish parameters for a POI port pdi_sctup(3A) .. pdi_sctup(3A)

PERMUTEDINDEX 25

Permuted Index

write data from memory to a POI port /pdi_ write_nw(3A) .. pdi_write(3A)
pdi_itb _nw(3A) move data from a POI port to a window pdi_itb(3A) pdi_itb(3A)

asynchronous 1/0 on a POI port pdi_cancel(3A)cancel outstanding pdi_cancel(3A)
pdi_close(3A) close a POI port pdi_close(3A)

data from a POI port to a window pdi_itb(3A) pdi_itb_nw(3A) move pdi_itb(3A)
POI port to a window pdi_itb(3A) pdi_itb _nw(3A) move data from a pdi_itb(3A)

pdi_open(3A) open a POI port .. pdi_open(3A)
data from a POI port into memory pdi_read(3A) pdi_read_nw(3A) read pdi_read(3A)

POI port into/ pdi_read(3A) pdi_read_nw(3A) read data from a pdi_read(3A)

parameters for a POI port pdi_setup(3A) establish ... pdi_setup(3A)
write data from memory to a POI/ pdi_write(3A) pdi_write_nw(3A) pdi_write(3A)

memory to a POI/ pdi_write(3A) pdi_write_nw(3A)write data from ,, pdi_write(3A)
get name of connected peer gctpcername(2B) ... getpeername(2B)

alignment trap disposition per executable /set/report ... aligntrap(l)

channel gpib _pprcq(3A) pcrfonna parallel poll of a GPIB gpib _pprcq(3A)

/CRM utility for monitoring physical and virtual memory .. topmcm(1)

rpipc(1) remote pipe program ... rpipe(l)

transfer data from memory to pipe /sif_mem_pipe_nw(3A) sif_mem_pipe(JA)

transfer data from scanner to pipe /sif_scan_pipc_nw(JA) sif_scan_pipc(3A)
rle_pipe_mcm_nw(3A) RLE from pipe to memory rle_pipe_mem(3A) rle_pipc_mem(3A)

plt_ctrl_nw(3A)send a control/ plot_ctrl(3A)plt_ctrl(3A) ... plot_ctrl(JA)

rplt_ctrl_nw(3A) send a control/ plot_ctrl_rop(3A)rplt_ctrl(3A) plot_ctrl_rop(3A)
plt_data_nw(3A) write data to/ plot_data(3A) plt_data(3A) ... plot_dala(3A)

rplt_dma_nw(3A) write data 10/ plot_data_rop(3A) rplt_data(3A) plot_da1a_rop(3A)
a control word to/ plot_ctrl(3A) plt_ctrl(3A)plt_ctrl_nw(3A) send plot_ctrl(3A)
word/ plot_ctrl(3A) plt_ctrl(3A) plt_ctrl_nw(3A)send a control ... plot_ctrl(3A)
write data to the/ plol_dala(3A) plt_dala(3A)plt_data_nw(3A) .. plot_data(3A)

plot_data(3A) plt_data(3A) plt_data_nw(3A)write data to the/ plot_data(3A)
gpib _ppreq(3A) perform a parallel poll of a GPIB channel .. gpib _ppreq(3A)

gpib _spreq(3A) conduct a serial poll of a GPIB device ... gpib _spreq(3A)
a GPIB device's parallel poll response /unconfigure gpib_ppuconf(3A)

/contigure the parallel poll response of a GPIB device gpib _ppconf(JA)
generate a break on a serial port aux_break(3A) ... aux_break(3A)

outstanding read on a serial port aux_ cance1(3A) cancel ... aux_ cancel(3A)

modem change state on a serial port aux_cancel_modem(3A)cancel aux_cancel_modem(3A)

aux_ closc(3A) close a serial port ... aux_ close(3A)

get modem change from a serial port /aux_modem_nw(3A) .. aux_modem(3A)

aux_open(3A) open a serial port .. aux_opcn(3A)

with error byte from a serial port /aux_rawrd_nw(3A) read data aux_rawn.1(3A)

read data from a serial port /aux_rcad_nw(3A) ... aux_read(3A)

write data to a serial port /aux_write_nw(3A) .. aux_ write(3A)

asynchronous 1/0 on a CSI port /cancel outstanding .. csi_cancel(3A)

a specilic command on a CSI port csi_ccan(3A) cancel ... csi_ccan(3A)

csi_closc(3A) dose a CSI port ... csi_closc(3A)

send command packets to a CSI port csi_cmd(3A) csi_cmd_nw(3A) csi_cmd(3A)

receive delayed status from a CSI port csi_dslat_nw(3A) .. csi_dstat_nw(3A)

csi_open(3A) open a CSI port ... csi_opcn(3A)

reset hardware on CSI port csi_resc1(3A) .. csi_reset(3A)

status requests on a CSI port /cancel unsolicited .. csi_ucan(3A)

26 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

unsolicited status from a CSI port /csi_ ustat_nw(3A) receive csi_ ustat(3A)
csi_status(3A) read the CSI port DRU status lines ... csi_status(3A)

read data from a PDI port into memory /pdi_read_nw(3A) pdi_read(3A)
getrpcport(3R) get RPC - port number ... getrpcport(3R)

asynchronous 1/0 on a PDI port /cancel outstanding .. pdi_canccl(3A)
pdi_close(3A) close a PDI port ... pdi_close(3A)
pdi_ open(3A) open a PDI port ... pdi_ open(3A)

establish parameters for a PDI port pdi_setup(3A) .. pdi_ setup(3A)
write data from memory to a PDI port /pdi_write_nw(3A) .. pdi_write(3A)

a control word to the parallel port /plt_ctrl_nw(3A) send ... plot_ctrl(3A)
control word to the ROP parallel port /rplt_ctrl_nw(3A)send a plot_ctrl_rop(3A)

write data to the parallel port /plt_data_nw(3A) ... plot_data(JA)
write data to the ROP parallel port /rplt_data_nw(3A) plot_data_rop(JA)

move data from a PDI port to a window /pdi_ifb _nw(3A) pdi_il11(3A)
types(5) primitive system data types ... typcs(5)
man(1) print entries in this manual .. man(I)

netlpr(l) DNP command to print file(s) on remote printers .. nctlpr(I)
information about RCS/ rlog(l) print log messages and other ... rlog(I)

!pr(1) BSD otlline print ... !pr(l)
hostname(l) set or print name of current host system hostnamc(l)

acctcom(1) search and print process accounting files ... acct com(l)
qpr(l) submit a hardcopy print request to NQS ... qpr(I)

keys from a YP map ypmatch(l) print the value of one or more .. ypmatch(I)
ypcat(l) print values in a YP database .. ypcat(l)

capability database printcap(4) BSD printer .. print cap(4)
printcap(4) BSD printer capability database .. printcap(4)

lptcst(1) generate line printer ripple pattern .. lptest(l)
remove jobs from the BSD line printer spooling queue lprm(l) .. lprm(l)

to print file(s) on remote printers nctlpr(l) DNP command nctlpr(l)
ucprelse(21) reset a process's priority after handling a signal ucprclsc(2l)

ucppri(2l) check if a UCP priority is already in use ... ucppri(21)
/determine frame buffer output priority of the frame grabber fg_priority(3A)

ucpsig(21) set process to a UCP priority on receipt of a signal ... ucpsig(21)
ucpclr(21) clear process UCP priority .. ucpclr(21)

ucpinq(21) return the UCP priority ... ucpinq(21)
ucpnice(l) run a process at UCP priority ... ucpnice(l)

ucpsct(2J) set a process to a UCP priority .. ucpset(21)
acctcom(I) search and print process accounting files .. acctcom(J)

ucpnice(l) run a process at UCP priority ... ucpnice(I)
setup for code execution in the process data section exedata(21) excdata(21)

exit(2) _exit(2) terminate process ... exit(2)
gctpgrp2{2B) get process group ... gctpgrp2(2B)

setpgrp(2) set process group ID .. setpgrp(2)
killpg(2B) send signal to a process group ... killpg(2B)

setpgrp2(2B) set process group ... sctpgrp2(2B)
efficient/ vfork(2B) spawn a new process in a virtual memory ... vfork(2B)

/CRM utility for monitoring process memory regions ... showmcmory(l)
CRM utility for monitoring a process monproc(l) ... monproc(1)

request/ xio_notify(3A) notify a process of an asynchronous xio_notify(3A)

PERMUTEDINDEX 27

Permuted Index

receipt of a/ ucpsig(21) set process to a UCP priority on ... ucpsig(21)
ucpset(21) set a process to a UCP priority .. ucpset(21)

wait2(21) wait for process to terminate .. wait2(21)
wait3(2B) wait for process to terminate ... wait3(2B)

ucpclr(21) clear process UCP priority ... ucpclr(21)
getcpuid(21) return CLIPPER processor identifier ... gctcpuid(21)

/clipper(l) ns32000(1) vax(I) get processor type truth value ... machid(l)
a signal ucprelsc(21) reset a process's priority after handling ... ucprclse(21)

ANSI-standard magtape label program ansitape(l) .. ansitape(I)
ab(l) Ada program beautifier ... ab(I)

network clearinghouse management program clh(l) Intergraph ... clh(l)
cu mail(l) DNP mail transport program .. cumail(I)
ftp(l) ARP AN ET file transfer program .. ftp(l)
BSD spool queue examination program lpq(l) .. !pl)(I)

adep(l) Ada program makefile generator ... adep(I)
mt(l) magnetic tape manipulation program ... mt(l)

ncp(l) DNP network control program ... ncp(l)
rpc(4) RPC program number database .. rpc(4)

rpipe(l) remote pipe program ... rpipc(l)
rtape(l) remote tape manipulation progmm ... rtape(l)

connect to a server program sni_ connect(3N) ... sni_ connect(JN)
tftp(l) trivial file transfer program ... tftp(I)

visit(l) Intergraph remote login program .. visit(l)
the standard/restricted command programming language /shell, .. ksh(1)

to commands and application programs intro(l) introduction ... intro(I)
lookup value by object and property clh_vbyop(JN) ... clh_vbyop(3N)

or/ odchmod(l) change the 11le protection of optical disk files .. odchmod(1)
rpcgen(l) an RPC protocol compiler ... rpcgen(l)

cndprotoent(3B) get protocol entry /setprotoent(3B) getprotoent(3B)
protocols(4) protocol name database .. protocols(4)

user interface to the TELNET protocol telnet(!) ... telnet(!)
RPC/XDR/YP service functions and protocols /introduction to ... intro(3R)

database protocols(4)protocol name .. protocols(4)
state gpib _rcmote(JA) put a GPIB channel in a remote gpib _remote(3A)

requests qdel(l) delete or signal NQS .. qdel(1)
devices qdev(l) display the status of NQS .. qdev(1)

limits and shell strategy for/ qlimit(l)show supported batch ... qlimit(l)
request to NQS qpr(l) submit a hardcopy print .. qpr(1)

NOS queues qstat(I) display the status of .. qstat(1)
request qsub(l)submit an NQS batch ... qsub(l)

lpq(l) BSD spool queue examination program .. lpq(I)
insert/remove element from a queue insque(3B) remque(3B) .. insque(3B)
the BSD line printer spooling queue lprm(l) remove jobs from .. lprm(l)

/display a listing of the mail queue used by sendmail(lM) ... mailq(1)
display the status of NQS queues qstat(l) .. qstat(l)

random(3B) srandom(3B) better random number generator .. random(3B)
random number generator random(3B) srandom(3B) better .. random(3B)

dialect ratfor(l)rational FORTRAN ... ratfor(J)
ratfor(l) rational FORTRAN dialect .. ratfor(l)

28 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

rcmd(l) remote command .. rcmd(I)
ruserok(3B) routines for/ rcmd(3B) rresvport(3B) .. rcmd(JB)

rep{ l) remote file copy .. rep(I)
rcs(l)change RCS file attributes ... res(I)

sccstorcs(l) build RCS file from SCCS file ... sccstorcs(l)
rcsfile(4) format of RCS file .. rcsfilc(4)

and other information about RCS files /print log messages ... rlog(I)
ci(l) check in RCS revisions ... ci(1)

co(l) check out RCS revisions .. co(l)
rcsdiff(l) compare RCS revisions .. rcsdiff(1)
rcsmerge(l) merge RCS revisions .. rcsmcrge(I)

rcs(l) change RCS file attributes ... res(1)
files rcsclcan(l) clean up working .. rcsclcan(l)

rcsdiff(l) compare RCS revisions rcsdiff(l)
rcsfile(4) format of RCS file ... ,. ... rcstile(4)
rcsmcrgc(l) merge RCS revisions rcsmcrgc(l)

vmsbackup(1) read a VMS backup tape .. vmshackup(l)
gpib _rcad(3A) gpib _read_nw(3A) read data from a GPIB device gpib _read(3A)

pdi_read(3A) pdi_read_nw(3A) readdata from a POI port into/ pdi_rcad(3A)
aux_read(3A) aux_read_nw(3A) readdata from a serial port ... aux_read(3A)

aux_rawrd(3A) aux_rawrd_nw(3A) read data with error byte from a/ aux_mwrd(3A)
read(2) read from file ... read(2}

readv(2B) read input from a socket ... readv(2B)
aux_cancel(3A)c:mcel outstanding read on a serial port ... aux_canccl(3A)

readinfo(21) read system activity information readinfo(21)
lines csi_status(3A) read the CSI port DRll status csi_status(3A)

readlink(2B) read the value of a symbolic link rcadlink(2B)
read(2) read from file .. rcad(2)

information rcadinfo(2l)read system activity readinfo(21)
symbolic link readlink(2B) read the value of a rcadlink(2B)

socket readv(2B) read input from a ... remJv(2B)
aliases file newaliases(1) rebuild the database for the mail new aliases(I)

signal(2) specify what to do on receipt of a signal ... signal(2)
set process to a UCP priority on receipt of a signal ucpsig(21) .. ucpsig(21)

sni_rxw(3N) receive a data buffer ... sni_rxw(3N)
recv(2B) recvfrom(2B) recvmsg(2B) receive a message from a socket .. recv(2B)

port csi_dstat_nw(3A) receive delayed status from a CSI csi_dstat_nw(3A)
system fmu_receive(3N) receive files from a remote fmu_reccive(3N)

csi_ustat(3A) csi_ustat_nw(3A) receive unsolicited status from a/ csi_ustat(3A)
status daemon/ statmon(4) record(4)recover(4)state(4) .. statmon(4)

directory/ statmon(4) record(4) recover(4)state(4) status daemon statmon(4)
receive a message from a socket recv(2B) recvfrom(2B) recvm-,g(2B) rccv(2B)

a message from a socket recv(2B) recvfrom(2B) recvmsg(2B) receive recv(2B)
from a/ recv(2B) recvfrom(2B) recvmsg(2B)receive a message ... rccv(2B)

CRM utility for monitoring memory regions monregion(l) ... monrcgion(I)
for monitoring process memory regions /CRM utility .. showmcmory(I)

for a common object file reloc(4) relocation information .. rcloc(4)
common object file reloc(4) relocation information for a ... rcloc(4)

rcmd(1) remote command ... rcmd(1)

PERMUTEDINDEX 29

Permuted Index

for returning a stream to a remote command /routines .. rcmd(3B)

rexec(3B) return stream to a remote command ... rexec(3B)

rep(1) remote file copy ... rep(1)

netex(l) DNP remote file execution utility .. netex(l)

/connect/disconnect to remote FMU server ... f mu_ connect(3N)

set host(1) DNP remote login DECnet or CLIX node sethost(J)

visit(l) Intergraph remote login program ... visit(I)

rlogin(l) remote login .. rlogin(l)

rpipe(l) remote pipe program ... rpipe(l)

DNP command to print lile(s) on remote printers netlpr(l) ... netlpr(l)

put a GPIB channel in a remote state gpib_remote(3A) gpib_remote(3A)

execute the specified command on remote system fmu_rcmd(3N) fmu_rcmd(3N)

receive files from a remote system fmu_receive(3N) fmu_receive(3N)

fmu_send(3N) send files to a remote system ... fmu_send(3N)

lists the directory contents on a remote system /DNP command that ... netls(l)

rtc(l) remote tape control ... rtc(l)

/rte_ deallocate(3 N) rte_ notify(3 N) remote tape control .. rte_ allocate(3 N)

rtapc(1) remote tape manipulation program ... rtape(l)

.rhos ts(4) remote user access list ... rhos ts(4)

table rmtab(4) remotely mounted NFS file system .. rmtab(4)

rm(l) rmdir(l) remove files or directories ... rm(1)

printer spooling queue lpm1(l) remove jobs from the BSD line ... lprm(l)

net rm(I) DNP command that removes tiles ... nctnn(I)

from a queue insque(3B) rcmque(3B) insert/remove element insque(JB)

directories odmv(l) rename optical disk files or .. odmv(l)

file rcname(2B) change the name of a rename(2B)

/DNP commmul that moves or renames one or more files ... netmv(l)

errors(!) error logging report generator .. errors(l)

i-nodes on an optical/ oddf(l) report number of free blocks and ... oddf(l)

jukeboxes jbconfig(1) report the configuration of the .. jbconfig(l)

a process of an asynchronous request completion /notify .. xio_notify(3A)

SRQ/ /gpib _service _nw(3A) request notification for a GPIB gpib _service(3A)

qsub(l) submit an NQS batch request ... qsub(l)

fpe_canccl_dma(3A)cancel write request to an FPE coprocessor fpe_cancel_dma(3A)

qpr(l) submit a hardcopy print request to NQS ... qpr(l)

/cancel unsolicited status rt.'quests on a CSI port .. csi_ucan(3A)

/cancel all outstanding requests on a GPIB channel .. gpib _ cancel(3A)

q<lel(I) delete or signal NQS requests .. qdcl(1)

handling a signal ucprclse(21) reset a process's priority after ... ucprclse(21)

csi_rcsct(3A) reset hardware on CSI port ... csi_reset(3A)

cnn(1) CU X Resource Monitor .. crm(I)

a GPI B device's parallel poll response /unconligure ... gpib _ppuconf(3A)

/con Ii gun: lhc parallel poll response of a GPIB device ... gpib _ppconf(JA)

incn:menlal lilc syslcm restore rl'Store(L) .. restore(L)

system restore rcstore(l)incremental file .. rcstore(l)

control gpih_local(3A) return a GPIB device to local .. gpib _local(3A)

idcntilier getcpuid(21) return CLIPPER processor .. gctcpuid(21)

associated with a/ fdtounit(3F) return FORTRAN logical unit ... fdtounit(3F)

/getfreemcm(21) gctavailsmcm(21) return memory information .. gctmemsizc(21)

30 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

rexec(3B) return stream to a remote conunand rcxcc(3B)

<L<;sociated with a/ fnum(JF) return the file descriptor .. fnum(3F)

ucpinq(21) return the UCP priority .. ucpinq(21)

stat(5) data returned by stat system call .. stat(5)

command /ruserok(3B) routines for returning a stream to a remote ... rcmd(3B)

ci(l) check in RCS revisions .. ci(I)

co(1) check out RCS revisions ... co(I)

rcsdiff(L)comparcRCS revisions ... rcsdiff(I)

rcsmergc(L) merge RCS revisions .. res merge(I)

remote command rexec(3B) return stream to a ... rcxcc(38)

list .rhosts(4) remote user access .. rhosts(4)

string(3B) index(3B) rindex(3B) string operations ... string(3 8)

lptcst(I) generate line printer ripple pattern ... lptest(I)

<L'\ynchronous 1/0 on an RLE channel /cancel outstanding rlc _ cancel(3A)

rlc_close(3A)close an RLE channel ... rlc_close(3A)

rle_open(3A)open an RLE channel ... rle_open(3A)

estahlish parameters for an RLE channel rle_setup(3A) rle_setup(3A)

/rle_pipe_mem_nw(3A) RLE from pipe to memory rlc_pipe_mem(3A)

asynchronous 1/0 on an RLE/ rle _ cancel(3A) cancel outstanding rle _ cancel(3A)

channel rlc_close(3A)close an RLE .. rle_close(3A)

rle_opcn(3A) open an RLE channel rlc_opcn(3A)

rle_pipe_mem_nw(3A) RLE from/ rle_pipe_mem(3A) ... rlc_pipe_mcm(3A)

to memory rle_pipe_mcm(3A) rlc_pipe_mem_nw(3A)RLE from pipe rlc_pipe_mcm(3A)

parameters for an RLE channel rle_setup(3A)establish ... rle_setup(3A)

other information about RCS/ rlog(l) print log messages and .. rlog(I)

rlogin(1) remote login .. rlogi n(1)

directories rm(l) rm<lir(l) remove files or .. rm(l)

directories rm(1) rmdir(1) remove files or ... rm(l)

file system table rmtab(4) remotely mounted NFS .. nntab(4)

/send a control word to the ROP parallel port ... plot_ctrl_rop(3A)

/write data to the ROP parallel port .. plot_data_rop(3A)

to a/ /rresvport(3B) ruserok(3B) routines for returning a stream .. rcmd(3B)

Internet address manipulation routines /inet_netof(3B) .. inet(3B)

setrpcent(3R)endrpcent(3R) get RPC entry /getrpcbynumber(3R) getrpcent(3R)

getrpcport(3R) get RPC port number .. getrpcport(3R)

rpc(4) RPC program number database .. rpc(4)

rpcgen(1) an RPC protocol compiler ... rpcgcn(l)

database rpc(4) RPC program number .. rpc(4)

compiler rpcgen(l) an RPC protocol ... rpcgcn(1)

intro(3R) introduction to RPC/XDR/YP service functions and/ intro(3R)

rpipe(1) remote pipe program .. rpipe(1)

send a control/ plot_ctrl_rop(3A) rplt_ctrl(3A)rplt_ctrl_nw(3A) plot_ctrl_rop(3A)

plot_ ctrl_rop(3A) rplt_ ctrl(3A) rplt_ ctrl_ nw(3A)send a control/ plot_ ctrl_rop(3A)

write data to/ plot_data_rop(3A) rplt_data(3A)rplt_data_nw(3A) plot_Jata_rop(3A)

plot_data_rop(3A) rplt_data(3A) rplt_data_nw(3A)w1itc data to/ plot_data_rop(3A)

routines for returning/ rcmd(3B) rrcsvport(3B) ruscrok(3B) .. rcmd(3B)

program rtapc(1) remote tape manipulation 11apc(I)

rtc(l) remote tape control .. rte(I)

rtc_deallocate(3N)/ rtc_allocate(3N) .. rtc _allocatc(3N)

PERMUTEDINDEX 31

Permuted Index

remote tape/ rtc _allocatc(3N) rtc _ deallocate(3N)rtc _ notify(3N) rte _allocate(JN)
control /rtc_deallocate(3N) rtc_notify(.3N)remote tape .. rtc_allocate(3N)

ucpnice(l) run a process at UCP priority .. ucpnicc(I)
each machine on the local/ ruptime(1) show host status for .. ruptime(l)

returning/ rcmd(JB) rrcsvport(38) ruserok(38) routines for ... rcmd(3B)
machines on the local network rwho(l) lists users logged in to .. rwho(1)

/transfer data from scanner to memory .. sif_scan_mcm(3A)
/transferdata from scanner to pipe ... sif_scan_pipe(.3A)

sccstorcs(I) build RCS tile from SCCS lite ... sccstorcs(l)
SCCS lilc sccstorcs(1) build RCS nte from .. sccstorcs(l)

a<>ynchronous 1/0 cpio(l) scpio(l) multibuffering and•..................... scpio(1)
sdh(1) symbolic debugger ... sdb(I)

accounting lilcs acctcom(I) search and print process .. acctcom(1)
execution in the process data section /setup for code .. exedata(21)

fg_ video _in(3A) fg_ villeo_ out(3A) select the video signal types for/ fg_ villeo _in(3A)
multiplexing sclcct(2B) synchronous 1/0 ... sclect(2B)

/pit_ ctrl(3A) plt_ ctrl_ nw(3A) send a control word to the/ ... plot_ ctrl(3A)
/rplt_ctrl(3A) rplt_ctrl_nw(3A) send a control word to the ROP/ plot_ctrl_rop(3A)

send(2B) scnllto(28) sendmsg(2B) send a message from a socket ... scnl.!(28)
on the local XNS/ netmsg(l) send a message to console devices .. netmsg(l)

port csi_cmd(3A) csi_cmd_nw(3A) send command packets to a CSI csi_cmd(3A)
gpib _ cmd(3A) gpib _ cmd _nw(3A) send commands to a GPIB channel gpib _ cmd(3A)

fmu_send(3N) send files to a remote system .. fmu_send(3N)
killpg(28) senll signal to a process group .. killpg(2B)

send a message from a socket send(2B) sendto(2B) sendmsg(2B) ... send(2B)
aliases(4) aliases file for sendmail(lM) ... aliases(4)

listing of the mail queue used by sendmail(lM) mailq(l) display a .. mailq(l)
socket send(2B) sendto(2B) sendmsg(2B) send a message from a send(2B)

message from a socket send(28) sendto(28) sendmsg(2B) send a ... send(2B)
gpib _spreq(3A) conduct a serial poll of a GPIB device ... gpih_spreq(3A)

generate a break on a serial port aux_hreak(3A) ... aux_break(3A)
cancel outstanding read on a serial port aux_cancel(3A) .. aux_cancel(3A)

cancel modem change state on a serial port aux_cancel_modem(3A) aux_cancel_modcm(3A)
aux_close(3A)close a serial port ... aux_close(3A)

get modem change from a serial port /aux_modem_nw(3A) aux_modem(3A)
aux_open(3A)open a serial port ... aux_open(3A)

read data with error byte from a serial port /aux_rawrd_nw(3A) aux_rawrd(3A)
aux_read_nw(3A) read data from a serial port aux_read(3A) ... aux_read(3A)
aux_write_nw(3A)write data to a serial port aux_write(JA) .. aux_writc(3A)

connect/disconnect to remote FMU server /fmu_disconnect(3N) fmu_connect(3N)
server.llat(4) XNS server information file ... server.dat(4)

sni_ conncct(3N) connect to a server program .. sni_connect(3N)
information file server.dat(4) XNS server ... server.dat(4)

setservent(3B) endscrvent(3B) get service entry /getservbyname(3B) getservcnt(JB)
/introduction to RPC/XDR;YP service functions and protocols .. intro(3R)

services(4) service name database .. services(4)
services(4) service name database .. services(4)

ucpsct(2I) set a process to a UCP priority .. ucpsct(2I)
fmu_sct(3N) set FMU modes ... fmu_sct(1N)

32 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

sctnodenamc(21) set new node name ... setno<lename(21)

/setsockopt(2B) get and set options on sockets .. getsockopt(2B)

domain domname(l) set or display name of current YP domname(I)

system hostname(l) set or print name of current host hostname(I)

setpgrp(2) set process group ID ... sctpgrp(2)

setpgrp2(2B) set process group ... sctpgrp2(2B)

receipt of a signal ucpsig(21) set process to a UCP priority on ucpsig(21)

used by optical disk/ oded(1) set the current default directory .. oded(I)

fg_tbmode(3A) set the mode of a frame buffer fg_fhmodc{JA)

stty(l) set the options for a terminal .. stty(I)

current domain getdomainname(3R) setdomainnamc(3R)get/set name of gctdomainname{JR)

/getgrgid(3C) getgrnam(3C) setgrent(3C)endgrent(3C)/ .. gctgrcnt(3C)

DECnet or CLIX node. sethost(l) DNP remote login .. scthosl(J)

/gethostbyaddr(3B) gethostent(3B) sethostent(3B)endhostent(3B) get/ gcthostbyname(3B)

identifier of/ gethostid(2B) sethostid(2B) get/set unique gethostid(2B)

current host gethostname(2B) sethostname(2B) get/set name of gethostname(2B)

intetval timer getitimer(2B) setitimer(2B)get/set value of getitimer(2B)

/getnetbyaddr(3B) getnetbyname(3B) setnetent(3B) endnetent(3B) get/ getnetent(3B)

setnodename(21) set new node name setnodename(21)

setpgrp(2) set process group ID setpgql(2)

setpgrp2(2B) set process group setpgrp2(2B)

get protocol/ /getprotobyname(3B) setprotoent(3B)endprotoent(3B) getprotoent(3B)

/getpwuid(3C) getpwnam(3C) setpwent(3C) endpwent(3C)/ getpwent(3C)

disposition per/ aligntrap(l) set/report alignment trap .. aligntrap(L)

RPC entry /getrpcbynumber(3R) setrpcent(3R)endrpcent(3R) get getqJCcnt(3R)

service entry /getservbynamc(3B) setservent(3B)endsetvent(3B) get getservcnt(3B)

options on/ getsockopt(2B) setsockopt(2B) get and set getsockopt(2B)

process data section exedata(21) setup for code execution in the exedata(21)

mkshlib(l) create a shared library .. mkshlib(1)

C-like syntax csh(l) a shell (command interpreter) with ... csh(l)

/show supported batch limits and shell strategy for the local host ... qlimit(L)

command/ ksh(l) krsh(l) shell, the standard/restricted ... ksh(l)

on the local network ruptime(l) show host status for each machine ruplimc(l)

shell strategy for the/ qlimit(l) show supported batch limits and .. qlimit(I)

monitoring open fiks showfiles(l) CRM utility for .. showlilcs(I)

monitoring process memory/ showmemory(l) CRM utility for show memory(I)

connection shutdown(2B) shut down part of a full-duplex shut<lown(2B)

full-duplex connection shutdown(2B) shut down part of a shut<lown(2B)

outstanding asynchronous 1/0 on a SIF channel /cancel .. sif_canccl(3A)

sif_close(3A) close a SIF channel ... sif_closc(JA)

sif_ open(3A) open a SIF channel ... sir_opcn(3A)

establish parameters for a SIF channel sif_setup(3A) ... sif_sclup{JA)

asynchronous 1/0 on a SIF/ sif_canccl(3A)cancel outstanding sif_canccl(.1A)

sif_closc(3A) close a SIF channel sif_closc(JA)

sif_mem_pipe_nw(3A) transfer/ sit-_mcm_pipc(3A) ... sif_mcm_pipc(3A)

from memory to/ sif_mcm_pipc(3A) sif_mem_pipe_nw(3A)transfcrdata sif_mcm_pipc(.1A)

sif_open(3A)open a SIF channel sif_open(3A)

sif_scan_mcm_nw(3A)transfer/ sif_scan_mcm(3A) .. sif_scan_mcm(3A)

from scanner to/ sif_scan_mcm(3A) sif _scan_mem_nw(3A)transfcr data sif_scan_mcm(3A)

PERMUTEDINDEX 33

Permuted Index

sif_scan_pipe _nw(3A) transfer/ sif_scan_pipc(3A) .. sif _scan_pipe(3A)
data from/ sif_scan_pipc(3A) sif_scan_pipc_nw(3A)transfer sif_scan_pipe(3A)
parameters for a SJ F channel sif_ setup(3A) establish .. sif_ setup(3A)

sigcl<.1(21) modify SIGCLD on stop signal option ... sigcld(21)
signal option sigcld(21) modify SIGCLD on stop sigcld(21)

sigignore(2)/ sigset(2) sighol<.1(2) sigrelse(2) ... sigset(2)
sigset(2) sighold(2) sigrelse(2) sigignore(2) sigpause(2) signal/ ... sigset(2)

sigignore(2) sigpause(2) signal management /sigrelse(2) ... sigset(2)
qdel(l) delete or signal NOS requests ... qdel(l)

fg_ blank(3A) blank the output signal of the frame grabber .. fg_ blank(3A)
sigcld(21) modify SIGCLD on stop signal option ... sigcld(21)

what to do on receipt of a signal signal(2) specify ... signal(2)
killpg(2B) send signal to a process group ... killpg(2B)

/fg_ video_ out(3A) select the video signal types for 1/0 ... fg_ video _in(3A)
priority after handling a signal /reset a process's ... ucprelse(2I)

to a UCP priority on receipt of a signal ucpsig(21) set process ... ucpsig(21)
receipt of a signal signal(2) specify what to do on ... signal(2)

/sigrelse(2) sigignore(2) sigpause(2) signal management ... sigset(2)
sigpause(2)/ sigset(2) sighold(2) sigrelse(2)sigignore(2) .. sigset(2)
sigignore(2) sigpause(2) signal/ sigset(2) sighold(2) sigrelse(2) .. sigset(2)

the frame grabber window size fg_size(3A) determine .. fg_size(3A)
get descriptor table size getdtablesize(2B) ... getdtablesize(2B)

getpagesize(2B) get system page size ... getpagesize(2B)
connection sni_accept(3N)accept a .. sni_accept(3N)

sni_close(3N) close a connection sni_close(3N)
server program sni _ conncct(3N) connect to a sni_ connect(3N)

sni_rxw(3N) receive a data buffer sni_rxw(3N)
buffer sni_txw(3N) transmit a data .. sni_txw(3N)

accept a connection on a socket accept(2B) .. accept(2B)
bind(2B) bind a name to a socket .. bind(2B)
initiate a connection on a socket connect(2B) .. connect(2B)

listen for connections on a socket listen(2B) ... listen(2B)
getsockname(2B) get socket name ... getsockname(2B)

readv(2B) read input from a socket ... readv(2B)
receive a message from a socket /recvfrom(2B) recvmsg(2B) .. recv(2B)

sendmsg(2B) send a message from a socket send(2B) sendto(2B) ... scnd(2B)
wrilcv(2B) write oulput to a socket ... writcv(2B)

communication sockct(2B) create an endpoint for .. socket(2B)
connected sockels socketpair(2B) create a pair of socketpair(2B)

get and set options on sockets /setsockopt(2B) .. getsockopt(2B)
create a pair of connected sockets socketpair(2B) .. socketpair(2B)

cert note.com(4) Intergraph software certification/ ... cert note.com(4)
tile fixes.com(4) Intergraph software delivery documentation fixes.com(4)

swap(21) swap space control .. swap(21)
memory efficient way vfork(2B) spawn a new process in a virtual ... vfork(2B)

csi_ccan(JA) cancel a specific command on a CSI port csi_ccan(3A)
system fmu_rcmd(3N) execute the specified command on remote fmu_rcmd(3N)

/flush the output for the specified FORTRAN logical unit ... flush(JF)
truncate a file to a specil1ed length ftruncate(2B) ... ftruncate(28)

34 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

a signal signal(2) specify what to do on receipt of ... signal(2)

lpq(l) BSD spool queue examination program .. lpq(I)

jobs from the BSD line printer spooling queue lprm(1) remove ... lprm(I)

generator rnndom(3B) srandom(3B) better random number random(3B)

/request notification for a GPIB SRQ condition .. gpib _ service(JA)

STANDCFG(4) optical disk standalone configuration file .. standcfg(4)

ansitapc(4) ANSI standard magtape labels .. ansitape(4)

ksh(l) krsh(l) shell, the standard/restricted command/ ... ksh(I)

standalone configuration tile STANDCFG(4) optical disk .. stanllcfg(4)

fg_ viw _start(3A) fg_ viw _stop(3A) start and stop video in a window fg_ viw _ start(JA)

stat(S) data returned bY, stat system call ... stat(5)

system call stat(S) data returned by stat .. stat(5)

statmon(4) record(4) recover(4) state(4)status daemon directory/ statmon(4)

mailstats(1) display mail statistics ... mailstats(1)

state(4) status daemon directory/ statmon(4) record(4) recover(4) statmon(4)

/record(4) rccover(4) state(4) status daemon directory and lile/ statmon(4)

local/ ruptimc(l)show host status for each machine on the ... ruptime(l)

csi_dstat_nw(3A) receive delayed status from a CSI port ... csi_dstat_nw(3A)

/receive unsolicited status from a CSI port .. csi_ustat(3A)

read the CSI port DRll status lines csi_status(3A) ... csi_status(3A)

lstat(2B) get tile status ... lstat(2B)

qdev(l) display the status of NQS devices .. q<lcv(l)

qstat(l) display the status of NQS queues ... qstat(I)

csi_ucan(3A)cancel unsolicited status requests on a CSJ port csi_ucan(3A)

sigcld(21) mo<lify SIGCLD on stop signal option ... sigcld(21)

/fg_viw_stop(3A)start an<l stop video in a window ... fg_viw_start(.1A)

suppoi1ed batch limits and shell strategy for the local host /show .. qlimit(I)

/routines for returning a stream to a remote command ... rcm<l(.~B)

rcxec(3B) return stream to a remote command .. rcxec(38)

bzcro(3B) ffs(3B) bit an<l byte string operations /bcmp(3B) .. bstring(3B)

string(3B) index(3B) rindex(3B) string operations .. string(3B)

string operations string(3B) index(3B) rindex(JB) string(3B)

ffsinode(4) strncture of an FFS disk i-nodc ffsinode(4)

the YP database and directory structure ypfiles(4) ... yplilcs(4)

terminal stty(1) set the options for a .. stty(I)

to NQS qpr(l) submit a hardcopy print request ... qpr(l)

qsub(l) submit an NQS batch request ... qsuh(I)

dbm_clcarerr(3B)database subroutines /<lbm_error(3B) .. n<lbm(3B)

strategy for the/ qlimit(l) show supported batch limits and shell ... qlimit(I)

swap(2I) swap space control ... swap(2l)

swap(2I) swap space control .. swap(21)

dbg(l) symbolic debugger ... dhg(I)

sdb(I) symbolic debugger ... sdh(I)

rca<llink(2B) read the value of a symbolic link .. rca<llink(2B)

symlink(2B) make a symbolic link to a file ... symlink(28)

to a file symlink(28) make a symbolic link symlink(2B)

sclcct(2B) synchronous 1/0 multiplexing .. sclcct(2B)

intro(JA) introduction to the synchronous/asynchronous 1/0/ .. intro(JA)

(command interpreter) with C-Iike syntax csh(l) a shell ... csh(I)

PERMUTEDINDEX 35

Permuted Index

identification number sysid(21) get the system hardware ... sysid(21)
readinfo(2I) read system activity information .. readinfo(2I)

CRM utility for monitoring system activity topsys(l) .. topsys(l)
backup(!) incremental file system backup ... backup(!)

stat(5) data returned by stat system call ... stat(5)
intro(2) introduction to system calls and error numbers ... intm(2)

/CRM utility for monitoring system calls and faults .. watcher(I)
types(5) primitive system data types .. types(5)

the specified command on remote system fmu_rcmd(3N) execute fmu_rcmd(3N)
receive files from a remote system fmu_receive(3N) ... fmu_receivc(3N)

send tiles to a remote system fmu_send(3N) .. ~ fmu_send(3N)
number sysid(21) get the system hardware identification .. sysid(21)

set or print name of current host system hostname(l) .. hostname(I)
mount(2) mount a lite system ... mount(2)

directory contents on a remote system /command that lists the ... net ls(I)
mount and unmount Ille system npmount(l) npumount(l) npmount(I)

to the optical disk file system odintro(l) introduction ... odintro(I)
getpagesize(2B) get system page size .. getpagesize(2B)

CRM utility for monitoring system parameters monparam(l) monparam(l)
restore(L) incremental file system restore ... restore(l)

fstab(4) file system table ... fstah(4)
mnttah(4) mounted file system table ... mnttab(4)

remotely mounted NFS file system table rmtab(4) ... rmtab(4)
1Tsfs(4) format of tile system volume ... trsfs(4)

exports(4) NFS file systems being exported ... cxports(4)
fstab(4) file system table ... fstah(4)

mnttab(4) mounted Ille system table ... mnttab(4)
remotely mounted NFS file system table rmtab(4) .. rmtab(4)

getdtablcsize(2B) get descriptor table size .. getdtablesize(2B)
ypmapxlate(4) translation table to handle long map names ypmapxlate(4)

/fg_lut_out(3A) load the lookup tables of a frame grabber ... fg_lut_in(3A)
rte(l) remote tape control ... rte(I)

11c_notify(3N)remote tapecontrol /rtc_deallocate(3N) rtc_allocate(3N)
mt(l) magnetic tape manipulation program ... mt(l)
rtape(l) remote tape manipulation program ... rtapc(I)

vmsbackup(l) read a VMS backup tape ... vmsbackup(I)
telnet(l) user interface to the TELNET protocol .. telnet(l)

TELNET protocol telnet(l) user interface to the .. tclnct(l)
stty(l) set the options for a terminal ... stty(I)

/f77uninitio(.1F) initialize or terminate FORTRAN 1/0 from C t77initio(3F)
exit(2) _exit(2) terminate process .. exit(2)

wait2(21) wait for process to terminate ... wait2(21)
wait3(2B) wait for process to terminate .. wait3(2B)

command test(L) condition evaluation ... test(I)
program t ftp(1) trivial file transfer ... tftp(l)

merge(l) three-way file merge ... merge(l)
get/set value of interval timer /setitimer(2B) ... gctitimer(2B)

floppy Jisk 111tcrs to_llop(l)fr_llop(L)continuous .. to_tlop(I)
alt(l) Ada library tool .. alt(I)

36 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

monitoring CPU time topcpu(1) CRM utility for ... topcpu(1)

monitoring page faults topfault(l) CRM utility for .. topfault(l)

monitoring 1/0 activity topio(l)CRM utility for .. topio(l)

monitoring physical and virtual/ topmem(l) CRM utility for .. topmem(1)

monitoring system activity topsys(l) CRM utility for .. topsys(l)

/sif_mem_pipe_nw(3A) transferdata from memory to pipe sif_mem_pipc(3A)

memory /sif_scan_mem_nw(3A) transferdata from scanner to sif_scan_mem(JA)

pipe /sif_scan_pipe_nw(3A) transferdata from scanner to sif_scan_pipe(3A)

kermit(l) kerrnit file transfer ... kermit(l)

ftp(!) ARPANET file transferprogram .. ftp(l)

tftp(1) trivial file transfer program ... tftp(l)

map names yprnapxlate(4) translation table to handle long ypmapxlate(4)

sni_txw(3N) transmit a data buffer .. sni_txw(.1N)

cumail(l) DNP mail transport program .. cumail(I)

aligntrap(1) set/report alignment trap disposition per executable aligntrap(J)

gpib_trigger(3A) triggera GPIB device .. gpih_triggcr(JA)

tftp(1) trivial file transfer program ... tftp(I)

length ftruncate(2B) truncate a file to a specified ... ftnmcatc(2B)

vax(l) get processor type truth value /ns32000(1) .. machid(I)

ns32000(l) vax(l) get processor type truth value /clipper(l) .. machid(I)

select the video signal typesforl/O /fg_video_out(JA) fg_vidco_in(JA)

typcs(5) primitive system data types .. typcs(5)

types typcs(5) primitive system data ... types(5)

ucppri(21) check if a UCP priority is already in use .. ucppri(21)

ucpsig(21) set process to a UCP priority on receipt of a/ .. ucpsig(21)

ucpclr(21) clear process UCP priority ... ucpclr(21)

ucpinq(21) return the UCP priority .. ucpinq(21)

ucpnice(l) run a process at UCP priority .. ucpnicc(I)

ucpset(21) set a process to a UCP priority ... ucpset(21)

priority ucpclr(21) clear process UCP .. ucpclr(21)

priority ucpinq(21) return the UCP ... ucpinq(21)

priority ucpnice(l) run a process at UCP ucpnicc(I)

priority is already in use ucppri(21) check if a UCP .. ucppri(21)

priority <tftcr handling a signal ucprclse(21) reset a process's ... ucprelsc(21)

priority ucpsct(21) set a process to a UCP ucpsct(21)

priority on receipt of a signal ucpsig(21) set process to a UCP ucpsig(21)

<tnd expand data compress(1) uncompress(!)zcat(l) compress compress(I)

parallel poll/ gpib _ppuconf(3A) unconfigurc a GPIB device's gpih _ppuconf(3A)

/sethostid(2B) get/set uniq uc identifier of current host gethostid(2B)

/return FORTRAN logical unit a4'sociatcd with a file/ ... lutounit(.1F)

for the spccilied FORTRAN logical unit t1ush(3F) flush the output ... flush(JF)

<Lssociated with a FORTRAN logical unit /return the file descriptor ... fnum(3F)

fpc_did_unload(3A) unload an FPE coprocessor image fpc_did_unload(3A)

vunlock(21) unlock an area of memory ... vunlock(2l)

npmount(l) npumount(l) mount and unmount file system ... npmount(I)

port /csi_ustat_nw(3A) receive unsolicited status from a CSI csi_ustat(3A)

CSI port csi_ ucan(3A) cancel unsolicited status requests on a csi_ ucan(3A)

yppasswd(3R) update user password in YP yppasswd(3R)

if a UCP priority is already in use ucppri(21) check .. ucppri(2l)

PERMUTEDINDEX 37

Permuted Index

.rhosts(4) remote user access list .. rhosts(4)
protocol telnet(1) user interface to the TELNET .. telnet(1)

yppasswd(3R) update user password in YP ... yppasswd(3R)
the local network rwho(l) lists users logged in to machines on ... rwho(l)

CLIX dtu(l) utd(l) copy between MS-DOS and ... dtu(l)
fmu(l) network file management utility .. fmu(l)

monproc(1) CRM utility for monitoring a process ... monproc(I)
topcpu(l) CRM utility for monitoring CPU time ... topcpu(l)

activity topio(l) CRM utility for monitoring 1/0 ... topio(l)
regions monregion(1) CRM utility for monitoring memory ... monregion(l)

showfiles(l) CRM utility for monitoring open files ... showlites(I)
faults topfault(l) CRM utility for monitoring page .. top fault(I)

and virtual memory topmem(l) CRM utility for monitoring physical ... topmem(l)
memory regions showmemory(l) CRM utility for monitoring process showmemory(I)

activity topsys(l) CRM utility for monitoring system ... topsys(I)
calls and faults watcher(!) CRM utility for monitoring system .. watchcr(l)

parameters monparam(l) CRM utility for monitoring system ... monparam(1)
format(!) floppy disk fomrntting utility .. format(!)

DNP remote file execution utility netex(l) ... netex(l)
clh_ vbyop(3N) lookup value by object and property ... clh_ vbyop(3N)

vax(l) get processor type truth value /clipper(!) ns32000(1) .. machid(l)
readlink(2B) read the value of a symbolic link .. readlink(2B)
/setitimer(2B) get/set value of interval timer .. getitimer(2B)

YP map ypmatch(1) print the value of one or more keys from a .. ypmatch(I)
byte/ /ntohl(3B) ntohs(3B) convert values between host and network byteorder(3B)

ypcat(l) print values in a YP database .. ypcat(I)
values(5) mm:hinc-dependent values .. valucs(S)

values values(5) machint -dependent .. values(5)
mach id(l) clipper(I) ns32000(1) vax(1) get processor type truth/ ... mac hid(I)

a virtual memory ellicient way vfork(2B) spawn a new process in .. vfork(2B)
/fg_ viw _stop(3A) start and stop video in a window .. fg_ viw _start(3A)

/fg_ video_ out(JA) select the video signal types for 1/0 ... fg_ video _in(3A)
/spawn a new process in a virtual memory efficient way .. vfork(2B)

for monitoring physical and virtual memory /CRM utility .. topmem(l)
program visit(l) Intergraph remote login ... visit(l)

vlock(21) lock an area of memory ... vlock(21)
vmshackup(l) read a VMS backup tape ... vmsbackup(l)

tape vmsbackup(l) read a VMS backup vmshackup(l)
ffsfs(4) format of ftlc system volume ... ffsfs(4)

blocks and i-nodes on an optical volume /report number of free .. oddf(I)
memory vunlock(21) unlock an area of ... vunlock(21)

csi_death(3A) csi_dcath_nw(3A) wait for a CSI communication to/ csi_<leath(3A)
wait2(21) wait for process to terminate .. wait2(21)

wait3(2B) wait for process to terminate ... wait3(2B)
terminate wait2(21) wait for process to .. wait2(21)
terminate wait3(2B) wait for process to .. wait3(2B)

monitoring system calls and/ watcher(!) CRM utility for .. watcher(I)
start and stop video in a window /fg_ viw _stop(3A) .. fg_ viw _start(3A)

move data from a POI port to a window /pdi_itb _nw(3A) .. pdi_itb(3A)

38 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

Permuted Index

determine the frame grabber window size fg_size(3A) .. fg_size(3A)

/plt_ctrl_nw(3A) send a control word to the parallel port .. plot_ctrl(3A)

/rplt_ctrl_nw(3A)send a control word to the ROP parallel port plot_ctrl_rop(3A)

rcsclean(1) clean up working files ... rcsclcan(1)

pdi_write(3A) pdi_write_nw(3A) write data from memory to a POI/ pdi_ write(3A)

gpib_write(3A) gpib_write_nw(3A) write data to a GPIB device gpih_write(3A)

aux_write(3A) aux_write_nw(3A) write data to a serial port ... aux_write(3A)

/fpe _write_ dma _ nw(3A) write data to an FPE coprocessor fpe _write_ dma(3A)

/plt_ data(3A) plt_ data_nw(3A) write data to the parallel port plot_ data(3A)

/rplt_data(3A) rplt_data_nw(3A) write data to the ROP parallel/ plot_data_rop(3A)

writev(2B) write output to a socket ... writev(2B)

fpe_cancel_dma(3A)cancel write request to an FPE/ fpe_cancel_dma(3A)

\vrite(2) \\'rite to a file .. \vrite(2)

write(2) write to a file .. write(2)

socket writev(2B) write output to a .. writev(2B)

allocate/deallocate an event/ xio _ allocef(3A) xio _ deallocef(3A) xio _ alloccf(3A)

flag mask/ xio_readef(3A) xio_clref(3A)xio_setef(3A)event xio_readef(3A)

xio_allocef(3A) xio_deallocef(3A)/ .. xio_allocef(3A)

of an asynchronous request/ xio _ notify(3A) notify a process xio _ notify(3A)

xio_setef(3A)event flag mask/ xio_readef(3A)xio_clref(3A) xio_readcf(3A)

xio _readef(3A) xio _ clref(3A) xio _ setef(3A)event flag mask/ xio _rcadef(3A)

xio _ wflor(3A) asynchronous event/ xio _ waitfr(3A) xio _ wfland(3A) xio _ waitfr(3A)

asynchronous/ xio_waitfr(3A) xio_wfland(3A)xio_wflor(3A) xio_waitfr(3A)

xio _ waitfr(3A) xio _ wlland(3A) xio _ wflor(3A) asynchronous event/ xio _ waitfr(3A)

to console devices on the local XNS network /send a message .. netmsg(J)

server.dat(4) XNS server information file ... server.dat(4)

yperr _string(3R) ypprot_ err(3R) YP client interfac /yp _ master(3R) ypclnt(3R)

structure ypfilcs(4) the YP database and directory .. ypfilcs(4)
ypcat(I) print values in a YP database ... ypcat(1)

set or display name of current YP domain domname(1) ... domname(l)

value of one or more keys from a YP map ypmatch(l) print the .. ypmatch(l)

change login password in YP yppasswd(l) .. yppasswd(l)

update user password in YP yppasswd(3R) ... yppasswd(3R)

/yp_first(3R)yp_next(3R) yp_all(3R)yp_order(3R)/ ... ypclnt(3R)

/yp_get_default_domain(3R) yp_hind(3R)yp_unbind(3R)/ .. ypclnt(3R)

database ypcat(l)print values in a YP ... ypcat(l)

yp_get_default_domain(3R)/ ypclnt(3R) ... ypclnt(3R)

YP/ /yp_order(3R) yp_master(3R) yperr_string(3R)ypprot_err(3R) ypclnt(3R)

directory structure ypfiles(4) the YP database and .. ypfilcs(4)

/yp_unbind(3R) yp_match(3R) yp_first(3R) yp_next(3R)/ ... ypclnt(3R)

yp_bind(3R)/ ypclnt(3R) yp_get_default_domain(3R) ... ypclnt(3R)

to handle Jong map names ypmapxlate(4) translation table ypmapxlate(4)

/yp_all(3R) yp_order(3R) yp_master(3R)yperr_string(3R)/ ypclnt(3R)

or more keys from a YP map ypmatch(1) print the value of one ypmatch(l)

/yp _ bind(3R) yp _ unbind(3R) yp _ match(3R) yp _ first(3R)/ .. ypclnt(3R)

/yp _match(3R) yp _ first(3R) yp _ next(3R) yp _ a11(3R)/ ... ypclnt(3R)

/yp_next(3R) yp_all(3R) yp_order(3R)yp_master(3R)/ ... ypclnt(3R)

in YP yppasswd(l) change login password yppasswd(l)

in YP yppasswd(3R) update user password yppa.<>swd(3R)

PERMUTEDINDEX 39

Permuted Index

/yp_master(3R) ypcrr_string(3R) ypprot_err(3R)YP client interfac .. ypclnt(3R)
yp_first(3R)/ /yp_bind(3R) yp_unbind(3R)yp_match(3R) ... ypclnt(3R)
compress(l) uncompress(!) zcat(l)compress and expand data compress(l)

40 CUX PROGRAMMER'S & USER'S REFERENCE MANUAL

(")
0
3
3
Ill
:J
Cl.
U'J

INTIO(l) INTR.O(l)

NAME
intro - introduction to commands and application programs

DESCIIPTION
This section describes commands available for the CLIX System. A portion
of the commands is standard System V commands that have been modified
under CLIX. The remainder are CLIX-specific commands.

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option ...] [cmdarg ...]

where:

[] Surround an option or cmdarg that is not required.

Indicates multiple occurrences of the option or cmdarg.

name The name of an executable file.

option (Always preceded by a"-".) noargletter ... or argletter optarg
[, ...]

noargletter A letter representing an option without an option-argument.
More than one noargletter option can be grouped after one"-"
(rule 5, below).

argletter A letter representing an option requiring an option-argument.

optarg An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter
must be separated by commas or separated by white space and
quoted (rule 8,, below).

cmdarg Path name (or other command argument) not beginning with
"-", or "-" by itself indicating the standard input.

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but
all new commands will obey them. getopts(l) should be used by all shell
procedures to parse positional parameters and to check for legal options. It
supports rules 3-10 below. The command must enforce the other rules.

1. Command names (name above) must be between two and nine charac-
ters long.

2. Command names must include only lowercase letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by"-".

5. Options with no arguments may be grouped after a single "-".

6. The first option-argument (optarg above) following an option must be
preceded by white space.

12/88 1

INTRO(l) INTRO(l)

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g., -o
xxx,z,yy or -o "xxx z yy").

9. All options must precede operands (cmdarg above) on the command
line.

10. "--" may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.
12. The relative order of the operands (cmdarg above) may affect their

significance in ways determined by the command with which they
appear.

13. "-"preceded and followed by white space should only be used to mean
standard input.

SEE ALSO
exit(2) in the CLIX System V Programmer's & User's Reference Manual.
getopts(l) in the UNIX System V User's Reference Manual.
wait(2), getopt(3C) in the UNIX System V Programmer's Reference Manual.
"How to Get Started" at the front of UNIX System V User's Reference
Manual.

DIAGNOSTICS
At termination, each command returns two bytes of status-one supplied by
the system that gives the cause for termination, and (in the case of "normal"
termination) one supplied by the program (see walt(2) and exlt(2)). The
former byte is 0 for normal termination; the latter is customarily 0 for suc­
cessful execution and nonzero to indicate troubles such as erroneous parame­
ters or bad or inaccessible data. The latter byte is called "exit code", "exit
status", or "return code", and is described only where special conventions
are involved.

WARNINGS

2

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and
therefore become confused when encountering a null character (the string
terminator) within a line.

12/88

AB(l) AB(l)

NAME
ab - Ada program beautifier

SYNOPSIS
ab [-i indent] [-1 linelen] [-w] [-K [lus]] [-I [lus]] [file ...]

DESCRIPTION
ah reads Ada source programs either from the specified files or from standard
input and writes them to standard output with spacing and indentation that
displays the structure of the code. If the Ada source has syntax errors, ah
displays the line number and token of the first error before exiting. It may
be used as an Ada syntax checker.

The following options are available:

-i indent

-1 linelen

-w

-K [lus]

-I [lus]

Set the indentation to indent, which must be a natural
number. The default indentation is four spaces.

Set the line length to linelen, which must be a positive
number. The default line length is 64. Warnings will be gen­
erated if this is exceeded. Note that ah will not always
prevent line overflow.

Suppress warning messages.

Indicate the format of Ada keywords. The 1 option puts them
in lowercase, the u option puts them in uppercase, and the s
option leaves the case unchanged. The s option is used by
default.

Indicate the format of Ada identifiers. The I option puts them
in lowercase, the u option puts them in uppercase, and the s
option leaves the case unchanged. The s option is used by
default.

SEE ALSO
act(l), Ac(l).

01/90 1

AC(l) AC(l)

NAME
Ac - Ada compiler

SYNOPSIS
Ac [option ...] file

DESCRIPTION

01/90

Ac is the York (Release 4) Ada compiler. Arguments whose names end with
.H and .A are interpreted as Ada source files; they are compiled, and each
object program whose name is that of the source with .O substituted for .H
and .o for .A remains in the file. In the same way, arguments whose names
end with .s are assembled and a .o file is produced. Arguments whose names
end with.care interpreted as C source files; they are compiled and placed in
a .o file to be loaded if required. In addition, .o and .a files may be passed as
arguments to be loaded along with other .o files. Note that any Ada pro­
grams with foreign language bodies must have the corresponding .c or .o file
explicitly mentioned on the command line. These and any other file name
arguments are passed to Zd(l) and are loaded together to form an executable
a.out(4) file.

In addition to creating an object file, a compilation updates a library file,
ADA-LIBRARY, for each compilation unit in the source file. (The library file
is created if it does not already exist.)

The library file contains the locations of the units in the program library
and is read by subsequent compilations to enforce the separate compilation
rules of the language.

Ac recognizes the following options:

-M identifier Make the compilation unit identifier the main subprogram.

-v

-w

-c

-s

-o outfile

-0

-L

The main subprogram must be a procedure body with no
parameters defined. -M main is assumed if this option is
not specified.

Produce verbose error messages. In particular, the compiler
will attempt to isolate faults within expressions detected
during overload resolution.

Suppress all warning messages from the Ada compiler.

Do not load the resulting .o files together.

Save the assembly code output of the compiler in a file with
suffix .s or .S. No object files will be produced.

Name the resulting file outfile rather than the default a.out.

Invoke the C object code improver on the compiler output.

Load only functions that are actually called (directly or
indirectly). This can considerably decrease the size of the
executable at the expense of a longer assembly and load
time. This optimization does not apply to functions

1

AC(l)

FILES

2

-G

-p

-g

-V

-I directory

-lx

-Rstring

AC(l)

entirely local to a unit. This option is incompatible with
the -g option. When this option is given, the -Re option is
automatically switched on. Otherwise, few savings accrue.
All units that make up an executable file must be compiled
with the same setting of this flag. The standard Ada
library provided is compiled with this option.

Load a global garbage collector to replace the usual garbage
collection scheme. The latter does not reclaim heap space
for access types defined within a library package.

Generate profiling information.

Generate extra symbol table information for dbg(l). Until
the sources become available to the compiler developers,
dbg(l) is very unreliable when used with Ada programs.
The user can set break points, but printing the values of
variables does not always give the expected results. It can
cause the debugger to crash.

Print the version number of the compiler.

Search for library files in the named directory, in the direc­
tory of the source file, and in the standard library
/usr/lib/ Ada. Any number of -I options may be given.
Directories are searched in the following order: directory of
the source file, directories specified by -I options (in the
order given), /usr/lib/ Ada.

Specify a library name of the form /lib/libx.a, where x is
a string. If the library does not exist, Zd(l) tries
/usr/lib/libx.a. A library is searched when its name is
encountered, so the placement of a -1 is significant.

Suppress the following run time checks according to the
characters in the given string. (Compare pragma suppress.)

a access_check
d discriminant_check
i index_ check
1 length_ check
r range_ check
z division_check
o overflow _check
e elaboration_ check
s storage_check
I all of the above checks are suppressed

All other flags are passed to the loader.

libada.a runtime support library for basic features

01/90

AC(l)

libtask.a
libadastand.a
/bin/ld
/bin/as
/lib/crtO.o
/usr/lib/ Ada/ald
/usr/lib/ Ada/asplit
/usr/lib/ Ada/elab_clipper
/usr/lib/ Ada/ac_clipper

SEE ALSO
adep(l).

01/90

AC(l)

runtime support library for tasking feature
basic VO and memory management library
link editor (standard AT&T)
assembler
runtime startup code
Ada-specific link editor
Ada-specific assembler
entry label generation program
Ada CLIPPER compiler

3

ACCTCOM(l) ACCTCOM(l)

NAME
acctcom - search and print process accounting files

SYNOPSIS
- acctcom [option ...] [file ...]

·~ DESCRIPTION

.~

~

01/90

acctcom reads file, standard input, or /usr/adm/pacct in the form described

by acct(4) and writes selected records to standard output. Each record

represents the execution of one process. The output shows the COMMAND

NAME, USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC),

MEAN SIZE (K), F (the fork(2)/exec(2) flag: 1 for fork(2) without exec(2)),

STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR,

CHARS TRNSFD, and BLOCKS READ (total blocks read and written).

A # is prepended to the command name if the command was executed with

super-user privileges. If a process is not associated with a known terminal, a

1 is printed in the TTYNAME field.

If no files are specified and if standard input is associated with a terminal or

/dev/null (as is the case when using & in the shell), /usr/adm/pacct is

read; otherwise, standard input is read.

If any file arguments are given, they are read in their respective order. Each

file is normally read forward (in chronological order by process completion

time). The file /usr/adm/pacct is usually the current file to be examined; a

busy system may need several such files of which all but the current file are

found in /usr/adm/pacct?. The options are as follows:

-a

-b

-f

-h

-i

-k

-m

-r

-t

-v

Show average statistics about the processes selected. The statis­

tics will be printed after the output records.

Read backwards showing latest commands first. This option

has no effect when standard input is read.

Print the fork(2)/exec(2) flag and system exit status columns.

The numeric output for this option will be in octal.

Instead of showing mean memory size, show the fraction of

total available CPU time consumed by the process during its

execution. This hog factor is computed as follows:

(total CPU time) I (elapsed time)

Print columns containing the I/O counts.

Instead of showing memory size, show total kcore-minutes.

Show mean core size (the default).

Show CPU factor (user time I (system time+ user time)).

Show separate system and user CPU times.

Exclude column headings from the output.

1

ACCTCOM(l) ACCTCOM(l)

FILES

-I line

-u user

Show only processes belonging to terminal /dev/Zine.
Show only processes, belonging to user, specified by: a user ID, a
login name that is then converted to a user ID, a #, which desig-
nates only those processes executed with super-user privileges,
or ?, which designates only processes associated with unknown
user IDs.

-g group Show only processes belonging to group. Group may be desig­
nated by either the group ID or group name.

-s time Select processes existing at or after time, given in the format
hr [:min [:sec]].

-e time Select processes existing at or before time.

-S time Select processes starting at or after time.
-E time Select processes ending at or before time. Using the same time

for both -S and -E shows the processes that existed at time.
-n pattern Show only commands matching pattern that may be a regular

expression as in ed(l) except that + means one or more
occurrences.

-q

-o ofile

-H factor

-0 sec

-C sec

-I chars

Do not print any output records; print only the average statis­
tics as with the -a option.

Copy selected process records in the input data format to ofile;
suppress standard output printing.
Show only processes that exceed factor, which is the hog factor
as explained in option -h above.

Show only processes with CPU system time exceeding sec
seconds.

Show only processes with total CPU time, system plus user,
exceeding sec seconds.

Show only processes transferring more characters than the
cutoff number given by chars.

I etc/ passwd
/usr/adm/pacct
/etc/group

used for login name to user ID conversions
current process accounting file
group ID information

SEE ALSO

BUGS

2

acct(lM), acctcms(lM), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), fwtmp(lM), runacct(lM) in the CLIX Syst.em Adminlst.rator's
Reference Manual.
acct(2), acct(4), utmp(4) in the UNIX Syst.em V Programmer's Reference
Manual.

acctcom reports only on processes that have terminated; use ps(l) for active

01/90

ACCTCOM(l) ACCTCOM(l)

01/90

processes. If time exceeds the present time, time is interpreted as occurring
on the previous day.

3

ADB(l) ADB(l)

NAME
adb - absolute debugger

SYNOPSIS
adb [-w] [objftl [corjil]]

DESCRIPTION
a.db is a general purpose debugging program. It may be used to examine files
and to provide a controlled environment for the execution of CLIX system
programs.

Objftl is normally an executable program file, preferably containing a sym­
bol table. If it does not contain a symbol table, the symbolic features of adb
cannot be used, although the file can still be examined. The default for objftl
is a.out. Corjil is assumed to be a core(4) image file produced after executing
objjil. The def a ult for corftl is core.

Requests to a.db are read from the standard input and responses are to the
standard output. If the -w option is present, objftl and corjil are created, if
necessary, and opened for reading and writing so that files can be modified
using a.db. a.db ignores QUIT. INTERRUPT causes return to the next a.db com­
mand.

In general, requests to a.db have the form

[address] [,count] [command] [;]

If address is present, dot is set to address. Initially, dot is set to O. For most
commands, count specifies how many times the command will be executed.
The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged, addresses are interpreted in the usual way in
the address space of the subprocess. For further details of address mapping
see Addresses.

Expressions

12188

+

•

integer

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment .

The last address typed.

A hexadecimal, decimal, or octal number, depending on whether
the number begins with Ox, Ot, or Oo, respectively. Otherwise, a
hexadecimal number.

integer .fraction
A 32-bit, floating-point number.

'cccc' The ASCII value of up to four characters. A \ may be used to
escape a'.

1

ADB(l) ADB(l)

2

<name The value of name is a variable name or a register name. adb
maintains a number of variables (see Variables) named by single
letters or digits. If name is a register name, the register value is
obtained from the subprocess or the system header in corftl. The
register names are rO to r15, fO to f7, fO:x: to f7:x:, psw, ssw,
and pc for the general, floating-point, and processor registers. Fp
and spare synonyms for r14 and r15, respectively. FO to f7 are
the low-order 32 bits of the floating-point registers and fO:x: to
f7:x: are the high-order 32 bits.

symbol A symbol is a sequence of uppercase or lowercase letters, under­
scores, or digits not starting with a digit. \may be used to escape
other characters. The value of the symbol is taken from the sym­
bol table in objfi.l. An initial_ or -- will be prefixed to symbol if
needed.

_symbol In C, the "true name" of an external symbol begins with _. It
may be necessary to utter this name to distinguish it from inter­
nal or hidden variables of a program.

(exp) The value of the expression exp.

Monadic operators:

*exp The contents of the location addressed by exp in corfi.l.

@exp The contents of the location addressed by exp in objfi.l.

-exp

-exp

Integer negation.

Bitwise complement.

Dyadic operators are left associative and are less binding than monadic
operators.

Commands

el+e2

el-e2

el•e2

el%e2

el&e2

elle2

el#e2

Integer addition.

Integer subtraction.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

El rounded up to the next multiple of e2.

Most commands consist of a verb followed by a modifier or list of modifiers.
The following verbs are available. (The commands ? and I may be fol­
lowed by • (see Addresses).)

1/ Locations starting at address in objfi.l are printed according to the
format/. Dot is incremented by the sum of the increments for each
format letter.

12/88

ADB(l)

12188

If

=/

ADB(l)

Locations starting at address in corfi.l are printed according to the
format/, and dot is incremented as it is for?.

The value of address is printed in the styles indicated by the format
/. (For i format, ? is printed for the parts of the instruction that
reference subsequent words.)

A format consists of one or more characters that specify a printing style.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is
incremented by the amount given for each format letter. If no format is
given, the last format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are

04
q2
Q4
d2
D4
x2
X4
u2
U4
f 4
F8
bl
cl
Cl

sn

Sn

Y4
i2
aO

p2

to

preceded with O.
Print 4 bytes in octal.
Print in signed octal.
Print in long signed octal.
Print in decimal.
Print in long decimal.
Print 2 bytes in hexadecimal.
Print bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32-bit value as a floating-point number.
Print double floating-point.
Print the addressed byte in octal.
Print the addressed character.
Print the addressed character using the following escape con­
vention. Character values 000 to 040 are printed as @ fol-
lowed by the corresponding character in the range 0100 to
0140. The character@ is printed as@@.
Print the addressed characters until a zero character is
reached. The value n is the length of the string including its
zero terminator.
Print a string using the @ escape convention. The value n is
the length of the string including its zero terminator.
Print 4 bytes in date format.
Print as CLIPPER TM instructions.
Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as indi-
cated below.

I Local or global data symbol.
? Local or global text symbol.
= Local or global absolute symbol.

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.
When preceded by an integer, tabs to the next appropriate
tab stop. For example, 8t moves to the next 8-space tab stop.

3

ADB(l) ADB(l)

4

r 0 Print a space.
n 0 Print a newline.
• ••• • 0 Print the enclosed string.
.. Dot is decremented by the current increment. Nothing is

printed.
+ Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

newline
Repeat the previous command with a count of 1.

[?I] 1 value mask
Words starting at dot are masked with mask and compared to value
until a match is found. The mask argument is optional. The mask
used is Oxff for band o, Oxffff for w, -1 for I, mask if supplied, or
-1 by default. The lncr argument is optional. Dot is incremented by
1 for b, 2 for w, 4 for 1, the size of the instruction for o, lncr if
specified, or 1 by def a ult. If a match is found, dot is set to the
matched location. Otherwise, dot is unchanged.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command
is W, write 4 bytes. Odd addresses are allowed under the CLIX sys­
tem when writing to the subprocess address space.

[?/]m bl el fl[?/]

>name

New values for (bl, el, fl) are recorded. If less than three expres­
sions are given, the remaining map parameters are unchanged. If the
? or I is followed by •, the second segment (b2, e2, f2) of the map­
ping is changed. If the list is terminated by ? or /, the file (objfil or
corfil, respectively) is used for subsequent requests. (So that, for
example, /m? will cause I to refer to objfil.)

Dot is assigned to the variable or register named.

A shell is called to read the remainder of the line following !.
$modifier

Miscellaneous commands. The available modifiers are as follows:

<f Read commands from the file f and return.

>f
r

b

c

Send output to the file f, which is created if it does not exist.

Print the general registers and the instruction addressed by
the PC. Dot is set to the PC. All registers are printed as if
they were integer registers, including the floating-point regis­
ters.

Print all breakpoints and their associated counts and com­
mands.

C stack backtrace. Routine names are printed for routines
that set up a frame pointer (see cc(l)). If count is given, only

12/88

ADB(l) ADB(l)

the first count frames are printed.

e The names and values of external variables are printed.

w Set the page width for output to address (def a ult 80).

s Set the limit for symbol matches to address (def a ult 255).

o All integers input are regarded as octal.

d Reset integer input as described in Expressions.

q Exit from a.db.

v Print all nonzero variables in octal.

m Print the address map.

:modifier
Manage a subprocess. Some process management commands do not
work until the process is created. :r, and :s, create a process first, if
necessary. Available modifiers are as follows:

be Set breakpoint at address. The breakpoint is executed
count-1 times before causing a stop. Each time the break­
point is encountered, the command c is executed. If this com­
mand sets dot to zero, the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objft.l as a subprocess. If address is given explicitly, the
program is entered at this point. Otherwise, the program is
entered at its standard entry point. The value count specifies
how many breakpoints are ignored before stopping. Argu­
ments to the subprocess may be supplied on the line the com­
mand is on. An argument starting with < or > causes the
standard input or output to be established for the command.
All signals are turned on when the subprocess is entered.

cs The subprocess is continued with signal s (see signal(2)). If
address is given, the subprocess continues at this address. If
no signal is specified, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as for r.

ss Same as for c except that the subprocess is single stepped
count times. If there is no current subprocess, objft.l is run as
a subprocess as it is for r. In this case, no signal can be sent;
the remainder of the line is treated as arguments to the sub­
process.

:t. The current subprocess, if any, is terminated.

Variables

12/88

Named variables are set initially by a.db but are not used subsequently.
Numbered variables are reserved for communication as follows.

0 The last value printed.

5

ADB(l) ADB(l)

On entry, the following are set from the system header in the corfil. If corfil
does not appear to be a core(4) file, these values are set from objfil.

b The base address of the data segment.
4 The data segment size.
e The entry point.
m The "magic" number (0405, 0407, 0410 or 0411).
s The stack. segment size.
t The text segment size.

Addresses

FILES

The address in a flle associated with a written address is determined by a
mapping associated with the ftle. Each mapping is represented by two tri­
ples, (bl, el, f 1) and (b2, e2, /2), and the file address corresponding to a
written address is calculated as follows:

bl<.address<el--+ file address=address+fl-bl

Otherwise, it is calculated as follows:

b2 <.address< e2 --+ file address=address+ /2-b2

If one of these methods does not succeed, the requested address is not legal.
In some cases (i.e., for programs with separated I and D space), the two seg­
ments for a file may overlap. If a 7 or I is followed by an •, only the second
triple is used.

The initial setting of both mappings is suitable for normal a.out(4) and
core(4) flles. If neither file is the kind expected, for that flle bl is set to 0, el
is set to the maximum flle size, and fl is set to 0. In this way, the whole file
can be examined with no address translation.

For a.db to be used on large flles, all appropriate values are k.ept as signed,
32-bit integers.

/dev/mem
/dev/swap
a.out
core

SEE ALSO
a.out(4), core(4).
ptrace(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

BUGS

6

The string "adb" is displayed when there is no current command or format.
Otherwise, comments about inaccessible files, syntax errors, abnormal com­
mand termination, etc. are displayed. Exit status is 0 unless the last com­
mand failed or returned a nonzero status.

A break.point set at the entry point is not effective on initial entry to the
program.

12188

ADB(l)

12/88

ADB(l)

Local variables whose names are the same as an external variable may cause
problems in accessing the external.

7

ADEP(l) ADEP(l)

NAME
adep - Ada program makefile generator

SYNOPSIS
adep [-f makefile] [-M main-unit] [-o objfile] [-t target] [-c compiler]

[-lx] file .. . [-I file ...]

DESCRIPTION

01/90

adep takes a set of files and constructs a makefile containing all dependencies

necessary to produce an executable a.out(4) file. The user may request a rule

for an executable file to be produced or a rule to maintain only the object

files. A rule for cleaning up the directory is also available (invoked with the

make clean command.)

If the name of the makefile is not supplied, makefile is assumed.

The following options are available:

-f makefile Name a makefile explicitly.

-M main-unit Cause adep to treat main-unit as the name of the main pro-

gram unit. main is used by default.

-o objftle Specify the name of the executable file to be produced. By

default, a.out is produced.

-t target Indicate that no executable file will be produced and specify

the name of the main target.

-c compiler Specify the Ada compiler to be used. By default, Ac(l) is

assumed.

-lftle ... Indicate that all following Ada source files should be

included as possible prerequisites but not as targets in the

makefile. Typically this option could be used to construct

dependencies between directories or program libraries. (This

option may follow the list of files.)

-lx Specify a library name of the form /lib/libx.a, where xis a

string. If the library does not exist, /usr/lib/libx.a is

tried. Libraries specified in this manner are assumed to con­

tain object files to be loaded to create the required execut­

able.

Extra flags to the Ada compiler may be set as follows:

adep "AFLAGS=-0 -v" *· [HA]

This passes the optimizer flag and verbose flag to all calls of the Ada com­

piler. In a similar way, the user may pass any variable and value to adep

(such as CFLAGS) and these will be included in the makefile.

File suffixes are interpreted as follows:

A file with the suffix .H or .A is an Ada source file and will be

scanned to determine the list of dependencies.

1

ADEP(l) ADEP(l)

A file with the suffix .c is a C source file and will be compiled and
loaded with other object files to produce any required executable.
A file with the suffix .s is an assembly language source file and will
be assembled and loaded with other object files to produce any
required executable.

A file with the suffix .o is an object file and will be loaded with other
object files to produce any required executable. Note that object files
produced from Ada source files are loaded automatically and must
not be included here.

A file with the suffix .a is an archive file containing object files and
will be loaded with other object files to produce any required execut­
able. Alternatively, the user may specify archive files using the -1
option (see cc(l) and Zd(l)).

All other files are ignored.

adep marks the start of the generated dependencies in the makefile with the
following line:

#Ada dependencies generated by adep
adep marks the end of them with the following line:

#End of Ada dependencies

Everything outside of these lines remains untouched by adep, so any addi-
tions to the makefile by the user will not be affected by later use of adep ~
with this file.,,;I
The dependency set is replaced each time adep is used; dependencies cannot
be added or removed incrementally.
adep is not an Ada language parser. It looks for with clauses, separate
clauses, and the unit or subunit information. It then attempts to reach the
end of the current unit before repeating the process for any following units
in the file. It does so by relying on the positioning of semicolons and certain
reserved words (such as end, loop, and begin.) Consequently, a serious
syntax error will cause adep to terminate with an error message and a line
number. In this case running the Ada compiler may help to obtain more
information about the error.

SEE ALSO
Ac(l).

BUGS

2

make(l) in the UNIX System V Programmer's Reference Manual.

For an instantiation of an external generic, adep records a dependency on the
generic body and all subunits of the generic. adep will become confused if
different generics have the same name or a generic has the same name as the """"
unit in which it occurs. However, it will usually print a message in this ~
case.

01/90

ALIGNT.RAP(l) ALIGNT.RAP(l)

NAME
aligntrap - set/report alignment trap disposition per executable

SYNOPSIS
align trap [-y I -n] file ...

DESC.RIPTION
C200 and C300 revisions of the CLIPPER processor will optionally trap and
provide a signal to a process on misaligned memory accesses. The disposition
of alignment traps is controlled per executable through a flag in the CLIX
system header of the common object (COFF) file. This flag is read by the
operating system during the exec(2) system call and determines the align­
ment trap action for the created process. aligntrap with no option will
report the current state of the alignment trap enable flag for each specified
file. Specifying -y enables the alignment trap for processes created from file.
Specifying -n disables the alignment trap for processes created from file.

SEE ALSO

NOTES

12/88

a.out(4) in the CLIX Programmer's & User's Reference Manual.

Checks are performed to verify that each file operated on is actually a
CLIPPER executable.

1

ALT(l) ALT(l)

NAME
alt - Ada library tool

SYNOPSIS
alt [file]

DESCRIPTION
alt allows the interactive display and editing of an Ada library file produced
by Ac(l). If the file is a directory, the file ADA-LIBRARY is sought within
the directory. If no file is specified, ADA-LIBRARY is assumed.

alt recognizes the following commands:

l [-dist] [name ...] List the library contents. The default format lists
each unit name followed by a description of the unit
kind.

d [-i] name ...

w [file]

q
end-of-file

!command

The l command recognizes the following options:

-d Display the dependencies recorded for each
compilation unit.

-1 List in long format giving the source file and
last compilation date of each compilation
unit.

-s Display subunit information. The full
parent name is given for each subunit and a
list of all subunits is given for each parent.

-t Sort compilation units by compilation times
(latest first) instead of by name.

Delete all named compilation units from the library.
If the -i (interactive) option is specified, the user will
be asked whether each compilation unit should be
deleted.

Save the library in the given file. If no file is
specified, the original is used.

Quit the session.

Escape to the shell to execute command.

Names given in an lord command can be expressed as regular expressions in
the style of egrep(l).

SEE ALSO
Ac(l), adep(l).
egrep(l) in the UNIX System V User's Reference Manual.

01/90 1

ANSIT APE(l) ANSITAPE(l)

NAME
ansitape - ANSI-standard magtape label program

SYNOPSIS
ansitape [-] t I I I r I c [vqf aei3] [mt-device] [vo-volume-name]
[rs-[r I record-size]] [bs-block-size] [rf-[v If]] [cc-[i If I e]]
file-name ..•

DESCRIPTION

12188

ansitape reads, writes, and creates magtapes conforming to the American
National Standards Institute (ANSI) standard for ma-&\ape labeling. Pri­
marily, this is useful to exchange tapes with VAX/VMS which makes this
kind of tape by def a ult.

ansitape is controlled by a function key letter (t, I, c, or r). Various
options modify the format of the output tape.

The function letters describe the overall operation desired. A minus sign (-)
is allowed, but optional, to introduce the first keyword option set. The
function is specified with one of the following:

r Write to a magtape.

c Create a new magtape. The tape is initialized with a new ANSI
volume header. All files previously on the tape are destroyed. This
option implies r.

Extract all files from the tape. Files are placed in the current direc­
tory. Protection is read/write to everyone, modified by the current
umask(2).

t List all ftle names on the tape.

These key letters may follow the function letter:
v Normally, ansitape works silently; the v (verbose) option displays

the name of each file ansitape treats, preceded by the function letter.
It also displays the volume name of each tape as it is mounted.
When used with the t option, ansitape displays the number of tape
blocks used by each file, the record format, and the carriage control
option.

q Query before writing. On write (corr options), this causes ansitape
to ask before writing to the tape. On extract operations, ansitape
displays the CLIX path name and asks if it should extract the file.
Any response starting with a "y" or "Y" means yes, and any other
response (including an empty line) means no.

f File I/O is done to standard I/O instead. For example, when writing a
tape file that will contain a lint listing, the follwing could be
specified:

lint xyz.c I ansitape rf xyz.lint

1

ANSITAPE(l) ANSIT APE(l)

2

instead of

lint xyz.c > /tmp/xyz.lint
ansitape r /tmp/xyz.lint
rm /tmp/xyz.lint

When reading, this option causes the extracted files to be sent to
std.out instead of to a disk file.

a The tape should be read or written with the ASCII character set. This
is the default.

e The tape should be written with the EBCDIC character set. The map­
ping is the same one used by the dd(lM) program with
conv-ebcdic. This option is automatically enabled if IBM• format
labels are selected.

i Use IBM format tape labels. The IBM format is similar but not ident­
ical to the ANSI standard. The major difference is that the tape will
contain no HDR3 or HDR4 records and restricts the names of the files
on the tape to 17 characters. This option automatically selects the
EBCDIC character set for output. To make an IBM format label on a
tape using the ASCII character set, use the option sequence ia.

3 Do not write HDR3 or HDR4 labels. The HDR3 label is reserved for
the use of the operating system that created the file. HDR4 is for
overflow of file names longer than the 17 characters allocated in the
HDRl label. Not all systems process or ignore these labels correctly.
This switch suppresses the HDR3 and HDR4 labels when the tape will
be transferred to a system that cannot support these types of labels.

Function modifiers should be given as a separate argument to ansitape. Mul­
tiple modifiers may be specified. They must appear after the key-letter
options a hove and before any file name arguments.

mt-device
Select an alternate drive on which the tape is mounted. The default
is /dev/rmt/mtOn.

vo-vol.ume-name
Specify the name of the output volume. Normally, this defaults to
the first six characters of the login name. The string "UNIX™" is
used as the default if ansitape cannot determine the login name.

rs-record-size
Specify the output record size in bytes. This is the maximum size in
the case of variable-format files. This option also turns on the
fixed-record-format option. Thus, for variable record sizes with a
smaller maximum,

rs-record-size rf-v

must be specified. When the record size is manually given, ansitape
does not read disk files to determine the maximum record length.

12/88

ANSITAPE(l) ANSITAPE(l)

rs-r This is a variant of the rs- option. It causes ansitape to read all disk
files for record size, regardless of their size. Normally, files larger
than lOOK bytes are not scanned for record size. Using this option
also implies variable-length records.

bs-block-slze
Specify the output block size, in bytes. As many records as will fit
are written into each physical tape block. ANSI standards limit this
to 2048 bytes (the default), but more or less may be specified. Speci­
fying more may prevent some systems from reading the tape.

rf-v Record format is variable-length. In other words, they are text files.
This is the default and normally should not be changed.

rf-f Record format is fixed-length. This is usually a bad choice, and
should be reserved for binary files.

cc-i Carriage control is implied (def a ult). Unlike CLIX text files where
records are delimited by a newline character, ANSI files do not nor­
mally include the newline as part of the record. Instead, a newline
is automatically added to the record whenever the record is sent to a
printing device.

cc-f Carriage control FORTRAN. Each line is expected to start with a FOR­
TRAN carriage-control character. ansitape does not insert these char­
acters automatically, it merely marks the file as having them. This is
of limited usefulness.

cc-e Carriage control is embedded. Carriage control characters (if any)
are part of the data records. This is usually used with binary data
files.

Writing ANSI Tapes

12/88

The list of files on the command line is written to the tape. A full CLIX path
name may be specified. However, only the last path name component
(everything after the last /) is used as the file name on the tape.

Normally, regular text files are to be exchanged. ansitape reads the files one
line at a time and transfers them to the tape. The newline character at the
end of each line is removed, and the file is written in a variable-length
record format. Variable-format files have the length of the longest record
specified in a file header. Therefore, ansitape will read each input file from
disk before the file is written to tape, to determine the maximum record size.
The read is skipped if the file is more than 100,000 bytes long. The default
carriage control (implied) instructs the other host to restore the newline
character before printing the record.

If ansitape assumes that the input file is a CLIX text file (FORTRAN or
implied carriage control), it will automatically strip the CLIX newline from
the end of each record. Stripping is not done with embedded carriage control
(cc-e) files. If the size of a nontext file (cc-e) is not a multiple of the
record size, the partial record at the end will be lost.

3

ANSITAPE(l) ANSITAPE(l)

For binary files, fixed-length records should be used. VAX/VMS normally
uses a record length of 512 bytes for things like directories and executable
files, but data files may have any record length. Binary files should be
flagged for em bedded carriage control.

Reading ANSI Tapes
When reading, the input file list is presumed to be the names of files to be
extracted from the tape. The shell wildcard characters asterisk(•) and ques­
tion mark (?) may be used. Of course, they must be quoted to prevent the
shell from interpreting them before ansitape sees them.

None of the options for record format or carriage control need to be specified
when reading files. ansitape will automatically pick up this information
from the header records on the tape and run accordingly. If ansitape does
not fulfill requirements, the resulting files may be run through dd(lM).

Multivolume support
When ansitape reaches the end of a tape while reading, it requests the next
volume with the message "Mount continuation tape and push return".
However, the tape is not checked to ensure that the correct volume was
mounted.

When ansitape reaches the end of a tape it is writing, it requests the next
volume as described above. When the new volume is online, ansitape ini­
tializes it with an ANSI volume header containing a volume name generated
from the volume name of the first tape of the set. If the original name is
fewer than six characters long, it is padded to six characters with under­
scores (_). Then, the last two characters of the name are replaced by a
two-digit sequence number. For example, tap becomes tap_02, mylabl
becomes myla02, and so forth. The sequence number is the tape's position
in the set.

FILES
/dev/rmt/mt*
/dev/rmt/m8*

half-inch magnetic tape interface
quarter-inch magnetic tape interface

SEE ALSO
dd(lM) in the UNIX System V System Administrator's Reference Manual.
umask(2) in the UNIX System V Programmer's Reference Manual.

CAVEATS

4

The r (write) option cannot be used with quarter-inch archive tapes, since
these tape drives cannot backspace.

The n-th occurrence of a file cannot be requested.

File names longer than 80 characters are truncated. This is a limitation of
the ANSI labeling standard. If the tape is made without HDR3 and HDR4
labels (3 or i switch), the name is limited to 17 characters.

The record size of files transferred with embedded carriage control must be a
multiple of the block size.

12188

AS(l) AS(l)

NAME
as - common assembler

SYNOPSIS
as [option •.•] file-name

DESCRIPTION

FILES

The as command assembles the named file. The following options may be
specified in any order:

-o objftle Put the assembly output in obj file. By def a ult, the output file
name is formed by removing the .s suffix, if it has one, from
the input file name and appending a .o suffix.

-Farg

-n

Arg is the string ct, cl, or cl. This option controls the gen­
eration of instruction fixups required for the CLIPPER ClOO,
C200, and C300 processors. The fixups are upward­
compatible but not downward-compatible. For example, code
generated for ClOO will run on the other two processors, but
code generated for C200 or C300 will not execute on ClOO
processors. If downward compatibility is not required and
the program is compute-intensive, removing instruction
fixups may improve performance.

Turn off long/short address optimization. By default,
addresses are optimized.

-m Run the m4(1) macro processor on the assembler input.

-R Remove (unlink) the input file after assembly is complete.

-d.l Do not produce line number information in the object file.

-V Write the version number of the assembler being run on the
standard error output.

-Y [md],dlr Find the m4(1) preprocessor (m) and/or the file of predefined
macros (d) in directory dlr instead of in the customary place.

$TMPDIR/• temporary files

$TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR (see tmpnam(3S)).

SEE ALSO

NOTES

12/88

cc(l), ld(l), a.out(4).
m4(1), nm(l), strip(l), tmpnam(3S) in the UNIX System V Programmer's
Reference Manual.

When possible, the assembler should be accessed through a compilation sys­
tem interface program (such as cc(l)).

1

AS(l) AS(l)

WARNINGS

BUGS

If the -m (m.4(1) macro processor invocation) option is used, keywords for
m.4(1) cannot be used as symbols (variables, functions, or labels) in the
input file since m.4(1) cannot distinguish assembler symbols from real m.4(1)
macros.

The .align assembler directive may not work in the .text section when
optimization is performed.

CAVEATS

2

Arithmetic expressions may only have one forward-referenced symbol per
expression.

12/88

BACKUP{t) BACKUP(!)

NAME
backup - incremental file system backup

SYNOPSIS
/etc/back.up [key [argument ...] file-system]

DESCRIPTION
lxzckup copies to magnetic tape all files changed after a certain date in the
file-system. The key specifies the date and other options about the backup.
Key consists of characters from the set 0123456789fusd.Wnbc.

0-9 This is the backup level. All files modified since the last date stored in
the ftle /etc/dumpdates for the same file-system at lesser levels will
be backed up. If no date is determined by the level, the beginning of
time is assumed; thus, the option 0 causes the entire file-system to be
backed up.

f Place the backup on the next argument file instead of on the tape. If
the name of the file is-, lxzckup writes to standard output. rtc(l) can be
used with lxzckup to backup to a remote tape device.

u If the backup completes successfully, write the date of the beginning of
the backup on the file /etc/dumpdates. This file records a separate
date for each file-system and each backup level. The format of
/etc/dumpdates is readable text, consisting of one free format record
per line: file-system name, increment level and backup date.
/etc/dumpdates may be edited to change any of the fields if neces­
sary.

s The size of the backup tape is specified in feet. The number of feet
comes from the next argument. When the specified size is reached,
lxzckup will wait for reels to be changed. The default tape size is 2300
feet. A gap length of 0.8 inches is assumed for each write to the tape.

d The density of the tape, expressed in BPI, is taken from the next a--,-
ment. This is used in calculating the amount of tape used per reel. e
def a ult is 1600.

W lxzckup tells the operator what file systems need to be backed up. 1nis
information is gathered from the ftles /etc/dumpdates and
/etc/fstab. For each file system in /etc/dumpdates, lxzckup prints
the most recent backup date and level, and highlights the file systems
that should be backed up. If the W option is set, all other options are
ignored and lxzckup exits immediately.

w Resembles W, but prints only the file systems that need to be backed
up.

n When lxzckup requires operator attention, notify all of the operators in
the group "operator".

b The number of lK byte blocks written to the tape at a time comes from
the next argument. This will affect how much tape is used for gaps

12/88 1

BACKUP(l) BACKUP{l)

FILES

between writes. This number cannot exceed 10 when using
/dev/rmt/rtc• as the tape device (see rtc(l) and the f key above).

c Specify that a cartridge tape is being used. The def a ult density is 8700
BPI. The default length is 600 feet. A gap length of 0 is assumed.

If no arguments are given, the key is assumed to be 9u and a default file sys­
tem is backed up to the def a ult tape.

backup requires operator intervention on these conditions: end of tape, end of
backup, tape write error, tape open error, or disk read error (if more than a
threshold of 32 occur). In addition to alerting all operators implied by the
n key, backup interacts with the operator on backup's control terminal when
backup can no longer proceed or when something is grossly wrong. All ques­
tions backup poses must be answered by typing "yes" or "no" appropri­
ately.

Since a full backup requires much time and effort, backup checkpoints itself
at the start of each tape volume. If writing the volume fails, backup will,
with operator permission, restart from the checkpoint after the old tape has
been rewound and removed, and a new tape has been mounted.

backup informs the operator periodically of usually low estimates of the
number of blocks to write, the number of tapes the write will take, the time
until completion, and the time until the tape change. The output is verbose
so that others know that the terminal controlling backup is busy, and will be
for some time.

The recommended method of performing backups is to first start with a full
level 0 backup:

backup Oun

Next, active file systems are backed up daily, using a modified Tower of
Hanoi algorithm with this sequence of backup levels:

3254769899 ...

For the daily backups, a set of 10 tapes per backed up file system is used on
a cyclical basis. Each week, a level 1 backup is performed and the daily
Hanoi sequence repeats with 3. For weekly backups, a set of five tapes per
backed-up file system is used. The set is also used on a cyclical basis. Each
month, a level 0 backup is performed on a set of fresh tapes that is saved
permanently.

I dev I dsk/ s0u0p7 .3
/dev/rmt/Om
/etc/dumpdates
/etc/fstab
/etc/group

default file system to backup
def a ult tape unit to backup to
backup date record
backup table: file systems and frequency
to find group operator

SEE ALSO
restore(!), backup(4), fstab(4).

2 12/88

BACK:UP(l) BACK:UP(l)

DIAGNOSTICS

BUGS

12/88

backup exits with zero status on success. Startup errors are indicated with
an exit code of 1; abnormal termination is indicated with an exit code of 3.

Fewer than 32 read errors on the file system are ignored. Each reel requires
a new process, so parent processes for reels already written wait until the
entire tape is written.

backup with the W or w key does not report file systems that are not
recorded in /etc/dumpdates even if they are listed in /etc/fstab.

3

CC(l) CC(l)

NAME
cc - C compiler

SYNOPSIS
cc [option ...] file ...

DESCRIPTION
The cc command controls compilation and link editing of C and assembler
source programs. The compilation process is divided into many phases.
Each phase is invoked with appropriate arguments and options.

cc uses the high performance CLIPPER C compiler developed by Green Hills
Software under Intergraph® contract. The CLIPPER C compiler performs
optimizations not found in many other C compilers (such as the portable C
compiler).

Compilation Phases

07/89

The compilation phases and their names are largely historic. Each phase is
approximately implemented as a single command. There are a number of
options that control the invocation of each phase. Such options use key
letters to indicate a particular phase.

The phases and their key letters are:

p The preprocessor phase. This phase processes the preprocessor direc­
tives in a C source file. Preprocessor directives are given on lines
whose first character is the # symbol. The preprocessor implements
file inclusion, conditional code inclusion, macro definition, and
macro expansion (see cpp(l)).

0 (zero) The source analysis phase. This phase analyzes the (preprocessed)
source file according to the rules of the C language proper. Syntax
and semantic errors are detected here. Typically, an internal or
intermediate representation of the source file is built.

1 The code generation phase. This phase generates assembler code
from the internal or intermediate representation.

2 The code improver phase. This optional phase examines the assem­
bler code generated and attempts a number of improvements.

a The assembler phase. The assembler phase translates the assembler
code into an object (or binary) file. See as(l), the "Assembler" sec­
tion of the "Technical Programming Tutorial" in the CLIX System
Guide, and the CLIPPER User's Manual.

I The link edit phase. Startoff routines, generated objects, and stan-
dard libraries are linked together into an image file (see Zd(l)).

The CLIPPER C compiler implements the preprocessor, source analysis, and
code generation phases in one program (/lib/comp). For the options that
take a phase key letter, 0 indicates this program, and the key letters p, 1,
and 2 are ignored.

1

CC(l) CC(l)

2

The assembler (/bin/as) and link editor (/bin/ld) implement the assembler
and link editor phases, respectively.

Each input file is processed by each phase in sequence. If an error occurs in a
phase, further processing of the input file that contained the error is aban­
doned. (The assembler will not be invoked if a compiler error occurred).
Any remaining input files are compiled (or assembled), but the link edit
phase is not performed.

Command Arguments
Each argument represents an option or a file name. Many options (discussed
below) and three types of file names are understood. All file names and
options not recognized are passed on to the link editor.

File names that end with .c are considered C source programs. They are
compiled by applying the preprocessor through the assembler phases. Each
object (relocatable binary) file is left in the current directory whose name is
that of the source with .o substituted for .c. For example, compiling the file
src/prog.c results in the file prog.o in the current directory.

Similarly, file names that end with .s are considered assembler source pro­
grams. They are processed by the assembler phase. Each object file is left in
a file in the current directory whose name is that of the source with .o sub­
stituted for .s.

File names that end with .o are considered object files. They are passed
directly to the link edit phase.

If only one .c or .s file is processed and no .o files are specified, the object file
is normally deleted after the link edit phase completes. The object file is not
deleted if the link edit phase is suppressed, an error occurs during the link
edit phase, or the generated object file already existed before compilation.

The input files are processed in the left-to-right order in which they appear
on the command line. The generated object files are passed to the link edit
phase in the same order.

Options
Many options are intentionally undocumented. The undocumented options
are disabled, obsolete, or for compiler debug only. Using undocumented
options may generate poor or incorrect code. Before the description of each
option and enclosed in parentheses, there may be a restriction on the use of
the option. The option is only to be used when that restriction applies.

-B string (Obsolete; use -Y instead) See the description of -t also.

-c

Construct path names for substitute compiler, assembler, and
link editor passes by concatenating string with the suffixes
comp, as, and ld respectively. If string is empty, it is assumed
to be /lib/o.

Suppress the link edit phase of the compilation and force an
object file to be produced even if only one program is compiled.

07/89

CC(l)

07/89

-c

-D name

CC(l)

Retain comments in the preprocessor output. The default is to
strip comments from the output.

Define name to the preprocessor with the value 1. This is
equivalent to putting the following at the top of the source file:

#define name 1

-D name= string

-E

-f

-g

-ga

-I string

Define name to the preprocessor with the value string. This is
equivalent to putting the following at the top of the source file:

#define name string

See the description of-Palso.

Do not compile the program; instead, run only the preprocessor
portion of the CLIPPER C compiler and place the output on the
standard output. This is useful for debugging preprocessor
macros. When preprocessing for a purpose other than debug­
ging macros, use cpp(l) for best performance.

(Ignored) Link the object program with the floating-point inter­
preter for systems without hardware floating-point.

Cause the compiler to generate additional information needed to
use source language debuggers like sdb(l) and force the com-
piler to generate frame pointers for stack traces.

Generate a frame pointer for stack traces. -gin cc also produces
a frame pointer, but -ga does not produce the extra debugging
information.

File names in #include preprocessor directives that are not
absolute (do not start with /) are searched for in the directory
string before a default list of directories. Multiple -I options
can be specified. They will be searched in the left to right order
encountered.

-o file-name Place the executable binary output from the link edit phase in
the file named file-name. If this option is not specified, the exe­
cutable file will be named a.out. This option is ignored if -c or
-S is present.

-0 The -0 option activates Green Hills optimizers that are safe to
use on all programs, except for the loop optimizer.

-OM This option is equivalent to -0 except that it also allows the
optimizer to assume that memory locations do not change
except by explicit stores. That is, the optimizer is guaranteed
that no memory locations are 1/0 device registers that can be
changed by external hardware and no memory locations are
shared with other processes that can change them asynchro­
nously with respect to the current process. This compile time
option must be used with extreme caution (or not at all) in

3

CC(l)

-OL

-OLM

-OML

-p

-P

CC(l)

device drivers, operating systems, shared memory environ­
ments, and when interrupts (or CLIX signals) are present.

Optimize the program to be as fast as possible even if the pro­
gram must be bigger. In particular, most of the available
resources are allocated to optimizations of the innermost loops.
The -OL compile time option will perform optimizations that
may make the program faster but larger. It is counter­
productive to specify -OL on code that contains no loops or that
is rarely executed as it will make the whole program larger but
no faster. After experimenting with a program, it is possible to
discover which modules benefit from -OL and which ones do
not.

This option is equivalent to -OL and -OM.

This option is equivalent to -OLM.

Arrange for the compiler to produce code that counts the
number of times each routine is called; also, if link editing
occurs, replace the standard startoff routine by one that
automatically calls monitor(3C) at the start and arranges to
write out a mon.out file at normal termination of execution of
the object program. An execution profile can then be generated
by using pro/(1).

See the description of -E also.

Do not compile the program; instead, run just only preprocessor
portion of the CLIPPER C compiler and place the output in a
corresponding file suffixed with .i. Line control information for
the next pass of the compiler is not provided. This is useful for
debugging preprocessor macros. When preprocessing for a pur­
pose other than debugging macros, use cpp(l) for best perfor­
mance.

-S Compile the named C programs and leave the asseml>ly
language output on corresponding files suffixed with .s. The
assembler and link edit phases are suppressed.

-t [p012al] Find only the designated phase(s) in the file whose name is con­
structed by a -8 option. If an explicit -8 option is missing, -8
/lib/n is implied. The option -t "" is equivalent to -tp012.

-U name Undefine the predefined preprocessor symbol name. This is
equivalent to putting the following at the top of the source file:

#undef name

-w Suppress warning diagnostics.

-Wc,argl [,arg2 ...]
Pass the listed argument(s) argi to phase c where c is one of
[p012al].

4 07/89

CC(l)

-Xa

-Xn

07/89

CC(l)

Enable ANSI-compliant compilation. With this option enabled,
source code is compiled against the definition of the C language
presented in the draft ANSI standard. This option causes the
compiler to enforce ANSI syntax and use ANSI semantics in cases
where K&R C and ANSI C conflict. The directory
/usr/include/ansi is automatically searched for include files
and, when linking, the library /usr/lib/libansi.a is automati­
cally added to the default library list.

Turn on compile time option number n. The available compile
time options are listed below.

6 Allocate each enumerated type as the smallest size
predefined type that allows all listed values (char,
short, int, unsigned char, unsigned short, or
unsigned) to be represented. The default is to allocate
as an int.

9 Disable the local (peephole) optimizer.

18 Do not allocate programmer-defined local variables to a
register unless the variables are declared register. This
option suppresses optimizations that frustrate debuggers
and setjmp(3C).

32 Display the names of files as they are opened. This is
useful for finding out why the compiler cannot find an
include file.

37 Emit a warning when dead code is eliminated.

39 Do not move frequently used procedure and data
addresses to registers.

50 Push arguments on the stack. The default is to pass the
first two arguments in registers. This option is not
recommended because it produces a calling sequence
incompatible with the rest of the CLIX System.

54 Inform the optimizer that no memory locations can
change value asynchronously with respect to the run­
ning program. -02 sets this compile time option. (See
-02 above).

55 Make fields of type int, short, and char be signed.
The default is for all fields to be unsigned.

58 Do not put an underscore in front of the names of glo­
bal variables and procedures. This option is not recom­
mended because it produces symbols that are incompati­
ble with the rest of the CLIX System.

62 (Default) The target processor is a CLIPPER microproces­
sor.

5

CC(l)

6

74

80

81

83

84

CC(l)

(Default) The target system is CLIX System V.

Disable the code hoisting optimization. This can speed
compilation in some cases.

Allow external variables to be initialized (by turning off
extern). Ordinarily, initialized externs are an error.

(Default) Enable the va_type, va_stkarg, va_intregn,
va_dblregn, va_argnum, va_regtyp, and va_align
intrinsic functions to support varargs(5). See the
description of varargs support in the "C Language"
chapter of the CLIPPER C Reference Manual.

Generate error messages for C anachronisms. By
default, the old assignment operators (such as =+ and
=-), initialization (int i 1), and references to members
of other structures compile correctly but generate warn­
ing messages.

85 Generate .bss assembler directives for uninitialized stat­
ics. The default is to allocate initialized data.

87 Disable the optimization that deletes all code that stores
into or modifies variables that are never read from.

89 Pack structures with no space between members, even if
elements become inaccessible due to machine data align­
ment constraints.

105 Allow #define symbols to be redefined to the prepro­
cessor.

164 (Unsupported) Do not stop if a code generator abort
occurs or an "Internal Compiler Error" error message
appears. This is occasionally useful in determining the
cause of a compiler failure.

167 (Unsupported) Evaluate expressions involving only
float operands as float (not double). Do not expand
float arguments to double. Do not expand float return
values to double. This option is not recommended
because it produces code incompatible with the rest of
the CLIX System.

168 Do not move invariant floating-point expressions out of
loops.

176 Always convert computations involving floating-point
values to double. By default, the compiler tries to
shorten computations to float if the result would be the
same.

190 Assume halfword objects are not aligned.

07/89

CC(l)

FILES

07/89

191

192

193

194

195

196

197

Assume word objects are not aligned.

Assume single-precision objects are not aligned.

Assume double-precision objects are not aligned.

CC(l)

Assume word objects are aligned only to halfword
boundaries.

Assume single precision objects are aligned only to half-
word boundaries.

Assume double precision objects are aligned only to
half word boundaries.

Assume double precision objects are aligned only to
word boundaries.

-Y [p012alSILU], dirname

-Zn

-#

-##

-###

ftle.c
ftle.s
file.o

Use dirname to locate the phase(s) or directory(ies) specified by
the key letter(s). The key letters [p012al] represent the phases
described above. The additional key letters have the following
meanings:

S The directory containing the startup routines.

I The default directory searched for the #include
preprocessor directives.

L The first default library directory searched (see Zd(l)).

U The second default library directory searched (see
Zd(l)).

If the location of a phase is being specified, the new path name
for the phase will be dirnamelphasename. The exact name used
for phasename depends on the compiler driver used and the
phase involved. See FILES below. If more than one -Y option
is applied to a phase or directory, the last specification is used.

Turn off option number n. This is the reverse of the -X option.
This option is useful if a version of the compiler has an option
turned on by default and the user wants to turn it off.

(Subject to change) Print out the program name and command
line arguments as each phase is invoked.

(Subject to change) Verbose like-#, only more so.

(Subject to change) Print out the program name and command
line arguments for each phase, but do not actually invoke the
phase.

C source input file
assembler source input file
object file; generated or input

7

CC(l)

a.out
/tmp/ctm*
/usr/tmp/ctm*
/lib/cpp
/lib/comp
/bin/as
/bin/ld
/lib/crt [1 n] .o
/lib/mcrt [ln] .o
/lib/libc.a

/usr/lib/libansi.a
/usr/include/ansi/*.h

/lib/libp/lih*.a

linked output
temporary
temporary
C preprocessor cpp(1)
CLIPPER C compiler, cc
assembler, as(1)
link editor, ld(l)
runtime startoff
profiling startoff

CC(l)

standard C library; see sections (3C) and (3S) in
the UNIX System V Programmer's Reference Manual
library of ANSI C support functions
Include files containing macros and data structure
definitions specific to ANSI C.
profiled versions of libraries

SEE ALSO
adb(l), as(l), ld(l), sdb(l), exit(2).
cpp(l), prof(l), monitor(3C) in the UNIX System V Programmer's Reference
Manual.
The C Programming Language by B. W. Kernighan.
Programming in C - A Tutorial by B. W. Kernighan.
C Reference Manual by D. M. Ritchie.
The "Release Notes" appendix of the CLIPPER C Reference Manual.
The Green Hills Software Users Manual C-CLIPPER.

DIAGNOSTICS

NOTES

The diagnostics produced by C are self-explanatory. Occasional messages
may be produced by the assembler or the link editor.

By default, the return value from a C program is completely random. The
only two guaranteed ways to return a specific value are to explicitly call
exit(2) or to leave the function main() with a return expression; construct.

CAVEATS

8

If empty strings are given with the -8 or -t options, they must be specified
as separate command line arguments (e.g., -t "",not -t" ").

07/89

CHMOD(l) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file •••
chmod mode directory ...

DESCRIPTION

12/88

The permissions of the named files or directories are changed according to
mode, which may be symbolic or absolute. Absolute changes to permissions
are stated using octal numbers as follows:

chmod nnnn file •.•

N is a number from 0 to 7. Symbolic changes are stated using mnemonic
characters as follows:

chm.od xyz, ••• file •••

Xis one or more characters corresponding to user, group, or other; y is +, -,
or =, signifying permission assignment; and z is one or more characters
corresponding to permission type.

If a named file is a symbolic link, the permissions of the referenced file (or
directory) are changed, and the permissions of the symbolic link are undis­
turbed.

An absolute mode is given as an octal number constructed from the OR of
the fallowing modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7, 5, 3, or 1

1000
0400
0200
0100
0040
0020
0010
0004
0002
0001

enable mandatory locking if # is 6, 4, 2, or 0
sticky bit is turned on ((see chmod(2))
read by owner
write by owner
execute (search in directory) by owner
read by group
write by group
execute (search) by group
read by others
write by others
execute (search) by others

Symbolic changes are stated using letters that correspond both to access
classes and to the individual permissions. Permissions to a file may vary
depending on the user identification number (UID) or group identification
number (GID). Permissions are described in three sequences, each having
three characters:

User Group Other
rwx rwx rwx

1

CHMOD(l) CHMOD(l)

2

This example (meaning that user, group, and others all have read, write, and
execute permissions for a given file) demonstrates two categories for granting
permissions: the access class and the permissions themselves.
Thus, to change the mode of a file's (or directory's) permissions using chmod
symbolic method, use the following syntax for mode:

[who] operator [permission(s)], ..•

A command line using the symbolic method would appear as follows:

chmod g+rw file

This command would make allow group to read and write file.

Who can be stated as one or more of the following letters:

u User's permissions.
g Group's permissions.
o Other's permissions.
a Equivalent to ugo (all) and is the def a ult if who is omitted.

Operator can be+ to add permission to the file's mode, - to take away per­
mission, or = to assign permission absolutely. (Unlike other symbolic
operations, = has an absolute effect in that it resets all other bits.) Omitting
permission is only useful with= to remove all permissions.
Permission is any compatible combination of the following letters:

r Read permission.
w Write permission.
x Execute permission.
s User or group set-ID is turned on.
t Sticky bit is turned on.
l Mandatory locking will occur durin~ access.

Multiple symbolic modes separated by commas may be given, though no
spaces may intervene between these modes. Operations are performed in the
order given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter s is
only meaningful with u or g, and t only works with u.

Mandatory file and record locking (l) refers to a file's ability to have its
read or write permissions locked while a program is accessing that file. It is
not possible to permit group execution and enable a file to be locked on exe­
cution at the same time. In addition, it is not possible to turn on the set­
group-ID and enable a file to be locked on execution at the same time. The
following examples,

chmod g+x,+l file
chmod g+s,+l file

are, therefore, illegal uses and will elicit error messages.

Only the owner of a file or directory (or the super-user) may change a file's
mode. Only the super-user may set the sticky bit. To turn on a file's set­
group-ID, the user's own group ID must correspond to the file's and group

12/88

CHMOD(l) CHMOD(l)

execution must be set.

EXAMPLES
To deny execution permission to all, the following commands are used. The
absolute (octal) example permits only reading permissions.

chmod a-x ftl.e
chmod 444 fil.e

To enable reading and writing of a file by the group and others, use one of
the following:

chmod go=rw fil.e
chmod 066 fil.e

This causes a file to be locked during access:

ch mod + 1 ftl.e

The last two examples enable all to read, write, and execute the file; and
they turn on the set-group-ID.

chmod =rwx,g+s ftl.e
chmod 2777 fil.e

SEE ALSO
ls(l).

NOTES

12/88

chmod(2) in the UNIX System V Programmer's Reference Manual.

In a Remote File Sharing environment, a user may not have the permissions
that the output of the ls -1 command implies. For more information, see the
"Mapping Remote Users" section of Chapter 10 of the UNIX System V System
Administrator's Guide.

3

CHOWN(!) CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner fil.e •••
chown owner directory ...
chgrp group fil.e •••
chgrp group directory ...

DESCJUPTION

FILES

chown changes the owner of the files or directories to owner. The owner may
be either a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files or directories to group. The group
may be either a decimal group ID or a group name found in the group file.

Unless either command is invoked by the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000, respectively, will be
cleared.

Only the owner of a file (or the super-user) may change the owner or group
of that file.

If the named file is a symbolic link, ownerships of the link itself are
modified and the ownerships of the referenced file are undisturbed.

I etc/ passwd
/etc/group

SEE ALSO

NOTES

12188

chmod(l), group(4), passwd(4).
chown(2) in the UNIX System V Programmer's Reference Manual.

In a Remote File Sharing environment, a user may not have the permissions
that the output of the Is -I command implies. For more information see the
"Mapping Remote Users" section in Chapter 10 of the UNIX System
Administrator's Guide.

1

CI(l) CI(l)

NAME
ci - check in RCS revisions

SYNOPSIS
ci [option •..] file .••

DESCRIPTION

12/88

cl stores new revisions in Revision Control System (RCS) files. Each file
name ending in ", v" is interpreted to be an RCS file; all others are assumed to
be working files containing new revisions. cl deposits the contents of each
working file in the corresponding RCS file. If only a working file is given, cl
tries to find the corresponding RCS file in the ./RCS directory and then in the
current directory. For more details, see the File Naming section below.

For cl to work, the caller's login must be on the access list, except if the
access list is empty or the caller is the super-user or owner of the file. To
append a new revision to an existing branch, the tip revision on that branch
must be locked by the caller. Otherwise, only a new branch can be created.
This restriction is not enforced for the owner of the file unless locking is set
to strict (see rcs(l)). A lock held by another user may be broken with the
rcs(l) command.

Normally, cl checks whether the revision to be deposited is different from
the preceding one. If it is not, cl either aborts the deposit (if -q is given) or
asks whether to abort (if -q is omitted). A deposit can be forced with the -f
option.

For each revision deposited, cl prompts for a log message. The log message
should summarize the change and must be terminated with a line containing
a single "." or a <CONTROL> -D. If several files are checked in, cl asks
whether to reuse the previous log message. If the standard input is not a ter­
minal, cl suppresses the prompt and uses the same log message for all files.
See also -m.

The number of the deposited revision can be given by any of the options -r,
-f, -k., -1, -u, or -q.

If the RCS file does not exist, cl creates it and deposits the contents of the
working file as the initial revision (with a default number of 1.1). The
access list is initialized to empty. Instead of requesting the log message, cl
requests descriptive text (see -t below).

-r [rev] Assigns the revision number rev to the checked-in revision,
releases the corresponding lock, and deletes the working file.
This is the default. Rev may be symbolic, numeric, or mixed.

If rev is a revision number, it must be higher than the latest one
on the branch to which rev belongs or it must start a new
branch.

If rev is a branch rather than a revision number, the new revi­
sion is appended to that branch. The level number is obtained

1

CI(l)

-f [rev]

-k[rev]

-l[rev]

-u[rev]

-q[rev]

-ddate

-mm.sg

2

CI(l)

by incrementing the branch's tip revision number. If rev indi­
cates a nonexisting branch, the branch is created with the initial
revision numbered rev.1.

If rev is omitted, cl tries to derive the new revision number
from the caller's last lock. If the caller has locked the tip revi­
sion of a branch, the new revision is appended to that branch.
The new revision number is obtained by incrementing the tip
revision number. If the caller locked a nontip revision, a new
branch is started at that revision by incrementing the highest
branch number at that revision. The default initial branch and
level numbers are both 1.

If rev is omitted and the caller has no lock but is the owner of
the file and locking is not set to strict, the revision is appended
to the default branch (normally the trunk; see rcs(l) -b).

However, on the trunk, revisions can be appended, but not
inserted.

Forces a deposit. The new revision is deposited even it does not
differ from the preceding one.

Searches the working file for keyword values to determine its
revision number, creation date, state, and author (see co(l)),
and assigns these values to the deposited revision, rather than
computing them locally. It also generates a default login mes­
sage noting the login of the caller and the actual checkin date.
This option is useful for software distribution. A revision sent
to several sites should be checked in at these sites with the -k
option to preserve the original number, date, author, and state.
The extracted keyword values and the default log message may
be overridden with -r, -d, -s, -w, and -m.
Works like -r, except it performs an additional co(l) -1 for the
deposited revision. Thus, the deposited revision is immediately
checked out again and locked. This is useful for saving a revi­
sion although one wants to continue editing it after the checkin.

Works like -1, except that the deposited revision is not locked.
This is useful to process (compile) the revision immediately
after checkin.

Quiet mode; diagnostic output is not printed. A revision that is
not different from the preceding one is not deposited unless -f is
given.

Uses date for the checkin date and time. Date may be specified
in free format as explained in co(l). Useful for lying about the
checkin date and for-kif no date is available.

Uses the string m.sg as the log message for all revisions checked
in.

12/88

CI(l)

-nname

-Nname

CI(l)

Assigns the symbolic name name to the number of the
checked-in revision. cl prints an error message if name is
assigned to another number.

Same as -n, except that it overrides a previous assignment of
name.

-sstate Sets the state of the checked-in revision to the identifier state.
The default is Exp.

-t [txtftle] Writes descriptive text into the RCS file. (Deletes the existing
text). If txtfile is omitted, cl prompts the user for text supplied
from the standard input, terminated with a line containing a
single "." or <CONTROL> -D. Otherwise, the descriptive text is
copied from the file txtfile. During initialization, descriptive
text is requested even if -t is not given. The prompt is
suppressed if standard input is not a terminal.

-wlogln Uses login for the author field of the deposited revision. Useful
for lying about the author and for -le. if no author is available.

File Naming
Pairs of RCS files and working files may be specified in three ways (see also
the example section of co(l)).

1) Both the RCS file and the working file are given. The RCS file name
has the form pathl/workfile,v and the working file name has the
form path2/workfile, where pathll and path2/ are (possibly
different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then, the working file is assumed to be in
the current directory and its name is derived from the name of the
RCS file by removing pathl I and the suffix ", v".

3) Only the working file is given. Then cl looks for an RCS file with the
form path2/RCS/workfile,v or path2/workfile,v (in this order).

If the RCS file is specified without a path in 1) and 2), cl looks for the RCS
file first in the directory ./RCS and then in the current directory.

File Modes
An RCS file created by cl inherits the read and execute permissions from the
working file. If the RCS file exists, cl preserves its read and execute permis­
sions. cl always turns off all write permissions of RCS files.

SEE ALSO
co(l), ident(l), rcs(l), rcsclean(l), rcsdiff(l), rcsmerge(l), rlog(l), rcsfile(4),
sccstorcs(1).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS

12188

For each revision, cl prints the RCS file, the working file, and the number of
both the deposited and the preceding revision. The exit status always refers

3

CI(l)

NOTES

CI(l)

to the last file checked in and is 0 if the operation was successful or 1 other­
wise.

The caller of the command must have read/write permission for the direc­
tories containing the RCS file and the working file, and read permission for
the RCS file itself. A number of temporary files are created. A semaphore
file is created in the directory containing the RCS fl.le. ci always creates a
new RCS file and unlinks the old one. This strategy makes links to RCS files
useless.

IDENTmCATION

4

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright• 1982 by Walter F. Tichy,

12188

~i

CLH(l) CLH(l)

NAME
clh - Intergraph network clearinghouse management program

SYNOPSIS
clh [[-adur] object]
clh [-v I -bcp [arg]] -1 object

DESCRIPTION

FILES

dh provides a user interface for modifying and examining the Intergraph
clearinghouse database. If command-line arguments are not given, clh pro­
vides a menu-driven interface.

The following options are available. owned, local, and heard refer to sub­
directories under /usr/lib/nodes.

-a

-d

-u

-r

-1

-v

-b [arg]

-p [arg]

-c [arg]

Add object to the owned directory as an alias for the node name
of the local machine.

Delete object from the owned directory.

Update object in the owned directory to the current Local Area
Network (LAN) and to all LANs to which it is scoped (see clh(4)).

Copy all entries in the heard directory on the machine object to
the heard directory on the local machine.

Look up object in the local clearinghouse. The clearinghouse
directories local, heard, and owned will be searched in respec­
tive order, and the first occurrence of objef..,"t will be printed.

Print the entire contents of object.

Look up all node names associated with the specifi.ed network
address of arg.

Print the property arg in object.

Look up the address of object on the machine arg.

/usr /lib/ nodes/ owned
/usr /lib/ nodes/local
/usr/li b/ nodes/heard

well-known node name and aliases
local files used by the clearinghouse
all heard objects from the network

SEE ALSO
clh(4).
"XNS Network Programming Tutorial" in the CLIX System Guide.

01/90 1

CO(l) CO(l)

NAME
co - check out RCS revisions

SYNOPSIS
co [option ...] fil.e ..•

DESCR.IPTION

12188

co retrieves a revision from each Revision Control System (RCS) file and
stores it into the corresponding working file. Each file name ending in ",v"
is assumed to be an RCS file; all other files are assumed to be working files.
If only a working file is given, co tries to find the corresponding RCS file in
the directory ./RCS and then in the current directory. For more details, see
the File Naming section below.

Revisions of an RCS file may be checked out locked or unlocked. Locking a
revision prevents overlapping updates. A revision checked out for reading or
processing (compiling) need not be locked. A revision checked out for edit­
ing and later checkin must normally be locked. co with locking fails if the
revision to be checked out is currently locked by another user. (A lock may
be broken with the rcs(l) command.) co with locking also requires the caller
to be on the access list of the RCS file unless the caller is the file owner or the
super-user, or the access list is empty. co without locking is not subject to
access list restrictions, and is not affected by locks.

A revision is selected by options for revision or branch number, checkin
date/time, author, or state. When the selection options are applied in combi­
nation, co retrieves the latest revision that satisfies all of them. If no selec­
tion option is specified, co retrieves the latest revision on the default branch.
(Normally the trunk, see rcs(l) -b.) A revision or branch number may be
attached to any of the options -f, -1, -p, -q, -r, or -u. The options -d (date),
-s (state), and -w (author) retrieve from a single branch, the sel.ected branch,
that is either specified by -f, -1, -p, -q, -r, -u, or the def a ult branch.

A co command applied to an RCS file with no revisions creates a zero-length
working file. co always performs keyword substitution (see below).

-r [rev] Retrieves the latest revision whose number is less than or equal
to rev. If rev indicates a branch rather than a revision, the latest
revision on that branch is retrieved. If rev is omitted, the latest
revision on the default branch (see rcs(l) -b) is retrieved. Rev is
composed of one or more numeric or symbolic fields separated by
".". The numeric equivalent of a symbolic field is specified with

-l[rev]

-u [rev]

the -n option of the commands ci(l) and rcs(l).

Same as -r except that it also locks the retrieved revision for the
caller. See -r to see how revision number rev is handled.

Same as -r except that it unlocks the retrieved revision (if it was
locked by the caller). If rev is omitted, -u retrieves the latest
revision locked by the caller. If no such lock exists, it retrieves
the latest revision on the default branch.

1

CO(l)

2

-f [rev]

-p[rev]

-q[rev]

-ddate

-s.state

co<O

Forces the working file to be overwritten. Useful when used
with -q. See also the section on File Modes below.
Prints the retrieved revision on the standard output rather than
storing it in the working file. This option is useful when co is
part of a pipe.

Quiet mode; diagnostics are not printed.

Retrieves the latest revision on the selected branch whose checkin
date/time is less than or equal to date. The date and time may
be given in free format and are converted to local time. Exam­
ples of formats for date include the following:

22-April-1982, 17:20-CDT
2:25 AM, Dec. 29, 1983
Tue-PDT, 1981, 4pm Jul 21
Fri, April 16 15:52:25 EST 1982

(free format)
(output of ctime)

Most fields in the date and time may be defaulted. co determines
the defaults in the order of year, month, day, hour, minute, and
second (most to least significant). At least one of these fields
must be provided. For omitted fields with higher significance
than the highest provided field, the current values are assumed.
For all other omitted fields, the lowest possible values are
assumed. For example, the date "20, 10:30" defaults to 10:30:00
of the 20th of the current month and year. The date/time must
be quoted if it contains spaces.

Retrieves the latest revision on the selected branch whose state is
set to state.

-w ['login] Retrieves the latest revision on the selected branch that was
checked in by the user with login name wgln. If the argument
'login is omitted, the caller's login is assumed.

-jjoinlist Generates a new revision that is the join of the revisions on join­
list. Joinlist is a comma-separated list of pairs of the form
rev2:rev3, where rev2 and rev3 are (symbolic or numeric) revi­
sion numbers. For the initial such pair, revl denotes the revision
selected by the above options -r, ... , -w. For all other pairs,
revl denotes the revision generated by the previous pair. (Thus,
the output of one join becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with respect to
rev2. This means that all changes that transform rev2 into revl
are applied to a copy of rev3. This is useful if revl and rev3 are
the ends of two branches that have rev2 as a common ancestor.
If revl<rev2<rev3 on the same branch, joining generates a new
revision that is like rev3, but with all changes that lead from
revl to rev2 undone. If changes from rev2 to revl overlap
changes from rev2 to rev3, co prints a warning and includes the
overlapping sections, delimited by the lines < < < < < < <

12/88

CO(l) CO(l)

revl, =======,and>>>>>>> rev3.

For the initial pair, rev2 may be omitted. The default is the
common ancestor. If any arguments indicate branches, the latest
revisions on those branches are assumed. The -1 and -u options
l~k or unlock rev 1.

Keyword Substitution
Strings with the form $keyword$ and $keyword: ... $ embedded in the text
are replaced with strings with the form $keyword: value$, where keyword
and value are pairs listed below. Keywords may be embedded in literal
strings or comments to identify a revision.

Initially, the user enters strings with the form $keyword$. On checkout, co
replaces these strings with strings with the form $keyword: value $. If a
revision containing strings with the latter form is checked back in, the value
fields will be replaced during the next checkout. Thus, the keyword values
are automatically updated at checkout.

Keywords and their corresponding values are as follows:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in.

$Header$ A standard header containing the full path name of the RCS
tile, the revision number, the date, the author, the state, and
the locker (if locked).

Id Same as $Header$ except that the RCS file name has no path.

$Locker$ The login name of the user who locked the revision (empty if
not locked).

Log The log message supplied during checkin, preceded by a header
containing the RCS tile name, the revision number, the author,
and the date. Existing log messages are NOT replaced. Instead,
the new log message is inserted after $Log: ... $. This is useful
for accumulating a complete change log in a source tile.

$RCSfile$ The name of the RCS tile without path.

$Revision$ The revision number assigned to the revision.

$Source$ The full path name of the RCS tile.

$State$ The state assigned to the revision with rcs(l) -s or ci(l) -s.

File Naming
Pairs of RCS tiles and working tiles may be specified in three ways (see also
the example section).

12/88

1) Both the RCS tile and the working tile are given. The RCS tile name
has the form pathl/workfile,v and the working tile name has the
form path2/workfile, where pathl/ and path2/ are (possibly
different or empty) paths and workfile is a tile name.

3

CO(l) CO(l)

2) Only the RCS file is given. Then, the working file is created in the
current directory and its name is derived from the name of the RCS
file by removing path JI and the suffix ", v".

3) Only the working file is given. Then, co looks for an RCS file with
the form path2/RCS/workfil.e,v or path2/workfil.e,v (in this order).

If the RCS file is specified without a path in 1) and 2), co looks for the RCS
file first in the directory ./RCS and then in the current directory.

File Modes
The working file inherits the read and execute permissions from the RCS file.
In addition, the owner write permission is turned on, unless the file is
checked out unlocked and locking is set to strict (see rcs(l)).
If a file with the name of the working file exists and has write permission, co
aborts the checkout if -q is given or asks whether to abort if not. If the
existing working file is not writable or -f is given, the working file is deleted
without asking.

EXAMPLES
Suppose the current directory contains a subdirectory RCS with an RCS file
io.c,v. Then, all of the following commands retrieve the latest revision
from RCS/io.c, v and store it in io.c.

co io.c;
co io.c,v;
co io.c io.c,v;
co io.c, v io.c;

co RCS/io.c,v;
co io.c RCS/io.c,v;
co RCS/io.c,v io.c;

SEE ALSO
ci(l), ident(l), rcs(l), rcsclean(l), rcsdiff(l), rcsmerge(l), rlog(l), rcsfile(4),
sccstorcs(l).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS

NOTES

The RCS file name, the working file name, and the revision number retrieved
are written to the diagnostic output. The exit status always refers to the last
file checked out and is 0 if the operation was successful or 1 otherwise.

The caller of the command must have write permission in the working direc­
tory, read permission for the RCS file, and either read permission (for read­
ing) or read/write permission (for locking) in the directory that contains the
RCS file.

A number of temporary files are created. A semaphore file is created in the
directory of the RCS file to prevent simultaneous update.

WARNINGS

4

The option -d gets confused in some circumstances, and accepts no date
before 1970.

12/88

CO(l)

BUGS

CO(l)

Links to the RCS and working files are not preserved.

The expansion of keywords cannot be suppressed except by writing them

differently. In nroff and troff, this is done by embedding the null-character

"\&"in the keyword.

The option -j does not work for files that contain lines with a single ".".

IDENTIFICATION

12/88

Author: Walter F. Tichy,
Purdue University, West Lafayette IN, 47907.
Copyright o 1982 by Walter F. Tichy.

5

COMPR.ESS(l) COMPR.ESS(l)

NAME
compress, uncompress, zcat - compress and expand data

SYNOPSIS
compress [-f] [-v] [-c] [-V] [-d] [-b maxbits] [file ...]
uncompress [-f] [-v] [-c] [-V] [file •••]
zcat [-V] [file •••]

DESCR.IPTION

12/88

compress reduces the size of the named files using adaptive Lempel-Ziv cod­
ing. Whenever possible, each file file is replaced by one with the form file.Z,

while keeping the same ownership modes, access and modification times. If
no files are specified, the standard input is compressed to the standard out­
put. Compressed files can be restored to their original form using
uncompress, zcat, or compress -d.

The -f option forces compression of file. This is useful for compressing an
entire directory, even if some of the files do not actually shrink. If -f is not
given and compress is run in the foreground, the user is prompted as to
whether an existing file should be overwritten.

The -c option makes compress and uncompress write to the standard output;
no files are changed. The nondestructive behavior of zcat is identical to that
of uncompress -c.

compress uses the modified Lempel-Ziv algorithm popularized in "A Tech­
nique for High Performance Data Compression", Terry A. Welch, IEEE Com­
puter, vol. 17, no. 6 (June 1984), pp. 8-19. Common substrings in the file
are first replaced by 9-bit codes 257 and up. When code 512 is reached, the
algorithm switches to 10-bit codes and continues to use more bits until the
limit specified by the -b flag is reached (def a ult 16). Maxbits must be
between 9 and 16. The default can be changed in the source to allow
compress to be run on a smaller machine.

After the maxbits limit is attained, compress periodically checks the
compression ratio. If it is increasing, compress continues to use the existing
code dictionary. However, if the compression ratio decreases, compress dis­
cards the table of substrings and rebuilds it from scratch. This allows the
algorithm to adapt to the next "block" of the file.

Note that the -b flag is omitted for uncompress, since the maxbits parameter
specified during compression is encoded within the output, along with a
magic number to ensure that neither decompression of random data nor
recompression of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the
number of bits per code, and the distribution of common substrings. Typi­
cally, text such as source code or English is reduced by 50-60%. Compres­
sion is generally much better than that achieved by Huffman coding or adap­
tive Huff man coding, and takes less time to compute.

1

COMPJtESS(l) COMPJtESS(l)

Under the -v option, a message is printed yielding the percentage of reduc­
tion for each file compressed.
If the -V option is specified, the current version and compile options are
printed on std.err.

DIAGNOSTICS

BUGS

2

Exit status is normally O; if the last file is larger after (attempted) compres­
sion, the status is 2; if an error occurs, exit status is 1.
Usage: compress [-dfvcV] [-b maxbits] [file ...]

Invalid options were specified on the command line.
Missing maxbits

Maxblts must follow -b.

fl.le: not in compressed format
The file specified to uncompress has not been compressed.

fl.le: compressed with xx bits, can only handle yy bits
File was compressed by a program that could deal with a larger
maxblts than the compress code on this machine. Recompress the file
with smaller maxblts.

fl.le: already has .z suffix - no change
The file is assumed to be already compressed. Rename the file and
try again.

ft"IA6: filename too long to tack on .Z
Fl"U6 cannot be compressed because its name is longer than 12 charac­
ters. Rename and try again.

ft"IA6 already exists; do you wish to overwrite (y or n)?
Respond "y" if the output file should be replaced; "n" if not.

uncompress: corrupt input
A SIGSEGV violation was detected which usually means that the
input file has been corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for
-v.)

- not a regular file: unchanged
When the input file is not a regular file, (e.g., a directory), it is left
unaltered.

- has xx other links: unchanged
The input file has links; it is left unchanged. See Zn(l) for more
information.

- file unchanged
No savings are achieved by compression. The input remains virgin.

Although compressed files are compatible between machines with large
memory, -b12 should be used for file transfer to architectures with a small

12/88

COMPJtESS(l) COMPJlESS(l)

12/88

process data space (64K bytes or less, as exhibited by the DEC™ PDP™
series, the Intel 80286, etc.)

3

CPPLOP(l) CPPLOP(l)

NAME
cpflop - copy floppy disk

SYNOPSIS
cpflop [-ls] [-n numcoples]

DESCRIPTION

FILES

cpftop duplicates a floppy disk using a single floppy drive. In the default
operation mode, with no command line parameters or input/output redirec­
tion, cpftop copies one floppy to another, prompting for insertion of the
source and destination floppies. If std.in is a terminal or /dev/null, cpftop
assumes that the source for the copy is a floppy and prompts for the source
disk to be inserted. Std.out is investigated in the same way to determine the
destination of the copy. If the file is not a terminal or /dev/null, the file
associated with std.in and/or stdout is accessed instead of the floppy. No
prompt is issued for devices other than floppy.

The options supported are as follows:

-1 Floppy is low density (720 blocks).

-n numcoples Numcoples is the number of copies of the source floppy to

-s

make.

No prompting for floppy insertion. This option is not valid if
both the source and destination are floppies. The -s option
assumes that the amount of data involved can be contained
on one floppy.

I dev /rdsk/floppy

CAVEATS

12/88

cpjlop does not support multiple-sequenced volumes. It transfers a max­
imum of 2400 blocks (720 for low density) from the source to the destina­
tion, repeating this action with the same source data if multiple copies are
requested.

1

CPIO(l) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o [acBvV] [-C bufsiz.e] [[--0 file] [-M message]]

cpio -i[Bcdm.rtuvV f sSb6k] [-C bu/size] [[-I file] [-M message]]
[pattern ...]

cpio -p [adlmuvV] directory

DESCR.IPTION

12/88

cpio -o (copy out) reads the standard input to obtain a list of path names
and copies those files on the standard output with path name and status
information. Output is padded to a 512-byte boundary by def a ult.

cpio -i (copy in) extracts files from the standard input, which is assumed to
be the product of a previous cpio -o. Only files with names that match pat­
terns are selected. Patterns are regular expressions given in the file name
generating notation of sh(l). In patterns, meta-characters 1, •, and [...]
match the slash (/) character, and backslash (\) is an escape character. A !
meta-character means NOT. (For example, the !abc• pattern excludes all files
that begin with abc.) Multiple patterns may be specified and if no patterns
are specified, the default for patterns is• (select all files). Each pattern must
be enclosed in double quotes; otherwise, the name of a file in the current
directory is used. Extracted files are conditionally created and copied in the
current directory tree based on the options described below. The permissions
of the files will be those of the previous cpio -o. The file owner and group
will be the current user's unless the user is super-user, which causes cpio to
retain the file owner and group of the previous cpio -o.

If cpio -i tries to create a file that exists and the existing file is the same age
or newer, cplo will output a warning message and not replace the file. (The
-u option can be used to unconditionally overwrite the existing file.)

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied in the destination directory tree
based on the options described below.

The meanings of the available options are as follows:

-a Reset access times of input files after they have been copied.

-b

-8

Access times are not reset for linked files when cpio -pla is
specified.

Reverse the order of the bytes within each word. Use -b only
with the -i option.

Input/output is to be blocked 5,120 bytes to the record. The
default buffer size is 512 bytes when this option and the -C
option are not used. (-8 does not apply to the pass option; -8
is meaningful only with data directed to or from a character
special device, e.g., /dev/rmt/Om.)

1

CPIO(l) CPIO(l)

-c Write header information in ASCil character form for portabil­
ity. Always use this option when origin and destination
machines are different types.

-C bu/size Input/output will be blocked bu/size bytes to the record, where
bufsize is replaced by a positive integer. The default buffer size
is 512 bytes when this and -8 options are not used. -C does
not apply to the pass option; -C is meaningful only with data
directed to or from a character special device (e.g.,
/dev/rmt/Om.)

-d Directories will be created as needed.

-f Copy all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

-I file Read the contents of file as input. If file is a character special
device, when the first medium is full, replace the medium and
type a carriage return to continue to the next medium. Use
only with the -i option.

-k Attempt to skip corrupted file headers and 1/0 errors that may
be encountered. To copy files from a medium that is corrupted
or out of sequence, this option lets only files with good headers
be read, (For cpio archives that contain other cpio archives, if
an error is encountered, cpio may terminate prematurely. cpio
will find the next good header, which may be for a smaller
archive, and terminate when the smaller archive's trailer is
encountered.) Used only with the -i option.

-1 When possible, link files rather than copying them. Usable
only with the -p option.

-m Retain previous file modification time. This option is
ineffective on directories and symbolic links that are being
copied.

-M message Define a message to use when switching media. When using the
-0 or -I options and specifying a character special device, this
option can be used to define the message printed when reaching
the end of the medium. One %d can be placed in the message
to print the sequence number of the next medium needed to
continue.

-0 file Direct the output of cpio to file. If file is a character special
device, when the first medium is full, replace the medium and
type a carriage return to continue to the next medium. Use
only with the -o option.

-r Interactively rename files. If the user types a null line, the file
is skipped. If the user types a"," the original path name will
be copied. (Not available with cpio -p.)

2 12/88

•

CPIO(l) CPIO(l)

-s

-s

-t

-a

-v

-V

-6

Swap bytes within each half word. Use only with the -1
option.

Swap halfwords within each word. Use only with the -1
option.

Print a table of contents for the input. No files are created.

Copy unconditionally. (Normally, an older file will not
replace a newer file with the same name.)

Verbose. Print a list of file names. When used with the -t
option, the table of contents resembles the output of an ls -1
command (see Zs(l)).

Special verbose. Print a dot for each file seen. This assures the
user that cpio is working without printing all file names.

Process an old (i.e., UNIX System Sixth Edition format) file.
Use only with the -i option.

If cpio reaches the end of medium (such as end of a tape), when writing to
(-o) or reading from (-i) a character special device and -0 and -I are not
used, cpio will print the message:

If you want to go on, type device/file name when ready.

To continue, the medium must be replaced and the character special device
name (such as /dev/rmt/Om) and a carriage return typed. The user may
want to continue by directing cpio to use a different device. For example, if
two tape drives are available, it may be desirable to switch between them so
cpio can proceed while tapes are being changed. (A carriage return alone
causes the cpio process to exit.)

EXAMPLES

12/88

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the files
so they can be directed (>) to a single file (• .lnewfi.le). The -c option
ensures that the file can be ported to other machines. Instead of Zs(l),
fi.nd(l), echo(l), or cat(l) could be used to pipe a list of names to cpio. Out­
put could be directed to a device instead of a file.

ls I cpio -oc > . .lnewfi.le

cpio -i uses the output file of cpio -o (directed through a pipe with cat in
the example), extracts the files that match the patterns (memo/al,
memo/b•), creates directories below the current directory as needed (-d
option), and places the files in the appropriate directories. The -c option is
used when the file is created with a portable header. If no patterns were
given, all files from newfi.le would be placed in the directory.

cat newfi.le I cpio -icd •memo/at• •memo/I>*•

cpio -p copies or links (-1 option) the file names piped to it to another direc­
tory (newdir in the example). The -d option says to create directories as
needed. The -m option says to retain the modification time. (It is important

3

CPIO(l) CPIO(l)

to use the -depth option of jind(l) to generate path names for cpio. This
eliminates problems cplo could have trying to create files under read-only
directories.)

find • -depth -print I cpio -pdlmv newdir

SEE ALSO

NOTES

4

find(l), ls(l), scpio(l).
sh(l), tar(l), ar(4), cpio(4) in the UNIX System V Programmer's Reference
Manual.
cat(l), echo(l) in the UNIX System V User's Reference Manual.

cplo assumes four-byte words.

Path names are restricted to 256 characters.

Only the super-user can copy special files.

Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters, and the user is
not root, the file will not be saved or restored.

12/88

•

CRM(l) CRM(l)

NAME
crm - CLIX Resource Monitor

SYNOPSIS
/usr/ip32/crm/crm.sh

/usr/ip32/crm/crm.server

DESCRIPTION
crm, the CLIX Resource Monitor (CRM), invokes a menu-driven interface for
monitoring the CLIX operating system. crm monitors either the system as a
whole or individual processes and provides either alphanumeric displays
based on the curses facilities or graphics displays based on Environ V facili­
ties. On a graphics system, typing the first line of the synopsis invokes crm
from the command line. The second line is used to invoke crm on a non­
graphics system.

The initial crm window allows access to online instructions for using crm,
entering the System Monitor and Process Monitor menus, or exiting crm.
Use arrow keys to scroll through the choices and <RETURN> to execute.
The following describes the choices available:

Instructions

System Monitors

Process Monitors

Exit

Explain how to use the crm labels at the bottom of
the crm window, menus, and forms.

Provide information about the system in areas such as
1/0 activity and file, memory, and CPU use. crm pro­
vides the following system monitors:

Monitor Parameters (monparam(l))
Top Fault Monitor (topfault(l))
Top Memory Monitor (topmem.(l))
Top CPU Monitor (topcpu(l))
Top 1/0 Monitor (toplo(l))
Top Sys Monitor (topsys(l))
Show Open Files (showfiles(l))
Show Memory Usage (showmem.ory(1))

Provide the capability to profile a process and show
its paging, 1/0, system call, and instruction execution.
crm provides the following process monitors:

Profiler (watcher(1))
Memory Monitor (monregion(l))
Process Monitor (monproc(l))

Exit crm.

System Monitors

01/90

Each of the system monitors can be executed from the crm menus or from
the command line by entering the command in parentheses. However, the
only way to execute these monitors (except topsys(l)) in graphics-based for­
mat is from the command line. topsys(l) displays only in graphics-based

1

CltM(l) CltM(l)

2

format.

The following choices are available from the System Monitor menu:

Change Defaults
The change defaults menu option allows the user to change the
defaults for the remaining menu options.

The following defaults can be changed:

Sample Interval Specify how frequently the monitor samples and
displays information.

Input File Read the data from the input file. The input file
must have been previously created as a crm out­
put file. A - for the input file reads input from
stdin.

Output File Direct output to the output file. A - for the out­
put file directs output to stdout.

Graphic Windows Invoke graphically oriented windows such as
topsys(l).

Learn Mode Display the command and options used to exe­
cute a monitor.

Separate Windows Invoke a window separate from the fmli win­
dow and run the selected process in the separate
window. ,~

Monitor Parameters ...,,_,
Execute monparam(l).

Top Fault Monitor
Execute topfault(l).

Top Memory Monitor
Execute topmem(l).

Top CPU Monitor
Execute topcpu(l).

Top VO Monitor
Execute topio(l).

Top System Monitor
Execute topsys(l).

Show Open Files
Execute showfiles(l).

Show Memory Usage
Execute showmemory(l).

Process Monitors
All crm process monitors display in curses-based format by default. How­
ever, the memory and process monitor can also display in a graphics-based

01/90

CRM(l) CRM(l)

01/90

format by selecting an option from crm menus. Select the Delete icon to exit
from graphics-based monitors; press <CONTROL>-C to exit from curses­
based Profiler and Q or X to exit from curses-based Memory and Process
monitors.

crm process monitors may be executed through the crm menus or from the
command line.

The following choices are available from the process monitor menu:

Select Process to Monitor
Before a process can be monitored, the user must specify the process
to monitor. The user can key in ps -eat the system prompt to deter­
mine the name or process ID (PIO) of processes running on the sys­
tem.

Then, to select the process to monitored, the user chooses the Select
Process to Monitor option from the main process monitor menu. A
Change Default options form appears. One of the first four fields
must be completed 'to specify which process to monitor. The rest of
the fields are optional. A brief description of each field follows:

Name of program to monitor
Allow the user to enter the process name of the process to
monitor.

PIO Allow the user to enter the PIO of an active process to moni­
tor.

program to execute
Allow the user to enter the path name (and options) of a pro­
gram to execute and monitor simultaneously.

Pre-recorded File
Allow the user to enter the file name (path name) of a previ­
ously recorded monitoring session.

Output File
Allow the user to enter the file name (path name) of a file
where the monitoring session will be recorded.

Separate Windows
Allow the user to execute a monitor in graphics-based format
when set to Y. This field applies only to the memory and
process monitors; the Profiler does not run in graphics-based
format. This option should be set to N when an attempt is
made to run Profiler; otherwise, it will not execute.

Sample Interval
Allow the user to define how frequently (in seconds) a moni­
tor will gather information and update the monitor fields.
Enter a positive number in this field. This field applies only
to the process monitor (monproc(l)).

3

CR.M(l) CR.M(l)

Learn mode
Display the command and options used to execute a monitor.

Select Profiler Options
The Profiler monitors the page faults and system calls of a specified
pberocessb. ledBeforCehthe PrSeofi

1
lerips rufin

1
, p

0
age .faultfs and syhstem ~alls must ~

ena . oose ect ro e ptions rom t e mam process,..,
monitor menu. To accept the default values for each option listed on
the Page Faults and System Calls forms, press the SAVE key
(<PF3>).

Select the Enable Page Faults option. See topfault(l) for a descrip­
tion of the Demand Zero, Swap, Cache, File, Copy on Write, and
Steal fields. The last three fields on the form are described as fol­
lows:

Starting Virtual Address
Ending Virtual Address

Allow the user to monitor faults occurring only at certain
addresses in the process. These fields allow the user to define
the section of the process in which faults will be watched.

Maximum Samples
Allow the user to define the number of samples for the moni­
tor to collect. This definition may prevent the monitor from
running indefinitely.

Select the Enable System Calls option. A description of the fields ~
follows:,,

All System Calls
Direct the Profiler to report all system calls. The default set­
ting is Y.

1/0 Direct the Profiler to ignore all system calls except for 1/0
calls. The default setting is N.

Summary Only

Run Profiler

Direct the monitor to print only a summary of system calls
when the monitoring interval is complete instead of listing
all system calls as they are encountered. The default setting
is N.

Execute watcher(l).

Run Memory Monitor
Execute monreglon(l).

Run Process Monitor
Execute monproc(l).

SEE ALSO

4

monparam(l), monproc(l), monregion(l), showfiles(l), showmemory(l),
topcpu(l), topfault(l), topio(l), topmem(l), topsys(l), watcher(l).

01/90

CJlM(l) CJlM(l)

WARNINGS
Sending raw data to a file can create a very large file.

··-

01/90 5

CSH(l) CSH(l)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS .
csh [-cefinstvVxX] [arg ...]

DESCRIPTION
csh is a first implementation of a command language interpreter incorporat­
ing a history mechanism (see History Substitutions), job control facilities
(see Jobs), interactive file name and user name completion (see File Name
Completion), and a C-like syntax.

csh begins by executing commands from the file .cshrc in the home direc­
tory of the invoker. If this is a login shell, it also executes commands from
the file .login there.

Normally, the shell will then begin reading commands from the terminal,
prompting with "% ". Argument Processing and the use of the shell to pro­
cess files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of com­
mand input is read and broken into "words", This sequence of words is
placed on the command history list and then parsed. Finally, each command
in the current line is executed.

When a login shell terminates, it executes commands from the file .logout in
the user's home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following
exceptions: the characters &, I, ; , <, >, (, and) form separate words. If
doubled in &&, II, < <, or > > these pairs form single words. These parser
metacharacters may be made part of other words, or prevented their special
meaning by preceding them with\. A newline preceded by a\ is equivalent
to a blank.

In addition, strings enclosed in matched pairs quotations,'','', or• •,form
parts of a word; metacharacters in these strings, including blanks and tabs,
do not form separate words. These quotations have semantics to be
described subsequently. Within ''or • •, a newline preceded by a\ gives a
true newline character.

When the shell's input is not a terminal, the character # introduces a com­
ment that continues until the end of the input line. It does not have this
special meaning when preceded by \ and in quotations using ' ', ' ', and • •.

Commands

12/88

A simple command is a sequence of words, with the first specifying the com­
mand to be executed. A simple command or a sequence of simple commands
separated by I characters forms a pipeline. The output of each command in a
pipeline is connected to the input of the next. Sequences of pipelines may be
separated by ; , and are then executed sequentially. A sequence of pipelines

1

CSH(l) CSH(l)

2

may be executed without immediately waiting for it to terminate by follow­
ing it with an &.
Any of the above may be placed in () to form a simple command (which
may be a component of a pipeline, etc.). Pipelines can also be separated with
II or && indicating, as in the C language, that the second is to be executed
only if the fl.rst fails or succeeds respectively. (See Expressions.)

Jobs
The shell associates a job with each pipeline. It keeps a table of current jobs
(printed by the jobs command) and assigns them small integer numbers.
When a job is started asynchronously with &, the shell prints a line that
looks like the following, indicating that the job started asynchronously was
job number 1 and had one (top-level) process with process ID 1234.

[111234

If a job is running and the user wishes to do something else, <CONTROL>-Z
may be pressed, which sends a STOP signal to the current job. The shell will
then normally indicate that the job has been "Stopped", and print another
prompt. the state of this job can then be manipulated, putting it in the
background with the bg command, or run other commands and then eventu­
ally bring the job back to the foreground with the foreground command fg.
A <CONTROL>-Z takes effect immediately and, like an interrupt, pending
output and unread input are discarded when it is typed.

A job running in the background will stop if it tries to read from the termi­
nal. Background jobs are normally allowed to produce output, but this can
be disabled by giving the command stty tostop. If this tty option is set,
background jobs will stop when they try to produce output as they do when
they try to read input.

Jobs in the shell can be referred to in several ways. The character % intro­
duces a job name. To refer to job number 1, it can be named %1. Naming a
job brings it to the foreground; thus, %1 is a synonym for fg %1, bringing
job 1 to the foreground. Similarly, saying %1 & resumes job 1 in the back­
ground. Jobs can also be named by prefixes of the string typed to start them
if these prefixes are unambiguous; thus, %e:x: would normally restart a
suspended ex(l) job, if only one suspended job's name began with the string
"ex". Saying 'l?strlng, which specifies a job whose text contains string if
only one such job exists, is also possible.

The shell maintains a status of the current and previous jobs. In output per­
taining to jobs, the current job is marked with a+ and the previous job with
a -. The abbreviation 'I+ refers to the current job and %- refers to the
previous job. For close analogy with the syntax of the history mechanism
(described below), '1% is also a synonym for the current job.

Status Reporting
This shell learns immediately when a process changes state. It normally
informs the user when a job becomes blocked so that no further progress is
possible. However, this information is only received just before it prints a

12/88

CSH(l) CSH(l)

prompt. This is done so that it does not otherwise disturb the user's work.

If, however, the shell variable notify is set, the shell will notify the user

immediately of changes of background job status. Also, a shell command,

notify, marks a single process so that its status changes will be immediately

reported. By default, notify marks the current process; simply entering

notify after starting a background job marks it.

When trying to leave the shell while jobs are stopped, the user will be

warned that "You have stopped jobs." The jobs command may be used to

see what they are. If the user does this or immediately tries to exit again,

the shell will not give a second warning, and the suspended jobs will be ter­

minated.

File Name Completion

12/88

When the file name completion feature is enabled by setting the shell vari­

able filec (see set), csh will interactively complete file names and user names

from unique prefixes when they are input from the terminal followed by the

escape character (the <ESC> key, or <CONTROL>-[). For example, if the

current directory contains the following:

DSC.OLD bin cmd
DSC.NEW chaos net cm test
bench class dev

and the input is

% vi ch<ESC>

lib
mail
mbox

xmpl.c
xmpl.o
xmpl.out

csh will complete the prefix "ch" to the only matching file name chaosnet,

changing the input line to the following:

% vi chaosnet

However, given

% vi D<ESC>

csh will only expand the input to

% vi DSC.

and will sound the terminal bell to indicate that the expansion is incomplete,

since two file names match the prefix "D".

If a partial file name is followed by the end-of-file character (usually

<CONTROL>-D), then, instead of completing the name, csh will list all file

names matching the prefix. For example, the input

% vi D<CONTROL>-D

causes all files beginning with "D" to be listed:

DSC.NEW DSC.OLD

while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand partial

user names if the word to be completed (or listed) begins with the character

3

CSH(l)
CSH(l)

4

- For example, typing
cd -ro <CONTROL> -D

may produce the expansion
cd-root

The use of the terminal bell to signal errors or multiple matches can be inhi­
bited by setting the variable nobeep.
Normally, all tiles in the directory are candidates for name completion. Files with certain suffixes can be excluded from consideration by setting the variable ftgnore to the list of suffixes to be ignored. Thus, if the command

% set ftgnore - (.o .out)
was entered, then typing

% vi x<ESC>
would result in the completion to

% vi xmpl.c
ignoring the tiles xmpl.o and xmpl.oat. However, if the only completion possible requires not ignoring these suffixes, they are not ignored. In addi­tion, ftgnore does not affect the listing of tile names by <CONTROL >-D. All
tiles are listed regardless of their suffixes.

Substitutions
We now describe the various transformations the shell performs on the input in the order in which they occur.

History Substitutions
History substitutions place words from previous command input as portions of new commands, making it easy to repeat commands, repeat arguments of a previous command in the current command, or fix spelling mistakes in the previous command with little typing and a high degree of confidence. His­tory substitutions begin with the character! and may begin anywhere in the input stream (with the proviso that they do not nest.) This ! may be pre­
ceded by a \ to prevent its special meaning; for convenience, a ! is passed
unchanged when it is followed by a blank, tab, newline, = or (. (History substitutions also occur when an input line begins with ... This special
abbreviation will be described later.) Any input line that contains history substitution is echoed on the terminal before it is executed as it could have
been typed without history substitution.
Commands input from the terminal that consist of one or more words are
saved on the history list. The history substitutions reintroduce sequences of words from these saved commands in the input stream. The size of the his­
tory list is controlled by the history variable; the previous command is always retained, regardless of its value. Commands are numbered sequen­tially from 1.

12/88

CSH(l)

12/88

CSH(l)

For definiteness, the following output from the history command should be
considered:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *Write.c

The commands are shown with their event numbers. Using even numbers is
usually not necessary, but the current event number can be made part of the

prompt by placing an ! in the prompt string.

With the current event 13, previous events can be referred to by event
number as in ! 11, relatively as in !-2 (referring to the same event), by a
prefix of a command word as in !d for event 12 or !wri for event 9, or by a
string contained in a word in the command as in !?mic? (also referring to
event 9). These forms, without further modification, simply reintroduce the
words of the specified events, each separated by a single blank. As a special
case, U refers to the previous command; thus U alone is essentially a redo.

To select words from an event, The event specification can be followed by a:
and a designator for the desired words. The words of an input line are
numbered from 0, the first (usually a command) word being 0, the second
word (first argument) being 1, etc. The basic word designators are as fol­
lows:

0
n ...

$
CJ,
x-y
-y

•
x•
x-

first (command) word
nth argument
first argument, i.e., 1
last argument
word matched by (immediately preceding) ?s? search
range of words
abbreviates 0-y
abbreviates ... -$, or nothing if only 1 word in event
abbreviates x-$
like x• but omitting word$

The : separating the event specification from the word designator can be
omitted if the argument selector begins with a "', $, •, -, or CJ,, After the
optional word designator, a sequence of modifiers can be placed, each pre­

ceded by a:. The following modifiers are defined:

h Remove a trailing path name component, leaving the head.
r Remove a trailing .xxx component, leaving the root name.
e Remove all but the extension .xxx part.
slllrl Substitute l for r.
t Remove all leading path name components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, as in g&.
p Print the new command, but do not execute it.
q Quote the substituted words, preventing further substitu­

tions.

5

CSH(l) CSH(l)

6

x Like q, but break into words at blanks, tabs, and newlines.
Unless preceded by a g, the modification is applied only to the first
modifiable word. With substitutions, an error results when no word is
applicable.

The left-hand side of substitutions are not regular expressions in the sense of
the editors, but rather strings. Any character may be used as the delimiter
in place of/; a\ quotes the delimiter in the Zand r strings. The character &
in the right-hand side is replaced by the text from the left. A \ quotes &
also. A null Z uses the previous string either from an Z or from a contextual
scan strings in !?s?. The trailing delimiter in the substitution may be omit­
ted if a newline follows immediately as the trailing ? may in a contextual
scan.

A history reference may be given without an event specification, i.e., !$. In
this case, the previous command is being referenced unless a previous history
reference occurred on the same line. In this case, the form repeats the previ­
ous reference. Thus, !?foo?" !$ gives the first and last arguments from the
command matching ?/oo?.
A special abbreviation of a history reference occurs when the first nonblank
character of an input line is a "". This is equivalent to !:s"", providing a con­
venient short-hand for substitutions on the text of the previous line. Thus
""u, ""lib fixes the spelling of lib in the previous command. Finally, a history
substitution may be surrounded with {and } if necessary to insulate it from ~
the characters that follow. Thus, after ls -ld --paul, ! {l} a could be used
to do ls -ld -paula, while Ha would look for a command starting with la.

Quotations With Single And Double Quotes
Quoting by ' ' and • • can prevent all or some remaining substitutions.
Strings enclosed in ' ' are prevented from any further interpretation. Strings
enclosed in•• may be expanded as described below.
In both cases, the resulting text becomes (all or part of) a single word; only
in one special case (see Comm.and Substitution below) does a • • quoted
string yield parts of more than one word;'' quoted strings never do.

Alias Substitution
The shell maintains a list of aliases that can be established, displayed, and
modified by the alias and unalias commands. After a command line is
scanned, it is parsed into distinct commands and the first word of each com­
mand, left-to-right, is checked to see if it has an alias. If it does, the text
that is the alias for that command is reread with the history mechanism
available as though that command were the previous line input. The result­
ing words replace the command and argument list. If the history list is not
referred to, the argument list is unchanged.
Thus, if the alias for "ls" is "ls -1" the command ls /usr would map to ls -1
/usr; the argument list would not be disturbed. Similarly if the alias for
"lookup" was "grep I" /etc/passwd", lookup bill would map to grep bill
I etc/passwd.

12/88

CSH(l) CSH(l)

If an alias is found, the word transformation of the input text is performed

and the aliasing process begins again on the reformed input line. Looping is

prevented if the first word of the new text is the same as the old by flagging

it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax.

Thus, alias print 'pr \!•I lpr' can be done to make a command that pr's

its arguments to the line printer.

Variable Substitution

12/88

The shell maintains a set of variables. Each variable has a list of zero or

more words as a value. Some of these variables are set by the shell or

referred to by it. For instance, the argv variable is an image of the shell's

argument list, and words of this variable's value are referred to in special

ways.

The values of variables may be displayed and changed by using the set and

unset commands. Of the variables referred to by the shell, a number are

toggles; the shell does not care what their value is, only whether they are set

or not. For instance, the verl>ose variable is a toggle that causes command

input to be echoed. The setting of this variable results from the -v com­

mand line option.

Other operations treat variables numerically. The @ command permits

numeric calculations to be performed and the result assigned to a variable.

Variable values are, however, always represented as (zero or more) strings.

For numeric operations, the null string is considered to be zero, and the

second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed and before each command is exe­

cuted, variable substitution is performed as keyed by $ characters. This

expansion can be prevented by preceding the $ with a \ except within • •,

where it always occurs, and within ' ', where it never occurs. Strings quoted

by•• are interpreted later (see Command Substitution below) so $ substi­

tution does not occur there until later, if at all. A $ is passed unchanged if

followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion and are

variable expanded separately. Otherwise, the command name and entire

argument list are expanded together. Thus, the first (command) word to this

point can generate more than one word. The first word becomes the com­

mand name, and the rest become arguments.

Unless enclosed in• •or given the :q modifier the results of variable substi­

tution may eventually be command and file name substituted. Within••, a

variable whose value consists of multiple words expands to a (portion of) a

single word, with the words of the variable value separated by blanks.

When the :q modifier is applied to a substitution, the variable will expand to

multiple words with each word separated by a blank and quoted to prevent

later command or file name substitution.

7

CSH(l)

8

CSH(l)

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, referring to a variable that is not set
results in an error.

$name
${name}

$name [sel.ector]
$ {name [sel.ector] }

$#name
${#name}

$0

$number
${number}

$a

These are replaced by the words of the value of vari­
able name, each separated by a blank. Braces insulate
name from following characters that would otherwise
be part of it. Shell variables have names with up to 20
letters and digits starting with a letter. The underscore
character is considered a letter.
If name is not a shell variable but is set in the environ­
ment, then that value is returned. (But: modifiers and
the other forms given below are not available in this
case.)

May be used to select only some of the words from the
value of name. The selector is subjected to $ substitu­
tion and may consist of a single number or two
numbers separated by a-. The first word of a variable
value is numbered 1. If the first number of a range is
omitted, it defaults to 1. If the last member of a range
is omitted it defaults, to $#name. The selector • selects
all words. An empty range is not an error if the second
argument is omitted or is in range.

Gives the number of words in the variable. This is use­
ful for later use in a [selector].
Substitutes the name of the file from which command
input is being read. An error occurs if the name is not
known.

Equivalent to $argv[number].

Equivalent to $argv[•].
The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above
as may :gh, :gt and :gr. If braces appear in the command form, the
modifiers must appear within the braces. The current implementation
allows only one : modifier for each $ expansion.
The following substitutions may not be modified with: modifiers.
$?name
${?name} Substitutes the string 1 if name is set, 0 if it is not.
$10 Substitutes 1 if the current input file name is known, 0 if it is

not.

12/88

CSH(l)

$$
$<

CSH(l)

Substitutes the (decimal) process number of the (parent) shell.

Substitutes a line from the standard input, with no further
interpretation. It can be used to read from the keyboard in a
shell script.

Command And File Name Substitution

12/88

The remaining substitutions, command and file name substitution, are

applied selectively to the arguments of built-in commands. Thus, portions
of expressions not evaluated are subject to these expansions. For commands
not internal to the shell, the command name is substituted separately from
the argument list. This occurs very late, after input-output redirection is
performed, and in a child of the main shell.

Command substitution is indicated by a command enclosed in••. The out­
put from such a command is normally broken into separate words at blanks,
tabs, and newlines, with null words discarded. This text then replaces the
original string. Within • •, only newlines force new words; blanks and tabs
are preserved.

In any case, the final newline does not force a new word. Thus, a command
substitution can yield only part of a word even if the command outputs a
complete line.

If a word contains •, ? , [, or { or begins with the character -- , the word is a
candidate for file name substitution, also known as "globbing". This word
is then regarded as a pattern and replaced with an alphabetically-sorted list
of file names that match the pattern. In a list of words specifying file name
substitution, no pattern matching an existing file name results in as error,
but it is not required for each pattern to match. Only the metacharacters •,
1, and [imply pattern matching. The characters -- and { being more like
abbreviations.

In matching file names, the character • at the beginning of a file name or
immediately following a /, and the character I must be matched explicitly.
The character• matches any character string, including the null string. The
character 1 matches any single character. The sequence [...] matches any
one of the characters enclosed. Within [...], a pair of characters separated
by - matches any character lexically between the two.

The character -- at the beginning of a file name refers to home directories.
Standing alone ("-"), it expands to the invokers home directory as reflected

in the value of the variable home. When followed by a name consisting of

letters, digits, and - characters, the shell searches for a user with that name

and substitutes their home directory; thus, --ken might expand to

/usr/ken and --lten/chmach to /usr/ken/chmach. If -- is followed by

a character other than a letter or I or does not appear at the beginning of a
word, it is undisturbed.

The metanotation a{b,c,d}e is shorthand for abe ace ade. Left to right order

is preserved, and results of matches are sorted separately at a low level to
preserve this order. This construct may be nested. Thus,

9

CSH(l) CSH(l)

--src/sl/{oldl.s,ls}.c expands to /usr/src/sl/oldls.c /usr/src/sl/ls.c
whether or not these files exist with no chance of error if the home directory
for src is /usr/src. Similarly, • .l{memo,•bolr} might expand to • ./memo
• .lbolr • .lmbolr. (Note that memo was not sorted with the results of
matching •bolr.) As a special case{, }, and {}pass undisturbed.

Input/Output

10

The standard input and output of a command may be redirected with the
following syntax:

<name

<<word

> name
>!name
>&name
>&!name

>>name
>>&name
>>!name

Open file name (which is first variable, command and file
name expanded) as the standard input.
Read the shell input up to a line which is identical to word.
Word is not subjected to variable, file name or command sub­
stitution, and each input line is compared to word before any
substitutions are performed on this input line. Unless a quot­
ing\, •,',or• appears in word, variable and command substi­
tution is performed on the intervening lines, allowing \ to
quote $, \, and •. Commands that are substituted have all
blanks, tabs, and newlines preserved, except for the final new­
line, which is dropped. The resulting text is placed in an
anonymous temporary fl.le given to the command as standard
input.

The file name is used as standard output. If the fl.le does not
exist, it is created; if the fl.le exists, it is truncated and previ­
ous content is lost.

If the variable noclobber is set, the file must not exist or be a
character special fl.le (i.e., a terminal or /dev/null) or an
error results. This helps prevent accidental destruction of
files. In this case, the ! forms can be used and suppress this
check.

The forms involving & route the diagnostic output to the
specified fl.le and the standard output. Name is expanded as <
input file names are.

>>&!name Uses file name as standard output like >, but places output at
the end of the file. If the variable noclol:iber is set, then it is an ~
error for the fl.le not to exist unless one of the! forms is given.
It is otherwise similar to >.

A command receives the environment the shell was invoked in as modified
by the input/output parameters and the presence of the command in a

12/88

CSH(l) CSH(l)

pipeline. Thus, unlike some previous shells, commands run from a file of
shell commands cannot access the text of the commands by default. Instead,
they receive the original standard input of the shell. The < < mechanism
should be used to present inline data. This permits shell command scripts to
function as components of pipelines and allows the shell to block read its
input. Note that the def a ult standard input for a command run detached is
not modified to be the empty file /dev/null; rather, the standard input
remains the original standard input of the shell. If this is a terminal and if
the process attempts to read from the terminal, the process will block and
the user will be notified (see Jobs above).

Diagnostic output may be directed through a pipe with the standard output.
To do so, the form I& rather than I should be used.

Expressions

12188

A number of the built-in commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the same
precedence. These expressions appear in the @, exit, if, and while com­
mands. The following operators are available:

II && I & -- != =-- !-- <= >= < >
<< >> + • I CJ> ()

Here the precedence increases to the right, ==, ! =, =--, and !--; < =, > =,
<, and >; < < and > >; + and -; and •, I, and CJ> being, in groups, at the
same level. The ==, ! =, =--, and !-- operators compare their arguments as
strings; all others operate on numbers. The operators =-- and !-- are like
! = and == except that the right-hand side is a pattern (containing, e.g., •'s,
?'s, and instances of [...]) that the left hand operand is matched against.
This reduces the need to use the switch statement in shell scripts when only
pattern matching is needed.

Strings that begin with 0 are octal numbers. Null or missing arguments are
0. The result of all expressions are strings, which represent decimal
numbers. No two components of an expression can appear in the same word.
When adjacent to components of expressions syntactically significant to the
parser (&, I , (,) , < , >) they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions
enclosed in { and } and file inquiries of the form -z name, where l is one of
the following:

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

11

CSH(l) CSH(l)

12

The specified name is command and file name expanded and then tested for
the specified relationship to the real user. If the file does not exist or is inac­
cessible, all inquiries return false (0). Command executions succeed, return­
ing true (1), if the command exits with status 0. Otherwise, they fail,
returning false (0). If more detailed status information is required, the com­
mand should be executed outside of an expression and the variable status
should be examined.

Control Flow
The shell contains a number of commands used to regulate the flow of con­
trol in command files (shell scripts) and (in limited but useful ways) from
terminal input. These commands operate by forcing the shell to reread or
skip in its input and, due to the implementation, restrict the placement of
some of the commands.

The f oreach, switch, and while statements, and the if-then-else form of
the if statement require the major keywords to appear in a single simple
command on an input line as shown below.

If the shell's input is not seekable, the shell buffers input whenever a loop is
read and performs seeks in this internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, backward goto's will
succeed on nonseekable inputs.)

Built-in Commands
Built-in commands are executed within the shell. If a built-in command
occurs as any component of a pipeline except the last, it is executed in a sub­
shell.

alias [name [wordllst]]
If no arguments are given, prints all aliases. If just name is given,
prints the alias for name. Otherwise, assigns the specified wordllst as
the alias of name; wordllst is command and file name substituted.
Name cannot be "alias" or "unalias".

alloc Shows the amount of dynamic memory acquired, broken into used
and free memory. With any argument, shows the number of free
and used blocks in each size category. The categories start at size 8
and double at each step. This command's output may vary across
system types.

bg [%job ...]
Puts the current or specified jobs in the background, continuing them
if they are stopped.

break Causes execution to resume after the end of the nearest enclosing
f oreach or while. The remaining commands on the current line are
executed. Multilevel breaks are thus possible by writing them all
on one line.

brea::t.sw
Causes a break from a switch, resuming after the endsw.

12/88

CSH(l)

12/88

CSH(l)

case l.abel:
A l.abel in a switch statement as discussed below.

cd [name]
chdir [name]

Change the shell's working directory to directory name. If no argu­
ment is given, change to the home directory. If name is not found as
a subdirectory of the current directory (and does not begin with /,
• I or • ./), each component of the variable cdpath is checked to see if
it has a subdirectory name. Finally, if all else fails but name is a
shell variable whose value begins with/, the name is tried to see if it
is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The
remaining commands on the current line are executed.

default:
Labels the def a ult case in a switch statement. The default should
follow all case labels.

dirs Prints the directory stack. The top of the stack is at the left. The
first directory in the stack is the current directory.

echo [-n] wordlist

else
end
endif

The specified words are written to the shell's standard output,
separated by spaces, and terminated with a newline unless the -n
option is specified.

endsw See the description of the foreach, if, switch, and while state­
ments below.

eval arg ...
(As in sh(l).) The arguments are read as input to the shell and the
resulting command(s) executed in the context of the current shell.
This is usually used to execute commands generated as the result of
command or variable substitution, since parsing occurs before these
substitutions. See tset(l) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit [(expr)]
If expr is not given, the shell exits with the value of the status vari­
able. Otherwise, the shell exits with the value of the specified expr.

fg [%job ...]
Brings the current or specified jobs to the foreground, continuing
them if they are stopped.

13

CSH(l) CSH(l)

f oreach TU1.11le (wordllst)

end The variable TU1.11le is successively set to each member of wordllst and
the sequence of commands between this command and the matching
end are executed. (Both foreach and end must appear alone on
separate lines.)

The built-in command continue may be used to continue the loop
prematurely and the built-in command break may be used to ter­
minate it prematurely. When this command is read from the termi­
nal, the loop is read once, prompting with"?" before any statements
in the loop are executed. If a mistake is made while typing in a loop
at the terminal, it can be erased.

glob wordllst
Like echo, but no \escapes are recognized and words are delimited
by null characters in the output. Useful for programs that wish to
use the shell to file name expand a list of words.

goto word
The specified word is file name and command expanded to yield a
string of the form l.abel. The shell rewinds its input as much as pos­
sible and searches for a line with the form l.abel:, possibly preceded
by blanks or tabs. Execution continues after the specified line.

history [-rh] [n]
Displays the history event list. If n is given, only then most recent
events are printed. The -r option reverses the order of printout so
that the most recent is first, not the oldest. The -h option prints the
history list without leading numbers. This will produce files suit­
able for sourcing using the -h option to source.

if (ex pr) command
If the specified expression evaluates true, the single command with
arguments is executed. Variable substitution on command happens
early, when it does for the rest of the if command. Command must
be a simple command, not a pipeline, a command list, or a
parenthesized command list. Input/output redirection occurs even if
expr is false and command is not executed. (This is a bug.)

if (ex pr) then

[else if (ex pr 2) then]

[else]

endif If the specified expr is true, the commands to the first else are exe­
cuted; otherwise, if expr2 is true, the commands to the second else
are executed, and so on. Any number of else-if pairs are possible;
only one endif is needed. The else is optional. (The words else and
endif must appear at the beginning of input lines; the if must

14 12/88

CSH(l)

12188

CSH(l)

appear alone on its input line or after an else.)

jobs[-1)
Lists the active jobs. With the -1 option, it lists process IDs in addi­
tion to the normal information.

kill [-1] [-sig] [%job ...] [pid ...]
Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in <signal.h>, without the prefix "SIG"). The sig­
nal names are listed by kill -1. This command has no default.
Therefore, using only kill will not send a signal to the current job.
If the signal being sent is TERM (terminate) or HUP (hangup), the job
or process will be sent a CONT (continue) signal as well.

limit [-h] [resource] [maximum-use]
Limits the consumption by the current process and each process it
creates so that it does not individually exceed maximum-use on the
specified resource. If no maximum-use is given, the current limit is
printed; if no resource is given, all limitations are given. If the -h
flag is given, the hard limits are used instead of the current limits.
The hard limits impose a ceiling on the values of the current limits.
Only the super-user may raise the hard limits, but a user may lower
or raise the current limits within the legal range.

The resource that can currently be controlled is filesize (the largest
single file which can be created).

The maximum-use may be given as a (floating-point or integer)
number followed by a scale factor. The default scale is k or kilo­
bytes (1024 bytes). A scale factor of m or megabytes may also be
used.

For both resource names and scale factors, unambiguous prefixes of
the names suffice.

login Terminate a login shell, replacing it with an instance of /bin/login.
This method for logging off is compatible with sh(l).

logout Terminate a login shell. Especially useful if ignoreeof is set.

nohup [command]
Without a command, nohup can be used in shell scripts to ignore
hangups for the remainder of the script. Specifying a command runs
the command with hangups ignored. All processes detached with &
are effectively nohuped.

notify ['J>job •••]
Causes the shell to notify the user asynchronously when the status
of the current or specified jobs changes; normally notification is
presented before a prompt. This is automatic if the shell variable
notify is set.

15

CSH(l)

16

CSH(l)

onlntr [-]
onintr [label]

Control the action of the shell on interrupts. With no options,
onlntr restores the default action of the shell on interrupts, which is
to terminate shell scripts or to return to the terminal command input
level. The form onintr - causes all interrupts to be ignored. The
form onintr label causes the shell to execute a goto label when an
interrupt is received or a child process terminates because it was
interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts con­
tinue to be ignored by the shell and all invoked commands.

popd [+n]
Pops the directory stack, returning to the new top directory. With
an argument +n, this discards the nth entry in the stack. The ele­
ments of the directory stack are numbered from 0 starting at the top.

pushd [name]
pushd [+n]

rehash

With no arguments, pushd exchanges the top two elements of the
directory stack. Given a name argument, pushd changes to the new
directory (ala cd) and pushes the old current working directory (as
in csw) on the directory stack. With a numeric argument, rotates
the nth argument of the directory stack to be the top element and
changes to it. The members of the directory stack are numbered
from the top starting at 0.

Causes the internal hash table of the contents of the directories in the
path variable to be recomputed. This is needed if new commands are
added to directories in the path while the user is logged in. This
should only be necessary if commands are added to one of the user's
directories or if a systems programmer changes the contents of one of
the system directories.

repeat count command
The specified command, subject to the same restrictions as the com­
mand in the one-line if statement above, is executed count times. 1/0
redirections occur exactly once, even if count is 0.

set [name [[index]]-word ...]
set name- (wordllst) ...

With no options, shows the value of all shell variables. Variables
that have more than a single word as a value print as a parenthesized
word list. The form set name sets name to the null string. The form
set name-word sets name to the single word. The form set
name[index]-word sets the lndexth component of name to word;
this component must exist. The form set name-(wordlist) sets name
to the list of words in wordlist. The value is command and file name

12/88

CSH(l)

12/88

CSH(l)

expanded.

These arguments may be repeated to set multiple values in a single
set command. However, variable expansion happens for all argu­
ments before any setting occurs.

setenv [name [value]]
With no options, setenv lists all current environment variables.
When only name given, it is set to an empty string. If both name
and value are given, the value of environment variable name is set to
value, a single string. The most commonly-used environment vari­
ables USER, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path; setenv is not
needed for these.

shift [variable]
The members of argv are shifted to the left, discarding argv[1).
argv must be set and have one word or more for a value. If variable
is given, shift performs the same function on the specified variable.

source [-h] name
The shell reads commands from name. Source commands may be
nested. If they are nested too deeply, the shell may run out of file
descriptors. An error in a source at any level terminates all nested
source commands. Normally, input during source commands is not
placed on the history list; the -h option causes the commands to be
placed in the history list without being executed.

stop [%job •..]
Stops the current or specified job executing in the background.

suspend
Causes the shell to stop as if it had been sent a stop signal with
<CONTROL> -Z. This is most of ten used to stop shells started by
su(l).

switch (string)
case strl:

breaksw

default:

breabw
endsw Each case label is successively matched against the specified string,

which is first command and file name expanded. The file metachar­
acters •, ? and [...] may be used in the case labels, which are vari­
able expanded. If no labels match before a default label is found,
execution begins after the default label. Each case label and the
default label must appear at the beginning of a line. The command
breaksw causes execution to continue after the endsw. Otherwise,
control may fall through case labels and def a ult labels as in C. If

17

CSH(l)

18

CSH(l)

no label matches and there is no def a ult, execution continues after
the end.aw.

umask val.ue
The file creation mask is either displayed if no argument is given or
set to the specified val.ue. The mask is given in octal. Common
values for the mask are 002, giving all access to the group and read
and execute access to others, and 022, giving all access except no
write access for users in the group or others.

unalias -pattern
All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by unalias •. It is not an error for
nothing to be unaliased.

unhash
Using the internal hash table to speed location of executed programs
is disabled.

unlimit [-h) [resource)
Removes the limitation on resource. If no resource is specified, then
all resource limitations are removed. If -h is given, the correspond­
ing hard limits are removed. Only the super-user may use this.

unset pattern
All variables whose names match the specified pattern are removed.
Thus, all variables are removed by unset •; this has noticeably dis­
tasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose names match the specified pattern from
the environment. See the setenv command above.

wait Waits for all background jobs. If the shell is interactive, an inter­
rupt can disrupt the wait. At this time the shell prints names and
job numbers of all jobs known to be outstanding.

while (expression)

end While the specified expression evaluates to be nonzero, the commands
between the while and the matching end are evaluated. Break and
continue may be used to terminate or continue the loop prema­
turely. (The while and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for the
foreach statement if the input is a terminal.

'l>job Brings the specified job to the foreground.
'l>job &

Continues the specified job in the background.
@[name[[index])-expr)

With no options, prints the values of all shell variables. The form
@ name-expr sets the specified name to the value of expr. If the

12/88

CSH(l) CSH(l)

expression contains <, >, &, or I, this part of the expression must be
placed in (). The form @ name[index]-expr assigns the value of
expr to the index'th argument of name. Both name and its indexth
component must exist.

The operators•=, +=,etcetera are available as they are in C. The
space separating the name from the assignment operator is optional.
Spaces are, however, mandatory in separating components of expr
that would otherwise be single words.

Special postfix ++ and -- operators increment and decrement
name, respectively, e.g., @ i++.

Predefined and Environment Variables

12/88

The following variables have special meaning to the shell. Of these, argv,
cwd, home, path, prompt, shell, and status, the shell always sets. Except for
cwd and status, this setting occurs only at initialization; these variables will
not then be modified unless done explicitly by the user.

This shell copies the environment variable USER in the variable user, TERM
in term, and HOME in home and copies these back in the environment when
the normal shell variables are reset. The environment variable PATH is like­
wise handled; it is not necessary to worry about setting it other than in the
file .cshrc, as inferior csh processes will import path's definition from the
environment, and re-export it if it is changed.

argv Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, i.e., $1 is replaced by
$argv[1], etc.

cdpath

cwd

echo

filec

histchars

history

Lists alternate directories searched to find subdirectories in
chdir commands.

The full path name of the current directory.

Set when the -x command line option is given. Echoes each
command and its arguments just before it is executed. For
nonbuilt-in commands, all expansions occur before echoing.
Built-in commands are echoed before command and file name
substitution, since these substitutions are then performed
selectively.

Enable file name completion.

Can be assigned a string value to change the characters used
in history substitution. The first character of its value is the
history substitution character, replacing the default character
I. The second character replaces the character" in quick sub­
stitutions.

Can be assigned a numeric value to control the size of the his­
tory list. Any command referenced in this many events will
not be discarded. Too large values of history may run the
shell out of memory. The last executed command is always

19

CSH(l)

home

ignoreeof

mail

CSH(l)

saved on the history list.

The invoker's home directory, initialized from the environ­
ment. The file name expansion of -- refers to this variable.
Causes the shell to ignore end-of-file from input devices that
are terminals. This prevents shells from accidentally being
killed by <CONTROL >-D.
The files where the shell checks for mail. The check is done
after each command completion that results in a prompt, if a
specified interval has elapsed. The shell says "You have new
mail" if the file exists with an access time not greater than its
modify time.

If the first word of the value of mail is numeric, it specifies a
mail checking interval, in seconds, that differs from the
default, which is 10 minutes.

If multiple mail files are specified, the shell says "New mail
in name" when mail is in the file name.

noclobber As described in the Input/Output section, output redirection
is restricted to ensure that files are not accidentally destroyed
and that > > redirections refer to existing files.

noglob If set, file name expansion is inhibited. This is most useful in
shell scripts that do not deal with file names or after a list of
file names has been obtained and further expansions are not
desirable.

nonomatch If set, it is not an error for a file name expansion to not match
any existing files; rather, the primitive pattern is returned.
However, the primitive pattern still may not be malformed
(e.g., echo [still gives an error).

notify If set, the shell notifies the user of job completions asynchro­
nously. The default is to present job completions just before
printing a prompt.

path Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable,
only full path names will execute. The usual search path is.,
/bin, and /usr/bin, but this may vary from system to sys­
tem. For the super-user the def a ult search path is /etc, /bin,
and /usr/bin. A shell given neither the -c nor the -t option
will normally hash the contents of the directories in the path
variable after reading .cshrc, and each time the path variable
is reset. If new commands are added to these directories
while the shell is active, the rehash command may need to
be executed or the commands may not be found.

20 12/88

CSH(l)

prompt

savehist

shell

status

time

verbose

CSH(l)

The string printed before each command is read from interac­
tive terminal input. If a ! appears in the string it will be
replaced by the current event number unless a preceding \is
given. Default is"%". ("# "for the super-user.)

The numeric value that controls the number of entries in the
history list that are saved in -/.history when the user logs
out. Any command referenced in this many events will be
saved. During startup, the shell sources -/.history into the
history list, enabling history to be saved across logins. Exces­
sively large values of savehist will slow down the shell dur­
ing startup.

The file in which the shell resides. This is used in forking
shells to interpret files with execute bits set, but cannot be
executed by the system. (See the description of Nonbuilt-in
Command Execution below.) It is initialized to the
(system-dependent) home of the shell.

The status returned by the last command. If it terminated
abnormally, 0200 is added to the status. Built-in commands
that fail set status to 1. All other built-in commands set
status to 0.

Controls automatic timing of commands. If set, any com­
mand that takes more than this many cpu seconds will cause
a line giving user, system, and real times and a utilization
percentage, which is the ratio of user plus system times to
real time to be printed when it terminates.

Set by the -v command line option, causes the words of each
command to be printed after history substitution.

Nonbuilt-in Command Execution

12/88

When a command to be executed is not a built-in command, the shell
attempts to execute the command using execve(2). Each word in the variable
path names a directory from which the shell will attempt to execute the
command. If it is given neither a -c nor a -t option, the shell will hash the
names in these directories into an internal table so that it will only try an
exec in a directory if there is a possibility that the command resides there.
This greatly speeds command location when a large number of directories is
present in the search path. If this mechanism is turned off (through
unhash), or if the shell has a -c or -t argument, and in any case for each
directory component of path that does not begin with a I, the shell concaten­
ates with the given command name. The concatenation forms a path name
of a file that it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus, (cd ;
pwd) ; pwd prints the home directory, but the current directory is
unchanged (printing the current directory after the home directory). cd ;
pwd changes the current directory to the home directory. Parenthesized
commands are most often used to prevent chdir from affecting the current

21

CSH(l) CSH(l)

shell.

If the file has execute permission but is not an executable binary to the sys­
tem, it is assumed to be a file containing shell commands and a new shell is
spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to
the argument list to form the shell command. The first word of the alias
should be the full path name of the shell (i.e., $shell). Note that this is a
special, late occurring case of alias substitution and only allows words to be
prepended to the argument list without modification.

Argument List Processing

22

If argument 0 to the shell is -, this is a login shell. The ftag arguments are
interpreted as follows:

-b This ftag forces a "break" from option processing, causing any further
shell arguments to be treated as nonoption arguments. The remaining
arguments will not be interpreted as shell options. This may be used to
pass options to a shell script without confusion or possible subterfuge.
The shell will not run a set-user ID script without this option.

-c Commands are read from the (single) following argument that must be
present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or
yields a nonzero exit status.

-f The shell will start faster because it will neither search for nor execute
commands from the file .cshrc in the invoker's home directory.

-1 The shell is interactive and prompts for its top-level input even if it
appears to not be a terminal. Shells are interactive without this option
if their input and output are terminals.

-n Commands are parsed, but not executed. This aids in syntactic check­
ing of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to escape
the newline at the end of this line and continue onto another line.

-v Causes the verbose variable to be set. This variable causes command
input to be echoed after history substitution.

-x Causes the echo variable to be set so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set before .cshrc is executed.

-X Causes the echo variable to be set before .cshrc is executed.

After ftag argument processing, if arguments remain but no -c, -i, -s, or -t
options is given, the first argument is interpreted as the name of a command
file to be executed. The shell opens this file and saves its name for possible
resubstitution by $0. Since many systems use the standard version 6 or

12/88

CSH(l) CSH(l)

version 7 shells whose shell scripts are not compatible with this shell, the
shell will execute such a "standard" shell if the first character of a script is
not # (if the script does not start with a comment). Remaining arguments

,,..... initialize the variable argv.

~ Signal Handling

FILES

The shell normally ignores quit signals. Jobs running detached (either by &
or the bg or CJ>. • • & commands) are immune to signals generated from the
keyboard, including hangups. Other signals have the values the shell inher­
ited from its parent. The shell's handling of interrupt and terminate signals
in shell scripts can be controlled by onintr. Login shells catch the ter­
minate signal; otherwise this signal is passed on to children from the state in
the shell's parent. Interrupts are never allowed when a login shell is reading
the file .logout.

-1.cshrc
-/.login
-/.logout
/bin/sh
/tmp/sh•
I etc/ passwd

read at beginning of execution by each shell
read by login shell, after .cshrc at login
read by login shell, at logout
standard shell, for shell scripts not starting with a#
temporary file for < <
source of home directories for --name

SEE ALSO

BUGS

12/88

signal(2), sigset(2), killpg(2B), a.out(4).
termio(7S) in the CLIX Syst.em Administ.rator's Reference Manual.
sh(l), access(2), execve(2), fork(2), pipe(2), ulimit(2), umask(2), wait(2) in
the UNIX Syst.em V Programmer's Reference Manual.
environ(5) in the UNIX Syst.em V Syst.em Administ.rator's Reference Manual.

When a command is restarted from a stop, the shell prints the directory it
started in if it differs from the current directory. This can be misleading as
the job may have changed directories internally.

Shell built-in functions cannot be stopped or restarted. Command sequences
with the form a ; b ; c are also not handled gracefully when stopping is
attempted. If b is suspended, the shell will then immediately execute c.
This is especially noticeable if this expansion results from an alias. It
suffices to place the sequence of commands in 0 to force it to a subshell, i.e.,
(a; b; c).

Tty output control after processes are started is primitive; a good virtual ter­
minal interface with improved output control is needed. In a virtual termi­
nal interface much more interesting things could be done with output con­
trol.

Alias substitution is most often used to clumsily simulate shell procedures;
shell procedures should be provided rather than aliases.

Commands within loops (prompted for by "?") are not placed in the history
list. Control structure should be parsed rather than recognized as built-in

23

CSH(1) CSH(1)

commands. This would allow control commands to be placed anywhere, to
be combined with I, and to be used with & and; metasyntax.

It should be possible to use the: modifiers on the output of command substi­
tutions. All (at least more than one) : modifiers should be allowed for $
substitutions.

Implementation of the :ft.lee facility is ugly and expensive.

CAVEATS

24

Words can be no longer than 1024 characters. The system limits argument
lists to 12K characters. The number of arguments to a command that
involves file name expansion is limited to 1/6 the number of characters
allowed in an argument list. Command substitutions may substitute no
more characters than those allowed in an argument list. To detect looping,
the shell restricts the number of alias substitutions on a single line to 20.

12/88

CUMAIL(l) CUMAIL(l)

NAME
cumail - DNP mail transport program

SYNOPSIS
cumail mail-path

DESCRIPTION
cumail is the Digital Network Protocol (DNP) electronic mail facility that
allows mail to be exchanged between users on any host that supports the
VAX/VMS mail protocol.

The format of mail-path for sending mail from cumail to DECnet node reci­
pients is one of the following:

node_name :: mail-address
node_number :: mail-address
area_number.node_num'ber :: mail-address
mail-address@node_name.Com.m.Unity

mail-address is a string that is handled by the remote node to determine the
recipient. This address is passed to the remote node as a string and can cause
further routing by the remote node if supported on that node.

cumail receives the body of incoming messages in either VAX/VMS variable
record file format or Ultrix stream format and sends all outgoing mail in
variable record format. cumaild(lM) is the server that receives requests
from a cumail client,

cumail processes mail requests that contain DECnet-style addressing as part
of a recipient address. cumail depends on sendmail(l) to route local mail or
send requests to a remote recipient that does not have a DECnet address.

EXAMPLES
The following is an example of using mail(l):

mail mary vax::sally mike@node.uucp brian@vax.CommUnity

This command line uses other mailers for "mary" and "mike", It also calls
cumail with the following command to send mail to "sally" and "brian":

cumail vax::sally vax::brian

SEE ALSO
cumaild(l).

01/90 1

DBG(l) DBG(l)

NAME
dbg - symbolic debugger

SYNOPSIS
dbg [option ...] objfil

DESCRIPTION

01/90

dbg is an Intergraph-developed symbolic debugger supporting high-level
language debugging for executables derived from C and FORTRAN source
code. Executables derived from other languages can be examined and mani­
pulated, but in a symbolic or absolute disassembly mode only. dbg features
include built-in language expression parsing and evaluation for C and FOR­

TRAN, a multiple screen window display mode, conditional breakpoints,
hardware-assisted watchpoints, command-line recall, core-file debugging,
and online help.

Objfil is assumed to be an executable program file. If source-line debugging
will be performed, one or more routines in objfil should be compiled with
the -g (debug) compiler option.

When invoked, dbg will examine the symbol table of objfil and attempt to
create a process from the executable. Assuming the process creation is suc­
cessful, dbg will then open the address space of the process through the proc
file system. If the -c (core file debugging) option is specified, dbg will set the
process state according to the contents of the core(4) file. A set of commands
may be read and executed from an input file. Once these steps have been
completed, dbg is ready for command input.

Command interpretation in dbg is table-driven and supports abbreviation of
command names and options. Options are always introduced by the slash
(/)character. Argument interpretation is handled primarily by the language
expression parsers and a common expression evaluator.

Variables and expressions used during a debugging session are interpreted
according to the current high-level source language. (The current source
language setting is controlled through the language command described
below.) Syntax errors similar to those displayed by the respective language
compilers are generated for improper variable references and expressions.

High-level language expressions are the primary vehicles for formulating
requests and initiating action in dbg. Expressions are used to perform com­
mon operations such as examining variables, depositing data in variables,
and controlling the flow of debugger commands. The evaluate command is
provided for parsing and evaluating language expressions.

In addition to evaluating source language expressions involving variables
declared in the process being debugged, users can, through the declare com­
mand, create instances of local debugger variables. These variables, like
expressions, are int'erpreted in the context of the current high-level source
language. Once defined, debugger variables may be used in expressions just
as if they were variables contained within the process with one exception:

1

DBG(l) DBG(l)

local debugger variables cannot reference addresses in the address space of
the process, nor can process variables reference addresses of debugger vari­
ables. A fixed precedence order resolves name con:O.icts between process vari­
ables and local variables. Mechanisms for overriding precedence are pro-
vided. Local debug variable definitions may be removed with the unde- ~
clare command.

dbg supports iteration and ft.ow control commands in the form of built-in
while and if statements. These commands rely on the expression parsing
and evaluation for the condition portion of the command. The action por­
tion of the command can be a combination of debugger commands and
expressions.

The command-line options available are as follows:

-c corftl Set process to the state defined in corfil, which should
be a core(4) file. Open file information, shared
memory, and semaphores are not recorded.

-p path [:path ...] Define the search path for source files.

-w Display any caveat about the symbol table when the

-e

-h histftle

-P prompt

process is loaded for debugging (suppressed by
default).

Make evaluate the default dbg command.

Use histfile as the history file for this debug session.
The default is $HOME/.dbg_history.

Define the prompt for dbg.

All command-line options must precede the name of the process file to be
debugged. Arguments to the debug process must be positioned after the pro­
cess file name.

Commands

2

The following conventions are used in describing commands:

1) Permissible abbreviations for commands and options are indicated with
bolded characters.

2) Cmd-llst may be a single command or several commands enclosed in
braces { } and separated by semicolons.

break
Display the breakpoints.

break bp [, bp ...] cmd-llst
Set breakpoints.

break/ count bp [, bp ...] cmd-llst
Break on countth occurrence.

break/ delete
Delete breakpoints and confirm before deletion.

01/90

DBG(l)

01/90

DBG(l)

break/ delete
Delete breakpoints.

break/ delete/ all
Delete all known breakpoints.

break/quiet bp [, bp ...]
Do not display stop information for this breakpoint.

break/ return bp [, bp ...]
Establish a breakpoint at the last instruction of the function identified

by bp. The return value of the function will be displayed when the

break occurs.

declare
Display local variable declarations.

declare declaration [,declaration ...]
Declare the specified local debug variables. Declaration may be any

valid C or FORTRAN declaration statement. The source language used

to parse declaration is established by the language command.

evaluate
Display the succeeding data item using the type and format of the

preceding eval.uate command. The starting address is incremented

according to the data type.

evaluate expression [,expression •..]
Evaluate expression.

evaluate/type: [count] special-expression
Evaluate the contents of the address yielded from the special­

expresslon as count items of type type.

evaluate/ form.at expression
Evaluate the expression and display as form.at.

evaluate/ special expression
Evaluate the expression using the special method.

Expression may be any valid C or FORTRAN expression. Special­

expression may be an integer constant, function name, or an expression

yielding an lvalue. Type, form.at, and special may be combined to con­

trol the action of evaluate.

Type applies only to expression results that possess addresses (lvalues).

Valid type values are character, double, float, instruction, integer,

long, and short. The following rules apply to the default type used for

the display when addresses are specified as integer constants:

/instruction:l if the address is a text address

/char:l

/short:!

if the address is not on an even-byte boundary

if the address is not aligned on a four-byte boun­

dary

3

DBG(l)

4

DBG(l)

/int:l otherwise

Format controls the display of expression evaluation results. Valid
values for format are decimal, hexadecimal, octal, unsigned, and x
(same as hexadecimal). The default format is decimal.
Special options modify the behavior of evaluate as indicated:
address Examine the address, not the contents, of the given symbol.
debug Search only variables local to the debugger.
environ Change the search algorithm to check environment variables

first.

follow Modify the display algorithm to follow pointers to struc-
tures and unions.

global Change the search algorithm to check global variables first.
quiet Suppress output generated by the evaluated command.
register Change the search algorithm to check register names first. If

no expression is given, all registers are displayed.
static Change the search algorithm to check static variables first.
string Display ASCII characters until the first null byte is encoun­

tered.

symbolic Display the closest symbol plus offset (if any) for text and
data values.

type Display the type of the variable or expression. (The expres­
sion is not evaluated.)

value Echo back integer constants. (This option is useful to
display a constant using a different format.)

The default search order for looking up symbol names in expressions is
as follows: process local variables, process static variables, process glo­
bal variables, debugger variables, environment variables, and process
registers.

find Repeat the last search.

find pattern
Search for a pattern in the currently scoped source file. Pattern is a
nonempty sequence of characters delimited by any character not in the
sequence. The search begins at the current line.

find/forward
Repeat last search forward.

find/forward pattern
Search forward for a pattern.

find/backward
Repeat last search backward.

01/90

f ff t"

DBG(l) DBG(l)

find/backward pattern
Search back ward for a pattern.

find/regular pattern
Interpret pattern as a regular expression. The regular expression fol­

lows the conventions described in ed(l).

go Resume executing the process after dbg received control due to a break,

watch, signal, or user intervention.

go bp [,bp ...]
Set temporary breakpoints and continue processing.

go/pass
Continue processing; pass any pending signals to the process.

go/pass bp [, bp ...]
Pass signals, set temporary breakpoints, and continue processing.

go/ delete bp [, bp ...]
Delete specified breakpoints and continue.

go/ delete/ all
Delete all breakpoints and continue.

go/return
Continue processing; stop at the end of the current function and

display its return value.

go/return function
Continue processing; stop at the end of function and display its return

value.

help [dbg-cmd [I dbg-option ...]
Access the dbg online help facility.

if (condition) cmd-llstl
[else cmd-llst2]

If condition is true, execute cmd-llst. Otherwise, execute cmd-llst2.

The if statement is most useful when used as part of a command list

on statements such as break, watch, and step.

kill Terminate the currently active process. The currently active process

can also be killed through the run command by either restarting the

process or defining a new one.

language
Display the language setting. The language setting controls interpreta­

tion of language expressions and declarations.

language/c
Set the default language to C.

'"""" language/fortran
Set the default language to FORTRAN.

01/90 5

DBG(l)

6

DBG(l)

language/macro
Set the default language to the machine language. This affects the step
command by altering the default action from /line to /instruction
and causes symbol lookup to check for matches on register names
before process or debug variables.

process
Display information on all currently active dbg processes.

process/attach exefil
Attach to the existing process exefi.l.

process/ attach pid
Attach to the existing process whose ID is pid.

process/create exefil [args]
Create a new process under the control of dbg.

process/kill
Kill all processes using the confirmation mode.

process/kill exefil
Kill the process exeftl.

process/kill pid
Kill the process with process ID pid.

process/kilVall
Kill all processes.

quit Terminate the debugging session.

redirect file-name
Redirect the output of dbg to ftl.e-name.

redirect/ append fil.e-name.
Append the output of dbg to fi.1.e-name.

redirect/ off
Redirect the output of dbg back to stdout.

run Start or restart the process. Any previously defined arguments are
recalled.

run args
Start or restart the process, passing the argument list specified in args
to it.

run args > fi.1.e-name
Start or restart the process, passing the argument list specified in args
to it and redirecting the output to fi.1.e-name. Full shell VO redirection
syntax is supported.

run/clear
Start or restart the process, clearing any arguments previously passed.

run/clear args
Start or restart the process, passing args to it.

01/90

DBG(l)

-

01/90

DBG(l)

run/recall
Start or restart the process, recalling any previously defined arguments.

run/recall args
Start or restart the process, appending args to any previously defined
arguments.

run/new process-file
Start the process whose . text and .data reside in process-file.

run/new process-file args
Start the process whose .text and .data reside in process-file, The argu­
ment list specified in args is passed to the new process.

scope
Display the current scope setting. The current scope defines source

lines available for viewing with the type command and for searching

with the find command. When control is returned to dbg due to a

breakpoint or watch point, the scope is set to the function containing
the current program counter (PC).

scope function-name
Set scope to the specified function.

scope file-name
Set scope to the specified file.

scope •file-name •function
Set scope to function-name in file-name.

screen
Enter screen window display mode. In this mode the screen is divided

into three windows, one for source display, one for process and

debugger output, and one for command entry. The source display win­

dow contents are automatically updated based on the current scope

setting. The process/debugger output display window captures all

information displayed on the standard output and error devices by dbg

and the process being debugged. The source display window contents

may also be altered through the type and find commands.

<CONTROL>-W will switch between screen display windows.

<CONTROL>-P and <CONTROL>-N will scroll up and down, respec­

tively, in the current screen display window.

screen/ assembly
Display, in addition to the standard windows associated with the

screen command, a disassembly window. The contents of this win­

dow are updated based on the value of the PC.

screen/off
Terminate the screen window display mode.

signal
Display all signal settings. This command allows individual signals

affecting the process to be ignored by the process and/or by dbg, set so

7

DBG(l)

8

DBG(l)

that they return control to dbg (the default), or set so that they are
passed to the process without causing dbg to regain control.

signal signal [,signal ...]
Display settings of the listed signals.

signaVstop
Display all signals set to stop.

signaVstop signal [,signal ...]
Specify signals that, when caught, cause processing to stop and control
to be passed to dbg.

signaVgo
Display all signals set to be ignored by dbg and the process.

signaV go signal [,signal ...]
Specify signals to be ignored by both dbg and the process being
debugged.

signaV go/pass
Display all signals set to be ignored by dbg but passed to the process.

signaVgo/pass signal [,signal ...]
Specify signals to be ignored by dbg but passed to the process.

Signals can be specified by name or number. A range of signals can be
specified by separating signal numbers with a colon (:). Names cannot
be used in a range specifi.cation. ~

source """"""
Display the default source path. This command expands or restricts
the source fi.le directories searched for high-level language source fi.les . .. source
Delete the current source defi.nition.

source •path-name [:path-name ...] •
Set the def a ult source path.

source/append •path-name [:path-name ...] •
Append given path names to the default source path.

stack
Display a def a ult number of frames.

stack/ count
Display count frames.

stack/all
Display all frames.

stack/default
Show the default stack command. Specifi.ed with other options, this ~
command establishes those options as the default. """"""1.

step Step instructions or source lines.

01/90

DBG(l)

01/90

DBG(l)

step/count
Step count instructions or source lines.

step/line
Step to the next source line.

step/ instruction
Step to the next instruction.

step/over
Step over any function call to the next instruction or source line.

step/into
Step into any function call to the next instruction of source line.

step/quiet
Do not display source and/or instruction lines when stepping.

step/verbose
Display source and/or .instruction lines when stepping. This option can
be used to temporarily override the /quiet option.

step/ default
Display the default step command. Specified with other options, this
command will establish those options as the default. No stepping
occurs.

type Display the next source line. This assumes that the current source line
is defined. The current source line is defined and/or altered by the
type, :find, scope, and step commands and also as a result of interrup­
tion of process execution. The current source line will not be defined or
altered if the process being debugged was not compiled with the -g
(debug) switch. All forms of the type command will alter the current
source line.

type/pc
Display the source line representing the current PC.

type.
Display the current source line. The current source line may differ
from the source line representing the current PC due to prior use of the
scope, type, or :find command.

type number
Display the specified source line.

type number:number
Display a range of source lines. If the first number is omitted, it
defaults to line number 1. The second number defaults to the last
known line within the file .• can be used in either position.

type/count
Display the next count source lines.

typel-count
Display the previous count source lines. The current source line is set

9

DBG(l)

to current - count.

undeclare
Undeclare local debug variables using the confirmation mode.

undeclare variabl.e [, variabl.e ...]
U ndeclare the specified local de bug variables.

undeclare/all
Undeclare all local debug variables.

watch
Display the current watchpoint settings.

watch wp [, wp ...] cmd-list
Set watchpoints.

watch/count wp[,wp .. .] cmd-list

DBG(i)

Set watchpoints to stop on the countth modification of the memory
associated with the respective wp.

watch/type [:count] wp [, wp ...] cmd-list
Watch locations as count number of elements of data type type.

watch/ delete
Delete watchpoints using the confirmation mode.

watch/delete wp [, wp ...]
Delete watchpoints.

watch/ delete/ all
Delete all watchpoints.

watch/quiet
Do not display stop information about the specified watchpoints.

while (condition) cmd-list
While condition is true, execute the commands in cmd-list.

!command
Execute command in the default shell.

!<RETURN>
Escape to the default shell.

The default shell is defined through the environment variable SHELL.
sh(l) is used if this definition does not exist. To pass a semicolon or a
right brace (}) to the shell so it is not seen as a dbg command separa­
tor, escape it by prefixing it with a backslash(\).

Miscellaneous Features
Command-line recall and editing features are as follows:

<RETURN> Recall and execute the most recent command.

<CONTROL> -A Go to the beginning of the line.

<CONTROL >-E Go to the end of the line.

10 01/90

DBG(l)

< CONTROL>-D

<CONTROL>-P
<UP-ARROW>

<CONTROL>-K

<CONTROL>-N

DBG(l)

Delete the character the cursor is on.

Recall the previous command or scroll the window con­
tents in screen display mode.

Delete all characters to the right of the cursor.

<DOWN-ARROW> Recall the next command or scroll the window contents
in screen display mode.

<CONTROL >-B
<LEFT-ARROW> Move the cursor to the left one position.

<CONTROL>-F'
<RIGHT-ARROW> Move the cursor to the right one position.

<CONTROL>-W

< CONTROL>-V

<ESC>-V

<DELETE>

<KILL>

<EOF'>
<RETURN>
<LINE FEED>

In screen mode, switch to the next screen display win­
dow. The windows are visited in top-to-bottom order.

In screen mode, move the cursor down one page.

In screen mode, move the cursor up one page.

Delete the character to the left of the cursor.

Delete the entire line.

Designate the end of a command. dbg then executes the
line contents.

Environment Variables
DBGHISTSIZ defines the maximum number of lines written to the dbg his­
tory file. If this variable is not set, 50 is the maximum.

EXAMPLES

01/90

break main
Set a breakpoint at function main.

break @20
Set a breakpoint at line 20 of the current file.

break @•input.c•20
Set a breakpoint at line 20 of the file input.c.

break/ delete main
Delete the breakpoint set at function main.

break/10 print/
Set a breakpoint at function printf and return control to dbg every
10th time print/ is called.

break/return get_token { evaVstr token; go}
Print the return value of get_token and display token each time the
function get_token returns.

11

DBG(l)

12

DBG(l)

break read_file if (file_number !- 5) go
Break on function read_file if the variable file_number equals 5;
otherwise, continue execution. The expressions in the condition and
action portions of the if statement are executed when the break
occurs and in the scope of the function where the break occurs.

evaluate/hex i, j, k
Display the values of variables i, j, and kin hexadecimal.

evaluate/double:lO dbl_ptr
Display the contents of the 10 double precision values beginning at
the address contained in the variable dbl_ptr.

e/addr i
Display the address of the variable i.

e/he:x: stat.st_dev > > 8 & O:xff
Examine the low-order byte of the st_dev field of the stat structure.

e/reg fO - (double)l.234
Display the result of subtracting 1.234 from the floating point regis­
ter fO.

find /if (i --I
Search for the string if (i -- in the current file beginning at the
current source line.

find/back 'now is the time'
Search backward from the current line in the current file for the
string now is the time.

find/pat a[bd]•
Search for a string beginning with ab or ad in the current file.

if (i -- j + 20) go
else { break June ; go }

Continue execution if variable i exceeds variable j by 20. Otherwise,
set a breakpoint at function June and then continue execution.

run a.out > /dev/ttxOJ 2>&1
Start or restart a.out with standard output and standard error
redirected to I dev I ttxO 1.

signal/go sighup
Ignore SIGHUP in both dbg and the process.

signal/go/pass 10
If signal number 10 is received by the process, pass it to the process
without returning control to dbg.

step/def /sou/into/line
Establish the default step action to be step by source line and step
into called functions.

watch x_pos
Watch the address range associated with variable x_pos and break

01/90

··~

DBG(l)

FILES

when a write to this range occurs.

watch/double i

DBG(l)

Watch the eight-byte address range beginning at the address of i and
break when a write to this range occurs.

watch/char:20 a if (pc > main && pc < funcl) go
Watch the 20-byte address range beginning at the address associated
with variable a. Break if the PC register is not in the address range
associated with main. This effectively watches for writes to the
array a that occur outside of the function main.

while (i < 1000) step
Step until the variable i equals or exceeds 1000.

declare short *S

eval s - (short •)pc
while ((ss & OxffOO) !- Ox4500) { step/instr ; eval s =- (short •) pc }

Step from the current PC in the process until a call instruction is
encountered. (Ox4500 is the opcode for a call instruction.) When a
call instruction is found, control will be returned to dbg. This exam­
ple also illustrates the use of debugger variables.

$ dbg a.out < dbgcmds
Read commands from file dbgcmds. Input will revert to /dev/tty
when EOF is encountered in dbgcmds.

$HOME/ .d bghistory
/usr/lib/ dbg.hlp

dbg command history file
online help file

SEE ALSO

01/90

cc(l), f77(1), a.out(4).
proc(7S) in the CLIX System Administrator's Reference Manual.
sh(l) in the UNIX System V User's Reference Manual.
syms(l) in the UNIX System V Programmer's Reference Manual.
"PROC Debugging Tutorial" in the CLIX System Guide.

13

DLS(l) DLS(l)

NAME
dls - list contents of MS-DOS directory

SYNOPSIS
..-.. dls [-ad:ftm.rtFR] name •..

~ DESC:RIPTION
dls lists the directory contents for MS-DOS directories. (dls performs the

same function for MS-DOS directories as Zs(l) does for CLIX directories.) If

no directories are named on the command line, the root directory of drive a:
is assumed.

The long form of the directory listing supplies the file name; the read, hid­

den, system, volume, directory, and archive bits; the date and time of the

last file modification; the beginning File Allocation Table (FAT) entry of the

file; and the total size (in bytes) of the file.

The options supported are as follows:

-a List all entries, including hidden files, system files, • , and ••.

-d For each directory argument, list only its name, not its contents.

-f Force each argument to be interpreted as a directory and list the

name found in each entry. This option turns off -1, -t, -s, and-rand

turns on -a.

-1 List in long format.

-m Force stream output format.

-r Reverse the sort order to get reverse alphabetic (default) or oldest

first (if the -t option is specified).

-t Sort by time modified (latest first) instead of by name.

-F Mark directories with a trailing/.

-R Recursively list subdirectories encountered.

Drive a: (the floppy drive), b: (the external floppy drive for systems with

two floppy drives), or c: (the DOS partition of the hard disk) may be

accessed with this program. If no drive is specified, a: (the floppy drive) is

assumed.

EXAMPLES
dls (lists contents of a:\)

FILES

01/90

dls -al a: \foo
dls c:

/dev/dsk/fl
I dev I dsk/ufloppy
I dev I dsk/floppy
I dev I dsk/ s0u0p9 .0

default floppy device
31h inch floppy driver
514 inch floppy driver
DOS partition

1

DLS(l)

SEE ALSO
dtu(l).

2

DLS(l)

01/90

DOMNAME(l) DOMNAME(l)

NAME
domname - set or display name of current YP domain

SYNOPSIS
domname [nameofdomain]

DESCRIPTION

FILES

Without an argument, domname displays the name of the current domain.

Only the super-user can set the domain name by giving an argument.

Currently, domains are only used by the Yellow Pages (YP) to refer collec­

tively to a group of hosts.

/etc/domainname used to hold name of YP domain

SEE ALSO
ypinit(lM) in the CLIX System Administrator's Reference Manual.

12/88 1

DTU(l) DTU(l)

NAME
dtu, utd - copy between MS-DOS and CLIX

SYNOPSIS
dtu [-p] filel file2

~ dtu [-p] file ... directory
dtu [-p] file ... >file

utd [-p] file] file2
utd [-p] file ... directory
utd [-p] <file file2

DESCRIPTION
dtu copies files from MS-DOS to CLIX, and utd copies files from CLIX to MS­

DOS.

Not all CLIX file names are legal under MS-DOS. An MS-DOS file name con­

sists of eight or fewer characters and an extension of three or fewer charac­

ters. The following characters are illegal in MS-DOS file names:

?.,;:=•/\+" < >
If necessary (when using utd to copy several CLIX files to an MS-DOS direc­

tory), utd forms legal MS-DOS file names from CLIX file names. It does so by

truncating any names or extensions that are too long and changing any ille­

gal characters to @.

Normally, utd and dtu assume that text files are being copied and adjust for

the difference in end-of-line and end-of-file conventions between the two

systems. The -p flag will override this feature and cause the files to be

transferred with no interpretation.

Drive a: (the floppy drive), b: (the external floppy drive for systems with

two floppy drives), or c: (the DOS partition of the hard disk) may be

accessed with this program. If no drive is specified, a: (the floppy drive) is

assumed.

EXAMPLES
utd •.c a:\csrc
dtu !·h Ip~
dtu a:*.* . (copy root directory of drive a: to current directory)

FILES

dtu -p a:command.com binfile

/dev/dsk/fl
/dev/dsk/floppy
I dev I dsk/ufloppy
/dev/dsk/s0u0p9.0

SEE ALSO
dtu(l).

01/90

default floppy device
51,4 inch floppy driver
31h inch floppy driver
DOS partition

1

DTU(l)

NOTES

2

DTU(l)

MS-DOS path names that contain wildcards should be enclosed in quotation
marks to prevent the shell from interpreting them.

01/90

EPL(l) EPL(l)

NAME
efl - Extended FORTRAN Language

SYNOPSIS
eft. [option ...] [file ...]

DESCRIPTION

12/88

eft compiles a program written in the EFL language into clean FORTRAN on

the standard output. eft provides the C-like control constructs of ratfor(l):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case)
while, for, FORTRAN do, repeat, and repeat . . . until
loops
multilevel break and next

EFL has C-like data structures, i.e.:

struct {
integer ftags(3)
character(8) name
long real coords(2)

} table(lOO)

The language offers generic functions, assignment operators (+-, &-, etc.),

and sequentially evaluated logical operators (&& and II). It has a uniform

input/output syntax:

write(6,x,y:f(7,2), do i==l,10 { a(i,j),z.b(i)})

EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation; state­
ment label names (not just numbers)

comments:
#this is a comment

translation of relational and logical operators:
>, >-,&,etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

eft understands several option arguments: -w suppresses warning messages,

-#suppresses comments in the generated program, and the default option -C

includes comments in the generated program.

1

EFL(l) EFL(l)

An argument with an embedded - (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. A set of
defaults for a particular target machine may be selected by one of the
choices: system-un.ix, system-gcos, or system-cray. The default set­
ting of the system option is the same as the machine the compiler is running
on.

Other specific options determine the style of input/output, error handling,
continuation conventions, the number of characters packed per word, and
def a ult formats.

eft is best used with /77(1).

SEE ALSO
cc(l), f77(1), ratfor(l).

2 12/88

ERRORS(l) ERRORS(I)

NAME
errors - error logging report generator

SYNOPSIS
errors [-hnsrb] [-f file] [-z •time•] [-t •time•] [-i types] [-e types]

DESCRIPTION

01/90

errors generates a report from an error log file. The report is sent to stan­

dard output. If no options are used, errors reports all entries in

/usr/adm/errlog on the current system. Available options are as follows:

-h Display a help screen.

-n

-s

-r

-b

-f file

Report errors for a system other than the current system. errors

will prompt for the network address, user name, and password.

The error logging file for that system will be copied to
/usr/tmp/errlog on the current system. This option will not
work with-for -r.

Report the number of errors per device and per error type on a

system. This option can be used with options -n, -t, -z, and -f.

Instruct the error daemon, errord(lM), to send error messages to

the error log file and to errors for immediate display. This

option can be used with options -i, -e, and -b.

Give an abridged version of the error logging report. This option

cannot be used with -s.

Specify the log file to be used. The default is /usr/adm/errlog.
This option will not work with -n or -r.

-t •time• Specify the date and time to start the report. Time must be in

quotation marks. This option will not work with -r. These are
examples of valid times:

"yesterday 13:34"
"29-feb 1988 12:01"
"12/25/88 10:30"

-z •time• Specify the date and time to end the report. See examples above.

This option will not work with -r.

-i types Include only the error types specified by types in the report.

Valid types are device, user, panic, memory, slave, disk,
tape, floppy, ascn, scan, parallel, digitizer, timeout, secu­
rity, stray, optic, soft, retry, and hard. If multiple types are

specified, they must be separated by commas and/or spaces; if

spaces are used, the entire types string must be enclosed in quota-

1

ERRORS(!) ERRORS(!)

-e types

tion marks. This option will not work with -e or -s.

Exclude only the error types specified by types from the report.
Valid types are device, user, panic, memory, slave, disk,
tape, floppy, asycn, scan, parallel, digitizer, timeout, secu­
rity, stray, optic, soft, retry, and hard. This option will not
work with -i or -s.

EXAMPLES

FILES

The following command will report all errors in the error log file:

errors

The following will prompt the user for the system to connect to and a
username/password combination to use. That system's error log file is
placed on the current system in /usr/tmp/errlog.

errors -n -t "yesterday 12:00" -i disk,memory

/usr/ adm/ errlog
/usr/tmp/errlog

system error log file
temporary error log (for errors from another system)

SEE ALSO
errord(lM) in the CLIX System Administrator's Reference Manual.

2 01/90

F77(1) F77(1)

NAME
f 77 - FORTRAN compiler

SYNOPSIS
f77 [option ...] file

DESCRIPTION
The {'77 command controls the compilation and link editing of FORTRAN and
other source programs. The compilation process is divided into several
passes. Each pass is invoked with appropriate arguments and options.
{'77 uses the high-performance CLIPPER FORTRAN compiler developed by
Green Hills Software, Inc. under Intergraph Corporation contract. The
CLIPPER FORTRAN compiler has been designed to improve general code per­
formance based on selectable optimizations.

Each command line argument represents an option or a file name. A large
number of options (discussed below), and seven types of file name argu­
ments are understood. Any file name or option not recognized are passed to
the link editor.

The file arguments are processed in left to right order as they appear on the
command line. The generated object files are passed on to the link edit pass
in the same order.

Compilation Phases
The compilation phases and their names are largely historic. Each phase is
approximately implemented as a single command. There are a number of
options that control the invocation of each phase. Such options use key
letters to indicate a particular phase.

The phases and their key letters are:

p The C preprocessor phase. This phase processes the preprocessor
directives in a source file. Preprocessor directives are given on lines
whose first character is the # symbol. The preprocessor implements
file inclusion, conditional code inclusion, macro definition, and
macro expansion (see cpp(l)).

0 (zero) The C source analysis phase. This phase analyzes the (preprocessed)
source file according to the rules of the C language proper. Syntax
and semantic errors are detected here. Typically, an internal or
intermediate representation of the source file is built.

1 (one) The Fortran source analysis phase. This phase analyzes the source
file according to the rules of the Fortran language proper. Syntax
and semantic errors are detected here. Typically, an internal or
intermediate representation of the source file is built.

a The assembler phase. The assembler phase translates the assembler
code into an object (or binary) file. See as(l), the "Assembler'' sec­
tion of the "Technical Programming Tutorial" in the CLIX System
Guide, and the CLIPPER User's Manual.

07/89 1

F77(1)

1

m

e

r

c

F77(1)

The link edit phase. Startoff routines, generated objects, and stan­
dard libraries are linked together into an image file (see Zd(l)).

The macro preprocessing phase. The macro preprocessing phase

expands m4(1) macros into the appropriate character sequences, (see
m4(1)).

The efi(l) phase. This phase preprocesses efi(l) commands and con­
structs into the appropriate Fortran source, (see efi(l)).

The ratfor(l) phase. This phase preprocesses ratfor(l) commands
and constructs into the appropriate Fortran source, (see ratfor(l)).

The cc(l) phase. This phase invokes the cc(l) command on the
indicated C source files, (see cc(l)).

The CLIPPER Fortran compiler implements the source analysis, and code gen­

eration phases in one program (/lib/fcom). For the options that take a

phase key letter, 1 indicates this program.

The assembler (/bin/as) and link editor (/bin/Id) implement the assembler

and link editor phases, respectively.

Each input file is processed by each phase in sequence. If an error occurs in a

phase, further processing of the input file that contained the error is aban­

doned. (The assembler will not be invoked if a compiler error occurred).

Any remaining input files are compiled (or assembled), but the link edit

phase is not performed.

File Names

2

f77 recognizes seven types of file name arguments. Based on the suffix of

each input file, f77 selects the various preprocessors and compilers used to

process the file. The output of each pass is a file whose suffix indicates the

type of result. The suffixes f77 recognizes or generates are listed below

approximately in the order that the passes are performed.

.e

.r

.F

EFL source file. The source file is translated using an EFL preproces­
sor resulting in a .f source file that is then processed as described

under .f below .• e files may be optionally preprocessed by the m4(1)

macro-processor before they are translated by the EFL preprocessor
(see efi(l)).

RATFOR source file. The source file is translated using a RATFOR

preprocessor resulting in a .f source file, that is then processed as

described under .f below .• r files may be optionally preprocessed by

the m4(1) macro-processor before they are translated by the RATFOR

preprocessor (see ratfor(l)).

FORTRAN source file. The source file is compiled using the CLIPPER

FORTRAN compiler. .F files may contain C preprocessor directives
(i.e., #define) handled by the built-in CLIPPER FORTRAN C prepro­

cessor. The compiler generates a .s file that is processed as described
under .s below.

07/89

F77(1)

.f

.c

.s

.s

.o

F77(1)

FORTRAN source file. The source file is compiled using the CLIPPER
FORTRAN compiler. The compiler generates a .s file that is processed
as described under .s below.

C source file. The source file is compiled using the cc(l) command
resulting in a .o file (see cc(l)).

(Command Argument) Assembler source file. Each .s file given as a
command argument is processed by the cc(l) command resulting in a
.o file (see cc(l)).

(Generated) Assembler source file. Each assembler source file gen­
erated by the CLIPPER FORTRAN compiler is processed using the as(l)
command resulting in a .o file (see as(l)).

Relocatable object file. The object file name is simply passed to the
link edit pass.

Options

07/89

Before the description of each option and enclosed in parentheses, a restric­
tion may be placed on the use of the option. The option is only to be used
when that restriction applies.

-c Suppress the link edit pass of the compilation and force an object
file to be produced even if only one program is compiled.

-C Turn on run-time checking of subranges and array bounds. The
code will be much slower under this option.

-D name (.F file only) Define name to the preprocessor with the value 1.
This is equivalent to putting

#define name 1

at the top of the source file.

-Dname-string

-Exxx

-F

-g

(.F file only) Define name to the preprocessor with the value
string. This is equivalent to putting

#define name string

at the top of the source file.

Pass the string xxx to EFL as an option when preprocessing .e files
into .f files.

Do not produce assembly, object, or executable files. Produce
only FORTRAN source files. For each .F source language file,
preprocess the file with the C preprocessor and leave the prepro­
cessor output on a file whose name ends in .f. Similarly, prepro­
cess each .e file with the EFL preprocessor and each .r file with the
RATFOR preprocessor.

Cause the compiler to generate additional information needed for
the use of source language debuggers like sdb(l). A frame pointer
is generated to facilitate stack backtracing.

3

F77(1)

4

-ga

-I dir

-i2

-m

F77(1)

A frame pointer is generated, but -ga does not produce the extra
debugging information that is generated when -g is specified.

Add the directory d ir to the list of directories searched for
include file names that are not absolute (do not start with /).
Multiple -I options can be specified, and each directory will be
searched, in the order encountered, before a standard list of direc­
tories is searched.

Make the type INTEGER be INTEGER*2 and the type LOGICAL be
LOGICAL*2. By default, INTEGER is the type INTEGER*4 and LOG-
ICAL is the type LOGICAL*4.

Process RATFOR (.r) and EFL (.e) files with m4(1) before running
the appropriate preprocessor.

-o file-name
Place the executable binary output from the link edit pass into
the file named file-name. If this option is not specified the execut­
able file will be named a.out. This option is ignored if -c, -S, or
-Fis present.

-onetrip Execute at least one iteration of every DO loop. The def a ult case

-1 (one)

-0

-OM

-OL

assumes that if the lower bound exceeds the upper bound, no
iterations of the DO loop are to be performed (as specified by the
ANSI FORTRAN-77 standard). The resolution of this case was
unspecified under the ANSI FORTRAN-66 standard and some
important implementations (especially IBM) chose to always exe­
cute the loop at least once. The use of this option makes the com­
piler incompatible with the ANSI FORTRAN-77 standard, but it
may be necessary for compatible processing when certain old
FORTRAN-66 programs are involved.

Equivalent to -onetrip.

The -0 option activates Green Hills optimizers that are safe to use
on all programs, except for the loop optimizer.

This option is equivalent to -0 except that it also allows the
optimizer to assume that memory locations do not change except
by explicit stores. That is, the optimizer is guaranteed that no
memory locations are I/O device registers that can be changed by
external hardware and no memory locations are shared with other
processes that can change them asynchronously with respect to
the current process. This compile time option must be used with
extreme caution (or not at all) in device drivers, operating sys­
tems, shared memory environments, and when interrupts (or CLIX
signals) are present.

Optimize the program to be as fast as possible even if the program
must be bigger. In particular, most of the available resources are
allocated to optimizations of the innermost loops. The -OL com­
pile time option will perform optimizations that may make the

07/89

F77(1)

07/89

-OLM

-OML

-p

-R str

-S

-u

F77(1)

program faster but larger. It is counter-productive to specify -OL
on code that contains no loops or that is rarely executed as it will
make the whole program larger but no faster. After experiment­
ing with a program, it is possible to discover which modules
benefit from -OL and which ones do not.

This option is equivalent to -OL and -OM.

This option is equivalent to -OLM.

Arrange for the compiler to produce code that counts the number
of times each routine is called. If link editing occurs, replace the
standard libraries with libraries compiled for profiling. Also, if
link editing, replace the standard startoff routine by one that
automatically calls monitor(3C) at the start and arranges to write
out a mon.out file at normal termination of execution of the
object program. An execution profile can then be generated by
using pro/(1).

Pass the string str to the RATFOR preprocessor as an option when
translating .r files into .f files.

Compile the named source programs and leave the assembler­
language output on corresponding files suffixed by .s. The assem-
bler and link edit passes are suppressed.

Make the default data type for undeclared variables undefined.
This is equivalent to putting

IMPLICIT UNDEFINED(A-Z)

at the top of the source file.

-U Do not convert uppercase letters in names to lowercase. By
default, FORTRAN is not case sensitive and all externally visible
FORTRAN names contain only lowercase letters. This option can
be used to gain access to external names that contain uppercase.
However, using this option makes the compiler incompatible with
the ANSI FORTRAN-77 standard.

-v Print the program name and command line arguments as each pass
is invoked.

-w Suppress warning diagnostics.

-Wc,argl [,arg2 ...]
Pass the listed argument(s) argi to phase c where c is one of
[pOlalmerc]. (See the section on compilation phases above.)

-X n Turn on compile-time option number n. The available compile­
time options are listed below.

9 Disable the local (peephole) optimizer.

18 Do not allocate programmer-defined local variables to a
register. This option suppresses optimizations that

5

F77(1)

6

32

37

39

50

54

58

62
68

71

74
77

79

80

82

87

89

F77(1)

frustrate debuggers.

Display the names of files as they are opened. This is use­
ful for determining why the compiler cannot find an
include file.

Emit a warning when dead code is eliminated.

Do not move frequently used procedure and data
addresses to registers.

Push arguments on the stack. The default is to pass the
first two arguments in registers. This option is not recom­
mended because it produces a calling sequence incompati­
ble with the rest of the CLIX System.

Inform the optimizer that no memory locations can change
value asynchronously with respect to the running pro­
gram. -02 sets this compile-time option (see -02 above).

Do not put an underscore in front of the names of global
variables and procedures. This option is not recommended
because it produces symbols incompatible with the rest of
the CLIX System.

(Default) The target processor is a CLIPPER microprocessor.

This makes characters unsigned as they are in some imple­
mentations of FORTRAN. The default is signed characters.

Use the single precision math library interface.

(Default) The target system is CLIX System V.

Turn off compile-time checking of FORMAT statements.
Use this option if the run-time library supports FORMAT
statement features that the FORTRAN compiler is not
aware of.

Pad Hollerith constants on the right with blanks. The
default is that only the first byte of the Hollerith is
significant and the constant is zero padded on the left,

Disable the code hoisting optimization. This can speed up
compilation in some cases.

Process lines starting with x, X, d, and D. The default is
to treat them as comments. Used for enabling debugging
statements.

Disable the optimization that deletes all code that stores
into or modifies variables that are never read from.

Pack structures with no space between members even if
doing so makes the elements inaccessible due to machine
data alignment constraints.

07/89

F77(1)

07/89

F77(1)

105 Allow #define symbols to be redefined to the preproces­
sor.

151 Do not allow dollar signs in names. The default allows
dollars signs for VMS compatibility.

168 Do not move invariant floating-point expressions out of
loops.

175 (Default) For System V compatibility, name the main pro­
gram MAIN __ . If this option is not specified or turned
off (with -Zl 75), the name for the main program is
MAIN_.

176 Always convert computations involving floating-point
values to DOUBLE PRECISION. By default, the compiler
tries to shorten computations to REAL if the result would
be the same.

190 Assume half-word objects are not aligned.

191 Assume word objects are not aligned.

192 Assume single precision objects are not aligned.

193 Assume double precision objects are not aligned.

194 Assume word objects are aligned only to half-word boun­
daries.

195 Assume single precision objects are aligned only to half­
word boundaries.

196 Assume double precision objects are aligned only to half­
word boundaries.

197 Assume double precision objects are aligned only to word
boundaries.

-Y [p012aclSILU], dirname
Use dirname to locate the phase(s) or directory(ies) specified by
the key letter(s). The key letters [p012acl] represent the phases
described above. The additional key letters have the following
meanings:

S The directory containing the startup routines.

I The default directory searched for the #include prepro-
cessor directives.

L The first default library directory searched (see ld(l)).

U The second default library directory searched (see ld(l)).

If the location of a phase is being specified, the new path name for
the phase will be dirnamelphasename. The exact name used for
phasename depends on the compiler driver used and the phase
involved. See FILES below. If more than one -Y option is applied

7

F77(1)

FILES

F77(1)

to a phase or directory, the last specification is used.

-Zn Turn off option number n. This is the reverse of the -X option.
This option is useful if a version of the compiler has an option
that is turned on by default, and the user wants to turn it off.

-# Print the program name and command line arguments as each pass
is invoked.

-## Verbose like -#, only more so.

-### Print the program name and command line arguments for each
pass, but do not invoke the pass.

file.f
file.F
file.e
file.r
file.c
file.s
file.o
a.out
/tmp/F77*
/usr/tmp/F77*
/bin/cc
/usr/bin/RATFOR
/usr/bin/efl
/usr/bin/m4
/bin/as
/bin/ld
/lib/crt [1 n] .o
/lib/mcrt [ln] .o
/lib/libF77 .a
/lib/libm.a
/lib/libc.a
/usr/lib/libbsd.a
/usr/lib/libp/lib*.a
/lib/libf.a

FORTRAN source input file
FORTRAN source input file, C preprocessor used
EFL source input file
RATFOR source input file
C source input file
assembler source input file; generated or input
object file; generated or input
default linked output
temporary
temporary
C compiler
RATFOR preprocessor
EFL preprocessor
m4 macro-processor
assembler, as(l)
link editor, ld(l)
run-time start-off
profiling start-off
standard FORTRAN library
standard math library
standard C library
BSD support library (referenced by /lib/libf.a)
profiled versions of libraries
Green Hills FORTRAN library

SEE ALSO
adb(l), cc(l), as(l), ld(l), sdb(l), ratfor(l), efl(l).
prof(l), m4(1), monitor(3C) in the UNIX System V Programmer's Reference
Manual.
The "Release Notes" appendix of the CLIPPER FORTRAN Reference Manual.

DIAGNOSTICS

8

The diagnostics produced by /77 itself are intended to be self-explanatory.
Occasional messages may be produced by the various preprocessor, C com­
piler, assembler, or link editor passes.

07/89

FIND(l) FIND(l)

NAME
find - find files

SYNOPSIS
:find path-name-list expression

DESCRIPTION
find recursively descends the directory hierarchy for each path name in the
path-name-list (that is, one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descriptions,
the argument n is used as a decimal integer, where +n means more than n, -n
means less than n and n means exactly n. Valid expressions are as follows:

-name fi.7£ True if fil£ matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [,
?, and•).

[-perm] -onum True if the file permission flags are identical to the octal
number onum (see chmod(l)). If onum is prefixed by a
minus sign, only the bits set in onum are compared with the
file permission flags and the expression evaluates true if
they match.

-type c True if the type of the file is c, where c is b, c, d, l, p, or f
for block special file, character special file, directory, sym­
bolic link, fifo (also known as named pipe), or plain file
respectively.

-links n True if the file has n links.

-user unam.e True if the :file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is interpreted as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
interpreted as a group ID.

-size n [c] True if the file is n blocks long (512 bytes per block). If n
is followed by a c, the size is in characters.

-atime n True if the file has been accessed inn days. The access time
of directories in path-name-list is changed by find.

-mtime n True if the file has been modified in n days.

-ctime n True if the file has been changed in n days.

-eiec cmd True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semi­
colon. A command argument { } is replaced by the current
path name.

-o:t. cmd Resembles -eiec except that the generated command line is
printed with a question mark first and is executed only if

12/88 1

FIND(I)

-print

-cpio device

-newer file

-depth

-mount

-local

(expression)

FIND(l)

the user responds by typing a "y".

Always true; prints the current path name.

Always true; write the current file on device in cpio(l) for­
mat (5120-byte records).

True if the current file was modified more recently than the
argument file.

Always true; causes descent of the directory hierarchy to
be done so that all entries in a directory are acted on before
the directory itself. This can be useful when find is used
with cpio(l) to transfer files contained in directories
without write permission.

Always true; restricts the search to the file system contain­
ing the directory specified. (or if no directory was
specified, the current directory.)

True if the file physically resides on the local system.
True if the parenthesized expression is true. (Parentheses
are special to the shell and must be escaped.)

The primaries may be combined using the following operators (in the order
of decreasing precedence):

1) The negation of a primary(! is the unary not operator).
2) Concatenation of primaries (the and operation is implied by the juxtapo­

sition of two primaries).

3) Alternation of primaries (-o is the or operator).
EXAMPLES

FILES

To remove all files named a.out or •.o that have not been accessed for a
week:

find I \(-name a.out -o -name '•.o' \) -atime +7 -exec rm{}\;

I etc/ passwd
/etc/group

SEE ALSO

BUGS

2

chmod(l), cpio(l), test(l), fs(4).
stat(2), umask(2) in the UNIX System V Programmer's Reference Manual.
sh(l) in the UNIX System V User's Reference Manual.

find I -depth always fails with the message:

find: stat failed: No such file or directory.

12/88

FMU(l) FMU(l)

NAME
fmu - network file management utility

SYNOPSIS
fmu [-cefaiqrsvx] [host. user [.[password]] [command]]

DESCRIPTION

01/90

fmu is a network file transfer and remote command utility. The host may be
either a node name or an Ethernet address. Once the remote connection has
been established, the privileges and working directory are the same as if a
login(l) for the specified user occurred on the remote system.

For security, fmu requires a login, specified by user, on the remote system. If
the login on the remote system has a password, password must be supplied.
If a • followed by a <RETURN> or white space is specified after user, fmu
will prompt for a password (with echoing disabled). Otherwise, the word
immediately following the. is used as the password.

fmu has an interactive and a noninteractive mode. To use noninteractive
mode, host, user, and command must be specified on the command line.
Pipes can also be used on the command line.

Interactive mode is entered when command is not specified. After a user
enters interactive mode, an FMU> prompt appears.

The following options are available:

-a Inhibit automatic compression when transferring files. By default, if
fmu detects a slow transfer rate, it will automatically compress
before being sent.

-c Force the output file to be created contiguously. This feature is valid
only if supported by the receiving system.

-e Echo all commands before executing them. This feature is useful to
view commands if stdin has been redirected from a file.

-f Force the output file to be created in fixed-length, 512-byte records.
This feature is valid only if supported by the receiving system.

-i Designate files being transferred as Interactive Graphics Design Sys­
tem (IGDS) files. This option is equal to specifying both the -c and -f
options. This feature is valid only if supported by the receiving sys­
tem.

-p Execute the login profiles (/etc/profile and the user's .profile) on
the remote system. If either profile requires input, fmu will not
succeed in connecting to the remote system.

-q Suppress the FMU> prompt. This is useful if stdin is redirected
from a file.

-r Print the fmu release date (version number).

1

FMU(l) FMU(l)

2

-s Turn on software checksumming when transferring files.

-v Turn on verbose mode. When transferring files, fmu will print
statistics of the files being transferred.

-x Turn on compression when transferring files.

command specifies a function to be performed. Only as many characters as
needed to uniquely identify a command need to be specified.

The following commands are available:

receive in [out] Receive a file or multiple files from the remote host. The
in parameter represents the file(s) on the remote host to be
received and out is the name of the output file or directory
on the local machine. If in consists of multiple files, out
must be a directory. If out is not specified, the current
directory is used. If this command is specified on the com­
mand line, received data may be sent to stdout if out is -.

send in [out] Send a file or multiple files to the remote host. The in
parameter represents the file(s) on the local machine to be
sent and out is the name of the output file (or directory)
on the remote host. If in consists of multiple files, out
must be a directory. If out is not specified, the current
directory is used. If this command is specified on the com­
mand line, data to be sent may be received from stdin if
in is-.

cat file ... Display the remote files to stdout on the local machine.

connect nodespec Terminate the present connection (if any) and establish a
connection with the remote system specified by nodespec.
The nodespec syntax has the same form as

ls [dir]

rm file ...

cd [dir]

red [dir]

host. user [.[password]] specified on the command line.

List the contents of the directory dir on the remote host.
The argument dir is passed to the directory listing pro-
gram on the remote host, which checks for proper syntax.
If dir is not provided, the current directory is used.

Remove the specified files from the remote host.

Change to the directory dir on the local machine. If dir is
not provided, the environment variable HOME is used.

Change to the directory dir on the remote host. If dir is
not provided, the environment variable HOME on the
remote host is used.

command string Execute string on the remote host. All stdout written by
the remote command will be written to stdout on the
local machine.

!command Execute command on the local machine.

01190

FMU(l) FMU(l)

01/90

help [arg]

exit

set option

type file ...

directory [dir]

delete file •..

chdir [dir]

rchdir [dir]

Print a one-line summary of arg. If arg is not provided,
all available commands are listed.

Close the current connection (if any) and exit.

Set the specified option. Valid options are as follows:

[no]checksum Function the same as the -s option.
[no]compress Function the same as the -x option.
[no]contiguous Function the same as the -c option.
[no] echo Function the same as the -e option.
[no] fixed Function the same as the -f option.
[no] igds Function the same as the -i option.
[no] inhibit Function the same as the -a option.
[no] quiet Function the same as the -q option.
[no] verbose Function the same as the -v option.

Synonym for cat.

Synonym for ls.

Synonym for rm.

Synonym for ed.

Synonym for red.

Wildcards can be used when specifying files. However, for output files, no

partial wildcard specifications are accepted. For example,• is a valid output

file specification, but •.txt is not. Wildcards entered on the command line

must be quoted to prevent the shell from expanding them.

While in interactive mode command-line recall and editing features are

available. The key definitions are as follows:

<RETURN>

<CONTROL>-A

<CONTROL>-E

<CONTROL>-D

<CONTROL >-P
<UP-ARROW>

<CONTROL >-1'

<CONTROL >-N

Recall and execute the most recent command.

Go to the beginning of the line.

Go to the end of the line.

Delete the character the cursor is on. If no command is
being edited, this key sequence will terminate the ses­
sion.

Recall the previous command.

Delete all characters to the right of the cursor.

<DOWN-ARROW> Recall the next command.

<CONTROL>-B
<LEFT-ARROW> Move the cursor to the left one position.

<CONTROL>-F
<RIGHT-ARROW> Move the cursor to the right one position.

3

FMU(l) FMU(l)

<DELETE>

<KILL>

<EOF>
<RETURN>
<LINEFEED>

Delete the character to the left of the cursor.

Delete the entire line.

Designate the end of a command. fmu then executes the
line contents.

EXAMPLES
The following command sends all files beginning with foo and ending with
c to /tmp on the remote host abc:

fmu abc.guest send 'foo*.c' /tmp

foo•.c must be quoted because* is a shell special character.

The following command sends a cpio(l) backup to the fi.le backup:file on the
remote host backup using stdin:

fi.nd src -print I cpio -ov I fmu backup.guest send - backupfi.le

To restore the previous example, use the following command:

f mu backup.guest rec backupfi.le - I cpio -iv

The following example is an interactive session with fmu to execute the
who(l) command on the remote host:

$ fmu 08--00-36-23--08--00.remote.guest
FMU> com who
root console Dec 7 17:12
FMU> exit
$

SEE ALSO
rpipe(l).
fmus(lM) in the CLIX System Administrator's Reference Manual.
cat(l), ls(l), rm(l), sh(l) in the UNIX System V User's Reference Manual.

CAVEATS

4

If the remote command requires input, fmu will hang.

fmu does not handle the binary output of a remote command (such as tar(l)
or cpio(l)).

01/90

•

FORMAT(l) FORMAT(!)

NAME
format - floppy disk formatting utility

SYNOPSIS
/etc/format [-wl]

DESCRIPTION

FILES

format formats the floppy disk in the floppy drive. This operation prepares
the floppy disk for subsequent writes by any utility.

The format operation consists of writing ID fields, gaps, and address marks
for each block on the floppy disk. This servo information is then used to
identify tracks and sectors during read(2) and write(2) operations.

The high density format provides 1.2M on the floppy disk (1.44M on a 3.5-
in disk). This type of format consists of 80 tracks with fifteen (eighteen)
512-byte sectors on each side of the floppy disk. By default, format will use
high density.

The low density format provides 360K on the floppy disk (720K on a 3.5-in
disk). This type of format consists of 40 (80) tracks with nine 512-byte
sectors on each side of the floppy disk.

The following options are supported:

-1 Indicate low density. (The default is high density.)

-w Disable the warning and prompt .

/dev/rdsk/fl default floppy device

SEE ALSO
fl(7S) in the CLIX System Administrator's Reference Manual.

WARNINGS

01/90

All data on the floppy disk will be overwritten during a format operation.
By default, a warning and prompt are printed before the floppy is format­
ted.

1

u·4 l i

FTP(l) FTP(l)

NAME
ftp - ARPANET file transfer program

SYNOPSIS
ftp [-v] [-d [value]] [-i] [-n] [-g] [-r] [host [port]]

DESCRIPTION
ftp is the user interface to the ARPANET standard File Transfer Protocol
(FTP). The program allows a user to transfer files to and from a remote or
local network site.

The client host that ftp will communicate with can be specified on the com­
mand line. If the host is specified, ftp immediately attempts to establish a

connection to an FTP server on that host. Otherwise, ftp enters its command

interpreter and awaits instructions from the user. When ftp is awaiting

commands from the user, the ftp> prompt is displayed.

If a host name is specified on the command line, an optional port number can

be specified. In this case, ftp will attempt to connect an FTP server at that

port.

Options
Options may be specified at the command line or to the command inter­

preter. The following options are available:

-v Show all responses from the remote server and report data
transfer statistics.

-n Do not attempt auto-login on initial connection. If auto-login is
enabled, ftp checks the .netrc file (see below) in the user's home
directory for an entry describing parameters to be used in logging
in to the remote machine. If no entry exists, ftp prompts for a
login name to be used on the remote machine. If no login name is
given, a login is attempted with the user's local login name. If the

user name exists and has a password, ftp will prompt for a pass­
word and an account (see the account command).

-i Turn off interactive prompting during multiple file transfers.

-d [value] Enable debugging. If an integer value is specified, value becomes

the debugging level.

-g Disable file name globbing. (Do not expand wildcard characters

(see the glob command).)

-r Display the ftp version number.

The . net re file

01/90

The .netrc file contains login and initialization information used by the

auto-login process. It resides in the user's local home directory. The follow­

ing tokens are recognized; they may be separated by spaces, tabs, or new­

lines:

1

FTP(l) FTP(l)

machine name
Identify a remote machine name. The auto-login process
searches the .netrc file for a machine token followed by
a name that matches the host given on the ftp command
line or as an argument to the open command. Once a
match is found, subsequent .netrc tokens are processed
until the end of the file is reached or another machine
token is encountered.

login name
Identify a user name on the remote machine. If this token
is present, the auto-login process will initiate a login using
name.

password string
Supply a password. If this token is present, the auto­
login process will supply string if the remote server
requires a password as part of the login process. Note that
if this token is present in the .netrc file, ftp will abort the
auto-login process if the .netrc file is readable by anyone
other than the user.

account string
Supply an additional account password. If this token is
present, the auto-login process will supply the specified
string if the remote server requires an additional account
password. The auto-login process will initiate an ACCT
command if it does not.

macdef name
Define a macro. This token functions as the ftp macdef
command does. A macro called name is defined; its con­
tents begin with the next .netrc line and continue until a
null line (consecutive newline characters) is encountered.
If a macro named init is defined, it is automatically exe­
cuted as the last step in the auto-login process.

Commands

2

ftp recognizes the following commands:

! [command [args]]
Invoke an interactive shell on the local machine. If there
are arguments, the first is interpreted as a command to
execute; the remaining arguments are the command's argu­
ments.

$ macro-name [args]
Execute the macro macro-name that was defined with the ~ ..
macdef command. Arguments are passed to the macro ,.,,..,
unglobbed.

01/90

FTP(l)

01/90

FTP(l)

account [passwd]
Supply a supplemental password required by a remote
system to access resources once a login has been success­
fully completed. If no argument is included, the user will
be prompted for an account password in a nonechoing
input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If
remote-file is unspecified, the local file name is used to
name the remote file after the local file name is altered by
any ntrans or nmap setting. File transfer uses the
current settings for type, form, mode, and struct.

ascii Set the file transfer type to network ASCII. This is the
default type.

bell Set the bell to be sounded after each file transfer com­
mand is completed.

binary Set the file transfer type to support binary image
transfer.

bye Terminate the FTP session with the remote server and exit
ftp. An end of file will also terminate the session and
exit.

case Toggle remote computer file name case mapping during
mget commands. When case is on (default is off), remote
computer file names with all letters in uppercase are writ­
ten in the local directory with the letters mapped to
lowercase.

cd remote-directory
Change the working directory on the remote machine to
remote-directory.

cdup Change the remote machine working directory to the
parent of the current remote machine working directory.

close

er

Terminate the FTP session with the remote server and
return to the command interpreter. Any defined macros
are erased.

Toggle carriage-return stripping during ascii-type file
retrieval. Records are denoted by a carriage­
return/linef eed sequence during ascii-type file transfer.
When er is on (the default), carriage returns are stripped
from this sequence to conform to the CLIX single linefeed
record delimiter. Records on non-CLIX remote systems
may contain single linefeeds; when an ascii-type transfer
is made, these linefeeds may be distinguished from a
record delimiter only when er is off.

3

FTP(l)

4

FTP(l)

delete remote-file
Delete the file remote-file on the remote machine.

de bug [debug-value]
Set or toggle the debugging mode. If an optional debug­
value is specified, this value sets the debugging level. If
debug-value is not specified, debugging mode is toggled.
When debugging is on, ftp prints each command sent to
the remote machine, preceded by the string ->. If
debug-value is set to 1, a user's password will not be
displayed.

dir [remote-directory] [local-file]
Print a listing of the contents of the remote-directory and,
optionally, place the output in local-file. If no directory is
specified, the current working directory on the remote
machine is used. If no local file is specified or local-file is
-, output comes to the terminal.

disconnect
A synonym for close.

form/orm
Set the file transfer form to form. The default format is
file.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine.
If the local file name is not specified, it is given the name
it has on the remote machine. However, the current case,
ntrans, and nmap settings can alter this name. The
current settings for type, form, mode, and struct are
used while the file is being transferred.

glob Toggle file name expansion for mdelete, mget and mput.
If globbing is turned off with glob, ftp interprets file
name characters literally and not as wildcard characters.
Globbing for mput is performed as it is in sh(l). For
mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not
merged. Expansion of a directory name will likely differ
from expansion of an ordinary file name: the exact result
depends on the foreign operating system and ftp server
and can be previewed by executing mis remote-files-.
mget and mput are not meant to transfer entire directory
subtrees of files. This can be done by transferring a tar(l)
archive of the subtree (in binary mode).

hash Toggle hash-sign (#) printing for each data block
transferred. The size of a data block is 1024 bytes.

01/90

FTp(l)

01/90

FTP(l)

help [command]
Print an informative message about the meaning of com­
mand. If no argument is given, ftp prints a list of the
known commands.

led [directory]
Change the working directory on the local machine. If no
directory is specified, the user's home directory is used.

ls [remote-directory] [local-file]
Print an abbreviated listing of a directory's contents on
the remote machine. If remote-directory is unspecified, the
current working directory is used. If no local file is
specified or if local-file is -, the output is sent to the termi­
nal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro
macro-name; a null line (consecutive newline characters in
a file or carriage returns from the terminal) terminates
macro input mode. There is a limit of 16 macros and
4096 total characters in all defined macros. Macros
remain defined until a close command is executed. The
macro processor interprets$ and\ as special characters. A
$ followed by a number (or numbers) is replaced by the
corresponding argument on the macro invocation com­
mand line. A $ followed by an i signals the macro pro­
cessor that the executing macro is to be looped. On the
first pass, $i is replaced by the first argument on the
macro invocation command line; on the second pass it is
replaced by the second argument; and so on. A \ followed
by any character is replaced by that character. Use the \
to prevent special treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Resembles dir except multiple remote files may be
specified. If interactive prompting is on, ftp will prompt
the user to verify that the last argument is indeed the tar­
get local file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and execute
get for each file name produced. See glob for details on
the file name expansion. Resulting file names will then be
processed according to case, ntrans, and nmap settings.
Files are transferred into the local working directory,
which can be changed with led directory; new local direc­
tories can be created with ! mkdir directory.

5

FTP(l)

6

FTP(l)

mkdir directo~name
Make a directory on the remote machine.

mis remote-files local-file
Resembles ls, except multiple remote files may be
specified. If interactive prompting is on, ftp will prompt ~.~_.....ii
the user to verify that the last argument is indeed the tar- ,...,..
get local file for receiving mis output.

mode [mode-name]
Set the file transfer mode to mode-name. The default
mode is stream mode.

mput local-files
Expand wild cards in the list of local files given as argu­
ments and execute put for each file in the resulting list.
See glob for details of file name expansion. Resulting file
names will then be processed according to ntrans and
nmap settings.

nmap [inpattern outpattern]
Set or unset the file name mapping mechanism. If argu­
ments are not specified, the file name mapping mechanism
is unset. If arguments are specified, remote file names are
mapped during mput commands and put commands
issued without a specified remote target file name. If
arguments are specified, local fi.le names are mapped dur- ~
ing mget commands and get commands issued without a ..._,,,
specified local target fi.le name. This command is useful
when connecting to a non-CLIX remote computer with
different file naming conventions or practices. The map-
ping follows the pattern set by inpattern and outpattern.
Inpattern is a template for incoming file names (which
may have been processed according to the ntrans and
case settings). Variable templating is accomplished by
including the sequences $1, $2, ... , $9 in inpattern. A \
prevents this special treatment of the $ character. All
other characters are treated literally and determine the
nmap inpattern variable values. For example, given
inpattern $1.$2 and the remote file name mydata.data,
$1 would have the value mydata, and $2 would have the
value data. The outpattern determines the resulting
mapped file name. The sequences $1, $2, . . . , $9 are
replaced by any value resulting from the inpattern tem-
plate. The sequence $0 is replace by the original file name.
Additionally, the sequence [seql,seq2] is replaced by seql
if seql is not a null string; otherwise it is replaced by Jlllllllll\
seq2. For example, the command nmap $1.$2.$3 ...,,,,,
[$1,$2].[$2,:file] would yield the output file name
my:file.data for input fi.le names my:file.data and

01/90

FTP(l)

01/90

FTP(l)

my:file.data.old, my:file.:file for the input file name
my:file, and my:file.my:file for the input file name
.my:file. Spaces may be included in outpattern as in the
example nmap $1 I sed •st s.$11• > $1. A \ prevents
special treatment of the$, [,] , and , characters.

ntrans [inchars [outchars]]
Set or unset the file name character translation mechan­
ism. If arguments are not specified, the file name charac­
ter translation mechanism is unset. If arguments are
specified, characters in remote file names are translated
during mput commands and put commands issued
without a specified remote target file name. If arguments
are specified, characters in local file names are translated
during mget commands and get commands issued
without a specified local target file name. This command
is useful when connecting to a non-CLIX remote computer
with different file naming conventions or practices. Char­
acters in a file name matching a character in inchars are
replaced with the corresponding character in outchars. If
the character's position in inchars is longer than the
length of outchars, the character is deleted from the file
name.

open host [port]
Establish a connection to the specified host FTP server. An
optional port number may be supplied. If a port number
is specified, ftp will attempt to contact an FTP server at
that port. If the auto-login option is on (default), ftp will
also attempt to automatically log the user in to the FTP

server (see below).

prompt Toggle interactive prompting. Interactive prompting
occurs during multiple file transfers to allow the user to
selectively retrieve or store files. If prompting is turned
off (def a ult is on), any mget or mput will transfer all
files, and any mdelete will delete all files.

proxy ftp-command
Execute an ftp command on a secondary control connec­
tion. This command allows simultaneous connection to
two remote FTP servers for transferring files between the
two servers. The first proxy command should be an
open to establish the secondary control connection. Enter
the command proxy 1 to see other ftp commands that are
executable on the secondary connection. The following
commands behave differently when prefixed by proxy:
open will not define new macros during the auto-login
process; close will not erase existing macro definitions;
get and mget transfer files from the host on the primary

7

FTP(l)

8

FTP(l)

control connection to the host on the secondary control
connection; and put, mput, and append transfer files
from the host on the secondary control connection to the
host on the primary control connection. Third-party file
transfers depend on the server on the secondary control
connection supporting the FTP protocol PASV command.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is
left unspecified, the local file name is used after processing
according to any ntrans or nmap settings in naming the
remote file. File transfer uses the current settings for
type, form, mode, and struct.

pwd Print the name of the current working directory on the
remote machine.

quit A synonym for bye.

quote argl arg2 ...
The specified arguments are sent, verbatim, to the remote
FTP server.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command­
name is specified, it is supplied to the server.

rename [from] [to]
Rename the file from on the remote machine to the file to.

reset Clear the reply queue. This command resynchronizes
command/reply sequencing with the remote FTP server.
Resynchronization may be necessary following a violation
of the FTP protocol by the remote server.

rmdir directory-name
Delete a directory on the remote machine.

runique Toggle storing of files on the local system with unique file
names. If a file already exists with a name equal to the
target local file name for a get or mget command, a .1 is
appended to the name. If the resulting name matches
another existing file, a .2 is appended to the original name.
If this process continues up to .99, an error message is
printed and the transfer does not occur. The generated
unique file name will be reported. Note that runique
will not affect local files generated from a shell command
(see below). The default value is off.

send local-file [remote-file]
A synonym for put.

01/90

FTP(l) FTP(l)

sendport Toggle the use of PORT commands. By default, ftp will
attempt to use a PORT command when establishing a con­
nection for each data transfer. PORT commands can
prevent delays during multiple file transfers. If the PORT
command fails, ftp will use the default data port. When
PORT commands are disabled, no attempt will be made to
use PORT commands for each data transfer. This is useful
for certain FTP implementations that ignore PORT com­
mands but incorrectly indicate that they have been
accepted.

status Show the current status of ftp.

struct [struct-name]
Set the file transfer struct to struct-name. By default,
stream structure is used.

sunique Toggle storing of files on remote machine under unique file
names. The remote FTP server must support the FTP pro­
tocol STOU command for successful completion. The
remote server will report a unique name. The default
value is off.

tenex Set the file transfer type to that needed to communicate
with TENEX machines.

trace Toggle packet tracing. This mode is not currently imple­
mented.

type [type-name]
Set the file transfer type to type-name. If no type is
specified, the current type is printed. The default type is
network ascii.

user user-name [password] [account]
Identify the user to the remote FTP server if the -n option
is not used. If the password is not specified and the server
requires it, ftp will prompt the user for it (after disabling
local echo). If an account field is not specified and the FTP

server requires it, the user will be prompted for it. If an
account field is specified, an ACCT command will be
relayed to the remote server after the login sequence is

complete if the remote server did not require it for logging
in. Unless ftp is invoked with auto-login disabled, this
process occurs automatically when the FTP server is ini­
tially connected to. If an invalid user name or password
was given in the auto-login process or in a previous user

command, the user command should be used to specify a
valid user-name (and password, if necessary).

verbose Toggle verbose mode. In verbose mode, all responses from
the FTP server are displayed to the user. In addition, if

01/90 9

FTP(l) FTP(l)

10

verbose is on, when a file transfer completes, statistics
regarding the efficiency of the transfer are reported. By
default, verbose is on.

? [command]
A synonym for help.

Command ariuments that have embedded spaces may be quoted with
quotation (") marks.

Aborting File Transfer
To abort a file transfer, press the terminal interrupt key (usually
<CONTROL>-C). Sending transfers will be immediately halted. Receiving
transfers will be halted by sending an FfP protocol ABOR command to the
remote server and discarding any further data received. The speed at which
this is accomplished depends on the remote server's support for ABOR pro­
cessing. If the remote server does not support the ABOR command, an ftp>
prompt will not appear until the remote server has completed sending the
requested file.

The terminal interrupt key sequence will be ignored when ftp has completed
any local processing and is awaiting a reply from the remote server. A long
delay in this mode may result from the ABOR processing described above or
from the remote server behaving unexpectedly, including violation of the
FTP protocol. If the delay results from unexpected remote server behavior,
the local ftp program must be killed manually.

File Naming Conventions ~
Files specified as arguments to ftp commands are processed according to the
fallowing rules.

1) If the file name - is specified, stdin (for reading) or stdout (for
writing) is used.

2) If the first character of the file name is I, the remainder of the argu­
ment is interpreted as a shell command. ftp then forks a shell using
popen(3C) with the argument supplied. It then reads (writes) from
stdout (stdin). If the shell command includes spaces, the argument
must be quoted as in i ls -It". A useful example of this mechanism
is "dir • lpg".

3) Failing the above checks, if globbing is enabled, local file names are
expanded according to the rules used in the sh(l) (see the glob com­
mand). If the ftp command expects a single local file (such as put),
only the first file name generated by the globbing operation is used.

4)

5)

For mget and get commands with unspecified local file names, the
local file name is the remote file name, which may be altered by a
case, ntrans, or nmap setting. The remote server may then alter
the resulting file name if runique is on.

For mput and put commands with unspecified remote file names, the
remote file name is the local file name, which may be altered by a

01/90

FTP(l) FTP(l)

ntrans or nmap setting. The resulting file name may then be
altered by the remote server if sunique is on.

File Transfer Parameters
The FTP specification specifies many parameters that may affect a file
transfer. The type may be ascii, image (binary), ebcdic, or local byte
size (for PDP-lOs and PDP-20s mostly). ftp supports the ascii and image
types of file transfer plus local byte size 8 for tenex mode transfers. ftp
treats image and tenex 8 file types the same when transferred.

ftp supports only the default values for the remaining file transfer parame­
ters: mode, form, and struct.

SEE ALSO
ftpd(lM) in the CLIX System Administrator's Reference Manual.

WARNINGS
Correct command execution depends on the remote server behaving properly.

01/90 11

HOSTNAME(l) HOSTNAME(l)

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname [nameofhost]

DESCRIPTION
The hostname command prints the name of the current host, as given before
the "login" prompt, and defaults to the value set on the "Operating System
Parameters" page in the Startup Utility. The super-user may change the
host name by giving an argument.

SEE ALSO
gethostname(2B), sethostname(2B).

CAVEATS
Permanent host name changes can only be made from the Startup Utility.

12/88 1

JBCONFIG(l) JBCONFIG(l)

NAME
jbconfig - report the configuration of the jukeboxes

SYNOPSIS
jbconftg

DESCRIPTION
jbconfig lists the current jukebox configuration including all jukeboxes,
drives, and volumes.

SEE ALSO
JBCFG(4).
jbinventory(lM) in the CLIX System Administrator's Reference Manual.

CAVEATS
If numerous volumes are in the database, the report can be lengthy.

07/89 1

IDENT(l) IDENT(l)

NAME
ident - identify files

SYNOPSIS
ident [-q] [file ...]

DESCJllPTION
ldent searches the named files or, if no file name appears, the standard input

for all occurrences of the pattern $keyword: . .. $, where keyword is one of the

following:

Author
Date
Header
Id
Locker
Log
Revision
RCSftle
Source
State

These patterns are normally inserted automatically by the RCS command

co(l), but can also be inserted manually. The option -q suppresses the

warning given if no patterns are in a file.

ldent works on text files, object files, and dumps. For example, if the C pro­

gram in file f .c contains

char rcsid[] ="$Header: Header information$";

and f .c is compiled into f .o, then the command

ident f .c f .o

will print

f.c:
$Header: Header information$

f.o:
$Header: Header information$

SEE ALSO
ci(l), co(l), rcs(l), rcsclean(l), rcsdiff(l), rcsmerge(l), rlog(l), rcsfile(4).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision

Control System," in Proceedings of the 6th International Conference on

Software Engineering, IEEE, Tokyo, Sept. 1982.

IDENTIFICATION

12188

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907

Copyright o 1982 by Walter F. Tichy.

1

KBMAP(l) KBMAP(l)

NAME
kbmap - change the keyboard layout

SYNOPSIS
kbmap mapfile

DESCRIPTION
kbmap changes keyboard layouts to reflect the standard layouts used in

different cultures. Only the letter, number, and punctuation keys on the

main section of the keyboard are affected. The keypad and function keys are

not changed.

EXAMPLES

FILES

To change the keyboard layout to a standard French layout, use the follow­

ing command:

kbmap /usr/lib/kbmap/French

/usr/lib/kbmap/*

SEE ALSO

files for each keyboard type

kbmap(4).

01/90 1

X:EJlMIT(l) x:EJlMIT(l)

NAME
kermit - kermit fl.le transfer

SYNOPSIS
kermit [option ...] [file ...]

DESCJUPTION
kermit is a file transfer program that allows files to be moved among
machines of different operating systems and architectures. This manual page
describes version 4C of the program.

Arguments are optional. If kermit is executed without arguments, it enters
command mode. Otherwise, kermit reads the arguments from the command
line and interprets them.

The following notation is used in command descriptions:

fn A CLIX file specification, possibly containing either of the wildcard
characters • or 1. (• matches all character strings; 1 matches any
single character.)

fnl A CLIX file specification that may not contain • or 1.

rfn A remote file specification in the remote system's syntax, which may
denote a single file or a group of files.

rfnl A remote file specification should denote only a single file.

n A decimal number between 0 and 94.

c A decimal number between 0 and 127 representing the value of an
ASCII character.

cc A decimal number between 0 and 31, or else exactly 127, represent-
ing the value of an ASCII control character.

[] Any field in square braces is optional.

{x,y,z} Alternatives are listed in braces.

kermit command line options may specify either actions or settings. If ker­
mit is invoked with a command line that specifies no actions, it will issue a
prompt and begin interactive dialog. Action options specify either protocol
transactions or terminal connection.

Command Line Options

12188

-s Jn Send the specified file or files. If fn contains wildcard (meta) charac­
ters, the shell expands it to a list. If Jn is-, kermit sends from stan­
dard input, which must come from a file:

kermit -s - < foo. bar

or a parallel process:

ls -11 kermit -s -

This mechanism cannot be used to send from the terminal keyboard.
To send a file whose name is -, precede it with a path name, as in

1

X:ERMIT(l) X:ERMIT(l)

2

kermit -s ./-
-r Receive a file or files. Wait passively for files to arrive.
-k Receive (passively) a file or files, sending them to standard output.

This option can be used in several ways:
kermit -k

Displays the incoming files on the screen; to be used only in local
mode (see below).

kermit -k > fnl
Sends the incoming file or files to the named file, fnl. If more than
one file arrives, all are concatenated together into the single file fnl.

kermit -k I command
Pipes the incoming data (single or multiple files) to the indicated
command, as in

kermit -k I sort > sorted.stuff
-a fnl If a file transfer option is specified, an alternate name for a single

file may be specified with the -a option. For example,
kermit -s foo -a bar

sends the file foo telling the receiver that its name is bar. If more
than one file arrives or is sent, only the first file is affected by the -a
option:

k.ermit -ra baz
stores the first incoming file under the name baz.

-x Begin server operation. May be used in either local or remote mode,
kermit is local if it is running on a PC directly, or if it is running on a mul­
tiuser system and transferring files over an external communication line-­
not the job's controlling terminal or console. kermit is remote if it is run­
ning on a multiuser system and transferring files over its own controlling
terminal's communication line connected to a PC.

If kermlt is running on a PC, it is in local mode by default, with the "back
port" designated for file transfer and terminal connection. If kermit is run­
ning on a multiuser (timesharing) system, it is in remote mode unless expli­
citly pointed at an external line for file transfer or terminal connection. The
following command sets kermlt's mode:
-1 dev Line - Specify a terminal line to use for file transfer and terminal

connection, as in

kermit -1 /dev/ttyOO
When an external line is used, some additional options may be used for suc­
cessful communication with the remote system:

12/88

KERMIT(I) X:ERMIT(l)

12188

-b n Baud - Specify the baud rate for the line given in the -1 option, as in

kermit -1 /dev/ttyOO -b 9600

This option should always be included with the -1 option, since the
speed of an external line is not always as expected.

-p x Parity - e, o, m, s, n (even, odd, mark, space, or none). If parity is
other than none, the eighth-bit prefixing mechanism will be used for
transferring eight-bit binary data if the opposite kermlt agrees. The
def a ult parity is none.

-t Specifies half-duplex line turnaround with XON as the handshake
character.

The following commands may be used only with a kermlt that is local­
either by default or because the -1 option has been specified.

-g rfn Actively request a remote server to send the named file or files; rfn

is a file specification in the remote host's syntax. If rfn contains any
special shell characters like"*" these must be quoted, as in

kermit -g "X*. ?"

-f Send a finish command to a remote server.

-c Establish a terminal connection over the specified or default com-
munication line before any protocol transaction occurs. Return to
the local system by typing the escape character (normally
<CONTROL>-\) followed by the letter c.

-n Resembles -c, but after a protocol transaction occurs; -c and -n may
both be used in the same command. The use of -n and -c is illus­
trated below.

On a timesharing system, the -1 and -b options must also be included with
the -r, -:t., or -s options if the other kermit is on a remote system.

If kermit is in local mode, the screen (std.out) is continuously updated to
show the progress of the file transfer. A dot is printed for every four data
packets. Other packets are shown by type (i.e., S for Send-Init), Tis printed
when a timeout occurs, and ci. is printed for each retransmission. In addi­
tion, certain "interrupt" commands may be typed (to std.in) during file
transfer:

<CONTROL >-F

<CONTROL>-B

<CONTROL >-R

Interrupt the current file and proceed to the next (if
any).

Interrupt the entire batch of files and terminate the tran­
saction.

Resend the current packet.

< CONTROL>-A Display a status report for the current transaction.

These interrupt characters differ from the ones used in other kermlt imple­
mentations to avoid conflict with CLIX shell interrupt characters. With Sys­
tem III and System V implementations of UNIX, interrupt commands must

3

KERMIT(l) KERMIT(l)

be preceded by the escape character (e.g., <CONTROL>-\).
Several other command line options are provided:
-1

-w

-d

-h

Specifies that files should be sent or received exactly "as is" with no
conversions. This option is necessary for transmitting binary files.
It may also be used to slightly boost efficiency in UNIX-to-UNIX text
file transfers by eliminating CRLF/newline conversion.
Write-Protect - Avoid file name collisions for incoming files.
Quiet - Suppress screen update during file transfer. (For instance,
to allow a file transfer to proceed in the background.)
Debug - Record debugging information in the file debug.log in the
current directory. Use this option if the program is not working
properly.

Help - Display a brief synopsis of the command line options.
The command line may contain no more than one protocol action option.

Interactive Operation
kermit's interactive command prompt is "C-Kermit> ". In response to this
prompt, any valid command may be entered. kermit executes the command
and prompts for another command. The process continues until the user
instructs the program to terminate.
Commands begin with a keyword, normally an English verb, like send. ~.
Trailing characters may be omitted from any keyword so long as sufficient
characters are specified to distinguish it from any other keyword valid in
that field. Certain commonly-used keywords (such as send, receive, and
connect) have special nonunique abbreviations (s for send, r for receive,
and c for connect).
Certain characters have special functions in interactive commands:
? A question mark typed at any point in a command, will

produce a message explaining the action possible or
expected at that point. Depending on the context, the
message may be a brief phrase, a menu of keywords, or
a list of files.

<F.sC> (The Escape or Altmode key) - Request completion of
the current keyword or file name, or insertion of a
default value. The result will be a beep if the requested
operation fails.

 (The Delete or Rubout key) - Delete the previous char­
acter from the command. A <BACK SPACE> (back
space key or <CONTROL>-H) may also be used for this
function.

<CONTROL>-W Erase the right-most word from the command line.

4 12/88

KER.MIT(l) KDMIT(l)

12/88

<CONTROL>-U

<CONTROL>-R

<SPACE>

<RETURN>

Erase the entire command.

Redisplay the current command.

(Space bar) - Delimits fields (keywords, file names,
numbers) within a command. <TAB> (horizontal tab)
may also be used for this purpose.

(Carriage return) - Enters the command for execution.
<LINE FEED> (linefeed) or <FF> (formfeed) may
also be used for this purpose.

\ Enter any of the above characters in the command,
literally. To enter a backslash, type two backslashes
(\\). A single backslash immediately preceding a car­
riage return allows the continuation of the command on
the next line.

The editing characters (i.e., and <CONTROL>-W) may be typed
repeatedly to delete to the prompt. No action will be performed until the
command is entered by typing carriage return, linefeed, or formfeed. If mis­
takes are made and an informative error message and a new prompt are
received, it is advisable to use the help command.

Interactive kermlt accepts commands from files and the keyboard. When
interactive mode is entered, kermit looks for the file .kermrc first in the
home directory and then in the current one and executes any commands it
finds. These commands must be in interactive format, not CLIX command
line format. A take command is also provided to use at any time during an
interactive session. Command files may be nested to any reasonable depth.

Here is a brief list of kermit interactive commands:

bye

close

connect

cwd

dial

directory

echo

exit

finish

get

Execute a CLIX shell command.

Terminate and log out from a remote kermit
server.

Close a log file.

Establish a terminal connection to a remote sys­
tem.

Change working directory.

Dial a telephone number.

Display a directory listing.

Display arguments literally.

Exit from the program, closing any open logs.

Instruct a remote kermlt server to exit, but not
log out.

Get files from a remote kermit server.

5

KER.MIT(l)

6

help

log

quit

receive

remote

script

send

server

set

show

space

statistics

take

The set parameters are:

block-<:heck

delay

duplex

esca pe-<:haracter

file

flow-<:ontrol

handshake

line

modem-dialer

parity

prompt

receive

send

speed

The remote commands are:

cwd

delete

KERMIT(l)

Display a help message for a given command.

Open a log file - debugging, packet, session,
transaction.

Same as exit.

Passively wait for files to arrive.

Issue file management commands to a remote
kermlt server.

Execute a login script with a remote system.

Send files.

Begin server operation.

Set various parameters.

Display values of set parameters.

Display current disk space usage.

Display statistics about most recent transaction.

Execute commands from a file.

Level of packet error detection.

How long to wait before sending first packet.

Specify which side echoes during connect.

Character to prefix escape commands during
connect.

Set various file parameters.

Communication line full-duplex flow control.

Communication line half-duplex turnaround
character.

Communication line device name.

Type of modem-dialer on communication line.

Communication line character parity.

Change the kermlt program's prompt.

Set various parameters for inbound packets.

Set various parameters for outbound packets.

Communication line speed.

Change remote working directory.

Delete remote files.

12188

KER.MIT(l) KER.MIT(l)

FILES

directory

help

host

space

type

who

$HOME/ .kermrc
./.kermrc

Display a listing of remote file names.

Request help from a remote server.

Issue a command to the remote host in its own
command language.

Display the current disk space usage on remote
system.

Display a remote file on the screen.

Display who's logged in or information about a
user.

kermit initialization commands
more kermit initialization commands

SEE ALSO
cu(lC), uucp(lC) in the UNIX System V User's Reference Manual.
Frank da Cruz and Bill Catchings, Kermit User's Guide, Columbia Univer­
sity, 6th Edition

DIAGNOSTICS

NOTES

12188

The diagnostics produced by kermit are self-explanatory.

See recent issues of the Info-Kermit digest (on ARPANET or Usenet) for a list
of bugs.

7

X:SH(l) X:SH(l)

NAME
ltsh, ltrsh - shell, the standard/restricted command programming language

SYNOPSIS
bh [-aefhikmnoprstuvx] [-o option] ... [-<: string] [arg ...]
krsh [-aefhikmnoprstuvx] [-o option] ••. [-<: string] [arg ...]

DESC:RIPTION
ksh is a command programming language that executes commands read from

a terminal or a file. krsh is a restricted version of the standard command

interpreter ksh; it is used to set up login names and execution environments

whose capabilities are more controlled than those of the standard shell. See
Invocation below for the meaning of arguments to the shell.

Definitions
A metacharacter is one of the following characters:

; & () I < > newline space tab

A bl.ank is a tab or a space. An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore. Identifiers are used as

names for aliases, functions, and named parameters. A word is a sequence of
characters separated by one or more nonquoted metacharacters.

Commands

12188

A sim.pU!rcom.mand is a sequence of bl.ank separated words that may be pre­

ceded by a parameter assignment list. (See Environment below.) The first
word specifies the name of the command to be executed. Except as specified

below, the remaining words are passed as arguments to the invoked com­
mand. The command name is passed as argument 0 (see exec(2)). The value

of a simple-command is its exit status if it terminates normally or (octal)

200+status if it terminates abnormally. (See signal(2) for a list of status
values.)

A pipeline is a sequence of one or more comm.ands separated by I. The stan­
dard output of every command except the last is connected by a pipe(2) to

the standard input of the next command. Each command runs as a separate
process; the shell waits for the last command to terminate. The exit status

of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or 11 and

optionally terminated by ;, &, or I&. Of these five symbols, ;, &, and I&
have equal precedence, which is lower than && and II. The symbols &&
and II also have equal precedence. A semicolon (;) causes sequential execu­

tion of the preceding pipeline; an ampersand (&) causes asynchronous execu­

tion of the preceding pipeline (the shell does not wait for that pipeline to

finish). The symbol I& causes asynchronous execution of the preceding com­

mand or pipeline with a two-way pipe established to the parent shell. The

parent shell can read to and write from the standard input and output of the

spawned command using the -p option of the special commands read and

print described later. Only one such command can be active at any given

1

KSH(l)

2

X:SH(l)

time. The symbol &&. (II) causes the list following it to be executed only if
the preceding pipeline returns a zero (nonzero) value. An arbitrary number
of newlines may appear in a list instead of semicolons to delimit commands.

A command is either a simple-command or one of the following. Unless oth­
erwise stated, the value returned by a command is that of the last simple­
command executed in the command.

for identifier [in word ...] do list done
Each time a for command is executed, identifier is set to the next
word taken from the in word list. If in word .•. is omitted, the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below). Execution ends when
no more words are in the list.

select identifier [in word ...] do list done
A select command prints on standard error (file descriptor 2) the set
of words each preceded by a number. If in word ... is omitted, the
positional parameters are used instead (see Parameter Substitution
below). The PSl prompt is printed and a line is read from the stan­
dard input. If this line consists of the number of one of the listed
words, the value of the parameter identifier is set to the word
corresponding to this number. If this line is empty, the selection list
is printed again. Otherwise the value of the parameter identifier is
set to null. The contents of the line read from standard input is
saved in the parameter REPLY. The list is executed for each selection
until a break or end-of-file is encountered.

case word in [pattern [I pattern ...) list ; ;] ... esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that used
for file name generation (see File Name Generation below).

if list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list fol­
lowing elif is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else list is executed. If no
else list or then list is executed, the if command returns a zero exit
status.

while list do list done
until list do list done

(list)

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list;
otherwise the loop terminates. If no commands in the do list are
executed, the while command returns a zero exit status; until may
be used instead of while to negate the loop termination test.

Execute list in a separate environment. If two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid

12/88

KSH(l)

{ list;}

KSH(l)

arithmetic evaluation as described below.

List is simply executed. Note that { is a keyword and requires a
blank to be recognized.

function identifier { list;}
identifier 0 { list;}

Denne a function referenced by identifier. The body of the function
is the list of commands between {and}. (See Functions below.)

time pipeline
The pipeline is executed and the elapsed time as well as the user and
system time are printed on standard error.

The following keywords are only recognized as the first word of a command
and not within quotes:

if then else elif ft case esac for while until do
done { } function select time

Comments
A word beginning with# causes the word and all following characters up to
a newline to be ignored.

Aliasing

12/88

The first word of each command is replaced by the text of an alias if an
alias for this word has been denned. The first character of an alias name
can be any nonspecial printable character, but the remaining characters must
be the same as they are for a valid identifier. The replacement string can
contain any valid shell script including the metacharacters listed above. The
fi.rst word of each command of the replaced text will not be tested for addi­
tional aliases. If the last character of the alias value is a blank, the word
following the alias will also be checked for alias substitution. Aliases can
be used to redefine special built-in commands but cannot be used to redefine
the keywords listed above. Aliases can be created, listed, and exported with
the alias command and can be removed with the unalias command.
Exported aliases remain in effect for subshells but must be reinitialized for
separate invocations of the shell (see Invocation below).

Aliasing is performed when scripts are read, not while they are executed.
Therefore, for an alias to take effect the alias command must be executed

before the command that references the alias is read.

Aliases are frequently used as a short-hand for full path names. An option
to the aliasing facility allows the value of the alias to be automatically set

to the full path name of the corresponding command. These aliases are

called tracked aliases. The value of a tracked alias is denned the first time
the corresponding command is looked up and becomes undefined each time

the PATH variable is reset. These aliases remain tracked so that the next
subsequent reference will redefine the value. Several tracked aliases are
compiled into the shell. The -h option of the set command causes each com­

mand name that is a valid alias name to be tracked alias.

3

KSH(l) KSH(l)

4

The following exported aliases are compiled into the shell but can be unset
or redefined:

Tilde Substitution

false=='let O'
f unctions=='typeset -f'
history=='f c -1'
integer=='typeset -i'
nohup=='nohup '
r=='fc -e -'
true-':'
type=='whence -v'
hash=='alias -t'

After alias substitution is performed, each word is checked to see if it begins
with an unquoted --. If it does, the word up to I is checked to see if it
matches a user name in the /etc/passwd file. If a match is found, the -­
and the matched login name are replaced by the login directory of the
matched user. This is called a tilde substitution. If no match is found, the
original text is unchanged. A -- by itself or in front of a I is replaced by
the value of the HOME parameter. A -- followed by a+ or - is replaced by
the value of the parameter PWD or OLDPWD, respectively.
In addition, the value of each keyword parameter is checked to see if it begins
with a -- or if a -- appears after a : . In either of these cases a tilde substi­
tution is attempted.

Command Substitution
The standard output from a command enclosed in parentheses preceded by a
dollar sign ($ ()) or a pair of grave accents (• •) may be used as part or all
of a word; trailing newlines are removed. In the second (archaic) form, the
string between the quotes is processed for special quoting characters before
the command is executed. (See Quoting below.) The command substitution
$(cat file) can be replaced by the equivalent but faster $(<file). Command
substitution of most special commands that do not redirect input or output
is carried out without creating a separate process.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters •,
@, #, ?, -, $, and !. A named parameter (a parameter denoted by an
identifier) has a val.ue and zero or more attributes. Named parameters can be
assigned val.ues and attributes by using the typeset special command. The
attributes supported by the shell are described later with the typeset special
command. Exported paramets;rs pass values and attributes to subshells but
only pass values to the enj;i~ent.
The shell supports a undted one-dimensional array facility. An element of
an array parameter is feferenced by a subscript. A subscript is denoted by a
[, followed by an arithmetic expression, followed by a] (see Arithmetic
Evaluation below). The value of all subscripts must be in the range of 0
through 511. Arrays need not be declared. Any reference to a named

12/88

DH(l)

12188

X:SH(l)

parameter with a valid subscript is legal and an array will be created if
necessary. Referencing an array without a subscript is the same as referenc­
ing the ftrst element.

The value of a named parameter may also be assigned by writing:

name - value [name - value] ...

If the integer attribute -i is set for name, the value is subject to arithmetic
evaluation as described below.

Positional parameters (those denoted by a number) may be assigned values
with the set special command. Parameter $0 is set from argument zero
when the shell is invoked.

The character$ is used to introduce substitutable parameters.

${parameter}
The value (if any) of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name or when a named
parameter is subscripted. If parameter is one or more digits, it is a
positional parameter. A positional parameter of more than one digit
must be enclosed in braces. If parameter is • or @, all positional
parameters, starting with $1, are substituted (separated by a field
separator character). If an array identifier with subscript •or @ is
used, the value for each of the elements is substituted (separated by
a field separator character).

${#parameter}
If parameter is • or @, the number of positional parameters is substi­
tuted. Otherwise, the length of the parameter value is substituted.

${#identifier[•]}
The number of elements in the array identifier is substituted.

${parameter:-word}
If parameter is set and is non-null, substitute its value; otherwise,
substitute word.

${parameter:-word}
If parameter is not set or is null, set it to word; the parameter's value
is then substituted. Positional parameters may not be assigned to in
this way.

${parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, a standard
message is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise, sub­
stitute nothing.

5

X:SH(l)

6

X:SH(l)

${parameter#pattern}
${parameter# #pattern}

If the shell pattern matches the beginning of the parameter's value,
the value of this substitution is the parameter's value with the
matched portion deleted; otherwise, the parameter's value is substi­
tuted. In the first form, the smallest matching pattern is deleted and
in the latter form the largest matching pattern is deleted.

${parameterJ>pattern}
${parameterJ>%pattern}

If the shell pattern matches the end of the parameter's value, the
value of this substitution is the parameter's value with the matched
portion deleted; otherwise, the parameter's value is substituted. In
the first form, the smallest matching pattern is deleted and in the
latter form the largest matching pattern is deleted.

In the above, word is not evaluated unless it will be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set
or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, the shell only checks
whether parameter is set.

The shell automatically sets the following parameters:
The number of positional parameters in decimal.

?

$

PPID

Flags supplied to the shell on invocation or by the set
command.

The decimal value returned by the last command exe­
cuted.

The process number of this shell.

The last argument of the previous command. This
parameter is not set for asynchronous commands. This
parameter is also used to hold the name of the matching
MAIL file when checking for mail. Finally, the value of
this parameter is set to the full path name of each pro­
gram the shell invokes and is passed in the environment.
The process number of the last background command
invoked.

The process number of the parent of the shell.
PWD The present working directory set by the cd command.
OLDPWD The previous working directory set by the cd command.
RANDOM Each time this parameter is referenced, a random integer

is generated. The sequence of random numbers can be
initialized by assigning a numeric value to RANDOM.

12/88

XSH(l)

12188

REPLY

XSH(l)

This parameter is set by the select statement and by the
read special command when no arguments are supplied.

SECONDS Each time this parameter is referenced, the number of
seconds since shell invocation is returned. If this param­
eter is assigned a value, the value returned upon refer­
ence will be the value assigned plus the number of
seconds since the assignment.

The fallowing parameters are used by the shell:

CDPATH The search path for the cd command.

COLUMNS If this variable is set, the value is used to define the
width of the edit window for the shell edit modes
and for printing select lists.

EDITOR

ENV

F'CIDIT

IF'S

HISTF'ILE

HISTSIZE

HOME

L~

If the value of this variable ends in emacs, gmacs, or
vi and the VISUAL variable is not set, the
corresponding option will be turned on (see the spe­
cial command set below).

If this parameter is set, parameter substitution is per­
formed on the value to generate the path name of the
script to be executed when the shell is invoked. (See
Invocation below.) This file is typically used for
alias and function definitions.

The def a ult editor name for the fc command.

Internal field separators, normally space, tab, and
newline, that are used to separate command words
which result from command or parameter substitu­
tion and for separating words with the special com­
mand read. The first character of the IF'S parameter
is used to separate arguments for the$• substitution.
(See Quoting below.)

If this parameter is set when the shell is invoked, the
value is the path name of the file that will store the
command history. (See Command Re-entry below.)

If this parameter is set when the shell is invoked, the
number of previously entered commands that are
accessible by this shell will be greater than or equal
to this number. The default is 128.

The default argument (home directory) for the cd
command.

If this variable is set, the value is used to determine
the column length for printing select lists. Select
lists will print vertically until about two-thirds of
LINES lines is filled.

7

X:SH(l) X:SH(l)

8

MAIL If this parameter is set to the name of a mail file and
the MAILPATH parameter is not set, the shell informs
the user of mail arrival in the specified file.

MAILCHECIC This variable specifies how often (in seconds) the shell
will check for changes in the modification time of any
of the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds. When
the time has elapsed the shell will check before issu­
ing the next prompt.

MAILPATH A list of file names separated by colons (:). If this
parameter is set, the shell informs the user of any
modifications to the specified files that have occurred
within the last MAILCHECIC seconds. Each file name
can be followed by a 1 and a message that will be
printed. The message will undergo parameter and
command substitution; the name of the file that
changed will be substituted for the parameter $_.
The default message is "you have mail in$_".

PATH The search path for commands (see Execution
below). The user may not change PATH when execut­
ing under krsh (except in .profile).

PSl The value of this parameter is expanded for parame­
ter substitution to define the primary prompt string
thta is "$ " by default. The character I in the pri­
mary prompt string is replaced by the command
number (see Command Re-entry below).

PS2 Secondary prompt string. (" > " by default.)

PS3 Selection prompt string used within a select loop.
(" #? " by default.)

SHELL The path name of the shell is kept in the environ­
ment. At invocation, if the value of this variable
contains an r in the basename, the shell becomes res­
tricted.

TMOUT If set to a value greater than zero, the shell will ter­
minate if a command is not entered within the
prescribed number of seconds after issuing the PSl
prompt. (The shell can be compiled with a maximum
bound for this value that cannot be exceeded.)

VISUAL If the value of this variable ends in emacs, gmacs, or
vi, the corresponding option will be turned on (see
the special command set below).

The shell gives default values to PATH, PSl, PS2, MAILCllEC1', TMOUT and
IFS, while the shell does not set HOME, SHELL, ENV, and MAIL (although

12/88

XSH(l) XSH(l)

Zogin(l) sets HOME). On some systems Zogin(l) also sets MAIL and SHELL.

Blank. Interpretation
After parameter and command substitution, the substitution results are
scanned for the field separator characters (those found in IFS) and split into
distinct arguments where such characters are found. Explicit null arguments
(•• or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters •,
? , and [unless the -f option has been set. If one of these characters appears,
the word is regarded as a pattern. The word is replaced with alphabetically
sorted fl.le names that match the pattern. If no fl.le name is found that
matches the pattern, the word remains unchanged. When a pattern is used
for file name generation, the character. at the start of a fl.le name or immedi­
ately following a /, and the character /, must be matched explicitly. In
other instances of pattern matching, the I and. are not treated specially.

• Matches any string, including the null string.

? Matches any single character.

[•••] Matches any of the enclosed characters. A pair of characters
separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening
" [" is an "!", any character not enclosed is matched. A - can
be included in the character set by making it the first or last
character.

Quoting
Each metacharacter listed above has a special meaning to the shell and causes
termination of a word unless quoted. A character may be quoted (made to
stand for itself) by preceding it with a\. The pair \newline is ignored. All
characters enclosed between a pair of single quote marks (' ') are quoted. A
sinile quote cannot appear within single quotes. Inside double quote marks
(•), parameter and command substitution occurs and \ quotes the charac­
ters \, •, •, and $. The meanings of $• and $@ are identical when not quoted
or when used as a parameter assignment value or fl.le name. However, when
used as a command argument, •sa• is equivalent to •$td $2d .. ,-, where d is
the first character of the I.PS parameter; whereas, •s@• is equivalent to •s1 •
•s2• Inside grave quote marks (• •), \ quotes the characters \, •, and $.
If the grave quotes occur within double quotes,\ also quotes the character•.

The special meaning of keywords or aliases can be removed by quoting any
character of the keyword. The recognition of function names or special com­
mand names listed below cannot be altered by quoting them.

Arithmetic Evaluation

12188

An ability to perform integer arithmetic is provided with the special com­
mand let. Evaluations are performed using long arithmetic. Constants have
the form [base#]n where base is a decimal number between 2 and 36,

9

KSH(l) KSH(l)

10

representing the arithmetic base, and n is a number in that base. If lxise is
omitted, base 10 is used.
An internal integer representation of a named parameter can be specified
with the -i option of the typeset special command. When this attribute is · ,,
selected, the first assignment to the parameter determines the arithmetic base
to be used when parameter substitution occurs.
Since many arithmetic operators require quoting, an alternative form of the
let command is provided. For any command that begins with ((, all charac­
ters until a matching)) are treated as a quoted expression. More precisely,
((...)) is equivalent to let • ... •.

Prompting
When used interactively, the shell prompts with the value of PSl before
reading a command. If a newline is typed and further input is needed to
complete a command, the secondary prompt (the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using
a special notation interpreted by the shell. The following may appear any­
where in a simple-command or may precede or follow a command and not be
passed to the invoked command. Command and parameter substitution
occurs before word or digit is used except as noted below. File name genera­
tion occurs only if the pattern matches a single file and blank interpretation
is not performed. ,.. 9 ,

<word Use file word as standard input (file descriptor 0).
>word

>>word

<<[-]word

<&digit

Use file word as standard output (file descriptor 1). If the file
does not exist, it is created; otherwise, it is truncated to zero
length.

Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

The shell input is read up to a line that is the same as word,
or to an end-of-file. No parameter substitution, command
substitution, or file name generation is performed on word.
The resulting document, called a here-document, becomes the
standard input. If any character of word is quoted, then no
interpretation is placed on the characters of the document;
otherwise, parameter and command substitution occurs,
\newline is ignored, and\ must be used to quote the charac­
ters\,$,~, and the first character of word. If - is appended to
< <, all leading tabs are stripped from word and from the
document.

The standard input is duplicated from file descriptor digit
(see dup(2)). Similarly for the standard output using
>&digit.

12/88

KSH(l)

<&-

KSH(l)

The standard input is closed. Similarly for the standard out­
put using>&-.

If one of the above is preceded by a digit, the file descriptor number referred
to is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

The order in which redirections are specified is significant. The shell evalu­
ates each redirection in terms of the (file descriptor, file) association at the
time of evaluation. For example:

... l>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file
descriptor 2 with the file associated with file descriptor 1 (/name). If the
order of redirections is reversed, file descriptor 2 would be associated with
the terminal (assuming file descriptor 1 had been) and then file descriptor 1
would be associated with file fname.

If a command is followed by & and job control is not active, the default
standard input for the command is the empty file /dev/null. Otherwise,
the environment for execution contains the file descriptors of the invoking
shell as modified by input/output specifications.

Environment

12/88

The environment (see environ(5)) is a list of name-value pairs that is passed
to an executed program as a normal argument list is. The names must be
identifiers and the values are character strings. The shell interacts with the
environment in several ways. On invocation, the shell scans the environ­
ment and creates a parameter for each name found, giving it the correspond­
ing value and marking it export. Executed commands inherit the environ­
ment. If the user modifies the values of these parameters or creates new
ones, using the export or typeset -x commands they become part of the
environment. The environment seen by any executed command is thus com­
posed of any name-value pairs originally inherited by the shell, whose
values may be modified by the current shell, plus any additions that must be
noted in export or typeset -x commands.

The environment for any simple-command or function may be augmented
by prefixing it with one or more parameter assignments. A parameter
assignment argument is a word with the form identifier-value. Thus

TERM=450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the execution of cmd shown above is concerned).

If the -k ft.ag is set, all parameter assignment arguments are placed in the
environment, even if they occur after the command name. The following

11

KSH(l) KSH(l)

12

first prints a-b c and then c:

echo a=b c
set -k
echo a=b c

Functions
The function keyword, described in the Commands section above, defines
shell functions. Shell functions are read and stored internally. Alias names
are resolved when the function is read. Functions are executed like com­
mands with the arguments passed as positional parameters. (See Execution
below).

Functions execute in the same process as the caller and share all files, traps
(other than EXIT and ERR), and present working directory with the caller.
A trap set on EXIT in a function is executed after the function completes.
Ordinarily, variables are shared between the calling program and the func­
tion. However, the typeset special command used within a function defines
local variables whose scope includes the current function and all functions it
calls.

The special command return is used to return from function calls. Errors
within functions return control to the caller.

Function identifiers can be listed with the -f option of the typeset special
command. The text of functions will also be listed. Function can be
undefined with the -f option of the unset special command.
Ordinarily, functions are unset when the shell executes a shell script. The
-xf option of the typeset command allows a function to be exported to
scripts executed without a separate invocation of the shell. Functions that
need to be defined across separate invocations of the shell should be placed in
the ENV file.

Jobs
If the monitor option of the set command is turned on, an interactive shell
associates a job with each pipeline. It keeps a table of current jobs, printed
by the jobs command, and assigns them small integer numbers. When a job
is started asynchronously with&, the shell prints a line that looks like:

[1] 1234

indicating that the job started asynchronously was job number 1 and had
one (top-level) process, whose process ID was 1234.

This paragraph and the next require features that are not in all versions of
UNIX and may not apply. If a job is running and the user wishes to do
something else, the key <CONTROL>-Z may be hit, which sends a STOP sig­
nal to the current job. The shell will then normally indicate that the job
has been "Stopped" and print another prompt. The state of this job can then
be manipulated, putting it in the background with the bg command, or run
some other commands and then eventually bring the job back to the fore­
ground with the foreground command fg. A <CONTROL>-Z takes effect

12/88

KSH(l) KSH(l)

immediately and is like an interrupt in that pending output and unread
input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the ter­
minal. Background jobs are normally allowed to produce output, but this
can be disabled by giving the command stty tostop. If this tty option is
set, background jobs will stop when they try to produce output as they do
when they try to read input.

There are several ways to refer to jobs in the shell. The character % intro­
duces a job name. To refer to job number 1, it can be named as %1. Jobs
can also be named by prefixes of the string typed in to kill or restart them.
Thus, on systems that support job control, fg CJ,ed would normally restart a
suspended ed(l) job if a suspended job whose name began with the string
"ed" existed.

The shell maintains a notion of the current and previous jobs. In output
pertaining to jobs, the current job is marked with a + and the previous job
with a-. The abbreviation ti>+ refers to the current job and%- refers to the
previous job. %% is also a synonym for the current job.

This shell learns immediately when a process changes state. It normally
informs the user when a job becomes blocked so that no further progress is
possible, but only just before it prints a prompt. This is done so that the
user's work is not otherwise disturbed.

When trying to leave the shell while jobs are running or stopped, the user
will be warned that "You have stopped(running) jobs." The jobs command
can then be used to see what they are. If this is done or exiting is immedi­
ately tried again, the shell will not give a second warning, and the stopped
jobs will be terminated.

Signals
The INT and QUIT signals for an invoked command are ignored if the com­
mand is followed by & and job monitor option is not active. Otherwise,
signals have the values inherited by the shell from its parent (but see also
the trap command below).

Execution

12188

Each time a command is executed, the above substitutions occur. If the com­
mand name matches one of the special commands listed below, it is executed
within the current shell process. Next, the command name is checked to see
if it matches one of the user defined functions. If it does, the positional
parameters are saved and then reset to the arguments of the function call.
When the function completes or issues a return, the positional parameter
list is restored and any trap set on EXIT within the function is executed.
The value of a function is the value of the last command executed. A func­
tion is also executed in the current shell process. If a command name is not
a special command or a user-defined function, a process is created and an
attempt is made to execute the command using exec(2).

13

KSH(l) KSH(l)

14

The shell parameter PATH defines the search path for the directory contain­
ing the command. Alternative directory names are separated by a colon (:).
The default path is /bin:/asr/bin: (specifying /bin, /asr/bin, and the
current directory in that order). The current directory can be specified by
two or more adjacent colons or by a colon at the beginning or end of the
path list. If the command name contains a /, the search path is not used.
Otherwise, each directory in the path is searched for an executable file. If
the file has execute permission but is not a directory or an a.oat file, it is
assumed to be a file containing shell commands. A sub-shell is spawned to
read it. All nonexported aliases, functions, and named parameters are
removed in this case. If the shell command file does not have read permis­
sion or if the setuid and/or setgid bits are set on the file, the shell executes
an agent who sets up the permissions and executes the shell with the shell
command file passed as an open file. A parenthesized command is also exe­
cuted in a subshell without removing nonexported quantities.

Command Re-entry
The text of the last HISTSIZE (default 128) commands entered from a ter­
minal device is saved in a history file. The file $HOME/ .sh_history is used
if the HISTFILE variable is not set or is not writable. A shell can access the
commands of all interactive shells that use the same named HISTFILE. The
special command fc is used to list or edit a portion of this file. The portion
of the file to be edited or listed can be selected by number or by giving the
first characters of the command. A single command or range of commands
can be specified. If an editor program is not specified as an argument to f c,
the value of the parameter FCEDIT is used. If FCEDIT is not defined,
/bin/ed is used. The edited command(s) is printed and re-executed on leav­
ing the editor. The editor name - is used to skip the editing phase and to re­
execute the command. In this case, a substitution parameter with the form
old-new can be used to modify the command before execution. For example,
if r is aliased to 'fc -e -', typing r bad-good c will re-execute the most
recent command that starts with c, replacing the first occurrence of the
string "bad" with the string "good".

In-line Editing Options
Normally, each command line entered from a terminal device is simply
typed followed by a newline (<RETURN> or <LINE FEED>). If either the
emacs, gmacs, or vi option is active, the user can edit the command line.
To be in either of these edit modes, set the corresponding option. An editing
option is automatically selected each time the VISUAL or EDITOR variable is
assigned a value ending in either of these option names.

The editing features require that the user's terminal accept <RETURN> as a
carriage return without a line feed and that a space(" ")must overwrite the
current character on the screen. ADM terminal users should set the "space -
advance" switch to "space". Hewlett-Packard• series 2621 terminal users
should set the straps to "bcGHxZ etX".

The editing modes implement a concept where the user is looking through a
window at the current line. The window width is the value of COLUMNS if

12/88

KSH(l) KSH(l)

it is defined; otherwise it is 80. If the line is longer than the window width
minus two, a mark is displayed at the end of the window to notify the user.
As the cursor moves and reaches the window boundaries, the window will
be centered about the cursor. The mark is a > (<,•)if the line extends on
the right (left, both) side(s) of the window.

Emacs Editing Mode

12188

This mode is entered by enabling either the emacs or gmacs option. The
only difference between these two modes is the way they handle "T. To
edit, the user moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. All editing commands are
control characters or escape sequences. The notation for control characters is
caret ('") followed by the character. For example, "F is the notation for
<CONTROL>-F. This is entered by pressing "f" while holding down the
<CONTROL> key. The <SHIFT> key is not pressed. (The notation~ indi­
cates the (delete) key.)

The notation for escape sequences is M- followed by a character. For exam­
ple, M-f (pronounced Meta f) is entered by pressing <ESC> (ASCII 033) fol­
lowed by "f". (M-F would be the notation for < ESC > followed by
<SHIFT> (capital) "F".)

All edit commands operate from any place on the line (not just at the begin­
ning). Neither the <RETURN> nor the <LINE FEED> key is entered after
edit commands except when noted .

....
M-f

"'B
M-b
"''A
"'E
"']c"ha.r
"'X"'X
erase

"'I>
M-d
M-"'11
M-h
M-~

"'T

"'c
M-c
M-1

Move cursor forward (right) one character.
Move cursor forward one word. (The editor interprets a word as
a string of characters consisting of only letters, digits and under­
scores.)
Move cursor backward (left) one character.
Move cursor backward one word.
Move cursor to start of line.
Move cursor to end of line.
Move cursor to character char on current line.
Interchange cursor and mark.
(User-defined erase character as defined by the stty(l) command,
usually "'II or # .) Delete previous character.
Delete current character.
Delete current word.
(Meta-backspace) Delete previous word.
Delete previous word.
(Meta-< DEL>) Delete previous word (if the interrupt character
is~ (, the default), this command will not work).
Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.
Capitalize current character.
Capitalize current word.
Change the current word to lowercase.

15

KSH(l)

16

'){

"W
M-p
kill

'Y

"L
"@

M­
" J
"M
eof

"p

M-<
M->
"N

KSH(l)

Kill from the cursor to the end of the line. If given a parameter
of zero, kill from the start of line to the cursor.
Kill from the cursor to the mark.
Push the region from cursor to mark on the stack.
(User-defined kill character as defined by the stty{l) command,
usually "G or @ .) Kill the entire current line. If two kill char­
acters are entered in succession, all kill characters from then on
cause a line feed (useful when using paper terminals).
Restore last item removed from line. (Yank item back to the
line.)
Line feed and print current line.
(Null character) Set mark.
(Meta space) Set mark.
(<LINE FEED>) Execute current line.
(<RETURN>) Execute current line.
End-of-file character, normally 'D, will terminate shell if
current line is null.
Fetch previous command. Each time "pis entered, the previous
command is accessed.
Fetch least recent (oldest) history line.
Fetch most recent (youngest) history line.
Fetch next command. Each time "N is entered the next com-
mand is accessed.

"Rstring Reverse search history for a previous command line containing 4

•

string. If a parameter of zero is given, the search is forward.
String is terminated by a <RETURN> or <LINE FEED>. If
string is omitted, the next command line containing the most
recent string is accessed. In this case, a parameter of zero rev-
erses the direction of the search.

"o Operate - Execute the current line and fetch the next line relative
to it from the history file.

M-digits (<ESC>) Define numeric parameter. The digits are interpreted
as a parameter to the next command. The commands that accept
a parameter are., "F, "8, erase, 'D, "K., "R, "P, "N, M-., M-_,
M-b, M-c, M-d, M-f, M-h, and M-"II.

M-letter Soft-key - The alias list is searched for an alias with the name
_letter; if an alias with this name is defined, its value will be
inserted on the input queue. The letter must not be one of the
above meta-functions.

M-. The last word of the previous command is inserted on the line.
If preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

M-_ Same as M-•.
M_. Attempt file name generation on the current word. An asterisk

is appended if the word does not contain any special pattern
characters.

12188

J.:SB(l) J.:SB(l)

M-<ESC> Same as M-•.
M- List files matching current word pattern if an asterisk was

appended.
"'U Multiply parameter of next command by 4.
\ Escape next character. Editing characters, the user's erase, kill,

and interrupt (normally -,) characters may be entered in a com­
mand line or in a search string if preceded by a \. The \ removes
the next character's editing features (if any).

"V Display version of the shell.

Vi Editing Mode

12/88

There are two typing modes. Initially, when a command is entered the user
is in the input mode. To edit, the user enters control mode by typing < ESC >
(ASCII 033) and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control commands
accept an optional repeat count before the command.

When in vi mode on most systems, canonical processing is initially enabled
and the command will be echoed again if the speed is 1200 baud or greater
and it contains any control characters or less than one second has elapsed
since the prompt printed. The <ESC> character terminates canonical pro­
cessing for the remainder of the command and the user can then modify the
command line. This scheme has the advantages of canonical processing with
the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal's canonical processing will
always be disabled. This mode is implicit for systems that do not support
two alternate end-of-line delimiters and may be helpful for certain termi­
nals.

Input F..dit Commands
By def a ult, the editor is in input mode.

erase (User-defined erase character as defined by the stty{l)
command, usually "II or#.) Delete previous character.

--W Delete the previous blank separated word.
')) Terminate the shell.
"V Escape next character. Editing characters, the user's erase

or kill characters may be entered in a command line or in
a search string if preceded by a "V. The "V removes the
next character's editing features (if any).

\ Escape the next erase or kill character.

Motion F.dit Commands
These commands will move the cursor.

[count]! Cursor forward (right) one character.
[count]w Cursor forward one alphanumeric word.
[count] W Cursor to beginning of next word that follows a blank.
[count]e Cursor to end of word.
[count]E Cursor to end of current blank-delimited word.

17

KSH(l)

18

[count]h Cursor backward (left) one character.
[count] b Cursor backward one word.
[count] B Cursor to preceding blank-separated word.
[count] f c Find next character c in current line.
[count]Fc Find the previous character c in the current line.
[count] tc Equivalent to f followed by h.
[count]Tc Equivalent to F followed by I.

KSH(l)

Repeats the last single-character find command, f, F, t, or
T.

t

0 ..
$

Reverses the last single-character find command.
Cursor to start of line.
Cursor to first nonblank character in line.
Cursor to end of line.

Search Edit Commands
These commands access the command history.

[count] It Fetch previous command. Each time It is entered, the pre­
vious command is accessed.

[count]- Equivalent to It.
[countlj Fetch next command. Each time j is entered, the next

command is accessed.
[count]+ Equivalent to j.
[count]G The command number count is fetched. The default is the

least recent history command.
I string Search backward through history for a previous command

containing string. String is terminated by a <RETURN>
or <LINE FEED>. If string is null, the previous string

?string
n

N

will be used.
Same as I except that search will be forward.
Search for next match of the last pattern to I or ? com­
mands.
Search for next match of the last pattern to I or?, but in
reverse direction. Search history for the string entered by
the previous I command.

Text Modification Edit Commands
These commands will modify the line.

a

A
[count] emotion

Enter input mode and enter text after the current
character.
Append text to the end of line. Equivalent to $a.

c [count] motion Delete current character through the character that

c

motion would move the cursor to and enter input
mode. If motion is c, the line will be deleted and
input mode entered.
Delete the current character through end of line and
enter input mode. Equivalent to c$.

12/88

•

JC:SH(l)

12188

JC:SH(l)

S Equivalent to cc.
D Delete the current character through the end of line.

Equivalent to d$.
[count] dm.otlon
d [count] motion Delete current character through the character that

motion would move to. If motion is d, the line will
be deleted.

i Enter input mode and insert text before the current
character.

I Insert text before beginnini of line. Equivalent to
the two-character sequence i.

[count] P Place the previous text modification before the cur-

[count]p
It

re
[countb
[count]X
[count].

[count]_

•

sor.
Place the previous text modification after the cursor.
Enter input mode and replace characters on the
screen with characters typed overlaying them.
Replace the current character with c.
Delete current character.
Delete preceding character.
Repeat previous text modification command.
Invert case of the current character and advance cur­
sor.
Causes the count word of the previous command to
be appended and input mode entered. The last word
is used if count is omitted.
Causes an• to be appended to the current word and
file name generation attempted. If no match is
found, it rings the bell. Otherwise, the word is
replaced by the matching pattern and input mode is
entered.

Other F.d.it Commands
Miscellaneous commands.

[count] ymotlon
y [count] motion

Yank current character through character that motion
would move the cursor to and put them in the delete
buffer. The text and cursor are unchanged.

Y Yanks from current position to end of line. Equivalent to
y$.

u Undo the last text modifying command.
U Undo all the text modifying commands performed on the

line.
[count] v Returns the command f c -e {VISUAL:-${EDITOR:-vi}}

count in the input buffer. If count is omitted, the current
line is used.

L Line feed and print current line. Works only in control
mode.

19

KSH(l) KSH(l)

20

"'J (<LINE FEED>) Execute the current line, regardless of
mode.

"'M (<RETURN>) Execute the current line, regardless of
mode.

Sends the line after inserting # in front of line and after
each newline. Useful for causing the current line to be
inserted in the history without being executed.
List the file names that match the current word with an
asterisk appended it.

@letter The alias list is searched for an alias with the name
_letter and if an alias with this name is defined, its value
will be inserted on the input queue for processing.

Special Commands
The following simple-commands are executed in the shell process.
Input/output redirection is permitted. Unless otherwise indicated, the out­
put is written on file descriptor 1. Commands preceded by one or two t are
treated specially in the following ways:

1. Parameter assignment lists preceding the command remain in effect
when the command completes.

2. They are executed in a separate process when used in command sub­
stitution.

3. Errors in commands preceded by tt cause the script that contains
them to abort.

t: [arg ...]
The command only expands parameters. A zero exit code is
returned.

tt. file [arg ...]
Read and execute commands from file and return. The commands
are executed in the current shell environment. The search path
specified by PATH is used to find the directory containing file. If any
arguments arg are given, they become the positional parameters.
Otherwise, the positional parameters are unchanged.

alias [-tx] [name [-value] ...]
Alias with no arguments prints the list of aliases in the form
name-value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next word
to be checked for alias substitution. The -t ft.ag is used to set and
list tracked aliases. The value of a tracked alias is the full path
name corresponding to the given name. The value becomes undefined
when the value of PATH is reset but the aliases remained tracked.
Without the -t ft.ag, for each name in the argument list with no value
given, the name and value of the alias is printed. The -x ft.ag sets or
prints exported aliases. An exported alias is defined across subshell
environments. Alias returns true unless a name is given for which
no alias has been defined.

12/88

KSH(l)

12/88

KSH(l)

bg ['J>job]
This command is only built-in on systems that support job control.
It puts the specified job in the background. The current job is put in
the background if job is not specified.

break [n]
Exit from the enclosing for, while, until, or select loop, if any. If
n is specified, break n levels.

continue [n]
Resume the next iteration of the enclosing for, while, until, or
select loop. If n is specified, resume at the nth enclosing loop.

t cd [arg]
t cd old new

This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is -, the directory is
changed to the previous directory. The shell parameter HOME is the
default arg. The parameter PWD is set to the current directory. The
shell parameter CDPATB defines the search path for the directory
containing arg. Alternative directory names are separated by a colon
(:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg begins with a
I, the search path is not used. Otherwise, each directory in the path
is searched for arg.

The second form of cd substitutes the string new for the string old in
the current directory name, PWD, and tries to change to this new
directory.

The cd command may not be executed by krsh.

echo [arg ...]
See echo(l) for usage and description.

tt eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

tt exec [arg ...]
If arg is given, the command specified by the arguments is executed
in place of this shell without creating a new process. Input/output
arguments may appear and affect the current process. If no argu­
ments are given, this command modifies file descriptors as prescribed
by the input/output redirection list. In this case, any file descriptor
numbers greater than 2 opened with this mechanism are closed when
invoking another program.

exit [n]
Causes the shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. An

21

KSH(l)

22

UH(l)

end-of-file will also cause the shell to exit unless the shell's
ignoreeof option is on (see set below). on.

tt export [name ...]
The given names are marked for automatic export to the environment
of subsequently-executed commands.

tt f c [-e ename] [-nlr] [first] [last]
tt fc -e - [old-new] [command]

In the first form, a range of commands from first to last is selected
from the last HISTSIZE commands typed at the terminal. The argu­
ments first and last may be specified as a number or as a string. A
string is used to locate the most recent command starting with the
given string. A negative number is used as an offset to the current
command number. If the ftag -1 is selected, the commands are listed
on standard output. Otherwise, the editor program ename is invoked
on a file containing these keyboard commands. If ename is not sup­
plied, the value of the parameter FCEDIT (default /bin/ed) is used
as the editor. When editing is complete, the edited command(s) is
executed. If last is not specified, it will be set to first. If first is not
specified, the default is the previous command for editing and -16
for listing. The ftag -r reverses the order of the commands and the
ftag -n suppresses command numbers when listing. In the second
form, the command is re-executed after old-new is substituted.

fg [%job]
This command is only built-in on systems that support job control.
If job is specified, the command brings it to the foreground. Other­
wise, the current job is brought to the foreground.

jobs [-1]
Lists the active jobs. The -1 option lists process id's in addition to
the normal information.

kill [-sig] process ...
Sends either the TERM (terminate) signal or the signal sig to the
specified jobs or processes. Signals are given by number or by names
(as given in /usr/include/signal.h, stripped of the prefix "SIG").
The signal numbers and names are listed by kill -1. If the signal
being sent is TERM (terminate) or HUP (hangup), the job or process
will be sent a CONT (continue) signal if it is stopped. The argument
process can be either a process ID or a job.

let arg ...
Each arg is an arithmetic expression to be evaluated. All calcula­
tions are performed as long integers and overftow is not checked.
Expressions consist of constants, named parameters, and operators.
The following set of operators, listed in order of decreasing pre­
cedence, have been implemented:

unary minus

12/88

KSH(l)

12188

KSH(l)

logical negation
• I CJ. multiplication, division, remainder
+ - addition, subtraction
< = > = < > comparison
= = ! = equality, inequality
= arithmetic replacement

Subexpressions in parentheses () are evaluated first and can be used
to override the above precedence rules. The evaluation within a pre­
cedence group is from right to left for the - operator and from left
to right for the others.

A parameter name must be a valid identifier. When a parameter is
encountered, the value associated with the parameter name is substi­
tuted and expression evaluation resumes. Up to nine levels of recur­
sion are permitted.

The return code is 0 if the value of the last expression is nonzero,
and 1 otherwise.

tt newgrp [arg •..]
Equivalent to exec newgrp arg

print [-Rnprsu [n]] [arg ...]
The shell output mechanism. With no flags or with flag-, the argu­
ments are printed on standard output as described by echo(l). In
raw mode, -R or -r, the escape conventions of echo(l) are ignored.
The -R option will print all subsequent arguments and options other
than -n. The -p option causes the arguments to be written to the
pipe of the process spawned with I & instead of standard output. The
-s option causes the arguments to be written to the history file
instead of standard output. The -u flag can be used to specify a
one-digit file descriptor unit number n on which the output will be
placed. The default is 1. If the flag -n is used, no newline is added
to the output.

pwd Equivalent to print -r - $PWD.

read [-prsu [n]] [name?prompt] [name •••]
The shell input mechanism. One line is read and is broken into
words using the characters in IFS as separators. In raw mode, -r, a \
at the end of a line does not signify line continuation. The first word
is assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The -p option
causes the input line to be taken from the input pipe of a process
spawned by the shell using I&. If the -s flag is present, the input
will be saved as a command in the history file. The flag -u can
specify a one-digit file descriptor unit to read from. The file descrip­
tor can be opened with the exec special command. The default value
of n is 0. If name is omitted, REPLY is the default name. The return
code is 0 unless an end-of-file is encountered. An end-of-file with
the -p option causes cleanup for this process so that another can be

23

KSH(l)

24

KSH(l)

spawned. If the :first argument contains a ?, the remainder of this
word is used as a prompt when the shell is interactive. If the given
:file descriptor is open for writing and is a terminal device, the
prompt is placed on this unit. Otherwise the prompt is issued on :file
descriptor 2. The return code is 0 unless an end-of-file is encoun­
tered.

tt readonly [name ..•]
The given names are marked read-only and these names cannot be
changed by subsequent assignment.

tt return [n]
Causes a shell function to return to the invoking script with the
return status specified by n. If n is omitted, the return status is that
of the last command executed. If return is invoked while not in a
function or a • script, it is the same as an exit.

set [-aefhkm.nostuvx] [-o option ...] [arg ...]
The flags for this command are defined as follows:
-a All subsequent parameters that are defined are automatically

exported.
-e If the shell is noninteractive and a command fails, execute

the ERR trap, if set, and exit immediately. This mode is dis­
abled while reading profiles.

-f Disables file name generation.
-h Each command whose name is an identifier becomes a tracked

alias when :first encountered.
-k All parameter assignment arguments, not just those that pre­

cede the command name, are placed in the environment for a
command.

-m Background jobs will run in a separate process group and a
line will print on completion. The exit status of background
jobs is reported in a completion message. This flag is turned
on automatically for interactive shells.

-n Read commands, but do not execute them. Ignored for
interactive shells.

-o The following argument can be one of the following option
names:

alle:x:port
errexit
bgnice
emacs

gmacs

ignoreeof

keyword

Same as -a.
Same as -e.
All background jobs run at a lower priority.
Puts ksh in an emacs-style in-line editor for
command entry.
Puts ksh in a gmacs-style in-line editor for com­
mand entry.
The shell will not exit on end-of-file. The com­
mand exit must be used.
Same as -:t..

12188

KSH(l)

12/88

markdlrs

monitor
noe:x:ec
noglob
no unset
protected
verbose
trackall
vi

viraw

It.race

KSH(l)

All directory names resulting from file name
generation have a trailing I appended.
Same as-m.
Same as-n.
Same as -f.
Same as -a.
Same as -p.
Same as-v.
Same as-h.
Puts ksh in insert mode of a vi-style in-line edi­
tor until <ESC> is pressed. This puts ksh in
move mode. A <RETURN> executes the line.
Each character is processed as it is typed in vi
mode.
Same as -:x:.

If no option name is supplied, the current option settings are
printed.

-p Resets the PATH variable to the default value, disables pro­
cessing of the $HOMEl.profile file, and uses the file
/etc/said_profile instead of the ENV file. This mode is
automatically enabled when the effective UID (GID) does not
equal the real UID (GID).

-s Sort the positional parameters.
-t Exit after reading and executing one command.
-a Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-I Print commands and their arguments as they are executed.

Turns off -:x: and -v flags and stops examining arguments for
flags.
Do not change any flags; this is useful in setting $1 to a value
beginning with-. If no arguments follow this flag, the posi­
tional parameters are unset.

Using + rather than - turns these flags off. These flags can also be
used when the shell is invoked. The current setting of flags is found
in $-. The remaining arguments are positional parameters and are
assigned, in order, to $1 $2 If no arguments are given, the
values of all names are printed on the standard output.

t shift [n]
The positional parameters from $n+l ... are renamed $1 The
default n is 1. The parameter n can be any arithmetic expression
that evaluates to a non-negative number less than or equal to$#.

test [expr]
Evaluate conditional expression expr (see test(l) for use and descrip­
tion). The arithmetic comparison operators are not restricted to
integers. They allow any arithmetic expression. Four additional
primitive expressions are allowed:

25

X:SH(l)

26

-Lfile
filel -nt file2
filel -ot file2
filel -ef file2

True if file is a symbolic link.
True if filel is newer than file2.
True if filel is older than file2.

X:SH(l)

True if filel has the same device and i-node number
as file2.

times Print the accumulated user and system times for the shell and for
processes run from the shell.

trap [arg] [sig] ...
Arg is a command to be read and executed when the shell receives
signal(s) slg. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Each sig can be given as a number or as
the name of the signal. Trap commands are executed in the order of
signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. If arg is omitted
or is -, all trap(s) slg are reset to their original values. If arg is the
null string, the shell and the commands the shell invokes ignore slg.
If slg is ERR, arg will be executed when a command has a nonzero
exit code. This trap is not inherited by functions. If slg is 0 or EXIT
and the trap statement is executed in the body of a function, the
command arg is executed after the function completes. If slg is 0 or
EXIT for a trap set outside any function, the command arg is exe­
cuted on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

tt typeset [-HLRZfilprtux [n] [name [-value]] ...]
When invoked inside a function, a new instance of the parameter
name is created. The parameter value and type are restored when the
function completes. The following list of attributes may be
specified:

-H This flag provides CLIX to host name file mapping on non­
CLIX machines.

-L Left justify and remove leading blanks from vaUie. If n is
nonzero it defines the width of the field. Otherwise, it is
determined by the width of the value of the first assignment.
When a value is assigned to name, it is filled on the right
with blanks or truncated if necessary to fit in the field.
Leading zeros are removed if the -z flag is also set. The -R
flag is turned off.

-R Right justify and fill with leading blanks. If n is nonzero it
defines the width of the field. Otherwise, it is determined by
the width of the value of the first assignment. When a value
is assigned to name, it is filled on the left with blanks or
truncated from the end if necessary to fit in the field. The -L
flag is turned off.

-z Right justify and fill with leading zeros if the first nonblank
character is a digit and the -L flag was not been. If n is
nonzero it defines the width of the field. Otherwise, it is

12/88

KSH(l)

12188

-f

-i

-1

-p

-r

-t

-u

-x

KSH(l)

determined by the width of the value of first assignment.
The names are function names rather than parameter names.
No assignments can be made and the only other valid flags
are -t, which turns on execution tracing for this function,
and -x, to allow the function to remain in effect across shell
procedures executed in the same process environment.
Parameter is an integer. This makes arithmetic faster. If n is
nonzero it defines the output arithmetic base. Otherwise, the
first assignment determines the output base.
All uppercase characters are converted to lowercase. The
uppercase flag -u is turned off.
The output of this command, if any, is written on the two­
way pipe
The given names are marked as read-only and cannot be
changed by subsequent assignment.
Tags the named parameters. Tags are user-definable and have
no special meaning to the shell.
All lowercase characters are converted to uppercase. The
lowercase flag -1 is turned off.
The given names are marked for automatic export to the
environment of subsequently executed commands.

Using+ rather than - turns these flags off. If no name arguments are
given but flags are specified, a list of names (and optionally the
values) of the parameters that have these flags set is printed. (Using
+ rather than - keeps the values to be printed.) If no names or flags
are given, the names and attributes of all parameters are printed.

uli.mit [n]
Imposes a size limit of n 512 byte blocks on files written by child
processes. (Files of any size may be read.) If n is not given, the
current limit is printed.

umask [nnn]
The user's file-creation mask is set to nnn (see umask(2)). If nnn is
omitted, the current value of the mask is printed.

unallas name •.•
The parameters given by the list of names are removed from the
alias list.

U.D.8et [-f] name ...
The parameters given by the list of names are unassigned. (Their
values and attributes are erased.) Read-only variables cannot be
unset. If the flag -f is set, the names refer to function names.

wait [n]
Wait for the specified child process and report its termination status.
If n is not given, all currently active child processes are waited for.
The return code from this command is that of the process waited for.

27

l:SH(l) KSH(l)

28

whence [-v] name ...

Invocation

For each name, indicate how it would be interpreted if used as a
command name. The flag -v produces a more verbose report.

If the shell is invoked by exec(2) and the first character of argument zero
($0) is -, the shell is assumed to be a login shell and commands are read
from /etc/profile and then from either .profile in the current directory or
$HOME/.profile (if either file exists). Next, commands are read from the
file named by performing parameter substitution on the value of the
environment parameter ENV if the file exists. If the -s flag is not present
and arg is, a path search is performed on the first arg to determine the name
of the script to execute. The script arg must have read permission and any
setuid and getgid settings will be ignored. Commands are then read as
described below; the following flags are interpreted by the shell when it is
invoked:

-c string If the -c flag is present, commands are read from string.
-s

-i

-r

If the -s flag is present or if no arguments remain, commands are
read from the standard input. Shell output, except for the output
of the special commands listed above, is written to file descriptor
2.
If the -i flag is present or if the shell input and output are
attached to a terminal (as told by ioctZ(2)), this shell is interac­
tive. In this case, TERM is ignored (so that kill 0 does not kill an
interactive shell) and INTR is caught and ignored (so that wait is
interruptible). In all cases, the shell ignores QUIT.
If the -r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

krsh Only
krsh is used to set up login names and execution environments whose capa­
bilities are more controlled than those of the standard shell. The actions of
krsh are identical to those of ksh, except that the following are disallowed:

Changing directory (see cd(l))
Setting the value of SHELL, ENV, or PATH
Specifying path or command names containing I
Redirecting output(> and > >)

The restrictions above are enforced after .profile and the ENV files are inter­
preted.

When a command to be executed is a shell procedure, krsh invokes ksh to
execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell while imposing a
limited menu of commands. This scheme assumes that the end-user does not
have write and execute permissions in the same directory.

12/88

UH(l)

PILES

:X:SH(l)

The net effect of these rules is that the writer of the .profile controls user
actions completely, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator of ten sets up a directory of commands (such as
/usr/rbin) that can be safely invoked by krsh. Some systems also provide
a restricted editor red.

I etc/passwd
/etc/profile
I etc/suid _profile
$HOME/. profi.le
/tmp/sh•
/dev/null

SEE ALSO
test(l), signal(2), a.out(4).
cat(l), cd(l), echo(l), env(l), newgrp(l), umask(l), vi(l) in the UNIX Sys­
tem V User's Reference Manual.
dup(2), exec(2), fork(2), ioctl(2), lseek(2), pipe(2), umask(2), ulimit(2),
wait(2), rand(3C), profile(5) in the UNIX System V Programmer's Reference
Manual.
environ(5) in the UNIX System V System Administrator's Reference Manual.

DIAGNOSTICS
Errors, such as syntax errors, detected by the shell cause the shell to return a
nonzero exit status. Otherwise, the shell returns the exit status of the last
command executed (see also the exit command above). If the shell is being
used noninteractively, shell file execution is abandoned. Runtime errors
detected by the shell are reported by printing the command or function
name and error condition. If the line nu~ber that the error occurred on is
greater than one, the line number is also printed in square brackets ([])
after the command or function name.

CAVEATS

12/88

If a command that is a "tracked alias" is executed, and then a command
with the same name is installed in a directory in the search path before the
directory where the original command was found, the shell will continue to
exec the original command. Use the -t option of the alias command to
correct this situation.

Some old shell scripts contain a .. as a synonym for the pipe character I.

If a command is piped to a shell command, all variables set in the shell com­
mand are lost when the command completes.

Using the fc built-in command within a compound command will cause the
whole command to disappear from the history file.

The built-in command • file reads the whole file before any commands are
executed. Therefore, alias and unalias commands in the file will not apply
to any functions defined in the file.

29

LD(l) LD(l)

NAME
ld - link editor for common object files

SYNOPSIS
ld [option .•.] file-name

DESC:RIPTION

12188

The l.d command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for sym­
bolic debugging. In the simplest case, the names of several object programs
are given. l.d combines the objects, producing an object module that can
either be executed or, if the -r option is specified, used as input for a subse­
quent l.d run. The output of l.d is left in a.out. By def a ult, this file is exe­
cutable if no errors occurred during the load. If any input file, file-name, is
not an object file, l.d assumes it is either an archive library or a text file con­
taining link editor directives. (See "Link Editor Directives" in the UNIX Sys­
tem V Programmer's Guide for a discussion of input directives.)

If any argument is a library, it is searched once at the point it is encountered
in the argument list. The library may be either a relocatable archive library
or a shared library. (See "Shared Libraries" in the UNIX System V
Programmer's Guide for a discussion of shared libraries.) Only the routines
defining an unresolved external reference are loaded. The library (archive)
symbol table (see ar(4)) is searched sequentially with as many passes as
necessary to resolve external references that can be satisfied by library
members. Thus, the ordering of library members is functionally unimpor­
tant unless multiple library members defining the same external symbol
exist.

The following options are recognized by l.d:

-e epsym

-f fill

-1 x

-m

-o outfile

-r

Set the default entry point address for the output file to be
that of the symbol epsym.

Set the def a ult fill pattern for "holes" within an output sec­
tion as well as initialized bss sections. The argument fill is a
two-byte constant.

Search a library libx.a, where x is up to nine characters. A
library is searched when its name is encountered, so the place­
ment of a -1 is significant. By default, libraries are located in
LIBDIR or LLIBDIR.

Produce a map or listing of the input/output sections on the
standard output.

Produce an output object file with the name outfile. The name
of the default object file is a.out.

Retain relocation entries in the output object file. Relocation
entries must be saved if the output file is to become an input
file in a subsequent l.d run. The link editor will not complain

1

LD(l)

2

LD(l)

about unresolved references, and the output file will not be
executable.

-a Create an absolute file. This is the def a ult if the -r option is
not used. Used with the -r option, -a allocates memory for
common symbols.

-s Strip line number entries and symbol table information from
the output object file.

-t Turn off the warning about multiply-defined symbols that are
not the same size.

-u symname Enter symname as an undefined symbol in the symbol table.
This is useful for loading entirely from a library, since ini­
tially the symbol table is empty and an unresolved reference
is needed to force the loading of the first routine. The place­
ment of this option on the l.d line is significant; it must be
placed before the library will define the symbol.

-x: Do not preserve local symbols in the output symbol table;
enter external and static symbols only. This option saves
some space in the output file.

-z Do not bind to address zero. This option will allow runtime
detection of null pointers.

-Cci cm.

-cs cm.

-Ldir

-M

-N

Set the cache mode for the text region to cm, where cm is one ~
of the following:

pw Private, write through.

sw Shared, write through.

cb Private, copy back.

nc Noncached.

df Default for the region. Defaults are defined in the
kernel as sw for the text region and cb for stack and
data. (NOTE: These are also the defaults assumed by
l.d in absence of any cache mode directives.)

Set the cache mode for the data region to cm.

Set the cache mode for the stack region to cm..

Change the algorithm of searching for libx.a to look in dir
before looking in LIBDIR and LLIBDIR. This option is effective
only if it precedes the -1 option on the command line.
Output a message for each multiply-defined external
definition.

Put the text section at the beginning of the text segment rather
than after all header information, and put the data section
immediately after text in the core image.

12/88

LD(l) LD(t)

FILES

-V Output a message giving information about the version of ld
being used.

-VS num Use num as a decimal version stamp identifying the a.out file
produced. The version stamp is stored in the optional header.

-Y [LU],dir Change the default directory used for finding libraries. If Lis
specified, the first default directory that ld searches, LIBDIR, is
replaced by dir. If U is specified and ld has been built with a
second default directory, LLIBDIR, that directory is replaced
by dir. If ld was built with only one default directory and U
is specified, a warning is printed and the option is ignored.

$LIBDIR/libx.a
$LLIBDIR/libx.a
a.out
$LIBDIR
$LLIBDIR

libraries
libraries
output file
usually /lib
usually /usr/lib

SEE ALSO
as(l), cc(l), mkshlib(l), exit(2), a.out(4).
end(3C), ar(4) in the UNIX System. V Programmer's Reference Manual.
"Link Editor Directives" and "Shared Libraries" in the UNIX System. V
Programmer's Gulde.

CAVEATS

12/88

Through its options and input directives, the common link editor gives users
great :O.exibility; however, those who use the input directives must assume
some added responsibilities. Input directives and options should ensure the
following properties for programs:

C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the program's address space.

When the link editor is called through cc(l), a startup routine is linked
with the user's program. This routine calls exlt(2) after execution of
the main program. If the user calls the link editor directly, the user
must ensure that the program always calls exlt(2) rather than falling
through the end of the entry routine.

The symbols etext, edata, and end (see end(3C)) are reserved and defined by
the link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error message identi­
fying "syntax errors".

Arithmetic expressions may only have one forward-referenced symbol per
expression.

3

LN(l) LN(l)

NAME
ln - link files

SYNOPSIS
In [-f] [-s] file .. . target

DESCR.IPTION
ln links file ... to target. File and target can never be the same. If target is
a directory, one or more files are linked to that directory. If target is a file,
its contents are destroyed.

By default, ln makes hard links. A hard link to a file cannot be dis­
tinguished from the original directory entry; any changes to a file are
effective independently from the name used to reference the file. Hard links
cannot span file systems and may not refer to directories.

The -s option causes ln to create symbolic links. A symbolic link contains
the name of the file to which it is linked. The referenced file is used when
an open(2) operation is performed on the link. A stat(2) on a symbolic link
will return the file that was linked to; an Zstat(2) must be executed to obtain
information about the link. The readllnk(2) call may be used to read the
contents of a symbolic link. Symbolic links may span file systems and refer
to directories. If a symbolic link is made to a file and the file is removed, the
link remains and is invalid.

If ln determines that the mode of target forbids writing, it displays the
mode (see chmod(2)), prompts for a response, and reads from standard input
for one line. If the line begins with y, the link occurs if it is permissible. If
not, the command exits. When the -f option is used or if the standard input
is not a terminal, no questions are asked and the link is executed.

SEE ALSO
chmod(l), rm(l).
cp(l) in the UNIX System V User's Reference Manual.

WARNINGS
ln will not create hard links across file systems.

Shell metacharacters should be used carefully.

01/90 1

0

LPQ(l) LPQ(l)

NAME
lpq - BSD spool queue examination program

SYNOPSIS
lpq [+ [n]] [-1] [-P printer] [job •..] [user ...]

DESCRIPTION

PILES

lpq examines the spooling area used by Zpd(lM) for printing files on the line
printer and reports the status of the specified jobs or all jobs associated with
a user. lpq invoked without any arguments reports on any jobs currently in
the queue, A -P option may be used to specify a particular printer. Other­
wise, the def a ult line printer is used (or the value of PRINTER in the
environment). If a + argument is supplied, lpq displays the spool queue
until it empties. Supplying a number immediately after the + sign indicates
that Zpq should sleep n seconds between queue scans. All other arguments
supplied are interpreted as user names or job numbers to filter only jobs of
interest.

For each job submitted (invocation of Zpr(l)) lpq reports the user's name,
current rank in the queue, the names of files composing the job, the job
identifier (a number that may be supplied to lprm(l) for removing a specific
job), and the total size in bytes. The -1 option prints information about each
of the files composing the job. Normally, only the amount of information
that will fit on one line is displayed. Job ordering depends on the algorithm
used to scan the spooling directory and is supposed to be first in first out
(FIFO). File names composing a job may be unavailable (when Zpr(l) is used
as a sink in a pipeline). In this case, the file is indicated as "(standard
input)".

If lpq warns that no daemon is present (e.g., due to a malfunction), the
Zpc(lM) command can be used to restart the printer daemon.

I etc/terminfo
/etc/printcap
/usr/spool/•
/usr/spool/•/cf•
/usr/spool/•/lock

for manipulating the screen for repeated display
to determine printer characteristics
the spooling directory, as determined from printcap
control files specifying jobs
the lock file to obtain the currently-active job

SEE ALSO
lpr(l), lprm(l).
lpc(lM), lpd(lM) in the CLIX Programmer's & User's Reference Manual.

DIAGNOSTICS

12188

lpq may be unable to open various files, have the lock file be malformed, or
produce garbage files when no daemon is active but files are in the spooling
directory.

1

LPQ{l)

BUGS

2

LPQ{l)

Due to the dynamic nature of the information in the spooling directory, lpq
may report unreliably. Output formatting is sensitive to the line length of
the terminal. This can result in widely-spaced columns.

12188

LPR(l) LPR(l)

NAME
lpr - BSD offiine print

SYNOPSIS
lpr [-P printer] [-# num] [-C class] [-J job] [-T title] [-i [numcols]]
[-w num] [-pltngvfrm.hs] [name ...]

DESCRIPTION

12/88

lpr uses a spooling daemon to print the named files when facilities become
available. If no names appear, the standard input is assumed. The -P option
may be used to force output to a specific printer. Normally, the default
printer is used (site dependent), or the value of the environment variable
PRINTER is used.

The following single letter options are used to notify the line printer spooler
that the files are not standard text files. The spooling daemon will use the
appropriate filters to print the data accordingly.

-p Use pr(l) to format the files.

-1 Use a filter that allows control characters to be printed and
suppresses page breaks.

-t The files are assumed to contain data from troff (cat phototypesetter
commands).

-n The files are assumed to contain data from ditrolf (device­
independent tro/f).

-g The files are assumed to contain standard plot data as produced by
the plot(3X) routines.

-v The files are assumed to contain a raster image for devices like the
Benson• Varian.

-f Use a filter that interprets the first character of each line as a stan­
dard FORTRAN carriage control character.

The remaining single-letter options have the following meanings:

-r Remove the file when spooling or printing (with the -s option) is
complete.

-m Send mail on completion.

-h Suppress the printing of the burst page.

-s Use symbolic links. Usually files are copied to the spool directory.

The -C option has the following argument as a job classification to use on the
burst page. For example,

lpr -C EECS foo.c

causes the system name (the name returned by hostname(1)) to be replaced
on the burst page by EECS and the file foo.c to be printed.

1

LPll(l)

FILES

LPll(l)

The -J option has the following argument as the job name to print on the
burst page. Normally, the first file's name is used.
The -T option uses the next argument as the title used by pr(l) instead of
the file name.

To get multiple copies of output, use the -#rwm option, where rwm is the
number of copies for each file named. For example,

lpr -#3 foo.c bar.c more.c

would result in three copies of the file foo.c, followed by three copies of the
file bar .c, etc. On the other hand,

cat foo.c bar.c more.c I lpr -#3

will give three copies of the concatenation of the files.
The -i option indents the output. If the next argument is numeric, it is used
as the number of blanks to be printed before each line; otherwise, eight char­
acters are printed.

The -w option takes rwm to be the page width for pr(l).

The -s option will use sym.Zink(2B) to link data files rather than trying to
copy them so that large files can be printed. This means the files should not
be modified or removed until they have been printed.

/etc/passwd
/etc/printcap
/usr/lib/lpd•
/usr/spool/•
/usr/spool/•/cf•
/usr/spool/•/df•
/usr/spool/•/tf•

personal identification
printer capabilities database
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf" files
temporary copies of "cf" files

SEE ALSO
lpq(l), lprm(l), symlink(2B), printcap(4).
lpc(lM), lpd(lM) in the CLIX System Administrator's Reference Manual.
pr(l) in the UNIX System V User's Reference Manual.

DIAGNOSTICS

NOTES

2

lpr will object to printing binary files.

If a user other than the super-user prints a file and spooling is disabled, lpr
will print a message saying so and will not put jobs in the queue.
If a connection to lpd(lM) on the local machine cannot be made, lpr will say
that the daemon cannot be started.

Diagnostics may be printed in the daemon's log file regarding missing spool
files by lpd(lM).

lpr truncates files that are too large.

12/88

LPR.(1)

BUGS

12188

LPR.(1)

Fonts for troff and TeX are on the host with the printer. It is not currently
possible to use local font libraries.

3

LPRM(l) LPRM(l)

NAME
lprm - remove jobs from the BSD line printer spooling queue

SYNOPSIS
lprm [-P printer] [-] [job# ...] [user ...]

DESCRIPTION

PILES

lprm removes jobs from a printer's spool queue. Since the spooling directory
is protected from users, using lprm is normally the only method by which a
user may remove a job.

Without arguments lprm will delete the currently-active job if it is owned
by the user who invoked lprm.

If the - ftag is specified, lprm will remove all jobs that a user owns. If the
super-user employs this ftag, the spool queue will be emptied entirely. The
owner is determined by the user's login name and host name on the machine
where the lpr command was invoked.

Specifying a user's name or a list of user names causes lprm to attempt to
remove any jobs queued belonging to the user(s) This form of invoking lprm
is useful only to the super-user.

A user may dequeue a job by specifying its job number. This number may
be obtained from the lpq(l) program as follows:

$ lpq -1

1st: ken
(standard input)

[job #013ucbarpa]
100 bytes

S lprm 13

lprm announces the names of any files it removes and is silent if no jobs in
the queue match the request list.

lprm kills the Zpd(lM) daemon if necessary before removing any spooling
files. If a daemon is killed, a new one is automatically restarted on comple­
tion of file removals.

The -P option may be used to specify the queue associated with a specific
printer. (Otherwise, the default printer or the value of the PRINTER variable
in the environment is used).

/etc/printcap
/usr/spool/•
/usr/spool/•/lock

printer characteristics file
spooling directories
lock file used to obtain the pid of the current daemon
and the job number of the currently-active job

SEE ALSO
lpr(l), lpq(l).
lpd(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS
"Permission denied" if the users try to remove files other than their own.

12/88 1

LPRM(l) LPRM(l)

BUGS

2

Since race conditions are possible in the lock file update, the currently-active
job may be incorrectly identified.

12/88

LPTEST(l) LPTEST(l)

NAME
lptest - generate line printer ripple patter,n

SYNOPSIS
lptest [length [count]]

DESCR.IPTION

12/88

lptest writes the traditional "ripple test,, pattern on standard output. In 96
lines, this pattern will print all 96 printable ASCII characters in each posi­
tion. While originally created to test printers, it is quite useful for testing
terminals, driving terminal ports for debugging purposes, or any other task
where a quick supply of random data is needed.

The length argument specifies the output line length if the default length of
79 is inappropriate.

The count argument specifies the number of output lines to be generated if
the def a ult count of 200 is inappropriate.

1

LS(l) LS(l)

NAME
ls - list contents of directory

SYNOPSIS
ls [-RadCxmlnogrtucpFbqisfL] [name ...]

DESCRIPTION

01/90

ls lists the directory contents for each directory argument; for each fl.le argu­

ment, ls repeats its name and any other information requested. The output

is sorted alphabetically by default. When no argument is given, the current

directory is listed. When several arguments are given, the arguments are

first sorted appropriately, but file arguments appear before directories and

their contents.

There are three major listing formats. The default form.at lists one entry per

line. The -C and -x options enable multicolumn formats, and the -m option

enables stream output format. To determine output formats for the -C, -x,
and -m options, ls uses the environment variable COLUMNS to determine the

number of character positions available on one output line. If this variable

is not set, the terminfo(4) database is used to determine the number of

columns based on the environment variable TERM. If this information can­

not be obtained, 80 columns are assumed.

The following options are available:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are

-d

-C

-x

-m

-1

-n

-0

-g

normally not listed.

If an argument is a directory, list only its name (not its contents).

This option is often used with -1 to get the directory's status.

Print multicolumn output with entries sorted down the columns.

Print multicolumn output with entries sorted across rather than

down the page.

Print in stream output format; files are listed across the page

separated by commas.

List in long format giving mode, number of links, owner, group, size

(in bytes), and time of last modification for each file (see below). If

the file is a special file, the size field will contain the major and

minor device numbers rather than a size. If the file is a symbolic

link, the path name the link references is printed preceded by an

arrow(->),

Same as -1 except that the owner's UID and group's GID numbers are

printed rather than the associated character strings.

Same as -1 except that the group is not printed.

Same as -1 except that the owner is not printed.

1

LS(l)

2

-r

-t

-u

-c

-p

-F

-b

-q

-i

-s

-f

LS(l)

Reverse the sort order to get reverse alphabetic or oldest first as
appropriate.

Sort by time stamp (latest first) instead of by name. The default is
the last modification time. (See -u and -c.)

Use the last access time instead of modification time for sorting (with
the -t option) or printing (with the -1 option).

Use the last i-node modification time (such as when a file was created
or a mode changed) for sorting (-t) or printing (-1).

Put a slash (/) after each file name if the file is a directory.

Put a slash (/) after each file name if the file is a directory, put an
asterisk (•) after each file name if the file is executable, and put an at
sign(@) after each file name if the file is a symbolic link.

Force nongraphics characters in file names to be printed in the octal
\ddd notation.

Force nongraphics characters in file names to be printed as the char­
acter?.

For each file, print the i-node number in the first column of the
report.

Give size in blocks (including indirect blocks) for each entry.

Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -1, -t, -s, and -r and ~
turns on -a; the order is the order in which entries appear in the ·..,,,,.,;
directory.

-L If an argument is a symbolic link, print the information about the
file or directory the link references rather than about the link itself.

The mode printed under the -1 option consists of ten characters. The first
character may be one of the following:

d The entry is a directory.
b The entry is a block special file.
c The entry is a character special file.
1 The entry is a symbolic link.
p The entry is a fifo (named pipe) special file.

The entry is an ordinary file.

The next nine characters are interpreted as sets of three bits each. The first
set refers to the owner's permissions; the next set refers to permissions of
others in the file's user group; and the last set refers to all others. Within
each set, the three characters indicate (respectively) permission to read,
write, and execute the file as a program. Execute permission for a directory
is permission to search the directory for a specified file.

ls -1 prints its output as follows:

01/90

LS(l) LS(l)

-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a lot of information. Reading from

right to left, it is seen that the current directory holds one file, "part2".

Next, the last time the file's contents were modified was 9:42 AM on May 16.

The file is moderately sized, containing 10,876 characters, or bytes. The file

owner, or the user, belongs to the group "dev", and the login name is

"smith". The number (in this case "1") indicates the number of links to file

"part2". Finally, the row of dashes and letters shows that user, group, and
others have permission to read, write, and execute "part2".

The execute (x) symbol occupies the third position of the three-character

sequence. A - in the third position would have indicated a denial of execu­
tion permissions.

The permissions are indicated as follows:

r The file is readable.
w The file is writable.
x The file is executable.

The indicated permission is not granted.
I Mandatory locking will occur during access. (The set-group-ID

bit is on and the group execution bit is off.)
s The set-user-ID or set-group-ID bit and the corresponding user or

group execution bit are on.
S Undefined bit-state. (The set-user-ID bit is on and the user exe­

cution bit is off).
t The 1000 (octal) bit, or sticky bit (see chmod(l)), and the execu­

tion bit are on.
T The 1000 bit is on and execution is off (undefined bit-state).

For user and group permissions, the third position is sometimes occupied by

a character other than x or-. The s, referring to the state of the set-ID bit

(the user's or the group's), may also occupy this position. For example, the

ability to assume the same ID as the user during execution is used during

login when the user begins as root but needs to assume the identity stated at

login.

In the sequence of group permissions, I may occupy the third position. I
refers to mandatory file and record locking. This permission describes a

file's ability to allow other files to lock its reading or writing permissions

during access.

For others permissions, the third position may be occupied by tor T. These

refer to the state of the sticky bit and execution permissions.

EXAMPLES

01/90

This example describes a file that the user can read, write, and execute and

that group and others can read:

3

LS(l)

FILES

LS(l)

-rwxr--r--

This example describes a file that the user can read, write, and execute and
that group and others can read and execute. This permission allows the user
presently executing it to assume its user ID during execution:

-rwsr-xr-x

This example describes a file that only the user and group can read and write
and that can be locked during access:

-rw-rwl---

This command will print the names of all files in the current directory,
including those that begin with a dot (.), which normally do not print:

ls -a

This command will provide information such as all files (including non­
printing ones (a)); the i-number, the memory address of the i-node associ­
ated with the file, printed in the left-hand column (i); and the size of the
files (in blocks) printed in the column to the right of the i-numbers (s). The
report is printed in the numeric version of the long list, printing the UID
(instead of user name) and GID (instead of group name) numbers associated
with the files.

ls -aisn

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

I etc/ passwd
/etc/group
/usr/lib/terminf o/? I*

UIDs for ls -1 and ls -o
GIDs for ls -1 and ls -g
terminal information database

SEE ALSO

NOTES

BUGS

4

chmod(l), find(l).

In a Remote File Sharing (RFS) environment, a user may not have the per­
missions that the output of the ls -1 command implies. For more informa­
tion, see the "Mapping Remote Users" section in Chapter 10 of the UNIX Sys­
tem V System Administrator's Guide.

Unprintable characters in file names may confuse the columnar output
options.

01/90

MACHID(l)

NAME
machid: clipper, ns32000, vax - get processor type truth value

SYNOPSIS
clipper
ns32000
pd.pit
u3b
u3b2
u3b5
va:x:

DESCRIPTION

MACHID(l)

The following commands return a true value (exit code of 0) if the processor
matches the command as follows:

clipper

ns32000

pdpll

u3b

CLIPPER-based system.

NSC32000-based system.

PDP-11/45 or PDP-11/70.

3B20 computer.

u3b2 3B2 computer.

u3b5 3B5 computer.

va:x: V AX-11/750 or V AX-11/780.

These commands are often used within makefiles (see make(l)) and shell
procedures (see sh(l)) to increase portability.

The commands that do not apply return a false (nonzero) value.

SEE ALSO
test(l).
sh(l), true(l), make(l) in the UNIX System V User's Reference Manual.

12188 1

MAILQ(l) MAILQ(l)

NAME
mailq - display a listing of the mail queue used by sendmail(lM)

SYNOPSIS
,- mailq [-v]

DESCR.IPTION
mailq prints a listing of the mail queue used by sendmail(lM). For each
message in the queue, mailq displays the queue ID, the message size, the date
when the message entered the queue, the sender, and recipients. If the -v
option is specified, the message priority is also displayed.

SEE ALSO
sendmail(lM) in the CLIX Syst.em Administ.rator's Reference Manual.

01/90 1

-

MAILSTATS(l) MAILSTATS(l)

NAME
mailstats - display mail statistics

SYNOPSIS
mailsta ts [-f file]

DESCRIPTION
For each message received by or sent from the local machine, sendmail(lM)

logs statistics, including the mailer name and the number of bytes in the

message. mailstats reads this information and displays each mailer name,

the number of messages sent or received through that mailer, and the total

number of kilobytes sent or received through that mailer.

The -f option directs mailstats to read statistics from file. If sendmail(lM)

is logging statistics to a file other than the default, /usr/lib/sendmail.st,

the -f option must be specified for mailstats to read the statistics.

Invoking mailstats displays a list similar to the following:

Statistics from Thu Sep 6 14:30:43 1990

M mailer_name msgsfr bytes_from
0 local 99 99K
2 ether 9 9K
3 uucp 22 30K
6 community 16 18K

ms gs to
60

2
1

41

bytes_to
54K

2K
lK

39K

SEE ALSO
sendmail(lM) in the CLIX Programmer's & User's Reference Manual.

01/90 1

MAN(l) MAN(l)

HAMB
man - print entries in this manual

SYNOPSIS
man [option ••.] [section] title ••.

DBSCR.IPTION

FIL BS

man locates and prints the entry of this manual named title in the specified
section. (For historical reasons, the word "page" is often used as a synonym
for "entry" in this context.) The title is entered in lowercase. The section

number may not have a letter suffix. If no section is specified, the whole
manual is searched for title and all occurrences of it are printed. Options

and their meanings are as follows:

-Tterm Print the entry as appropriate for terminal type term. For a list of
recognized values of term, type help term.2.

-w Print on the standard output only the path names of the entries rela­
tive to /usr/ip32/sysvdoc/catman or to the current directory for
the -d option.

-d Instead of /usr/ip32/sysvdoc/catman, search the current direc­
tory; requires the full file name (such as cu.le rather than just cu).

-c Causes man to invoke col(l); note that col(l) is invoked automati­
cally by man unless term is 300, 300s, 450, 37, 4000a, 382, 4014,
te:t, 1620, or X.

man examines the environment variable TERM (see environ(5)) and attempts
to select options that adapt the output to the terminal being used. The
-Tterm option overrides the value of TERM; in particular, the user should use
-Tip when sending the output of man to a line printer.

Section may be changed before each title.

The following example would reproduce this entry (m.an(l)) and any other
entries named man that may exist in other sections of the manual on the ter­
minal.

man man

/usr/ip32/sysvdoc/catman/7_man/man[l-8]/•

SBB ALSO
term(S) in the UNIX System V Programmer's Reference Manual.

CAVEATS

12188

The man command prints manual entries that were formatted by nroff when

the SYSVDOC product was installed. Entries are originally formatted with
terminal type 37 and are printed using the correct terminal filters as derived

from the -Tterm and TERM settings. Typesetting or other nonstandard
printing of manual entries requires installation of the UNIX System V
Documenter's Workbench™.

1

MERGE(l) MERGE(l)

NAME
merge - three-way file merge

SYNOPSIS
merge [-p] filel file2 file3

DESCRIPTION
merge incorporates all changes that lead from file2 to file3 in file I. The
result goes to standard output if-pis present, or to filel otherwise. merge is
useful for combining separate changes to an original. Suppose file2 is the ori­
ginal and both fi.lel and fi.le3 are modifications of file2. Then, merge com­
bines both changes.

An overlap occurs if both fi.lel and fi.le3 have changes in a common segment
of lines. merge prints how many overlaps occurred and includes both alter­
natives in the result. The alternatives are delimited as follows:

< < < < < < < filel
lines in filel

lines in file3
> > > > > > > file3

If overlaps occur, the user should edit the result and delete one of the alter­
natives.

SEE ALSO
rcsmerge(l), co(l).
diff3(1), diff(l) in the UNIX System V User's Reference Manual.

IDENTIFICATION

12/88

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

1

MDHLIB(t) MKSHLIB(l)

NAME
mkshlib - create a shared library

SYNOPSIS
mkshllb -9 specftl -t target [-h host] [-n] [-L dir •.•] [-q]

DESCRIPTION

12188

The mlcshllb command builds both the host and target shared libraries. A

shared library is similar in function to a normal, nonshared library, except

that programs that link. with a shared library will share the library code

during execution, whereas programs that link. with a nonshared library will

receive their own copy of each library routine used.

The host shared library is an archive used to link-edit user programs with

the shared library (see ar(4)). A host shared library can be treated exactly

as a nonshared library and should be included on cc(l) command lines in

the usual way. Further, all operations that can be performed on an archive

can also be performed on the host shared library.

The target shared library is an executable module bound to a process's

address space during execution of a program using the shared library. The

target shared library contains the code for all routines in the library and

must be fully resolved. The target will be brought into memory during exe­

cution of a program using the shared library, and subsequent processes that

use the shared library will share the copy of code already in memory. The

text of the target is always shared, but each process will receive its own

copy of the data.

The user interface to mkshUb consists of command line options and a shared

library specification file. The shared library specification file describes the

contents of the shared library.

The mkshUb command invokes other tools such as the archiver, ar(l), the

assembler, as(l), and the link editor, Zd(l). Tools are invoked through the

use of execvp (see exec(2)), which searches directories in the user's PATH.

Also, prefixes to mkshllb are parsed in the same manner as prefixes to the

cc(l) command, and invoked tools receive the prefix where appropriate. For

example, pfxm.kshllb will invoke pf:rld.

The following command line options are recognized by mkshlib:

-9 specfil Specifies the shared library specification file, specfil. This file

contains the information necessary to build a shared library.

-t target Specifies the output file name of the target shared library being
created. It is assumed that this file will be installed on the target

machine at the location given in the specification file (see the

#target directive below). If the -n option is used, then a new

target shared library will not be generated.

-h host Specifies the output file name of the host shared library being
created. If this option is not given, the host shared library will

1

MKSHLIB(l) MKSHLIB(l)

2

not be produced.
-n Do not generate a new target shared library. This option is use-

ful when producing only a new host shared library. The -t
option must still be supplied since a version of the target shared ~
library is needed to build the host shared library.

-L dir... Change the algorithm of searching for the host shared libraries
specified with the #objects noload directive to look in dir
before looking in the default directories. The -L option can be
specified multiple times on the command line. In that case, the
directories given with the -L options are searched in the order
given on the command line before the default directories.

-q Quiet warning messages. This option is useful when warning
messages are expected but not desired.

-v Print out the command line arguments of the programs invoked
for the user.

The shared library specification file contains all information necessary to
build both the host and target shared libraries. The contents and format of
the specification file are given by the directives listed below.
All directives that can be followed by multiline specifications are valid until
the next directive or the end of the file.
#address sectname address ~

Specifies the start address, address, of section sectname for the target.
This directive typically is used to specify the start addresses of the
.tert and .data sections. One #address per section name is valid.
An #address directive must be given exactly once for the .tert sec-
tion and once for the .data section. See the table in the section "The
Building Process" in the "Shared Libraries" chapter of the UNIX Sys-
tem V Programmer's Guide for standard addresses.

#target path-name
Specifies the absolute path name, path-name, at which the target
shared library will be installed on the target machine. The operating
system uses this path name to locate the shared library when execut­
ing a.out(4) files that use this shared library. This directive must be
specified exactly once per specification file.

#branch
Specifies the start of the branch table specifications. The lines fol­
lowing this directive are interpreted as branch table specification
lines.

Branch table specification lines have the following format:
funcname <white space> position

where funcname is the name of the symbol given a branch table
entry and position specifies the position of funcname's branch table
entry. Position may be a single integer or a range of integers with

12/88

MJ.:SHLIB(l) MJ.:SHLIB(l)

12188

the form positionl-position2. Each position must be greater than or
equal to one; the same position cannot be specified more than once;
and every position from one to the highest given position must be
accounted for.

If a symbol is given more than one branch table entry by associating
a range of positions with the symbol or by specifying the same sym­
bol on more than one branch table specification line, the symbol is
defined to have the address of the highest associated branch table
entry. All other branch table entries for the symbol can be thought
of as "empty" slots and can be replaced by new entries in future
versions of the shared library. Only functions should be given
branch table entries, and those functions must be external symbols.

This directive must be specified exactly once per shared library
specification file.

#objects
The lines following this directive are interpreted as the list of input
object files in the order they are to be loaded in the target. The list
consists of each path name followed by a newline character. This
list is also used to determine the input object files for the host shared
library, but the order for the host is given by running the list
through Zorder(l) and tsort(l).

This directive must be specified exactly once per shared library
specification file.

#objects noload
The #objects noload is followed by a list of host shared libraries.
These libraries are searched in the order listed to resolve undefined
symbols from the library being built. During the search, a
nonshared version of a symbol found before a shared version of the
symbol is an error.

Each name given is assumed to be a path name to a host or an argu­
ment of the form -IX, where libX.a is the name of a file in LIBDIR or
LLIBDIR. This behavior is identical to that of Zd(l), and the -L
option can be used on the command line to specify other directories
to locate these archives in.

Note that if a host shared library is specified using #objects
noload, any cc(l) command that links to the shared library being
built will need to specify that host also.

#hide linker [•]
This directive changes normally external symbols to static symbols,
local to the library being created. A regular expression may be given
(see sh(l) and jind(l)). In this case, all external symbols matching
the regular expression are hidden. The #export directive (see
below) can be used to counter this effect for specified symbols.

3

MKSHLIB(l) MKSHLIB(l)

FILES

4

The optional • is equivalent to
#hide linker

*
and coverts all external symbols to static symbols.
All symbols specified in #init and #branch directives are assumed
to be external symbols and cannot be changed to static symbols using
the #hide directive.

#export linker [•]
Symbols given in the #export directive are external symbols (global
among files) that, because of a regular expression in a #hide direc­
tive, would otherwise have been made static. For example,

#hide linker*
#export linker

one
two

tags all symbols except one, two, and those used in #branch and
#init entries as static.

#init object
Specifies that the object file, object, requires initialization code. The
lines following this directive are interpreted as initialization
specification lines.
Initialization specification lines have the following format:

ptr <white space> import
ptr is a pointer to the associated imported symbol, import, and must
be defined in the current specified object file, object. The initializa­
tion code generated for each such line has the form:

ptr - &import;
All initializations for a particular object file must be given once and
multiple specifications of the same object file are not allowed.

#ident string
Specifies a string, string, to be included in the .comment section of
the target shared library.

Specifies a comment. All information on the line beginning with ##
is ignored.

$TEMPDIR/•

$LIB DIR

temporary files
TEMPDIR is usually /usr/tmp but can be redefined by set­
ting the environment variable TMPDIR (see tempnam() in
tmpnam(3S)).
usually /lib

12/88

MKSHLIB(l) MKSHLIB(l)

$LLIBDIR usually /usr/lib

SEE ALSO
as(l), cc(l), ld(l), a.out(4).
ar(l), chkshlib(l), lorder(l), tsort(l), ar(4) in the UNIX System V
Programmer's Reference Marwal.
"Shared Libraries" chapter in the UNIX System V Programmer's Guide.

CAVEATS

12188

The -n option cannot be used with the #objects noload directive.

If mkshlib is asked to create a host library and a host when that name exists,
mkshlib will update the host using ar(l) -ru. This means that the host
should always be removed before rebuilding when an object file previously
included in the library is removed or renamed.

If the address specified with the #address directive is outside user space, the
library build may return successfully, but it might not work when it is
used.

5

MONP AR.AM(l) MONPARAM(l)

NAME
monparam - CRM utility for monitoring system parameters

SYNOPSIS
/usr/ip32/crm/monparam [-I interval] [-i input-file] [-o output-file]

DESCRIPTION
monparam monitors the parameters of a running system. For example, mon­

param can show whether the user is running out of a resource. This monitor

is a complement to the configurable UNIX utility. (Configurable UNIX allows

the user to change system parameters.)

The following options are available:

-I interval Specify how frequently the monitor samples and displays
information. Interval is the number of seconds. The default
is 2.

-i input-file Read the data from input-file each interval. Input-file must
have been created as an output-file using the -o option. A -
for input-file reads input from stdin.

-o output-file Direct output to output-file. A - for output-file directs output
to stdout.

The following describes each monparam field:

Sample time Displays how frequently (in seconds) the monitor gathers
and displays information. The default setting is two seconds.
This time interval can be changed by pressing the up arrow
key (to increment) and the down arrow key (to decrement).

Name

Current

Max

Configured

Displays the name of the parameter being monitored.

Displays the current value of the parameter being monitored.

Displays the maximum value of the parameter since the sys­
tem was booted last.

Displays the value specified for the parameter under
Configurable UNIX.

A parameter line will be highlighted when the maximum value is 90 percent

or more of the configured value.

SEE ALSO
crm(l).

WARNINGS
Sending raw data to a file can create a very large file.

01/90 1

-

MONPR.OC(l) MONPR.OC(l)

NAME
monproc - CRM utility for monitoring a process

SYNOPSIS
/usr/ip32/crm/monproc [-w] [-I interval] [-o output-file] input-option

DESCR.IPTION

01/90

monproc monitors CPU use, status, priority, hard and soft fault rates, and

current PC (program counter) for a process.

The following options are available:

-o output-file Direct output to output-file. A - for output-file directs output
to stdout.

-I interval

-w

Specify how frequently the monitor samples and displays

information. Interval is the number of seconds. The default

is 2.

Execute monproc in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the

length of the window with the standard modify icon. To receive a descrip­

tion of each category represented in the monitor bar graphs, select the ques­

tion mark(?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in monproc, select the

color palette icon from the window icon box. A small Color menu will

appear. The foreground color is displayed when the menu first appears.

Clicking the mouse button moves to the next color. Exit and save the

changes by selecting the delete icon in the Colors window. These colors are

saved for the current monitoring session only.

The following input-options are available:

-i input-file Read the data from input-file each interval. lnput­

file must have been created as an output-file using the
-o option. A - for input-file reads input from stdin.

-p pid

-n process-name

Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already

running.

Specify the name of the process to monitor. The user

can key in ps -e at the system prompt to determine

the name of a process already running.

-e command [arg ...] Allow the user to run, provide arguments for, and

monitor a program.

A brief explanation of the monproc fields follows.

CPU user time

1

MONPR.OC(l) MONPR.OC(l)

CPU system time Displays the amount of CPU time used by the process
(user) and the system since the beginning of the moni­
toring session.

Status Displays the process activity (such as SLEEP or STOP)
when the CPU examines it.

Priority Displays the priority assigned by the system to the pro­
cess being monitored.

Username

Hard fault rate
Soft fa ult rate

Physical Memory
Virtual Memory

Elapsed time

PC

Displays the user name that is running the process being
monitored.

Displays the number of hard and soft faults that
occurred per second during the sample interval.

Displays the amount of physical and virtual memory
the system assigns to the process being monitored.

Displays how long the process has been running.

Displays the address where the program counter was
located the last time the monitor polled it. If the pro-
gram was compiled to include debugger symbols (such
as to be used by Intergraph's dbg(l)), the monitor can
read those symbols and provide more logical values in
this field. For instance, the PC might display a more
logical address such as subl + 10, where subl is the
name of a procedure in the program and 10 is the
number of bytes offset into subl.

In graphics-based format, the first bar shows activity for the last sample
period. The second bar shows average activity for the last 10 sample
periods.

You will notice two separate color bar graphs when you execute the
graphics-based process monitor. The first bar shows activity for the last
sample period; the second bar shows average activity for the last 10 sample
periods.

EXAMPLES
The following is an example of a monproc session:

Process is xns_listen Thu May 25 11:14:53 1990

CPU user time 00 00:00:00.41 CPU system time 00 00:00:06.31
Status: STOP Priority: 14 Username: root
Hard fault rate 00/sec Soft fault rate 00/sec
Physical Memory 196 k Virtual Memory 532 k
Elapsed time: 00 00:52:16:00
PC: 0000efe6 /current
PC: OOOOef e6 /last

2 01/90

MONPll.OC(l)

SEE ALSO
crm(l).

WAll.NINGS
Sending raw data to a file can create a very large file.

01/90

MONPll.OC(l)

3

MONREGION(l) MONREGION(l)

NAME
monregion - CRM utility for monitoring memory regions

SYNOPSIS
/usr/ip32/crm/monregion [-w] [-o output-file] input-option

DESCRIPTION
monregion monitors the memory regions used by a specified process.

The following options are available:

-o output-file Direct output to output-file. A - for output-file directs output
to standard output.

-w Execute monreglon in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the

length of the window with the standard modify icon. To receive a descrip­
tion of each category represented in the monitor bar graphs, select the ques­
tion mark(?) icon from the window icon box. A help window will appear.

The following input-options are available:

-i input-file

-p pid

-n process-name

Read the data from input-file. Input-file must have
been created as an output-file using the -o option. A -
for input-file reads input from stdin.

Specify the ID number of the process to monitor
(PIO). The user can key in ps -e at the system
prompt to determine the PIO of a process already
running.

Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

-e command [arg ...] Allow the user to run, provide arguments for, and
monitor a program.

A brief explanation of the monregion fields follows.

TEXT
DATA
STACK

SHARED
PRIVATE

RDONLY
RD/WRT

Displays three memory regions that are monitored for any
process.

Displays whether the region can be shared with other
processes or is local to this process.

Displays whether the process has write access to the region
or the region is read-only.

GROWDOWN Displays whether or not the stack region is monitored
according to stack region structure. Since a stack region is

01/90 1

MONREGION(l) MONREGION(l)

size

valid

EXAMPLES

structured to begin at high addresses and decrease to low
addresses, the region is monitored from high to low. Pages
added to a stack region are added at the lowest virtual
address rather than the highest. Thus, when a stack region
grows, it grows downward.

Displays the number of virtual pages in the region.

Displays the number of physical pages mapped to virtual
pages in the region. The rows of numbers, asterisks, amper­
sands, and other alphanumeric characters below the names
of the memory regions provide information about the
memory pages as follows:

The alphanumeric characters (00000000, 00400000, etc)
directly below the memory regions specify the starting
address (in the region) for that line in the monitor. Since
the activity of the entire region cannot be displayed on a
single line in the monitor, the monitor breaks the region into
several parts for display purposes.

The asterisks (•) represent a physical page of memory
mapped to that region. Every blank space between the *
represents a page of virtual memory without a physical page
mapped to it.

The ampersand(&) indicates the memory page that the PC is
on.

The "L" indicates a physical page of memory that is locked
to a process. A locked page cannot be taken from that pro­
cess. For example, if the 1/0 system will need a page for an
1/0 request, the system will lock a page in memory until the
process is finished with that page.

The vertical bar (I) represents the end of the section of the
memory region shown on that line.

The following is an example of a monreglon session:

SEE ALSO
crm(l).

2

TEXT SHARED RDONL Y size:35 valid:23
00000000: ***** ***** **&* *******I
DATA PRIVATE RD/WRT size:45 valid:l6
00400000: ****** **L * ********I
00440000: ***** * * * *** *I
00480000: * *** ******* * * *** *I
STACK PRIVATE RD/WRT GROWDOWN size:2 valid:l
bfffffff: * I

01/90

MONREGION(l) MONREGION(l)

WARNINGS
Sending raw data to a fi.le can create a very large fi.le.

01/90 3

MT(l) MT(l)

NAME
mt - magnetic tape manipulation program

SYNOPSIS
mt [-f tape-name] command [count]

DESCR.IPTION

FILES

mt is used to give commands to a magnetic tape drive. If a tape name is not
specified with the -f option, the environment variable TAPE is used. If TAPE
does not exist, mt uses the device /dev/rmt/Omn. By default, mt performs
the requested operation once. Operations may be performed count times by
specifying count.

The available commands are listed below.

eof, weof

f sf

f sr
bsf

bsr

rewind

offline, rewoff

fseot

erase

re tension

density

status

/dev/rmt/•
/dev/rmt/Omn

Write count end-of-file marks at the current position
on the tape.

Forward space count files.

Forward space count records.

Back ward space count files.

Back ward space count records.

Rewind the tape (count is ignored).

Rewind the tape and place the tape unit offiine (count is
ignored).

Forward space to end of recorded media (count is
ignored).

Erase the entire tape (count is ignored).

Retension the tape (count is ignored).

Set recording density to count.

Print status information about the tape unit (count is
ignored).

SEE ALSO
tc(7S) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

mt returns a 0 exit status when the command was successful, 1 if the com­
mand was unrecognized, and 2 if the command failed.

1

NCP(l) NCP(l)

NAME
ncp - DNP network control program

SYNOPSIS
.--. ncp [command]

'-". DESCRIPTION

-

·-

ncp (Network Control Program) provides the Digital Network Protocol
(DNP) a set of interactive commands to configure, control, monitor, and test
a Digital Network Architecture (DNA) network to ensure its effective opera­
tion.

Invoking ncp without command causes ncp to enter interactive mode and
display the NCP> prompt on the next line. ncp commands are not case­
sensitive except when user-id or password is specified. Lowercase letters are
automatically converted to uppercase internally.

An ncp command consists of a command keyword, an entity, and one or
more entity options that qualifies the command by supplying additional
information. Keywords may be abbreviated as long as they are still unique
and are a minimum of three characters.

The clear, define, disconnect, set, and zero commands require super-user
privileges. All users can use the show, loop, and tell commands.

The set, clear, and show commands deal with information in the volatile
database. define commands affect the permanent database.

General Definitions

01/90

The following are some general definitions of the terminology used.

end node

local node

remote node

executor node

An end node has a single circuit connecting it to
the rest of the network. An end node can send
packets to any other DNA node and receive packets
addressed to itself from other Phase IV nodes. An
end node is a nonrouting node. It cannot route
packets.

The local node where the user is physically
located.

Remote nodes are all other nodes in relation to the
local node.

The executor node is where ncp commands are exe­
cuted. The executor node is usually the local node.
However, through the ncp command set executor,
any remote node can be designated as the executor
node; thus, any ncp commands issued on the local
node are executed on the remote node.

reachable or active node
A reachable or active node is one that is available
for connection requests. A node is unreachable or

1

NCP(l)

adjacent node

node state

circuits

lines

counters

NCP(l)

inactive when it is powered down or unavailable
for connection requests.

An adjacent node is connected to the local node by
a single physical line. All nodes on a single Ether­
net line are considered adjacent.

The node state is the operational state of the local
node on the network. This state can be controlled
and is used to restrict the operation of the node or
to shut it down. When the state is set to off, the
node is unreachable. When the state is set to on,
the node is active or reachable.

Circuits are logical communications data paths
between nodes. They operate over physical lines.

Ethernet circuits enable multiaccess connection
between a number of nodes on the same physical
medium. Each node is considered adjacent to
every other node on the circuit and is equally
accessible. Each node is identified by an Ethernet
address.

Lines are physical data paths between nodes and
are the lowest-level communications path. The
Ethernet line physically connects the different
nodes on the local network.

Counters are performance variables that track
various events in a network. Information obtained
from counters may be useful in measuring the per­
formance and throughput for a given circuit.

There are counters tracking performance on nodes,
circuits, and lines. Node counters are available
only after a connection has been attempted
between the executor and the specified node. If no
logical link has been established between the exe­
cutor and the specified node, the show node
node-id counters command returns with the mes­
sage "NO INFORMATION AVAILABLE."

0

Node Identification

2

Many of the commands allow a node-id to be specified. Node-id can either

be a node-name or an node-address.

node-name Specifies a node name. A node name can have up to
six alphanumeric characters. At least one character
of the node name must be a letter. A node name is
not case-sensitive. Lowercase letters are converted to,,,,
uppercase.

01/90

NCP(l) NCP(lJ

The address and name for the local and remote nodes
are stored in the configuration database. The
configuration database for the local node must con­
tain information about the local node and the remote
nodes.

node-address Specifies a node address in the following form:

[area-number.] node-numl>er

area-numl>er is a group of nodes in the network that
can run independently as a subnetwork. Each area
has a unique number in a network. The area number
must be an integer in the range of 1-63. The area
number defaults to the local area if none is provided.

node-number must be an integer in the range of 1-
1023. Node numbers must be unique to the specific
network area.

Commands

01/90

ncp includes the following commands. show commands are described in

separate subsections.

clear executor node
Reset the executor to the local node. Clear the default executor node
designation previously specified through the set executor node
command.

clear node node-id all
Identify the remote node whose parameters will be removed from
the volatile database.

clear node node-id all should be used with caution, especially if
links are open to the node being cleared. Before this command is
invoked, the ncp set executor state off or disconnect known
links command should be used.

define executor all
copy the contents of the volatile database to the permanent database.

define known nodes all
Copy, for each of the known nodes, the contents of each volatile
database record to the permanent database.

define node-id all
Copy, for the specified node-id, the contents of the volatile database
to the permanent database. Node-id is a node name or address.

disconnect link link
Disconnect a logical link link. Use the ncp command, show known
links, to determine the link number to use for this command.

The disconnect link commands are used primarily to recover from
network failure. The disconnect link commands cause applications

3

NCP(l)

4

NCP(l)

using the specified links to fail and should be used with caution.

disconnect known links
Disconnect all logical links. This command should be used with cau­
tion. See the disconnect link command.

exit Exit ncp from the interactive session. Alternately, a <CONTROL>-D ~
can be used. ~

loop executor [count count] [length length]
[with {zeros I ones I mixed }] [user user-id] password password

Test the logical links within a single node. This test is performed by
looping messages to the loopback mirror on the local node. The
options have the following meanings:

count count Specify the number of times the command will be
repeated. The default is 1 and the maximum is
65535.

count length Specify the number of bytes in the loop message.
The def a ult value is 40 and the maximum value is
245.

with {zeros I ones I mixed }

user user-id

Specify the test data. The def a ult is mixed.

Specify the user name to be used for access control
information in connecting to the remote mirror.

password password ~
Specify the password that corresponds to user-id. ,...,,

loop node node-id [count count] [length length]
[with { zerosloneslmixed}] user user-id password password

Test the logical links to a remote node. The options have the follow­
ing meanings:

node node-id Identify the node name or address.

count count Specify the number of times the command will be
repeated. The default is 1 and the maximum is
65535.

length length Specify the number of bytes in the loop message.
The default value is 40 and maximum is value 245 a
CommUnity or CLIX remote node or 1458 for
another DECnet remote node.

with {zeros I ones I mixed }
Specify the test data. The default is mixed.

user user-id Specify the user name to be used for access control
information in connecting to the remote mirror. ~

password password,,
Specify the password that corresponds to user-id.

01/90

NCP(l)

01/90

NCP(l)

set executor address node-address
Specify a new node address for the executor node. This command
can be issued only if the state of the executor is off. It is not possible
to issue ncp commands to a remote executor. node when the state of
that node is off. Therefore, it is essential, when this command is
issued, that the executor node be the local node. node-address
specifies the node address for the local (executor) node.

set executor all
Copy the contents of the permanent database to the volatile database
for the executor node.

set executor delay factor factor
Set the delay factor. Factor is in the 0-255 range. This value is
multiplied by one sixteenth of the estimated round trip delay time to
determine the appropriate value for the time to retransmit certain
Network Server Protocol (NSP) messages. The default value delay
factor is 80.

set executor delay weight weight
Set the delay weight. Weight is in the 0-255 range. NSP estimates
the current delay in round trip transmission to a node with which it
is communicating. Weight is used to calculate a new value of the
estimated round trip delay. The default delay weight is 5.

set executor inactivity timer timer
Set the inactivity timer interval. A logical link is inactive when no
data is transmitted in either direction for a given interval of time.
The inactivity timer regulates the frequency with which CLIX tests
the viability of an inactive link. The inactivity timer parameter is
used to specify the maximum duration of inactivity before the local
CLIX node tests the viability of the link. When the timer expires,
CLIX generates artificial traffic to test the link. The default inactivity
timer value is 10.

set executor name node-name
Specify node-name as the executor node name.

set executor node node-id [userid user-id password password]
Specify the local or remote node as the executor for all subsequent
ncp commands.

node node-id Identify the local or remote node name or
address.

userid user-id

password password

Identify the user-id on the remote system
for the connection.

Specify the password associated with user­
id.

If a user is not specified, the default account on the target node is
used. The clear executor node command resets the executor to the

5

NCP(l)

6

NCP(l)

local node.

set executor retransmit factor factor
Set the retransmit factor. Factor specifies the number of times a
packet may be retransmitted before a link is declared broken. The
value of the retransmit factor regulates the number of times the NSP ~
layer reattempts a transmission when its retransmission timer ..,,,,,,,,
expires for a logical link. A number in the 0-65535 range should be
used for this value. The default retransmit factor is 10.

set executor segment buffer size size
Specify, in bytes, the maximum size of transmit buffers for the exe­
cutor node. Size is in the 255-1458 range. The default value is
1458.

When a logical link is established between two nodes, the nodes
exchange their segment buffer sizes. The smaller of the two sizes is
used as the negotiated segment buffer size for the link. Two end
nodes may agree on a segment buffer size but have an intermediate
router with a smaller segment buff er size (such as a router handling
both DDCMP and Ethernet circuits). The end nodes can communicate
unless one of them transmits a packet that exceeds the router's seg­
ment buffer size. When this happens, the router truncates the packet
and the logical link is broken.

set executor state { on I off }
Turn the state of the node off and on. When the node state is on, the "'
node is reachable from other network nodes; that is, new logical ...,,,,,
links to that node can be created. When the node state is off, the
node is unreachable.

on Allow creation of new logical links. on is the normal opera­
tional state of a node.

off Prevent creation of new logical links, terminate existing
links, and shut down the node.

Setting the state off terminates any active links to the node and could
result in loss of data.

set known nodes all
Copy the contents of the permanent database to the volatile database
for all nodes in the database.

set node node-id address node-address name node-name
Specify remote node names and address when building the executor's
volatile configuration database.

node-id Identifies the local node and can be a name or an
address.

node-address Specifies the address of the node to be included in the .._,,,,,
configuration database.

01/90

-

NCP(l) NCP(l)

node-name Specifies the name of the node to include in the
configuration datal:oase. Only one name can be
assigned to a node address. Duplicate node names
are not permitted.

set node node-id all
Copy the contents of the permanent database to the volatile database
for a single node node-id.

tell node-id command
Identify the executor for a particular ncp command. The node-id is
set for only one ncp command.

zero executor counters
Reset all counters to zero on the executor node.

zero known circuit counters
Reset circuit counters to zero for all known circuits.

zero known line counters
Reset line counters to zero for all known lines.

zero known nodes counters
Reset node counters to zero for all known nodes.

zero node node-id counters
Reset node counters to zero for node-id. Node-id is the name or
address of a local or remote node.

Show Characteristics Commands
show executor characteristics
show node node-id characteristics
show active nodes characteristics
show known nodes characteristics

01/90

Display static node information for the executor, a specified node-id,
all active nodes, or all known nodes. The following information is
included in the display:

Identification
Management Version
NSP Version
Maximum Links
Delay Factor
Delay Weight
Inactivity timer
Retransmit factor
Routing Version
Type
Maximum Address
Max Broadcast Nonrouters
Segment buffer size

7

NCP(l) NCP(l)

8

Show Counters Commands
show executor counters
show node node-id counters
show active nodes counters
show known nodes counters

Display information about the user traffic between the executor and
the specified node. The following information is included in the
display:

Seconds since last zeroed
User data bytes received
User data bytes sent
User data messages received
User data messages sent
Connects received
Connects sent
Response timeouts
Received connect resource errors
Packet format errors

Show Status Commands
show executor status

Display executor status information. This consists of the node name
and address, state, and Ethernet physical address.

show node node-id status
show active nodes status ~

Display the status of node-id or all nodes. Node-id is is a node name ..,,,,.,,
or address. The display consists of the following information:

Node address and name
Routing state
Number of active logical links associated with the node
Delay timer to set the retransmission
Node type

Show Summary Commands
show executor summary
show node node-id "lummary
show active nodes summary
show known nodes summary

Display summary information. The display includes the following
information:

Node address and name
Routing state
Number of active logical links associated with the node
Delay timer to set the retransmission
Node type

01/90

NCP(l) NCP(l)

Show Circuit Commands
show known circuit characteristics

Display circuit characteristics. The following information is
included in the display:

State
Designated router
HELLO timer
Type
Adjacent node
Listen timer

show known circuit counters
Display circuit counters. The following information is included in
the display:

Seconds since last zeroed
Data blocks sent
Data blocks received
Bytes sent
Bytes received

show known circuit status
Display circuit status. The following information is included in the
display:

Circuit ID
Circuit current state
Address and name of adjacent nodes on that circuit
Adjacent node ID
Block size

show known circuit summary
Display circuit summary. The following information is included in
the display:

Circuit ID
Circuit current state
Address and name of adjacent nodes on that circuit
Adjacent Node ID
Block size

Show Line Commands

01/90

show known line characteristics
Display line characteristics. The display includes the line's protocol
and hard ware address.

show known line counters
Display line counters. The display includes the following informa­
tion:

Seconds since last zeroed
Data blocks received

9

NCP(l) NCP(l)

Data blocks sent
Blocks sent, multiple collisions
Collision-detect check failure
System buffer unavailable

show known line status ~
Display line status. The display includes the line and state. ~

show known line summary
Display line summary. The display includes the line and state.

Show Links Command
show known links

Display information for all known links connected to the local node.

SEE ALSO
Digital Network Protocol (DNP) Network Manager's Guide.

10 01/90

-

NETADDR(l) NETADDR(l)

NAME
netaddr - display network address

SYNOPSIS
netaddr

DESCUPTION
netaddr returns the network address for the node executing this command.
Depending on which communication protocols are running, a subset of the
following information is returned:

LAN-number.host-number
Interface name ·xx·:
Internet Address: nnn.nnn.nnn.nnn
Subnet Mask: nnn.nnn.nnn.nnn

SEE ALSO

01/90

"BSD Network Configuration Tutorial" in the CLIX System Guide.
Intergraph Network Core User's Guide.

1

NETCP(l) NETCP(l)

NAME
netcp - DNP copy command

SYNOPSIS
,,,.,.,.. netcp [-ilnrtvxz] filel file2
'--". netcp [-ilnrtvxz] file • . . directory

netcp -r

DESCK.IPTION

01/90

netcp copies files between hosts that support the Digital Network Architec­
ture (DNA). This includes DECnet, CommUnity, and CLIX hosts on a net­
work. File and specifications can be either simple file specifications of local
files or the lengthy DNP remote file specifications.

The following options are available:

-i Set interactive mode., Prompt the user to confirm each file copy
operation by entering one of the following responses:

-1

Y or y Copy the file and continue the interactive file copy mode.

Norn

Rorr

Qorq

Do not copy the file and continue the interactive file copy
mode.

Copy the file and all the remaining files. This terminates
the interactive file copy mode.

Quit.

The interactive option is particularly useful in a selective transfer
with wildcard specification.

Set logging mode. Print logging information on the standard output
to indicate the start of data transfer for each file.

-n Set noisy mode. Print a message on the standard error stream indi­
cating when there is an attempt to connect to /al(lM), the remote file
transfer server. This often takes several seconds, and the message
provides a way to monitor the operation.

-r Display release number. Specify the release and revision numbers of
netcp and its components. If the release number switch is the sole
argument to netcp, netcp prints the release information and ter­
minates.

-t Display the total number of bytes and files transferred.

-v Set verbatim mode. Transfer (byte for byte) all input files without
record format conversion and with no bytes lost, altered, or inserted.
Output files are created with a record format appropriate to their
byte-stream nature. On VMS, the output files always have VARIABLE
RECORD format and NO RECORD attributes. When data is copied
from one CLIX system to another CLIX system, the verbatim mode
increases copying speed.

1

NETCP(l) NETCP(l)

2

-x Submit the input files for execution on the remote system. These
files are deleted after execution.

-z Set append mode. Append the input files to the destination files
rather than overwriting them.

Options to netcp can be placed anywhere on the command line and in any
order.

Fil.e-spec is a DNP file specification that can be specified in one of the follow­
ing ways:

[node-spec [• username [password [account]] •] ::]jil.e-spec

[-u username] [-p password] [-a account] [node-spec::]jil.e-spec

Node-spec specifies a DECnet, CommUnity, or CLIX host name or address.
The optional information enclosed in double quotation marks or specified
with the -u, -p, or -a option is regarded as the access information. The
remote system uses this infomation to determine accessibility on the remote
host. The final portion of the syntax is the file specification on the remote
host. The keywords are defined as follows:

node-space Specifies a Digital Network Architecture (DNA) host name
or address. For example, DECnet, CommUnity, and CLIX
hosts support DNA. The name or address is defined as fol­
lows:

username
-u username

password
-p password

account
-a account

node-name Specifies a host name. Node-name can be ""'
up to six characters long. .._,,

[area-number.] node-number
Specifies an address. The optional area­
number is an integer in the range of 1-63
that specifies the network area of the host.
Node-number is an integer in the range of
1-1023 that is unique in the network area.
If the remote node-number is located in the
same local network area, area-number need
not be specified.

Identifies the user on the remote system in whose name the
access will be performed. The NET_ USER environment
variable, if defined, is used if no username is specified on
the command line.

Specifies password for username. A null password can be
specified with••.

Indicates the party to be billed for network access time.
This option is used by some DECnet systems. It is not valid
for CLIX systems. The NET _ACCOUNT environment

01/90

-

NETCP(l) NETCP(l)

file-spec

variable, if defined, is used if no account is specified on the
command line. A null account can be specified with ••.

Specifies a file conforming to naming conventions on the
remote host. UNIX-, VMS-, and MS-DOS-style file
specifications are examples of some file-naming conventions.
Copying files between hosts using different file-naming con­
ventions may produce unexpected results. File-spec may be
a wildcard specification.

The standard input device, such as the keyboard, can be used instead of the
source input file by using a-. A standard output device can be used instead
of fi.le2 or directory by using a -.

When multiple source input files are specified, the target directory must be a
remote or local directory or standard output. The output files retain much
of their original names. The destination node may shorten some file names.

When remote files are copied to a target directory on CLIX, their names are
converted, if necessary, to names that are suitable for use on the CLIX sys­
tem. Files are stripped of version numbers, and if the files are from a non­
case-sensitive system like VAX/VMS, they are converted to lowercase. For
example, SYS$SYSDEVICE:[LEE.PROJ1]MYFILRNO becomes myfil.rno on
CLIX. The names of files from another CLIX or case-sensitive system are
unchanged.

SEE ALSO
fal(lM) in the CLIX System Administator's Guide.

CAVEATS
VMS file type VARIABLE FIXED CONTROL (VFC) is not supported.

01/90 3

NETEX(l) NETEX(l)

NAME
netex - DNP remote file execution utility

SYNOPSIS
netex [-ilnr] batch-file
netex -r

DESCR.IPTION
netex is a Digital Network Protocol (DNP) command that allows CLIX users
to execute batch-files on a remote system. netex locates the batch-file on the
remote system and sends an access message to the remote system to submit
that file to execute. After the batch-file executes, the submitted batch-file
remains unchanged.

Batch-file is a standard DNP remote file specification as described in netcp(l).
The following options are allowed:

-i Set interactive mode. Prompt the user to confirm each file copy
operation by entering one of the following responses:

Y or y Execute the file and continue the interactive file execution
mode.

Norn

R or r

Q or q

Do not execute the file and continue the interactive file
execute mode.

Execute the file and all remaining files. This terminates
the interactive file execution mode.

Quit.

The interactive option is particularly useful in a selective execution
with wildcard specification.

-1 Set logging mode. Print logging information to the terminal to indi­
cate the start of the operation.

-n Set noisy mode. Print a message on standard error indicating when
there is an attempt to connect to fal(lM), the remote file transfer
server. This of ten takes several seconds, and the message provides a
way to monitor the operation.

-r Display the release and revision numbers of netex and its com­
ponents. If the release number switch is the sole argument to netex,
netex prints the release information and terminates.

SEE ALSO
netcp(l).
fal(lM) in the CLIX System Administrator's Reference Manual.

01/90 1

NETLPR.(1) NETLPR.(1)

NAME
netlpr - DNP command to print fi.le(s) on remote printers

SYNOPSIS
~ netlpr [+q [queue-spec] [+n node] [+u user] [+p password]

~ [+a account] [-option . . .] file ...

DESCR.IPTION

01/90

netlpr is a Digital Network Protocol (DNP) utility that prints any accessible
text fi.le on any printer attached to a remote host supporting the Digital Net­

work Architecture (DNA), including the local node. The arguments to netlpr

are remote fi.le specifi.cations as described in netcp(l), optionally interspersed

with the following options:

+q [queue-spec] Specify, in the form of a remote fi.le specifi.cation, the
printer on which to print all fi.les specifi.ed up to the
next +q option or the end of the command line. The
form of queue-spec is as follows:

+n node

+u user

[[node-spec[" access-info"]::] [queue-name]

The keywords have the following meaning:

node-spec
Specifi.es either a host name or address as
described in netcp(l). If node-spec is not
specifi.ed, queue-name refers to a local queue.

"access-info"
Specifi.es optional access control information
used to access queue-name on the remote host.
The syntax of access-info is as follows:

" [user [password [account]]] "

User, password, and account are equivalent to
the +u, +p, and +a options. The meaning, as
applied to remote fi.le specifi.cation, is described
in netcp(l).

queue-name
Specifi.es the remote queue to be used. The +q
option is required to specify any printer other
than the local default printer. If a node-spec is
given and no queue-name is specifi.ed, output goes
to the def a ult printer on that node-spec.

Specify the default node on which to search for subse­
quently named fi.les. The current default access control
information remains in effect.

Specify the default user name to use when accessing fi.les
on remote nodes. The +u, +p, and +a options in netlpr
have the same meaning as the -u, -p, and -a options in

1

NETLPR(l) NETLPR(l)

2

netcp(l).

+p password Specify the default password to use when accessing files
on remote nodes.

+a account Specify the default account to use when accessing files
on remote nodes.

-option Treat any argument beginning with a - as an argument
for the local print spooling program. The interpretation
of such arguments is controlled by the netlpr
configuration file described below.

netlpr works with a local spooling program (see lp(l), lpr(l), and qpr(l)) or
a printer device driver. The interface to the local spooling program or
printer must be defined in the /usr/lib/netlpr.cf file for netlpr to function.
For example, the netlpr.cf file for Zpr(l) is as follows:

/usr/bin/lpr
PrCJTil234

The format of the configuration file using a spooling program is as follows:
The first line contains the full path name of the spooling program.

The first character of the second line indicates the option to use when
specifying a nondefault local prit1ter. For example, if this character
is P, netlpr invokes the local spooler with the following command:

lpr -P printer file

If this facility is not provided by the local spooling program, this
character should be a space.

The second character of the second line indicates the option that
specifies that a file will be deleted aftex- printing. If this facility is
not provided by the local spooling program, this character should be
a space.

The third and succeeding characters of the second line represent the
set of options to the spooler that take a separate argument, as in the
following line:

1 pr -o value file

rather than

lpr -ovalue file

The nondefault printer and delete options mentioned above may be
members of this set. If no spooler options behave in this manner, a
single space should be inserted in this field.

If no spooling program is available, netlpr.cf should contain a single line ""'
giving the name of the device in /dev to which printed output should be .,.,,.,,;
sent. The name given should not start with a /. For example, if the device
is /dev/lp, netlpr.cf should contain only the following:

01/90

-

NETLPR(l) NETLPR(l)

lp

netlpr may be used as a replacement for lpr and then appears to behave

identically as long as the user prints only local files and does not use any

options specific to netlpr. The only requirement in this case is that the local

spooling program must remain present on the system and netlpr.cf must

contain a valid description of its location and characteristics.

EXAMPLES

01/90

The following command prints "filel" and "file2" on the local default
printer:

netl pr file 1 file2

The following command prints "filel" on the local default printer and

"file2" on the local printer named "printer."

netlpr filel +q printer file2

The commands issued by the previous example (using the example netlpr.cf

above) are as follows:

lpr filel
lpr -Pprinter file2

The following examples are equivalent:

netlpr nodea"joe montana"::filel
netlpr +n nodea +u joe +p montana filel

Both examples print "filel," resident on "nodea" (accessed with user-name

"joe" and password "montana"), on the local default printer. They then

delete the file after printing. netlpr copies the file to "/tmp" on the local

node and then issues the following command to lpr(l):

lpr -r /tmp/filel

The following command prints "filel" from "nodea" on the local def a ult

printer as in the previous example and prints "file2" from "nodeb," also

accessed using user-name "doug" and password ":flutie" on the same printer:

netlpr nodea"doug :flutie"::filel +n nodeb file2

The following command prints "filel" and "file2," both from "nodea" and

accessed using the same access control information, on the local default

printer:

netlpr +n nodea +u dan +p marino fi.lel file2

The following command prints the local file "filel" on the default printer

attached to node "vax":

netlpr +q vax:: filel

The following command prints "filel," resident on "vax2," on the default

printer attached to "vaxl." It does this by copying the file to "vaxl" along

with a message specifying that it will be printed and subsequently deleted

when the copy is complete.

3

NETLPR(l) NETLPR(l)

netlpr +q vaxl:: vax2::filel

The following command prints the local "fi.lel" on printer "lcaO" attached
to node "vax" (presumably a VMS node):

netlpr +q vax::lcaO: filel

SEE ALSO
netcp(l), lpr(l), lp(l), qpr(l).

CAVEATS

4

There is a known problem with using any spooler program that does not
copy the file to be printed to a saved area for the spooler. The spooler pro­
gram selected must (by default) copy the file to be printed when it is being
scheduled for printing. Zp(l) does not copy the file by default, but Zpr(l)
and qpr(l) do copy the file by default. The netlpr.cf file indicates to netlpr
the spooler to use.

01/90

NETLS(l) NETLS(l)

NAME
netls - DNP command that lists the directory contents on a remote system

SYNOPSIS
netls [-chlrst U 1] name
netls -r

DESC:R.IPTION

01/90

netls is a Digital Network Protocol (DNP) utility that lists the contents of

directories. name is a remote file specification as defined in netcp(l). If name

is a file specification, the files matching it are listed. The file specification

must conform to the wildcard rules of the remote system. By default, the

files are sorted alphabetically by name.

-c

-h

-1

List files by the creation time instead of the last modification time.

When used with the -t option, this option sorts files according to the

creation time. This works only with -1.

Do not display headers that describe the directory that the following

files belong to. (By default, they are displayed.)

List files in long format. The protection mode, owner, size in bytes,

and last modification time are listed with the file name.

When the long output format is requested, the 12-character protec­

tion mode is printed showing the following four protection levels:

1. System, for the system user (a VMS concept).
2. Owner, for the file owner.
3. Group, for users in the owner's group.
4. World, for all other users.

Each set of three characters specifies the privileges for designated

users to read, write, and execute a file.

The privileges are as follows:

r file may be read
w file may be written to
x file may be executed

permission denied

-r Display the release and version level of netls.

-s Print the file size (in kilobytes) before the rest of each file's informa-

tion.

-t Sort by time stamp (latest first) instead of by name. The default is

the last modification time.

-U List the time of the last access instead of the modification time.

When used with the -t option, sort files according to the time of last

access. This works only with -1.

1

NETLS(l) NETLS(l)

-1 Print only one file entry on each line. This is the default mode for
long format or when the standard output is not a terminal.

When netls generates multicolumn output, it checks the environment vari­
able COLUMNS for the number of columns that can be displayed on the
standard output device. (The default is 80.) netls formats each line of the ~-
listing accordingly. ~·

SEE ALSO
netcp(l).
fal(lM) in the CLIX System Administrator's Reference Manual.

2 01/90

NETMSG(l) NETMSG(l)

NAME
netmsg - send a message to console devices on the local XNS network

SYNOPSIS
/usr/ip32/inc/netmsg [-?] [-y] [-n node] [message]

DESCRIPTION
netmsg broadcasts message to the console devices of all machines on the
Xerox Network Services (XNS) local area network (LAN) running the
xns_listener(lM). If no message is supplied on the command line, the user
is prompted to enter a one-line message that is broadcast upon confirmation.

-n Sends message to the console on node rather than to all machines.

-y Suppresses confirmation. If the -n and -y options are not present,
netmsg will prompt for confirmation before transmitting message to
the entire network.

-? Displays a usage message.

If no options are specified, a usage message is displayed.

SEE ALSO
Intergraph Network Core User's Guide.

01/90 1

-

NETMV(l) NETMV(l)

NAME
netmv - DNP command that moves or renames one or more files

SYNOPSIS
netmv [-ilnr] source-filespec destination-filespec
netmv [-ilnr] file ... destination-filespec
netmv -r

DESCRIPTION
netmv moves a file or a group of files using the Digital Network Protocol
(DNP). When netmv moves a file, two file specifications are required: source­
filespec, or a number of files, and the destlnation-filespec. A source-filespec is
a valid remote file specification as described in netcp(l) that may contain
wildcards. A destlnatlon-filespec may contain a directory name, a file name,
or both. When multiple files are being moved, the destination must be a
directory. In any case, destination-filespec may not contain a node specifier
or Access Control Information (ACI) because they are assumed to be the
same as source-filespec. The following options are available:

-i Set interactive mode. Prompt the user to confirm the operation
before each input file is copied

1
Yory
Tort

Norn

Move the file and continue the interactive file move
mode.

Do not move the file and continue the interactive file
move mode.

R or r Move the file and all remaining files. This terminates the
interactive file move mode. The interactive option is par­
ticularly useful in a selective move with wildcard
specification.

-1 Set logging mode. Display an acknowledgement on the screen for
each file moved when the move is successful.

-n Set noisy mode. Print a message on the standard error stream indi­
cating when there is an attempt to connect to /al(lM), the remote file
transfer server. This often takes several seconds, and the message
provides a way to monitor the operation.

-r Display the release number. Specify the release and rev1s1on
numbers of netmv and its components. If the release number switch
is the sole argument to netmv, 11.etmv prints the release information
and terminates.

~ SEE ALSO
~ netcp(l).

fal(lM) in the CLIX System Administrator's Reference Manual.

01/90 1

NETMV(l) NETMV(l)

DIAGNOSTICS

2

When an error occurs during netmv command execution, an error message in
the following form is displayed:

node: :file-spec <error description>

The error message is displayed even if the logging option was not selected.

01/90

____ __.!l!!lllllli---~l!lillli!lll----------------------------.--"''

-

NETR.M(l) NETR.M(l)

NAME
netrm - DNP command that removes files

SYNOPSIS
netrm [-ilnr] filespec
netrm -r

DESCRIPTION
netrm deletes specified filespecs using the Digital Network Protocol (DNP).
Both the remote file specification and the methods of specifying access con­
trol information are as described in netcp(l).

-i Set interactive mode. Prompt the user to confirm each file deletion
by entering one of the following responses:

-1

Y or y Delete the file and continue the interactive file deletion
mode.

Norn

Ror r

Q or q

Do not delete the file and continue the interactive file
deletion mode.

Delete the file and all remaining files. This terminates
the interactive file deletion mode.

Quit.

Set logging mode. Print an acknowledgement, following the deletion
of a remote file, on the standard output terminal.

-n Set noisy mode. Print a message on the standard error stream indi­
cating when there is an attempt to connect to /aZ(lM), the remote file
transfer server. This often takes several seconds, and the message
provides a way to monitor the operation.

-r Display the release number. Specify the release and rev1s1on
numbers of netrm and its components. If the release number switch
is the sole argument to netrm, netrm prints the release information
and terminates.

SEE ALSO
netcp(l).
fal(lM) in the CLIX System Administrator's Reference Manual.

01/90 1

NEW ALIASES(l) NEW ALIASES(l)

NAME
new aliases - re build the data base for the mail aliases file

SYNOPSIS
new aliases

DESCRIPTION
newaliases rebuilds the random access database for the sendmail(lM) aliases
file, /usr/lib/aliases. It must be run each time /usr/lib/aliases is
changed.

SEE ALSO
aliases(4).
sendmail(lM) in the CLIX System-Administrator's Reference Manual.

01/90 1

NPMOUNT(l) NPMOUNT(l)

NAME
npmount, npumount - mount and unmount file system

SYNOPSIS
/usr/bin/npmount [-r] [-f fstype] special directory
/usr/bin/npmount [-r] -f NFS [,options] resource directory
/usr/bin/npmount [-r] [-c] -d resource directory
/usr/bin/npumount directory
/usr/bin/npumount -d resource

DESCRIPTION

01/90

npmount and npumount run setuid(2) to set the user ID (UID) to root, allow­
ing a nonprivileged user to mount and unmount file systems, with certain
access restrictions.

The following restrictions apply for npmount or npumount:

1. The user must have write permission on both the mount point and its
parent directory. If not, the command will fail with an error message.

2. The user must have read permission on the disk partition being
mounted. If not, the command will fail with an error message.

3. npumount(lM) requires that the user have write permission in the
parent directory of the mount point.

npmount and npumount accept exactly the same arguments as mount(lM) and
umount(lM), respectively. The only exception is that npmount will print a
usage summary if executed with no arguments; mount(lM) will print a list
of currently mounted file systems.

The following options are available:

-r

-d

-c

-f fstype

Indicates that special or resource is to be mounted read-only.
If special or resource is write-protected, this :O.ag must be used,

Indicates that resource is a remote resource that is to be
mounted on directory or unmounted. To mount a remote
resource, Remote File Sharing (RPS) must be running and the
resource must be advertised by a remote computer (see
rfstart(lM) and adv(lM)).

Disables RFS client caching of file system reads and writes on
this resource.

Indicates that fstype is the file system type to be mounted. If
this argument is omitted, it defaults to the root fstype. If
fstype is Network File System (NFS), NFS options may be
added after the fstype separated by commas. The available
NFS options are as follows:

soft Return an error if the server does not respond.

rsize n Set the read buffer size ton bytes.

1

NPMOUNT(l)

special

resource

directory

SEE ALSO

wsize=n

tim.eo==n

NPMOUNT(l)

Set the write buffer size ton bytes.

Set the initial NFS timeout to n tenths of a
second.

retrans=n Set the number of NFS retransmissions to n.

port==n Set the server IP port number ton.

Indicates the block special device to be mounted on directory.
If fstype is NFS, special should have the form host­
name:/ path-name.

Indicates the remote resource name to be mounted on a direc­
tory.

Indicates the directory mount point for special or resource.
(The directory must exist.)

mount(lM) in the CLIX System Administrator's Reference Manual.

2 01/90

ODCD(l) ODCD(l)

NAME
oded - set the current default directory used by optical disk commands

SYNOPSIS
oded odpathname

DESCRIPTION
oded is a shell function that manipulates a ksh(l) environment variable.
The optical disk utilities use this variable. To use the oded function, add the
following line to the environment file specified by the ksh(l) environment
variable ENV:

. /ip32/od/odenv

The oded user must have execute (search) permission in odpathname.
Because a new process is created to execute each command, oded would be
ineffective if it were written as a normal command; therefore, it is recog­
nized by and is internal to the shell. Optical disk commands use this path
name when relative path names are used.

SEE ALSO
odintro(l), odpwd(l), ksh(l).

07/89 1

ODCHGRP(l) ODCHGRP(l)

NAME
odchgrp - change the file group of optical disk files or directories

SYNOPSIS
odchgrp group odfile
odchgrp group oddirectory ...

DESCRIPTION

FILES

odchgrp functions identically to its CLIX equivalent, chgrp(l), except that
odchgrp operates on an optical disk.

This utility changes the group ID of files or directories. The group may be
either a decimal group ID or a group name found in the group file.

Unless this command is invoked by the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

Only the file owner (or super-user) may change the group for that file.

I etc/ passwd
/etc/group

SEE ALSO
odintro(l), odchmod(l), odls(l), group(4), passwd(4).

07/89 1

ODCHMOD(l) ODCHMOD(l)

NAME
odchmod - change the file protection of optical disk files or directories

SYNOPSIS
odchmod mode odfile ...
odchmod mode oddirectory ...

DESCRIPTION

07/89

odchmod functions identically to its CLIX equivalent, chmod(l), except that
odchmod operates on an optical disk.

The permissions of the named odfiles or oddirectories are changed according
to mode, which may be symbolic or absolute. Absolute changes to permis­
sions are stated using octal numbers as follows:

odchmod nnnn odfile ...

N is a number from 0 to 7. Symbolic changes are stated using mnemonic
characters as follows:

odchm.od xyz, ••. odfile ..•

Xis one or more characters corresponding to user, group, or other; y is +, -,
or =, signifying permission assignment; and z is one or more characters
corresponding to permission type.

An absolute mode is given as an octal number constructed from the OR of
the following modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7, 5, 3, or 1

1000
0400
0200
0100
0040
0020
0010
0004
0002
0001

enable mandatory locking if # is 6, 4, 2, or 0
sticky bit is turned on (see chmod(2))
read by owner
write by owner
execute (search in directory) by owner
read by group
write by group
execute (search) by group
read by others
write by others
execute (search) by others

Symbolic changes are stated using letters that correspond both to access
classes and to the individual permissions. Permissions to a file may vary
depending on the user identification number (UID) or group identification
number (GID). Permissions are described in three sequences, each having
three characters:

User Group Other
rwx rwx rwx

This example (meaning that user, group, and others all have read, write, and
execute permissions for a given file) demonstrates two categories for granting

1

ODCHMOD(l) ODCHMOD(l)

2

permissions: the access class and the permissions themselves.

Thus, to change the mode of a file's (or directory's) permissions using
odchmod's symbolic method, use the following syntax for mode:

[who] operator [permission(s)], ...

A command line using the symbolic method would appear as follows:

odchmod g+rw odfile

This command would allow group to read and write odfile.

Who can be stated as one or more of the following letters:

u User's permissions.
g Group's permissions.
o Other's permissions.
a Equivalent to ugo (all) and is the default if who is omitted.

Operator can be + to add permission to the file's mode, - to take away per­
mission, or = to assign permission absolutely. (Unlike other symbolic
operations, = has an absolute effect in that it resets all other bits.) Omitting
permission is only useful with= to remove all permissions.

Permission is any compatible combination of the following letters:

r
w
x
s
t
l

Read permission.
Write permission.
Execute permission.
Set-user-ID or set-group-ID is turned on.
Sticky bit is turned on.
Mandatory locking will occur during access.

Multiple symbolic modes separated by commas may be given, although these
modes cannot have spaces between them. Operations are performed in the
order given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter s is
only meaningful with u or g, and t works only with u.

Mandatory file and record locking (1) refers to a file's ability to have its
read or write permissions locked while a program is accessing the file. It is
not possible to permit group execution and enable a file to be locked on exe­
cution at the same time. In addition, it is not possible to turn on the set­
group-ID and enable a file to be locked on execution at the same time. There­
fore, the following examples are illegal uses and will elicit error messages:

odchmod g+x,+l odfile
odchmod g+s,+l odfile

Only the owner of a file or directory (or the super-user) may change a file's
mode. Only the super-user may set the sticky bit.__ Before the file's set­
group-ID can be turned on, the user's group ID must correspond to the file's
and group execution must be set.

07/89

ODCHMOD(l) ODCHMOD(l)

EXAMPLES
The following commands deny execution permission to all users. The abso­
lute (octal) example permits only reading permissions.

odchmod a-x odfile
odchmod 444 odfile

The following commands enable the group and others to read and write a
file:

odchmod go=rw odfile
odchmod 066 odfile

This command causes a file to be locked during access:

odchmod +l odfile

These examples enable all to read, write, and execute the file. They also turn
on the set-group-ID.

odchmod =rwx,g+s odfile
odchmod 2777 odfile

SEE ALSO
odintro(l), odls(l).

07/89 3

ODCHOWN(l) ODCHOWN(l)

NAME
odchown - change file ownership of optical disk files or directories

SYNOPSIS
odchown owner odfile
odchown owner ad.directory

DESCRIPTION

FILES

odchown functions identically to its CLIX equivalent, chown(l), except that
odchown operates on an optical disk.
odchown changes the owner of the ad.files or ad.directories to owner. The
owner may be a decimal user ID or a login name in the password file.
Unless the super-user invokes this command, the set-user-ID and set-group­
ID bits of the file mode, 04000 and 02000 respectively, will be cleared.
Only the owner of the file (or the super-user) may change the owner for that
file.

I etc/ passwd
/etc/group

SEE ALSO
odintro(l), odchmod(l), odls(l), group(4), passwd(4).

07/89 1

ODCP(l) ODCP(l)

NAME
odcp - copy optical disk files

SYNOPSIS
odcp filel [file2 ...] target

DESCRIPTION
odcp copies files to target. It is used to copy files from a magnetic disk to an
optical disk, from an optical disk to a magnetic disk, or from one optical
disk to another. Either the source file (filel), target file (target), or both may
be an optical disk path specification. If target is an existing file on the opti­
cal disk, a new copy of the file is created since blocks cannot be rewritten on
a Write Once Read Many (WORM) medium.
Filel and target can never be the same. If target is a directory, one or more
files are copied to that directory. If target is a file, its contents are des­
troyed.

If target is not a file, a new file is created with the same mode as filel except
that the sticky bit is not set unless you are super-user; the owner and group
of target are those of the user. If target is a file, copying a file to target does
not change the file's mode, owner, or group. The last modification time for
target (and last access time if target did not exist) and the last access time of
filel are set to the time the copy was made.

SEE ALSO
odintro(l), odchmod(l), odln(l), odrm(l).

WARNINGS
Be careful when using shell metacharacters.

07/89 1

ODDF(l) ODDF(l)

NAME
oddf - report number of free blocks and i-nodes on an optical volume

SYNOPSIS
oddf [-t] [-f] volume

DESCRIPTION
odd/ displays the number of free blocks and i-nodes in the mounted volume
specified by volume by examining the counts kept in the super-blocks.

The odd/ command uses the following options:

-t Report both the total allocated blocks and i-nodes, and the total allo­
cated free blocks and i-nodes.

-f Report free blocks.

SEE ALSO
odmount(lM) in the CLIX System Administrator's Reference Manual.

07/89 1

ODINTRO(l) ODINTRO(l)

NAME
odintro - introduction to the optical disk file system

DESCRIPTION

07/89

The optical disk file system is implemented for the Write Once Read Many
(WORM) optical disk media. It emulates the design of the UNIX System V file
system, though it is not mounted as a normal file system. It can be accessed
only through utilities converted to use this file system. Many of the basic
UNIX file system utilities have been converted, as well as fmu(l).

An optical disk platter is a two-sided storage medium. A volume is one side
of a platter. Volumes are not partitioned. Each volume contains a root
directory and a tree of user-defined subdirectories.

Files are referenced on an optical disk file system through an optical disk
path specification. The specification consists of a colon (:), volume name,
colon, and path name. For example, an absolute optical disk path
specification could be as follows:

:volume:/ directory JI d irectory2/basename

A volume name can have 1 to 16 characters. These characters may come
from the set of all character values excluding colon, \O (null), and slash.

Absolute path specifications must specify the volume name and the path
name must begin with a slash. Relative path specifications may be used if
odcd(l) was used to define a default optical disk directory. A relative path
specification omits the volume name in the specification and the path name is
not required to begin with a slash. For example, a relative optical disk path
specification could be as follows:

: :/
: : file

Regardless of whether the volume name is specified, the colons that would
surround it must be present. If a path name begins with a slash, the path
search begins at the volume's root directory. Otherwise, the search begins at
the current default optical disk directory. A path name consisting of a slash
by itself names the volume's root directory.

In other optical disk documentation, odpnathname refers to an optical disk
path specification. This specification can be a file or directory. Odfile refers
to an optical disk file and oddirectory refers to an optical disk directory.

Directory entries are called links. By convention, a directory contains at
least two links, • and •• , referred to as dot and dot-dot, respectively. Dot is
the directory itself and dot-dot is its parent directory. Thus, : : • is the
current default optical disk directory and : : •• is its parent.

The optical disk file system is accessed in two different environments: stan­
dalone and jukebox. In the standalone environment, an optical disk platter
must be manually loaded in an optical disk drive. The system administrator
must then mount a volume on that platter so that the optical disk utilities

1

ODINTRO(l) ODINTRO(l)

may then access it. In the jukebox environment, an optical disk jukebox
will mount optical disk platters as needed by fmu(l) or at the request of the
system administrator.

If an optical disk path specification is used in the fmu(l) commands send,
receive, red, or cd, the volume implied by the specification will automati­
cally be loaded in a drive and mounted if the volume resides in a jukebox.
An fmu(l) session can mount only one volume at a time. Also, as soon as
fmu(l) exits, the volume is unmounted and unloaded. If the volume is in a
standalone environment, the system administrator must have already
mounted the volume using the odmount(lM) command.

SEE ALSO

2

odcd(l), odchgrp(l), odchmod(l), odchown(l), odcp(l), oddf(l), odln(l),
odls(l), odmkdir(l), odmv(l), odpwd(l), odrm(l), odrmdir(l), jbconfig(l),
JBCFG(4), STANDCFG(4).
odfsck(lM), odlabel(lM), odmount(lM), odreadlabel(lM), odumount(lM),
jbexport(lM), jbimport(lM), jbinventory(lM), jblabel(lM), jbstart(lM),
jbterminate(lM), jbvaryoff(lM), jbvaryon(lM) in the CLIX System
Administrator's Reference Manual.

07/89

ODLS(l) ODLS(l)

NAME
odls - list contents of optical disk directories

SYNOPSIS
odls [-RadCxmlnogrtucpFbqisf] [odpathname]

DESCRIPTION

07/89

odls functions identically to its CLIX equivalent, Zs(l), except that odls lists
files in an optical disk directory.

For each directory argument, odls lists the directory contents; for each file
argument, odls repeats its name and any other information requested. The
output is sorted alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are given, the argu­
ments are first sorted appropriately, but file arguments appear before direc­
tories and their contents.

There are three major listing formats. The default format is to list one
entry per line. The -C and -x options enable multicolumn formats, and the
-m option enables stream output format. To determine output formats for
the -C, -x, and -m options, odls uses the environment variable COLUMNS to
determine the number of character positions available on one output line. If
this variable is not set, the terminfo(4) database is used to determine the
number of columns, based on the environment variable TERM. If this infor­
mation cannot be obtained, 80 columns are assumed.

The following options are available:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are

-d

-c
-x

-m

-1

-n

-0

normally not listed.

If an argument is a directory, list only its odpathname (not its con­
tents); often used with -1 to obtain the directory's status.

Print multicolumn output with entries sorted down the columns.
Print multicolumn output with entries sorted across rather than
down the page.

Print in stream output format; files are listed across the page,
separated by commas.

List in long format giving mode, number of links, owner, group, size
in bytes, and last modification time for each file (see below). If the
file is a special file, the size field will contain the major and minor
device numbers rather than a size.

Same as -1 except that the owner's UID and group's GID numbers are
printed, rather than the associated character strings.

Same as -1 except that the group is not printed.

1

ODLS(l) ODLS(l)

2

-g

-r

-t

-u

-c

-p

-F

-b

-q

-i

-s

-f

Same as -1 except that the owner is not printed.

Reverse the sort order to get reverse alphabetic or oldest first as

appropriate.

Sort by time stamp (latest first) instead of by name. The default is
the last modification time. (See -n and -c.)

Use the last access time instead of modification time for sorting (with
the -t option) or printing (with the -1 option).

Use the last i-node modification time (such as when a file was created
or a mode changed) for sorting (-t) or printing (-1).

Put a slash(/) after each file name if the file is a directory.

Put a slash (/) after each file name if the file is a directory and put

an asterisk(•) after each file name if the file is executable.

Force nongraphics characters in file names to be printed in the octal
\ddd notation.

Force nongraphics characters in file names to be printed as the char­
acter?.

For each file, print the i-number in the first column of the report.

Give size in blocks (including indirect blocks) for each entry.

Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns on -s; the order is the
order in which entries appear in the directory.

The mode printed under the -1 option consists of ten characters. The first
character may be one of the following:

d The entry is a directory.
b The entry is a block special file.
c The entry is a character special file.
p The entry is a fifo ("named pipe") special file.

The entry is an ordinary file.

The next nine characters are interpreted as sets of three bits each. The first

set refers to the owner's permissions; the next set refers to permissions of

others in the user group of the file; the last set refers to all others. Within

each set, the three characters indicate permission to read, write, and execute

the file as a program, respectively. Execute permission for a directory is per­

mission to search the directory for a specified file.

odls -1 prints its output as follows:

-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a lot of information. Reading from

right to left, it is seen that the current directory holds one file, named

part2. Next, the last time the file's contents were modified was 9:42 AM on

May 16. The file is moderately sized, containing 10,876 characters, or bytes.

The owner of the file, or the user, belongs to the group dev, and the login

07/89

ODLS(l) ODLS(l)

name is smith. The number (in this case 1) indicates the number of links to
file part2. Finally, the row of dashes and letters shows that user, group,
and others have permission to read, write, and execute part2.

The execute (x) symbol occupies the third position of the three-character
sequence. A - in the third position would have indicated a denial of execu­
tion permissions.

The permissions are indicated as follows:
r The file is readable.
w The file is writable.
x The file is executable.

The indicated permission is not granted.
I Mandatory locking will occur during access. (The set-group-ID

bit is on and the group execution bit is off.)
s The set-user-ID or set-group-ID bit and the corresponding user or

group execution bit are on.
S Undefined bit-state. (The set-user-ID bit is on and the user exe­

cution bit is off.)
t The 1000 (octal) bit, or sticky bit (see chmod(l), and the execu­

tion bit are on.
T The 1000 bit is on and execution is off (undefined bit-state).

For user and group permissions, the third position is sometimes occupied by
a character other than x or -. s, referring to the state of the set-ID bit (the
user's or the group's), may also occupy this position. For example, the abil­
ity to assume the same ID as the user during execution is used during login
when the user begins as root but needs to assume the identity stated at login.

In the sequence of group permissions, I may occupy the third position. I
refers to mandatory file and record locking. This permission describes a
file's ability to allow other files to lock its reading or writing permissions
during access.

For other permissions, the third position may be occupied by t or T. These
refer to the state of the sticky bit and execution permissions.

EXAMPLES

07/89

This example describes a file that the user can read, write, and execute and
that group and others can read:

-rwxr--r--

This example describes a file that the user can read, write, and execute; the
group and others can read and execute it. This permission allows the user
presently executing it to assume its user ID during execution:

-rwsr-xr-x

This example describes a file that only the user and group can read and write
and that can be locked during access:

-rw-rwl---

3

ODLS(l) ODLS(l)

FILES

This command will print the names of all files in the current directory,
including those that begin with a dot (.), which normally do not print:

odls -a

This command will provide information such as all files (including non­
printing ones (a)); the i-number, the memory address of the i-nodes associ­
ated with the file, printed in the left-hand column (i); and the size of the
files (in blocks) printed in the column to the right of the i-numbers (s). The
report is printed in the numeric version of the long list, printing the UID
(instead of user name) and GID (instead of group name) numbers associated
with the files.

odls -aisn

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

I etc/ passwd
/etc/group
/usr/lib/terminfo/7 /*

UIDs for ls -1 and ls -o
GIDs for ls -1 and ls -g
terminal information database

SEE ALSO

BUGS

4

odintro(l), odchmod(l).

Unprintable characters in file names may confuse the columnar output
options.

07/89

ODMKDlR.(1) ODMKDIR(l)

NAME
odmkdir - create optical disk directories

SYNOPSIS
odmkdir [-m mode] [-p] oddirectory

DESCRIPTION
odmkdir creates the specified directory on the volume implied by the optical
disk directory name oddirectory. Default permissions as defined by
umask(l) are set on the directory unless the -m option is specified.

Standard entries in a directory (such as the files • for the directory itself and
•• for its parent) are created automatically. odmkdir cannot create these
entries by name. Directory creation requires write permission in the parent
directory.

The owner ID and group ID for the new directories are set to the process's
user ID and group ID, respectively.

The following options are available:

-m mode

-p

Create the directory with the specified protection mode. An
absolute mode is given as an octal number constructed from
the OR of the following modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7, 5, 3, or 1

1000
0400
0200
0100
0040
0020
0010
0004
0002
0001

enable mandatory locking if# is 6, 4, 2, or 0
sticky bit is turned on (see chmod(2))
read by owner
write by owner
execute (search in directory) by owner
read by group
write by group
execute (search) by group
read by others
write by others
execute (search) by others

Create the last directory in the path name and any parent
directories in the path that do not exist.

EXAMPLES
Use the following command line to create the subdirectory structure
/ltr/jd/jan on volume development:

odmkdir -p :development:/ltr/jd/jan

SEE ALSO
odintro(l), odrm(l), intro(2).
sh(l), umask(l) in the UNIX System V User's Reference Manual.

07/89 1

ODMKDIR(l) ODMKDIR(l)

DIAGNOSTICS

2

odmkdir returns exit code 0 if all directories given in the command line were
created successfully. Otherwise, it displays a diagnostic message and returns
a nonzero exit code.

07/89

ODMV(l) ODMV(l)

NAME
odmv - rename optical disk files or directories

SYNOPSIS
odmv [-f] odpathname ... odtarget

DESCR.IPTION
odpathname is moved to odtarget. Odpathname and odtarget can never be
the same. If odtarget is a directory, one or more files are moved to that
directory. If it is a file, its contents are destroyed.

If odmv determines that the target mode forbids writing, it prints the mode
(see odchmod(l)), prompts the user, and reads standard input for one line.
If the line begins with y, the move occurs (if permissible); if not, the com­
mand exits. When the -f option is used or if the standard input is not a ter­
minal, no questions are asked and the move is performed.

odmv will allow odpathname to be a directory. The directory is renamed
only if the two directories have the same parent; odpathname is renamed
odtarget. If odpathname is a file and odtarget is a link to another file with
links, the other links remain and odtarget becomes a new file.

SEE ALSO
odintro(l), odchmod(l), odcp(l), odln(l), odrm(l).

WARNINGS

07/89

If odpathname and odtarget are on different volumes, odmv must copy the
file and delete the original. In this case, any linking relationship with other
files is lost.

Be careful when using shell metacharacters.

1

ODPWD(l) ODPWD(l)

NAME
odpwd - display the current default directory used by optical disk com­
mands

SYNOPSIS
odpwd

DESCRIPTION
odpwd displays the current optical disk default path name as defined by
odcd(l). The optical disk commands use this path name when relative path
names are used.

SEE ALSO
odintro(l), odcd(l).

DIAGNOSTICS

07/89

"Cannot open .. "and "Read error in .. "indicate possible file system trouble
and should be referred to a CLIX system administrator. odfsck(lM) may be
used to correct the problem.

1

-

ODRM(l) ODR.M(l)

NAME
odrm - delete optical disk files

SYNOPSIS
odrm [-f] [-i] odfile ...
odrm -r [-f] [-i] oddirectory [odfile ...]

DESCRIPTION
odrm removes the entries for one or more files from a directory. If an entry
is the last link to the file, the file can no longer be accessed. Removal of a
file requires write permission in its directory, but neither read nor write per­
mission on the file itself.

If a file has no write permission and the standard input is a terminal, the
full set of permissions (in octal) for the file is printed followed by a ques­
tion mark. There is a prompt for confirmation. If the answer begins with y
(for yes), the file is deleted. Otherwise, the file remains. If the standard

input is not a terminal, the command operates as if the -f option is in effect.

Three options apply to odrm:

-f Remove all files (whether write-protected or not) in a directory
without prompting the user. In a write-protected directory, how­
ever, files are never removed (regardless of individual file permis­
sions). If the user attempts to remove a write-protected directory,
the -f option does not suppress an error message.

-r Recursively remove all directories and subdirectories in the argument
list. Files in the directory will be removed and then the directory
will be removed. The user is normally prompted to remove any
write-protected files the directory contains. However, if the -f
option is used or if the standard input is not a terminal and the -i

option is not used, write-protected files are removed without
prompting.

When removal of a nonempty, write-protected directory is
attempted, the command will always fail, resulting in an error mes­
sage.

-i Interactively confirm removal of each file and directory. This option
overrides the -f option and remains in effect even if the standard

input is not a terminal.

SEE ALSO
odintro(l), odln(l), odcp(l), odmv(l).

DIAGNOSTICS

01/90

All messages are self-explanatory. Removing the files • and •• is forbidden

to avoid the consequences of inadvertently making the following type of

mistake:

odrm-r ::.*

1

ODRM(l) ODRM(l)

2

odrm returns exit codes of 0 if all specified directories are removed success­
fully. Otherwise, a nonzero exit code is returned.

01/90

ODRMDIR(l) ODRMDIR(l)

NAME
odrmdir - delete optical disk directories

SYNOPSIS
odrmdir [-p] [-s] oddirectory ...

DESCRIPTION
odrmdir removes only empty directories.

Two options apply to odrmdir:

-p Remove the specified directories and their parent directories that
become empty. A message is printed on standard output explaining
whether the whole path was removed or part of the path remains.

-s Suppress the message printed when a standard error occurs and when
-p is in effect.

SEE ALSO
odintro(l), odmkdir(l).

DIAGNOSTICS

07/89

All messages are generally self-explanatory. odrmdir returns an exit code of
0 if all specified directories are removed successfully. Otherwise, it returns a
nonzero exit code.

1

ODT(l) ODT(l)

NAME
odt - examine and modifies tiles

SYNOPSIS
odt fil.r4

DESCl.IPTION
odt is an interactive program that allows the user to examine and modify the
contents of a tile. Both location pointers and contents are displayed in hexa­
decimal format. Input is also interpreted as hexadecimal.

The commands available within odt are:

I

addrl

w

1

value<CR>

<LF>

values

s

<F.SC>

Display the current location within the tile and the contents
of that location.

Set the current location pointer equal to addr and display
this location.

Set display to byte mode and display current location.

Set display to word mode and display current location.

Set display to long word mode and display current location.

Set the contents of the current location equal to value.

Increment the current location pointer and display location.

Decrement the current location pointer and display location.

Search for value in the tile starting at the current location
and display location.

Continue the search for the last number searched for start­
ing at the current location.

Exit from odt.

All changes are made to fil.r4 immediately, and there is no backup mechanism
for restoring unwanted changes.

WAININGS
odt is dangerous when used with special tiles.

12/88 1

PC(l) PC(l)

NAME
pc - Pascal compiler

SYNOPSIS
pc [option •••] fiU4 ...

DESCRIPTION

12/88

-pc is the interface to the Green Hills Pascal compiler. Files ending in .p are

assumed to be Pascal source files and are compiled to relocatable object files

whose names are derived by replacing the .p suffix of the source file name

with .o. If no compilation errors are detected, -pc will attempt to link the

relocatable objects to produce an executable file. If the linking is successful,

the intermediate object files are deleted.

-pc works similarly on files with a .s suffix. In this case, however, the files are

assumed to be assembly source and the compilation phase is bypassed.

-pc will also accept other file types or combinations of file types as input. It

will compile or assemble files that end in .p or.sand pass the results and/or

other file names to the link editor. When invoking the link editor, -pc will

specify -lpc, -Im, and -le on the link editor command line.

An executable may be built from separately-compiled source files. However,

only one of the source files may contain a program statement. Variables

may be shared among source files by declaring them at the outermost level in

the files in which they are referenced. A function or procedure defined in one

file may be called from another file provided the caller declares the function

or procedure with an external declaration. The syntax for an external

declaration is identical to the syntax of a forward declaration.

Pascal object files may be linked with C and/or FORTRAN object files. Pascal

passes parameters by value unless the var keyword is used in the formal

parameter declaration. In this case, parameters are passed by reference. C

always passes parameters by value, FORTRAN always passes by reference.

Note that all FORTRAN function, subroutine, and common names are stored

in the symbol table with an underscore(_) appended.

A list of command line options follows.

-c Suppress the link edit phase of the compilation and force an object

file to be produced even if only one program is compiled.

-g

-c

Cause the compiler to generate additional information needed for the

use of source language debuggers like sdb(l).

Enable run-time checking of subranges and array bounds.

-ga Generate a frame pointer for stack traces.

-o ffle-name
Place the executable binary output from the link edit phase in the

file named file-name. If this option is not specified, the executable file

will be named a.out. This option is ignored if -c or -S is present.

1

PC(l)

2

-0

PC(l)

Optimize the program for speed at the expense of code space. The
default compiler settings cause Green Hills Pascal to perform most or
all optimizations that other compilers perform only under the -0
option. Experiment with this option to determine whether the addi­
tional code size and compilation time are worth the execution speed
gain.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing occurs, replace the
standard startotf routine with one that automatically calls
monltor(3C) at the start and arranges to write out a mon.out file at
normal object program termination. An execution profile can then be
generated by using pro/(l).

-s Compile the program in ANSI-compatible mode. Generate errors
when extensions to the ANSI Pascal standard are used. Using this
option will change the default subrange of the set type from 0-31 to
0-255, resulting in poorer code for set handling.

-S Compile the named Pascal programs and leave the assembler­
language output on corresponding files suffixed with .s. The assem­
bler and link edit phases are suppressed.

-v Print the program name and command line arguments of each phase
of the compilation/link process.

-w Suppress warning diagnostics.
-X n Turn on compile-time option number n.
-z n Turn otf compile-time option number n. The available compile-time

options are listed below.

9 Disable the local (peephole) optimizer.
18

32

37

39

58

59
87

Do not allocate programmer-defined local variables to a regis­
ter unless they are declared register.
Display the names of files as they are opened. This is useful
for determining why the compiler cannot find an include file.
Emit a warning when dead code is eliminated.
Do not move frequently-used procedure and data addresses to
registers.

Do not put an underscore in front of the names of global
variables and procedures. This option is not recommended
because it produces symbols that are incompatible with the
rest of the CLIX System.

Turn otf case sensitivity.

Disable the optimization that deletes all code that stores in or
modifies variables that are never read from.

12/88

PC(l) PC(l)

FILES
file.p
file.o

89 Pack structures with no space between members. WARNING:

This may make the structure members impossible to access.

156 Export the names of variables declared in the outermost scope

of a Pascal main program for use in other modules of a

multiple-module executable. The def a ult is for variables

declared in the outer scope of a Pascal main program to be

static and inaccessible from other modules.

168 Do not move invariant ftoating-point expressions out of loops.

174 Append an underscore to the names of all external procedures

and functions to avoid name confticts with library routines.

Set by default if-sis specified.

190 Assume halfword objects are not aligned.

191 Assume word objects are not aligned.

192 Assume single-precision objects are not aligned.

193 Assume double-precision objects are not aligned.

194 Assume word objects are aligned only to halfword boun­

daries.

195 Assume single-precision objects are aligned only to halfword

boundaries.

196 Assume double-precision objects are aligned only to half

word boundaries.

197 Assume double-precision objects are aligned only to word

boundaries.

/usr/lib/pcom, lib/pcom
/bin/as

Pascal source input file
object file; generated or input
Pascal compiler
assembler,as(l)

/bin/ld
/lib/ crt[1 n].o
/lib/mcrt[ln].o
/usr/lib/libpc.a, /lib/libpc.a
/lib/Ube.a

/lib/libp/lib*.a

link editor, Zd(l)
run-time startotf
profiling startotf
Pascal intrinsic functions and 1/0 library
standard C library, see sections (3C) and
(3S) in the UNIX System V Programmer's
Reference Manual
profiled versions of libraries

SEE ALSO

12/88

adb(l), as(l), ld(l), sdb(l).
prof(l) in the UNIX System V Programmer's Reference Manual.

The Greenhills Software Users Manual Pascal-CLIPPER.

3

QDEL(l) QDEL(l)

NAME
qdel - delete or signal NQS requests

SYNOPSIS
qdel [-k] [-signo] [-u user-name] request-id [@host]

DESCR.IPTION
qdel deletes or signals the Network Queuing System (NQS) requests specified
by request-ids. If @host is specified, the host is deleted. Queued and waiting
requests are deleted. Running requests are signaled if the -k or the -signo

options are used. The -k option will send the SIGKILL signal and the -signo

option will send the signal associated with signo to the specified requests.
Routing, arriving, and departing requests are not affected.

To delete or signal an NQS request, the invoking user must be the owner of
the request. The -u option, however, provides a way to avoid this rule. The
-u option specifies requests owned by the user user-name. This option may
be used only if the invoking user is the super-user or has NQS operator
privileges. If a request-id that is not owned by user-name is specified, an
error message will be generated.

Request-id uniquely identifies an NQS request regardless of where the request
is in the network of NQS machines. Request-id has the form seqno [.host­

name]. Seqno identifies the sequence number assignPd to the request on the
originating host. Host-name identifies the originating host. If the host-name
portion of a request-id is omitted, the local host is assumed.

The request-id of an NQS request is displayed when the request is first sub­
mitted (unless the silent mode of operation is specified). The user can also
obtain the request-id of any request by using the qstat(l) command.

SEE ALSO
qdev(l), qlimit(l), qpr(l), qstat(l), qsub(l), setpgrp(2), signal(2).
qmgr(lM) in the CLIX System Administrator's Reference Manual.
kill(l) in the UNIX System V Programmer's Reference Manual.

WARNINGS

01/90

When an NQS request is spawned, a new process group is established for all
processes in the request. If the -k or -signo option is used, a signal will be
sent to all processes in the process group. However, if a process successfully
executes a setpgrp(2) call, it will not receive any signals sent by qdel. The
kill(l) command may be used to delete such processes.

1

-----llfllill!lili----------~--------------·-~~

QDEV(l) QDEV(l)

NAME
qdev - display the status of NQS devices

SYNOPSIS
q dev [device-name [@host.] ...]

DESCRIPTION
qdev displays the status of Network Queuing System (NQS) devices. qdev,

without any arguments, displays the current status of all NQS devices on the

local host. Otherwise, qdev displays the status of the devices specified by

device-name. If @host. is specified, the device located on host. is displayed.

The device is assumed to be on the local machine unless a particular host is

specified by @host..

A device header with the following format is displayed for each of the

specified devices:

device-name@host.-name
Fullname:
Server:
Forms:
Status - [];

"Fullname:" lists the full path name of the special file associated with the

device. "Server:" lists the command line that will be used to execve(2) the

device server. "Forms:" lists the forms configured for the device. "Status:"

displays the general state of the device.

The general state of a device is defined by two principal properties. The first

property is whether the device is willing to continue accepting queued

requests. If it is willing, the state of the device is ENABLED. If the device is

unwilling to continue accepting queued requests and is idle, its state is DIS­

ABLED. The state of the device is ENABLED/CLOSED if the device is unwil­

ling to continue accepting queued requests but is not yet idle.

The second principal property of a device is whether the device is busy. If

the device is busy, it is in an ACTIVE state. If the device is idle and not out

of service, it is in an INACTIVE state. If the device is idle and out of service,

it is in a FAILED state. The FAILED state covers both hardware and software

failures.

If a device is busy, information about the active request follows the device

header. The name of the request, the ID of the request, and the name of the

request owner are displayed.

SEE ALSO
qdel(l), qlimit(l), qpr(l), qstat(l), and qsub(l).

qmgr(lM) in the CLIX Syst.em Administ.rator's Reference Manual,

01/90 1

QDEV(l) QDEV(l)

CAVEATS

2

qdev does not currently support requests to display the status of devices on
remote hosts. If the specified host is not the local host, an error will be gen­
erated.

01/90

QLIMIT(l) QLIMIT(l)

NAME
qlimit - show supported batch limits and shell strategy for the local host

SYNOPSIS
qlimit

DESC:R.IPTION

12188

qllmlt displays the batch request resource limits that can be directly
enforced on the local host and the batch request shell strategy for the local
host.

Network Queuing System (NQS) supports many batch request resource limits
that can be applied to an NQS batch request. However, this implementation
does not support the entire set of limits that NQS provides. The limits sup­
ported are a per-process nice value and a per-process file size.

The limits applied to a batch request are always restricted to the limits that
can be directly supported by the underlying implementation. If a batch
request specifies a limit that cannot be enforced by the underlying imple­
mentation, the limit is ignored and the batch request will operate as though
a limit (other than the physical maximums) had not been placed on that
resource.

When an attempt is made to queue a batch request, each limit specified by
the request (that can also be supported by the local implementation) is com­
pared to the corresponding limit for the destination batch queue. If a limit
for a batch queue is defined to be "unlimited" or greater than or equal to the
corresponding limit of the batch request, the request will be successfully
queued (barring other abnormal conditions). If a request specifies a limit of
"in.finity", the corresponding limit for the queue must also be "infinity".

The limit checks are performed regardless of whether the batch request was
submitted by directly using the qsub(l) command or by indirectly placing
the request in a pipe queue. It is impossible for a batch request to be queued
in an NQS batch queue if any of these limit checks fail.

If a request does not specify a limit that is supported on the local host, the
corresponding limit as configured for the destination queue becomes the limit
for the request.

Upon the successful queuing of a request in a batch queue, the limits under
which the request executes are frozen and are not modified by subsequent
qmgr(lM) commands that alter the limits of the containing batch queue.

As mentioned above, this command also displays the shell strategy as
configured for the local host. Without a shell specification for a batch
request, NQS must choose the shell that should be used to execute the
request. NQS supports three different strategies to solve this problem: fixed,
free, and login.

A fixed shell strategy means that all batch requests will be executed using
the shell chosen by the system administrator.

1

QLIMIT(l) QLIMIT(l)

A free shell strategy means that the batch requests will be run the same as
an interactive invocation of the request would be run.

A login shell strategy means that the batch requests will be executed by the
user's normal login shell.

The default shell strategy is free. Hosts machines which reach the maximum
number of process's allowed on the system should use a fixed or login stra­
tegy because a single shell will be exec'd to run all commands in the request
script. qlimit will display the chosen shell if the fixed strategy has been
selected.

SEE ALSO
qdel(l), qdev(l), qpr(l), qstat(l), qsub(l).
qmgr(lM) in the CLIX Syst.em Administ.rator's Reference Manual.

2 12/88

QPR.(1) QPR.(1)

NAME
qpr - submit a hardcopy print request to NQS

SYNOPSIS
qpr [option ...] [file ...]

DESCRIPTION

01/90

qpr places the named ftles in a Network Queuing System (NQS) queue to be
printed by a device such as a line printer or a laser printer. If a fl.le is not
specified, qpr reads from stdin.

NQS has queue access restrictions. For each queue with a queue type other
than network, access may be either unrestricted or restricted. If access is
unrestricted, any request may enter the queue. If access is restricted, a
request can enter the queue only if the requester or the requester's login
group has access to that queue (see qmgr(lM)). Requests submitted by the
super-user are an exception; they are always queued, even if the super-user
has not explicitly been given access. qstat(l) may be used to determine who
has access to a particular queue.

qpr prints a request ID to stdout when a request is queued successfully.
This request ID can be compared with what is reported by qdev(l) and
qstat(l) to learn the outcome of a request. It can also be given as an argu­
ment to qdel(l) to delete a request. A request ID has the form seqno.host­
name, where seqno refers to the sequence number assigned to the NQS

request, and host-name refers to the name of the originating machine. This
identifier is used throughout NQS to uniquely identify the request anywhere
in the network.

The following options are available and may be intermixed with file names.

-a date-time
Submit at the specified date and/or time. When this option is not
specified, qpr submits the request immediately.

If a date-time speciftcation is composed of two or more tokens
separated by white space characters, the date-time specification must
be enclosed in quotation marks as in ·-a July, 4, 2026 12:31-EDT•.
If not specified in quotation marks, the specification should be
escaped so that the shell will interpret the date-time specification as a
single lexical token.

The syntax accepted for the date-time parameter is flexible.
Unspecified date and time values default to an appropriate value.
(For example, if a date is not specified, the current month, day, and
year are assumed.)

A date can be specified as a month and a day (current year assumed).
The year can also be explicitly specified. It is also possible to specify
the date as a weekday name (such as Tues), or as one of the strings
today or tomorrow. Weekday and month names can be abbrevi­
ated by any three-character (or longer) prefix to the actual name.

1

QP:R(l)

2

QP:R(l)

An optional period can follow an abbreviated month or day name.
Time of day specifications can be given using a 24-hour clock or am
and pm specifications may be used alternatively. When a meridian is
not specified, a 24-hour clock is assumed.

The time of day specification is interpreted using the precise meridian
definitions. 12am refers to the 24-hour clock time of 0:00:00; 12m
refers to noon; and 12-pm refers to 24:00:00. Alternatively, the
phrases midnight and noon are accepted as time of day
specifications, where midnight refers to 24:00:00.

A time zone may also appear at any point in the date-time
specification. Thus, •April 1, 1987 13:01-PDT• is a legal
specification. When a time zone is not specified, the local time zone is
assumed, with daylight savings time being inf erred when appropriate
based on the date specified.

Not all alphabetic comparisons are case-sensitive. Both WeD and
weD ref er to Wednesday.

Examples of valid date-time specifications are as follows:

-d name-value

"Ol-Jan-1986 12am, PDT"
"Tuesday, 23:00:00"
"llpm tues."
"tomorrow 23-MST"

Define an environment variable name with the given value to be put
in the environment of the device server. This option is specific to
devserver.

-e tag-filename
Associate tag with the filename, export the file to the server machine,
and put tag in the environment of the device server so that the server
can access the ancillary file by looking at the environment variable
tag. This option is specific to devserver.

-f form-name
Limit the set of acceptable devices to devices that are loaded with the
form form-name. When this option is not specified, qpr submits the
request only to a device loaded with the default form. If a default
form is not defined, the request is submitted to the first available
output device without regarding the forms configured for the device.
In any case, only devices associated with the chosen queue are con­
sidered.

-1 message
Log message in the device accounting file if device accounting is
turned on at the destination device queue. This option is specific to
devserver.

01/90

QPR(l)

-

01/90

QPR(l)

-mb Send mail to the user on the originating machine when the request
begins execution. If the -mu option is also present, mail is sent to
the user specified by the -mu option instead of to the invoking user.

-me Send mail to the invoking user on the originating machine when the
request has ended execution. If the -mu option is also present, mail
is sent to the user specified by the -mu option instead of to the
invoking user.

-mu user-name
Specify that any mail concerning the request should be delivered to
the user user-name. User-name has the form user [@machine]. When
this option is not specified, any mail concerning the request is sent to
the invoker on the originating machine.

-n numl>er-of-copies
Print numl>er-of-copies copies. The default is 1.

-o options
Place the following options on the end of the argument list of the
device filter before it is started to process the output file. Since
options is one argument, multiple options must be quoted as one
argument. This option is specific to devserver.

-p priority
Asdgn an intraqueue priority to this request. The specified priority
must be an integer, and must be in the 0-63 range, inclusive. A
value of 63 defines the highest intraqueue request priority, while a
value of 0 defines the lowest. This priority does not determine the
execution priority of the request. This priority is used only to deter­
mine the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position
within the queue so that it appears ahead of all existing requests
with priorities less than the priority of the new request. Similarly,
all requests with a higher priority remain ahead of the new request
when the queuing process is complete. When the priority of the new
request equals the priority of an existing request, the existing request
takes precedence over the new request.

If the user does not choose an intraqueue priority, the value
configured by the system administrator will be used. If a value has
not been configured by the system administrator, a default value of
31 is assigned to the request.

-q queue-name
Specify the queue to which the device request is to be submitted. If
the -q queue-name specification is not given, the user's environment is
searched for the variable QPR_QUEUE. If this environment variable
is found, the character string value for QPR_QUEUE is presumed to
be the name of the queue to which the request should be submitted.
If the QPR_QUEUE environment variable is not found, the request is

3

QPR(l)

4

QPR(l)

submitted to the default device request queue if one has been defined
by the local system administrator. Otherwise, the request cannot be
queued and an appropriate error message is displayed.

-r request-name
Assign a name to this request. When the -r option is not specified, ~
the request-name defaults to the name of the first print file (with the ..,,,,,,,
leading path name removed) specified on the command line. If a
print file was not specified, the default request-name assigned to the
request is stdin.

In all cases, if the request-name begins with a digit, the character R is
prefixed to prevent a request-name from beginning with a digit. All
request-names are truncated to a maximum length of 15 characters.

-R Delete the original files after NQS is finished with them. This nor­
mally means that the original files are deleted immediately after the
files are successfully copied into the spool directory.

-s

If the -s is specified with the -R option, the original files will not be
deleted until one of two events occurs. If the file is printed/plotted
locally, the original files are deleted after the job has completed. If
the request is routed to a remote machine, the files are deleted after
the request has been transferred to the remote machine.

The -R option is intended for use with temporary files. Requests
that are deleted or aborted will also cause the original files to be
deleted.

Symbolically link the files into the NQS spool directories rather than
copying them. If the -s option is used, files submitted should not be
renamed, moved, or deleted until the device request has left the
machine or has completed printing. Using the -s option speeds up
the submission of very large files because they are not copied into the
spool directory.

-t type Specify that the format of the data is type. This option is specific to
devserver.

-x When a device request is submitted, the following environment vari­
ables are automatically defined in the environment of the device
server: QPR_HOST, QPR_REQID, QPR_REQNAME, and QPR_ QUEUE.
These environment variables refer to the host name the request ori­
ginated from, the request ID, the request name, and the name of the
queue the request eventually executes in. If the -x option is
specified, all remaining environment variables are exported to the
environment of the device server. This option is specific to
devserver.

-z Submit the request silently. If the request is submitted successfully,

01/90

QPR(l) QPR(l)

nothing will be written to stdout or stderr.

SEE ALSO
qdel(l), qdev(l), qlirnit(l), qstat(l), qsub(l).
qrngr(lM) in the CLIX System Administrator's Reference Manual .

...-.. rnail(l) in the UNIX System V User's Reference Manual.

~

01/90 s

QSTAT(l) QSTAT(l)

NAME
qstat - display the status of NQS queues

SYNOPSIS
~ qstat [-a] [-b] [-d] [-1] [-m] [-p] [-r] [-u user-name] [-x]
~ [queue-name [@host-name] , , ,]

qstat [-c] [complex-name ...]

DESCR.IPTION

01/90

qstat displays the status of Network Queuing System (NQS) queues. qstat,
without a queue-name argument, displays the current status of all NQS

queues on the local host. Otherwise, qstat displays the status of the queues
specified by queue-name. The queue is assumed to be on the local machine
unless a particular host is specified by @host-name.

qstat normally displays information only about requests in the specified
queues owned by the invoker. This may be changed by one of the following
options.

-a

-b

-d

-p

-r

Display the status of all requests in the queue.

Restrict the display to batch queues.

Restrict the display to device queues.

Restrict the display to pipe queues.

Recursively display pipe queue destinations. After a pipe
queue is displayed, display each of the respective queues
appearing in the pipe queue's destination list. This option
should be used with the -b, -d, or -p option to limit the
queues displayed.

-u user-name Display the status only about requests owned by user-name.

For each specified queue, a queue header is displayed. The queue header
displays the queue name, queue type, queue state, an indication of whether
the queue accepts requests only from pipe queues, and the number of
requests in the queue. Additional information about the queue may be
obtained with the -:x: (extended format) option. This option will display the
queue's priority, run limit, access restrictions, cumulative use statistics,
server and destinations (if a pipe queue), queue-to-device mappings (if a
device queue), and resource limits (if a batch queue).

The general state of a queue is defined by two principal properties. The first
property determines whether requests can be submitted to the queue. If
they can and the local NQS daemon is present, the state of the queue is
ENABLED. If the local daemon is not present, the queue is in a CLOSED state.
If a request cannot be submitted, it is in a DISABLED state. Requests can be
submitted only when the queue is in the ENABLED state.

The second principal property of a queue determines if requests that are
ready to run but are not running will be allowed to run when running

1

QSTAT(l) QSTAT(l)

requests complete. It also determines whether any requests are running in
the queue. If queued requests are blocked and no requests are running, the
queue is in a STOPPED state. If queued requests are blocked and at least one
request is running, the queue is in a STOPPING state. In this state, requests
that are running will be allowed to complete. However, no new requests
will be spawned.

If the NQS daemon prevents queued requests from running and at least one
request is running, the queue is in a RUNNING state. If the daemon prevents
queued requests from running and no requests are running, the queue is in
an INACTIVE state. If the daemon is not running but the queue would other­
wise be in the RUNNING or INACTIVE state, the queue is in a SHUTDOWN
state.

Following each queue header, information about requests in the queue is
displayed. For each request, the following information is displayed: the
request name, the request ID, the request owner, the relative request prior­
ity, the current request state, the process group (if the request is running),
and the request size (if a device queue). Additional information may be
obtained with one of the following options:

-1 Display information about requests in long format.

-m Display information about requests in medium-length format.

-c Display information about queue complexes.

The -1 option displays the time when the request was created, an indication .41111111\
of whether mail will be sent, where mail will be sent, the user name on the """"""
originating machine, and the requested forms (if a device queue). If the
queue is a batch queue, resource limits, planned disposition of std.err and
std.out, advice concerning the command interpreter, and the umask(2) value
are also displayed.

The -m option displays the time and date the request will run.

The -c option displays information about queue complexes and ignores all
other options. For each queue complex, the run limit and a listing of the
member queues in the complex is shown.

The disposition of a request defines the state of the request. If it is being
queued from a remote host, the state of the request is ARRIVING. If it is sub­
mitted with a time constraint that has not yet arrived, its state is WAITING.
If it is eligible to proceed to a ROUTING or a RUNNING state, it is in a
QUEUED state. If it is at the head of a pipe queue and is receiving service
there, it is in a ROUTING state. If it departed from a pipe queue and has not
yet arrived at its destination, it is in a DEPARTING state. If it reached its
destination and is executing, it is in a RUNNING state.

EXAMPLES ~
A batch request originating on a workstation and destined for the batch ..._,,
queue of a remote machine to be run immediately would first undergo the
states, QUEUED, ROUTING, and DEPARTING, in a local pipe queue. The

2 01/90

QSTAT(l) QSTAT(l)

request would then leave the pipe queue and be received by a batch queue on
the remote machine. Here, it undergoes the states, ARRIVING, QUEUED, and
RUNNING.

SEE ALSO
.- qdel(l), qdev(l), qlimit(l), qpr(l), and qsub(l).

qmgr(lM) in the CLIX System Administrator's Reference Manual.

01/90 3

QSUB(l) QSUB(l)

NAME
qsub - submit an NQS batch request

SYNOPSIS
qsub [option ..•] [script-file]

DESCltlPTION
qsub submits a batch request to the Network Queuing System (NQS). If a

script-file is not specified, qsub reads from std.in. All script-files are spooled

so that later changes will not affect previously queued batch requests.

NQS has queue access restrictions. For each queue with a queue type other

than "network", access may be either "unrestricted" or "restricted". If

access is "unrestricted", any request may enter the queue. If access is "res­

tricted", a request can only enter the queue if the requester or the requester's

login group has access to that queue (see qmgr(lM)). Requests submitted by

the super-user are an exception; they are always queued, even if the super­

user has not explicitly been given access. qstat(l) may be used to determine

who has access to a particular queue.

qpr prints a request-id to std.out, upon the successful queuing of a request.

This request-id can be compared with what is reported by qdev(l) and

qstat(l) to learn what happened to a request and given as an argument to

qdel(l) to delete a request. A request-id has the form seqno.host-name where

seqno refers to the sequence number assigned to the NQS request, and host­

name refers to the name of originating machine. This identifier is used

throughout NQS to uniquely identify the request anywhere in the network.

All of the command line options can also be specified within the first com­
ment block in the batch request script-file as embedded default options. Such

options appearing in the batch request script-file set default characteristics

for the batch request. If the same option is specified on the command line,

the command line option (and any associated value) takes precedence over

the embedded option. The algorithm used to scan for embedded default

options is as follows:

1. Read the first line of the script-file.

2. If the current line contains only white space characters, or the first

nonwhite space character of the line is ":", go to step 7.

3. If the first nonwhite space character of the current line is not a"#", go

to step 8.

4. If the second nonwhite space character in the current line is not "@" or

the character immediately following the second nonwhite space charac­

ter in the current line is not"$", go to step 7.

5. If a"-" is not the character immediately following the"@$" sequence,

go to step 8.

6. Process the embedded option, stop the parsing process when the end of

the line or the first unquoted"#" character is reached.

12/88 1

QSUB(l) QSUB(l)

2

7. Read the next line of the script-fil.e. Go to step 2.
8. End. Em bedded options will no longer be recognized.
The following is an example of using embedded options withing a script-file.

default,

Batch request script example:

@$-a "11:30pm EDT"
Run request after 11 :30 EDT by

@$-mb-me

@$-q batchl

@$

make all

Send mail at beginning and end of
request execution.
Submit request to queue, batchl by
#default.
#No more embedded options.

The following options are available.

-a date-time
Do not run the batch request before the specified date and/or time.
If a date-time specification is composed of two or more tokens
separated by white space characters, the date-time specification must
be in double quotes as in: "-a July, 4, 2026 12:31-EDT". If not
specified in double quotes, it should be escaped so that the shell will
interpret the date-time specification as a single lexical token.
The syntax accepted for the date-time parameter is flexible.
Unspecified date and time values def a ult to an appropriate value.
(For example, if a date is not specified, the current month, day, and
year are assumed.)

A date can be specified as a month and a day (current year assumed).
The year can also be explicitly specified. It is also possible to specify
the date as a weekday name (i.e., "Tues"), or as one of the strings
"today" or "tomorrow." Weekday and month names can be abbre­
viated by any three-character (or longer) prefix to the actual name.
An optional period can follow an abbreviated month or day name.
Time of day specifications can be given using a twenty-four hour
clock or "am" and "pm" specifications may be used alternatively.
When a meridian is not specified, a twenty-four hour clock is
assumed.

The time of day specification is interpreted using the precise meridian
ftefinitions. "12am" refers to the twenty-four hour clock time of
0:00:00; "12m" refers to noon; and "12-pm" refers to 24:00:00.
Alternatively, the phrases "midnight" and "noon" are accepted as
time of day specifications, where "midnight" refers to 24:00:00.

12188

QSUB(l) QSUB(l)

12/88

A timezone may also appear at any point in the date-time
specification. Thus, it is legal to say: "April 1, 1987 13:01-PDT".
When a timezone is not specified, the local timezone is assumed, with
daylight savings time being inferred when appropriate based on the
date specified.

All alphabetic comparisons are not case-sensitive. Both "WeD" and
"weD" refer to Wednesday.

Examples of valid date-time specifications are:

"01-Jan-1986 12am, PDT"
"Tuesday, 23:00:00"
"llpm tues."
"tomorrow 23-MST"

-mb Send mail to the user on the originating machine when the request
begins execution. If the -mu option is also present, mail is sent to
the user specified by the -mu option instead of to the invoking user.

-me Send mail to the invoking user on the originating machine when the
request has ended execution. If the -mu option is also present, mail
is sent to the user specified by the -mu option instead of to the
invoking user.

-mu user-ruune
Specify that any mail concerning the request should be delivered to
the user user-name. User-name has the form user [@machine]. When
this option is not specified, any mail concerning the request is sent to
the invoker on the originating machine.

-p priority
Assign an intraqueue priority to this request. The specified priority
must be an integer, and must be in the range 0-63, inclusive. A
value of 63 defines the highest intraqueue request priority, while a
value of 0 defines the lowest. This priority does not determine the
execution priority of the request. This priority is only used to deter­
mine the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position
within the queue so that it appears ahead of all existing requests
with priorities less than the priority of the new request. Similarly,
all requests with a higher priority remain ahead of the new request
when the queuing process is complete. When the priority of the new
request equals the priority of an existing request, the existing request
takes precedence over the new request.

If the user does not choose an intraqueue priority, the value
configured by the system administrator will be used. If a value has
not been configured by the system administrator, a default value of
31 is assigned to the request.

3

QSUB(l) QSUB(l)

4

-q queue-name
Specify the queue to which the bat¢h request is to be submitted. If
the -q queue-name specification is not given, the user's environment is
searched for the variable QSUB_QUEUE. If this environment variable
is found, the character string value for QSUB_QUEUE is presumed to
be the name of the queue to which the request should be submitted.
If the QSUB_QUEUE environment variable is not found, the request is
submitted to the default batch request queue if one has been defined
by the local system administrator. Otherwise, the request cannot be
queued and an appropriate error message is displayed.

-r request-name
Assign a name to this request. When the -r option is not specified,
the request-name defaults to script-file (leading path name removed)
specified on the command line. If a script-file is not specified, the
default request-name assigned to the request is std.in.
In all cases, if the request-name begins with a digit, the character "R"
is prefixed to prevent a request-name from beginning with a digit.
All request-names are truncated to a maximum length of 15 charac­
ters.

-e [machine:] stderr-ftlename
Direct std.err output generated by the batch request to stderr­
filename on machine,

If an explicit machine destination is not specified, the destination
machine defaults to the machine where the batch request originated
or to the machine where the request will eventually be run, depend­
ing on the absence or presence of the -ke option.
If a machine destination is not specified and the stderr-filename does
not begin with a "/", the current working directory is prefixed to
create a fully-qualified path name, if the -:t.e option is absent. In all
other cases, any partial stderr-filename is interpreted relative to the
user's home directory on the std.err destination machine. This
option cannot be specified when the -eo option is present.
If the -eo and -e options are not specified, all std.err output for the
batch request is sent to the file whose name consists of the first seven
characters of the request name followed by the characters ",e", fol­
lowed by the sequence number portion of the request-id. Without
the -:t.e option, the default std.err output file will be placed in the
directory where the request was submitted on the originating
machine. Otherwise, the file will be placed in the user's home direc­
tory on the execution machine.

-o [machine:] stdoctt-ftlename
Direct std.out output generated by the batch request to stdout­
filename on machine.

12/88

QSUB(l) QSUB(l)

12/88

If an explicit machine destination is not specified, the destination
machine defaults to the machine where the batch request originated
or to the machine where the request will eventually be run, depend­
ing on the absence or presence of the -ko option.

If a machine destination is not specified and the stdcxa-filename does
not begin with a "/", the current working directory is prefixed to
create a fully-qualified path name, if the -ko option is absent. In all
other cases, any partial stdcxa-fil.ename is interpreted relative to the
user's home directory on the std.out destination machine.

If the -o option is not specified, all std.out output for the batch
request is sent to the file whose name consists of the first seven char­
acters of the request name followed by the characters ".o", followed
by the sequence number portion of the request-id. Without the -ko
option, the def a ult std.out output file will be placed in the directory
where the request was submitted on the originating machine. Other­
wise, the file will be placed in the user's home directory on the exe­
cution machine.

-eo Direct all output, for the batch request, that would normally be sent
to the std.err file to the std.out file. This option cannot be specified
when the -e option is present.

-ke In the absence of an explicit machine destination for the std.err file
produced by a batch request, the destination chosen is the machine
where the batch request originated. The -ke option, however,
instructs NQS to leave any std.err output file produced by the
request on the machine where the batch request was executed.

This option is meaningless if the -eo option is specified and cannot be
specified if an explicit machine destination is given with the -e
option.

-ko In the absence of an explicit machine destination for the std.out file
produced by a batch request, the destination chosen is the machine
where the batch request originated. The -ko option, however,
instructs NQS to leave any std.out output file produced by the
request on the machine where the batch request was executed.

This option cannot be specified if an explicit machine destination is
given with the -o option.

-If file-size-limit
Set a per-process file size limit for all processes that constitute the
running batch request. If any process in the running request
attempts to write to a file such that the file size exceeds file-size-limit,
that process is terminated by a signal chosen by the underlying
implementation.

The format for file-size-limit is either .fraction [units] or
integer [.fraction] [units] when the limit is a finite limit. If an infinite
limit is needed, the file-size-limit may be specified as "unlimited" or

5

QSUB(l) QSUB(l)

6

any initial substring. The integer and fraction portions of a finite
limit may be specified as strings of up to eight decimal digits. The
units may be specified as one of the following case-insensitive
strings.

b
w
kb
kw
mb
mw
gb
gw

-bytes
-words
-kilobytes (2"'10 bytes)
-kilowords (2"'10 words)
-megabytes (2"'20 bytes)
-megawords (2"'20 words)
-gigabytes (2"'30 bytes)
-gigabytes (2"'30 words)

When units are not specified, bytes are assumed. If the limit is set to
"unlimited", the only limitations imposed are those of the physical
hard ware involved.

-In nice-value
Set a per-process nice value for all processes in the running batch
request.

A nice value determines the execution-time priority of a process rela­
tive to all other processes in the system. By letting the user set a
limit on the nice value for all processes in the running request, a user
can cause a request to consume less (or more) of the CPU resources.
Increasingly negative nice values cause the relative execution priority
of a process to increase, while increasingly positive nice values cause
the relative priority to decrease. Thus, "-ln -10" has a higher execu­
tion priority than "-ln O".
The nice-value must be acceptable to the batch queue in which the
request is ultimately placed.

-nr NQS will, by def a ult, restart, upon system boot, any request that
were running at the time of an NQS shutdown or system crash. The
-nr option will, however, not restart any request that were running.
Requests that were not running are always preserved.

-s shell-name

-I

Specify the absolute path name for the shell that will interpret the
batch request script. This option unconditionally overrides any shell
strategy configured on the execution machine. When this option is
not specified, the NQS system on the execution machine will use one
of three shell strategies, fixed, free, or login (see qlimit(l) for a
description of the shell strategies), to determine the shell that will be
used.

When a batch request is submitted, the current values of the follow­
ing environment variables are automatically exported: HOME, SHELL,
PATH, LOONAME, MAIL, and TZ. When the batch request is spawned,
these variables are re-created respectively as the environment

12188

QSUB(l) QSUB(l)

variables QSUB_HOME, QSUB_SHELL, QSUB_PATH, QSUB_LOGNAME,
QSUB_MAIL, and QSUB_TZ If the -x option is specified, all remain­
ing environment variables, with names that do not conflict with the
automatically-exported variables, are also exported. When the batch
request is spawned, these additional variables are re-created under
the same name.

-z Submit the batch request silently. If the request is submitted suc­
cessfully, messages are not displayed indicating this fact. Error mes­
sages will, however, always be displayed.

The following sequence of events takes place when an NQS batch request is
spawned.

1. The process that will head the process group for all processes compos­
ing the batch request is created by NQS.

2. Resource limits are enforced.

3. The real and effective group ID's of the process are set to the group ID as
defined in the local password file of the request owner.

4. The real and effective user ID's of the process are set to the real user ID
of the batch request owner.

5. The user file creation mask is set to the value that the user had on the
originating machine when the batch request was submitted.

6. The shell with which to execute the batch request script is chosen.

7. The environment variables HOME, SHELL, PATH, LOGNAME, and MAIL
are set from the user's password file entry as though the user had
logged directly into the execution machine.

8. The environment string: ENVIRONMENT ... BATCH is added to the
environment so that shell scripts (and the user's .profile (Bourne shell)
or .cshrc and .login (C-shell) scripts) can test for batch request execu­
tion when appropriate and not set any terminal characteristics, since a
batch request is not connected to an input terminal.

9. The environment variables QSUB_WORKDIR, QSUB_HOST,
QSUB_REQNAME, and QSUB_REQID are added to the environment.
These environment variables equal the respective strings of the work­
ing directory when the request was submitted, the name of the ori­
ginating host, the name of the request, and the id of the request.

10. All remaining environment variables saved for re-creation when the
batch request is spawned are added at this point to the environment.

11. The current working directory is then set to the user's home directory
on the execution machine and the chosen shell is exec'd. If the Bourne
shell is chosen, the .profile is read. If the C-shell is chosen, the .cshrc
and .login scripts are read. The batch request is then executed with
the environment as constructed in the steps outlined above.

12/88 7

QSUB(l) QSUB(l)

SEE ALSO

NOTES

qdel(l), qdev(l), qlimit(l), qpr(l), qstat(l), setpgrp(2), signal(2).
qmgr(lM) in theCLIX System Administrator's Reference Manual.
ki11(2) in the UNIX System V Programmer Reference Manual.
mail(l) in the UNIX System V User's Reference Manual.

When an NQS batch request is spawned, a new process group is established so
that all processes of the request exist in the same process group. If the
qdel(l) command is used to send a signal to an NQS batch request, the signal
is sent to all processes of the request in the created process group. However,
if one or more processes of the request successfully executes a setpgrp(2)
system call, the processes will not receive signals sent by the qdel(l) com­
mand. The kiU(l) command may be used to delete such processes.
All processes of an NQS request should catch SIGTERM signals. By default,
the receipt of a SIGTERM signal causes the receiving process to die. NQS sends
a SIGTERM signal to all processes in the established process group for a batch
request as a notiftcation that the request should be prepared to be killed.
The spawned shell ignores SIGTERM signals. H the current immediate child
of the shell does not ignore or catch SIGTERM signals, it will be killed by the
receipt of such and the shell will proceed to execute the next command from
the script (if there is one). In any case, the shell will not be killed by the
SIGTERM signal, though the executing command will have been killed.
After receiving a SIGTERM signal delivered from NQS, a process of a batch
request typically has 60 seconds before receiving a SIGKILL signal (the 60-
second duration can be changed by the operator).
A sufficient method to echo commands executed by unmodified versions of
the Bourne shell and C-shell are not available. While the C-shell can be
spawned so that it echoes the commands it executes, it is often difficult to
distinguish an echoed command from output produced by the batch request
because a magic character such as a "$" is not displayed in front of the
echoed command. The Bourne shell does not support any echo option. Thus,
one of the better ways to write the shell script for a batch request is to place
lines in the shell script of the form:

echo "explanatory-message"
CAVEATS

8

Network queues have not yet been implemented..
In this implementation, it is not possible to see the std.err or std.out files
produced. by the batch request while the request is running unless the -re
and -ro options have been respectively specified..

12/88

R.ATFOR.(1) R.ATFOR.(1)

NAME
ratfor - rational FORTRAN dialect

SYNOPSIS
ratfor [-h] [-C] [-6x] [file ...]

DESCRIPTION
rat/or converts a rational dialect of FORTRAN into ordinary irrational FOR­

TRAN. Ratfor provides control flow constructs essentially identical to those
in C:

statement grouping:

decision-making:

loops:

{ statement; statement; statement }

if (condition) statement [else statement]
switch (integer-expression) {

case integer-expression: statement

[def a ult:] statement
}

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

and some syntactic sugar to make programs easier to read and write:

free form input: ; - multiple statements/line
automatic continuation

comments: # this is a comment.

translation of relationals:
>,>-,etc., become .GT., .GE., etc.

return expression to caller from function:

define:

include:

return (expression)

define name replacement

include file

The option -h causes quoted strings to be turned into 2 7H constructs. The
-C option copies comments to the output and attempts to format it neatly.
Normally, continuation lines are marked with a & in column 1; the option
-6x makes the continuation character x and places it in column 6.

rat/or is best used with /77(1).

SEE ALSO
efl(l), f77(1).

12/88 1

Jl.CMD(l) Jl.CMD(l)

NAME
rcmd - remote command

SYNOPSIS
rcmd host [-I user-name] [-n] [command]

DESCJl.IPTION

FILES

rcmd connects to the specified host and executes the specified command.
rcmd copies its standard input to the remote command, the standard output
of the remote command to its standard output, and the standard error of the
remote command to its standard error. Interrupt, quit, and terminate signals
are propagated to the remote command; rcmd normally terminates when the
remote command does.

The remote user name used is the same as the local user name, unless a
different remote name is specified with the -I option. This remote name
must be equivalent to the originating account; no provision is made for
specifying a password with a command. If no input to the remote command
is desired, the -n option is used to redirect stdin of rcmd to /dev/null.

If command is omitted, instead of executing a single command, the remote
host will be logged in to using rlogin(l).

Unquoted shell metacharacters are interpreted on the local machine, while
quoted metacharacters are interpreted on the remote machine. Thus the
command

rcmd otherhost cat remote-file > > local-file

appends the remote file remote-file to the local file local-file, while

rcmd otherhost cat remote-file">>" other-remote-file

appends the remote file remote-file to the other remote file other-remote-file.

Host names are given in the file /etc/hosts. Each host has one standard
name (the first name given in the file), which is long and unambiguous and
optionally one or more nicknames.

/etc/hosts

SEE ALSO
rlogin(l).

BUGS

12/88

An interactive command (like vi(l)) cannot be run and rlogin(l) cannot be
used.

"Stop" signals stop the local rcmd process only; this is arguably wrong, but
currently hard to fix for reasons too complicated to explain here.

1

R.CP(l) R.CP(l)

NAME
rep - remote file copy

SYNOPSIS
rep [-p] filel file2
rep [-p] [-r] file ... directory

DESCRIPTION
rep copies files between machines. Each file or directory argument is either a
remote file name of the form rhost:path or a local file name (either contain­
ing no ":"characters or having a"\" before any":").

If the -r option is specified and any of the source files are directories, rep
copies each subtree rooted at that name. In this case, the destination must be
a directory.

By default, the mode and owner of file2 are preserved if it already existed.
Otherwise, the mode of the source file modified by the um.ask(l) on the desti­
nation host is used. The -p option attempts to preserve (duplicate) in the
copies the modification times and modes of the source files, ignoring the
um.ask(l).

If file is not a full path name, it is interpreted relative to the login directory
on the remote host. A file on a remote host may be quoted (using \, ", or ')
so that the metacharacters are interpreted remotely.

rep does not prompt for passwords. The remote user name is assumed to be
the same as the local user name unless the remote file argument has the form
ru.ser@rhost:path.

SEE ALSO

BUGS

12/88

ftp(l), rcmd(l), rlogin(l).
cp(l), umask(l) in the UNIX System V User's Reference Manual.

rep does not detect all cases where the target of a copy might be a file when
only a directory should be legal.

rep is confused by any output generated by commands in a .login, .profile,
or .cshrc file on the remote host.

1

R.CS(l) R.CS(l)

NAME
res - change RCS file attributes

SYNOPSIS
res [option ...] file •••

DESCR.IPTION

12188

res creates new Revision Control System (RCS) files or changes attributes of

existing ones. An RCS file contains multiple revisions of text, an access list, a

change log, descriptive text, and some control attributes. For res to work,

the caller's login name must be on the access list unless the access list is

empty, the caller is the owner of the file or the super-user, or the -i option is

present.

Files ending in ",v" are RCS files. All others are working files. If a working

file is given, res tries to find the corresponding RCS file first in directory

./RCS and then in the current directory as explained in eo(l).

-i Creates and initializes a new RCS file, but does not deposit
any revision. If the RCS file has no path prefix, res tries to
place it first in the subdirectory ./RCS and then in the
current directory. If the RCS file exists, an error message is
printed.

-•logins

-Aoldftle

-e [logins]

-b[rev]

-cstring

-l[rev]

-u[rev]

Appends the login names appearing in the comma-separated
list logins to the access list of the RCS file.

Appends the access list of old.file to the access list of the RCS

file.

Erases the login names appearing in the comma-separated list
logins from the access list of the RCS file. If logins is omit­
ted, the entire access list is erased.

Sets the default branch to rev. If rev is omitted, the default
branch is reset to the (dynamically) highest branch on the
trunk.

Sets the comment leader to string. The comment leader is
printed before every log message line generated by the key­
word Log during checkout (see eo(l)). This is useful for
programming languages without multiline comments. Dur­
ing initial checkin, the comment leader is determined from

the suffix of the working fil.e.

Locks the revision with number rev. If a branch is given,
the latest revision on that branch is locked. If rev is omit­
ted, the latest revision on the default branch is locked.
Locking prevents overlapping changes. A lock is removed
with ei(l) or res -u (see below).

Unlocks the revision with number rev. If a branch is given,
the latest revision on that branch is unlocked. If rev is

1

RCS(l)

-L

-U

RCS(l)

omitted, the most recent lock held by the caller is removed.
Otherwise, the most recent lock is broken. Normally, only
the locker of a revision may unlock it. Somebody else
unlocking a revision breaks the lock. This sends a mail mes­
sage to the original locker. The message contains a commen­
tary solicited from the breaker. The commentary is ter­
minated with a line containing a single"." or <CONTROL>­
D.
Sets locking to strict. Strict locking means that the owner of
an RCS file is not exempt from locking for checkin. This
option should be used for shared files.
Sets locking to nonstrict. Nonstrict locking means that the
owner of a file need not lock a revision for checkin. This
option should not be used for shared files. The default (-L
or -U) is determined by the system administrator.

-nname [:rev] Associates the symbolic name name with the branch or revi­
sion rev. res prints an error message if name is already asso­
ciated with another number. If rev is omitted, the symbolic
name is deleted.

-Nname [:rev] Same as -n, except that it overrides a previous assignment of
name.

-orange Deletes ("outdates") the revisions given by range. A range
consisting of a single revision number denotes that revision.
A range consisting of a branch number denotes the latest
revision on that branch. A range with the form rev l-rev2
represents revisions rev 1 to rev2 on the same branch, -rev
represents the beginning of the branch containing rev up to
and including rev, and rev- represents revision rev to the end
of the branch containing rev. None of the outdated revisions
may have branches or locks.

-q Quiet mode. Diagnostics are not printed.
-sstate [:rev] Sets the state attribute of the revision rev to state. If rev is a

branch number, the latest revision on that branch is
assumed. If rev is omitted, the latest revision on the def a ult
branch is assumed. Any identifier is acceptable for state. A
useful set of states is Exp (for experimental), Stab (for
stable), and Rel (for released). By default, ci(l) sets the
state of a revision to Exp.

-t [txt/Ue] Writes descriptive text to the RCS file. (Deletes the existing
text.) If txtfile is omitted, res prompts the user for text sup­
plied from the standard input, terminated with a line con­
taining a single "." or <CONTROL> -D. Otherwise, the
descriptive text is copied from the file txtfile. If the -i
option is present, descriptive text is requested even if -t is

2 12/88

JtCS(l)

PILES

JtCS(l)

not given. The prompt is suppressed if the standard input is
not a terminal.

The caller of the command must have read/write permission for the direc­
tory containing the RCS file and read permission for the RCS file itself. res
creates a semaphore file in the same directory as the RCS file to prevent
simultaneous update. For changes, res always creates a new ftle. On suc­
cessful completion, res deletes the old one and renames the new one. This
strategy makes links to RCS files useless.

SEE ALSO
co(l), ci(l), ident(l), rcsclean(l), rcsdiff(l), rcsmerge(l), rlog(l), rcsftle(4),
sccstorcs(l).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS
The RCS file name and the revisions outdated are written to the diagnostic
output. The exit status always refers to the last RCS file operated on, and is
0 if the operation was successful and 1 otherwise.

IDENTIPICATION

12/88

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

3

RCSCLEAN(l) RCSCLEAN(l)

NAME
rcsclean - clean up working files

SYNOPSIS
rcsclean [-rrev] [-q] fi"le •••

DESCRIPTION
rcsclean removes working files that were checked out and never modified.
For each file given, rcsc"lean compares the working ft"le and a revision in the
corresponding Revision Control System (RCS) ft"le. If it finds no difference, it
removes the working ft"le, and, if the revision was locked by the caller,
unlocks the revision.

A file name ending in" ,v" is an RCS ft"le name. Otherwise, it is a working ft"le
name. rcsc"lean derives the working fi"le name from the RCS ft"le name and
vice versa, as explained in co(l). Pairs consisting of both an RCS and a
working fi"le name may also be specified.

Rev specifies the revision the working ft"le is compared to. If rev is omitted,
rcsc"lean compares the working ft"le to the latest revision on the default
branch (normally the highest branch on the trunk). The option -q
suppresses diagnostics.

rcsc"lean is useful for "clean" targets in makefiles. Note that rcsdl/J(l)
prints the differences. Also, ci(l) normally asks whether to check in a ft"le if
it was not changed.

EXAMPLES
The command

rcsclean •.c •.h

removes all working files ending in ".c" or ".h" that were not changed since
their checkout.

SEE ALSO
co(l), ci(l), ident(l), rcs(l), rcsdiff(l), rcsmerge(l), rlog(l), rcsfile(4).

DIAGNOSTICS
The exit status is 0 if there were no differences during the last comparison or
if the last working file did not exist, 1 if there were differences, and 2 if
there were errors.

IDENTIFICATION

12/88

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

1

RCSDIPP(l) RCSDIPP(l)

NAME
rcsdi1f - compare RCS revisions

SYNOPSIS
rcsdiJf [-b] [-cefhn] [-q] [-rrev 1] [-rrev2] file ..•

DESCRIPTION
rcsdijf compares two revisions of each Revision Control System (RCS) file
given. A file name ending in ",v" is an RCS file name; otherwise, it is a
working file name. rcsdijf derives the working file name from the RCS file
name and vice versa, as explained in co(l). Pairs consisting of an RCS and a
working file name may also be specified.

Except for -b, -q and -r, which may be used with any other options, the fol­
lowing options are mutually exclusive.

~ Produces a script of a, c and d commands for the editor ed(l), which
will recreate file2 from filel. In connection with -e, the following
shell program may help maintain multiple versions of a file. Only
an ancestral file ($1) and a chain of version-to-version ed(l) scripts
($2, $3, ...) made by dif/(l) need be available. A "latest version"
appears on the standard output.

(shift; cat S*; echo 'l,$p') I ed - $1

Extra commands are added to the output when comparing directories
with ~ so that the result is a sh(l) script for converting text files
common to the two directories from their state in dir 1 to their state
in dir2.

-f Produces a script similar to that of ~. not useful with ed(l), and in
the opposite order.

-c [#] Produces a dif/(1) with lines of context. The default is to present 3
lines of context and may be changed (for example to 10) by -clO.
With -c, the output format is modified slightly: the output begins by
identifying files involved and their creation dates, and then each
change is separated by a line with 12 •'s, The lines removed from
filel are marked with "- "; those added to file2 are marked "+ ".
Lines changed from one file to the other are marked in both files with
"I ,, .

Changes that are in context lines of each other are grouped on out­
put. (This is a change from the previous "diff -c", but the resulting
output is usually much easier to interpret.)

-h Does a fast, less thorough job. It works only when changed stretches
are short and well separated, but does work on files with unlimited
length.

-n Generates an edit script of the format used by RCS.

-q Suppresses diagnostic output.

12/88 1

R.CSDIFF(l) JtCSDIFF(l)

-b Causes trailing blanks (spaces and tabs) to be ignored, and other
strings of blanks to compare equally.

-r If revl and rev2 are omitted, rcsdljf compares the latest revision on
the default branch (normally the highest branch on the trunk) with
the contents of the corresponding working fil.e. This is useful for
determining what was changed since the last checkin.

If rev 1 is given, but rev2 is omitted, rcsdl/f compares revision rev 1 of
the RCS fil.e with the contents of the corresponding working fil.e.

If revl and rev2 are given, rcsdi/J compares revisions revl and rev2
of the RCS fil.e.

Revl and rev2 may be given numerically or symbolically, and may
actually be attached to any of the options.

EXAMPLES
The command

rcsdiff f.c

produces differences on the latest revision on the default branch of RCS file
f .c, v and the contents of working file f .c.

SEE ALSO
ci(l), co(l), ident(l), rcs(l), rcsclean(l), rcsmerge(l), rlog(l), rcsfile(4).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS
The exit status is 0 if there were no differences during the last comparison, 1
if there were differences, and 2 if there were errors.

IDENTIFICATION

2

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

12/88

RCSMERGE(l) RCSMERGE(l)

NAME
rcsmerge - merge RCS revisions

SYNOPSIS
rcsmerge -rrevl [-rrev2] [-p] file

DESCRIPTION
rcsmerge incorporates the changes between revl and rev2 of a Revision Con­
trol System (RCS) file into the corresponding working file. If -p is given, the
result is printed on the standard output. Otherwise, the result overwrites

the working file.

A file name ending in ",v" is an RCS file name; otherwise, it is a working file
name. rcsmerge derives the working file name from the RCS file name and
vice versa, as explained in co(l). A pair consisting of an RCS and a working
file name may also be specified.

Revl may not be omitted. If rev2 is omitted, the latest revision on the
def a ult branch (normally the highest branch on the trunk) is assumed. Rev 1
and rev2 may be given numerically or symbolically.

rcsmerge prints a warning if there are overlaps and delimits the overlapping
regions as explained in the co(l) -j option. The command is useful for incor­
porating changes into a checked-out revision.

EXAMPLES
Suppose revision 2.8 of f.c has just been released. Revision 3.4 has just been
completed when updates to release 2.8 are received from someone else. To
combine the updates to 2.8 and the changes between 2.8 and 3.4, put the

updates to 2.8 in file f .c and execute the following:

rcsmerge -p -r2.8 -r3.4 f.c >f.merged.c

Then, examine f.merged.c. Alternatively, to save the updates to 2.8 in the
RCS file, check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3.4 -j2.8:2.8.1.1 f .c

As another example, the following command undoes the changes between
revision 2.4 and 2.8 in the currently-checked-out revision in f .c.

rcsmerge -r2.8 -r2.4 f.c

Note the order of the arguments and that f.c will be overwritten.

SEE ALSO

BUGS

12/88

ci(l), co(l), merge(!), ident(l), rcs(l), rcsclean(l), rcsdiff(l), rlog(l),

rcsfile(4).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision

Control System," in Proceedings of the 6th International Conference on

Software Engineering, IEEE, Tok.yo, Sept. 1982.

rcsmerge does not work with files that contain lines with a single ".".

1

RCSMERGE(l)

IDENTIFICATION

2

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

RCSMERGE(l)

12188

llESTOJtE(l) RESTORE(l)

NAME
restore - incremental file system restore

SYNOPSIS
/etc/restore key [name .••]

DESCllIPTION

12/88

restore reads tapes backed up with the backup(l) command.' Its actions are

controlled by the key argument. The key is a string of characters containing

at most one function letter and possibly one or more function modifiers.

Other arguments to the command are file or directory names specifying the

files to be restored. Unless the h key is specified (see below), the appearance

of a directory name refers to the files and (recursively) subdirectories of that

directory.

The function portion of the key is specified by one of the following letters:

r The tape is read and loaded in the current directory. This should not

be done lightly; the r key should only be used to restore a complete

backup tape on a clear file system or to restore an incremental

backup tape after a full-level 0 restore. Thus

R

][

t

mkfs 3000 /dev/dsk/s0u0p7.4
mount /dev/dsk/s0u0p7.4 /mnt
cd /mnt
restorer

is a typical sequence to restore a complete backup. Another restore

can be done to put an incremental backup on top of this. Note that

restore leaves a file restoresymtab in the root directory to pass
information between incremental restore passes. This file should be

removed when the last incremental tape has been restored.

A backup(l) followed by a mk/s(l) and a restore is used to change

the size of a file system.

restore requests a particular tape of a multivolume set to restart a

full restore (see the r key above). This allows restore to be inter­

rupted and then restarted.

The named files are extracted from the tape. If the named file

matches a directory whose contents were written to the tape and the

h key is not specified, the directory is recursively extracted. The

owner, modification time, and mode are restored (if possible). If no

file argument is given, the root directory is extracted, which results

in the entire contents of the tape being extracted unless the h key

was specified.

The names of the specified files are listed if they occur on the tape.

If no fl.le argument is given, the root directory is listed, which results

in the entire contents of the tape being listed unless the h key has

been specified.

1

RESTORE(I) RESTORE(I)

i This mode allows files to be interactively restored from a backup
tape. After reading the directory information from the tape, restore
provides a shell-like interface that allows the user to move around
the directory tree, selecting files to be extracted. The available com­
mands are given below; for the commands that require an argument,
the default is the current directory.
ls [dir] List the current or specified directory. Entries that are

directories are appended with a"/". Entries that have
been marked for extraction are prepended with a "•".
If the verbose key is set, the i-node number of each
entry is also listed.

cd dir Change the current working directory to the specified
argument.

pwd Print the full path name of the current working direc­
tory.

add [arg] The current directory or specified argument is added to
the list of files to be extracted. If a directory is
specified, it and all its descendants are added to the
extraction list (unless the h key is specified on the com­
mand line). Files on the extraction list are prepended
with a"•" when they are listed by Zs(l).

delete [arg] The current directory or specified argument is deleted
from the list of files to be extracted. If a directory is
specified, it and all its descendants are deleted from the
extraction list (unless the h key is specified on the com­
mand line). The most expedient way to extract most
files from a directory is to add the directory to the
extraction list and then delete the files that are not
needed.

extract All files on the extraction list are extracted from the
backup tape. restore will ask which volume the user
wishes to mount. The fastest way to extract a few files
is to start with the last volume and work toward the
first volume.

setmodes All directories added to the extraction list have their
owner, modes, and times set; nothing is extracted from
the tape. This is useful for cleaning up after a restore
has been prematurely aborted.

verbose The sense of the v key is toggled. When set, the ver­
bose key causes the ls command to list the i-node
numbers of all entries. It also causes restore to print
information about each file as it is extracted.

help List a summary of the available commands.

2 12/88

K.ESTOK.E(l) K.ESTOK.E(l)

PILES

quit restore immediately exits even if the extraction list is
not empty.

The following characters may be used in addition to the letter that selects

the function desired.

b The next argument to restore is used as the block size of the tape (in

kilobytes). If the -b option is not specified, restore tries to determine

the tape block size dynamically.

f The next argument to restore is used as the name of the archive

instead of /dev/rmt/Om. rtc(l) can be used to restore tapes from a

remote tape device. If the name of the file is "-",restore reads from

standard input. Thus, backup(l) and restore can be used in a pipe­

line to backup and restore a file system with the following com­

mand:

backup Of - /usr I (cd /mnt; restore xf -)

v Normally restore works silently. The v (verbose) key causes it to

type the name of each file it treats preceded by its file type.

y restore will not ask whether it should abort the restore if it gets a

tape error. It will always try to skip the bad tape block(s) and con­

tinue.

m restore will extract by i-node numbers rather than by file name.

This is useful if only a few files are being extracted to avoid regen­

erating the complete path name to the file.

h restore extracts the actual directory, rather than the files that it

references. This prevents hierarchical restoration of complete sub­

trees from the tape.

s The next argument to restore is a number that selects the file on a

multifile backup tape. File numbering starts at 1.

/dev/rmt/Om
/tmp/rstdir*
/tmp/rstmode*
./restoresymtab

the def a ult tape drive
file containing directories on the tape
owner, mode, and time stamps for directories
information passed between incremental restores

SEE ALSO
backup(l), rtc(l).
newfs(lM), mount(lM) in the CLIX System Administrator's Reference

Manual.
mkfs(lM) in the UNIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Complains about bad key characters.

Complains if it gets a read error. If y has been specified or the user responds

"y", restore will attempt to continue the restore.

3

RESTORE(!) RESTORE(l)

BUGS

4

If the backup extends over more than one tape, restore will ask the user to
change tapes. If the x or i key has been specified, restore will also ask which
volume the user wishes to mount. The fastest way to extract a few files is to
start with the last volume and work toward the first volume.
Numerous consistency checks can be listed by restore. Most checks are self­
explanatory or can "never happen,,, Common errors are given below.
File-name: not found on tape

The specified file-name was listed in the tape directory, but was not
found on the tape. This is caused by tape read errors while looking
for the file and from using a backup tape created on an active file
system.

Expected next file inuml>er, got lnuml>er
A file that was not listed in the directory appeared. This can occur
when using a backup tape created on an active file system.

Incremental tape too low
When performing incremental restore, a tape that was written before
the previous incremental tape or that has an incremental level that is
too low was loaded.

Incremental tape too high
When performing incremental restore, a tape that does not begin its
coverage where the previous incremental tape left off, or that has an
incremental level that is too high was loaded.

Tape read error while restoring ft.le-name
Tape read error while skipping over i-node inuml>er
Tape read error while trying to resynchronize

A tape read error occurred. If a file name is specified, its contents are
probably partially wrong. If an i-node is being skipped or the tape is
trying to resynchronize, no extracted files have been corrupted,
though files may not be found on the tape.

Resync restore, skipped num blocks
After a tape read error, restore may need resynchronize. This mes­
sage lists the number of blocks that were skipped.

restore can become confused when performing incremental restores from
backup tapes made on active file systems.

A level zero backup must be performed after a full restore. Because restore
runs in user code, it cannot control i-node allocation; thus, a full restore
must be performed to get a new set of directories. These directories reflect
the new i-node numbering even though the file contents are unchanged.

12/88

ILOG(l) ILOG(l)

NAME
rlog - print log messages and other information about RCS files

SYNOPSIS
rlog [option ••.] file .•.

DESC:R.IPTION
rlog prints information about Revision Control System (RCS) files. Files
ending in ", v" are RCS files; all others are working files. If a working file is
given, rlog searches for the corresponding RCS file first in directory ./RCS and
then in the current directory, as explained in co(l).

rlog prints the following information for each RCS file: RCS file name, work­
ing file name, head (i.e., the number of the latest revision on the trunk),
default branch, access list, locks, symbolic names, suffix, total number of

revisions, number of revisions selected for printing, and descriptive text.
This is followed by entries for the selected revisions in reverse chronological

order for each branch. For each revision, rlog prints revision number, author,
date/time, state, number of lines added/deleted (with respect to the previous
revision), locker of the revision (if any), and log message. Without options,

rlog prints complete information. The options below restrict this output.

-L Ignores RCS files that have no locks set; convenient when com­
bined with -R, -h, or -1.

-R Prints only the RCS file name; convenient for translating a
working file name into an RCS file name.

-h Prints only the RCS file name, working file name, head, default
branch, access list, locks, symbolic names, and suffix.

-t Prints the same as -h, plus the descriptive text.

-b Prints information about the revisions on the default branch
(normally the highest branch on the trunk).

-d.dates Prints information 1about revisions with a checkin date/time in
the ranges given by the semicolon-separated list of dates. A
range with the form dl <d2 or d2>dl selects the revisions
deposited between dl and d2 (inclusive). A range with the
form < d or d > selects all revisions dated d or earlier. A
range with the form d < or > d selects all revisions dated d or
later. A range with the form d selects the single, latest revi­
sion dated d or earlier. The date/time strings d, dl, and d2 are
in the free format explained in co(l). Quoting is normally
necessary, especially for < and >. Note that the separator is
a semicolon.

-1 [lockers] Prints information about locked revisions. If the comma­
separated list lockers of login names is given, only the revi­
sions locked by the given login names are printed. If the list is
omitted, all locked revisions are printed.

12/88 1

RLOG(l) :RLOG(l)

-rrevlsions Prints information about revisions given in the comma­
separated list revisions of revisions and ranges. A range
revl-rev2 indicates revisions revl to rev2 on the same branch;
-rev indicates revisions from the beginning of the branch up to ~.
and including rev; and rev- indicates revisions starting with
rev to the end of the branch containing rev. An argument that
is a branch indicates all revisions on that branch. A range of
branches indicates all revisions on the branches in that range.

-sstates Prints information about revisions whose state attributes
match one of the states given in the comma-separated list
states.

-w [logins] Prints information about revisions checked in by users with
login names appearing in the comma-separated list logins. If
logins is omitted, the user's login is assumed.

rlog prints the intersection of the revisions selected with options -d, -1, -s,
and -w, intersected with the union of the revisions selected by-band -r.

EXAMPLES
rlog -L -R RCS/*,v
rlog -L -h RCS/*,v
rlog -L -1 RCS/*,v
rlog RCS/*, v

The first command prints the names of all RCS files that have locks in the
subdirectory RCS. The second command prints the headers of those files,
and the third prints the headers plus the log messages of the locked revi­
sions. The last command prints complete information.

SEE ALSO
ci(l), co(l), ident(l), res(!), rcsclean(l), rcsdiff(l), rcsmerge(l), rcsfile(4),
sccstorcs(1).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS
The exit status always refers to the last RCS file operated on and is 0 if the
operation was successful, 1 otherwise.

IDENTIFICATION

2

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

12/88

RLOGIN(l) RLOGIN(l)

NAME
rlogin - remote login

SYNOPSIS
rlogin rhost [-ec] [-1 user-name]

rhost [-ec] [-1 user-name]

DESCRIPTION
rlogin connects the terminal on the local host to the remote host rhost.

The remote terminal type is the same as the local terminal type (as given in
the environment variable TERM). All echoing occurs at the remote host, so
that (except for delays) the rlogin is transparent. Flow control through
<CONTROL> -S and <CONTROL> -Q is handled on the remote host. A --•
will disconnect the local host from the remote host, where -- is the escape
character. A -- <CONTROL >-Z, where <CONTROL >-Z is the suspend char­
acter, will suspend the rlogin session.

The following options are supported:

-ec

-1 user-name

Specify an escape character, c, other than -- .

Specify user-name to be used in the login procedure.

The command shown on the second line of the synopsis will allow the user
to specify only the name of the remote host to be connected to rather than
explicitly typing rlogin. To use this command, the user must link (see
Zn(l)) /usr/bin/rlogin to /usr/bin/rhost, where rhost is the name of the
remote host system.

If /etc/hosts.equiv exists, it contains a list of remote host names that share
account names with the local host. (The host names must be the standard
names as described in rcmd(l).) Users may also have a private ~quivalence
list in a .rhosts file in their login directory. Each line in this file should
contain an rhost and a user-name separated by a space, giving additional
cases where logins without passwords will be permitted. If the originating
user is not equivalent to the remote user, a login and password will be
prompted for on the remote machine as in login(l). Either the remote user
or root must own the .rhosts file.

SEE ALSO
rcmd(l).

01/90 1

R.M(l) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-f] [-i] file
rm -r [-f] [-i] dirname ... [file ...]

rmdir [-p] [-s] dirname .. .

DESCRIPTION

12/88

rm removes the entries for one or more files from a directory. If an entry is
the last link to the file, the file is destroyed. If an entry is a symbolic link,
removal of the link file produces the same result as removal of an ordinary
("hard") link. However, if an entry is the file to which a symbolic link

points, the file is removed, but the link remains and points to nothing.
Removal of a file requires write permission in its directory, but neither read
nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, the
full set of permissions (in octal) for the file are printed, followed by a ques­
tion mark. This is a prompt for confirmation. If the answer begins with y
(for "yes"), the file is deleted; otherwise the file re~ains.

Note that if the standard input is not a terminal, the command will operate
as if the -f option is in effect.

rmdir removes the named directories, which must be empty.

Three options apply to rm:

-f This option removes all files (whether write-protected or not) in a
directory without prompting the user. In a write-protected directory,
however, files are never removed (regardless of their permissions), but
no messages are displayed. If the removal of a write-protected direc­
tory was attempted, this option could not suppress an error message.

-r This option causes any directories and subdirectories in the argument
list to be recursively removed. Files will be emptied from the direc­
tory and the directory will be removed. Note that the user is normally
prompted for removal of any write-protected files the directory con­
tains. The write-protected files are removed without prompting, how­
ever, if the -f option is used or if the standard input is not a terminal

and the -i option is not used.

If the removal of a· nonempty, write-protected directory is attempted,
the command will/always fail (even if the -f option is used), resulting

in an error message.

-i With this option, removal of any write-protected file is confirmed
interactively. It overrides the -f option and remains in effect even if

the standard input is not a terminal.

Two options apply to rmdir:

1

ltM(l) ltM(l)

-p This option allows users to remove the directory dlrname and its
parent directories that become empty. A message is printed on stan­
dard output telling whether the whole path is removed or part of the
path remains for some reason.

-s This option is used to suppress the message printed on standard error
when -p is in effect.

SEE ALSO
ln(l).
unlink(2), rmdir(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

2

All messages are generally self-explanatory.

Removing the files ".'' and " • .'' is forbidden to avoid the consequences of
inadvertently making the following type of mistake:

rm-r .•
Both rm and rmdlr return exit codes of 0 if all specified directories are
removed successfully. Otherwise, they return a nonzero exit code.

12/88

RPCGEN(l) RPCGEN(l)

NAME
rpcgen - an RPC protocol compiler

SYNOPSIS
rpcgen -h [-o outfile] [infile]
rpcgen -c [-o outfile] [lnfile]
rpcgen lnfile
rpcgen [-s transport] [-o outfile] [infile]

DESCRIPTION
rpcgen is a tool that generates C code to implement a Remote Procedure Call
(RPC) protocol. The input to rpcgen is a language with striking similarity to
C known as the Remote Procedure Call Language (RPCL). rpcgen operates in
four modes. The first mode is used to convert RPCL definitions into C
definitions for use as a header file. The second mode compiles the External
Data Representation (XDR) routines required to serialize the protocol
described by RPCL. The third mode compiles both, leaving the header file in
a file named infile with a extension. The fourth mode is used to compile an
RPC server skeleton, so that an RPC server can be implemented using local
procedures that know nothing about RPC.

The input may contain C-style comments and preprocessor directives. Com­
ments are ignored, while the directives are simply written uninterpreted in
the output header file.

Some of the XDR routines can be customized by leaving certain data types
undefined. For every data type that is undefined, rpcgen assumes that there
exists a routine with the name "xdr_" prepended to the name of the
undefined type.

The following options are available:

-c

-h

-o outfi.le

Compile XDR routines.

Compile C data-definitions (a header file)

Specify the name of the output file. If none is specified,
standard output is used (-c, -h and -s modes only).

-s transport Compile a server, using the given transport. The sup­
ported transports are udp and tcp. This option may be
invoked more than once so as to compile a server that
serves multiple transports.

The following summary of RPCL syntax, which is used for rpcgen input, is
intended more for aiding comprehension than as an exact statement of the
language.

Primitive Data Types
[unsigned] char
[unsigned] int
unsigned

[unsigned] short
[unsigned] long
float

double void

12/88 1

RPCGEN(l) RPCGEN(l)

2

bool

Except for the added boolean data-type bool, RPCL is identical to C. rpcgen
converts bool declarations to int declarations in the output header file
(literally it is converted to a bool_t, which has been #define'd to be an
int). Also, void declarations may appear only inside of union and pro­
gram definitions. For those averse to typing the prefix unsigned, the abbre­
viations u_char, u_short, u_int and u_long are available.

Declarations
RPCL allows only three kinds of declarations:

decl.aration:
simple-declaration
-pointer-declaration
vector-decl.aration

simple-decl.aration:
type-name object-ident

-pointer-declaration:
type-name Sobject-ident

vector-decl.aration:
type-name object-ident [size]

(Size can be either an integer or a symbolic constant).

RPCL declarations contain both limitations and extensions with respect to C.
The limitations are that multidimensional arrays pointers-to-pointers can­
not be declared in-line (they may still be declared using typedef). There are
two extensions:

Opaque data is declared as a vector as follows:

opaque object-ident [size]

In the protocol, this results in an object of size bytes. Note that this
is not the same as a declaration of size characters, since XDR charac­
ters are 32-bits. Opaque declarations are compiled in the output
header file into character array declarations of size bytes.

Strings are special and are declared as a vector declaration:

string object-ident [max-size]

If max-size is unspecified, then there is essentially no limit to the
maximum length of the string. String declarations get compiled into
the following:

char *object-ident

Type Defi.nitiona
The only way to generate an XDR routine is to define a type. For every type
zetype defined, there is a corresponding XDR routine named xdr _zetype.

There are six ways to define a type:

12/88

ltPCGEN(l) RPCGEN(l)

type-definition:
typedef
enumeration-def
structure-def
variable-length-array-def
discriminated-union-def
program-def

The first three are very similar to their C namesakes. C does not have a for­
mal type mechanism to define variable-length arrays and XOR unions are
quite different from their C counterparts. Program definitions are not really
type definitions, but they are useful nonetheless.

XOR definitions may not be nested. For example, the following will cause
rpcgen to fail:

struct dontdoit {

};

struct ididit {
int oops;

} sorry;
enum ididitagain { OOPS, WHOOPS } iapologize;

Typedefs
An XOR typedef looks as fallows:

typedef:
typedef declaration ;

The object-ident part of declaration is the name of the new type, whereas the
type-name part is the name of the type f ram which it is derived.

Enumeration Types
The syntax is:

enumeration-def:
enum enum-ident {

enum-list
};

enum-llst:
enum-symbol-ident [- assignment]
enum-symbol-ident [- assignment] , enum-llst

(assignment may be either an integer or a symbolic constant)

If there is no explicit assignment, then the implicit assignment is the value of
the previous enumeration plus 1. If not explicitly assigned, the first
enumeration receives the value 0.

Structures
structure-def:

12/88

struct struct-ident {
declaration-list

};

3

Jl.PCGEN(t) Jl.PCGEN(l)

4

declaration-list:
declaration;
declaration ; declaration-list

Variable-Length Arrays
variable-Zength-arra~def:

array arra~ident {

};

unsigned length-identifier;
vector-declaration ;

A variable length array definition looks much like a structure definition.
Here's an example:

array mp_int {
unsigned len;
short val [MAX_MP _LENGTH];

};

This is compiled into:
struct mp_int {

unsigned len;
short *Val;

};
typedef struct mp_int mp_int;

Discriminated Unions
discriminated-union-def:

union union-ident switch (discriminant-declaration) {
case-list
[default: declaration;]

};

case-list:
case case-ident: declaration;
case case-ident: declaration; case-list

discriminant-declaration:
declaration

The union definition looks like a cross between a C-union and a C-switch.
An example:

union net_object switch (net_kind kind) {
case MACHINE:

struct sockaddr_in sin;
case USER:

int uid;
default:

};
string whatisit;

Compiles into:
struct net_object {

12/88

RPCGEN(l) RPCGEN(l)

};

net_kind kind;
union {

struct sockaddr_in sin;
int uid;
char *Whatisit;

} net_object;

typedef struct net_object net_object;

Note that the name of the union component of the output struct is the same
as the name of the type itself.

Program Definitions
program-def:

12/88

program program-ident {
version-list

} - program-number ;

version-list:
version
version version-list

version:
version version-ident {

procedure-list
} - version-number ;

procedure-list:
procedure-declaration
procedure-declaration procedure-list

procedure-declaration:
type-name procedure-ident (type-name) - procedure-number ;

The following is an example of a program definition to create a server that
can get or set the date. The declaration looks as follows:

program DATE_PROG {
version DATE_ VERS {

date DATE_GET(timezone) == 1;
void DATE_SET(date) == 2; I• Greenwich mean time **I

} == 1;
} == 100;

In the header file, this compiles into the following:

#define DATE_PROG 100
#define DATE_ VERS 1
#define DATE_GET 1
#define DATE_SET 2

These #deftne's are intended for use by the client program to reference the
remote procedures.

If the server is being compiled using rpcgen, there are some important things
to know. The server interfaces to the user's local procedures using a C

5

R.PCGEN(l) R.PCGEN(l)

function with the name as the program definition, but in lowercase and fol­
lowed by the version number. Here is the local procedure that implements
OATE_GET:

date* I• always returns a pointer to the results•/
date_get_l(tz)
timezone *tz; I• always takes a pointer to the arguments•/
{

};

static dated; /•must be static!•/

/*
* figure out the date
* and store it in d
•I

return(&d);

The name of the routine is the same as the #define'd name, but in all lower­
case letters and followed by the version number. XOR recursively frees the
argument after getting the results from the local procedure, so any data
needed between calls should be copied from the argument. However, XOR
neither allocates nor frees the results. The user must take care of the storage.

Make Inference Rules For Compiling XDR. Headers
It is possible to set up suffix transformation rules in make(l) for compiling
XOR routines and header files. The convention is that RPCL protocol files
have the extension The make rules to do this are:

rpcgen -c $ < -o $@

rpcgen -h $ < -o $@

SEE ALSO

BUGS

6

"RPC/XOR Tutorial" in the CLIX System Guide.

Name clashes can occur when using program definitions, since the apparent
scoping does not really apply. Most of these can be avoided by giving
unique names for programs, versions, procedures and types.

12/88

RPIPE(l) RPIPE(l)

NAME
rpipe - remote pipe program

SYNOPSIS
rpipe host. user [.[password]] command-list

DESCRIPTION
rpipe is a utility which transfers data to a command executing on a remote
system via a pipe.

Host. user [.[password]] is the same syntax as that for ftnu(l). The user is
placed in the user's home directory on host, and all commands executed have
the same user and group ID as user on host. The standard inp~t given to the
command-list executed on host is the standard input from rpipe.

EXAMPLES
The following example copies the directory tree src from the local machine
to the remote host ipro3, under the directory /usr/test.

find src -print I cpio -ovB I rpipe ipro3.sys "cd /usr/test; cpio -idumB"

WARNINGS

BUGS

12188

Characters with special meanings to the shell, like (,), and ; must be quoted.

The standard output and standard error of command-list are not echoed back
to the user.

1

_,..,,.__

'°iliii."

R.TAPE(l) R.TAPE(l)

NAME
rtape - remote tape manipulation program

SYNOPSIS
rta pe host tape-device command [count]

DESCR.IPTION
rtape performs a variety of functions on a remote tape. The only require­
ments of the remote system are that the tape is physically mounted on the
tape drive and the tape drive is online.

Host is the name or address of the machine where the tape drive resides.
tape-device is the name of the tape drive on the host machine. If tape-device
is a CLIX non-rewindable device, the tape will not rewind after the com­
mand is completed.

Count is the size (in 512-byte blocks) of write operations and the number of
files or records in skip operations. By default, the block size is set to 20, and
the number of files or records to be skipped is one.

rtape uses standard input and standard output, so common tape commands
such as tar(l) and cpio(l) can be used.

The following commands may be used:

read Read the tape until an end-of-file mark is found and then
rewind the tape unless a no-rewind device is specified. (Count
is ignored).

write Write the tape. If count is specified, count blocks are written.
Two end-of-file marks are written to the tape when the write
terminates and the tape rewinds unless a no-rewind device is
specified.

read_nrw Read the tape until an end-of-file mark is found, but do not
rewind the tape. (Count is ignored).

write_nrw Write the tape. If count is specified, count blocks are written.

rew

f sf

f sr

bsf

bsr

eof

erase

Two end-of-file marks are written to the tape when the write
terminates, and the tape will be positioned between these two
marks.

Rewind the tape. (Count is ignored).

Forward skip count files on the tape.

Forward skip count records on the tape.

Backward skip count files on the tape.

Backward skip count records on the tape.

Write one end-of-file mark on the tape.

Erase the tape from the current position onward. (This
feature is not supported on most tape controllers.)

01/90 1

RTAPE(l) RTAPE(l)

examine Examine the tape, reporting the size of records and tape
marks encountered. If count is zero, the tape is read until it is
interrupted or the physical end-of-tape is encountered. If
count is one, the tape is read until a single end-of-file mark is
encountered and then rewound. If count is two or omitted,
the tape is read until a double end-of-file (end-of-tape) is
encountered.

The read_nrw and write_nrw commands are not supported on CLIX host.
machines. The read and write commands should be used instead with a
no-rewind tape-device specified.

EXAMPLES
All examples assume a machine named "ipro3" with a tape drive attached to
''/dev/rmt/mt5'',

The following command could be used to make a tar(l) tape:
tar cvf - . I rtape ipro3 /dev/rmt/mt5 write

The following command could be used to read a tar(l) tape:
rtape ipro3 /dev/rmt/mt5 read I tar xvf -

The following command could be used to make a cplo(l) tape:
find. -print I cpio -ovB I rtape ipro3 /dev/rmt/mt5 write 10

The following command could be used to read a cpio(l) tape:
rtape ipro3 /dev/rmt/mt5 read I cpio -ivdumB

If "/dev/rmt/mt5n" is used, the tape will not rewind. This will allow for
multiple archives on the same tape.

SEE ALSO
cpio(l), rtc(l), tar(l).
rtc(7S), tc(7S) in the CLIX Syst.em Administrator's Reference Manual.

WARNINGS

BUGS

2

Some commands are not supported by all tape drives.

Some newer tape drives are not supported.

Since this program uses a network, the remote system controls the tape. If
the program is interrupted, the remote system attempts to recover. How­
ever, sometimes the recovery may be slow.

01/90

-lillll!l!illlilMl!Ril!ll!llillil!llllll!illl _____ 11111111!1!1_111ii!1!1!1 _________________ 1i!18!111!1 __________ ••

RTC(l) RTC(l)

NAME
rte - remote tape control

SYNOPSIS
rte -a [-s system] [-r rewdev] [-n norewdev] [-t timeout] eontroldev
rte -d eontroldev

DESCRIPTION
rte allows a tape drive on another machine to be used as if it resides on the
local machine. The following command options allow the tape drive to be
configured:.

-a Allocate a tape drive on a remote machine.

-d Deallocate a tape drive on a remote machine.

The -a option allows the use of a tape drive on a remote machine. Once allo­
cated, the remote tape drive remains allocated until a timeout occurs or the
-d option is invoked. If the tape drive is being used when the -d option is
invoked, an error is printed. The eontroldev parameter is the name of a tape
control device (such as /dev/rmt/rtO.etl) that controls the functions of
other tape devices in the same group.

The following options are supported:

-s system

-r rewdev

-n norewdev

-t timeout

Specify the remote system where the tape drive resides.

Specify the tape drive rewdev on system as the rewindable
tape device.

Specify the tape drive norewdev on system as the no-rewind
tape device.

Set the idle time allowed to timeout minutes. If the tape is
idle for timeout minutes, it is deallocated following a warn-
ing, which is printed on the system console. The default
timeout is five minutes.

If an allocate option is not present, the corresponding environment variables
are used if set:

RTCSYSTEM

RTCREWIND

RTCNOREWIND

RTCTIMEOUT

Specify the remote system (-s option).

Specify the rewind device (-r option).

Specify the no-rewind device (-n option).

Specify the idle timeout (-t option).

Since the remote tape driver that rte uses, rte(7S), is a STREAMS driver, the
driver must be kept open for the network connection to be preserved. After
issuing an allocate command, rte forks a child process that remains in the
background before returning to the user. If this process is killed or the user

·~~ logs out, the remote tape drive will automatically be deallocated when the
current process using the tape drive exits.

01/90 1

RTC(l) RTC(l)

The -d option will cleanly close the connection to the remote host and send a
signal to the process that was executed by the -a option.

rte also looks in a series of .rtcrc files to determine the proper action if an
option to the allocate command is not present. Given controldev, rte looks
for a line that begins with the name controldev. The line that begins with ~
controldev should be followed by a remote system name, separated by spaces ~
or tabs. rte then continues looking for a line that begins with that remote
system name. The line should contain a list of options in the following
order:

rewdev [norewdev [timeout]]

The following is a sample file:

/dev/rmt/rtO.ctl iprol

iprol /dev/rmt/mt6 /dev/rmt/mt6n 10

The files are checked as follows:
.rtcrc
$HOME/.rtcrc
I etc/ .rtcrc

EXAMPLES

FILES

This command allocates the "/dev/rmt/mt6" tape drive on the machine
"iprol ".

rte -a -s iprol -r /dev/rmt/mt6 -n /dev/rmt/mt6n -t 10 /dev/rmt/rtO.ctl

/dev/rmt/rt?
/dev/rmt/rt?n
I dev I rm t/ rt? .ctl

rewind rte device
no-rewind rte device
control device (used only by rte)

SEE ALSO

2

cpio(l), mt(l), tar(l), rtc_allocate(3N).
rtc_s(lM), rtc(7S), tc(7S) in the CLIX System Administrator's Reference
Manual.

01/90

R.UPTIME(l) R.UPTIME(l)

NAME
ruptime - show host status for each machine on the local network

SYNOPSIS
ruptime [-altur]

DESCR.IPTION

FILES

ruptlme gives a status line for each machine on the local network running
rwhod(lM). The status is a summary of the current activity on each system.
This data is provided by packets broadcast by each host once every three
minutes.

Machines for which a status report has not been received in the last five
minutes are shown as being down.

Users idle an hour or more are omitted from the listing unless the -a option
is given.

Normally, the listing is sorted by host name. The -1, -t, and -u options
specify sorting by load average, uptime, and number of users, respectively.
The -r option reverses the sort order.

/usr/spool/rwho/whod.• data files containing information about each
machine

SEE ALSO
rwho(l).
rwhod(lM) in the CLIX System Administrator's Reference Manual.

12/88 1

R.WHO(l) JtWHO(l)

NAME
rwho - lists users logged in to machines on the local network

SYNOPSIS
rwho [-a]

DESCR.IPTION

FILES

rwho produces output similar to who, but for all machines on the local net­
work running rwhod(lM). If a report has not been received from a machine
for five minutes, rwho assumes the machine is down and does not report
users last known to be logged into that machine.

If a user has not typed to the system for a minute or more, rwho reports this
idle time. If a user has not typed to the system for an hour or more, the
user will be omitted from the output of rwho unless the -a option is given.

/usr/spool/rwho/whod.* data files containing information about each
machine

SEE ALSO
ruptime(l).

BUGS

12/88

rwhod(lM) in the CLIX System Administrator's Reference Manual.

This is unwieldy when the number of machines on the local network is
large.

1

-

SCCSTOK.CS(l) SCCSTOK.CS(l)

NAME
sccstorcs - build RCS file from SCCS file

SYNOPSIS
sccstorcs [-t] [-v] s.fi.le ...

DESCK.IPTION

PILES

sccstorcs builds a Revision Control Systemk (RCS) file from each Source
Code Control System (SCCS) file argument. The deltas and comments for
each delta are preserved and installed in the new RCS file in order. Also
preserved are the user access list and descriptive text from the SCCS file.
The following options are available:

-t Trace only. Prints detailed information about the SCCS file and lists
the commands that would be executed to produce the RCS file. No
commands are actually executed and no RCS file is created.

-v Verbose. Prints each command run while it is building the RCS file.

For each s.somefile, sccstorcs writes the files somefile and somefile,.v, which
should not exist. sccstorcs will abort rather than overwrite files if they
exist.

SEE ALSO
ci(l), co(l), rcs(l).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System,,, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS

BUGS

All diagnostics are written to std.err. Nonzero exit status on error.

sccstorcs does not preserve all SCCS options specified in the SCCS file. Most
notably, it does not preserve removed deltas, MR numbers, and cutoff points.
sccstorcs fails if used on an SCCS file with removed deltas.
sccstorcs fails if it checks in one version of an RCS file, gets the next SCCS
version, and checks in the new version, all in the same second. This is due to
ci(l) not allowing checkins with the same time stamp.

IDENTIFICATION
Ken Greer
Copyright o 1983 by Kenneth L. Greer

12/88 1

SCPIO(l) SCPIO(l)

NAME
scpio - multibuffering and asynchronous I/O cpio(l)

SYNOPSIS
sepia -o [acBvV] [-C bu/size] [-z bu/count] [[-0 file] [-M message]]

sepia -i [BcdmrtuvVfsSb6] [-C bu/size] [-z bu/count] [[-I file]
[-M message]] [pattern ...]

sepia -p [adlmuvV] directory

sepia -x [cstvf86] [-C mt/size] [-z bu/count] [-I file] [pattern ...]

DESCRIPTION
scpio is a modified version of cpio(l) with two major enhancements­
asynchron9us I/O and multibuffering-which significantly improve its per­
formance. See cpio(l) for a description of basic capabilities and options.

In addition to the three standard modes of cpio(l) (input, output, and
passthrough), scpio provides a verify mode (-x option). In this mode, scpio

verifies the integrity of the archived file by comparing it to the input file.
An error message is printed if a difference is found.

Additional options supported by scpio are as follows:

-x Compare the archive and the input files and report any
differences.

-z bu/count Specify the number of buffers to be used for multibuffering.
Permissible values are 2 to 25. If this parameter is not
specified, it defaults to 1 and I/O is synchronous.

EXAMPLES
The following command uses 25 buffers, each 63488 bytes in size, to create
an archive on /dev/rmt/Om:

scpio -o -C 63488 -z 25 -0 /dev/rmt/Om

The next command reads an archive from /dev/rmt/Om using the same
buff er count and size as the previous example:

scpio -idm -C 63488 -z 25 -I /dev/rmt/Om

SEE ALSO
cpio(l).

NOTES
When an archive is being verified (-x option), file headers and data are com­
pared. If one of the input files is accessed between the time it was written
and the time it is read for verification, the date in the header is changed.
This results in a verification error, although nothing is wrong with the file.

Using the -v option may give less than optimal speed due to time spent writ-

~ ing file names to the screen. The -V option prints a dot for every file, veri­
fying activity without the overhead of printing every file name.

01/90 1

SDB(l) SDB(l)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCR.IPTION

12/88

sdb is a symbolic debugger that can be used with C and FORTRAN programs.
It may be used to examine their object files and core files and provide a con­
trolled environment for their execution.

Objfil is an executable program file that has been compiled with the -g
(debug) option. If it has not been compiled with the -g option, the symbolic
capabilities of sdb will be limited, but the file can still be examined and the
program debugged. The default for objfil is a.out. Corfi.l is assumed to be a
core(4) image file produced after executing objfi.l; the default for corfi.l is
core. The core(4) file need not be present. A - in place of corfi.l will force
sdb to ignore any core(4) image file. The colon-separated list of directories
(directory-list) is used to locate the source files used to build objfi.l.

It is useful to know that at any time a current line and current file exist. If
corfi.l exists, they are initially set to the line and file containing the source
statement at which the process terminated. Otherwise, they are set to the
first line in main(). The current line and file may be changed with the
source file examination commands.

By default, warnings are provided if the source files used in producing objfi.l
cannot be found or are newer than objfi.l. This checking feature and the
accompanying warnings may be disabled by using the -W flag.

Names of variables are written just as they are in C or FORTRAN. sdb does
not truncate names. Variables local to a procedure may be accessed using the
form procedure:variable. If no procedure name is given, the procedure con­
taining the current line is used by default.

It is also possible to refer to structure members as variable.member, pointers
to structure members as variable->member, and array elements as
variable[number]. Pointers may be dereferenced by using the form
pointer[0]. Combinations of these forms may also be used. FORTRAN com­
mon variables may be referenced by using the name of the common block
instead of the structure name. Blank common variables may be named by
the form .variable. A number may be used in place of a structure variable
name. In this case, the number is the address of the structure, and the tem­
plate used for the structure is that of the last structure referenced by sdb.
An unqualified structure variable may also be used with various commands.
Generally, sdb will interpret a structure as a set of variables. Thus, sdb will
display the values of all elements of a structure when it is requested to
display a structure. An exception to th; interpretation occurs when
displaying variable addresses. An entire str ... cture does have an address. sdb
displays this value, not the addresses of individual elements.

1

SDB(l) SDB(l)

Elements of a multidimensional array may be referenced as variable
[number] [number] ... , or as variable [number, number, ...]. In place of
number, the form number;number may be used to indicate a range of values,
• may be used to indicate all legitimate values for that subscript, or sub­
scripts may be omitted entirely if they are the last subscripts and the full
range of values is desired. As with structures, sdb displays all values of an
array or of the section of an array if trailing subscripts are omitted. It
displays only the address of the array itself or of the section specified by the
user if subscripts are omitted. A multidimensional parameter in a FORTRAN
program cannot be displayed as an array, but it is actually a pointer, whose
value is the location of the array. The array itself can be accessed symboli­
cally from the calling function.

An instance of a variable on the stack may be referenced by using the form
procedure:variable,number. All variations mentioned in naming variables
may be used. Number is the occurrence of the specified procedure on the
stack, counting the top, or most current, as the first. If no procedure is
specified, the procedure currently executing is used by default.
It is also possible to specify a variable by its address. All forms of integer
constants valid in C may be used so that addresses may be input in decimal,
octal, or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case, the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
def a ult. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they ref er to objfil or corfil. An initial argument of -w
permits overwriting locations in objfil.

Addresses

2

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri­
ples (bl, el, fl) and (b2, e2, f2). The file address corresponding to a written
address is calculated as follows:

bl~address<el -+ file address=address+fl-bl

otherwise

b2 ~address< e2 -+ file address=address+ f2-b2

otherwise, the requested address is not legal. In some cases (as for programs
with separated I and D space), the two segments for a file may overlap.
The initial setting of both mappings is suitable for normal a.out(4) and
core(4) files. If either file is not the kind expected then, for that file; bl is set
to O; el is set to the maximum file size; and fl is set to 0. In this way, the
whole file can be examined with no address translation.

12188

SDB(l) SDB(l)

For sdb to be used on large files, all appropriate values are kept as signed,
32-bit integers.

Commands

12/88

The commands for examining data in the program are as follows:

t Print a stack trace of the terminated or halted program. This command
will not work properly unless the program has been compiled to use a
stack frame pointer (-g or -ga compiler options).

T Print the top line of the stack trace.

variable/ elm
Print the value of variable according to length l and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, will be displayed. The length specifiers
are as fallows:

b one byte
h two bytes (half word)
l four bytes (long word)

Legal values form are:

c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single-precision Boating point
g 64-bit double-precision Boating point
s assume variable is a string pointer and print characters

starting at the address pointed to by the variable.
a print characters starting at the variable's address (this

format may not be used with register variables)
p pointer to procedure
i disassemble machine-language instruction with

addresses printed numerically and symbolically
I disassemble machine-language instruction with

addresses printed numerically only

Length specifiers are only effective with the c, d, u, o, and x formats.
C, Z, and m specifiers may be omitted, If all are omitted, sdb chooses a
length and a format suitable for the variable's type declared in the pro­
gram. If m is specified, this format is used for displaying the variable.
A length specifier determines the output length of the value to be
displayed, sometimes resulting in truncation. A count specifier c tells
sdb how many units of memory to display, beginning at the address of
variable. The number of bytes in a unit of memory is determined by
the length specifier Z, or if no length is given, by the size associated
with the variable. If a count specifier is used for the s or a command,
the number of characters specified is printed. Otherwise, successive

3

SDB(l)

4

SDB(l)

characters are printed until either a null byte is reached or 128 charac­
ters are printed. The last variable may be redisplayed with the com­
mand J.

The sh(l) metacharacters •and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified, only
variables local to that procedure are matched. To match only global
variables, the form :pattern is used.

llnenumber?lm
variabl.e:?lm

Print the value at the address from a.out or I space given by
linenumber or variabl.e (procedure name) according to the format lm.
The def a ult format is i.

variabl.e-lm
linenumber-lm
number-lm

Print the address of variabl.e or linenumber or the value of number in
the format specified by Zm.. If no format is given, Ix is used. The last
variant of this command provides a convenient way to convert between
decimal, octal, and hexadecimal.

variabl.e ! value
Set variabl.e to the given value. The value may be a number, a character
constant, or a variable. The value must be well-defined; expressions
that produce more than one value, such as structures, are not allowed.
Character constants are denoted by 'character. Numbers are viewed as
integers unless a decimal point or exponent is used. In this case, they
are treated as if they are type double. Registers are viewed as integers.
The variabl.e may be an expression that indicates more than one vari­
able, such as an array or structure name. If the address of a variable is
given, it is interpreted as the address of a variable with type int. C
conventions are used in any type conversions necessary to perform the
indicated assignment.

x Print the machine registers and the current machine-language instruc-
tion.

X Print the current machine-language instruction.

The commands for examining source files are as follows:

e procedure
e fl.le-name
e directory/
e directory fl.le-name

The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The

12/88

SDB(l)

12/88

SDB(l)

default is the current working directory. The latter two forms change
the value of directory. If no procedure, file name, or directory is given,
the current procedure name and file name are reported.

/regular expression/
Search forward from the current line for a line containing a string
matching regular expression as in ed(l). The trailing I may be deleted.

?regul.ar expression?
Search backward from the current line for a line containing a string
matching regul.ar expression as in ed(l). The trailing? may be deleted.

p Print the current line.

z Print the current line followed by the next nine lines. Set the current
line to the last line printed.

w (Window) Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count+
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the source program execution are as follows:

count r args
count R

Run the program with the given arguments, The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin­
ning with < or > causes standard input or output to be redirected,
respectively. If count is given, it specifies the number of breakpoints to
be ignored.

linenumber c count
linen.umber C count

Continue after a breakpoint or interrupt. If count is given, the program
will stop when count breakpoints have been encountered. The signal
that caused the program to stop is reactivated with the C command and

ignored with the c command. If a line number is specified, a temporary
breakpoint is placed at the line and execution is continued. The break­
point is deleted when the command finishes.

linen.umber g count
Continue after a breakpoint with execution resumed at the given line.
If count is given, it specifies the number of breakpoints to be ignored.

5

SDB(l)

6

SDB(l)

s count
S count

i

Single step the program through count lines. If no count is given, the
program runs for one line. S is equivalent to s except that it steps ~
through procedure calls and s does not.

I Single step one machine-language instruction. The signal that caused
the program to stop is reactivated with the I command and ignored
with the i command.

variable$m count
address:m count

Single step (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is done
by software, it can be very slow.

level v
Toggle verbose mode to for use when single stepping with S, s, or m.
If level is omitted, only the current source file and/or subroutine name
is printed when either changes. If level is 1 or greater, each C source
line is printed before it is executed; if level is 2 or greater, each assem­
bler statement is also printed. A v turns verbose mode off if it is on
for any level.

k Kill the program being debugged.
procedure(argl,arg2, ...)
procedure(argl,arg2, ...)/m

Execute the named procedure with the given arguments. Arguments
can be integer, character, or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d. This facility is only available if
the program was loaded with the -g option.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (i.e. proc:), a breakpoint is placed at the first line in
the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control returns to sdb. Otherwise, the commands are executed when
the breakpoint is encountered and execution continues. Multiple com­
mands are specified by separating them with semicolons. If t. is used as
a command to execute at a breakpoint, control returns to sdb instead of
continuing execution.

B Print a list of the currently-active breakpoints.

12/88

SDB(l)

12/88

SDB(l)

linenuml>er d
Delete a breakpoint at the given line. If no linenuml>er is given, the

breakpoints are deleted interactively. Each breakpoint location is

printed and a line is read from the standard input. If the line begins

with a y or d, the breakpoint is deleted.

D Delete all breakpoints.

1 Print the last executed line.

linenuml>er a
(Announce) If linenuml>er has the form proc:numl>er, the command

effectively executes a linenuml>er b 1. If linenuml>er has the form proc:,

the command effectively executes a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh(l).

newline
If the previous command printed a source line, advance the current line

by one line and print the new current line. If the previous command

displayed a memory location, display the next memory location.

end-of-file character
(Scroll) Print the next 10 lines of instructions, source, or data, depend­

ing on which was printed last. The end-of-file character is usually

<CONTROL >-D.

<file-name
Read commands from ft.le-name until the end of file is reached, and
then continue to accept commands from standard input. When a com­

mand in this file tells sdb to display a variable, the variable name is

displayed along with the value. This command may not be nested; <
may not appear as a command in a file.

M Print the address maps.

M[?/] [•]be I
Record new values for the address map. The arguments? and I specify

the text and data maps, respectively. The first segment (bl, el, fl) is

changed unless •is specified. In this case, the second segment (b2, e2,

/2) of the mapping is changed. If fewer than three values are given,

the remaining map parameters are unchanged.

•string
Print the given string. The C escape sequences with the form \charac­

ter are recognized, where character is a non-numeric character.

q Exit the debugger.

7

SDB(l)

FILES

SDB(l)

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

a.out
core

SEE ALSO
cc(l), f77(1), a.out(4), core(4).
syms(4) in the UNIX System V Programmer's Reference Manual.
sh(l) in the UNIX System V User's Reference Manual.

WARNINGS

BUGS

8

When sdb prints the value of an external variable that has no debugging
information, a warning is printed before the value. The size is assumed to be
an integer.

Data stored in text sections cannot be distinguished from functions.
Line number information in optimized functions is unreliable, and some
information may be missing.

If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a procedure
that formats data from a core image.
sdb cannot print the value of a FORTRAN parameter. It will erroneously
print the address.

Tracebacks containing FORTRAN subprograms with multiple entry points
may print too many arguments in the wrong order, but their values are
correct.

The range of a FORTRAN array subscript is assumed to be 1 ton, where n is
the dimension corresponding to that subscript. This is only significant when
the user omits a subscript, or uses • to indicate the full range. Arrays hav­
ing subscripts whose lower bounds are not 1 produce no problems.

12/88

SETHOST(l) SETHOST(l)

NAME
sethost - DNP remote login DECnet or CLIX node.

SYNOPSIS
sethost [-hrx] [-estring]
sethost [-hrx] [-estring] node-name
sethost [-hrx] [-estring] [node-area.] node-number

DESCRIPTION

01/90

sethost allows a user to log in to a remote host supporting the Digital Net­

work Architecture (DNA) from the local host. sethost uses the DNA hetero­

geneous Command Terminal Protocol (CTERM). sethost connects the user to

any DECnet host that supports the CTERM protocol.

If node-name is specified, it must be one of the remote node names defined in

the local ncp(lM) database. Node-name is a group of not more than six

alphanumeric characters where the first character is a letter.

Alternately, an address of an active remote node may be specified. This

address can specify an optional area-number range of 1-63. The node­

number ranges from 1-1023 and must be unique in the network area. If the

remote node is in the same network area as the local node, the node-numl>er

can be used alone.

If a node or address is not provided, sethost prompts for input.

Once the connection is established, the user is prompted from the remote

node for login information.

The following options are available to sethost:

-h Display a brief help summary.

-r Display the release numbers of sethost(l).

-x Set the CTERM flow control passthrough characteristic

(remoteflow) to TRUE. This allows <CONTROL>­
S/ <CONTROL> -Q to be passed to the remote instead of using local

flow control. This is useful for a remote application, such as

emacs, that uses <CONTROL>-S. If the user requires this option

frequently, the environment variable, REMOTEFLOW, may be

created with any non-NULL value. Users can refer to the

environment manipulation routines for their particular shell. The

default is to allow local flow control. When the user specifies the

-x option, the remote performs all XON/XOFF processing. This

may cause a delay when <CONTROL>-S/<CONTROL>-Q is used

to stop output from an application that is writing to the screen,

such as DIR or TYPE on VMS and Zs(l) or cat(l) on CLIX.

-estrlng Change the default escape string from --. to string. There can be

no spaces between -e and string. The string can be up to 10 char­

acters long. Characters after 10 are ignored. Alternately, the
user may set the escape string with the ESCAPESTR environment

1

SETHOST(l) SETHOST(l)

NOTES

variable. If the -e option is not used and there is no environment
variable, sethost uses the default --•.

The escape string allows the user to leave the sethost session at
any time, even if the user is hung in a remote application pro-
gram. Additionally, when connected to a remote VMS machine at ~.
the Digital Command Language (DCL) command line, the user canI
type two quick (within one second), consecutive <CONTROL>-Y
or <CONTROL> -C characters to gain control. When the escape
string or control characters are typed, the following question
appears:

Do you wish to abort the network virtual terminal session?
If the user answers Y, the connection is terminated. Otherwise,
the escape string or control characters are passed to the remote.

When connecting to VMS nodes, sethost allows command-line editing at the
DCL prompt. The cursor movement assumes that a VTxOO-style terminal is
being used. If a non-VTxOO terminal is used, command-line editing may
produce unexpected output. The left, right, up, and down arrow keys, along
with the following control characters, are supported:

<CONTROL>-A Toggle insert/overstrike mode.
<CONTROL> -E Move cursor to end of line.
<CONTROL>-F Move cursor right one space.
<CONTROL> -H Move cursor to beginning of line.
<CONTROL>-R Redisplay input. ""'
<CONTROL >-U Delete from cursor to beginning of line. ...,,,,,
<CONTROL >-W Delete word to left.
<CONTROL>-X Functions same as <CONTROL>-U.

The default mode is overstrike. The mode is changed to insert on the com­
mand line by typing <CONTROL >-A. Changing the VMS overstrike/insert
characteristic has no effect. After <RETURN> is pressed, the mode reverts to
overstrike.

VMS versions before V4.0 and DECnet-HM-PLUS versions before V3.0 do not
support CTERM. Consequently, sethost is not supported on these machines.

SEE ALSO
sh(l), ksh(l), csh(l), getenv(3).
sethostd(lM), ncp(lM) in the CLIX System Administrator's Reference
Manual.

CAVEATS

2

"I is displayed if the user presses the tab key when connected to a VMS
machine.

01/90

SHOWFILES(l) SHOWFILES(l)

NAME
showfiles - CRM utility for monitoring open files

SYNOPSIS
/usr/ip32/crm/showfiles [-cdf] [input-option] [-o output-file]

DESCltlPTION
showfiles displays a list of all processes on the system. It also lists open files
for each process. Device names and i-node numbers are provided for each
open file.

Once an open file's i-node number is determined, the ncheck(lM) command
can be used to generate the path names from the i-node numbers. Refer to
the System V Online manuals for more information on ncheck(lM).

The following options are are available:

-c

-d

-f

-o output-ft.le

Run continuously.

Translate major and minor device numbers to device
names.

Spawn ncheck(lM) to translate i-node numbers to
file names. Also translate device numbers to to dev­
ice names as with the -d option.

Direct output to output-file. A - for output-file directs
output to std.out.

The following input-options are available:

-p pid Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

-n process-name

-i input-file

Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

Read the data from input-file each interval. The
inp ,t-file must have been created as an output-file
ming the -o ovtion. A - for input-file reads input
from standard input.

SEE ALSO
crm(l).
ncheck(lM) in the UNIX System V Administrator's Reference Manual.

WARNINGS

01/90

Sending raw data to a file can create a very large file.

Device name translation takes more time.

File name lookup by ncheck(lM) takes much more time, since each file sys­
tem must be searched for the i-node numbers.

1

SHOWMEMORY(l) SHOWMEMORY(l)

NAME
showmemory - CRM utility for monitoring process memory regions

SYNOPSIS
/usr/ip32/crm/showmemory [input-option]

DESCRIPTION

01/90

showmemory displays a list of all processes on the system. It also lists

attached memory regions associated with each process.

The following input-options are available:

-p pid Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

-n process-name Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

-e command arg . . . Run, provide arguments for, and monitor a program.

A brief explanation of the showmemory information given for each displayed

region follows:

REGION TYPE Displays the region type, which can be one of the fol­
lowing types:

REGION NUMBER

VIRTUAL SIZE

PHYSICAL SIZE

SHARED

PERCENT MEMORY

TEXT main executable code
DATA main data region
ST ACK process stack
SHMEM shared memory
DMM double mapped memory
LIBTXT shared library code
LIBDAT shared library data

Displays the CLIX internal identification number of the

region. If a region number displays in more than one
process, the region is shared among those processes.

Displays the amount of virtual memory allocated to

the region. The virtual size of the regions is also allo­

cated from the available swap space.

Displays the amount of real memory currently being

used by the region.

Displays the number of processes currently attached to

the region. If no number appears in the shared

column, the region is being used only by the one pro­

cess.

Displays the percentage of physical memory allocated

to the Tegion. This number is weighted by the number

1

SHOWMEMORY(l) SHOWMEMORY(l)

CUMULATIVE

of processes sharing the region.

Displays the cumulative percentage of physical
memory used by the regions.

After the list of processes has been displayed, a system summary is
displayed. The summary gives the following information:

Total Physical Memory On System
Displays (in megabytes) the amount of real memory the system has.

Used By Processes
Displays the final cumulative total of physical memory being used
by the process regions.

Process Overhead
Displays the amount of memory used by the system to keep page
tables and user blocks.

Unattached Regions
Displays the amount of physical memory being used by regions with
unattached processes. Unattached regions can occur when a program
has the sticky bit set in its mode (see chmod(l)).

Available Memory
Displays the amount of physical memory that is available for
processes to use.

Initial Clix Size
Displays the amount of physical memory used by the CLIX operating ~
system when the system boots.

Allocated By Clix
Displays the amount of physical memory allocated when the CLIX
operating system is running. For example, when a driver is loaded,
its text and data section occupies a section of physical memory.

SEE ALSO
crm(l), chmod(l).

2 01/90

STTY(l) STTY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [option ...]

DESCRIPTION
stty sets certain terminal VO options for the device that is the current stan­
dard input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret ("), the value of that
option is the corresponding <CONTROL> character (e.g., ""h,, is
<CONTROL>-H; in this case, <CONTROL>-H is the same as the <BACK
SPACE> key). The sequence , means that an option has a null value. For
example, normally stty -a will report that the value of swtch is""•; how­
ever, if shl(l) or layers(!) has been invoked, stty -a will have the value
''" tt z .

-a Reports all option settings.

-g Reports current settings in a form that can be used as an argument to
another stty command.

Options in the last group are implemented using options in the previous
groups. Note that many combinations of options do not make sense, but no
sanity checking is performed. The options are selected from the following:

Control Modes
parenb (-parenb) Enable (disable) parity generation and detection.

Select odd (even) parity.

12/88

parodd (-parodd)

csS cs6 cs7 cs8 Select character size (see termio(1S)).

0 Hang up phone line immediately.

110 300 600 1200 1800 2400 4800 9600 19200 38400

hupcl (-hupcl)

hup (-hup)

cstopb (-cstopb)

cread (-cread)

clocal (-clocal)

loblk (-loblk)

Set terminal baud rate to the number given, if possi­
ble. (All speeds are not supported by all hardware
interfaces.)

Hang up (do not hang up) dataphone connection on
last close.

Same as hupcl (-hupcl).

Use two (one) stop bits per character.

Enable (disable) the receiver.

Assume a line without (with) modem control.

Block (do not block) output from a noncurrent
layer.

1

STTY(l) STTY(l)

2

Input Modes
ignbr:t. (-ignbr:t)

br:tint (-br:tint)

ignpar (-ignpar)

parmrk (-parmr:t.)

inpc:t. (-inpc:t.)

istrip (-istrip)

inlcr (-inlcr)

igncr (-igncr)

icrnl (-icrnl)

iuclc (-iuclc)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixoff)

Output Modes
opost (-opost)

olcuc (-olcuc)

onlcr (-onlcr)

ocrnl (-ocrnl)

onocr (-onocr)

onlret (-onlret)

oflll (-ofill)

ofdel (-ofdel)

crO crl crl cr3

nlO nil

Ignore (do not ignore) break on input.

Signal (do not signal) INTR on break.

Ignore (do not ignore) parity errors.

Mark (do not mark) parity errors (see termio(7S)).

Enable (disable) input parity checking.

Strip (do not strip) input characters to seven bits.

Map (do not map) NL to CR on input.

Ignore (do not ignore) CR on input.

Map (do not map) CR to NL on input.

Map (do not map) uppercase alphabetics to lowercase
on input.

Enable (disable) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by
sending an ASCII DCl.

Allow any character (only DCl) to restart output.

Request that the system send (not send) START/STOP
characters when the input queue is nearly
empty/full.

Post-process output (do not post-process output;
ignore all other output modes).

Map (do not map) lowercase alphabetics to uppercase
on output.

Map (do not map) NL to CR-NL on output.

Map (do not map) CR to NL on output.

Do not (do) output CRs at column zero.

On the terminal, NL performs (does not perform) the
CR function.

Use fill characters (use timing) for delays.

Fill characters are DELs (NULs).

Select style of delay for carriage returns (see
termio(7S)).

Select style of delay for linefeeds (see termio(7S)).

tabO tabl tabl tab3 Select style of delay for horizontal tabs (see
termio(1S)).

bsO bsl Select style of delay for backspaces (see termio(1S)).

12188

STTY(l)

ffO ffl

vtO vtl

Local Modes
isig (-isig)

icanon (-icanon)

xcase (-xcase)

echo (-echo)

echoe (-echoe)

echok (-echok)

lfkc (-lfkc)

echonl (-echonl)

nofl.sh (-nofl.sh)

tostop (-tostop)

stwrap (-stwrap)

stflush (-stflush)

stappl (-stappl)

Control Assignments
control-character c

12/88

STTY(l)

Select style of delay for formfeeds (see term.lo(1S)).

Select style of delay for vertical tabs (see
term.lo(1S)).

Enable (disable) the checking of characters against
the special control characters INTR, QUIT, SWTCH,
andSUSP.

Enable (disable) canonical input (ERASE and KILL
processing).

Canonical (unprocessed) uppercase/lowercase presen­
tation.

Echo back (do not echo back) every character typed.

Echo (do not echo) ERASE character as a backspace­
space-backspace string. Note: this mode will erase
the ERASEd character on many CRT terminals; how­
ever, it does not keep track of column position and,
as a result, may be confusing on escaped characters,
tabs, and backspaces.

Echo (do not echo) NL after KILL character.

The same as echok (-echok); obsolete.

Echo (do not echo) NL.

Disable (enable) ft.ush after INTR, QUIT, SWTCH, or
SUSP.

Stop (do not stop) background jobs if they attempt
terminal output. -

Disable (enable) truncation of lines longer than 79
characters on a synchronous line.

Enable (disable) ft.ush on a synchronous line after
every wrlte(2).

Use application mode (use line mode) on a synchro­
nous line.

Set control-character to c, where control-character is
erase, kill, intr, quit, swtch, susp, eof, eol, ctab,
min, or time. (ctab is used with -stappl; min and
time are used with -icanon; see term.lo(1S).) If c is
preceded by a caret (A) (escaped from the shell), the
value used is the corresponding <CONTROL> charac­
ter (e.g., ""d" is a <CONTROL>-D); ""?" is inter­
preted as and "" _,, is interpreted as
undefined.

3

STTY(l) STTY(l)

line l

Combination Modes
evenp or parity

oddp

Set line discipline to l (0 < i < 127).

Enable parenb and cs7.

Enable parenb, cs7, and parodd.

-parity, -evenp, or -oddp
Disable parenb, and set cs8.

raw (-raw or cooked) Enable (disable) raw input and output (no ERASE,

nl (-nl)

lease (-lease)

I.CASE (-I.CASE)

KILL, INTR, QUIT, SWTCH, SUSP, EQT, or output post
processing).

Unset (set) icrnl, onlcr. In addition -nl unsets
inlcr, igncr, ocrnl, and onlret.

Set (unset) xcase, iuclc, and oleuc.

Same as lease (-lease).

tabs (-tabs or tab3) Preserve (expand to spaces) tabs when printing.

ek Reset ERASE and KILL characters back to normal #
and@.

sane

term

Reset all modes to reasonable values.

Set all modes suitable for the terminal type term,
where term is tty33, tty37, vt05, tnJOO, ti700, or
tek.

SEE ALSO

4

termio(7S) in the CLIX System Administrator's Reference Manual.
ioctl(2) in the UNIX System V Programmer's Reference Manual.

12188

TELNET(l) TELNET(l)

NAME
telnet - user interface to the TELNET protocol

SYNOPSIS
~ telnet [host [port]]

,,._,...., DESCRIPTION

-

telnet communicates with another host using the TELNET protocol. If telnet
is invoked without arguments, it enters command mode, indicated by its
prompt (telnet>). In this mode, it accepts and executes the commands
listed below. If it is invoked with arguments, it performs an open com­
mand (see below) with those arguments.

Once a connection is opened, telnet enters an input mode. The input mode
entered will be either character-at-a-time or line-by-line, depending on what
the remote system supports.

In character-at-a-time mode, most text typed is immediately sent to the
remote host for processing.

In line-by-line mode, all text is echoed locally, and (normally) only com­
pleted lines are sent to the remote host. The local echo character (initially
<CONTROL>-E) will turn the local echo off and on. (This would mostly be
used to enter passwords without the password being echoed.)

In either mode, if the localchars toggle is TRUE (the default in line-by-line
mode as shown below), the user's QUIT and INTR characters are trapped
locally and sent as TELNET protocol sequences to the remote side. Some
options (toggle autosynch below) cause this action to :0.ush subsequent out­
put to the terminal (until the remote host acknowledges the TELNET
sequence) and flush previous terminal input (in the case of quit and in tr).

While connected to a remote host, the user may enter telnet command mode
may by keying in the telnet escape character (initially <CONTROL> -]). In
command mode, the normal terminal editing conventions are available.

Commands

01/90

The following commands are available. Only enough of each command to
uniquely identify it needs to be typed. (This is also true for arguments to
the mode, set, toggle, and display commands).

open host [port]
Open a connection to the named host. If a port number is not
specified, telnet will attempt to contact a TELNET server at the
default port. The host specification may be either a host name (see
hosts(4)) or an Internet address specified in the dot notation (see
inet(3B)).

close Close a TELNET session and return to command mode.

quit Close any open TELNET session and exit telnet. An end-of-file (in
command mode) will also close a session and exit.

1

TELNET(l) TELNET(l)

2

z Suspend telnet. This command works only when using csh(l) or
ksh(l).

mode type
Type is either line (for line-b~line mode) or character (for
character-at-a-time mode). The remote host is asked for permission ~'
to enter the requested mode. If the remote host can enter that mode, ..._.,
the requested mode will be entered.

status Show the current status of telnet. This includes the peer the user is
connected to and the current mode.

display [argument ...]
Display all or some of the set and toggle values (see below).

? [command]
Get help. With no arguments, telnet prints a help summary. If a
command is specified, telnet will print the help information for that
command only.

send arguments
Send one or more special character sequences to the remote host. The
following arguments may be specified. (More than one argument
may be specified at a time.)

escape Send the current telnet escape character (initially
<CONTROL>-]).

synch Send the TELNET SYNCH sequence. This sequence causes the
remote system to discard all previously typed (but not yet
read) input. This sequence is sent as Transmission Control
Protocol (TCP) urgent data. (This may not work if the
remote system is a 4.2 Berkeley Software Distribution (BSD)
system. If it does not work, a lowercase "r" may be echoed
on the terminal).

brk Send the TELNET BRK (BReaK) sequence, which may be
significant to the remote system.

ip Send the TELNET IP (Interrupt Process) sequence, which
should cause the remote system to abort the currently run­
ning process.

ao Send the TELNET AO (Abort Output) sequence, which should
cause the remote system to flush all output from the remote
system to the user's terminal.

ayt Send the TELNET AYT (Are You There) sequence, to which
the remote system may or may not choose to respond.

ec Send the TELNET EC (Erase Character) sequence, which
should cause the remote system to erase the last character
entered.

01/90

_________________________ Mii' _____________ ...,,

TELNET(l)

el

ga

nop

?

TELNET(l)

Send the TELNET EL (Erase Line) sequence, which should
cause the remote system to erase the line currently being
entered.

Send the TELNET GA (Go Ahead) sequence, which likely is
not significant to the remote system.

Send the TELNET NOP (No OPeration) sequence.

Print help information for the send command.

set argument val.ue

01/90

Set any one of a number of telnet variables to a specific value. The
special value o:ff turns off the function associated with the variable.
The values of variables may be interrogated with the display com­
mand. The variables that may be specified are as follows:

echo This is the value (initially <CONTROL>-E) that, when
in line-b~line mode, toggles between echoing entered
characters locally (for normal processing), and
suppressing echoing of entered characters (such as for
entering a password).

escape This is the telnet escape character (initially
<CONTROL>-E) that causes telnet to enter command
mode (when connected to a remote system).

interrupt If telnet is in localchars mode (see toggle localchars
below) and the INTR character is keyed in, a TELNET IP
sequence (see send ip above) is sent to the remote host.
The initial value for the interrupt character is inter­
preted as the terminal's INTR character.

quit If telnet is in localchars mode (see toggle localchars
below) and the QUIT character is typed, a TELNET BRK
sequence (see send brk above) is sent to the remote
host. The initial value for the quit character is inter­
preted as the terminal's QUIT character.

erase If telnet is in localchars mode (see toggle localchars
below) and telnet is operating in character-at-a-time

mode, when this character is typed, a TELNET EC

sequence (see send ec above) is sent to the remote sys­
tem. The initial value for the erase character is inter­
preted as the terminal's ERASE character.

kill If telnet is in localchars mode (see toggle localchars
below) and telnet is operating in character-at-a-time

mode, when this character is typed, a TELNET EL

sequence (see send el above) is sent to the remote sys­
tem. The initial value for the kill character is inter­
preted as the terminal's KILL character.

3

TELNET(l)

eof

TELNET(l)

If telnet is operating in line-by-line mode, entering this
character as the first character on a line will cause this
character to be sent to the remote system. The initial
value of the end-of-file character is interpreted as the
terminal's EOF character.

toggle argument,,,.,,,-

4

Toggle (between TRUE and FALSE) various flags that control how tel-
net responds to events. More than one argument may be specified.
The state of these flags may be interrogated with the display com-
mand. Valid arguments are as follows:
localchars If this is TRUE, the INTR, QUIT, ERASE, and KILL charac­

ters (see set above) are recognized locally and
transformed into appropriate TELNET control sequences
(respectively, ao, ip, brk, ec, and el; see send above).
The initial value for this toggle is TRUE in line-by-line
mode and FALSE in character-at-a-time mode.

autosynch If autosynch and localchars are bot.h TRUE, when the
INTR or QUIT characters are typed the resulting TELNET
sequence sent is followed by the TELNET SYNCH
sequence. (See set above for descriptions of the INTR
and QUIT characters.) This procedure should cause the
remote system to begin discarding all previously typed
input until both of the TELNET sequences have been
read and acted on. The initial value of this toggle is ~

er mod

debug

options

netdata

?

FALSE. ...,,,,,

Toggle carriage return mode. When this mode is
enabled, most carriage return characters received from
the remote host will be mapped to a carriage return fol-
lowed by a line feed. This mode does not affect charac­
ters typed by the user; only those received from the
remote host are affected. This mode is not useful unless
the remote host only sends a carriage return, but it
never sends a line feed. The initial value for this toggle
is FALSE.

Toggle socket-level debugging. (This is useful only to
the super-user.) The initial value for this toggle is
FALSE.

Toggle the display of some internal telnet protocol pro­
cessing (concerning TELNET options). The initial value
for this toggle is FALSE.

Toggle the display of all network data (in hexadecimal
format). The initial value for this toggle is FALSE.

Display the legal toggle commands.

01/90

---~--_.., ____ 111Mi1ilii ________ ilfll!llll __________________ "_~-

TELNET(I) TELNET(I)

SEE ALSO
visit(!), rlogin(l), inet(3B), hosts(4) in the CLIX Programmer's and User's
Reference Manual.
telnetd(lM) in the CLIX System Administrator's Reference Manual.

CAVEATS

01/90

On some remote systems, echo must be turned off manually in line-by-line
mode.

In line-by-line mode, the terminal's EOF character is recognized (and sent to
the remote system) only when it is the first character on a line.

5

TEST(l) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCR.IPTION

01/90

test evaluates the expression expr and, if its value is true, sets a zero (true)

exit status; otherwise, a nonzero (false) exit status is set, test also sets a

nonzero exit status if there are no arguments. When permissions are tested,

the effective process user ID is used.

All operators, ftags, and brackets (brackets used as shown in the second

SYNOPSIS line) must be separate arguments to the test command; normally

these items are separated by spaces.

The following primitives are used to construct expr:

-r ft.le True if file exists and is readable.

-w ft.le

-x ft.le

-f ft.le

-dftle

-c ft.le

-b ft.le

-Lfi.le

-p ft.le

-u ft.le

-g ft.le

-k ft.le

-s ft.le

-t [ftldes]

-z sl

-nsl

sl = s2

sl != s2

sl

nl -eq n2

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and is a symbolic link.

True if file exists and is a named pipe (fi.fo).

True if file exists and its set-user-ID bit is set.

True if file exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by

default) is associated with a terminal device.

True if the length of string s 1 is zero.

True if the length of the string sl is nonzero.

True if strings sl and s2 are identical.

True if strings sl and s2 are not identical.

True if s 1 is not the null string.

True if the integers nl and n2 are algebraically equal. Any of

the comparisons -ne, -gt, -ge, -lt, and -le may be used instead

of -eq.

1

TEST(l) TEST(l)

These primaries may be combined with the following operators:
! Unary negation operator.
-a Binary AND operator.

-0

(expr)

Binary OR operator (-a has higher precedence than -o).
Parentheses for grouping. Notice also that parentheses are
meaningful to the shell. Therefore, they must be quoted.

SEE ALSO
find(l).
sh(l) in the UNIX System V User's Reference Manual.

WARNINGS

2

If an owned file is tested (the -r, -w, or -:x: tests), but the permission tested
does not have the owner bit set, a nonzero (false) exit status will be returned
even though the file may have the group or other bit set for that permission.
The correct exit status will be set if executed by the super-user.
The = and != operators have a higher precedence than the -r through -n
operators, and= and!= always expect arguments; therefore,= and!= can­
not be used with the -r through -n operators.
If more than one argument follows the -r through -n operators, only the
first argument is examined; the others are ignored unless -a or -o is the
second argument.

01/90

-~-lll!illlllilli!llllli!l ________________ _________________ i_•···

TFTP(l) TFTP(l)

NAME
tftp - trivial file transfer program

SYNOPSIS
/usr/ip32/tcpip/tftp [host [port]]

DESCRIPTION

01/90

tftp is the user interface to the Internet Trivial File Transfer Protocol
(TFTP), which allows users to transfer files to and from a remote machine.
The remote host may be specified on the command line. In this case tftp uses
host as the default host for future transfers (see the connect command
below). If host is specified on the command line, an optional port number
can also be specified. In this case, tftp uses that port number for future
transfers.

Once tftp is running, it issues the tftp > prompt and recognizes the follow­
ing commands:

connect host [port]
Set the host (and optionally port) for transfers. The TFTP protocol,
unlike the FTP protocol, does not maintain connections between
transfers; thus, the connect command does not actually create a
connection, but specifies the host to be used for transfers. The con­
nect command does not need to be used; the remote host can be
specified as part of the get or put command.

mode transfer-mode

put file

Set the mode for transfers; transfer-mode may be ascii or binary.
The default is ascii.

put l.ocal-file remote-file
put filel file2 ... fileN remote-directory

Copy a file or set of files to the specified remote file or directory. The
destination can be in one of two forms: a file-name on the remote
host if the host has been specified or a string of the form host@file­

name to specify both a host and file name at once. If the latter form
is used, the host name specified becomes the default for future
transfers. If the remote-directory form is used, the remote host is

assumed to be a UNIX machine.

get file-name
get remote-name l.ocal-name
get filel file2 ... fileN

Get a file or set of files from the specified source. The source can be
in one of two forms: a file-name on the remote host if the host has
been specified or a string of the form host@file-name to specify both
a host and file name at once. If the latter form is used, the last host
name specified becomes the default for future transfers.

1

TFTP(1) TFTP(1)

quit Exit tftp. An end-of-file also exits.

verbose
Toggle verbose mode.

trace Toggle packet tracing.

status Show the current status.

rexm t retransmlsslon-t lmeout
Set the per-packet retransmission timeout. The timeout is specified
in seconds.

timeout total-transmission-timeout
Set the total transmission timeout. The timeout is specified in
seconds.

ascii Synonym for mode ascii.

binary
Synonym for mode binary.

? [command-name ...]
Print help information.

help [command-name ...]
Print help information.

SEE ALSO
tftpd(lM) in the CLIX System Administrator's Reference Manual.

CAVEATS

2

Because no user login or validation is in the TFTP protocol, the remote site
will probably have file access restrictions. The exact methods are specific to
each site.

01/90

__ ..,.. _________________________ !lill!llOI ___________ ""_"

TO_FLOp(l) TO_FLOP(l)

NAME
to_ft.op, fr_ft.op - continuous ft.oppy disk filters

SYNOPSIS
to_:flop [-1] [-b blocks] [-n num] [-f name] [-d device]

fr_:flop [-1] [-b blocks] [-n num] [-f name] [-d device]

DESCRIPTION
to_ftop copies data from standard input to a ft.oppy disk device, prompting
the user to insert sequential ft.oppy disks as needed. Data is output in 512-
byte blocks until the specified number of blocks is written to the ft.oppy

disk.

fr _flop reads data from a ft.oppy disk device and outputs to standard out,

prompting the user to insert sequential ft.oppy disks as needed.

The following options are recognized:

-1 Indicate that the ft.oppy has low density and contains only 720

-b blocks

-n num.

-f name

-d device

blocks (1440 on a 31h-inch disk) (The default is high density
containing 2400 (2880) blocks.)

Specify the total number of 512-byte blocks on the ft.oppy.
This option is used when the ft.oppy does not contain the stan-
dard 720 (1440) or 2400 (2880) blocks.

Specify the starting number for subsequent ft.oppy prompting.
This is used only when generating the prompt message.

Specify the ft.oppy set name for subsequent ft.oppy prompting.
This is used only when the prompt message is generated.

Specify that device will be used as the input or output device.
If this option is not specified, /dev/rdsk./:fl is used.

The -d and -b options allow the utility to be used with devices other than
ft.oppy disks if the device capacity is known.

EXAMPLES

FILES

To make a multiple ft.oppy disk cplo(l) archive of the /usr file system, use

the following command:

find /usr -print I cpio -o I to_ft.op

To retrieve the cpio(l) archive located on the ft.oppy disk set made from the

above to_ftop example, use the following command:

f r_ft.op I cpio -ivmud

/dev/rdsk/fl

WAR.NINOS

default ft.oppy device

01/90

Label the ft.oppy disks created by to_ftop with sequence numbers. No indi­
cation of the sequence number is written to the ft.oppy disks.

1

--llllilllM----------------------------'-'""

TOPCPU(l) TOPCPU(l)

NAME
topcpu - CRM utility for monitoring CPU time

SYNOPSIS
/usr/ip32/crm/topcpu [-I interval] [-i input-file] [-o output-file] [-w]

DESCJUPTION
topcpu monitors the amount of CPU time being used in each of the following

modes: user, kernel, wait 110, swap 1/0, phys 1/0 (physical 1/0), and sxbrk

(time spent allocating memory for a new job).

The following options are available:

-I interval Specify how frequently the monitor samples and displays
information. The interval is the number of seconds. The
def a ult is 2.

-i input-file Read the data from input-file each interval. The input-file

must have been created as an output-file using the -o option.
A - for input-file reads input from stdin.

-o output-file Direct output to output-file. A - for output-file directs output

to stdout.

-w Execute topcpu in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the

length of the window with the standard modify icon. To receive a descrip­

tion of each category represented in the monitor bar graphs, select the ques­

tion mark(?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in topcpu, select the color

palette icon from the window icon box. A small Color menu will appear.

The foreground color is displayed when the menu first appears. Clicking the

mouse button moves to the next color. Exit and save the changes by select­

ing the delete icon in the Colors window. These colors are saved for this

monitoring session only.

A brief explanation of the topcpu fields follows. A similar list can be

accessed online by keying in ? while the monitor is running.

%Used Displays the amount of overall CPU time being used
by a process.

%User/System used Displays a type of bar graph composed of U (user)
and S (system) to illustrate visually how much CPU

time used by a process is being taken up by the user
(the process itself) or by the system. Each U or S
represents about two percent.

SEE ALSO
crm(l).

WA:R.NINGS
Sending raw data to a file can create a very large file.

01/90 1

TOPFAULT(l) TOPFAULT(l)

NAME
topfault - CRM utility for monitoring page faults

SYNOPSIS
/usr/ip32/crm/topfault (-1 interval] [-i input-file] [-o output-file]

DESCR.IPTION
topfault monitors the page faults being encountered by each process running
on the system.

The following options are available:

-I interval Specify how frequently the monitor samples and displays
information. The interval is the number of seconds. The
def a ult is 2.

-i input-file Read the data from input-file each interval. The input-file

must have been created as an output-file using the -o option.
A - for input-file reads input from stdin.

-o output-file Direct output to output-file. A - for output-file directs output
to stdout.

A brief explanation of the topfault fields follows. A similar list can be

accessed online by keying in a ? while the monitor is running.

Sample time Displays how frequently (in seconds) the monitor gathers
and displays information. The def a ult setting is two
seconds. This time interval can be changed by pressing
the up arrow key (to increment) and the down arrow key
(to decrement).

Max displayed

vfault

pf a ult

Displays the maximum number of faulting processes.
This value can be changed by pressing the right arrow key
(to increment) and the left arrow key (to decrement).

Displays virtual faults. The vfault value is the sum of
the four following values defined by CLIX. Remember
that, out of the four following types of faults, only swap
and file faults go to the disk; demand and cache faults are
satisfied in memory.

demand demand zero and demand fill pages

swap

cache

fault satisfied when swapping to memory

fault satisfied in the cache

file fault satisfied from a file

Displays protection faults. The pfault value is the sum of

the following values:

cop_ wrt (Copy-on-write) If two processes are sharing
a copy-on-write page in memory, the page
must be copied when one process needs to

01/90 1

TOPFAULT(l)

freedpgs

unmodsw

unmodfl

swapin

swapout

SEE ALSO
crm(l).

WARNINGS

steal

TOPFAULT(l)

write to the page.

If a page is marked copy-on-write but only
one process is accessing it, the page does not
need to be copied. Instead, the protections are
changed on the page so that one process can
write to it.

Displays the number of pages that were freed on the sys­
tem during the last sample interval.

Displays the number of unmodified pages in swap (as
determined by getpages) during the sample time period.

Displays the number of unmodified pages in all files (as
determined by getpages) during the sample time period.

Displays the number of pages swapped into memory dur­
ing the sample time period.

Displays the number of pages swapped out of memory
during the sample time period.

Sending raw data to a file can create a very large file.

2 01/90

1·rs_U<~

TOPIO(l) TOPIO(l)

NAME
topio - CRM utility for monitoring VO activity

SYNOPSIS
/usr/ip32/crm/topio [-I interval] [-i input-file] [-o output-file]

"""' DESCRIPTION

01/90

topio monitors the VO activity on the system and displays which processes
are performing the activity.

The following options are available:

-I interval Specify how frequently the monitor samples and displays
information. Interval is the number of seconds. The default
is 2.

-i input-file Read the data from input-file each interval. Input-file must
have been created as an output-file using the -o option. A -
for input-file reads input from stdin.

-o output-file Direct output to output-file. A - for output-file directs output
to stdout.

A brief explanation of the topio fields follows. A similar list can be accessed
online by keying in ? while the monitor is running.

b_read
b_ wrt Displays the number of reads (b_read) and writes (b_ wrt) to

the block-oriented device (the disk). The "b" represents block.

l_read
l_wrt

cache

phread
phwrt

sysrd
syswrt

rdch
wrtch

device

Displays the number of data accesses (by a program) to the sys­
tem buffer cache.

Displays the percent of VO that is satisfied by the buffer cache
(rather than by the block-oriented device, or disk). This value
is derived from the difference between the b_read and l_read
values.

Displays the number of physical reads and writes to the raw
disk.

Displays the number of system calls to the read and write rou­
tines.

Displays the total number of bytes (characters) that are
transferred by all read and write calls from a program regard­
less of where the data came from (cache, disk, or memory).

Displays the Small Computer System Interface (SCSI) devices
involved in VO on the system.

1

TOPIO(l)

ops

busy

bent

avque

currque

ioch

SEE ALSO
crm(l).

WARNINGS

TOPIO(l)

Displays the number of 1/0 operations that occurred on the
corresponding SCSI bus.

Displays the percentage of time that the SCSI device was busy
with 1/0 operations (versus how much time spent idle).

Displays a count of disk blocks that were transferred.

Displays the average number of times that 1/0 had to wait
because the SCSI device was busy servicing other 1/0 requests.

Displays the current 1/0 queue depth (how many 1/0 requests
are in the queue to be serviced).

Displays the number of characters transferred by the
corresponding process.

Sending raw data to a fi.le can create a very large fi.le.

2 01/90

TOPMEM(l) TOPMEM(l)

NAME
topmem - CRM utility for monitoring physical and virtual memory

SYNOPSIS
. ..-.. /usr/ip32/crm/topmem [-I interval] [-i input-file] [-o output-file] [-w]

~ DESC:R.IPTION

01/90

topmem monitors the amounts of physical and virtual memory being used by

processes on the system.

The following options are available:

-I interval Specify how frequently the monitor samples and displays

information. Interval is the number of seconds. The default

is 2.

-i input-file Read the data from input-file each interval. Input-file must

have been created as an output-file using the -o option. A -

for input-file reads input from std.in.

-o output-file Direct output to output-file. A - for output-file directs output

to std.out.

-w Execute topmem in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the

length of the window with the standard modify icon. To receive a descrip­

tion of each category represented in the monitor bar graphs, select the ques­

tion mark (?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in topmem, select the color

palette icon from the window icon box. A small Color menu will appear.

The foreground color is displayed when the menu ftrst appears. Clicking the

mouse button moves to the next color. Exit and save the changes by select­

ing the delete icon in the Colors window. These colors are saved for this

monitoring session only.

A brief explanation of the topmem fields follows. A similar list can be

accessed online by keying in ? while the monitor is running.

freepages Displays the average number of pages that were

free (available) during the last sample interval.

proc_phys

freeswap

Physical_ size

Displays the sum of all Weighted_physical_size

values. The resulting sum indicates the total

physical memory used by all processes.

Displays the amount of space available on the

swap device.

Displays the total amount of physical memory

(valid pages) being used by the indicated pro­

cess.

1

TOPMEM(l) TOPMEM(l)

Virtual_size Displays the size of the virtual address space
being used by the indicated process. This value
indicates the amount of swap space being allo­
cated to processes.

Weighted_physical_size Displays the sum of valid pages used by a pro- ""
cess, modified by the number of processes that_.,,
share it. When several processes can share
memory pages, fewer pages will need to be allo-
cated for the later processes since they will share
some of the pages that have already been allo-
cated by earlier processes. This value indicates
the amount of physical memory actually being
used.

For example, if three vterm processes were run­
ning, the first process executed would be allo­
cated the memory pages needed to run. The
second and third vterm processes would not
require as many memory pages because they
could share some of the pages allocated to the
original process. Therefore, the weighted physi­
cal size of each process will vary depending on
the number of pages already allocated to another
process that the processes can share.

SEE ALSO
crm(l).

WARNINGS
Sending raw data to a file can create a very large file.

2 01/90

TOPSYS(l) TOPSYS(l)

NAME
topsys - CRM utility for monitoring system activity

SYNOPSIS
/usr/ip32/crm/topsys [-I interval] [-i input-file] [-o output-file]

DESCRIPTION
topsys monitors the activity of the entire system. It simultaneously displays

the activities that the other four system monitors (topmem(l), topcpu(l),

topio(l), and topfault(l)) show individually to give a complete overview of

system activity.

topsys is a graphics-based monitor in which the percentage of system

resources being used by each process is represented by bars of contrasting

colors. topsys cannot presently display in a curses-based format. Although

the alphanumeric console of servers will not display graphics, topsys can run

on a local server and display on a remote workstation.

The following options are available:

-I interval Specify how frequently the monitor samples and displays

information. Interval is the number of seconds. The default

is 2.

-i input-file Read the data from input-file each interval. Input-file must

have been created as an output-file using the -o option. A -

for input-file reads input from std.in.

-o output-file Direct output to output-file. A - for output-file directs output

to stdout.

In graphics, to expand the list of processes being monitored, stretch the

length of the window with the standard modify icon. To receive a descrip­

tion of each category represented in the monitor bar graphs, select the ques­

tion mark(?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in topsys, select the color

palette icon from the window icon box. A small Color menu will appear.

The foreground color is displayed when the menu first appears. Clicking the

mouse button moves to the next color. Exit and save the changes by select­

ing the delete icon in the Colors window. These colors are saved for this

monitoring session only.

EXAMPLES
To run topsys on a graphics monitor from a remote server, the following

command may be used:

topsys -o - I rpipe node.user.password topsys -i -

In the above syntax, node.user.password is the node name and login of the

graphics workstation on which to display the monitor.

SEE ALSO
crm(l), topmem(l), topcpu(l), topio(l), topfault(l).

01/90 1

TOPSYS(l) TOPSYS(l)

WARNINGS
Sending raw data to a file can create a very large file.

0

2 01/90

UCPNICE(l) UCPNICE(l)

NAME
ucpnice - run a process at UCP priority

SYNOPSIS
ucpnice priority command [argument ...]
ucpnice priority -p pid

DESCRIPTION
ucpnlce executes command at the User Controlled Priority (UCP) specified by
priority. If priority is 128, then the UCP priority is cleared.

If -p is specified, then the currently running process with process ID pid is
changed to the UCP priority priority.

Additional processes that may be /ork(2)ed from command or the process pid
inherit the UCP priority of their parent.

This command fails if the priority is not in the range 0-128 or the process ID
specified does not exist.

SEE ALSO
ucpset(2I), ucpclr(2I).

DIAGNOSTICS
ucpnice returns the exit status of the subject command.

NOTES
Only the super-user can execute this command.

12/88 1

VISIT(l) VISIT(l)

NAME
visit - Intergraph remote login program

SYNOPSIS
visit [-p protocol] [option ...] [host]

DESCR.IPTION
visit is a remote login program that supports the Intergraph Xerox Network

Systems (XNS) XT protocol and the Bridge XNS Virtual Terminal Protocol

(VTP). Both protocols can be active at the same time, providing the same

user interface.

If visit is invoked without command-line options, it will enter interactive

mode with a visit> prompt.

Once a connection is made, an escape sequence will return visit to interactive

mode.

Host specifies the remote system. Host can be entered as a node name or net­

work address. The node name is specified in the Intergraph clearinghouse

(see clh(l)). A network address has the form [xxxxxx.] aa-bb-cc-dd-ee-ff,

where xxxxxx is an optional Local Area Network (LAN) number, and aa-bb­

cc-dd-ee-ff is an Ethernet address.

visit searches the login directory for a .rloginrc file that can be used to

specify def a ult options and a simple chat script.

The following sections describe the options available from the command

line. They can also be entered using the visit connect command. The -p

option defines the protocol to be used for the current session. The valid pro­

tocols are rt and vtp. The default protocol is rt.

The following three sections describe options available to visit on the com­

mand line and as options to the visit connect command.

General Options

01/90

The following options can be used for all protocols:

-e chars

-f logfile

-i time

-n

Specify an escape sequence to access interactive mode. Chars

specifies a sequence of characters, where "" represents <CON­

TROL> and \"" represents "". The default sequence is

<CONTROL>-Y <CONTROL>-Y. To prevent escaping to

interactive mode, a null escape sequence may be entered (such

as -e ••). This is useful for captive accounts.

Specify a log file on the local machine. If the specified file does

not exist, it will be created. If the file exists, it will be

overwritten.

Specify the time (in 1/60-second intervals) that visit will

check for terminal input. The default is 5.

Ignore the login script .rloginrc. However, default visit con­
nect options in the login script are not ignored.

1

VISIT(l) VISIT(l)

2

-q

-r

Prevent the display of certain visit messages. These messages
include the XON/XOFF message that appears during a visit con­
nect and the termination message. This option is useful for
cosmetic purposes in shell scripts that invoke visit.

Send a <RETURN> to the remote host after a connection is
established. This option can be used if the remote host does
not automatically prompt the user to log in.

-s baud.rate Set the terminal baud rate for the visit session.

-w Stop visit from waiting for input from a device attached to an
auxiliary port.

-x Cause the local system to interpret XON/XOFF (<CONTROL>­
S/ <CONTROL >-Q) flow control. This is the default if the local
terminal is set to ixon (see stty(l)).

-y Allow XON/XOFF (<CONTROL>-S/<CONTROL>-Q) to be
passed to the remote host instead of being interpreted by the
local system. This option is useful when running programs on
the remote host that need to interpret the XON/XOFF character
sequences. For example, emacs uses <CONTROL> -S as a com­
mand. The -y option is the opposite of the -x option. This is
the default if the local terminal is set to -ixon (see stty(l)).

-1 Display a usage message and exit.

XT Protocol Options ~
-o Prevent the connection to the remote host from being ter- ~

minated on logout. To disconnect or exit from the remote sys-
tem, enter the escape sequence in interactive mode.

-t device If a remote host is running CLIX, device is a device number of
the remote terminal device. (A device of 5 would correspond
to the terminal device /dev/ttnOS.) If the device is preceded
by a+, a getty(lM) will not be started.

If a remote host is an Intergraph VAX/VMS system, an XT dev­
ice name becomes associated with the logical name device.

VTP Protocol Options
-c Configure a Communications Server. Only the super-user can

execute this option. No other options should be specified.

-1 port# Specify the port on a Communications Server for the connec­
tion. See the Intergraph XNSIVTP Administrator's Guide for a
discussion of port and rotary numbers.

-j address Specify an X.25 address to access a host on a Public Data Net­
work (PDN) through an XNS/X.25 gateway. If the X.25 host is
connected directly to an XNS/X.25 Gateway, the X.25 address
need not be specified.

01/90

---------llll!llilll __________________ illlli!l'l __________ 'c

VISIT(l) VISIT(l)

Interactive Commands
? [command] Display help information for the specified com­

mand. If no command is given, list all available
commands.

! [l.ocal command]

connect [option ...] host

disconnect session

exit

help [command]

quit

resume session#

show _sessions

stop_log session#

unstop_log session#

version

Execute a command on the local host. Specifying
! alone will start a shell process.

Connect to the specified host. All options
described above can be used with the visit con­
nect command. Each visit connect establishes a
session (maximum of eight sessions). Sessions are
numbered starting with 0.

Disconnect session.

Terminate all connections and exit.

Synonym for the ? command.

Synonym for the exit command.

Resume session#.

List all current sessions.

Stop logging session#. Logging must have been
turned on by the -f option.

Resume logging session#.

Display the visit release date .

. rloginrc File Commands

01/90

The following commands are available in the .rloginrc startup file. The

first line of a file may contain a c followed by a list of options. The follow­

ing lines may contain chat scripts for different remote hosts. Each chat

script begins with a line starting with a !.

connect [option ...] List default visit connect options. These options
can be overridden on the command line. This must

I [host]

output string

input timeout string

be the first line of the .rloginrc file if it is included.

Start a new chat script. If host is specified, this chat
script will be used every time a session is started
with host. host may be specified as a node name or
network address. To override this chat script, use
the -n option. If an argument is not specified, this
chat script will be the default chat script.

Output string to the session once it is connected.
String is a sequence of characters, where"" represents
<CONTROL> and \"" represents "".

Wait for host to print string. String is a sequence of
characters, where "" represents <CONTROL> and \""
represents ", The timeout is specified in seconds. If

3

VISIT(l) VISIT(l)

string is not received within timeout seconds, visit
will ignore the rest of the chat script.

EXAMPLES
An example .rloginrc would appear as follows:

connect -y -e "" -f Iogfile.dat
! is200

input 5 lo~in:
output joe M
input 2 word:
output abc123"M
input 60 $
output who "M

The first line specifies the default visit connect options to be used anytime a
session is started. The rest of the script is an example of a chat script to be
used when a connection is made to "is200."

When a connection is made to "is200," visit sets the default options "-y -e ""
-f logfile.dat" and then waits a maximum of five seconds for the string
"login:." When this string is received, the string "joe< RETURN>" is sent to
the remote system. visit then waits a maximum of two seconds for "word:,"
the last portion of "password:." visit sends the password
"abcl23<RETURN>," waits a maximum of 60 seconds for the"$" prompt,
and finally sends "who<RETURN>" to the remote system and returns con­
trol to the user.

SEE ALSO

4

Intergraph Network Core User's Guide.
XNSIVTP Administrator's Guide.

01/90

_111116!1ii _________ .._ ________________ ._. ___________ "

-

VMSBACKUP{l) VMSBACKUP(l)

NAME
vmsbackup - read a VMS backup tape

SYNOPSIS
vmsbackup [-tx] [-cdevw] [-s setnum] [-n setname] [-f tapefile]

[name ...]

DESCRIPTION

01/90

vmsbackup reads a VMS-generated backup tape and writes the files to a CLIX

disk. The default operation of the program is to extract every file from the

tape and write it to disk. The default may be modified by the following

options:

-c

-d

-e

-f

Use complete file names including the version number. A

colon and the octal version number will be appended to all file

names. This option is useful only when multiple versions of

the same file are on a single tape or when a file with the same

name exists in the destination directory. By default, version

numbers are ignored.

Use the directory structure from VMS.

Process all file name extensions. Since this program is mainly

intended to move source code and possibly data from a VMS

system to a CLIX system, the default is to ignore all files

whose file name extensions specify system-dependent data.

The file types that will be ignored unless the -e option is

specified are as follows:

exe VMS executable file
lib VMS object library file
obj RSX object file
odl RSX overlay description file
olb RSX object library file
pmd RSX post-mortem dump file
stb RSX task symbol table file
sys RSX boo table system file
tsk RSX executable task file

Use the next argument in the command line as the tape device

to be used rather than the default /dev/rmt/Om.

-s setnumber Process only the given saveset number.

-n setname Process only savesets on the tape whose names match the set­

name argument. Pattern matching in the manner of sh(l) is

attempted using the meta-characters•,?,!,[, and].

-t tapefile

-v

Produce a table of contents (a directory listing) on the stan­

dard output of the files on tape.

Set verbose mode. The verbose option will cause the names of

the files being read from tape to be written to standard

1

VMSBAC.KUP(l)

-w

-x

FILES
/dev/rmt/Om

CAVEATS

VMSBAC.KUP(l)

output.

Query the user for file disposition. vmsbackup prints the mes­
sage "extract file-name [ny]" and waits for user confirmation
that the file is to be extracted. If a word beginning with y is
given, the file is copied to the file system. Any other input is
interpreted as no.

Extract the named files from the tape. The optional name
argument specifies one or more file names to be searched for on
the tape. Pattern matching in the manner of sh(1) is
attempted using the meta-characters •, ?, !, [, and] . Only
files with matching names are processed.

default tape device

The file name match uses the complete VMS file names.

2 01/90

----------i!lillllllllllll!llllllllllll!Ml!!l ... ---------------!llilllillllll!il!llllill!llllJiiJllliilllll!flii-------·W

WATCHER(l) WATCHER(l)

NAME
watcher - CRM utility for monitoring system calls and faults

SYNOPSIS
/usr/ip32/crm/watcher event-options [-a] [-o output-file] input-option

DESCRIPTION

01/90

If a summary of the system calls was selected to be displayed, the calls will

be displayed when watcher is exited. Otherwise, a scrolling list of the sys­

tem calls and faults being encountered by the specified process will be

displayed.

The following event-options are available:

-f fault-options Enable monitoring of system faults. The ALL option

will provide monitoring of all system faults. Other

fault-options that can be defined are demand, swap,

cache, file, cw, and steal.

-s system-call-types Enable monitoring of system calls. The ALL option

enables all system calls to be monitored. Other sys­

tem calls are program-specific and are therefore

user-definable.

The following options are available:

-a

-o output-file

Translate addresses. If the program was compiled to

include debugger symbols (such as to be used by dbg(l)),

watcher can read these symbols and provide more logical

values for the program counter (PC).

Specify an output-file for raw data to be stored in. A - can

be used to direct output to stdout.

The following input-options are available:

-i input-file Read the data from input-file, Input-file must have

been created as an output-file using the -o option. A -

for input-file reads input from std.in.

-ppld

-n process-name

Specify the ID number of the process to monitor

(PIO). The user can key in ps -e at the system

prompt to determine the PIO of a process already

running.

Specify the name of the process to monitor. The user

can key in ps -e at the system prompt to determine

the name of a process already running.

-e command [arg ...] Allow the user to run, provide arguments for, and

monitor a program.

A brief explanation of the watcher System Faults fields follows:

1

WATCHER.(1) WATCHER.(1)

System Fault Displays the occurrence of a page fault and the fault
type (such as demand, swap, cache).

PC (program counter) Displays the address of the program instruction that
took the fault.

Virtual address Displays the address that was accessed to cause the
fault.

A brief explanation of the watcher System Calls fields follows:
PC (program counter) Displays the address of the program instruction that

issued the system call.
argO, argl ... argn Displays any arguments of the system call.
completion status Displays the success or failure of a system call or

provides data about the call. For instance, a write(2)
would display a value in this field to indicate the
number of bytes that were written during the call.

EXAMPLES
A sample of system call and system fault fields are displayed in the Profiler
as follows:

System Faults: DEMAND
PC:Ox00004400
Virtual address: Ox0040157d

OPEN system call
PC: Oxff804e62
argO: 647773 7361702F 6374652F /etc/passwd
argl: 00000000

completion status: 1
SEE ALSO

crm(l), write(2).

WARNINGS
Sending raw data to a file can create a very large file.

2 01/90

________ l!llill1ill _________________ l!l!llllllll ____________ "

YPCAT(l) YPCAT(l)

NAME
ypcat - print values in a YP database

SYNOPSIS
ypcat [-k] [-t] [-d domain-name] mname
ypcat -x

DESCltlPTION
ypcat prints values in a Yellow Pages (YP) map specified by mname, which
may be either a mapname or a map nickname. Since ypcat uses the YP net­
work services, no YP server is specified.

To look at the network-wide password database, passwd.byname, (with
the nickname passwd) key in:

ypcat passwd

The following options are available:

-k Display the keys for maps in which the values are null or
the key is not part of the value. (None of the maps
derived from files that have an ASCII version in /etc fall
in this class.)

-t Inhibit translation of mname to mapname. For example,
ypcat -t passwd fails because no map is named passwd;
whereas, ypcat passwd is translated to ypcat
passwd.byname.

-d domain-name Specify a domain other than the default. The default
domain is returned by domname(l).

-x Display the map nickname table. This lists the nicknames
(mnames) with which the command is familiar and indi­
cates the mapname associated with each nickname.

Refer to ypjiles(4) and ypserv(lM) for an overview of the YP.

SEE ALSO
ypfiles(4), ypmatch(l), domname(l).
ypserv(lM) in the CLJX System Administrator's Reference Manual.

12188 1

YPMATCH(l) YPMATCH(l)

NAME
ypmatch - print the value of one or more keys from a YP map

SYNOPSIS
ypmatch [-d domain] [-k] [-t] key ... mname
ypmatch -:x:

DESCR.IPTION
ypmatch prints the values associated with one or more keys from the Yellow
Pages (YP) map (database) specified by a mname, which may be either a map­
name or a map nickname.

Multiple ke-ys can be specified; the same map is searched for all. The ke-ys
must be exact values in capitalization and length. No pattern matching is
available. If a key is not matched, a diagnostic message is produced.

The following options are available:

-d Specify a domain other than the def a ult.

-k Before printing the value of a key, print the key itself followed by a
colon (":"). This is useful only if the ke-ys are not duplicated in the
values, or so many ke-ys have been specified that the output could be
confusing.

-t Inhibit translation of nickname to mapname. For example,
ypmatch -t zippy passwd fails because no map is named passwd,
while ypmatch zippy passwd is translated to ypmatch zippy
passwd.byname.

-:x: Display the map nickname table. This lists the nicknames (mnames)
with which the command is familiar and indicates the mapname
associated with each nickname.

SEE ALSO
ypfiles(4), ypcat(l).

12/88 1

YPP ASSWD(l) YPPASSWD(l)

NAME
yppasswd - change login password in YP

SYNOPSIS
yppasswd [name]

DESCRIPTION
yppasswd changes or installs a password associated with the user name (login
name default) in the Yellow Pages (YP). The YP password may be different
from the one on the local machine.

yppasswd prompts for the old YP password and then for the new one. The
user must supply both. The new password must be typed twice to avoid
mistakes. New passwords must have at least four characters if they use a
sufficiently-rich alphabet (uppercase, lowercase, and nonalphabetic charac­
ters) or at least six characters if monocase (all uppercase or all lowercase).

Only the name owner or super-user may change a password; in either case
the old password must be supplied.

SEE ALSO
ypfiles(4).

BUGS

12/88

yppasswdd(lM) in the CLIX System Administrator's Reference Manual.
passwd(l) in the UNIX System V User's Reference Manual.

The update protocol passes all information to the server in one Remote Pro­
cedure Call without looking at it. Thus, if the old password is typed in
incorrectly, notification will not be sent until after the new password has
been entered.

1

~ en co
3
()
~
en
:§

c

c

INT:R.0(2) INT:R.0(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESC:RIPTION

12/88

This section describes all system calls. Certain major collections are

identified by a letter after the section number:

(2B) Certain 4.3 Berkeley Softtware Distribution (BSD) functionality was

added to CLIX through additional system calls. The system calls can

be accessed with the library libbsd. They are not automatically

loaded as needed by the C compiler, cc(l). However, the link editor,

Zd(l), searches this library under the -lbsd. option.

(21) These system calls are CLIX-specific calls. The system calls can be

accessed with the Intergraph Library libix. They are not automati­

cally loaded as needed by the C compiler, cc(l); however, the link

editor, Zd(l), searches this library under the -lix option.

Most of these calls have one or more error returns. An error condition is

indicated by an otherwise impossible returned value. This is almost always

-1 or the null pointer; the individual descriptions specify the details. An

error number is also available in the external variable errno. Errno is not

cleared on successful calls, so it should be tested only after an error is indi­

cated.

Each system call description attempts to list all possible error numbers. The

following is a complete list of the error numbers and their names as defined

in < errno.h >.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file forbidden

except to its owner or super-user. It is also returned if an ordinary

user attempts an action allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should

exist but does not, or when one of the directories in a path name does

not exist.

3 ESRCH No such process
No process can be found that corresponds to the process specified by

pld in klU(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), that the user

elected to catch, occurred during a system call. If execution is

resumed after processing the signal, it will appear as if the inter­

rupted system call returned this error condition.

1

INTR0(2) INT:R.0(2)

2

5 EIO 1/0 error
Some physical 1/0 error occurred. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice that does not exist or is
beyond the limits of the device. It may also occur when, for exam­
ple, a tape drive is not online or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec(2) family.

8 ENOEXEC Exec format error
Execution of a file that, although it has the appropriate permissions,
does not start with a valid magic number (see a.out(4)) is requested.

9 EBADF Bad file number
Either a file descriptor refers to no open file or a read(2) (respec­
tively, write(2)) request is made to a file that is open only for writ­
ing (respectively, reading).

10 ECHILD No child processes
A wait(2) was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork(2) failed because the system's process table is full or the user
is not allowed to create any more processes. Or a system call failed
because of insufficient memory or swap space.

12 ENOMEM Not enough space
During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary con­
dition; the maximum space size is a system parameter. The error
may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough
swap space during a fork(2). This error occurring on a resource
associated with Remote File Sharing (RPS) indicates a memory deple­
tion that may be temporary, depending on system activity at the
time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the pro­
tection system.

14 EF AULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required
A nonblock file was mentioned where a block device was required
(as in mount(2)).

12188

INTI0(2) INTI0(2)

12/88

16 EBUSY Device or resource busy
An attempt was made to mount a device already mounted or to
dismount a device that has an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already enabled.
The device or resource is currently unavailable.

1 7 EEXIST File exists
An existing file was mentioned in an inappropriate context (such as
llnk(2)).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device (such as to read a write-only device).

20 ENOTDIR Not a directory
A nondirectory was specified where a directory is required (such as
in a path prefix or as an argument to chdlr(2)).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (such as dismounting a nonmounted device;
mentioning an undefined signal in slgnal(2) or klll(2); or reading or
writing a file for which lseek(2) has generated a negative pointer).
The error is Also set by the math functions described in the (3M)
entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than NOFILES (default 128) descriptors
open at a time.

2S ENOTTY Not a character device (or) Not a typewriter
An attempt was made to loctl(2) a file that is not a special character
device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program currently
open for writing. Also, an attempt to open for writing or to remove
a pure-procedure program being executed.

2 7 EFBIG File too large
The size of a file exceeded the maximum file size or ULIMIT (see
ullmlt(2)).

28 ENOSPC No space left on device
During a wrlte(2) to an ordinary file, no free space is left on the

3

INTR.0(2) INTR.0(2)

4

device. In fr;ntl(2), the setting or removing of record locks on a file
cannot be accomplished because no more record entries remain on the
system.

2 9 ESPIPE Illegal seek
An lseek(2) was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a tile or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt was made to make more than the maximum number of
links (1000) to a tile.

32 EPIPE Broken pipe
A write on a pipe for which no process to read the data exists. This
condition normally generates a signal; the error is returned if the sig­
nal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the
function's domain.

34 ERANGE Result too large
The value of a function in the math package (3M) is not represent­
able within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue (see msgop(2)).

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the
removal of an identifier from the tile system's name space (see
msgctl(2), semctl(2), and shmctl(2)).

37-44 Reserved numbers

45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains
to tile and record locking.

46 ENOLCK No lock
In fcntl(2), setting or removing record locks on a tile cannot be
accomplished because no more record entries remain on the system.

60 ENOSTR Not a stream
A putmsg(2) or getm.sg(2) system call was attempted on a tile
descriptor that is not a STREAMS device.

62 ETIME Stream ioctl timeout
The timer set for a STREAMS ioctl(2) call expired. The cause of this
error is device specific and could indicate a hardware or software
failure or a timeout value that is too short for the specific operation.

12/88

INTJt0(2) INTR.0(2)

12/88

The status of the loctl(2) operation is indeterminate.

63 ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users
try to advertise, unadvertise, mount, or unmount remote resources
when the machine did no do the proper startup to connect to the net­
work..

65 ENOPKG No package
This error occurs when users attempt to use a system call from a
package that is not installed.

66 ER.EMOTE Resource is remote
This error is RFS specific. It occurs when users try to advertise a
resource that is not on the local machine or try to mount/unmount a
device (or path name) that is on a remote machine.

67 ENOLINK Virtual circuit is gone
This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

68 EADV Advertise error
This error is RPS-specific. It occurs when users try to advertise a
resource that has been advertised, try to stop the RFS while resources
are still advertised, or try to force an unmount on a resource when it
is still advertised.

69 ESRMNT Srmount error
This error is RPS-specific. It occurs when users try to stop RPS while
resources are still mounted by remote machines.

70 ECOMM Communication error
This error is RPS-specific. It occurs when users try to send messages
to remote machines, but no virtual circuit can be found.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is
generally not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RPS-specific. It occurs when users try to access remote
resources that are not directly accessible.

77 EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) l_RECVFD system call to a
STREAMS device, something that cannot be processed has come to the
head of the queue. What it is depends on the system call:

read(2) - Control information or a passed file descriptor.
getmsg(2) - Passed file descriptor.
ioctl(2) - Control or data information.

5

INTR0(2) INT:R0(2)

6

83 ELIBACC Cannot access a needed shared library
Tried to exec(2) an a.out(4) that requires a shared library (to be
linked in) and the shared library does not exist or the user does not
have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Tried to exec(2) an a.out(4) that requires a shared library (to be
linked in) and exec(2) could not load the shared library. The shared
library is probably corrupted.

85 ELIBSCN .lib section in a.out(4) corrupted
Tried to exec(2) an a.out(4) that requires a shared library (to be
linked in) and erroneous data was in the .lib section of the a.out(4).
The .lib section tells exec(2) the shared libraries needed. The a.out(4)
is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Tried to exec(2) an a.out(4) that requires more shared libraries (to be
linked in) than allowed on the current system configuration.

87 ELIBEXEC Cannot exec a shared library directly
Tried to exec(2) a shared library directly. This is not allowed.

90 EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on
an object in nonblocking mode (see fcntl(2)).

91 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect(2B)) was attempted on a nonblocking object (see fcntl(2)).

92 EALREADY Operation already in progress
An operation was attempted on a nonblocking object that had an
operation in progress.

93 ENOTSOCK Socket operation on nonsocket
Self-explanatory.

94 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

95 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message
buffer or some other network limit.

96 EPROTOTYPE Protocol wrong type for socket
A protocol that does not support the semantics of the socket type
requested was specified.

97 EPROTONOSUPPORT Protocol not supported
The protocol was not configured in the system or no implementation
exists for it.

98 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type was not configured in the system or

12/88

INTR0(2) INTR0(2)

12188

no implementation exists for it.

99 EOPNOTSUPP Operation not supported on socket
Self-explanatory.

100 EPFNOSUPPORT Protocol family not supported
The protocol family was not configured in the system or no imple­
mentation exists for it.

101 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

102 EADDR.INUSE Address already in use
Only one use of each address is normally permitted.

103 EADDR.NOTAV AIL Can't assign requested address
This normally results from an attempt to create a socket with an
address not on this machine.

104 ENETDOWN Network is down
A socket operation encountered a dead network.

105 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

106 ENETRESET Network dropped connection on reset
The host connected to crashed and rebooted.

107 ECONNABORTED Software caused connection abort
A connection abort was caused internal to the host machine.

108 ECONNRESET Connection reset be peer
A connection was forcibly closed by a peer. This normally results
from a loss of the connection on the remote socket due to a timeout
or a reboot.

109 ENOBUFS No buffer space available
An operation on a socket was not performed because the system
lacked sufficient buffer space or because a queue was full.

110 EISCONN Socket is already connected
A connect(2B) request was made on an already connected socket or a
sendto(2B) request on a connected socket specified a destination when
it was already connected.

111 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket
is not connected and (when sending on a datagram socket) no address
was supplied.

112 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket was shut
down with a previous shutdown(2B) call.

114 ETIMEDOUT Connection timed out
A socket operation timed out. The timeout period depends on the
communication protocol.

7

INTR0(2) INTJt0(2)

8

115 ECONNREFUSED Connection refused
No connection could be made because the target machine actively
refused it. This usually results from trying to connect to a service
that is inactive on the foreign host.

116 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

117 EHOSTUNREACH No route to host
A socket operation was attempted to an unreachable host.

118 ENOPROTOOPT Protocol not available
A bad option or level was specified in a getsockopt(2B) or
setsockopt(2B) call.

Definitions
Process ID

Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process (see fork(2)).
The parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group identified by a
positive integer called the process group ID. This ID is the process ID
of the group leader. This grouping permits the signaling of related
processes (see kill(2)).

Tty Group ID
Each active process can be a member of a terminal group identified
by a positive integer called the tty group ID. This grouping is used to
terminate a group of related processes when one of the processes in
the group is terminated (see exit(2) and signal(2)).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer (0
to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and real group ID that are set to
the real user ID and real group ID, respectively, of the user responsi­
ble for the process creation.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID
used to determine file access permissions. The effective user ID and
effective group ID are equal to the process's real user ID and real
group ID, respectively unless the process or one of its ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set
(see exec(2)).

12/88

INTJt0(2) INTJt0(2)

12188

Super-user
A process is recognized as a super-user process and is granted special
privileges, such as immunity from file permissions, if its e:ffective
user ID is O.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are spe­
cial processes and are re~erred to as procO and procl.

ProcO is the scheduler. Procl is the initialization process (init).
Procl is the ancestor of every other process in the system and is used
to control the process structure.

File Descriptor
A file descriptor is a small integer used to perform VO on a file. The
value of a file descriptor is from 0 to (NOFILES - 1). A process may
have no more than NOFILES file descriptors open simultaneously. A
file descriptor is returned by system calls such as open(2) or pipe(2).
The file descriptor is used as an argument by calls such as read(2),
wrlte(2), loctl(2), and close(2).

File Name
Names consisting of 1 to 14 characters may be used to name an ordi­
nary file, special file, or directory.

These characters may be selected from the set of all character values
excluding \O (null) and the ASCII code for I (slash).

It is generally unwise to use •, ? , [, or] as part of file names because
of the special meaning attached to these characters by the shell (see
sh(l)). Although permitted, using unprintable characters in file
names should be avoided.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, and optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current work­
ing directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as
if it named a nonexistent file.

Directory
Directory entries are called links. By convention, a directory con­
tains at least two links, • and •• , referred to as dot and dot-dot,
respectively. Dot is the directory itself and dot-dot is its parent
directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and

9

INTR.0(2) INTR.0(2)

10

a current working directory for resolving path name searches. The
root directory of a process need not be the root directory of the root
file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted to a
process if one or more of the following is true:

The effective user ID of the process is super-user.
The effective user ID of the process matches the user ID of
the file owner and the appropriate access bit of the "owner"
portion (0700) of the file mode is set.
The effective user ID of the process does not match the user
ID of the file owner, the effective group ID of the process
matches the group of the file, and the appropriate access bit
of the file mode's "group" portion (0070) is set.
The effective user ID of the process does not match the user
ID of the file owner, the effective group ID of the process
does not match the group ID of the file, and the appropriate
access bit of the file mode's "other" portion (0007) is set.

Otherwise, the corresponding permissions are denied.
Message Queue Identifier

A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has an associated
message queue and data structure. The data structure is referred to
as msqid_ds and contains the following members:

struct
struct
struct
ushort
ushort
ushort
ushort
ushort
time_t
time_t
time_t

msg_perm

ipc_perm msg_perm;
msg •msg_first;
msg •msg_last;
msg_cbytes;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

An ipc_perm structure that specifies the message operation
permission (see below). This structure includes the follow­
ing members:

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;

I• creator user ID•/
I• creator group ID •/
I• user ID•/
I• group ID •/

12/88

INTR.0(2) INTR.0(2)

I• r/w permission •/ ushort mode;
ushort seq;
key_t key;

I• slot usage sequence# •I
I• key•/

msg *msg_first
A pointer to the ftrst message on the queue.

msg smsg_last
A pointer to the last message on the queue.

msg_cbytes
The current number of bytes on the queue.

msg_qnum
The number of messages currently on the queue.

msg_qbytes
The maximum number of bytes allowed on the queue.

msg_lspid
The process ID of the last process that performed a msgsnd
operation.

msg_lrpid
The process ID of the last process that performed a msgrcv
operation.

msg_stime
The time of the last msgsnd operation.

msg_rtime
The time of the last msgrcv operation

msg_ctime
The time of the last msgctl(2) operation that changed a
member of the above structure.

Message Operation Permissions

12188

In the msgop(2) and msgctl(2) system call descriptions, the permis­
sion required for an operation is given as {token}, where token is the
type of permission needed, interpreted as follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a msqid are granted to a process if one
or more of the following is true:

The e:fl'ective user ID of the process is super-user.

The e:fl'ective user ID of the process matches
msg_perm.cuid or msg_perm.uid in the data structure
associated with msqid and the appropriate bit of the "user"

11

INTR.0(2) INTR.0(2)

portion (0600) of msg_perm.mode is set.

The eft'ective group ID of the process matches
msg_perm.cgid or msg_perm.gid and the appropriate bit
of the "group" portion (060) of msg_perm.mode is set.

The appropriate bit of the "other" portion (006) of
msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

12

A semaphore identifier (semid) is a unique positive integer created by
a semget(2) system call. Each semid has a set of semaphores and a
data structure associated with it. The data structure is referred to as
semid_ds and contains the following members:

struct ipc_perm sem_perm;/• operation permission struct •I
struct sem •sem_ base; /• ptr to first semaphore in set •I
ushort sem_nsems; /• number of sems in set •I
time_t sem_otime; I• last operation time •/
time_t sem_ctime; I• last change time•/

sem_perm

I• Times measured in secs since •/
I• 00:00:00 GMT, Jan. 1, 1970 •/

An ipc_perm structure that specifies the semaphore opera­
tion permission. This structure includes the following
members:

ushort uid;
ushort gid;
ushort cuid;
ushort cgid;
ushort mode;
ushort seq;
key_t key;

sem_nsems

I• user ID•/
I• group ID•/
I• creator user ID •/
I• creator group ID •/
I• r/a permission•/
I• slot usage sequence number•/
I• key•/

Equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive
integer ref erred to as a sem_num. Sem_num values
run sequentially from 0 to the value of sem_nsems
minus 1.

sem_otime
The time of the last semop(2) operation.

sem_ctime
The time of the last semctl(2) operation that changed
a member of the above structure.

A semaphore is a data structure called sem that contains the
following members:

12/88

INTR.0(2)

12/88

ushort
short
ushort
ushort

semval

semval;
sempid;
semncnt;
semzcnt;

INTR.0(2)

I• semaphore value•/
/* pid of last opera ti on */
/* # awaiting semval > cval */
/* # awaiting semval = 0 •I

A non-negative integer that is the actual value of the
semaphore.

sempid
Equal to the process ID of the last process that per­
formed a semaphore operation on this semaphore.

semncnt
A count of the number of processes currently
suspended and awaiting this semaphore's semval to
become greater than its current value.

semzcnt
A count of the number of processes currently
suspended and awaiting this semaphore's semval to
become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, the
permission required for an operation is given as {token},
where token is the type of permission needed, interpreted as
follows:

00400
00200
00040
00020
00004
00002

read by user
alter by user
read by group
alter by group
read by others
alter by others

Read and alter permissions on a semid are granted to a pro­
cess if one or more of the following is true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
sem_perm.cuid or sem_perm.uid in the data
structure associated with semid and the appropriate
bit of the "user" portion (0600) of sem_perm.mode
is set.

The effective group ID of the process matches
sem_perm.cgid or sem_perm.gid and the
appropriate bit of the "group" portion (060) of
sem_perm.mode is set.

The appropriate bit of the "other" portion (006) of
sem_perm.mode is set.

13

INTR0(2)

14

INTR0(2)

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive
integer created by a shmget(2) system call. Each shmid has a
segment of memory (referred to as a shared memory seg­
ment) and an associated data structure. (These shared
memory segments must be explicitly removed by the user
after the last reference to them is removed.) The data struc­
ture is referred to as shmid_ds and contains the following
members:

struct
int
struct
char
ushort
ushort
ushort
ushort
time_t
time_t
time_t

ipc_perm shm_perm;/* operation permission struct */
shm_segsz; /* size of segment */
region *shm_reg; /*ptr to region structure*/
pad[4]; /*for swap compatibility*/
shm_lpid; /* pid of last operation */
shm_cpid; /* creator pid */
shm_nattch; /*number of current attaches*/
shm_cnattch; /* used only for shminfo */
shm_atime; /* last attach time */
shm_dtime; /*last detach time*/
shm_ctime; /*last change time*/

/* Times measured in secs since */
I* 00:00:00 GMT, Jan. 1, 1970 */

shm_perm
An lpc__perm structure that specifies the shared
memory operation permission. This structure
includes the following members:

shm_segsz

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode;
ushort seq;
key_t key;

/* creator user ID */
/*creator group ID*/
/*user ID*/
/* group ID */
/* r/w permission*/
/*slot usage sequence#*/
I* key*/

The size of the shared memory segment in bytes.
shm_cpid

The process ID of the process that created the shared
memory identifier.

shm_lpid
The process ID of the last process that performed a
shmop(2) operation.

shm_nattch
The number of processes that currently have this

12/88

INTR.0(2)

12/88

INTK.0(2)

segment attached.

sh.m. atlme
- The time of the last shma.t(2) operation.

sh.m. dtime
- The time of the last shmdt(2) operation.

shm ctime
- The time of the last shmctl(2) operation that changed

a member of the above structure.

Shared Memory Operation Permissions
In the shmop(2) and shmctl(2) system call descriptions, the
permission required for an operation is given as {token},
where token is the type of permission needed, interpreted as
follows:

00400
00200
00040
00020
00004
00002

read by user
write by user
read by group
write by group
read by others
write by others

Read and write permissions on a shmld are granted to a pro­
cess if one or more of the following is true:

The efl'ective user ID of the process is super-user.

The efl'ective user ID of the process matches
shm__perm.culd or shm__perm.uid in the data struc­
ture associated with shmid and the appropriate bit of
the "user" portion (0600) of shm__perm.mode is set.

The efl'ective group ID of the process matches
shm__perm.cgld or shm__perm.gid and the appropriate
bit of the "group" portion (060) of shm_perm.mode
is set.

The appropriate bit of the "other" portion (06) of
shm__perm.mode is set.

Otherwise, the corresponding permissions are denied.

STREAMS
A set of kernel mechanisms that support the development of
network services and data communication drivers. It defines
interface standards for character input/output within the
kernel and between the kernel and user-level processes. The
STREAMS mechanism is composed of utility routines, kernel
facilities, and a set of data structures.

Stream
A full-duplex data path within the kernel between a user

15

INTR0(2)

16

INTR.0(2)

process and driver routines. The primary components are a
stream head, a driver, and zero or more modules between
the stream head and driver. A stream is analogous to a
shell pipeline except that data flow and processing are
bidirectional.

Stream Head

Driver

The end of the stream that provides the interface between
the stream and a user process. The principle functions of
the stream head are processing STREAMS-related system calls
and passing data and information between a user process and
the stream.

The interface between peripheral hardware and the stream.
A driver can also be a pseudo-driver, such as a multiplexor
or log driver (see Zog(7)), that is not associated with a
hard ware device.

Module
An entity containing processing routines for input and out­
put data. It always exists in the middle of a stream between
the stream's head and a driver. A module is the STREAMS'
counterpart to the commands in a shell pipeline except that a
module contains a pair of functions that allow independent
bidirectional (downstream and upstream) data flow and
processing.

Downstream
In a stream, the direction from stream head to driver.

Upstream
In a stream, the direction from driver to stream head.

Message
In a stream, one or more blocks of data or information with
associated STREAMS control structures. Messages can be of
several defined types, that identify the message contents.
Messages are the only means of transferring data and com­
municating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing
by a module or driver.

Read Queue
In a stream, the message queue in a module or driver
containing messages moving upstream.

Write Queue
In a stream, the message queue in a module or driver
containing messages moving downstream.

12/88

INTR.0(2) INTR.0(2)

Multiplexor
A driver that allows streams associated with several user
processes to be connected to a single driver or several
drivers to be connected to a single user process. STREAMS
does not provide a general multiplexing driver, but provides
the facilities for constructing them and for connecting multi­
plexed streams configurations.

Sockets and Address Families

SEE ALSO
intro(3).

12188

A socket is an endpoint for communication between
processes. Each socket has queues for sending and receiving
data.

Sockets are typed according to their communications proper­
ties. These properties include whether messages sent and
received at a socket require the name of the partner, whether
communication is reliable, the format used in naming mes­
sage recipients, etc.

Each instance of the system supports some collection of
socket types; consult socket(2B) for more information about
the types available and their properties.

Each instance of the system supports some number of sets of
communications protocols. Each protocol set supports
addresses of a certain format. An Address Family is the set
of addresses for a specific group of protocols. Each socket has
an address chosen from the address family in which the
socket was created.

17

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

12/88

exit terminates the calling process with the following consequences:

All file and socket descriptors open in the calling process are closed.

If the parent process of the calling process is executing a walt(2), the parent
process is notified of the calling process's termination and the low order
eight bits (bits 0377) of status are made available to it (see wait(2)).

If the parent process of the calling process is not executing a wait, the calling
process is transformed into a zombie process. A zombie process only occu­
pies a slot in the process table. It has no other space allocated either in user
or kernel space. The process table slot that it occupies is partially overlaid
with time accounting information to be used by times(2) (see
<sys/proc.h>).

The parent process ID of all of the calling processes' existing child processes
and zombie processes is set to 1. This means the initialization process inher­
its each of these processes (see intro(2)).

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value (see
semop(2)), that semadj value is added to the semval of the specified sema­
phore.

If the process has a process, text, or data lock, an unl.ock is performed (see
pl.ock(2)).

An accounting record is written on the accounting file if the system's
accounting routine is enabled (see acct(2)).

If the process ID, tty group ID, and process group ID of the calling process are
equal, the SIGHUP signal is sent to each process that has a process group ID

equal to that of the calling process.

If a child or sibling of the calling process was stopped due to a stop signal
(see slgnal(2)), the child or sibling will be sent the SIGCONT and SIGHUP sig­
nals.

A death of child signal is sent to the parent.

If the calling process is a process group leader (the calling process at some
point had called setpgrp(2)) and has a controlling terminal with a tty group

1

EXIT(2) EXIT(2)

ID that does not match the caller's process group ID, the signal SIGHUP will
be sent to each process that has a process group ID equal to the tty group ID
or the caller's process group ID.

If the calling process is a process group leader that has a controlling termi­
nal, read and write permission will be removed for all processes that have
this controlling terminal open.

Any outstanding XIO requests will be canceled and the associated resources
will be deallocated.

Any areas of memory locked using vlock(2I) will be unlocked.
The C function exit may cause cleanup actions before the process exits. The
function _exit circumvents all cleanup.

SEE ALSO
intro(2), setpgrp(2), signal(2), sigset(2), wait2(21).
wait(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS
There can be no return from an exit system call.

WAR.NINOS
See WARNINGS in signal(2).

2 12/88

FCNTL(l) FCNTL(l)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl (:fildes, cmd, arg)
int :fildes, cmd, arg;

DESC:R.IPTION
fcntl provides for control over open files. Fildes is an open file descriptor
obtained from a creat(2), open(2), dup(2), fcntl(S), plpe(2), accept(2B),
socket(2B), or socketpalr(2B) system call.

The commands available are as follows:

F _DUPFD Return a new file descriptor as follows:

Lowest-numbered available file descriptor greater than or equal
to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (Both file descriptors share
one file pointer.)

Same access mode (read, write or read/write).

Same file status flags. (Both file descriptors share the same file
status flags.)

The close-on-exec flag associated with the new file descriptor is
set to remain open across exec(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor
fildes. If the low-order bit is 0, the file will remain open across
exec(2). Otherwise, the file will be closed when exec(2) is exe­
cuted.

F_SETFD Set the close-on-exec flag associated with fildes to the low-order
bit of arg (0 or 1 as above).

F _GETFL Get file status flags.

F_SETFL Set file status flags to arg. Only certain flags can be set (see
fcntl(S)).

F_GETLK Get the first lock that blocks the lock description given by the
variable of type struct flock pointed to by arg. The information
retrieved overwrites the information passed to fcntl in the flock
structure. If no lock is found that would prevent this lock
from being created, the structure is passed back unchanged
except for the lock type that will be set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the variable of type
struct flock pointed to by arg (see fcntl(S)). The crnd F_SETLK
is used to establish read (F_RDLCK) and write (F_ WRLCK)

12/88 1

FCNTL(2) FCNTL(2)

2

locks and remove either type of lock (F_UNLCK). If a read or
write lock cannot be set, fcntl will return immediately with an
error value of -1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write
lock is blocked by other locks, the process will sleep until the
segment is free to be locked.

F_GETOWN Get the process ID or process group currently receiving SIGIO
and SIGURG signals; process groups are returned as negative
values.

F _SETOWN Set the process or process group to receive SIGIO and SIGURG sig­
nals; process groups are specified by supplying arg as negative.
Otherwise, arg is interpreted as a process ID.

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is placed must have been
opened with read access.

A write lock prevents any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a file
at a given time. The file descriptor on which a write lock is placed must
have been opened with write access.

The structure flock describes the type (l_type), starting off set (l_whence),
relative off set (l_start), size (Z_Zen), process ID (l_pid), and RFS system ID
(l_sysld) of the file segment to be affected. The process ID and system ID
:fields are used only with the F_GETLK cmd to return the values for a block­
ing lock. Locks may start and extend beyond the current end of a file, but
may not be negative relative to the beginning of the file. A lock may be set
to always extend to the end of :file by setting Z_Zen to zero (0). If such a
lock also has l_whence and l_start set to zero (0), the whole file will be
locked. Changing or unlocking a segment from the middle of a larger locked
segment leaves two smaller segments for either end. Locking a segment that
is already locked by the calling process removes the old lock type and the
new lock type takes effect. All locks associated with a file for a given pro­
cess are removed when a file descriptor for that file is closed by that process
or the process holding that file descriptor terminates. Locks are not inherited
by a child process in a fork(2) system call.

When mandatory file and record locking is active on a file, (see chmod(2)),
read(2) and wrlte(2) system calls issued on the :file will be affected by the
record locks in effect.

fcntl will fail if one or more of the following is true:

[EBADF] Fildes is not a valid open file descriptor or the cmd is
F_GETOWN or F_SETOWN and the descriptor does not refer­
ence a socket.

12/88

FCNTL(2) FCNTL(2)

[EINVAL]

[EINVAL]

[EACCES]

[ENOLCK]

[EDEADLK]

[EFAULT]

[EINTR]

[ENOLINK]

[ESRCH]

Cmd is F _DUPFD. arg is either negative or greater than or
equal to the configured value for the maximum number of
open file descriptors allowed each user.

Cmd is F_GETLK, F_SETLK, or SETLKW and arg or the data
it points to is not valid.

Cmd is F_SETLK, the type of lock (l_type) is a read
(F_RDLCK) lock, and the file segment to be locked is write
locked by another process or the type is a write (F _ WRLCK)
lock and the segment of a file to be locked is read or write
locked by another process.

Cmd is F _SETLK or F _SETLKW, the type of lock is a read or
write lock, and no more record locks are available (too many
file segments locked) because the system maximum has been
exceeded.

Cmd is F _SETLKW and the lock is blocked by some lock
from another process, and putting the calling-process to
sleep, waiting for that lock to become free, would cause a
deadlock.

Cmd is F _SETLK, arg points outside the program address
space.

A signal was caught during the fcntl system call.

Fildes is on a remote machine and the link to that machine
is no longer active.

Cmd is F _SETOWN and the process ID given as an argument
is not in use.

SEE ALSO
accept(2B), socket(2B), socketpair(2B), fcntl(5).
close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2) in the UNIX Sys­
tem V Programmer's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW
F_GETOWN
F_SETOWN

new file descriptor
value of ft.ag (only the low-order bit is defined)
value other than -1
value of file ft.ags
value other than -1
value other than -1
value other than -1
value other than -1
value of file descriptor owner
value other than -1

Otherwise, a value of -1 is returned and errno is set to indicate the error.

3

PCNTL(2) PCNTL(2)

WARNINGS

4

Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is locked by another process, portable appli­
cation programs should expect and test for either value.

12/88

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
#include < sys/types.h >
#include <sys/mount.h>

int mount (spec, dir, m.flag, fstyp, dataptr, datalen)
char llSpec, *Clir;
int mflag, fstyp;
caddr_t dataptr;
int datalen;

DESC:R.IPTION
mount requests that a removable file system contained on the block special
file spec be mounted on the directory dir. Spec and dir are pointers to path
names. Fstyp is the file system type number. The sysfs(2) system call can
be used to determine the file system type number. If the MS_FSS flag bit of
mftag is off, the file system type will default to root file system type. If the
bit is on, fstyp is used to indicate the file system type. Additionally, if the
MS_DATA flag is on in mftag, dataptr and datalen are used to pass mount
parameters to the system. If MS_DATA is off or if dataptr or datalen is zero,
no additional data exists. In the normal case of a local mount, dataptr
should be null. When mounting a Network File System TM (NFS), dataptr
should point to a structure that describes the NFS mount options.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of mftag is used to control write permission on the
mounted file system; if 1, writing is forbidden. Otherwise, writing is per­
mitted according to individual file accessibility.

mount may be invoked only by the super-user. It is intended for only the
mount(lM) utility to use it.

mount will fail if one or more of the following is true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a directory.

[EREMOTE] Spec is remote and cannot be mounted.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

[ENOTBLK] Spec is not a block special device.

12/88 1

MOUNT(2) MOUNT(2)

[ENXIO]

[ENOTDIR.]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY]

[ER.OPS]

[ENOSPC]

[EINVAL]

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address space of the
process.

Dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

The device associated with spec is currently mounted.
No more mount table entries exist.

Spec is write protected and mftag requests write permission.
The file system state in the super-block is not FsOKAY and
mftag requests write permission.

The super-block has a bad magic number, the fstyp is
invalid, or mftag is invalid.

SEE ALSO
sysfs(2), umount(2), fs(4) in the UNIX System V Programmer's Reference
Manual.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

12/88

R.EAD(2) R.EAD(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char •buf;
unsigned nbyte;

DESCRIPTION

12188

Fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2),
pipe(2), accept(2B), socket(2B), or accept(2B) system call.

read attempts to read nb-yte bytes from the file associated with fildes into the
buffer pointed to by bu/.

On devices capable of seeking, the read starts at a position in the file given
by the file pointer associated with fildes. Upon return from read, the file
pointer is incremented by the number of bytes actually read.

Devices incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nb-yte if the file is
associated with a communication line (see loctl(2) and termio(7S)), or if the
number of bytes remaining in the file is less than nb-yte bytes. A value of 0
is returned when an end-of-file is reached.

A read from a STREAMS (see lntro(2)) file can operate in three different
modes: "byte-stream" mode, "message-nondif:card" mode, and "message­
discard" mode. The default is byte-stream mode. This can be changed using
the l_SROOPT loctl(2) request (see streamio(7)), and can be tested with the
l_GROOPT ioctl(2). In byte-stream mode, read will retrieve data from the
stream until it retrieves nb-yte bytes or until there is no more data to be
retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has read
nb-yte bytes or until it reaches a message boundary. If the read does not
retrieve all the data in a message, the remaining data is replaced on the
stream and can be retrieved by the next read or getmsg(2) call. Message­
discard mode also retrieves data until it has retrieved nb-yte bytes, or it
reaches a message boundary. However, unread data remaining in a message
after the read returns are discarded, and are not available for a subsequent
read or getmsg(2).

When attempting to read from a regular file with mandatory file/record
locking set (see chmod(2)), and a blocking (i.e., owned by another process)
write lock is on the segment of the file to be read, one of the following will
occur:

1

IEAD(2) IEAD(2)

2

If O_NDELAY is set, the read will return a -1 and set errno to
EAGAIN.

If O_NDELAY is clear, the read will sleep until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO) one of the following
will occur:

If O_NDELAY is set, the read will return a 0.
If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available one of the following will occur:

H O_NDELAY is set, the read will return a 0.
If O_NDELAY is clear, the read will block until data becomes avail­
able.

When attempting to read a file associated with a stream that has no data
currently available one of the following will occur:

H O_NDELAY is set, the read will return a -1 and set errno to
EAGAIN.

If O_NDELAY is clear, the read will block until data becomes avail­
able.

When reading from a STREAMS file, zero-byte message handling is deter­
mined by the current read mode setting. In byte-stream mode, read accepts
data until it reads nbyte bytes, until there is no more data to read, or until a
zero-byte message block is encountered. read then returns the number of
bytes read and places the zero-byte message back on the stream to be
retrieved by the next read or getm.sg(2). In the two other modes, a zero-byte
message returns a value of 0 and the message is removed from the stream.
When a zero-byte message is read as the first message on a stream, a value of
0 is returned regardless of the read mode.
A read from a STREAMS file can only process data messages. It cannot pro­
cess any type of protocol message and will fail if a protocol message is
encountered at the stream head.

read will fail if one or more of the following is true:
[EAGAIN] Mandatory file/record locking was set, O_NDELA Y was

set, and there was a blocking record lock.
[EAGAIN]

[EAGAIN]

[EBADF]

Total amount of system memory available when reading
via raw 1/0 is temporarily insufficient.

No message waiting to be read on a stream and
O_NDELAY is ftag set.

Flldes is not a valid file descriptor open for reading.

12/88

READ(2) :R.EAD(2)

[EBADMSG]

[EDEADLK]

[EFAULT]

[EINTR]

[EINVAL]

[ENOLCK]

[ENO LINK]

[EWOULDBLOCK]

Message waiting to be read on a stream is not a data mes-
sage.

The read was going to go to sleep and caused a deadlock
situation to occur.

Bu/ points outside the allocated address space.

A signal was caught during the read system call.

Attempted to read from a stream linked to a multiplexor.

The system record lock table was full, so the read could
not go to sleep until the blocking record lock was
removed.

Fildes is on a remote machine and the link to that
machine is no longer active.

The descriptor references a socket marked as nonblocking
and the requested operation would block.

[ECONNRESET] The descriptor references a socket where the connection is
broken and there is no more data to read.

A read from a STREAMS file also fails if an error message is received at the
stream head. In this case, errno is set to the value returned in the error mes­
sage. If a hangup occurs on the stream being read, read will continue to
operate normally until the stream head read queue is empty. Thereafter, it
will return 0.

SEE ALSO
fcnt1(2), intro(2), accept(2B), socket(2B), socketpair(2B).
termio(7S) in the CLIX System Administrator's Reference Manual.
creat(2), dup(2), ioctl(2), open(2), pipe(2), getmsg(2) in the UNIX System V
Programmer's Reference Manual.
streamio(7) in the UNIX System V System Administrator's Reference Manual.
"Introductory Socket Tutorial" in the CLIX System Guide.

DIAGNOSTICS

12/88

Upon successful completion, a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and errno is set
to indicate the error.

3

SETPGJtp(2) SETPGR.P(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCltIPTION
setpgrp sets the calling process's group ID to its process ID and returns the

new process group ID. Once a process calls setpgrp, it irrevocably becomes a

process group leader.

SEE ALSO
signal(2), intro(2).
exec(2), fork(2), getpid(2), ki11(2) in the UNIX System V Programmer's

Reference Manual.

DIAGNOSTICS
setpgrp returns the value of the new process group ID.

12/88 1

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do on receipt of a signal

SYNOPSIS
#include <signal.h>

void (•signal (sig, fund) 0
int sig;
void (•fund O;

DESCRIPTION

12/88

signal allows the calling process to choose one of three ways to handle the
receipt of a specific signal. Sig specifies the signal and fune specifies the
choice.

Sig can be assigned any one of the following except SIGKILL or SIGSTOP:

SIGHUP
SIG INT
SIGQUIT
SIG ILL
SIG TRAP
SIG EMT
SIGFPE
SIG KILL
SIG BUS
SIGSEGV
SIGSYS
SIG PIPE
SIGALRM
SIG TERM
SIGUSRl
SIGUSR2
SIGCLD
SIGPWR
SIGURG
SIG IO
SIG POLL
SIGSTOP
SIGTSTP
SIGTTIN
SIG TT OU
SIGCONT

01
02
03ll]
04ll]
05Cl]
07ll]
08[l]

09
1ol11
11 [l]
12(1]

13
14
15
16
17
18(2]

19l21
2ols1
21l5]

22l3J

23
24(..]
25(..]
26[..]
27(..]

hangup
interrupt
quit
illegal instruction (not reset when caught)
trace trap (not reset when caught)
EMT instruction
ftoating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defined signal 1
user-defined signal 2
death of a child or child has stopped
power failure
urgent condition present on socket
1/0 is possible on a socket (see fcntl(2))
selectable event pending
stop (cannot be caught or ignored)
stop signal generated from keyboard
background read attempted from control terminal
background write attempted from control terminal
continue if stopped (cannot be ignored)

Fune is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. SIG_DFL and SIG_IGN are defined in the include file signal.h. Each
is a macro that expands to a constant expression of type pointer to function
returning void and has a unique value that matches no declarable function.

The actions prescribed by the values of fune are as follows:

1

SIGNAL(2) SIGNAL(2)

2

SIG_DFL - terminate process on receipt of a signal
When the signal sig is received, the receiving process is to be ter­
minated with all of the consequences outlined in exit(2). See Note
[1] below.

SIG_IGN - ignore signal
The signal sig is ignored.

Note: the signals SIGKILL and SIGSTOP cannot be ignored.

function address - catch signal
When the signal sig is received, the receiving process will execute the
signal-catching function pointed to by June. The signal number sig is
passed as the only argument to the signal-catching function. Addi­
tional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching
function, the value of June for the caught signal is set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, or SIGPWR.

On return from the signal-catching function, the receiving process
resumes execution where it was interrupted.

When a signal to be caught occurs during a read(2), a write(2),
open(2), or ioctl(2) system call on a slow device (like a terminal, but
not a file) during a pause(2) system call, during a wait(2) system call
that does not return immediately due to the existence of a previously
stopped or zombie process, or any other call that may sleep in the
kernel, the signal catching function is executed and then the inter­
rupted system call may return a -1 to the calling process with errno
set to EINTR.

signal does not catch an invalid function argument, June, and results
are undefined when an attempt is made to execute the function at the
bad address.

Note: The signals SIGKILL and SIGSTOP cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL or
SIGSTOP signal.

signal fails if sig is an illegal signal number (including SIGKILL and SIG­
STOP).

Notes
[1] If SIG_DFL is assigned for these signals, in addition to the process being

terminated, a "core image" is constructed in the current working direc­
tory of the process if the following conditions are met:

The effective user ID and the real user ID of the receiving process
are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

12188

SIGNAL(2) SIGNAL(2)

12/88

A mode of 0666 modified by the file creation mask (see
umask(2)).

A file owner ID that is the same as the effective user ID of
the receiving process.

A file group ID that is the same as the effective group ID

of the receiving process.

[2] For the signals SIGCLD and SIGPWR, June is assigned one of three values:
SIG_DFL, SIG_IGN, or a function address. The actions prescribed by
these values are:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal will be ignored. Also, if sig is SIGCLD, the calling
process's child processes does not create zombie processes when
they terminate (see exit(2)).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for June equal to function address. The same is
true if the signal is SIGCLD with one exception: while the pro­
cess is executing the signal-catching function, any received
SIGCLD signals are ignored. (This is the default action.)

In addition, SIGCLD affects the wait(2) and exit(2) system calls as fol­
lows:

wait(2) If the fune value of SIGCLD is set to SIG_IGN and a wait is exe­
cuted, the wait blocks until all of the calling process's child
processes terminate; it then returns a value of -1 with errno set
to ECHILD.

exit(2) If the June value of SIGCLD is set to SIG_IGN in the exiting
process's parent process, the exiting process does not create a
zombie process.

When processing a pipeline, the shell makes the last process in the pipe­
line the parent of the proceeding processes. A process that may be piped
into in this manner (and thus become the parent of other processes)

should not set SIGCLD to be caught.

[3] SIGPOLL is issued when a file descriptor corresponding to a STREAMS (see
intro(2)) file has a "selectable" event pending. A process must
specifically request that this signal be sent using the I_SETSIG ioctl(2)

call. Otherwise, the process will never receive SIGPOLL.

[4] If SIG_DFL is assigned for the SIGTSTP, SIGTTIN or SIGTTOU signals, the
process enters the stopped state until a SIGCONT or SIGKILL signal is
received. If SIG_DFL is assigned for the SIGCONT signal and the process
has entered the stopped state by receiving a stop signal (SIGSTOP,

SIGTSTP, SIGTTIN or SIGTTOU), the process returns to its prior state.

3

SIGNAL(2) SIGNAL(2)

[5] The default value for these signals is SIG_IGN.
SEE ALSO

intro(2), sigset(2), sigcld(2I), wait2(2I).
ki11(2), pause(2), ptrace(2), setjmp(3C), wait(2) in the UNIX System V
Programmer's Reference Manual.
kill(l) in the UNIX System V User's Reference Manual.

DIAGNOSTICS

4

Upon successful completion, signal returns the previous value of func for
the specified signal sig. Otherwise, a value of SIG_ERR is returned and errno
is set to indicate the error. SIG_ERR is defined in the include file
< signal.h >.

12188

SIGSET(2) SIGSET(2)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#include <signal.h>

void (aisigset Csig, func)) ()
int sig;
void (*fund O;
int sighold (sig)
int sig;

int sigrelse (sig)
int sig;

int sigignore (sig)
int sig;

int sigpause (sig)
int sig;

DESCRIPTION

12/88

These functions provide signal management for application processes. sigset
specifies the system signal action to be taken when signal sig is received.
This action is either calling a process signal-catching handler June or per­
forming a system-defined action.

Sig can be assigned any one of the following values except SIGKILL or SIG­
STOP. Machine- or implementation-dependent signals are not included (see
NOTES below). Each value of sig is a macro, defined in <signal.h>, that
expands to an integer constant expression.

SIGHUP hangup
SIG INT interrupt
SIGQUIT* quit
SIGILL* illegal instruction (not held when caught)
SIGTRAP* trace trap (not held when caught)
SIGABRT* abort
SIGFPE* ftoating point exception
SIGKILL kill (cannot be caught or ignored)
SIGSYS* bad argument to system call
SIGPIPE write on a pipe with no one to read it
SIGALRM alarm clock
SIGTERM software termination signal
SIGUSRl user-defined signal 1
SIGUSR2 user-defined signal 2
SIGCLD death of a child or child has stopped (see WARNINGS below)
SIGPWR power fail (see WARNINGS below)
SIGURG urgent condition present on socket (see NOTF.S below)
SIGIO 1/0 is possible on a socket (see NOTES below)
SIGPOLL selectable event is pending (see NOTES below)

1

SIGSET(2) SIGSET(2)

2

SIGSTOP stop (cannot be caught or ignored)
SIGTSTP stop signal generated from keyboard
SIGTTIN background read attempted from control terminal
SIGTTOU background write attempted from control terminal
SIGCONT continue if stopped (cannot be ignored)

SIG_DFL (below) explains asterisks(•) in the above list.
The following values for the system-defined actions of func are also defined
in <signal.h>. Each is a macro that expands to a constant expression of
type pointer to function returning void and has a unique value that matches
no declarable function.

SIG_DFL - default system action
If SIG_DFL is assigned for the SIGTSTP, SIGTTIN or SIGTTOU signals,
the process will enter the stopped state until a SIGCONT or SIGKILL
signal is received. If SIG_DFL is assigned for the SIGCONT signal and
the process has entered the stopped state by receiving a stop signal
(SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU), the process returns to it's
prior state.

Otherwise, upon receipt of the signal sig, the receiving process is to
be terminated with all of the consequences outlined in exit(2). In
addition, a "core image" will be made in the current working direc­
tory of the receiving process if an asterisk appears with sig in the
above list and the following conditions are met:

The effective user ID and the real user ID of the receiving pro­
cess are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

A mode of 0666 modified by the file creation mask
(see umask(2)).

A file owner ID that is the same as the effective user
ID of the receiving process.

A file group ID that is the same as the effective group
ID of the receiving process.

SIG_IGN - ignore signal
Any pending signal sig is discarded and the system signal action is
set to ignore future occurrences of this signal type.

SIG _HOLD - hold signal
The signal slg is to be held when it is receipt. Any pending signal of
this type remains held. Only one signal of each type is held.

Otherwise, func must be a pointer to a function, the signal-catching handler,
that is to be called when signal sig occurs. In this case, sigset specifies that
the process will call this function when it receives signal sig. Any pending
signal of this type is released. This handler address is retained across calls

12/88

SIGSET(2) SIGSET(2)

to the other signal management functions listed here.

When a signal occurs, the signal number sig will be passed as the only argu­
ment to the signal-catching handler. Before calling the signal-catching
handler, the system signal action will be set to SIG_HOLD. During normal
return from the signal-catching handler, the system signal action is restored
to func and any held signal of this type released. If a nonlocal goto
(longjmp) is taken, sigrelse must be called to restore the system signal action
and release any held signal of this type.

In general, upon return from the signal-catching handler, the receiving pro­
cess resumes execution where it was interrupted. However, when a signal is
caught during a read(2), write(2), open(2), or ioctl(2) system call during a
sigpause system call, or during a wait(2) system call that does not return
immediately due to a previously stopped or zombie process, or any other call

that may sleep in the kernel, the signal-catching handler will be executed
and then the interrupted system call may return a -1 to the calling process
with errno set to EINTR.

sighold and sigrelse are used to establish critical regions of code. sighold is
analogous to raising the priority level and deferring or holding a signal until
the priority is lowered by slgrelse. sigrelse restores the system signal action
to that specified previously by sigset.

sigignore sets the action for signal sig to SIG_IGN (see above).

sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is
released and the system signal action taken. This system call is useful for

testing variables changed on the occurrence of a signal. The correct usage is
to use sighold to block the signal first, and then test the variables. If they
have not changed, call sigpause to wait for the signal.

sigset will fail if one or more of the following is true:

[EINV AL] Sig is an illegal signal number (including SIGKILL or SIG­

STOP) or the default handling of sig cannot be changed.

[EINTR] A signal was caught during the system call sigpause.

SEE ALSO
signal(2), sigcld(2I), wait2(2I).
ki11(2), pause(2), setjmp(3C), wait(2) in the UNIX System V Programmer's

Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, sigset returns the previous value of the system

signal action for the specified signal sig. Otherwise, a value of SIG_ERR is

returned and errno is set to indicate the error. SIG_ERR is defined in

< signal.h >.
For the other functions, upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

3

SIGSET(2) SIGSET(2)

NOTES
SIGPOLL is issued when a file descriptor corresponding to a STREAMS (see
lntro(2)) file has a "selectable" event pending. A process must specifically
request that this signal be sent using the l_SETSIG ioctl(2) call (see
stream.io(1)). Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of signals
rather than their values and use only the set of signals defined here. The
action for the signals SIGKILL and SIGSTOP cannot be changed from the
default system action.

Specific implementations may have other implementation-defined signals.
Also, additional implementation-defined arguments may be passed to the
signal-catching handler for hardware-generated signals. For certain
hardware-generated signals, it may not be possible to resume execution at
the point of interruption.

SIG_IGN is the default value for the SIGIO and SIGURG signals.
The signal type SIGSEGV is reserved for the condition that occurs on an
invalid access to a data object. If an implementation can detect this condi­
tion, this signal type should be used.

The other signal management functions, slgnal(2) and pause(2), should not
be used with these routines for a particular signal type.

WARNINGS

4

Two signals that behave differently than the signals described above exist in
this release of the system:

SIGCLD death of a child (reset when caught)
SIGPWR power failure (not reset when caught)
For these signals, June is assigned one of three values: SIG_DFL, SIG_IGN, or
a function address. The actions prescribed by these values are as follows:
SIG_DFL - ignore signal

The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process's child processes do not create zombie processes when they
terminate (see exit(2)).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for June equal to function address. The same is true
if the signal is SIGCLD with one exception: while the process is exe­
cuting the signal-catching function, any received SIGCLD signals will
be ignored. (This is the def a ult action.)

The SIGCLD also affects the two system calls wait(2) and exit(2) in the fol­
lowing ways:

12/88

SIGSET(2) SIGSET(2)

12/88

wait(2) If the June value of SIGCLD is set to SIG_IGN and a wait is executed,
the wait will block until all of the calling process's child processes
terminate; it then returns a value of -1 with errno set to ECHILD.

exit(2) If in the exiting process's parent process the June value of SIGCLD is
set to SIG_IGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into in
this manner (and thus become the parent of other processes) should not set
SIGCLD to be caught.

5

WJUTE(2) WJUTE(2)

NAME
write - write to a file

SYNOPSIS
int write (:tildes, buf, nbyte)
int :tildes;
char •buf;
unsigned nbyte;

DESC:l.IPTION

12/88

Flldes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2),
plpe(2), accept(2B), socket(2B), or socketpalr(2B) system call.

write attempts to write nbyte bytes from the buffer pointed to by 00./ to the
file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the
file pointer is incremented by the number of bytes written.

On devices incapable of seeking, writing always begins at the current posi­
tion. The value of a file pointer associated with such a device is undefined.

If the O_APPEND file status flag is set, the file pointer will be set to the end
of the file before each write.

For regular files, if the O_SYNC file status flag is set, the write will not
return until both the file data and file status have been physically updated.
This function is for special applications that require extra reliability at the
cost of performance. For block special files, if O_SYNC is set, the write will
not return until the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is
set (see chm.od.(2)), and a record lock is owned by another process on the file
segment to be written. If O_NDELAY is not set, the write will sleep until the
blocking record lock is removed.

For STREAMS (see intro(2)) files, the operation of write is determined by the
values of the minimum and maximum nb-yte range ("packet size") accepted
by the stream. These values are contained in the topmost stream module.
Unless the user pushes (see I_PUSH in streamio(7)) the topmost module,
these values cannot be set or tested from user level. If nb-yte falls within the
packet size range, nb-yte bytes will be written. If nb-yte does not fall within
the range and the minimum packet size value is zero, write breaks the buffer
into maximum packet size segments before sending the data downstream.
(The last segment may contain less than the maximum packet size.) If nb-yte
does not fall within the range and the minimum value is nonzero, write fails
with errno set to ER.ANGE. Writing a zero-length buffer (nb-yte is zero) sends
zero bytes with zero returned.

For STREAMS files, if O_NDELAY is not set and the stream cannot accept data
because the stream write queue is full due to internal flow control

1

WIUTE(2) WJlITE(2)

2

conditions, write will block until data can be accepted. O_NDELAY will
prevent a process from blocking due to flow control conditions. If
O_NDELAY is set and the stream cannot accept data, write fails. If
O_NDELAY is set and part of the buffer has been written when a condition
in which the stream cannot accept additional data occurs, write terminates
and returns the number of bytes written.

write will fail and the file pointer remains unchanged if one or more of the
following is true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was
set, and there was a blocking record lock.

[EAGAIN]

[EAGAIN]

[EBADF]

[EDEADLK]

[EFAULT]

[EFBIG]

[EINTR]

[EINVAL]

[ENOLCK]

[ENO LINK]

[ENOSPC]

[ENXIO]

[EPIPE]
[SIG PIPE]

[ERAN GE]

Total amount of system memory available when reading
via raw 1/0 is temporarily insufficient.

An attempt to write to a stream that cannot accept data
with the O_NDELAY flag set was made.

Flldes is not a valid file descriptor open for writing.

The write was going to go to sleep and cause a deadlock.
situation to occur.

Bu/ points outside the process allocated address space.
An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size (see
ullmit(2)).

A signal was caught during the write system call.

Attempt to write to a stream linked below a multiplexor.
The system record lock. table was full, so the write could
not go to sleep until the blocking record lock. was
removed.

Flldes is on a remote machine and the link. to that
machine is no longer active.

During a write to an ordinary file, no free space remains
on the device.

A hangup occurred on the stream being written to.

An attempt is made to write to a pipe that is not open for
reading by any process.

An attempt is made to write to a stream with nb-yte out­
side the specified minimum and maximum write range,
and the minimum value is nonzero.

[EWOULDBLOCK] The descriptor references a sock.et marked nonblocking
and the requested operation would block..

12/88

WJUTE(l) WJUTE(l)

[EPIPE]

[ENOTCONN]

The descriptor references a socket that was disconnected
or shut down for writing.

The descriptor references a socket attempting to send data
on a stream that is not connected.

[EDESTADDRREQ] The descriptor references a socket attempting to send data
on a datagram without a destination address.

If a write requests that more bytes be written than space is available for
(such as the ulimit(l) or the physical end of a medium), only as many bytes
as space is available for will be written. For example, suppose space is avail­
able for 20 bytes more in a file before reaching a limit. A write of 512-bytes
will return 20. The next write of a nonzero number of bytes will give a
failure return (except as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file
flag word is set, write to a full pipe (or FIFO) will return a count of O. Oth­
erwise, (O_NDELAY clear), writes to a full pipe (or FIFO) will block until
space becomes available.

A write to a STREAMS file can fail if an error message was received at the
stream head. In this case, errno is set to the value included in the error mes­
sage.

SEE ALSO
fcntl(2), intro(2), accept(2B), socket(2B), socketpair(2B).
creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2) in the UNIX Syst.em V
Programmer's Reference Manual.
"Introductory Socket Tutorial" in the CLIX Syst.em Guide.

DIAGNOSTICS

12/88

Upon successful completion, the number of bytes written is returned. Oth­
erwise, -1 is returned and errno is set to indicate the error.

3

c

c

c

I\.)

OJ

ACCEPT(2B) ACCEPT(2B)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include < sys/types.h >
#include < sys/socket.h >
int accept (s, addr, addrlen)
int s;
struct sockaddr saddr;
int saddrlen;

DESC:RIPTION

12/88

The argument s is a socket created with socket(2B), bound to an address
with blnd(2B), and listening for connections after a Zisten(2B). accept
extracts the first connection on the queue of pending connections, creates a
new socket with the same properties of s, and allocates a new file descriptor
for the socket. If no pending connections are present on the queue and the
socket is marked as nonblocking, accept returns an error as described below.
The accepted socket may not be used to accept more connections. The origi­
nal socket s remains open.

The argument addr is a result parameter filled in with the address of the
connecting entity as known to the communications layer. The exact format
of the addr parameter is determined by the domain in which the communi­
cation is occurring. The addrlen is a value-result parameter; it should ini­
tially contain the amount of space pointed to by addr. On return, it will
contain the actual length (in bytes) of the address returned. This call is
used with connection-based socket types. It is currently used with
SOCK_STREAM.

It is possible to select(2B) a socket for the purposes of doing an accept by
selecting it for read.

accept will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

[EMFILE]

[ENFILE]

[ENOBUFS]

[ENXIO]

The descriptor references a file, not a socket.

The referenced socket is not of type SOCK_STREAM.

The addr parameter is not in a writable part of the user
address space.

The per-process descriptor table is full.

The system file table is full.

The resources to support this connection are not avail­
able.

The maximum number of open devices was exceeded.

1

ACCEPT(2B) ACCEPT(2B)

[EINV AL] The addrlen parameter is an invalid size or the socket is
not listening.

[EISCONN] The socket is already connected.

[EWOULDBLOCK] The socket is marked nonblocking and no connections
are present to be accepted.

[EINTR] A signal was caught during the accept system call.
SEE ALSO

bind(2B), connect(2B), listen(2B), select(2B), socket(2B).
DIAGNOSTICS

2

Upon successful completion, the new socket descriptor is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

12/88

BIND(2B) BIND(2B)

NAME
bind - bind a name to a socket.

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>

int bind (s, name, namelen)
int s, namelen;
struct sockaddr •name;

DESCRIPTION
bind assigns a name to unnamed socket s. When a socket is created with
socket(2B) it exists in a name space (address family) but has no name
assigned. bind requests that name be assigned to the socket. The exact for­
mat of the name parameter is determined by the domain in which the com­
munication will occur. The namelen parameter contains the amount of space
pointed to by name.

bind will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EINVAL]

[EFAULT]

The descriptor references a file, not a socket.

The namelen parameter is not the expected size or the
socket is already bound to an address.

The name parameter is not in a valid part of the user
address space.

[EADDRNOT AV AIL] The specified address is not available from the local
machine.

[EADDRINUSE]

[EACCES]

The specified address is in use.

The requested address is protected, and the current
user has inadequate permission to access it.

The following errors are specific to binding names in the UNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EIO]

[EROFS]

[EISDIR]

A prefix component of the path name does not exist.

An 1/0 error occurred while making the directory entry or allo­
cating the i-node.

The name would reside on a read-only file system.

A null path name was specified.

SEE ALSO
connect(2B), listen(2B), socket(2B), getsockname(2B).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

BIND(2B) BIND(2B)

NOTES

2

Binding a name in the UNIX domain creates a socket in the fi.le system that

must be deleted by the caller when it is no longer needed (using unlink(2)).

07/89

CONNECT(2B) CONNECT(2B)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect (s, name, namelenl
int s, namelen;
struct sockaddr *name;

DESCltIPTION
The parameters is a socket. If it is of type SOCK_DGRAM, this call specifies
the peer the socket is to be associated with. This is the address datagrams
will be sent to and the only address datagrams will be received from. If the
socket is of type SOCK_STREAM, this call attempts to connect to another
socket. The other socket is specified by name, which is an address in the
communications space of the socket. Each communications space interprets
the name parameter in its own way. Generally, stream sockets may success­
fully connect only once; datagram sockets may use connect multiple times to
change their association. Datagram sockets may dissolve the association by
connecting to an invalid address, such as a null address.

connect fails if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EINVAL]

[EFAULT]

[EADDRNOTA VAIL]

[EISCONN]

[ECONNREFUSED]

[ENETUNREACH]

[EADDRINUSE]

The descriptor references a file, not a socket.

The namelen parameter is not the expected size.

The name parameter specifies an area outside the user
address space.

The specified address is not available on this
machine.

The socket is already connected.

The attempt to connect was forcefully rejected.

The network cannot be reached from this host.

The address is already in use.

The following errors are specific to connecting names in the UNIX domain.
These errors may not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the path prefix
or write access to the named socket is denied.

SEE ALSO
accept(2B), select(2B), socket(2B), getsockname(2B).

12188 1

CONNECT(2B) CONNECT(2B)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

2 12188

FTJtUNCATE(2B) PTJtUNCATE(2B)

NAME
ftruncate - truncate a file to a specified length

SYNOPSIS
#include <sys/types.h>

int ftruncate {fd, length)
int fd;
oft'_ t length;

DESCJtIPTION
ftru.ncate truncates the file referenced by /d to at most length bytes. If the
file was larger than length bytes, the extra data is lost. The file must be
opened for writing.

ftru.ncate fails if one or more of the following is true:

[EBADF] The descriptor is invalid.

[EINVAL]

[EIO]

The file is not opened for writing or the descriptor references
a socket, not a file.

An VO error occurred reading a block to be zeroed.

SEE ALSO
open(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

GETDTABLESIZE(lB) GETDTABLESIZE(2B)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
int getdtablesize ()

DESCltIPTION
Each process has a fixed-size file descriptor table that is guaranteed to have
at least 20 slots. getdtablesize returns the size of this table.

12188 1

GETHOSTID(2B) GETHOSTID(2B)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
int gethostid 0
int sethostid (hostid)
long hostid;

DESCRIPTION
gethostid returns the 32-bit identifier for the host machine. No errors are
possible.

sethostid establishes a 32-bit identifier for the host machine intended to be

unique among all UNIX systems in existence. This is normally a Defense
Advanced Research Project Agency (DARPA) Internet address for the local
machine.

sethostid fails if the following is true:

[EPERM] The caller is not the super-user.

SEE ALSO
gethostname(2B).

DIAGNOSTICS

NOTES

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and erm.o is set to indicate the error.

Only the super-user can execute this call.

1

GETHOSTNAME(lB) GETHOSTNAME(2B)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
int gethostname (name, namelen)
char sname;
int namelen;

int sethostname (name, namelen)
char sname;
int namelen;

DESCJtIPTION
gethostname returns the standard host name for the host processor. The
parameter namelen specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

sethostname establishes the name of the host machine to be name. This call
is allowed only to the super-user and is performed at boot time.

These calls fail if one or more of the following is true:

[EFAULT] The name parameter specified an invalid address in the user
address space.

[EPERM]

[EINVAL]

The caller is not the super-user.

The nam.e.,len parameter for sethostname is larger than the
maximum size of a host name.

SEE ALSO
gethostid(2B).

DIAGNOSTICS

NOTES

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

The maximum length for a host name is 64 characters.

1

GETITIMER(2B) GETITIMER(2B)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

getitimer (which, value)
int which;
struct itimerval •value;

setitimer (which, value, ovalue)
int which;
struct itimerval *Value, *<>value;

DESCRIPTION

07/89

The system provides each process with three interval timers, defined in
<sys/time.h>. The getitimer call returns the current value for the timer
specified in which in the structure at val.ue. The setitimer call sets a timer to
the specified value (returning the previous timer value if oval.ue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {

};

struct timeval it_interval;
struct timeval it_ value;

I* timer interval*/
I* current value *I

A nonzero it_val.ue indicates the time until the next timer expiration. A
nonzero it_interval specifies a value to be used in reloading it_val.ue when
the timer expires. Setting it_val.ue to 0 disables a timer. Setting it_interval
to 0 disables a timer after its next expiration (assuming it_value is nonzero).
Time values smaller than the system clock resolution are rounded up to this
resolution (1/60-second interval).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is
delivered when this timer expires.

The !TIMER_ VIRTUAL timer decrements in process virtual time. It runs only
when the process is executing. A SIGVTALRM signal is delivered when this
timer expires.

The ITIMER_PROF timer decrements both in process virtual time and when
the system is running on behalf of the process. It is designed for interpreters
to use in statistically profiling the execution of interpreted programs. Each
time the ITIMER_PROF timer expires, the SIGPROF signal is delivered.
Because this signal may interrupt in-progress system calls, programs using
this timer must be prepared to restart interrupted system calls.

getitimer and setitimer will fail if one or more of the following are true:

[EF A ULT] The val.ue parameter specified a bad address.

[EINVAL] A val.ue parameter specified a time too large to be handled.

1

GETITIMER(2B) GETITIMER(2B)

SEE ALSO
sigset(2), gettimeofday(2B).

DIAGNOSTICS

NOTES

2

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Three macros for manipulating time values are defined in <sys/time.h>.
Timerclear sets a time value to zero, timerisset determines whether a time
value is nonzero, and timercmp compares two time values (> == and < == do
not work with this macro).

07/89

GETP AGESIZE(2B) GETP AGESIZE(2B)

NAME
getpagesize - get system page size

SYNOPSIS
int getpagesize ()

DESCRIPTION
getpagesize returns the number of bytes in a system page. Page granularity
is the granularity of the memory management calls.

07/89 1

GETPEEK.NAME(2B) GETPEEK.NAME(2B)

NAME
getpeername - get name of connected peer

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getpeername Cs, name, namelen)
int s;
struct sockaddr sname;
int snamelen;

DESCK.IPTION
getpeername returns the name of the peer connected to socket s. The
namelen parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name
returned (in bytes). The name is truncated if the buffer provided is too
small.

getpeername will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.

[ENOTCONN]

[EFAULT]

The socket is not connected.

The name parameter points to memory not in a valid part
of the user address space.

SEE ALSO
accept(2B), bind(2B), socket(2B), getsockname(2B).

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

GETPGRP2(2B) GETPGRP2(2B)

NAME
getpgrp2 - get process group

SYNOPSIS
int getpgrp2 (pid)
int pid;

DESC:RIPTION
The process group of the specified process is returned by getpgrp2. If pid is
zero, the call applies to the current process.

Process groups are used to distribute signals, and by are used terminals to
arbitrate requests for their input. Processes that have the same process group
as the terminal are foreground and may read, while others will block with a
signal if they attempt to read.

getpgrp2 will fail if the following is true:

[ESRCH] The requested process does not exist.

SEE ALSO
setpgrp2(2B), setpgrp(2).
getpgrp(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, the process group of the specified process is
returned. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

1

GETSOCKNAME(2B) GETSOCKNAME(2B)

NAME
getsockname - get socket name

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>

int getsockname (s, name, namelen)
int s;
struct sockaddr •name;
int •namelen;

DESC:R.IPTION
getsockname returns the current name for the specified socket obtained from
socket(2B). The namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return, it contains the actual size
of the name returned (in bytes).

getsockname will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EFAULT]

The descriptor references a file, not a socket.

The name parameter points to memory not in a writable
part of the user address space.

SEE ALSO
bind(2B), socket(2B).

DIAGNOSTICS

NOTES

07/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Names bound to sockets in the UNIX domain are inaccessible; getsockname
returns a zero-length name.

1

GETSOCKOPT(2B) GETSOCKOPT(2B)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>

int getsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *<>ptval;
int *<>ptlen;

int setsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *<>ptval;
int *<>ptlen;

DESCRIPTION

07/89

getsockopt and setsockopt manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the
uppermost "socket" level.

When manipulating socket options, the level at which the option resides and
the name of the option must be specified. To manipulate options at the
"socket" level, level is specified as SOL_SOCKET. To manipulate options at
any other level, the protocol number of the appropriate protocol controlling
the option is supplied.

The parameters optval and optlen are used to access option values for set­
sockopt. For getsockopt they identify a buffer in which the value for the
requested option(s) will be returned. For getsockopt, optlen is a value-result
parameter, initially containing the size of the buffer pointed to by optval,
and modified on return to indicate the actual size of the value returned. If
no option value will be supplied or returned, optval may be supplied as 0.
Optname and any specified options are passed uninterpreted to the appropri­
ate protocol module for interpretation. The include file <sys/socket.h>
contains definitions for "socket"-level options, described below. Options at
other protocol levels vary in format and name. Consult the appropriate
entries in section (7B).

Most socket-level options take an int parameter for optval. For setsockopt,
the parameter should be nonzero to enable a boolean option, or zero to dis­
able the option.

The following options are recognized at the "socket" level. Except as noted,
each may be examined with getsockopt and set with setsockopt.

SO_DEBUG Toggle recording of debugging information.
SO_REUSEADDR

SO _KEEP ALIVE

Toggle local address reuse.

Toggle keeping connections alive.

1

GETSOCKOPT(2B) GETSOCKOPT(2B)

SO_DONTROUTE

SO_LINGER

SO_BROADCAST

SO_OOBINLINE

SO_TYPE

Toggle routing bypass for outgoing messages.

Linger on close if data is present.

Toggle permission to transmit broadcast messages.

Toggle reception of out-of-band data in band.

Get the type of the socket (get only).

SO_DEBUG enables debugging in the underlying protocol modules.
SO_REUSEADDR indicates that the rules used in validating addresses sup­

plied in a bind(2B) call should allow local addresses to be reused.
SO_KEEPALIVE enables the periodic transmission of messages on a connected
socket. If the connected party fails to respond to these messages, the connec­
tion is considered broken and processes using the socket are notified with a

SIGPIPE signal. SO_DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the

appropriate network interface according to the network portion of the desti­

nation address.

SO_LINGER controls the action taken when unsent messages are queued on
the socket and a close(2) is performed. If the socket promises reliable

delivery of data and SO_LINGER is set, the system will block the process on

the close(2) attempt until it is able to transmit the data or until it decides it

is unable to deliver the information. (A timeout period, termed the "linger

interval", is specified in the setsockopt call when SO_LINGER is requested.)
If SO_LINGER is disabled and a close(2) is issued, the system will process the
close in a manner that allows the process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams
on the socket. With protocols that support out-of-band data, the
SO_OOBINLINE option requests that out-of-band data be placed in the nor­
mal data input queue as received; it can then be accessed with recv(2B) or

read(2) calls without the MSG_OOB flag. Finally, SO_TYPE is an option used

only with getsockopt. SO_TYPE returns the type of the socket, such as

SOCK_STREAM; it is useful for servers that inherit sockets on startup.

getsockopt and setsockopt will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EFAULT]

[EINVAL]

[ENOPROTOOPT]

The descriptor references a file, not a socket.

One of the option parameters is not in a valid part of
the user address space.

The optlen is larger than the maximum option length
(setsockopt) or the specified option does not exists for
the given protocol.

The specified option is unknown at the level indicated.

SEE ALSO
read(2), socket(2B), getprotoent(3B), bind(2B), recv(2B).

2 07/89

GETSOCKOPT(2B) GETSOCKOPT(2B)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

CAVEATS

07/89

SO_SNDBUF, SO_RCVBUF and SO_ERROR are not supported in this imple­
mentation. An attempt to set or get one of these options will result in errno
being set to ENOPROTOOPT.

SO_DEBUG and SO_DONTROUTE are always off in this implementation.
Attempting to turn them on will result in errno being set to ENOPROTOOPT.
Attempting to turn them off will succeed.

SO_KEEPALIVE and SO_BROADCAST are always on in this implementation.
Attempting to turn them off will result in errno being set to ENOPROTOOPT.
Attempting to turn them on will succeed.

SO_LINGER is always on in this implementation. Attempting to turn linger
off will result in errno being set to ENOPROTOOPT. The linger interval is
always set to -1 meaning block indefinitely until all data is transmitted.

3

GETTIMEOFDA Y(2B) GETTIMEOFDAY(2B)

NAME
gettimeofday - get date and time

SYNOPSIS
#include <sys/time.h>

int gettim.eof day Ctp, tzp)
struct tim.eval stp;
struct timezone stzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone
is obtained with the gettimeofday call. The time is expressed in seconds and
microseconds since midnight (0 hour), January 1, 1970. The resolution of
the system clock is hardware-dependent, and the time may be updated con­
tinuously or in "ticks". If tzp is zero, the time zone information will not be
returned or set.

The structures pointed to by tp and tzp are defined in <sys/tim.e.h> as
follows:

struct timeval {
long tv_sec;

tv_usec;
};

long

struct timezone {

};

int tz_minuteswest;
int tz_dsttime;

I• seconds since Jan. 1, 1970 •/
I• and microseconds •I

I• of Greenwich •/
I• type of dst correction to apply•/

The timezone structure indicates the local time zone (measured in minutes of
time westward from Greenwich), and a flag that, if nonzero, indicates that
d~ylight savings time applies locally during the appropriate part of the year.

gettimeofday will fail if the following is true:

[EFAULT] Tp or tzp points to an invalid address.

SEE ALSO
time(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

BUGS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Microsecond granularity is not available. Therefore, the tv _usec field of the
timeval structure will always be zero.

1

:ULLPG(2B) :ULLPG(2B)

NAME
ltillpg - send signal to a process group

SYNOPSIS
int killpg (pgrp, sig)
int pgrp, sig;

DESCRIPTION
kiUpg sends the signal sig to the process group pgrp. See signal(2) for a list
of signals.

The sending process and members of the process group must have the same
effective user ID, or the sender must be the super-user. As a special case, the
continue signal SIGCONT may be sent to any process that is a descendant of
the current process.

klUpg will fail and no signal is sent if any of the following occurs:

[EINVAL] Sig is not a valid signal number or slg is SIGKILL and pgrp is 1
(process 1).

[ESRCH]

[EPERM]

No process can be found in the process group specified by pgrp.

The sending process is not the super-user and one or more of
the target processes has an effective user ID different from that
of the sending process.

SEE ALSO
signal(2).
lti11(2), getpgrp(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and the global variable errno is set to indicate the error.

1

LISTEN(2B) LISTEN(2B)

NAME
listen - listen for connections on a socket

SYNOPSIS
int listen (s, backlog)
int s, backlog;

DESCltIPTION
To accept connections, a socket is first created with socket(2B). A willing­
ness to accept incoming connections and a queue limit for incoming connec­
tions are specified with listen. Then the connections are accepted with
accept(2B). The listen call applies only to sockets with type SOCK_STREAM.

The l>a.cklog parameter defines the maximum length for the queue of pending
connections. If a connection request arrives with the queue full, the client
may receive an error with an indication of ECONNREFUSED, or, if the under­
lying protocol supports retransmission, the request may be ignored so that
retries may succeed.

listen will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EOPNOTSUPP]

The descriptor references a file, not a socket.

The referenced socket is not of type SOCK_STREAM.

SEE ALSO
accept(2B), connect(2B), socket(2B).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

CAVEATS
Backlog is set automatically by the system to 1.

12188 1

LSTAT(2B) LSTAT(2B)

NAME
lsta t - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int lstat (path, buf)
char *P•th;
struct stat •buf;

DESC'R.IPTION
Path points to the path name of a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path name
leading to the file must be searchable.

Bu/ is a pointer to a stat structure into which information is placed concern­
ing the file.

lstat obtains information about the named file except when the named file is
a symbolic link. In this case, lstat returns information about the link.

The contents of the structure pointed to by bu/ include the following
members:

ushort
ino_t
dev _t

dev_t

short
ushort
ushort
off_t
time _t
time_ t
time_t

st_mode;
st_ino;
st_dev;

st_rdev;

st_nlink;
st_uid;
st_gid;
st_size;
st_atime;
st_mtime;
st_ctime;

I• File mode (see mknod(2)) •I
I• I-node number•/
/* ID of device containing •/
I• a directory entry for this file •/
I• ID of device •/
I• This entry is defined only for •I
I• character special or block special files •/
I• Number of links */
I• User ID of the file's owner•/
I• Group ID of the file's group•/
/* File size in bytes */
I• Time of last access •/
I• Time of last data modification•/
/*Time of last file status change•/
/* Times measured in seconds since •/
/* 00:00:00 GMT, Jan. 1, 1970 •/

st_mod.e The mode of the file as described in the mknod(2) system call.

st_ino This uniquely identifies the file in a given file system. The pair
st_lno and st_dev uniquely identifies regular files.

st_dev This uniquely identifies the file system that contains the file.
Its value may be used as input to the ustat(2) system call to
determine more information about this file system. No other
meaning is associated with this value.

12/88 1

LSTAT(2B) LSTAT(2B)

st_rdev This should be used only by administrative commands. It is
valid only for block special or character special files and only
has meaning on the system where the file was configured.

st_nlinlt This should be used only by administrative commands.
st_uid The user ID of the file's owner.
st_gid The group ID of the file's group.
st_size For regular files, this is the address of the end of the file. For

pipes or FIFOs, this is the count of the data currently in the file.
For block special or character special, this is not defined.

st_atim.e Time when file data was last accessed. It is changed by the fol-
lowing system calls: creat(2), mknod(2), pipe(2), sym.link(2B),
utime(2), and read(2).

st_mtim.e Time when data was last modified. It is changed by the follow­
ing system calls: creat(2), mknod(2), pipe(2), sym.link(2B),
utime(2), and write(2).

st_ctim.e Time when file status was last changed. It is changed by the
following system calls: chmod(2), chown(2), creat(2), link(2),
mknod(2), pipe(2), sym.link(2B), unlink(2), utime(2), and
wrlte(2).

lstat will fail if one or more of the following is true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist or too many symbolic links

were in the path.

[EACCES] Search permission is denied for a component of the path
prefix.

[EFAULT] Bu/ or path points to an invalid address.
[EINTR] A signal was caught during the stat system call.
[ENOLINK] Path points to a remote machine and the link to that

machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote

machines.
SEE ALSO

chmod(l), chown(l), read(2), write(2), symlink(2B), stat(S).
creat(2), link(2), mknod(2), pipe(2), time(2), unlink(2), utime(2) in the
UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

12/88

ltEADLINK(2B) ltEADLINK(2B)

NAME
readlink - read the value of a symbolic link

SYNOPSIS
int readllnk (path. buf, bufsize)
char spath; •buf;
int buf size;

DESCltIPTION
Path points to the path name of a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path name
leading to the file must be searchable. Bu/ is a pointer to the location where
the file name will be placed. Bu/size is the size of bu/.

read.link places the contents of the symbolic link name in the buffer "bu/ with
size bu/size. The contents of the link are not null terminated when returned.

readlink will fail if one or more of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist or too many symbolic links
were in the path.

[EACCES] Search permission is denied for a component of the path
prefix.

[EF AULT] Bu/ or path points to an invalid address.

[EINTR] A signal was caught during the read.link system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
lstat(2B), symlink(2B).
stat(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion the count of characters placed, in the buffer is
returned. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

1

K.EADV(2B) K.EADV(2B)

NAME
readv - read input from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>

int readv (s, iov, iovcnt)
int s, iovcnt;
struct iovec *iov;

DESCK.IPTION
readv attempts to read data from the object referenced by the descriptor s.
The input data is scattered into the lovcnt buffers specified by the members
of the lov array: iov [0], iov [1], ... , iov [lovcnt - 1].

The lovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory
where data should be placed. readv will always fill an area completely
before proceeding to the next.

If the returned value is 0, end-of-file has been reached.

readv fails if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EWOULDBLOCK]

[EINTR]

[EFAULT]

[ECONNRESET]

[EINVAL]

The descriptor references a file, not a socket.

The socket is marked nonblocking and the requested
operation would block.

A signal was caught during the readv system call.

The address specified is not in a valid part of the users
address space.

The connection has been broken and there is no more
data to read.

The maximum number of scatter gather locations has
been exceeded.

SEE ALSO
fcntl(2), read(2), send(2B), select(2B), getsockopt(2B), socket(2B).

DIAGNOSTICS

12188

Upon successful completion, the number of bytes read is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

1

READV(2B) READV(2B)

CAVEATS
readv is only supported on sockets, not on regular files.

2 12188

R.ECV(2B) R.ECV(2B)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv Cs, buf, len, flags)
int s, len, flags;
char •buf;

int recvfrom (s, buf, len, flags, from, fromlen)
int s, len, flags;
char •buf;
struct sockaddr Sfrom;
int Sfromlen;

int recvmsg (s, msg, flags)
int s, flags;
struct msghdr msg [];

DESCR.IPTION

12/88

recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call is normally used only on a connected socket (see connect(2B)),
while recvfrom and recvmsg may be used to receive data on a socket whether
it is in a connected state or not.

If from is nonzero, the source address of the message is filled in, Froml.en is
a value-result parameter initialized to the size of the buffer associated with
from and modified on return to indicate the actual size of the address stored
there. The length of the message is returned by the call. If a message is too
long to flt in the supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from (see socket(2B)).

If no messages are available at the socket, the receive call waits for a message
to arrive unless the socket is marked nonblocking (see fcntl(2)). The
select(2B) call may be used to determine when more data is available to
read.

The flags argument to a recv call may have the following value:

#define MSG_OOB Oxl /•process out-of-band data•/

The recvmsg call uses a msghdr structure to minimize the number of directly
supplied parameters. This structure has the following form, defined in
< sys/socket.h >:

struct msghdr {
caddr_ t msg_name;
int msg_namelen;
struct iovec •msg_iov;
int msg_iovlen;
caddr_t msg_accrights;

I• optional address •/
I• size of address •/
I• scatter/gather array•/
I• # elements in msg_iov •/
I• access rights sent/received •/

1

JtECV(2B) JtECV(2B)

int
};

msg_accrigh tslen;

msg_name and msg_namel.en specify the destination address if the socket is
unconnected; msg_namel.en may be given as a null pointer if no names are ~
desired or required. The msg_lov and msg_lovl.en describe the scatter gather
locations, as described in readv(2B). A buff er to receive any access rights
sent with the message is specified in msg_accrlghts, which has length
msg_accrlghtsl.en. Access rights are currently limited to file descriptors,
which each occupy the size of an integer.

Each of these calls fails if one or more of the following is true:
[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EWOULDBLOCK]

[EINTR]

[EFAULT]

[ECONNRESET]

[EINVAL]

The descriptor references a file, not a socket.

The socket is marked nonblocking and the requested
operation would block.

A signal was caught during the recv, recvfrom, or
recvmsg system call.

The data was specified to be received into a nonexistent
or protected part of the user address space.

The connection has been broken and there is no more
data to read.

The maximum number of scatter gather locations has
been exceeded.

SEE ALSO
f cntl(2), readv(2B), send(2B), select(2B), getsockopt(2B), socket(2B).

DIAGNOSTICS

2

Upon successful completion, the number of bytes received is returned. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

12/88

RENAME(2B) RENAME(2B)

NAME
rename - change the name of a file

SYNOPSIS
int rename (from, to)
char sfrom., *lo;

DESCUPTION
rename causes the link named from to be renamed to. If to exists, it is
removed. Both from and to must be of the same type (that is, both direc­
tories or both nondirectories) and must reside on the same file system.

If the final component of from is a symbolic link, the symbolic link, not the
file or directory it points to, is renamed.

rename will fail and neither argument file will be affected if any of the fol­
lowing is true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EPERM]

[EXDEV]

[EROFS]

[EFAULT]

[EMLINK]

[EINTR]

A component of either path prefix is not a directory.

A component of either path prefix does not exist or to points
to a null path name.

A component of either path prefix denies search permission.

The file named by from is a directory and the effective user
ID is not super-user.

The link named by to and the file named by from are on
different logical devices (file systems).

The requested link requires writing in a directory on a
read-only file system.

From or to point outside the allocated address space of the
process.

The maximum number of links to a file would be exceeded.

A signal was caught during the rename system call.

SEE ALSO
open(2), link(2), unlink(2) in the UNIX System V Programmer's Reference
Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

CAVEATS

12/88

rename does not guarantee that an instance of to will always exist. (For
example, if the system should crash in the middle of the operation.)

1

SELECT(2B) SELECT(2B)

NAME
select - synchronous VO multiplexing

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>
#include < sys/time.h >

int select (nfds, readfds, writefds, exceptfds, timeout)
int nfds;
f d_set sreadf ds, swritef ds, -.exceptf ds;
struct ti.meval *timeout;

FD_SET (fd, fdset)
F'D_CLR (fd, fdset)
F'D_ISSET (fd, fdset)
FD_ZERO (f dset)
int fd;
f d_set *f dset;

DESCllIPTION

12188

select examines the VO descriptor sets whose addresses are passed in readfds,
writefds, and exceptfds to see if some of their descriptors are ready for read­
ing, are ready for writing, or have an exceptional condition pending, respec­
tively. The first nfds descriptors are checked in each set. (The descriptors
from 0 through nfds-1 in the descriptor sets are examined.) On return,
select replaces the given descriptor sets with subsets consisting of those
descriptors that are ready for the requested operation. The total number of
ready descriptors in all the sets is returned.

The descriptor sets are stored as bit fields in arrays of integers. The follow­
ing macros are provided for manipulating such descriptor sets. FD _ZERO
initializes the descriptor set fdset to the null set. FD _SET includes a particu­
lar descriptor fd in fdset. FD_CLR removes fd from fdset. FD_ISSET is
nonzero if /d is a member of fdset, zero otherwise. The behavior of these
macros is undefined if a descriptor value is less than zero or greater than or
equal to FD_SETSIZE, which is normally at least equal to the maximum
number of descriptors supported by the system.

If timeout is a nonzero pointer, it specifies a maximum interval to wait for
the selection to complete. If timeout is a zero pointer, the select blocks
indefinitely. To affect a poll, the timeout argument should be nonzero, point­
ing to a zero-valued timeval structure.

Readfds, writefds, or exceptfds may be given as zero pointers if no descrip­
tors are of interest.

select fails if one or more of the fallowing is true:

[EBADF] The descriptor is invalid.

1

SELECT(2B) SELECT(2B)

[EINVAL]

[EFAULT]

[EINTR]

The nfds parameter is not a valid number.

The readfds, writefds, exceptfds, or timeout parameters point
to a nonwritable area of the user address space.

A signal was delivered before the time limit expired and
before any of the selected events occurred.

SEE ALSO
accept(2B), connect(2B), readv(2B), writev(2B), recv(2B), send(2B).

DIAGNOSTICS
Upon successful completion, the number of ready descriptors is returned. If
the time limit expires, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

CAVEATS
select is only supported for sockets and pseudo terminals.

2 12/88

SEND(2B) SEND(2B)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sysltypes.h >
#include <syslsocket.h>

int aend (s, msg, len. flags)
int s, len. flags;
char smsg;
int aendto (s, msg, len. flags, to, tolen)
int s, len. flags, tolen;
char smsg;
struct BOCkaddr ato;

int aendmsg (s, msg, flags)
int s, flags;
struct msghdr msg [];

DESCJUPTION

12188

send, send.to, and sendmsg are used to transmit a message to another socket.
send may be used only when the socket is in a connected state, while sendto
and sendmsg may be used any time.

The address of the target is given by to, with tolen specifying the size. The
length of the message is given by Zen.

No indication of failure to deliver is implicit in a send. Return values of -1
indicate some locally detected errors.

If no message space is available at the socket to hold the message to be

transmitted, send normally blocks unless the socket has been placed in non­
blocking 1/0 mode. The select(2B) call may be used to determine when it is
possible to send more data.

The flags parameter may be set to the following:

#define MSG_OOB Oxl /•process out-of-band data•/

The ftag MSG_OOB is used to send "out-of-band" data on sockets that sup­
port this notion (such as SOCK_STREAM); the underlying protocol must also
support "out-of-band" data.

See recv(2B) for a description of the msghdr structure.

Each of these calls will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

The descriptor references a file, not a socket. [ENOTSOCK]

[EWOULDBLOCK] The socket is marked nonblocking and the requested
operation would block.

[EFAULT] An invalid user space address was specified.

1

SEND(2B)

[EPIPE]

[EINVAL]

[ENOTCONN]

[EDEST ADDRREQ]

[EINTR]

[EISCONN]

SEE ALSO

SEND(2B)

The connection has been broken and no more data can
be sent.

The maximum number of scatter gather locations has
been exceeded.

Attempting to send data on a stream sock.et that is not
connected.

Attempting to send data on a datagram sock.et without
a destination address.

A signal was caught during the send, sendto, or
sendm.sg system calls.

Attempting to do a sendto on a connected sock.et.

f cnt1(2), recv(2B), writev(2B), select(2B), getsockopt(2B), socket(2B).
DIAGNOSTICS

2

Upon successful completion, the number of bytes sent is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

12/88

SETPG1lP2(2B) SETPG1lP2(2B)

NAME
setpgrp2 - set process group

SYNOPSIS
int setpgrpl (pid, pgrp)
int pid, pgrp;

DESCJllPTION
setpgrp2 sets the process group of the specified process pid to the specified
pgrp. If pid is zero, the call applies to the current process.

If the invoker is not the super-user, the affected process must have the same
effective user ID as the invoker or be a descendant of the invoking process.

setpgrp2 will fail and the process group will not be altered if one of the fol­
lowing occurs:

[ESRCH] The requested process does not exist.

[EPERM] The effective user ID of the requested process is different from
that of the caller and the process is not a descendent of the cal­
ling process.

SEE ALSO
getpgrp2(2B), setpgrp(2).
getpgrp(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

SHUTDOWN(2B) SHUTDOWN(2B)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown (s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the
socket associated with descriptor s to be shut down. If how is 0, further
receives will be disallowed. If how is 1, further sends will be disallowed. If
how is 2, further sends and receives will be disallowed.

shutdown will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.

[ENOTCONN] The specified socket is not connected.

[EINV AL] The value for how is not 0, 1, or 2.

[EINTR.] A signal was caught during the shutdown system call.

SEE ALSO
connect(2B), socket(2B).

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

SOCXET(2B) SOCXET(2B)

NAME
socket - create an endpoint for communication

SYNOPSIS
int aocltet (domain, type, protocol)
int domain, type, protocol;

DESCR.IPTION

12/88

socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which

communication will occur; this selects the protocol family that should be

used. The protocol family generally is the same as the address family for

the addresses supplied in later operations on the socket. These families are

defined in the include file <syslsocket.h>. The currently understood for­

mats are as follows:

AF_UNIX

AF_INET

AF_NS

(UNIX internal protocols)

(ARP A Internet protocols)

(Xerox Network Systems protocols)

The socket has the indicated type, which specifies the semantics of communi­

cation. Currently defined types are as follows:

SOCK_STREAM

SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliable, two-way connection­

based byte streams. An out-of-band data transmission mechanism may be

supported. A SOCK_DGRAM socket supports datagrams (connectionless,

unreliable messages of a fixed (typically small) maximum length).

The protocol specifies a protocol to be used with the socket. Normally only a

single protocol exists to support a particular socket type within a given pro­

tocol family. However, many protocols may exist. In this case, a protocol

must be specified in this manner. The protocol number to use is particular to

the communication domain in which communication is to occur (see proto-

cols(4)).

Sockets of type SOCK_STREAM are full-duplex byte streams similar to pipes.

A stream socket must be in a connected state before any data may be sent or

received on it. A connection to another socket is created with a connect(2B)

call. Once connected, data may be transferred using read(2) and write(2)

calls, the readv(2B) and writev(2B) calls, or some variant of the send(2B)

and recv(2B) calls. When a session has been completed, a close(2) may be

performed. Out-of-band data may also be transmitted as described in

send(2B) and received as described in recv(2B).

The communications protocols used to implement a SOCK_STREAM ensure

that data is not lost or duplicated. If a piece of data for which the peer pro­

tocol has buffer space cannot be successfully transmitted within a reasonable

1

SOCKET(2B) SOCKET(2B)

length of time, the connection is considered broken. Also, calls will indicate
an error with -1 returned and with ETIMEDOUT as the specific code in the
global variable errno. The protocols optionally keep sockets "warm" by
forcing transmissions roughly every minute in the absence of other activity.
An error is then indicated if no response can be elicited on an otherwise idle
connection for an extended period (such as five minutes). A SIGPIPE signal is
raised if a process sends on a broken stream; this causes naive processes that
do not handle the signal to exit.

SOCK_DGRAM sockets allow datagrams to be sent to correspondents named
in send(2B) calls. Datagrams are generally received with recvfrom.(2B),
which returns the next datagram with its return address.
fcntl(2) can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. It may also enable nonblocking 1/0 and
asynchronous notification of 1/0 events via the SIGIO signal.
The operation of sockets is controlled by socket-level options. These options
are defined in the file <sys/sock.et.h>. setsockopt(2B) and getsockopt(2B)
are used to set and get options, respectively.

socket will fail if one or more of the following is true:

[EMFILE] The per-process descriptor table is full.
[ENFILE] The system file table is full.
[ENOBUFS]

[EPROTONOSUPPORT]

[ESOCKTNOSUPPORT]

[ENXIO]

[EIO]

[EINTR]

The resources to support the connection are not
available.

The specified domain, type or protocol is not sup­
ported.

The socket type is not supported for the specified
domain.

The system cannot access the specified device.

The protocol was not initialized.

A signal was caught during the socket system call.
SEE ALSO

read(2), write(2), accept(2B), bind(2B), connect(2B), getsockname(2B),
getsockopt(2B), listen(2B), readv(2B), recv(2B), select(2B), send(2B),
shutdown(2B), socketpair(2B), writev(2B).
"Introductory Socket Tutorial", "Advanced Socket Tutorial" in the CLIX
System Guide.

DIAGNOSTICS

2

Upon successful completion, a descriptor referencing the socket is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

12/88

SOCKETP AIR.(2B) SOCKETP AIR.(2B)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
int socketpair (d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCR.IPTION
socketpalr creates an unnamed pair of connected sockets in the specified

domain d, of the specified type type, and using the optionally specified proto­

col protocol (see socket(2B)), The descriptors used in referencing the new

sockets are returned in sv[O] and sv[l]. The two sockets are indistinguish­

able.

socketpalr will fail if one or more of the following is true:

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOBUFS] The resources to support this connection are not

available.

[EPROTONOSUPPORT] The specified domain, type, or protocol is not sup­
ported.

[ESOCKTNOSUPPORT] The socket type is not supported for the specified

domain.

[ENXIO] The system cannot access the specified device.

[EFAULT] The address sv does not specify a valid part of the

process address space.

[EINTR] A signal was caught during the socketpalr system

call.

SEE ALSO
readv(2B), writev(2B), socket(2B).
pipe(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of

-1 is returned and errno is set to indicate the error.

1

SYMLINK(2B) SYMLINK(2B)

NAME
symlink - make a symbolic link to a file

SYNOPSIS
int symlink (namet, name2)
char sname 1, sname2;

DESCRIPTION
Namel and name2 point to path names naming files.

A symbolic link name2 is created to name], (Name2 is the name of the file
created; namel is the string used in creating the symbolic link.) Either name
may be an arbitrary path name; the files need not be on the same file system.

symlink will fail if one or more of the following is true:

[ENOTDIR] A component of the name2 prefix is not a directory.

[ENOENT] The named file does not exist or too many symbolic links
were in the path of name2.

[EACCES] Search permission is denied for a component of the name2
prefix.

[EFAULT] Namel or name2 points to an invalid address.

[EINTR] A signal was caught during the symlink system call.

[ENOLINK] Name2 points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of name2 require hopping to multiple remote
machines.

SEE ALSO
ln(l).
link(2), unlink(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

VPORX(2B) VPOKK(2B)

NAME
vfork. - spawn a new process in a virtual memory efficient way

SYNOPSIS
int vfork 0

DESCKIPTION
vfork can be used to create new processes without fully copying the address
space of the old process, which is inefficient in a paged environment. It is
useful when the purpose of fork(2) would have been to create a new system
context for an execve(2). vfork differs from fork(2) in that the child bor­
rows the parent's memory and thread of control until a call to execve(2) or
an exit (either by a call to exit(2) or abnormally). The parent process is
suspended while the child is using its resources.

vfork returns 0 in the child's context and (later) the process ID of the child
in the parent's context.

vfork can normally be used as fork(2). However, returning while running in
the childs context from the procedure that called vfork does not work since
the eventual return from vfork returns to a no longer existent stack frame.
If execve(2) cannot be called, call _exit(2) rather than exit(2) since exit(2)
will flush and close standard 1/0 channels and thereby corrupt the parent
process's standard 1/0 data structures. (Even with fork(2) it is wrong to call
exit(2) since buffered data would then be flushed twice.)

vfork will fail if the following is true:

[EAGAIN) The system-imposed limit on the total number of processes
would be exceeded, the system-imposed limit on the total
number of processes per user would be exceeded, or the total
amount of system memory available when reading via raw 1/0,
is temporarily insufficient.

SEE ALSO
exit(2), wait2(2I).
fork(2), exec(2), wait(2) in the UNIX System V Programmer's Reference
Manual.

DIAGNOSTICS

BUGS

12/88

Upon successful completion, a value of 0 is returned to the child process and
the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

To avoid a possible deadlock situation, processes that are children in the
middle of a vfork are never sent SIGTTOU or SIGTTIN signals.

1

WAIT3(2B)

NAME
wait3 - wait for process to terminate

SYNOPSIS
#include <sys/wait.h>
#include <sys/time.h>
#include <syslresource.h>

int wait3 (stat_loc, options, rusage)
union wait •stat_loc;
int options;
struct rusage • rusage;

DESCIUPTION
wait3 is implemented as wait2(21).

SEE ALSO
wait2(21).

CAVEATS
The rusage argument is not used in this implementation.

12/88

WAIT3(2B)

1

WR.ITEV(2B) WR.ITEV(2B)

NAME
writev - write output to a socket

SYNOPSIS
#include < sys/types.h >
#include < sys/uio.h >
int writev (s, iov, iovcnd
int s, iovcnt;
struct iovec siov;

DESCR.IPTION

12188

writev attempts to write data to the object referenced by the descriptor s.

The output data is gathered from the iovcnt buffers specified by the members
of the lov array: iov [0] , iov [1], ... , iov [iovcnt-1] .

The iovec structure is defined as

struct iovec {
caddr_t iov _base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory
from which data should be written. writev will always write a complete

area before proceeding to the next.

When using nonblocking VO, writev may write fewer bytes than requested;
the return value must be noted and the remainder of the operation should be
retried when possible.

wrltev will fail if one or more of the following is true:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EWOULDBLOCK]

[EINTR]

[EFAULT]

[EPIPE]

[EINVAL]

[EN OT CONN]

[EDEST ADDRREQ]

[EISCONN]

The descriptor references a file, not a socket.

The socket is marked nonblocking and the requested
operation would block.

A signal was caught during the writev system call.

An invalid user space address was specified.

The socket was disconnected or shut down for writing.

The maximum number of scatter gather locations was
exceeded.

An attempt to send data on a stream socket that is not
connected was made.

An attempt to send data on a datagram socket without
a destination address was made.

An attempt to perform a sendto on a connected socket
was made.

1

WRITEV(2B) WR.ITEV(2B)

SEE ALSO
f cnt1(2), recv(2B), writev(2B), select(2B), getsockopt(2B), socket(2B).

DIAGNOSTICS
Upon successful completion, the number of bytes written is returned. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

CAVEATS
writev is only supported on sockets, not on regular files.

2 12/88

c

c

c

EXEDATA(21) EXEDATA(2I)

NAME
exedata - setup for code execution in the process data section

SYNOPSIS
void exedata 0

DESCRIPTION
The CLIPPER architecture requires that certain "housekeeping" functions be

performed in order to execute code that has been built in a writable area of
the process address space (data, stack, or shared memory). exedata performs
the necessary system functions to assure that the newly generated or
modified code will execute correctly.

The proper order of events for execution of run-time generated code is listed
below:

1) The code is generated in a writable area of the process address
space.

2) The process calls exedata to assure proper execution of the new
code.

3) Program control is given to the new code.

exedata should be called once after modification or generation of code and
not each time the code is executed.

DIAGNOSTICS
No possible errors can occur.

12/88 1

ffi 1 MPS! A

GETCPUID(2I) GETCPUID(ll)

NAME
getcpuid - return CLIPPER processor identifier

SYNOPSIS
int getcpuid (id)
int *id;

DESCR.IPTION
getcpuld returns the CPU processor identifier from the CLIPPER system status
word.

Current values for processor IDs are as follows:

Value CLIPPER

0 ClOO
1 C200
2 C300

getcpuld will fail if the following is true:

[EFAULT] Id points to a nonwritable memory address.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

GETMEMSIZE(21) GETMEMSIZE(2I)

NAME
getmemsize, getfreemem, getavailsmem - return memory information

SYNOPSIS
int getmemsize ()
int getfreemem ()
int getavailsmem 0

DESCRIPTION

07/89

getmemsize returns the size of physical memory in bytes. getfreemem
returns the amount of unused memory in bytes. getavailsmem returns the
amount of memory that can be swapped in bytes.

1

KBMAP(21) KBMAP(21)

NAME
kbmap - change the keyboard layout

SYNOPSIS
int kbmap (mapdata)
short mapdata[48][8];

DESCRIPTION
kbmap changes the definitions of certain keys on the keyboard. Only the

letter, number, and punctuation keys on the main section of the keyboard

are affected. The keypad and function keys are not changed.

Four qualifiers may be used with each key to change the character that is

generated. The following eight combinations are valid:

unshif ted keys
unshifted control keys
unshifted alternate keys
unshifted caps lock keys
shifted keys
shifted control keys
shifted alternate keys
shifted caps lock keys

Mapdata is an array of values specifying the value each key, both by itself

and with qualifiers, will generate. The different values for each key must be

specified in the order listed above. The keys must be listed in the following

order, which is based on each key's physical location on the keyboard

(identified using North American keycaps):

0

12
13 Q

24]
25 A

36 \
37 <

47 I

kbmap will fail if the following is true:

[EFAULT] Mapdata points to an area outside of the users address space.

EXAMPLES
Mapdata for the North American key map is as follows:

01/90 1

KBMAP(2I)

unsigned char rnapdata [48][8] = {

SEE ALSO

{ "', "', OxeO, "', ·-', ·-', Oxel, ,-, },
{ '1', '1', Oxe2, '1', '!', '!', Oxe3, 'I'},
{ '2', '2', Oxe4, OxOO, '@', '@', Oxe5, OxOO },
{ '3', '3', Oxe6, '3', '#', '#', Oxe7, '#' },

{ 'i', 'I', Oxd4, Ox09, 'I', 'I', Oxd5, Ox09 },
{ 'o', 'O', Oxd6, OxOf, 'O', 'O', Oxd7, OxOf },
{ 'p', 'P', Oxd8, OxlO, 'P', 'P', Oxd8, OxlO },
{ '[', '[', Oxda, Oxlb, '{', '{', Oxd9, Oxlb },
{ ']', ']', Oxdc, Oxld, '}', '}', Oxdb, Oxld },
{ 'a', 'A', Ox9d, OxOl, 'A', 'A', Ox9e, OxOl },

{ 'rn', 'M', Ox95, OxOd, 'M', 'M', Ox96, OxOd },
{ ',', ',', Ox97, ',', ',', ',', Ox98, ',' },
{ . , '.', Ox99, '.', '.', '.', Ox9a, '.' },
{ '/', '/', Ox9b, '/', '?', '?', Ox9c, '?' } };

kbrnap(l), kbrnap(4).

DIAGNOSTICS

KBMAP(2I)

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

2 01/90

READINF0(21) READINF0(21)

NAME
readinfo - read system activity information

SYNOPSIS
#include <sys/types.h>
#include <sys/sysinfo.h>

int readinfo Citype, buf, nbytes)
int itype;
char •buf;
int nbytes;

DESCRIPTION
readinfo obtains system activity information. /type specifies the type of
information to be obtained. Bu/ is a pointer to the buffer where the data
will be placed. Nbytes is the number of bytes of data to be copied.

The include file <sys/sysinfo.h> contains the following definitions that
describe the types of information that may be obtained.

R_MINFO Obtain system memory information.

R_SYSINFO

R_SYSWAIT

R_DINFO

R_RCINFO

R_SHLBINFO

R_SYSERR

Obtain system time information.

Obtain system wait times.

Obtain system disk activity.

Obtain Remote File Sharing (RPS) information.

Obtain shared library information.

Obtain system error statistics.

The amount of information available for each type is the size of the
corresponding structure also defined in <sys/sysinfo.h>.

readinfo will fail if one or more of the following are true:

[EFAULT] Bu/ points to a nonwritable memory address.

[EINVAL]

DIAGNOSTICS

The type of information requested is not valid.

07/89

Upon successful completion, the number of bytes read is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

1

SETNODENAME(2I) SETNODENAME(21)

NAME
setnodename - set new node name /

SYNOPSIS
int aetnodename (s)
char -.;

DESCJUPTION
setnodename sets the node name of the system as known by the communica­
tions network to the character string pointed to bys. This change is effective
only until the next boot. setnodename will truncate s to a maximum length
of eight bytes.

setnodename will fail if any of the following is true:

[EPERM] The effective user ID is not super-user.

[EFAULT] S points outside the allocated address space of the process.

[EINV AL] The size of s exceeds the maximum number of characters
allowed for a node name.

The current node name can be obtained using uname(2).

SEE ALSO
uname(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

SIGCLD(2I) SIGCLD(2I)

NAME
sigcld - modify SIGCLD on stop signal option

SYNOPSIS
int sigcld (flag)
int flag;

DESCR.IPTION
sigcUl allows the caller to specify whether a SIGCLD signal is sent to its
parent process if the child is stopped via a stop signal (SIGSTOP, SIGTSTP,

SIGTTIN or SIGTTOU).

If flag is nonzero, the current process sends a SIGCLD signal to its parent pro­
cess when stopped via a stop signal. Otherwise, a SIGCLD signal is not sent
to its parent process when stopped via a stop signal.

Flag will be inherited by all children spawned by this process (see fork(2))
or new processes (see exec(2)).

SEE ALSO
signal(2), sigset(2).
fork(2), exec(2) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS
sigcUl returns the previous value of flag. sigcUl cannot fail.

12/88 1

SWAP(21) SWAP(21)

NAME
swap - swap space control

SYNOPSIS
#include <sys/swap.h>

int swap (sl)
swpi_t asi;

DESCR.IPTION

12188

swap provides a mechanism to add a device to the system swap table area,
remove a device from the system swap table, or obtain a list of the system
swap table.

Si points to a structure with the following members:

char
char
int
int

si_cmd;
*si_buf;
si_swplo;
si_nblks;

I• command code •/
I• pointer to a buff er or path name •/
I• first block number of the file•/
I• size of swap file in blocks•/

Si_cmd contains one of the listed commands:

SI_ LIST

SI_ADD

Sl_DEL

Obtain a list of the system swap table. Si_buf points to a buffer
with sizeof(swpi_tlsMSFILES bytes.

Add a swap device to the system swap table. Si_buf points to
the path name of the swap device. Si_swpl.o is the first block of
the swap device, and sl_nblks is the size of the swap device
specified in blocks.

Remove a swap device from the system swap table. Sl_buf
points to the path name of the swap device. Sl_swpl.o is the first
block of the swap device.

swap will fail if one or more of the following are true:

[EFAULT] Si points to a location outside the allocated address space or
some part of the buff er pointed to by the Sl_LIST command's
sl_buf is outside the process's allocated space.

[EPERM]

[ENOENT]

[ENOTBLK]

[EEXIST]

[EINVAL]

[ENOSPC]

The current user is not the super-user.

The swap file to be added or removed is invalid.

The swap device is not a block special file.

The swap device to be added is already in the system swap
table.

Sl_cmd contains an unknown command, or the swap device to
be removed is not in the system swap table.

The system swap table is full.

1

SW AP(21) SW AP{21)

[ENOMEM] The user attempts to remove the last swap device or requests
the removal of a swap device, which would leave the system
with fewer swap pages than the minimum required.

SEE ALSO
swap(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

12/88

SYSID(21) SYSID(21)

NAME
sysid - get the system hardware identification number

SYNOPSIS
int sysid (id)
char id[6];

DESC.RIPTION
sysld fills the array id with the system's hardware identification number.
The system ID is of the form

08-00-36-xx-yy-zz

where xx, yy, and zz are unique for each system. sysid fills the array id as
listed below.

Byte Value
0 08
1 00
2 36
3 xx
4 yy
s zz

sysid will fail if the following is true:

[EFAULT] Id points to a nonwritable location in the address space.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

UCPCLK.(21) UCPCLK.(21)

NAME
ucpclr - clear process UCP priority

SYNOPSIS
int ucpclr (pid)
int pid;

DESCJtIPTION
ucpclr clears the User Controlled Priority (UCP) attribute of the process with
process ID pld. If pld has a value of 0, the calling process is assumed. If no
UCP attribute is set, the call is ignored. This has no effect on the signal
mask, which may have been set with ucpslg(21).

ucpclr will fail if the following is true:

[ESRCH] Process ID pld does not exist.

SEE ALSO
ucpsig(21), ucprelse(21), ucppri(21), ucpinq(21), ucpset(21), ucpnice(l).

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

UCPINQ(21) UCPINQ(2I)

NAME
ucpinq - return the UCP priority

SYNOPSIS
int ucpinq {pid)
int pid;

DESCRIPTION
ucplnq returns the User Controlled Priority (UCP) of the process with pro­
cess id pld. If pld is 0, the priority of the calling process is returned. If the
process is not running at a UCP priority, 128 is returned.

ucplnq will fail if the following is true:

[ESRCH] No process exists with process ID pld.

SEE ALSO
ucpsig(21), ucprelse(21), ucppri(21), ucpclr(21), ucpset(21).

DIAGNOSTICS

12/88

If the process exists and is a ucp process, the ucp priority of the process is
returned. If the process exists but is not a UCP process, 128 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

1

UCPPIU(2I)

NAME
ucppri - check if a UCP priority is already in use

SYNOPSIS
int ucppri (pri)
int pri;

DESCIUPTION

UCPPIU(21)

ucppri determines if any process is set to the User Controlled Priority (UCP)

pri. A value of 1 is returned if any process is at pri. Otherwise, 0 is
returned.

SEE ALSO
ucpsig(2I), ucprelse(2I), ucpinq(2I), ucpclr(2I), ucpset(2I).

DIAGNOSTICS
No errors can occur.

CAVEATS
There is no way to determine if a signal routine of another process may be
set to UCP priority pri.

12188 1

UCPR.ELSE(21) UCPR.ELSE(21)

NAME
ucprelse - reset a process's priority after handling a signal

SYNOPSIS
void ucprel.se ()

DESCRIPTION
ucprelse resets the calling processes User Controlled Priority (UCP) to the
priority it was running at before handling a signal (see ucpsig(21) for excep­
tions).

SEE ALSO
ucpsig(21), ucpclr(21), ucppri(21), ucpinq(21), ucpset(21).

DIAGNOSTICS

NOTES

12/88

No possible errors can occur.

ucprelse should be called when completing a signal(2) handling routine. It
does not need to be called if sigset(2) is used. sigset(2) will perform a
ucprelse as part of the slgrelse(2).

1

UCPSET(21) UCPSET(21)

NAME
ucpset - set a process to a UCP priority

SYNOPSIS
#include < sys/ucp.h >
int ucpset (pid, pri, flag)
int pid, pri, flag;

DESCRIPTION
ucpset sets the process with process ID pid to the User Controlled Priority
(UCP) priority pri. If pid has a value of 0, the calling process is changed. A
maximum pri value of 127 and a minimum pri value of 0 are imposed by
the system. The process must have super-user privileges.
A process at UCP priority 0 will be run before any other UCP process and
before any other non-UCP user process. The time sharing between two
processes running at the same UCP priority is not defined.
Flag determines whether the UCP priority is carried over to child processes.
If flag is set to UCP _FLAG, the UCP priority is not carried over to any child
processes.

ucpset will fail if one or more of the following are true:
[EPERM] The effective user ID of the calling process is not super-user.
[EINVAL] The pri value was greater than 127 or less than 0.
[ESRCH] Process ID pid does not exist.

SEE ALSO
ucpsig(21), ucprelse(21), ucpinq(21), ucppri(21), ucpclr(21), ucpnice(l).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1

UCPSIG(21) UCPSIG(21)

NAME
ucpsig - set process to a UCP priority on receipt of a signal

SYNOPSIS
#include < sys/ucp.h >
int ucpsig (pri, flag, sigmask>
int pri, flag;
long sigmask;

DESCJUPTION
Slgmask specifies a set of signals that causes the calling process to run at

User Controlled Priority (UCP) prl when handling these signals. Slgmask is

created by setting the bit corresponding to the desired signal, (lL < < ((sig­

num) - 1)). The process is returned to its previous priority when either

slgrelse(2) or ucprelse(21) is called.

Clearing a signal that was previously set in sigmask is accomplished by cal­

ling ucpsig with a different sigmask.

The calling process must have super-user privileges. A maximum pri value

of 127 and a minimum of 0 are imposed by the system.

Flag determines whether the UCP priority is carried over to child processes.

If flag is set to UCP_FLAG, the UCP priority is not carried over.

ucpslg will fail if one or more of the following are true:

[EPERM] The effective user ID of the calling process in not super-user.

[EINVAL] The pri value was greater than 127 or less than 0.

SEE ALSO
ucprelse(21), ucppri(21), ucpinq(21), ucpnice(1), ucpset(21), ucpclr(21), sig­

set(2), signal(2).

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of

-1 is returned and errno is set to indicate the error.

If ucpset(21) is called from within a signal-handling routine, the process will

finish handling the signal at the new priority and upon release will maintain

the new priority. {It will not return to the priority it was running at before

receiving the signal.)

If ucpclr(21) is called from within a signal-handling routine, the process will

finish handling the signal at a non-UCP priority and will remain at that

priority after the signal is released.

WAININGS
It is recommended that ucpslg be used with sigset(2) and not with signal(2).

12188 1

VLOCX:(21)

NAME
vlock - lock an area of memory

SYNOPSIS
int vloc:t. (addr, length)
int addr, length;

DESC:RIPTION

VLOCX:(21)

vlock is a page-locking mechanism. The area of memory to be locked starts
at virtual address addr and is length bytes long. vlock returns a unique key
used to identify the area to be unlocked by vunlock(21).

vlock will fail if one or more of the following are true:

[EFAULT] The range of addresses specified are not valid.

[EAGAIN] The necessary resources are not available at this time.

SEE ALSO
vunlock(21).

DIAGNOSTICS
Upon successful completion, a unique key is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

CAVEATS
Addr cannot be 0.

12/88 1

VUNLOCK:(21) VUNLOCK(2I)

NAME
vunlock - unlock an area of memory

SYNOPSIS
int vunlock (key, flag)
int key, :flag;

DESC:RIPTION
vunlock is the page-unlocking mechanism for memory locked with vlock(2I).

The key is a unique identifier returned by vlock(2I).

If flag is set, the page reference and modify bits are cleared for all pages con­
tained fully in the address range. This action will invalidate any data asso­

ciated with these pages.

vunlock will fail if one or more of the following are true:

[EINV AL] The key is not a valid key.

[EPERM] The process attempting to unlock the area is not the same
process that locked the area.

SEE ALSO
vlock(2I).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

WAK.NINGS

12188

Any pages within a shared memory region that were locked by vlock(2I)

must be unlocked before the region is detached.

1

WAIT2(2I) WAIT2(21)

NAME
wait2 - wait for process to terminate

SYNOPSIS
#include < sys/wait.h >
int wait2 {stat_loc, options)
union wait 9Stat_loc;
int options;

DESCRIPTION

12188

walt2 provides an alternate interface for programs that must not block when
collecting the status of child processes. The optloris parameter indicates that
the call should not block if no processes wish to report status (WNOHANG),
and/or that only children of the current process that are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should have their statuses
reported (WUNTRACED).

When the WNOHANG option is specified and no processes wish to report
status, walt2 returns a pid of 0. The WNOHANG and WUNTRACED options
may be combined by ORing the two values.

If stat_l.oc is nonzero, 16 bits of information called status are stored in the
low-order 16 bits of the location pointed to by stat_l.oc. Stat_l.oc can be
used to differentiate between stopped and terminated child processes. If the
child process is terminated, stat_l.oc identifies the cause of termination and
passes useful information to the parent. This is accomplished in the follow­
ing manner:

I

If the child process is stopped, the high-order eight bits of the status
will contain the number of the signal that caused the process to stop
and the low-order eight bits will be set equal to 01 77.

If the child process terminated due to an exlt(2) call, the low-order
eight bits of status will be zero and the high-order eight bits will
contain the low-order eight bits of the argument that the child pro­
cess passed to exlt(2).

If the child process terminated due to a signal, the high-order eight
bits of status will be zero and the low-order eight bits will contain
the number of the signal that caused the termination. In addition, if
the low-order seventh bit (bit 200) is set, a core(4) image fl.le will
have been produced (see signal(2)).

If the parent process terminates without waiting for its child processes to
terminate, the parent process ID of each child process is set to 1. This means
the initialization process inherits the child processes (see intro(2)).

walt2 will fail and return immediately if one or more of the following is
true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

1

WAIT2(21) WAIT2(21)

[EFAULT] The stat_loc argument points to an illegal address.

SEE ALSO
sigcld(21), signa1(2), exit(2).
wait(2), fork(2), pause(2), ptrace(2) in the UNIX System V Programmer's
Reference Manual.

DIAGNOSTICS

2

walt2 returns -1 if there are no children not previously waited for; 0 is
returned if WNOHANG is specified and no stopped or exited children exist.

If walt2 returns due to a stopped or terminated child process, the process ID
of the child is returned to the calling process. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

12/88

c

.c

c

INTR0(3) INTR0(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION

FILES

07/89

This section describes functions found in various libraries, other than those
that directly invoke CLIX system primitives. The system primitives are
described in Sections (2), (2B), and (2I) of this volume. Certain major col­
lections are identified by a letter after the section number:

(3C) These functions, those of Section (2), and those marked (3S) consti­
tute the Standard C Library libc, that is automatically loaded by the
C compiler, cc(l). (For this reason, the (3C) and (3S) sections com­
pose one section of this manual.) The link editor Zd(l) searches this
library under the -le option. A shared library version of libc can be
searched using the -lc_s option, resulting in smaller a.out(4) files.
Declarations for some of these functions may be obtained from
#include files indicated on the appropriate pages.

(3S) These functions constitute the "standard 1/0 package'' (see stdio(3S)).
These functions are in the library libc, mentioned above. Declarations
for these functions may be obtained from the #include file
<stdio.h>.

(3B) These functions, those of Section (2B), and those marked (3R) consti­
tute the Berkeley Software Distribution (BSD) Library, libbsd. They
are not automatically loaded by the C compiler, cc(l); however, the
link editor Zd(l) searches this library under the -lbsd option.

(3N) These functions constitute the Intergraph Network Library, libinc.
They are not automatically loaded by the C compiler, cc(l); however,
the link editor Zd(l) searches this library under the -line option.

(3R) These functions constitute the Remote Procedure Call (RPC) and
External Data Representation (XDR) package. These functions are in
the library, libbsd, mentioned a hove.

(3A) These functions and those of Section (2I) constitute the Intergraph
Extensions Library, libix. These functions compose the asynchronous
1/0 package. They are not automatically loaded by the C compiler,
cc(l); however, the link editor, Zd(l) searches this library under the
-lix option.

(3F) These functions constitute the Intergraph extensions to the FORTRAN
intrinsic function library, lib/. These functions are automatically
available to the FORTRAN programmer and require no special invoca­
tion of the compiler.

$LIB DIR
$LIBDIR/libc.a
$LIBDIR/libc_s.a
I shlib/li bc _ s

usually /lib

1

INTR.0(3) INTR.0(3)

/usr/lib/libbsd.a
/usr/lib/libinc.a
/usr/lib/libix.a

SEE ALSO
cc(l), ld(l), intro(2).
ar(l), lint(l), nm(l), stdio(3S) in the UNIX System V Programmer's Refer­
ence Manual.

DIAGNOSTICS
Functions in the C Library (3C) may return the conventional values 0 or
±HUGE (the largest-magnitude single-precision floating-point numbers;
HUGE is defined in the <math.h> header file) when the function is
undefined for the given arguments or when the value is not representable.
In these cases, the external variable errno (see intro(2)) is set to the value
EDOM or ERANGE.

WARNINGS

2

Many of the functions in the libraries call and/or refer to other functions
and external variables described in this section and in Section (2) (System
Calls). If a program inadvertently defines a function or external variable
with the same name, the presumed library version of the function or exter­
nal variable may not be loaded. The lint(l) program checker reports name
conflicts of this kind as "multiple declarations" of the names in question.
Definitions for Sections (2), (3C), and (3S) are checked automatically. Other
definitions can be included by using the -1 option. Using lint(l) is highly
recommended.

07/89

c

c

c

GETGJl.ENT(JC) GETGll.ENT(JC)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file
entry

SYNOPSIS
#include <grp.h>

struct group 8getgrent ()

struct group 8getgrgid (gid)
int gid;

struct group 8getgrnam (name)
char sname;

void setgrent ()

void endgrent 0
struct group sf getgrent (f)
FILE sf;

DESCJl.IPTION

12188

getgrent, getgrgld, and getgrnam return pointers to an object with the fol­
lowing structure containing the broken-out fields of a line in the /etc/group
file. Each line contains a group structure, defined in the < grp.h > header
file.

struct group {
char •gr_name; /*the name of the group•/
char *gr_passwd; /* the encrypted group password •/
int gr_gid; /* the numerical group ID •/

};
char •gr_mem; /*vector of pointers to member names*/

The CLIX implementation of these routines includes support for the Yellow
Pages (see ypserv(lM) for more information).

When first called, getgrent returns a pointer to the first group structure in
the file. Thereafter, it returns a pointer to the ~ext group structure in the
file; so, successive calls may be used to search the entire file. getgrgld
searches from the beginning of the file until a numerical group id matching
gid is found and returns a pointer to the structure in which it was found.
getgrnam searches from the beginning of the file until a group name match­
ing name is found and returns a pointer to the structure in which it was
found. If an end-of-file or an error is encountered on reading, these f unc­
tions return a null pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. endgrent may be called to close the group file when processing is
complete.

fgetgrent returns a pointer to the next group structure in the stream /. The
stream f should match the format of /etc/group.

1

GETGJlENT(3C) GETGJlENT(3C)

PILES
/etc/group

SEE ALSO
getpwent(3C), group(4).
ypserv(lM) in the CLIX System Administrator's Reference Manual.
getlogin(3C) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS
A null pointer is returned on EOF or error.

WAJlNINGS
The above routines use <stdio.h>, which causes them to increase the size
of programs not otherwise using standard 1/0 more than expected.

CAVEATS

2

All information is contained in a static area, so it must be copied if it is to be
saved.

·12/88

GETPWENT(3C) GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, f getpwent - get pass­
word fl.le entry

SYNOPSIS
#include <pwd.h>

struct passwd 9getpwent ()

struct passwd 9getpwuid (uid)
int uid;

struct passwd 9getpwnam (name)
char *name;

void setpwent ()

void endpwent 0
struct passwd sfgetpwent (f)
FILE sf;

DESCR.IPTION

12/88

getpwent, getpwuid, getpwnam return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the /etc/passwd
fl.le. Each line in the fl.le contains a passwd structure declared in the
< pwd.h > header fl.le:

struct passwd {

};

char *PW _name;
char •pw _passwd;
int pw_uid;
int pw_gid;
char •pw_age;
char *PW _comment;
char •pw _gecos;
char •pw _dir;
char •pw _shell;

The fields are described in passwd(4).

The CLIX implementation of these routines includes support for the Yellow
Pages (see ypserv(lM) for more information).

When first called, getpwent returns a pointer to the first passwd structure in
the fl.le. Thereafter, it returns a pointer to the next passwd structure in the
fl.le; so, successive calls can be used to search the entire fl.le. getpwuid
searches from the beginning of the fl.le until a numerical user ID matching
uid is found and returns a pointer to the structure in which it was found.
getpwnam searches from the beginning of the fl.le until a login name match­
ing name is found and returns a pointer to the structure in which it was
found. If an end-of-fl.le or an error is encountered on reading, these func­
tions return a null pointer.

1

GETPWENT(3C) GETPWENT(JC)

PILES

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. endpwent may be called to close the password file when
processing is complete.

fgetpwent returns a pointer to the next passwd structure in the stream /.
The stream f should match the format of /etc/passwd.

/etc/passwd

SEE ALSO
getgrent(3C), passwd(4).
ypserv(lM) in the CLIX System Administrator's Reference Manual.
getlogin(3C) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS
A null pointer is returned on EOF or error.

WARNINGS
The above routines use <std.io.h>, which causes them to increase the size
of programs not otherwise using standard 1/0 more than might be expected.

CAVEATS

l

All information is contained in a static area, so it must be copied if it is to be
saved.

12/88

c

c

c

w
CD

INTK.0(3B) INTK.0(3B)

NAME
intro - introduction to BSD library functions

DESCK.IPTION
This section describes functions found in the Berkeley Software Distribution
(BSD) library, libbsd.a, that do not directly invoke CLIX system primitives.
The link editor Zd(l) searches this library under the -lbsd option.

List Of Functions

12188

Name
hemp
bcopy
bzero
dbm_clearerr
dbm_close
dbm_delete
dbm_error
dbm_fetch
dbm_firstkey
dbm_nextkey
dbm_open
dbm_store
endhostent
endnetent
endprotoent
endservent
ffs
gethostbyaddr
gethostbyname
gethostent
getnetbyaddr
getnetbyname
getnetent
get pro to byname
get pro to bynum ber
getprotoent
getservbyname
getservbyport
getservent
htonl

htons

index
inet_addr

Appears on Page
bstring(3B)
bstring(3B)
bstring(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
ndbm(3B)
gethostbyname(3B)
getnetent(3B)
getprotoent(3B)
getservent(3B)
bstring(3B)
gethostbyname(3B)
gethostbyname(3B)
gethostbyname(3B)
getnetent(3B)
getnetent(3B)
getnetent(3B)
getprotoent(3B)
getprotoent(3B)
getprotoent(3B)
getservent(3B)
getservent(3B)
getservent(3B)
byteorder(3B)

byteorder(3B)

string(3B)
inet(3B)

Description
bit and byte string operations
bit and byte string operations
bit and byte string operations
database subroutines
database subroutines
database subroutines
database subroutines
database subroutines
database subroutines
database subroutines
database subroutines
database subroutines
get network host entry
get network entry
get protocol entry
get service entry
bit and byte string operations
get network host entry
get network host entry
get network host entry
get network entry
get network entry
get network entry
get protocol entry
get protocol entry
get protocol entry
get service entry
get service entry
get service entry
convert values between host
and network byte order
convert values between host
and network byte order
string operations
Internet address manipulation
routines

1

INTR.O(JB)

FILES

Name Appears on Page
inet_lnaof inet(3B)

inet_makeaddr inet(3B)

inet_netof inet(3B)

inet_network inet(3B)

insque insque(3B)

ntohl byteorder(3B)

ntohs byteorder(3B)

random random(3B)

rcmd rcmd(3B)

remque insque(3B)

rexec

rindex
rresvport

ruserok

sethostent
setnetent
setprotoent
setservent
srandom

rexec(3B)

string(3B)
rcmd(3B)

rcmd(3B)

gethostbyname(3B)
getnetent(3B)
getprotoent(3B)
getservent(3B)
random(3B)

/lib/libbsd.a

SEE ALSO

the BSD library

intro(2B), ld(l).

2

INTJtO(JB)

Description
Internet address manipulation
routines
Internet address manipulation
routines
Internet address manipulation
routines
Internet address manipulation
routines
insert/remove element from a
queue
convert values between host
and network byte order
convert values between host
and network byte order
better random number genera­
tor
routines for returning a stream
to a remote command
insert/remove element from a
queue
return stream to a remote com­
mand
string operations
routines for returning a stream
to a remote command
routines for returning a stream
to a remote command
get network host entry
get network entry
get protocol entry
get service entry
better random number genera­
tor

12/88

BSTIUNG(3B) BSTR.ING(3B)

NAME
bstring: bcopy, bcmp, bzero, ffs - bit and byte string operations

SYNOPSIS
int bcopy (src, dst, length)
char llSrc, *Cl.st;
int length;

int hemp (bl, bl, length)
char •bl, •bl;
int length;

int bzero (b, length)
char •b;
int length;

int ffs (i)
inti;

DESC:RIPTION

NOTES

12/88

The functions lxopy, bcmp, and bzero operate on variable length strings.
They do not check for null bytes as do the routines in strlng(3C).

lxopy copies 1.ength bytes from string src to the string dst.

bcmp compares byte string bl to byte string b2, returning zero if they are
identical, nonzero otherwise. Both strings are assumed to be 1.ength bytes
long.

bzero places 1.ength 0 bytes in the string bl.

Ifs finds the first bit set in the argument passed and returns the index of that
bit. Bits are numbered starting with 1. A returned value of 0 indicates the
value passed is zero.

The lxopy routine reverses parameters from strcpy(3C).

1

BYTEO:RDE:R(JB) BYTEO:RDE:R(JB)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte
order

SYNOPSIS
#include < sys/types.h >
#include <netinet/in.h>

u_long htonl (hostlong)
u_long hostlong;

u_short htons (hostshort)
u_short hostshort;

u_long ntohl (netlong)
u_long netlong;

u_short ntohs (netshort)
u_short netshort;

DESCRIPTION
These routines convert 16- and 32-bit quantities between network and host
byte order. These routines are most often used with Internet addresses and
ports as returned by gethostbynam.e(3B) and getservent(3B).

SEE ALSO
gethostbyname(3B), getservent(3B).

12/88 1

GETHOSTBYNAME(3B) GETHOSTBYNAME(3B)

NAME
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent - get net­
work host entry

SYNOPSIS
#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname (name)
char sname;

struct hosten t *gethost byaddr (addr, len, type)
char saddr;
int len, type;

struct hostent *gethostent ()

void sethostent (stayopen)
int stayopen;

void endhostent ()

DESCRIPTION

07/89

gethostbyname and gethostbyaddr return a pointer to an object with the fol­
lowing structure. This structure contains information obtained from the
broken-out fields from a line in the file /etc/hosts, or, if Yellow Pages (YP)
is running, from an entry in the YP database (see ypfiles(4)).

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /*alias list*/
int h_addrtype; /*host address type*/
int h_length; /* length of address */
char **h_addr_list; /*list of addresses from name server*/

};
#define h_addr h_addr_list [O] /* address, backward compatibility */

The members of this structure are as follows:
h_name Official name of the host.

h_aliases A zero-terminated array of alternate names for the host.
h_addrtype The type of address being returned; currently always

AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A zero-terminated array of network addresses for the host.

h_addr

Host addresses are returned in network byte order.

The first address in h_addr_list; this is for backward compa­
tibility.

sethostent allows a request for the use of a connected socket using Transmis­
sion Control Protocol (TCP) for queries. A nonzero sta-yopen flag sets the

1

GETHOSTBYNAME(3B) GETHOSTBYNAME(3B)

FILES

option to send all queries to the name server using TCP and to retain the con­
nection after each call to gethostbyname or gethostbyaddr.

endhostent closes the TCP connection.

gethostbyname and gethostbyaddr sequentially search from the beginning of

the file until a matching host name or address and type is found or until EOF

is encountered. Internet addresses may be obtained from character strings
representing numbers expressed in the Internet standard "." notation with
the routines described in inet(3B). If an address is supplied, the length of
the address must also be supplied.

/etc/hosts

SEE ALSO
hosts(4).
namex(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

BUGS

Error return status from gethostbyname and gethostbyaddr is indicated by
the return of a null pointer. The external integer h_errno may then be

checked to see whether this is a temporary failure or an invalid or unknown
host.

h_errno can have the following values:

HOST_NOT_FOUND No such host is known.

TRY_AGAIN

NO_RECOVERY

NO_ADDRESS

This is usually a temporary error and means that the
local server did not receive a response from an
authoritative server. A retry at some later time may
succeed.

This is a nonrecoverable error.

The requested name is valid but does not have an IP
address; this is not a temporary error. This means
another type of request to the name server will
result in an answer.

All information is contained in a static area so it must be copied to be saved.

Only the Internet address format is currently understood.

CAVEATS

2

gethostent reads the next line of /etc/hosts, opening the file if necessary.

sethostent is redefined to open and rewind the file. If the stayopen argument

is nonzero, the hosts database will not be closed after each call to gethost­

byname or gethostbyaddr. endhostent is redefined to close the file.

07/89

GETNETENT(JB) GETNETENT(JB)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network
entry

SYNOPSIS
#include <netdb.h>

struct netent sgetnetent ()

struct netent sgetnetbyname (name)
char sname;

struct netent sgetnetbyaddr (net, type)
long net;
int type;

void setnetent (stayopen)
int stayopen;

void endnetent ()

DESCRIPTION

07/89

getnetent, getnetbyname, and getnetbyaddr return a pointer to an object with
the following structure containing the broken-down fields of a line in the
network database, /etc/networks.

struct netent {
char

};

char
int
u_long

*n_name;
**n_aliases;
n_addrtype;
n_net;

I* official name of net */
I* alias list */
I* net number type */
I* net number */

The members of this structure are as fallows:

n_name The official name of the network.
n_aliases A zero-terminated list of alternate names for the network.
n_addrtype The type of the network number returned; currently only

AF_INET.

n_net The network number. Network numbers are returned in
machine-byte order.

getnetent reads the next line of the file, opening the file if necessary.
setnetent opens and rewinds the file. If the stayopen flag is nonzero, the net
database will not be closed after each call to getnetbyname or getnetbyaddr.

endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from the beginning of
the file until a matching network name or address and type is found or until
EOF is encountered. Network numbers are supplied in host order.

1

GETNETENT(3B)

FILES
/etc/networks

SEE ALSO
networks(4).

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS

GETNETENT(3B)

All information is contained in a static area so it must be copied to be saved.
Only Internet network numbers are currently understood. It is expected
that network numbers will fit in 32 bits or less.

2 07/89

GETPIOTOENT(3B) GETPR.OTOENT(JB)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent -
get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent 91etprotoent ()

struct protoent 91etprotobyname <name)
char aname;

struct protoent 91etprotobynumber (proto)
int proto;

void setprotoent (stayopen)
int stayopen;

void endprotoent 0
DESCRIPTION

PILES

getprotoent, getprotobyname, and getprotobyrwmber return a pointer to an
object with the following structure containing the broken-down fields of a
line in the network protocol database, /etc/protocols.

struct protoent {
char *P_name;
char **P_aliases;
int p_proto;

};

/* official name of protocol •I
I• alias list •/
I• protocol number•/

The members of this structure are as follows:

p_name The official name of the protocol.

p_allaaes A zero-terminated list of alternate names for the protocol.

p_proto The protocol number.

getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the sta-yopen ftag is nonzero, the
network database will not be closed after each call to getprotobyname or get­
protobynumber.

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the begin­
ning of the file until a matching protocol name or number is found or until
EOF is encountered.

I etc/protocols

SEE ALSO
protocols(4).

12188 1

GETP:ROTOENT(3B) GETP:ROTOENT(3B)

DIAGNOSTICS

BUGS

2

A null pointer (0) is returned at EOF or when an error occurs.

All information is contained in a static area so it must be copied to be saved.
Only the Internet protocols are currently understood.

12/88

GETSERVENT(3B) GETSERVENT(3B)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get ser­
vice entry

SYNOPSIS
#include <netdb.h>

struct servent agetservent ()

struct servent agetservbyname (name, proto)
char *name, •proto;

struct servent agetservbyport (port, proto)
int port;
char •proto;

void setservent (stayopen)
int stayopen

void endservent ()

DESCRIPTION

07/89

getservent, getservbyname, and getservbyport return a pointer to an object
with the following structure containing the broken-down fields of a line in
the network services database, /etc/services.

struct servent {
char
char
int
char

};

*s_name;
**s _aliases;
s_port;
*s_proto;

I* official name of service */
/* alias list */
I* port service resides at*/
I* protocol to use */

The members of this structure are as fallows:

The official name of the service.

A zero-terminated list of alternate names for the service.

s_name

s_aliases

s_port The port number at which the service resides. Port numbers
are returned in network byte order.

s_proto The name of the protocol to use when contacting the service.
getservent reads the next line of the file, opening the file if necessary.
setservent opens and rewinds the file. If the stayopen ftag is nonzero, the
network database will not be closed after each call to getservbyname or get­
servbyport.

endservent closes the file.

getservbyname and getservbyport sequentially search from the beginning of
the file until a matching protocol name or port number is found or until EOF
is encountered. If a protocol name is also supplied (non-null), searches must
match the protocol. Port numbers must be given in network byte order.

1

GETSER.VENT(3B) GETSER.VENT(3B)

FILES
I etc/ services

SEE ALSO
getprotoent(3B), services(4).

DIAGNOSTICS

BUGS

2

A null pointer (0) is returned at EOF or when an error occurs.

All information is contained in a static area so it must be copied if it is to be
saved. It is expected that port numbers will fit in a 32-bit quantity.

07/89

INET(3B) INET(3B)

NAME
inet: inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof - Internet address manipulation routines

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>
#include < netinet/in.h >
#include <arpa/inet.h>

unsigned long inet_addr (cp)
char *Cp;

unsigned long inet_network (cp)
char *Cp;

char •inet_ntoa (in)
struct in_addr in;

struct in_addr inet_makeaddr (net, Ina)
int net, Ina;

int inet_lnaof (in)
struct in_addr in;

int inet_netof (in)
struct in_addr in;

DESCRIPTION
The routines inet_addr and inet_network interpret character strings
representing numbers expressed in the Internet standard "," notation,
returning numbers suitable for use as Internet addresses and Internet net­
work numbers, respectively.

The routine inet_ntoa takes an Internet address and returns an ASCII string
representing the address in "." notation. The routine inet_makeaddr takes
an Internet network number and a local network address and constructs an
Internet address. The routines inet_netof and inet_lnaof break apart Inter­
net host addresses, returning the network number and local network address
part, respectively.

All Internet addresses are returned in network order (bytes ordered from
left to right). All network numbers and local address parts are returned as
machine format integer values.

Internet Addresses
Values specified using the"." notation assume one of the following forms:

a.b.c.d
a.b.c
a.b
a

07/89 1

INET(3B) INET(3B)

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address. Note
that when an Internet address is viewed as a 32-bit integer quantity on the
CLIPPER, the bytes referred to above appear as d.c.b.a. CLIPPER bytes are
ordered from right to left.

When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the rightmost two bytes of the network address.
This makes the three-part address format convenient for specifying Class B
network addresses as 128.net.host.

When a two-part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the rightmost three bytes of the network address.
This makes the two-part address format convenient for specifying Class A
network addresses as l.q_net.host.

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

All numbers supplied in the notation may be decimal, octal, or hexadecimal,
as specified in the C language (i.e., a leading Ox or OX implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise, the number is interpreted as
decimal).

SEE ALSO
gethostbyname(3B), getnetent(3B), hosts(4), networks(4).

DIAGNOSTICS

BUGS

2

A value of -1 is returned by inet_addr and inet_network for malformed
requests.

Host versus network byte ordering is confusing. A simple way to specify
Class C network addresses similarly to that for Classes A and B is needed.
The string returned by inet_ntoa resides in a static memory area.

inet_addr should return a struct in_addr.

07/89

INSQUE(3B) INSQUE(3B)

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
void insque (elem. pred)
struct qelem *elem. *Pred;

void remque (elem)
struct qelem *elem;

DESCRIPTION
insque and remque manipulate queues built from doubly-linked lists. Each
element in the queue must be in the form of the structure qelem as follows:

struct qelem {

};

struct qelem *q_forw;
struct qelem *<I_ back;
char q_data [];

insque inserts elem in a queue immediately after pred; remque removes an
entry elem from a queue.

DIAGNOSTICS
No possible errors can occur.

12188 1

NDBM(3B) NDBM(3B)

NAME
dbm_open, dbm_close, dbm_f etch, dbm_store, dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error, dbm_clearerr - database subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *Cl ptr;
int dsize;

} datum;

DBM *Clbm_open (file, flags, mode)
char *file;
int flags, mode;

void dbm_close (db)
DBM *db;

datum dbm_fetch (db, key)
DBM *db;
datum key;

int dbm_store (db, key, content, flags)
DBM *db;
datum key, content;
int flags;

int dbm_delete (db, key)
DBM *db;
datum key;

datum dbm_firstkey (db)
DBM *db;

datum dbm_nextkey (db)
DBM *db;

int dbm_error (db)
DBM *db;

int dbm_clearerr (db)
DBM *db;

DESC:RIPTION

12188

These functions maintain key/content pairs in a database. The functions
will handle very large (a billion blocks) databases and will access a keyed
item in one or two file system accesses.

Keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as
normal ASCII strings, are allowed. The database is stored in two files. One
file is a directory containing a bit map and has ".dir" as its suffix. The
second file contains all data and has ".pag" as its suffix.

1

NDBM(3B) NDBM(3B)

Before a database can be accessed, it must be opened by dbm_open. This
will open and/or create the files jile.dir and jile.pag depending on the ftags
parameter (see open(2)).

Once open, the data stored under a key is accessed by dbm_Jetch and data is
placed under a key by dbm_store. The flags field can be either dbm_insert
or dbm_replace. dbm_insert will only insert new entries in to the database
and will not change an existing entry with the same key. dbm_replace will
replace an existing entry if it has the same key. A key (and its associated
contents) is deleted by dbm_delete. A linear pass through all keys in a
database may be made in an (apparently) random order by use of
dbm_firstkey and dbm_nextkey. dbm_firstkey will return the first key in
the database. dbm_nextkey will return the next key in the database. This
code will traverse the database:

for (key - dbm_firstkey(db); key.dptr I= NULL; key""" dbm_nextkey(db))

dbm_error returns nonzero when an error has occurred reading or writing
the database. dbm_clearerr resets the error condition on the named data­
base.

SEE ALSO
open(l) in the UNIX System V Programmer's Reference Manual.

DIAGNOSTICS

BUGS

2

All functions that return an integer indicate errors with negative values. A
zero return indicates success. Routines that return a datum indicate errors
with a null (0) dptr. If dbm_store called with a flags value of dbm_lnsert
finds an existing entry with the same key, it returns 1.

The •.pag file will contain holes so that its apparent size is approximately
four times its actual content. These files cannot be copied by normal means
(cp(l), cat(l), tar(l), ar(l)) without filling in the holes.

Dptr pointers returned by these subroutines point to static storage changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal
block size (currently 4096 bytes). Moreover, all key/content pairs that hash
together must fit on a single block. dbm_store will return an error if a disk
block fills with inseparable data.

dbm_delete does not physically reclaim file space, although it makes it avail­
able for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a
hashing function.

12/88

K.ANDOM(3B) K.ANDOM(3B)

NAME
random, srandom - better random number generator

SYNOPSIS
long random ()

void srandom (seed)
int seed;

DESCK.IPTION
random uses a nonlinear additive feedback random number generator. ran­
dom employs a default table size of 31 long integers to return pseudo­
random numbers in the range from 0 to 2"31-1. The period of this random
number generator is approximately 16(2"31-1).

random and srandom have (almost) the same calling sequence and initializa­
tion properties as rand(3C)lsrand(3C). The difference is that rand(3C) pro­
duces a much less random sequence. In fact, the low dozen bits generated by
rand(3C) go through a cyclic pattern. All the bits generated by random are
usable. For example, randomO&Ol will produce a random binary value.
Unlike srand(3C), srandom does not return the old seed because the amount
of state information used is much more than a single word. Like rand(3C),
however, random will by default produce a sequence of numbers that can be
duplicated by calling srandom with 1 as the seed.

With 256 bytes of state information, the period of the random number gen­
erator is greater than 2"'69, which should be sufficient for most purposes.

SEE ALSO
rand(3C) in the UNIX System V Programmer's Reference Manual.

NOTES
random executes at approximately 2/3 the speed of rand(3C).

12188 1

JlCMD(3B) JlCMD(3B)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote com­
mand

SYNOPSIS
int rcmd (ahost, inport, locuser, remuser, cmd, fd2p)
char -.host;
int inport;
char •locuser, sremuser, *Cmd;
int *fd2p;

int rresvport (port)
int sport;

int ruserok (rhost, superuser, ruser, luser)
char srhost;
int superuser;
char sruser, •luser;

DESCJllPTION

12/88

rcmd is a routine used by the super-user to execute a command on a remote
machine using an authentication scheme based on reserved port numbers.
rresvport is a routine that returns a descriptor to a socket with an address in
the privileged port space. ruserok is a routine used by servers to authenti­
cate clients requesting service with rcmd. All three functions are in the
same file and are used by the rshd(lM) server (among others).

rcmd looks up the host *<lhost using gethostbyname(3B), returning -1 if the
host does not exist. Otherwise *<Jhost is set to the standard name of the host
and a connection is established to a server residing at the Internet port
lnport.

If the connection succeeds, a socket in the Internet domain of type
SOCK_STREAM is returned to the caller and given to the remote command as
stdin and std.out. If fd2p is nonzero, an auxiliary channel to a control pro­
cess will be set up, and a descriptor for it will be placed in the integer
pointed to by fd2p. The control process will return diagnostic output from
the command (unit 2) on this channel and will also accept bytes on this
channel representing CLIX signal numbers to be forwarded to the process
group of the command. If fd2p is 0, the std.err (unit 2 of the remote com­
mand) will be the same as the std.out with no provision for sending arbi­
trary signals to the remote process, although out-of-band data could be used
to attract its attention.

The protocol is described in detail in rshd(lM).

The rresvport routine is used to obtain a socket with a privileged address
bound to it. This sock.et is suitable for use by rcmd and several other rou­
tines. Privileged Internet ports are in the 0 to 1023 range. Only the super­
user is allowed to bind this type of address to a sock.et.

1

R.CMD(3B) R.CMD(3B)

ro.serok assumes a remote host's name returned by a gethostbyaddr(3B) rou­
tine, with two user names and a flag indicating whether the local user's name
is also the super-user's. It then checks the files /etc/hosts.equiv and possi­
bly .rhosts in the user's home directory to see if the request for service is
allowed. A 0 is returned if the machine name is listed in the
/etc/hosts.equiv file or the host and remote user name are in the .rhosts
file; otherwise ro.serok returns -1. If the superuser flag is 1, the checking of
the /etc/host.equiv file is bypassed. If the local domain (as obtained from
gethostname(2B)) is the same as the remote domain, only the machine name
should be specified.

SEE ALSO
rcmd(l), rexec(3B).
rexecd(lM), rshd(lM) in the CLIX System Administrator's Manual.

DIAGNOSTICS

2

rcmd returns a valid socket descriptor on success. It returns -1 on error and
prints a diagnostic message on the standard error.

rresvport returns a valid, bound socket descriptor on success. It returns -1
on error with the global value errno set according to the reason for failure.
The error code EAGAIN is overloaded to mean "All network ports in use."

12/88

llEXEC(3B) llEXEC(3B)

NAME
rexec - return stream to a remote command

SYNOPSIS
int re:xec (ahost, inport, user, passwd, cmd, fd2p)
char aahost;
int inport;
char suser, spasswd, scmd;
int sfd2p;

DESCllIPTION
rexec looks up the host '*a.host using gethostbyname(3B), returning -1 if the
host does not exist. Otherwise '*a.host is set to the standard name of the host.
If a user name and password are both specified, these are used to authenticate
to the foreign host; otherwise the environment and then the user's .netrc file
in the home directory are searched for appropriate information. If all this
fails, the user is prompted for the information.

The port inport specifies which well-known Defense Advanced Research Pro­
ject Agency (DARPA) Internet port to use for the connection; the call
getservbyname(•e:xec•, •icp•) (see getservent(3B)) will return a pointer to
a structure, which contains the necessary port. The protocol for connection
is described in detail in rexecd(lM).

If the connection succeeds, a socket in the Internet domain of type
SOCK_STREAM is returned to the caller and given to the remote command as
std.in and std.out. If fd2p is nonzero, an auxiliary channel to a control pro­
cess will be set up, and a descriptor for it will be placed in the integer
pointed to by fd2p. The control process will return diagnostic output from
the command (unit 2) on this channel, and will also accept bytes on the
channel as being CLIX signal numbers to be forwarded to the process group
of the command. The diagnostic information returned does not include
remote authorization failure, as the secondary connection is set up after
authorization has been verified. If fd2p is 0, the stderr (unit 2 of the
remote command) will be the same as the std.out with no provision for
sending arbitrary signals to the remote process. Although, out-of-band data
could be used to attract its attention.

SEE ALSO
gethostent(3B), getservent(3B), rcmd(3B).
rexecd(lM) in the CLIX System Administrator's Manual.

12/88 1

STJUNG(3B) STJUNG(3B)

NAME
string: index, rindex - string operations

SYNOPSIS
char sinde:x: (s, c)
char *s, c;

char srinde:x: (s, c)
char *s, c;

DESCRIPTION

12188

These functions operate on null-terminated strings. They do not check for
overflow of any receiving string.

index (rindex) returns a pointer to the first (last) occurrence of character c
in string s, or zero if c is not in the string.

1

c

c

(,)

z

INT:R0(3N) INT:R0(3N)

NAME
intro - introduction to Intergraph communications environment

DESC:RIPTION
This section describes the available networking modules and routines pro­
vided with the Intergraph Network Core (INC) product. The communica­
tions library provided with the INC product contains a number of function­
ally separate modules. The following modules are available:

fmu the File Management Utility (provides an interface for file
transfer)

sni the Simple Network Interface

clh the clearinghouse

When a program is linked, the following syntax should be used:

cc object .•. -line -ldevi_s

DIAGNOSTICS

12188

If the request is successful, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

1

CLH_ VBYOP(3N)

NAME
clh_vbyop - lookup value by object and property

SYNOPSIS
char sclh_ vbyop (object, property, value, size)
unsigned char aobject, aproperty, *Value;
int size;

DESCRIPTION

CLH_ VBYOP(3N)

clh_vb-yop searches the Intergraph clearinghouse directory looking for object.
If found, the object is searched for property. All information (up to size
bytes) regarding property is returned in the string pointed to by value.

FILES
/usr/lib/nodes/•

SEE ALSO
clh(l), clh(4).

DIAGNOSTICS

clearinghouse directory

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error string is returned.

12/88 1

FMU _CONNECT(3N) FMU_CONNECT(3N)

NAME
fmu_connect, fmu_disconnect - connect/disconnect to remote FMU server

SYNOPSIS
char *fmu_connect (node)
char SD.ode;

char *fmu_disconnect ()

DESCRIPTION
fmu,_connect connects with the remote File Management Utility (FMU)
server on the node specified, allowing other FMU subroutines to be used.

Node must have the following format:

node-name [.user-name [.password]]

where node-name may be a string or network address, user-name and pass­
word are strings, and periods are the required delimiters. User-name and
password may be required depending on the node-name specified.

fmu_disconnect ends the connection to the FMU server.

SEE ALSO
fmu(l), fmu_send(3N), fmu_receive(3N), sni_connect(3N).

DIAGNOSTICS
Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

WARNINGS

12188

Connection can only be established for one node at a time. Attempting to
connect to another node automatically disconnects the previous connection.
If a node name is specified in node, the node name must be in the local Inter­
graph clearinghouse.

Server resources are wasted if fmu_disconnect is not called before exiting.

1

FMU_R.CMD(3N) FMU _R.CMD(3N)

NAME
fmu_rcmd - execute the specified command on remote system

SYNOPSIS
char *fmu_rcmd (command)
char acommand;

DESCRIPTION
ftnu_rcmd executes command on the remote system. All standard output
generated by the remote command is written to stdout.

The connection must be established with ftnu_connect(3N) prior to calling
ftnu_rcmd.

SEE ALSO
fmu_receive(3N), fmu_send(3N), fmu_connect(3N).

DIAGNOSTICS
Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

WARNINGS
If command requires input, ftnu_rcmd will hang indefinitely.

12/88 1

FMU_RECEIVE(3N) FMU _RECEIVE(3N)

NAME
fmu_receive - receive files from a remote system

SYNOPSIS
char *fmu_receive (srcfile, dstfile)
char *Srcfile, *dstfile;

DESCRIPTION
fmu_receive copies one or more files from a remote system to the local sys­
tem.

srcfi.l.e points to a path name specifying the source file(s) on the remote sys­
tem, and dstfi.l.e points to a path name specifying the destination file (or
directory) on the local system.

The connection must be established with fmu_connect(3N) before
fmu_receive is called.

SEE ALSO
fmu_send(3N), fmu_connect(3N).

DIAGNOSTICS

01/90

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

1

FMU_SEND(3N) FMU _SEND(3N)

NAME
fmu_send - send files to a remote system

SYNOPSIS
char *fmu_send (srcfile, dstfile)
char *Srcfile, *Clstfile;

DESCK.IPTION
fmu_send copies one or more files from a local system to a remote system.

srcfile points to a path name specifying the source file(s) on the local system,
and dst.file points to a path name specifying the destination file (or directory)
on the remote system.

The connection must be established with fmu_connect(3N) before fmu_send
is called.

SEE ALSO
fmu_receive(3N), fmu_connect(3N).

DIAGNOSTICS

01/90

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

1

FMU_SET(3N) FMU_SET(3N)

NAME
fmu_set - set FMU modes

SYNOPSIS
char sfmu_set (mode)
char *mode;

DESCRIPTION
Different modes of operation may be enabled when using the File Manage­
ment Utility (FMU) routines. The following strings are supported for mode:

"CHECKSUM" Force a checksum to occur during the transfer.

"COMPRESS" Force compress mode when transferring files.

"VERBOSE" Enable verbose mode; information about file transfer is
printed to std.err.

"NO CHECKSUM" Turn off checksum mode.

"NO COMPRESS" Turn off compress mode.

"NO VERBOSE" Turn off verbose mode.

SEE ALSO
fmu_connect(3N), fmu_receive(3N), fmu_send(3N).

DIAGNOSTICS

12/88

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

1

R.TC_ALLOCATE(3N) R.TC_ALLOCATE(3N)

NAME
rtc_allocate, rtc_deallocate, rtc_notify - remote tape control

SYNOPSIS
char srtc_allocate (cdev, sys, rew, norew, timeout)
char ~dev, *Sys, srew, snorew;
int timeout;

char srtc_deallocate (cdev)
char ~dev;

char srtc_notify (cdev, sig)
char ~dev;
int sig;

DESCR.IPTION

FILES

rtc_allocate, rtc_deallocate, and rtc_notify allow a tape drive on a remote

machine to be used as if it resided locally (see rtc(7S).

rtc_allocate sets up the information needed to access the tape drive. Once

allocated, the remote tape drive remains allocated until a timeout occurs or

rtc_deallocate is executed. Cdev is the name of a tape control device (such

as /dev/rmt/rtO.ctl) that controls the functions of other tape devices in

the same group. Sys is the name or address of a remote machine with a tape

drive. Rew and norew are the names of the rewind and no-rewind tape dev­

ices on the machine sys. Timeout is the number of minutes the tape can

remain idle. After timeout idle minutes expire, a warning is sent to the sys­

tem console and the tape is deallocated.

rtc_deallocate closes the connection to the remote machine to which the cdev

control device is attached. If the tape drive is being used when the deallo­

cate command is invoked, an error is returned.

rtc_notify sets up the signal sig to be sent to the calling process when

rtc_deallocate is executed on the control device cdev.

Since rtc(7S) is a STREAMS driver, the control device that rtc_allocate opens

must remain open to preserve the network connection. If the process that

calls rtc_allocate needs to exit, it must fork(2) a child process that can use

rtc_notify to be notified when rtc_deallocate is executed. Once rtc_notify is

executed, the child process can execute pause(2) to wait for the notify signal.

I dev I rmt/rt? .ctl
/dev/rmt/rt?
/dev/rmt/rt?n

control device
rewind rtc(7S) device
no-rewind rtc(7S) device

SEE ALSO
rtc(l).
rtc_s(lM), rtc(7S) in the CLIX System Administrator's Reference Manual.

01/90 1

RTC_ALLOCATE(JN) R.TC_ALLOCATE(3N)

DIAGNOSTICS
Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

2 01/90

SNI_ACCEPT(3N) SNI_ACCEPT(3N)

NAME
sni_accept - accept a connection

SYNOPSIS
char *Sni_accept (sd.)
long *Sci;

DESCRIPTION

FILES

sni_accept accepts a connection to a requester and assigns a Simple Network
Interface (SNI) descriptor to the connection. The call completes when the
requester and server connect or an error occurs.

If the call is successful, the long pointed to by sd will be assigned an
identifier for the connection, called an SNI descriptor.

/usr/ip32/inc/server.dat server information file
SEE ALSO

sni_close(3N), sni_connect(3N), server.dat(4).
xns_listener(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

NOTES

12188

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

sni_accept should only be invoked by a server program.

1

SNI_CLOSE(3N) SNl_CLOSEl

NAME
sni_close - close a connection

SYNOPSIS
char *llni_close (sd)
long ..t;

DESC:l.IPTION
snl_close disconnects and carries out various housekeeping functions to clean
up the requester/server connection. Both the server and requester must call
snl_close to end a connection.

Sd points to the long obtained with snl_accept(3N) or snl_connect(3N).
The long specifies a unique identifier assigned to a connection, called a Simple
Network Interface (SNI) descriptor. Upon successful completion, sd points
to 0.

SEE ALSO
sni_accept(3N), sni_connect(3N).

DIAGNOSTICS

12188

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

1

SNl_CONNECT(3N) SNI_CONNECT(3N)

NAME
sni_connect - connect to a server program

SYNOPSIS
char tisni_connect (sci, node, sernum, server)
long aisd;
char anode, tiserver;
unsigned short sernum;

DESCRIPTION

FILES

sni_connect creates a requester/server connection and assigns a Simple Net­
work Interface (SNI) descriptor to the connection. The call completes when
the requester and server connect or an error occurs.

Before sni_connect returns, the server must invoke the sni_accept (3N) call.

On successful completion, the long pointed to by sd is assigned an identifier
for the particular connection, called an SNI descriptor.

Node points to a node specifier for the remote system. Depending on the sys­
tem, node has one of the following formats:

node-name
node-name.user-name.
node-name.user-name.passwd

network-address
network-address.user-name.
network-address.user-name.passwd

(SNI prompts for password)

(SNI prompts for password)

Sernum is the number of the server for which the connection is desired. The
file /usr/ip32/inc/server.dat contains the available servers and server
numbers for the system. If sernum is zero, server should point to the name
of the executable file to be used on the remote system as a server. If sernum
is not zero, server should be zero.

/usr/ip32/inc/server.dat
/usr/lib/nodes/heard/•

server information file
node name clearinghouse files

SEE ALSO
sni_accept(3N), sni_close(3N), server.dat(4).
xns_listener(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

NOTES

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

sni_connect is only called in the requester program.

WARNINGS

12188

A node name in the node argument may only be specified if that node name
is in the local Intergraph clearinghouse.

1

SNI_RXW(3N) SNI_RXW(3N)

NAME
sni_rxw - receive a data buff er

SYNOPSIS
char 9Sni_rxw (sd, buffer, len, timeout)
long trsd, timeout;
char •buffer;
int •len;

DESCK.IPTION
sni_rxw receives data sent by a remote node into the buff er specified by
buffer. The size of the buffer is specified in the integer pointed to by Zen.
Upon successful completion, Zen contains the number of bytes received.
Completion occurs when either a complete message is received or the receiv­
ing buffer becomes full.

Sd is a pointer to a Simple Network Interface (SNI) descriptor assigned using
the sni_accept(3N) or sni_connect(3N) function.

Timeout specifies the amount of time (in milliseconds) the call waits to
receive data. If data is not received in the time specified, the call is unsuc­
cessful and a pointer to an error message is returned. A timeout value of 0
indicates no time constraint.

SEE ALSO
sni_accept(3N), sni_close(3N), sni_connect(3N), sni_txw(3N).

DIAGNOSTICS

NOTES

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

In general, timeouts should not be used.

WARNINGS

12/88

If received data is larger than the specified size of the buffer, the data will be
truncated. The remaining data will be lost.

1

SNI_TXW(3N) SNI_TXW(3N)

NAME
sni_txw - transmit a data buffer

SYNOPSIS
char ssni_txw (sd, bu:ffer, len, timeout)
long asd, timeout;
char •buffer;
int •len;

DESCR.IPTION
sni_txw transmits data to a remote node from buffer. The size of the buffer
is specified in the integer pointed to by Zen. Upon successful completion, Zen
contains the actual number of bytes transmitted.

Sd is a pointer to a Simple Network Interface (SNI) descriptor assigned using
the sni_accept(3N) or sni_connect(3N) function.

Timeout specifies the amount of time (in milliseconds) the call waits for an
acknowledgment from the remote node. If the acknowledgment is not
received in the time specified, the call is unsuccessful and a pointer to an
error message is returned. A timeout value of 0 indicates no time constraint.

SEE ALSO
sni_accept(3N), sni_close(3N), sni_connect(3N), sni_rxw(3N).

DIAGNOSTICS

NOTES

Upon successful completion, a null pointer is returned. Otherwise, a pointer
to an error message is returned.

In general, timeouts should not be used.

WARNINGS

12/88

sni_txw completes when the buffer is queued. The data is transmitted asyn­
chronously until all the is successfully received by the remote node.

1

c

c

c

INTR.0(3R.) INTR.0(3R.)

NAME
intro - introduction to RPC/XDR/YP service functions and protocols

DESCR.IPTION
These functions define access routines to the standard Remote Procedure Call
(RPC) and Yellow Pages (YP) services. To access these routines link with
libyp.a for YP services and libbsd.a for RPC information.

List Of Standard Services
Name Appears on Page

getdomain getdomain(3R)
getrpcent getrpcent(3R)
getrpcport getrpcport(3R)
ypclnt ypclnt(3R)
yppasswd yppasswd(3R)

SEE ALSO

Description
get YP domain name
get RPC entry name
get RPC port number
YP protocol
update users passwd in YP

"RPC/XDR Tutorial", "YP Tutorial" in the CLIX System Guide.

12/88 1

GETDOMAINNAME(31t) GETDOMAINNAME(31t)

NAME
getdomainname, setdomainname - get/set name of current domain

SYNOPSIS
int getdomainname (name, namelen)
char sname;
int namelen;

int setdomainname (name, namelen)
char *name;
int namelen;

DESCUPTION
getdomainname returns the name of the domain for the host machine as pre­
viously set by setdomalnname. The parameter namelen specifies the size of
the name array. The returned name is null-terminated unless insufficient
space is provided.

setdomainname sets the domain of the host machine to be name, which has
length namelen. This call is restricted to the super-user and is normally
used only at boot time.

Domains enable two distinct networks that may have host names in common
to merge. Each network is distinguished by having a different domain name.
Currently, only the Yellow Pages (YP) service uses domains.

The following errors may be returned by these calls:

[EFAULT] The name parameter gave an invalid address.

[EPERM] The caller was not the super-user. This error only applies to
setdomainname.

DIAGNOSTICS

NOTES

BUGS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Only the super-user can set the domain name.

Domain names are limited to 64 characters.

1

GETR.PCENT(3Jt) GETR.PCENT(3Jt)

NAME
getrpcent, getrpcbyname, getrpcbynumber, setrpcent, endrpcent - get RPC
entry

SYNOPSIS
#include <netdb.h>

struct rpcent agetrpcent ()

struct rpcent agetrpcbyname (name)
char sname;

struct rpcent agetrpcbynumber (number)
int number;

void setrpcent (stayopen)
int stayopen;

void endrpcent ()

DESCR.IPTION

PILES

12188

getrpcent, getrpcbyname, and getrpcbynumber return a pointer to an object
with the following structure containing the broken-out fields of a line in the
Remote Procedure Call (RPC) program number database, /etc/rpc.

struct rpcent {
char
char

•r_name;
**r_aliases;
r_number;

I• name of server for this rpc program•/
I• alias list •/

};
long /* rpc program number•/

The mem hers of this structure are as fallows:

r_name

r_aliases

r_number

The name of the server for this RPC program.

A zero-terminated list of alternate names for the RPC pro­
gram.

The RPC program number for this service.

getrpcent reads the next line of the file, opening the file if necessary.

setrpcent opens and rewinds the file. If the stayopen flag is nonzero, the net
database is not closed after each call to getrpcent (either directly or
indirectly)

endrpcent closes the file by either getrpcbyname or getrpcbynumber.

getrpcbyname and getrpcbynumber sequentially search from the beginning of
the file until a matching RPC program name or program number is found, or
until EOF is encountered.

/etc/rpc
/etc/yp/ domainname/rpc. bynumber

1

GETR.PCENT(3R.)

SEE ALSO
rpc(4).

GETR.PCENT(3R.)

rpcinf o(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS
A null pointer is returned on EOF or error.

BUGS
All information is contained in a static area, so it must be copied to be saved.

2 12/88

GET.RPCPO.RT(3.R) GET.RPCPO.RT(3.R)

NAME
getrpcport - get RPC port number

SYNOPSIS
int getrpcport (host, prognum, versnum, proto)
char •host;
int prognum, versnum, proto;

DESC.RIPTION
getrpcport returns the port number for version versnum of the Remote Pro­
cedure Call (RPC) program prognum running on host and using protocol
proto.

DIAGNOSTICS

12/88

getrpcport returns 0 if it cannot contact the portmapper or if prognum is not
registered. If prognum is registered but not with version versnum, the port­
mapper returns the port number.

1

YPCLNT(3R) YPCLNT(3R)

NAME
ypclnt: yp_get_default_domain, yp_bind, yp_unbind, yp_match,
yp_first, yp_next, yp_all, yp_order, yp_master, yperr_string, ypprot_err
- YP client interface

SYNOPSIS
#include <rpcsvc/ypclnt.h>

int yp_bind (indomain)
char aindomain;

void yp_unbind (indomain)
char aindomain;

int yp~et_def ault_domain Coutdomain)
char **Outdomain;

int yp_match (indomain, inmap, inkey, inkeylen, outval, outvallen)
char aindomain, *1.nmap, si.nkey, **Outval;
int inkeylen, soutvallen;

int yp_ftrst (indomain, inmap, outkey, outkeylen, outval, outvallen)
char aindomain, ainmap, **Outkey, **Outval;
int soutkeylen, soutvallen;

int yp_nert (indomain, inmap, inkey, inkeylen, outkey, outkeylen,
outval, outvallen)

char aindomain, ainmap, si.nkey, aoutkey, **Outval;
int inkeylen, soutkeylen, soutvallen;

int yp_all (indomain, inmap, incallback)
char aindomain, ainmap;
struct ypall_callback incallback;

int yp_order (indomain, inmap, outorder)
char aindomain, ainmap;
int soutorder;

int yp_master (indomain, inmap, outname)
char aindomain, ainmap, **Outname;

char ayperr _string (incode)
int incode;

int ypprot_err (incode)
unsigned int incode;

DESCl.IPTION

12/88

This package of functions provides an interface to the Yellow Pages (YP) net­
work lookup service. The package can be loaded from the standard library,
/usr/lib/libyp.a. Refer to ypfi1.es(4) and ypserv(lM) for an overview of
YP, including the definitions of map and domain and a description of the
various servers, databases, and commands.

1

YPCLNT(JR.) YPCLNT(3Jt)

2

All input parameter names begin with "in". Output parameters begin with
"out". Output parameters which are pointers to character pointers should be
addresses of uninitialized character pointers. Memory is allocated by the YP
client package using malloc(3) and may be freed if the user code has no con­
tinuing need for it. For each outkey and outval, two extra bytes of memory
are allocated at the end that contain NEWLINE and NULL, respectively, but
these two bytes are not reflected in outkeylen or outvallen. Indomain and
inmap strings must be non-null and null-terminated. String parameters
accompanied by a count parameter may not be null but may point to null
strings, with the count parameter indicating this. Counted strings need not
be null-terminated.

All functions that return integers return 0 if they succeed and a failure code
(YPERR_xxxx) otherwise. Failure codes are described under DIAGNOSTICS
below.

The YP lookup calls require a map name and a domain name, at minimum.
It is assumed that the client process knows the name of the map of interest.
Client processes should fetch the node's default domain by calling
yp_get_default_domain and use the returned outdomain as the indomain
parameter to successive YP calls.

To use the YP services, the client process must be "bound" to a YP server that
serves the appropriate domain using yp_bind. Binding need not be explicitly
set by user code; it is accomplished automatically when a YP lookup function
is called. yp_bind can be called directly for processes that use a backup
strategy (e.g., a local file) in cases when YP services are not available.
Each binding allocates (uses up) one client process socket descriptor; each
bound domain costs one socket descriptor. However, multiple requests to
the same domain use that same descriptor. yp_unbind is available at the
client interface for processes that explicitly manage their socket descriptors
while accessing multiple domains. The call to yp_unbind makes the domain
unbound, and free all per-process and per-node resources used to bind it.
If a Remote Procedure Call (RPC) failure results when a binding is used, that
domain will be unbound automatically. At that point, the ypclnt layer
retries indefinitely or until the operation succeeds, provided that ypbind(lM)
is running, and either

a) the client process cannot bind a server for the proper domain, or

b) RPC requests to the server fail.

If an error is not RPC-related, if ypbind(lM) is not running, or if a bound
ypserv(lM) process returns any answer (success or failure), the ypclnt layer
will return control to the user code, with either an error code or a success
code and any results.

yp_match returns the value associated with a passed key. This key must be
exact; no pattern matching is available.

12/88

YPCLNT(JR.) YPCLNT(JR)

12/88

yp _first returns the first key-value pair from the named map in the named
domain.

yp_next returns the next key-value pair in a named map. The inkey param­
eter should be the outkey returned from an initial call to yp_first (to get the
second key-value pair) or the one returned from the nth call to yp_next (to
get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the struc­
ture of the YP map being processed, the lexical order within any original
(non-YP) database or any obvious numerical sorting order on the keys,
values, or key-value pairs do not relate to retrieval order. The only ordering
guarantee is that if the yp_first function is called on a particular map, and
then the yp_next function is repeatedly called on the same map at the same
server until the call fails with a reason of YPERR_NOMORE, every entry in
the database will be seen exactly once. Further, if the same sequence of
operations is performed on the same map at the same server, the entries will
be seen in the same order.

When heavy server load or server failure occurs, it is possible for the
domain to become unbound, then bound once again (perhaps to a different
server) while a client is running. This can cause a break in one of the
enumeration rules; specific entries may be seen twice by the client or not at
all. This approach protects the client from error messages that would other­
wise be returned in the midst of the enumeration. The next paragraph
describes a better solution to enumerating all entries in a map.

yp_aU provides a way to transfer an entire map from server to client in a
single request using Transmission Control Protocol (TCP) (rather than User
Datagram Protocol (UDP) as with other functions in this package). The
entire transaction occurs as a single RPC request and response. yp_all can be
used like any other YP procedure by identifying the map in the normal
manner and supplying the name of a function that will be called to process
each key-value pair within the map. A return from the call to yp_all only
occurs when the transaction is completed (successfully or unsuccessfully) or
when the foreach function does not want to see any more key-value pairs.

The third parameter to yp_all is

struct ypall_callback •incallback {
int (.toreach)();
char *data;

};

The function foreach is called as follows:

foreach (instatas, inkey, inkeylen, inval, invallen, indata)
char ainkey, *1.nval, *1.ndata;
int instatas, inkeylen, invallen;

The lnstatus parameter will hold one of the return status values defined in
<rpcsvc/yp_prot.h> - either YP_TRUE or an error code. (See
ypprot_err, below, for a function that converts a YP protocol error code to a

3

YPCLNT(U) YPCLNT(31l)

FILES

ypclnt layer error code.)

The key and value parameters differ somewhat from those defined in the
synopsis section above. First, the memory pointed to by the lnkey and lnval
parameters is private to the yp_aU function and is overwritten with the
arrival of each new key-value pair. It is the responsibility of the foreach
function to use the contents of that memory, but it does not own the
memory itself. Key and value objects presented to the foreach function look
exactly as they do in the server's map; if they were not newline-terminated
or null-terminated in the map, they will not be so here either.

The indata parameter is the contents of the incallbaclc data element passed to
yp_aU. The data element of the callhaclc structure may be used to share
state information between the foreach function and the mainline code. Its
use is optional and no part of the YP client package inspects its contents.

The foreach function returns zero to indicate that it wants to be called again
for further received key-value pairs, or nonzero to stop the flow of key­
value pairs. If foreach returns a nonzero value, it is not called again; the
functional value of yp_aU is then 0.

yp_order returns the order number for a map.

yp _master returns the machine name of the master YP server for a map.

yperr _string returns a pointer to an error message string that is null­
terminated but contains no period or new line.

ypprot_err has a YP protocol error code as input and returns a ypclnt layer
error code, which may be used as input to yperr _string.

/usr/include/rpcsvc/ypclnt.h
/usr/include/rpcsvc/yp_prot.h

SEE ALSO
ypfiles(4).
ypserv(lM) in the CLIX System Administrator's Reference Manual.
"YP Tutorial" in the CLIX System Guide.

DIAGNOSTICS

4

All integer functions return 0 if the requested operation is successful or one
of the following errors if the operation fails.

#define YPERR_BADARGS
#define YPERR_RPC
#define YPERR_DOMAIN
#define YPERR_MAP
#define YPERR_KEY
#define YPERR_YPERR
#define YPERR_RESRC
#define YPERR_NOMORE
#define YPERR_PMAP
#define YPERR_ YPBIND

1 /* args to function are bad•/
2 /* RPC failure - domain unbound*/
3 /*can't bind to server on this domain•/
4 /*no such map in server's domain*/
5 /*no such key in map•/
6 I• internal yp server or client error •I
7 /* resource allocation failure •/
8 /* no more records in map database •/
9 /* can't communicate with portmapper •/
10 /*can't communicate with ypbind •/

12/88

YPCLNT(3R.)

12188

#define YPERR_YPSERV
#define YPERR_NODOM

YPCLNT(JR)

11 /•can't communicate with ypserv •/
12 /•local domain name not set•/

5

YPP ASSWD(3R.) YPP ASSWD(3R.)

NAME
yppasswd - update user password in YP

SYNOPSIS
#include < rpcsvclyppasswd.h >
int yppasswd Coldpass, newpw)
char *Old pass;
struct passwd sn.ewpw;

DESCR.IPTION
If 07.dpass is a valid user password, yppasswd replaces 07.dpass with newpw.

Remote Procedure Call info:

program number:
YPP ASSWOPROG

xdr routines:
xdr_ppasswd(xdrs, yp)

XOR *Xdrs;

procs:

struct yppasswd *YP;
xdr_yppasswd(xdrs, pw)

XOR *Xdrs;
struct passwd •pw;

YPPASSWOPROC_UPDATE
Takes yppasswd structure as argument; returns integer.
Same behavior as yppasswd wrapper.
Uses UNIX authentication.

versions:
YPPASSWOVERS_ORIG

structures:
struct yppasswd {

char *Oldpass; /*old (unencrypted) password•/
struct passwd newpw; /* new pw structure •/

};

SEE ALSO
yppasswd(l).
yppasswdd(lM) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned.

12/88 1

c

c
c.:>
)>

INTJ.t0(3A) INTJ.t0(3A)

NAME
intro - introduction to the synchronous/asynchronous VO library

DESCltIPTION

01/90

This section describes the routines found in the synchronous/asynchronous

VO (XIO) library, libix. The link editor Zd(l) searches this library under

the -lix option.

The XIO system controls synchronous and asynchronous VO requests to XIO

drivers in the CLIX kernel (see section (7A) in the CLIX System

Administrator's Reference Manual). Although any request to an XIO driver

may be asynchronous, only requests that could block are available as asyn­

chronous requests.

Associated with each asynchronous request is an event fi.ag number (efn) and

an XIO completion status block (xiosb structure) passed as part of the param­

eter list. The event fi.ag number is used to track the completion of the asyn­

chronous request; the xiosb structure is updated with the completion infor­

mation for the asynchronous request.

Two functions in the library manage allocation of event fi.ag numbers. The

function xlo_alloce/(3A) allocates an unused event fi.ag number (an integer

between 0 and 31, inclusive). The xlo_dealloce/(3A) function frees a previ­

ously allocated event fi.ag number.

The xiosb structure, allocated for each asynchronous request, is shown below

and is defined in the include file <sys/xio/xio.h>.

struct xios b {
int status;

xfcnt;
seqnum;

/* completion error status */
/*size of transferred data*/

};

int
int I* sequence number of event*/

The members of the xiosb structure are described as follows:

status

xf cnt

The error value returned from the XIO driver. Possible
return values are listed in the < sys/xio/xerr .h >
include file. A value of 0 indicates no error occurred.

The total number of bytes of data transferred by the
XIO driver. However, in some cases, a parameter may
be returned in this member. See the manual page for

each request to determine the exact use of this member.

seqnum This member determines the order of completion for
asynchronous requests. The XIO system sets this
member to a value of one greater than the previously
completed asynchronous request.

The XIO system in the CLIX kernel provides a 32-bit mask, the event fi.ag

mask, to monitor the completion of asynchronous requests. Initially, all bits

in the event flag mask are set. When an asynchronous request is issued, the

XIO system clears the bit corresponding to the event fi.ag number for the

1

INTR.0(3A) INTR.0(3A)

request. When an asynchronous request has completed, the XIO system sets
the bit corresponding to the event :O.ag number of the completed request. The
user may determine the completion of an asynchronous request by checking
its corresponding bit in the event :O.ag mask.

In addition to bits in the event flag mask being altered by the invocation and ~
completion of asynchronous requests, the following routines also modify the ~·
event :O.ag mask. xio_clre/(3A) clears bits in the event :O.ag mask as specified
in the calling argument, and xio_sete/(3A) sets bits in the event flag mask as
specified in the calling argument.

Four routines allow a process to act on the current state of the event flag
mask (and thus the completion state of the associated asynchronous
requests). The routines are described as follows:

xio_reade/(3A) Return the event flag mask. Cleared bits in the
mask possibly represent asynchronous requests
that have not completed. The process is responsi­
ble for knowing which bits in the event :O.ag mask
are currently used by an asynchronous request.

xio_waitfr(3A) Return control to the caller only when the bit in
the event :O.ag mask corresponding to the event
:O.ag number specified in the call is set. The call,
in effect, waits for the completion of an outstand­
ing asynchronous request.

xio_wflor(3A) Return control to the caller when any of the bits
in the event :O.ag mask that correspond to set bits
in the mask specified by the call are set. The call,
in effect, waits for one of the outstanding asyn­
chronous requests to complete.

xio_wflc.nd(3A) Return control to the caller when all bits in the
event flag mask that correspond to all set bits in
the mask specified by the call are set. This pro­
vides a mechanism for a process to wait for the
completion of many outstanding asynchronous
requests.

In addition to the above routines, xio_notl/y(3A) notifies a process that an
asynchronous request has been completed. The notification is either by a sig­
nal, by alternation of an integer pair in the process's data space, or both. See
xio_notify(3A) for more information.

EXAMPLES

2

The following example uses an asynchronous request to receive data from a
device. The device DEV is fictitious and used with this example only.

01/90

INTR.0(3A) INTR.0(3A)

SEE ALSO

#include < sys/xio/xio.h >
#include < sys/xio/xerr .h >
#include <errno.h>

int efn;
struct xiosb xiosb;
char buffer[SIZE];

I•
*Allocate unique event number
*/
if (xio_allocef(&efn) == 0) {

printf("no more events\n");
exit(l);

I•
*Issue request to device DEV
*/
if (DEV _readnw(buffer, SIZE, &xiosb, efn) == XIO_FAILURE) {

printf("request failed, errno = %d\n", errno);
exit(l);

/*
*At this point, the process is free to do any other type
* of requests or processing. When the "DEV _readnw" event

* completes, the request will be queued until the process
*polls the system or waits for this event.

*
*For the purpose of our example, the program will wait for

* this event.
*/
xio_ waitf r(efn);
if (xiosb.status) {

}

printf("bad request status, status= %d\n", xiosb.status);

exit(l);

printf("total amount of data returned= %d\n", xiosb.xfcnt);

xio_allocef(3A), xio_readef(3A), xio_notify(3A), xio_ waitfr(3A).

~ Section (7A) in the CLIX System Administrator's Reference Manual.

~ WAR.NINOS
If any Environ V Library functions for graphics or graphics device interfaces

are used, the XIO system is controlled by Environ V functions. To use XIO

01/90 3

INTR.0(3A) INTR.0(3A)

devices with Environ V functions, refer to Setup_system_event(3C) in the
Environ V Programmer's Reference Manual.

Because an event flag number is used to track an asynchronous request com­
pletion, no two outstanding requests should use the same event flag number
at the same time.

CAVEATS

4

Since XIO devices are not in the CLIX name space, access to them cannot be
restricted.

01/90

AUX_BltEAK(3A) AUX_BltEAK(3A)

NAME
aux_break - generate a break on a serial port

SYNOPSIS
#include < sys/xi.o/xerr .h >
int aux_break (port)
int port;

DESCRIPTION
aux_break generates a break condition on the specified serial port. The port
must have been opened by aux_open(3A).

aux_break will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[AUX_PORT_NOT_OPEN] The specified port is not open by the calling
process.

SEE ALSO
aux_open(3A).
xaux(7A) in the CL.IX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

AUX_CANCEL(3A) AUX_CANCEL(3A)

NAME
aux_cancel - cancel outstanding read on a serial port

SYNOPSIS
#include <sys/rlo/xerr.h>

int aux_cancel (port)
int port;

DESCRIPTION
aux_cancel cancels the outstanding read on the specified serial port. The
port must have been opened by aux_open(3A).

aux_cancel will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[AUX_PORT_NOT_OPEN] The specified port is not open by the calling
process.

SEE ALSO
aux_open(3A), aux_read(3A), aux_rawrd(3A).
xaux(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

CAVEATS
Outstanding writes cannot be canceled.

12/88 1

AUX_CANCEL_MODEM(3A) AUX_CANCEL_MODEM(3A)

NAME
aux_cancel_modem - cancel modem change state on a serial port

SYNOPSIS
#include <sys/xio/xerr.h>

int aux_cancel_modem (port)
int port;

DESCRIPTION
aux_cancel_modem cancels the outstanding request for modem state change
on the specified serial port. The port must have been opened by
aux_open(3A).

aux_cancel_modem will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[AUX_PORT_NOT_OPEN] The specified port is not open by the calling
process.

SEE ALSO
aux_open(3A), aux_modem(3A).
xaux(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

AUX_CLOSE(3A) AUX_Ci.OSE(3A)

NAME
aux_close - close a serial port

SYNOPSIS
#include < sys/xio/xerr .h >
int aUI_close (port)
int port;

DESCRIPTION
a.ux_close cancels outstanding 1/0 on the specified serial port and closes the
port. The port must have been opened by aux_open(3A).

a.ux_close will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[AUX_PORT_NOT_OPEN] The specified port is not open by the calling
process.

SEE ALSO
aux_open(3A), aux_read(3A), aux_rawrd(3A), aux_modem(3A).
xaux(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

CAVEATS
Outstanding writes cannot be canceled.

12/88 1

AUX_MODEM(3A) AUX_MODEM(3A)

NAME
aux_modem, aux_modem_nw - get modem change from a serial port

SYNOPSIS
#include < sys/xio/xio.h >
#include <sys/xio/xerr.h>
int aux_modem (port)
int port;

int aux_modem_nw (port, xiosb, efn)
int port, efn;
struct xiosb *Xiosb;

DESCRIPTION
aux_modem waits for a change of modem state on the specified port. The
port must have been opened by aux_open(3A).

To get and set modem characteristics, refer to aux(7S).

aux_modem_nw is the asynchronous version of aux_modem, providing the
same capability without waiting for completion of the request. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated on completion of the request (see intro(3A)).
aux_modem and aux_modem_nw will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed

to support this request or efn is invalid.
[AUX_PORT_NOT_OPEN] The specified port is not open by the calling

process.
SEE ALSO

intro(3A), aux_open(3A).
xaux(7A), aux(7S) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.
If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

1

AUX_OPEN(3A) AUX_OPEN(3A)

NAME
aux_open - open a serial port

SYNOPSIS
#include < sys/x.io/xerr .h >
int aux_open (port)
int port;

DESCJUPTION
QJJ.X_open opens the specified serial port if it is not currently opened by
either this call or by the standard open(2) call.

QJJ.X_open will default the modem characteristics of the port to the standard
open(2) state. The modem characteristics may be changed after a successful
QJJ.X_open by opening the corresponding /dev/tty7/ device, and issuing the
appropriate ioctl(2).

QJJ.X_open will fail if one of the following is true:

[XIO_FAILUR.E] The system does not contain the driver needed
to support this request.

[AUX_POR.T_IN_ USE] The specified port is already in use.

SEE ALSO
aux close(3A).
xaux(7A), aux(7S) in the CLIX System Administrator's Reference Manu.al.
open(2), ioctl(2) in the UNIX System V Programmer's Reference Manu.al.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

AUX_RA WRD(3A) AUX_RA WRD(3A)

NAME
aux_rawrd, aux_rawrd_nw - read data with error byte from a serial port

SYNOPSIS
#include <sys/aux.h>
#include < sys/xio/xio.h >
#include < sys/xio/xerr .h >

int aux_rawrd (port, dbuf, dent, xfcnt)
int port, dent;
short *<lbuf;
int *Xfent;

int aux_rawrd_nw (port, dbuf, dent, xiosb, efn)
int port, dent, efn;
short *<lbuf;
struct xiosb *Xiosb;

DESCRIPTION

07/89

aux_rawrd reads data and error information from the specified port. The
port must have been opened by aux_open(3A).

Each short read from port consists of a character in the low byte and error
information in the high-order byte. The error information is a bit mask
with bit definitions shown below and defined in <sys/aux.h>. Multiple
errors can occur on a character.

BREAK
PARITY
PART_OVERRUN
FRAME
QUEUE_ OVERRUN

OxOlOO
Ox0200
Ox0400
Ox0800
OxlOOO

I* break sequence detected */
/* character parity error */
/* hard ware overrun */
/*character framing error*/
/* software overrun */

Dbuf is a pointer to the buffer to receive the character/error information, and
dent is the size (in bytes) of the buffer. The buffer must be short aligned.

Upon completion of the synchronous request, the integer pointed to by xfcnt
is updated with the number of bytes transferred to dbuf. Since each charac­
ter received from port is coupled with error information, xfcnt indicates
twice as many bytes as there were characters received.

aux_rawrd_nw is the asynchronous version of aux_rawrd, providing the
same capability without waiting for completion of the request. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xlosb structure indicates the number of bytes transferred to
dbuf.

1

AUX_RA WRD(3A) AUX_RA WRD(3A)

aux_rawrd and aux_rawrd_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the
driver needed to support this request
or efn is invalid.

[AUX_PORT_NOT_OPEN] The specified port is not open by the
calling process.

[AUX_PORT_REDUNDANT_REQUEST] An outstanding read is already on
the specified port.

[BAD_DATA_BUFFER_SIZE] Dent is less than or equal to zero.

[BAD_DATA_BUFFER_ADDRESS] Dbuf points to a nonwritable
memory space.

SEE ALSO
intro(3A), aux_open(3A).
xaux(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

07/89

AUX_READ(3A) AUX_READ(3A)

NAME
aux_read, aux_read_nw - read data from a serial port

SYNOPSIS
#include <sys/xio/xio.h>
#include < sys/xio/xerr .h >
int aux_read (port, dbuf, dent, xfcnt)
int port, dent;
char *<i buf;
int *Xfcnt;

int aux_read_nw (port, dbuf, dent, xiosb, efn)
int port, dent, efn;
short *<i buf;
struct xiosb *Xiosb;

DESCRIPTION
aux_read reads data from the specified port. The port must have been
opened by xaux_open(3A).

Dbuf is a pointer to the buffer to receive the characters, and dent is the size
(in bytes) of the buffer.

Upon completion of the synchronous request, the integer pointed to by xfent
is updated with the number of bytes transferred to dbuf.
aux_read_nw is the asynchronous version of aux_read, providing the same
capability without waiting for completion of the request. Efn is the event
:0.ag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred to
dbuf.

aux_read and aux_read_nw will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the

driver needed to support this request
or efn is invalid.

[AUX_PORT_NOT_OPEN] The specified port is not open by the
calling process.

[AUX_PORT_REDUNDANT_REQUEST] An outstanding read is already on
the specified port.

[BAD_DATA_BUFFER_SIZE] Dent is less than or equal to zero.
[BAD_DATA_BUFFER_ADDRESS] Dbuf points to a nonwritable

memory space.
SEE ALSO

intro(3A), aux_open(3A).
xaux(7 A) in the CLIX System Administrator's Reference Manual.

07/89 1

AUX_READ(3A) AUX_READ(JA)

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is

returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will

be returned by the request. Otherwise, XIO_FAILURE will be returned.

Upon completion of an accepted request, the status member of the xiosb

structure will be set to either 0 if successful, or to one of the above failure

codes if unsuccessful.

07/89

AUX_ WRITE(3A) AUX_ WRITE(3A)

NAME
aux_ write, aux_ write_nw - write data to a serial port

SYNOPSIS
#include <sys/xio/xaux.h>
#include <sys/xio/xio.h>
#include < sys/xio/xerr .h >
int aux_ write (port, dbuf, dent, xfcnt)
int port, dent;
char *<lbuf;
int *Xfcnt;

int aux_ write_nw (port, dbuf, dent, xiosb, efn)
int port, dent, efn;
short *<lbuf;
struct xiosb *Xiosb;

DESCRIPTION
aux_write writes data to the specified port. The port must have been opened
by xaux_open(3A).

Dbuf is a pointer to a buffer of characters to be written, and dent is the size
(in bytes) of the buffer.

Upon completion of the synchronous request, the integer pointed to by xfcnt
is updated with the number of bytes transmitted.
aux_write_nw is the asynchronous version of aux_write, providing the
same capability without waiting for completion of the request. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xlosb structure indicates the number of bytes transmitted.
aux_write and aux_write_nw will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the

driver needed to support this request
or efn is invalid.

[AUX_PORT_NOT_OPEN] The specified port is not open by the
calling process.

[BAD _DATA_BUFFER_SIZE]

[BAD _DATA_BUFFER_ADDRESS]

Dent is less than or equal to zero or
greater than NAUXWRITE.

Dbuf points to an invalid memory
space.

SEE ALSO
intro(3A), aux_open(3A).
xaux(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion of the synchronous request, a value of 0 is

07/89 1

AUX_ WRITE(3A) AUX_ WRITE(3A)

2

returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will

be returned by the request. Otherwise, XIO_FAILURE will be returned.

Upon completion of an accepted request, the status member of the xiosb

structure will be set to either 0 if successful, or to one of the above failure

codes if unsuccessful.

07/89

CNV _CLOSE(3A) CNV _CLOSE(3A)

NAME
cnv_close - close a CNV channel

SYNOPSIS
#include < sys/xio/xerr .h >
int cnv _close (channel)
int channel;

DESCRIPTION
cnv _dose unmaps any hardware registers associated with the specified Con­
volution Filter (CNV) channel and closes the channel. Channel must have
been opened with cnv _open(3A).

cnv _close(3A) will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request.
[CNV _CHANNEL_INVALID] The specified channel is beyond the max­

imum allowed.
[CNV _CHANNEL_NOT_OPEN] The specified channel is not open for this

process.
SEE ALSO

cnv _open(3A).
xcnv(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CNV _OPEN(3A) CNV _OPEN(3A)

NAME
cnv_open - open a CNV channel

SYNOPSIS
#include < sys/:xio/xerr .h >
int cnv _open (channel, base)
int channel, •base;

DESCRIPTION
cnv _open opens the specified Convolution Filter (CNV) channel. Only one
process can open a CNV channel at a time. Each CNV board in the system is
represented by a channel number so that channel 0 references the CNV board
with the lowest Shared Resource (SR) Bus slot number for all CNVs. If the
call is successful, base will contain the virtual base address of the specified
CNV board. All convolution parameters are available to the calling process
through this mapping.

cnv _open will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[CNV _REDUNDANT_REQ] The specified channel is currently opened by
this process.

[CNV _CHANNEL_INVALID] The specified channel is beyond the max­
imum allowed.

[CNV _CHANNEL_NOT_FOUND] The specified channel is not in the system.
[CNV _CHANNEL_BUSY] The specified channel is currently opened by

another process.
SEE ALSO

xcnv(7A) in the CLIX System Administrator's Reference Manual.
DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSl_CANCEL(3A) CSI_CANCEL(3A)

NAME
csi_cancel - cancel outstanding asynchronous 1/0 on a CSI port

SYNOPSIS
#include <sys/.xio/xerr.h>

int csi_cancel (channeO
int channel;

DESCRIPTION
csl_cancel terminates all pending commands and death events associated
with the calling process on the Command Status Interface (CSI) port of the
Image System Interface (ISi) board referenced by channel. Channel must
have been opened with csl_open(3A).

csl_cancel will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
csi_open(3A), csi_cmd(3A), csi_dstat(3A), csi_death(3A).
xcsi(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSI_CCAN(3A) CSI_CCAN(3A)

NAME
csi_ccan - cancel a specific command on a CSI port

SYNOPSIS
#include < sys/xi.o/xerr .h >
int csi_ccan (channel, cmd)
int channel, cmd;

DESCRIPTION
csi_ccan terminates the pending cmd associated with the calling process on
the Command Status Interface (CSI) port of the Image System Interface (ISi)
board referenced by channel. Channel must have been opened with
csi_open(3A).

csi_ccan will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[ISl_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
csi_open(3A), csi_cmd(3A), csi_dstat(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSI_CLOSE(3A) CSI_ CLOSE(3A)

NAME
csi_close - close a CSI port

SYNOPSIS
#include <sys/xio/xerr.h>

int csi_close (channel)
int channel;

DESCl.IPTION
csi_close terminates all pending requests associated with the calling process
on the Command Status Interface (CSI) port of the Image System Interface
(ISI) board referenced by channel and closes the port. Channel must have
been opened with csi_open(3A).

csi_close will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
csi_open(3A), csi_cmd(3A), csi_dstat(3A), csi_ustat(3A), csi_death(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSl_CMD(3A) CSI_ CMD(3A)

NAME
csi_cmd, csi_cmd_nw - send command packets to a CSI port

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/xio.h >
int csi_cmd (channel, cbuf, cent, sbuf, sent, timeout, rlcnt)
int channel, cent, sent, timeout;
char acbuf, *Sbuf;
int *Ifcnt;

int csi_cmd_nw (channel, cbuf, cent, sbuf, sent, timeout, xiosb, efn)
int channel, cent, sent, timeout, efn;
char acbuf, *Sbuf;
struct xiosb *Xiosb;

DESC:R.IPTION

12188

csl_cmd provides a mechanism to send a command packet and receive the
associated status packet over the Command Status Interface (CSI) port on the
Image System Interface (ISi) board referenced by channel. Channel must
have been opened with csl_open(3A).

Before sending the command packet pointed to by cbuf, the packet header is
copied into the kernel and the source ID, magic numbers, start time, and
checksum are filled in. Bit 15 of the command word is never asserted on
outgoing command headers, and bit 15 of the status word is always ignored
on incoming status headers. Cbu/ must point to a long-word aligned buffer.

Cent is the size (in bytes) of the command packet. It must be greater than or
equal to twice the word count submitted in the command packet header.
The packet header size is 10 words, hence, the minimum value for cent is 20.

The status packet received from the CSI port for the command is copied into
the buffer pointed to by sbuf. The fields are checked and the finish time is
entered in the appropriate field of the status packet header. Sbuf must point
to a long-word aligned buff er.

Sent is the size (in bytes) of sbuf. If sent is 0, then the request will complete
as soon as the command packet is sent. Otherwise, sent must also be greater
than or equal to 20.

Timeout is the time limit in 1/60 second intervals to receive a status packet
after sending the command packet. Any transaction that takes longer is
aborted and an appropriate status is returned. A timeout value of 0 disables
the timeout function.

Upon completion of the synchronous request, the integer pointed to by xfent
is updated with the number of bytes received in the status packet.

csl_cmd_nw is the asynchronous version of csi_cmd, providing the same
capability without waiting for completion of the request. E/n is the event
flag number associated with the request. Xlosb is a pointer to the xiosb

1

CSI_CMD(3A) CSI_CMD(3A)

structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes received in the
status packet.

csi_cmd and csi_cmd_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

[BAD_DATA_BUFFER_ADDRESS] The command and status packets are not
long-word aligned or lack the necessary
permission.

[BAD_DATA_BUFFER_SIZE] A nonzero packet size is smaller than the
header size of 20 bytes.

[PAGE_LOCK_FAILED] Not enough physical memory for this
request is available.

[ISI_CANCELED] The request was canceled by either
csi_close(3A), csi_ccan(3A),
csi_reset(3A), or csi_cancel(3A).

[ISI_PARITY_ERROR] A parity error occurred during the tran­
saction.

[ISI_CYCLE_ERROR] A hardware handshake error occurred
during the transaction.

[ISI_TIMEOUT] The timeout expired before the transac­
tion completed.

[ISI_PROTOCOL_ERROR] A firmware handshake error occurred
during the transaction. This probably
means that sent was smaller than the
actual size of the status packet.

[ISI_HARDW ARE_CHECK] A fatal status code was asserted on the
DRU status lines during the transaction.

SEE ALSO
intro(3A), csi_open(3A), csi_cancel(3A), csi_ccan(3A), csi_reset(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

CSl_DEATH(JA) CSl_DEATH(JA)

NAME
csi_death, csi_death_nw - wait for a CSI communication to fail

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/xio.h >
int csi_death (channel, timeout, reason)
int channel, timeout;
int sreason;

int csi_death_nw (channel, timeout, xiosb, efn)
int channel, timeout, efn;
struct xiosb sxiosb;

DESC:R.IPTION
csi_death provides a mechanism to sense that communication through the
Command Status Interface (CSI) port on the Image System Interface (ISi)
board referenced by channel has failed. Channel must have been opened
with csi_open(3A).

Timeout is the time limit in 1/60 second intervals to sense a failure. Upon
expiration, the request is aborted and an appropriate status is returned. A
value of 0 disables the timeout function.

Upon completion of the synchronous request, the integer pointed to by rea­
son will indicate why the failure occurred. Possible reasons for failure are
application specific and are copied from the DRll status lines which connect
directly to external hardware. DRll status codes 4 through 6 are reserved as
fatal status codes. A status code of 7 indicates a cable problem.

csi_death_nw is the asynchronous version of csi_death, providing the same
capability without waiting for completion of the request. Efn is the event
flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the reason why the failure occurred.

csi_death and csi_death_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request or efn is invalid.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

[ISi_ CANCELED]

[ISl_TIMEOUT]

The request was canceled by either
csi_cancel(3A) or csi_close(3A).

The timeout expired before a failure occurred.

SEE ALSO

12/88

intro(3a), csi_open(3A), csi_close(3A), csi_cancel(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

1

CSI_DEATH(3A) CSI_DEATH(3A)

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

CSl_DST AT(lA) CSI_DSTAT(JA)

NAME
csi_dstat_nw - receive delayed status from a CSI port

SYNOPSIS
#include <sys/:rlo/xerr.h>
#include < sys/:rlo/:rlo.h >

int csl_dstat_nw (channel. cmd, sbuf, sent, timeout, :rlosb, efn)
int channel. cmd, sent, timeout, efn;
char "'5buf;
struct :rlosb *Xlosb;

DESCRIPTION
csl_dstat_nw provides a mechanism to establish a receive buffer to catch
delayed status over the Command Status Interface (CSI) port on the Image
System Interface (ISi) board referenced by channel. Channel must have been
opened with csl_open.

There is no synchronous version of this function since it is necessary to start
the csl_cmd(3A) after establishing delayed status. Any other order of
operation would introduce timing windows.

Cmd is the command identifier to associate the delayed status packet with a
specific command packet to be sent at a later time.

Sbuf is a pointer to the delayed status buffer and must begin on a long-word
boundary. Sent is the size (in bytes) of sbuf. This value must be greater
than or equal to 20 which is the packet header size.

Timeout is the time limit in 1/60 second intervals to receive the delayed
status packet. Upon expiration, the request is aborted and an appropriate
status is returned. A timeout value of 0 disables the timeout function.

Efn is the event flag number associated with the request. Xiosb is a pointer
to the xlosb structure updated upon completion of the request (see
intro(3A)). The xfent member of the xlosb structure indicates the number
of bytes transferred to the status buffer.

csl_dstat_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

[ISl_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

[BAD_DATA_BUFFER_ADDRESS] Sbuf is not long-word aligned or points
to a nonwritable memory space.

[BAD_DATA_BUFFER_SIZE] The sent is smaller than the header size
of 20 bytes.

[PAGE_LOCK_FAILED] There is not enough physical memory
available for this request at this time.

12/88 1

CSI_DSTAT(3A) CSI_DSTAT(3A)

[ISi_ CANCELED]

[ISI_P ARITY _ERROR]

[ISI_CYCLE_ERROR]

[ISi_ TIMEOUT]

[ISl_PROTOCOL_ERROR]

[ISI_HARDW ARE_ CHECK]

The request was canceled with either
csi_close(3A), csi_ccan(3A),
csi_reset(3A), or csi_cancel(3A).

A parity error occurred during the
transfer.

A hardware handshake error occurred
during the transfer.

The timeout expired before the status
packet was received.

A firmware handshake error occurred
during the transfer. This probably
means that sent was smaller than the
actual size of the status packet.

A fatal status code was asserted on the
DRll status lines during the transfer.

SEE ALSO
intro(3A), csi_open(3A), csi_close(3A), csi_cancel(3A), csi_ccan(3A),
csi reset(3A).
xc~7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

CSI_OPEN(3A) CSI_OPEN(3A)

NAME
csi_open - open a CSI port

SYNOPSIS
#include <sys/:x:io/xerr.h>

int csi_open (channel)
int channel;

DESC:R.IPTION
csl_open opens the Command Status lnterf ace (CSI) port on the Image Sys­
tem Interface (ISi) board referenced by channel. Multiple processes can have
the same CSI port open at a time. Each ISi board in the system is represented
by a channel number such that channel 0 references the ISi board with the
lowest Shared Resource Bus slot number of all ISi boards.

csl_open will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[ISI_REDUNDANT_REQ] The specified channel is currently open by
this process.

[ISl_CHANNEL_INV ALID] The specified channel is beyond the max­
imum allowed.

[ISI_CHANNEL_NOT_FOUND] The specified channel is not present in the
system.

SEE ALSO
csi close(3A).
xc;(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSI_RESET(JA) CSI_RESET(JA)

NAME
csi_reset - reset hard ware on CSI port

SYNOPSIS
#include <sys/xio/xerr.h>

int csi_reset (channel)
int channe~

DESCRIPTION
csi_reset terminates all pending commands for all processes on the Com­
mand Status Interface (CSI) port of the Image System Interface (ISi) board
referenced by channel. A reset function code of 4 is placed on the DRll
function lines to reset the DRll slave. Channel must have been opened with
csi_open(3A).

csi_reset will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[ISI_CHANNEL_NOT_OPEN] The specilied channel is not open for this
process.

SEE ALSO
csi_open(3A), csi_cmd(3A), csi_dstat(3A), csi_ustat(3A), csi_death(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSI_STATUS(JA) CSI_STATUS(JA)

NAME
csi_status - read the CSI port DRU status lines

SYNOPSIS
#include < sys/rlo/xerr .h >
int csi_status (channel. stat)
int channel. aistat;

DESC:RIPTION
csi_status returns the value of the Command Status Interface (CSI) port
DRU status lines which are directly connected to application specific external
hardware through the Image System Interface (ISi) board referenced by
channel. Channel must have been opened with csl_open(3A).

csi_status will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[ISI_REDUNDANT_REQ] The specified channel is currently open by
this process.

[ISl_CHANNEL_INV ALID] The specified channel is beyond the max­
imum allowed.

[ISI_CHANNEL_NOT_FOUND] The specified channel is not present in the
system.

SEE ALSO
csi_open(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSI_UCAN(3A) CSI_ UCAN(3A)

NAME
csi_ucan - cancel unsolicited status requests on a CSI port

SYNOPSIS
#include <sys/xio/xerr.h>

int csi_ucan (channel)
int channel;

DESCRIPTION
csi_ucan terminates all pending unsolicited status requests associated with
the calling process on the Command Status Interface (CSI) port of the Image
System Interface (ISi) board referenced by channel. Channel must have been
opened with csi_open(3A).

csi_ucan will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
csi_open(3A), csi_ustat(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

CSl_USTAT(3A) CSl_ USTAT(3A)

NAME
csi_ustat, csi_ustat_nw - receive unsolicited status from a CSI port

SYNOPSIS
#include <sys/xio/xerr.h>
#include < sys/xio/xio.h >

int csi_ustat (channel, sbuf, sent, timeout, xf cnt)
int channel, sent, timeout
char *Sbuf;
int sxfcnt;

int csi_ustat_nw (channel, sbuf, sent, timeout, xiosb, efn)
int channel, sent, timeout, efn;
char *Sbuf;
struct xiosb sxiosb;

DESCRIPTION

12/88

csl_ustat provides a mechanism to establish a receive buffer to catch unsoli­
cited status over the Command Status Interface (CSI) port on the Image Sys­
tem Interface (ISi) board referenced by channel. Channel must have been
opened with csl_open(3A).

In the event that an unsolicited or unclaimed status packet is received over
the CSI port, the packet is received to the first unsolicited status buffer in the
queue and the request associated with that buffer completes.

Only one process may have unsolicited status requests outstanding at a time.
An appropriate status is returned if another process is gathering unsolicited
status for the cfw.nnel.

Sbuf is a pointer to the unsolicited status buff er and must begin on a long­
word boundary. Sent is the size (in bytes) of sbuf. This value must be
greater than or equal to 20 which is the packet header size.

Timeout is the time limit in 1/60 second intervals to receive an unsolicited
status packet. Upon expiration, the request will be aborted and an appropri­
ate status is returned. A value of 0 disables the timeout function.

Upon completion of the synchronous request, the integer pointed to by xfcnt
is updated with the number of bytes received in the status packet.

csl_ustat_nw is the asynchronous version of csl_ustat, providing the same
capability without waiting for completion of the request. E/n is the event
flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xlosb structure indicates the number of bytes received in the
status buff er.

csl_ustat and csl_ustat_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

1

CSl_USTAT(3A) CSI_ USTAT(3A)

[ISI_ CHANNEL_NOT _OPEN]

[ISi_ CHANNEL_BUSY]

The specified channel is not open for this
process.

Another process is already collecting
unsolicited status packets on this chan­
nel.

[BAD_DATA_BUFFER_ADDRESS] Sbu.f is not long-word aligned or points
to a nonwritable memory space.

[BAD_DATA_BUFFER_SIZE] The sent is smaller than the header size
of 20 bytes.

[PAGE_LOCK_FAILED] Not enough physical memory for this
request is available at this time.

[ISI_CANCELED] The request was canceled with either
csi_ucan(3A) or csi_cl.ose(3A).

[ISI_P ARITY _ERROR] A parity error occurred during the
transfer.

[ISI_CYCLE_ERROR] A hardware handshake error occurred
during the transfer.

[ISI_TIMEOUT] The timeout expired before the status
packet was received.

[ISI_PROTOCOL_ERROR] A firmware handshake error occurred
during the transfer. This probably
means that sent was smaller than the
actual size of the status packet.

[ISI_HARDW ARE_CHECK] A fatal status code was asserted on the
DRU status lines during the transfer.

SEE ALSO
intro(3A), csi_open(3A), csi_close(3A), csi_ucan(3A).
xcsi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12188

FG_ALLOC(3A) FG_ALLOC(3A)

NAME
fg_alloc - allocate a frame grabber

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/xf g.h >
int fg_alloc (fgno, info, excl)
int f gno, excl;
struct fg_inf o •info;

DESCRIPTION
fg_aUoc allocates a frame grabber for an application to use. If excl is
nonzero, the calling process has exclusive access to the frame grabber until it
deallocates the frame grabber or the process exits. If excl is 0, another pro­
cess may allocate the same frame grabber.
Fgno specifies the location of the frame grabber on the Shared Resource (SR)
Bus. The frame grabber in the lowest SR Bus slot will be addressed by 0.
This number is used with all subsequent calls.
Info points to an fg_info structure as defined in the header file
<sys/xio/xfg.h>:

struct fg_info {
int i_slot; I* frame grabber hardware slot number*/
long *i_fbO_addr; /*frame buffer 0 address*/
long *i_fbl_addr; /*frame buffer 1 address*/

Info will be filled in upon return by fg_alloc. I_fbO_addr and i_fbl_addr
point to the virtual addresses of frame buffers 0 and 1 (respectively) of the
frame grabber. Each buffer consists of 256K longwords organized as an
array of 512 x 512, 32-bit pixels. The format for each 32-bit pixel is as fol­
lows:

Byte Description
0 red color component
1 green color component
2 blue color component
3 not used

fg_alloc will fail if one of the following are true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request.
[FG_NOT_PRESENT] A frame grabber is not available for allo­

cation.
[BAD_DATA_BUFFER_ADDRESS] Info or fgno points to a nonwritable

memory address.

07/89 1

FG_ALLOC(3A)

[FG_BUSY]

[FG_RESOURCE_ERROR]

SEE ALSO
fg_dealloc(3A).

DIAGNOSTICS

FG_ALLOC(3A)

Another user allocated the frame grabber
for exclusive use. Or, this call requested
exclusive use and another process allo­
cated the frame grabber for nonexclusive
use.

Not enough virtual memory is available
to map the frame buffer into the user's
memory space.

Upon successful completion, a value of 0 is returned. Otherwise, one of the

above failure codes is returned.

WARNINGS
Cooperation among processes must occur when sharing a frame grabber.

2 07/89

FG_BLANK(3A) FG_BLANK(3A)

NAME
fg_blank - blank the output signal of the frame grabber

SYNOPSIS
#include < sys/xio/xerr .h >
int fg_blank (fgno, mode)
int fgno, mode;

DESCRIPTION
fg_blank forces the output video to be blanked when mode is nonzero. If
mode is zero, the output video is sourced from one of the frame buffers.
Fgno specifies the location of the frame grabber on the Shared Resource (SR)
Bus. The frame grabber in the lowest SR Bus slot will be addressed by 0.
fg_blank will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed to sup­

port this request.
[FG_NOT_OWNER] The specified frame grabber was not allocated by the

calling process.
DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_DEALLOC(3A) FG_DEALLOC(3A)

NAME
fg_dealloc - deallocate a frame grabber

SYNOPSIS
#include <sys/xio/xerr.h>
int fg_dealloc (fgno)
int fgno;

DESCRIPTION
fg_dealloc deallocates a frame grabber. Any further reference to the frame
grabber is disallowed. In addition, the frame buffer memory is unmapped
from the calling process.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.
fg_dealloc will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed to sup­
port this request.

[FG_NOT_OWNER] The specified frame grabber was not allocated by the
calling process.

SEE ALSO
fg_alloc(3A).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_FBMODE(JA) FG_FBMODE(JA)

NAME
fg_fbmode - set the mode of a frame buffer

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/:xf g.h >
int f g_fbmode (f gno, fbno, mode)
int fgno, fbno, mode;

DESCRIPTION
fg_fbmode sets the mode of a frame buffer to FG_DISPLAY, FG_GRAB, or
FG_SNAP. If fbno is zero, the mode is set for frame buffer 0. Otherwise, the
mode is set for frame buff er 1.

Fgno specifies the location of the frame grabber on the Shared Resource (SR)
Bus. The frame grabber in the lowest SR Bus slot will be addressed by 0.
Mode FG_DISPLAY forces the specified frame buff er to continuously provide
the output video in the selected format. If both frame buffers are in
FG_DISPLAY_MODE, the frame buff er specified by fg_priority(3A) is
displayed.

Mode FG_GRAB forces the digitized video signal to be continuously stored in
the specified frame buffer.

Mode FG_SNAP will force the specified frame buffer into FG_GRAB mode for
one frame of video; it will then change the mode for that frame buffer to
FG_DISPLA Y.

fg_fbmode will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed to

support this request.
[FG_NOT_OWNER] The specified frame grabber was not allocated by

the calling process.
[FG_INVALID_MODE] Mode was not specified as FG_DISPLAY, FG_GRAB,

or FG_SNAP.

SEE ALSO
f g_priority(3A), f g_fbstat(3A).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_FBSTAT(3A) FG_FBSTAT(3A)

NAME
fg_fbstat - get the mode of a frame buffer

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/xf g.h >
int fg_fbstat (fgno, fbno, mode)
int fgno, fbno;
int •mode;

DESCR.IPTION
fg_fbstat returns the mode of a frame buffer. The mode is returned in the
location referenced by mode. Mode will be either FG_DISPLAY, FG_GRAB, or
FG_SNAP. fg_fbstat determines when a frame was grabbed by polling until
the mode FG_DISPLAY is returned.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.
fg_fbstat will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed to sup­

port this request.

[FG_NOT_OWNER] The specified frame grabber was not allocated by the
calling process.

SEE ALSO
f g_fbmode(3A).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_LUT_IN(3A) FG_LUT_IN(3A)

NAME
fg_lut_in, f g_lut_out - load the lookup tables of a frame grabber

SYNOPSIS
#include <sys/xio/xerr.h>
#include < sys/xio/xf g.h >

int fg_lut_in (fgno, table, color)
int f gno, color;
char table [];

int fg_lut_out (fgno, table, color, mode)
int fgno, color, mode;
char table [];

DESC:RIPTION

07/89

fg_lut_in loads one or all of the three input lookup tables that translate 8-
bit data between the analog-to-digital converters and the frame buffers.
Table is a pointer to 256 bytes of data to be loaded into the input lookup
tables. The data is loaded into the red, green, or blue lookup table by
assigning color to FG_RED, FG_GREEN, or FG_BLUE. If color is assigned
FG_ALL, the same data is loaded into all three lookup tables.

fg_lut_out works similarly to fg_l.ut_in, controlling the output lookup
tables that translate the data between the frame buffers and the digital-to­
analog converters. The output lookup tables differ from the input lookup
tables in that four extra bits of information go into each output lookup
table. The following figure shows the generated address for the output
lookup tables:

11 l 10 9 l 8 7 I ... l 0

Y ADDRESS X ADDRESS
RASTER DATA (LSB 2 BITS) (LSB 2 BITS)

The extra bits represent the least significant two bits of the X and Y posi­
tions for the pixel location being sent through the lookup tables. These extra
four address lines are useful when the lookup tables loaded with a dither
mapping are accessed. The total usable entries in the lookup table in this
mode are 4K. Mode indicates if table contains 4K or 256 bytes. If mode is
nonzero, the full 4K is written to the output lookup tables. If mode is zero,
table is assumed to be 256 bytes and is replicated in the output lookup table
so that the four position bits are treated as "don't cares."

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.

fg_l.ut_in and fg_l.ut_out will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

1

FG_LUT_IN(3A) FG_LUT_IN(3A)

[FG_NOT_OWNER] The specified frame grabber was not allo­
cated by the calling process.

[FG_INVALID_LUT] Color is not a valid lookup table specifier.

[BAD_DATA_BUFFER_ADDRESS] Table points to an invalid memory
address.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the

above failure codes is returned.

WARNINGS

2

The output lookup table may be partially loaded if an error occurs when the

user's table is read.

07/89

FG_PRIOIUTY(3A) FG_PRIORITY(3A)

NAME
fg_priority - determine frame buffer output priority of the frame grabber

SYNOPSIS
#include < sys/xio/xerr .h >
int fg_priority (fgno, fbno)
int fgno, fbno;

DESCRIPTION
fg_priority determines the source of video output when both frame buffers
are in FG_DISPLA Y mode. If flmo is zero, frame buffer 0 sources the video
output. Otherwise, frame buff er 1 sources the video output.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.

fg_priority will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed to sup­
port this request.

[FG_NOT_OWNER] The specified frame grabber was not allocated by the
calling process.

SEE ALSO
fg_fbmode(3A).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_RESET(3A) FG_RESET(3A)

NAME
fg_reset - force the frame grabber to a known state

SYNOPSIS
#include <sys/xio/xerr.h>
int fg_reset (f gno)
int fgno;

DESCRIPTION
fg_reset forces the frame grabber to the following state:

Video output is blanked.

Frame buffer 0 has display priority over frame buffer 1.
Both frame buffers are set to FG_DISPLAY mode.
Input and Output video is National Television Systems Committee
(NTSC).

Input and Output Lookup Tables are loaded with a transparent (1:1)
pattern.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.
fg_reset will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed to sup­

port this request.

[FG_NOT_OWNER] The specified frame grabber was not allocated by the
calling process.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_SIZE(3A) FG_SIZE(3A)

NAME
fg_size - determine the frame grabber window size

SYNOPSIS
#include < sys/xio/xerr .h >
int fg_size (fgno, x, y)
int fgno;
int *X, *Y;

DESCRIPTION
fg_size returns the window size needed to completely display the video
image. Currently, two sizes are possible: 482 rows by 512 columns and 512
rows by 512 columns.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.
The integer pointed to by x will be set to the number of columns, and the
integer pointed to by y will be set to the number of rows.

fg_size will fail if one of the fallowing is true:

[XIO_FAILURE] The system does not contain the driver needed to sup­
port this request.

[FG_NOT_OWNER] The specified frame grabber was not allocated by the
calling process.

SEE ALSO
fg_viw_start(3.A.).

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_ VIDEO_IN(3A) FG_ VIDEO_IN(3A)

NAME
fg_ video_in, fg_ video_out - select the video signal types for 1/0

SYNOPSIS
#include < sys/xio/xerr .h >
int f g_ video _in (fgno, mode)
int fgno, mode;

int fg_ video_out (fgno, mode)
int fgno, mode;

DESCRIPTION
fg_video_in selects the video signal type for the frame grabber to digitize.
If mode is zero, the Red Green Blue (RGB) video input is digitized. If mode is
nonzero, the National Television Systems Committee (NTSC) video input is
digitized.

fg_video_out selects the video signal type generated by the frame grabber.
If mode is zero, an RGB video signal is generated. If mode is nonzero, an
NTSC video signal is generated.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber in the lowest SR Bus slot will be addressed by 0.

fg_video_in and fg_video_out will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed to sup­
port this request.

[FG_NOT_OWNER] The specified frame grabber was not allocated by the
calling process.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FG_ VIW _STAR.T(3A) FG_ VIW _STAR.T(3A)

NAME
f g_ viw _start, f g_ viw _stop - start and stop video in a window

SYNOPSIS
#include < sys/xio/xerr .h >
int fg_ viw _start (fgno, wno, x, y, mode)
int fgno, wno, x, y, mode;
int f g_ viw _stop (f gno)
int fgno;

DESCR.IPTION
fg_viw_start forces the frame grabber into a double-buffered sequence of
storing frames coordinated with the Integrated Frame Buffer (IFB) graphics
processor displaying the stored frames. Wno is the window in which the
captured video will be displayed. The upper-left corner of the video image
will be displayed at the window-relative offset (x,y). If mode is zero, the
graphics processor will display 8 raster planes. If mode is nonzero, 9 planes
will be displayed. Video will continue to be displayed until stopped by
fg_viw _stop.

Fgno specifies the frame grabber location on the Shared Resource (SR) Bus.
The frame grabber which resides in the lowest SR Bus slot will be addressed
byO.

fg_viw _start and fg_viw _stop will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed to

support this request.
[FG_NOT_OWNER] The specified frame grabber was not allocated by

the calling process.
[FG_INV ALID _WINDOW] Wno references a nonexistent window.
[FG_BUSY] A frame grabber is already running in this mode.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

WARNINGS

07/89

No other frame grabber commands should be called between fg_viw _start
and fg_viw _stop.

1

FPE_CANCEL_DMA(3A) FPE_CANCEL_DMA(3A)

NAME
f pe_cancel_dma - cancel write request to an FPE coprocessor

SYNOPSIS
#include < sys/xio/xerr .h >
int fpe_cancel_dma (fpeno)
int fpeno;

DESC:RIPTION
fpe_cancel_dma stops the active transfer to a Floating-Point Engine (FPE),
and aborts transfers waiting to be started. Fpeno is the number of the FPE
obtained by fpe_coproc_aUoc(3A).

fpe_cancel_dma will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[FPE_NOT_PRESENT]

[FPE_NOT_OWNER]

Fpeno specifies an FPE that is not in the sys­
tem.

Fpeno specifies an FPE that is not currently
allocated by the process.

SEE ALSO
f pe_coproc_alloc(3A), f pe_ write_dma(3A).
xfpe(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

PPE_COPIOC_ALLOC(3A) PPE_COPIOC_ALLOC(3A)

NAME
fpe_coproc_alloc - allocate an FPE coprocessor

SYNOPSIS
#include < sys/:rlo/:xerr .h >
#include < sys/:rlo/rlpe.h >

int fpe_coproc_alloc (fpeno, info)
int sfpeno;
struct fpe_inf o *info;

DESC:RIPTION
fpe_coproc_aUoc allocates a Floating-Point Engine (FPE) for application­
specific numeric operations. A process which successfully allocates an FPE
has sole control until it deallocates the FPE, execs, or exits.

Fpeno points to a location that is updated with the number of the allocated
FPE. A process uses this number with subsequent FPE functions to access the
allocated FPE.

Info points to an fpe_info structure filled in by fpe_coproc_all.oc. As
defined in the header file <sys/:rlo/rlpe.h>, the structure has the follow­
ing members:

int i_slot; I• FPE hardware slot number•/
int •i_fifo; I• FPE fifo register pointer •/
int •i_status; I• FPE status register pointer•/

The access mode for the i_fifo pointer is read/write, and the access mode for
the i_status pointer is read-only.

fpe_coproc_alloc will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[FPE_NOT_PRESENT] A floating-point processor is not available
for allocation.

[BAD_DATA_BUFFER_ADDRESS] Info points to a nonwritable memory
address.

SEE ALSO
f pe_coproc_dealloc(3A).
xfpe(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FPE_COPK.OC_DEALLOC(3A) FPE_COPK.OC_DEALLOC(3A)

NAME
fpe_coproc_dealloc - deallocate an FPE coprocessor

SYNOPSIS
#include <sys/:xio/::x:err.h>
#include < sys/:xio/::x:fpe.h >
int fpe_coproc_dealloc (fpeno)
int fpeno;

DESCK.IPTION
fpe_coproc_deall.oc relinquishes control of a Floating-Point Engine (FPE)
coprocessor which was previously allocated with fpe_coproc_alloc(3A).
Fpeno is the number of the FPE to be deallocated.

fpe_coproc_dealloc will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed to
support this request.

[FPE_NOT_PRESENT]

[FPE_NOT_OWNER]

Fpeno specifies an invalid FPE.

A process attempts to deallocate an FPE it did
not previously allocate.

SEE ALSO
f pe_coproc_alloc(3A).
xfpe(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

FPE_DID_LOAD(JA) FPE_DID_LOAD(3A)

NAME
fpe_did_load - load an FPE coprocessor image

SYNOPSIS
#include <sys/xio/xerr.h>
#include < sys/xio/xfpe.h >

int fpe_did_load (fpeno, file, did)
int fpeno, *did;
char *fil.e;

DESCUPTION
fpe_did_Wad loads an application-specific microcode image into a Floating­
Point Engine (FPE) coprocessor. Obtained with fpe_coproc_alloc(3A), fpeno
is the number of the FPE to be loaded.

File points to the path name of the file containing the FPE microcode image
to be loaded. Before loading the microcode image into the FPE,
fpe_did_Wad checks the process's read access permission for the file and
ensures that the file is not currently opened for write operations. Then,
fpe_did_Wad marks the file as being opened for execution; this ensures that
a process cannot write to the file while it is being loaded. The driver clears
the execute status when the microcode image is unloaded.

The driver supports a maximum of NDID-1 loaded microcode images.

Upon successful completion, fpe_did_Wad updates the did pointer location
with an identification number the driver associates with the loaded micro­
code image. fpe_did_un1.oad(3A) uses this number to unload the proper
microcode image.

fpe_did_Wad will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[FPE_NOT_PRESENT] Fpeno specifies an FPE that is not in the sys­
tem.

[FPE_NOT_OWNER] Fpeno specifies an FPE that is not currently
allocated by the process.

[FPE_DID_FILE_NOT_FOUND] File points to an invalid file name.

[FPE_DID_NO_ACCESS_PRIV] File specifies a file that lacks read permission
for the process.

[FPE_DID_FILE_BUSY] File specifies a file that is currently opened
for writing.

[FPE_DID_DEVICE_FULL] The process attempts to exceed the max­
imum number of loaded microcode images
supported.

12/88 1

FPE_DID_LOAD(3A) FPE_DID_LOAD(lA)

[FPE_DID_BAD_FILE]

[FPE_DID _NOSPACE]

[FPE_DID_INIT_F AILURE]

A failure occurs while reading the microcode
file, or the file's header is invalid.

The microcode image is larger than the
available image memory in the FPE.

The FPE fails to initialize properly after
loading the microcode image.

SEE ALSO
fpe_coproc_alloc(3A), fpe_did_unload(3A).
:xfpe(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

12/88

FPE_DID_UNLOAD(3A) FPE_DID_ UNLOAD(3A)

NAME
f pe_did_unload - unload an FPE coprocessor image

SYNOPSIS
#include < sys/:x:io/xerr .h >
int fpe_did_unload (fpeno, did)
int fpeno, did;

DESCRIPTION
fpe_did_u.nload unloads a Floating-Point Engine (FPE) microcode image
which was loaded using fpe_did_load(3A). Fpeno, returned by
fpe_coproc_alloc(3A), is the number of the FPE to be unloaded by the
driver.

Did is the identification number of the microcode image to be unloaded
obtained by fpe_did_load(3A).

fpe_did_u.nload will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[FPE_NOT_PRESENT] Fpeno specifies an invalid FPE.

FPE_NOT_OWNER Fpeno specifies an FPE that is not currently
allocated by the process.

[FPE_DID_OUT_OF_RANGE] Did specifies a microcode image greater than
the maximum number supported by the
driver.

[FPE_DID_NONEXISTENT] Did specifies a microcode image that is not
currently loaded in the FPE.

SEE ALSO
fpe_coproc_alloc(3A), fpe_did_load(3A).
xfpe(7A) in the CLIX. System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

PPE_ WR.ITE_DMA(3A) PPE_ WRITE_DMA(3A)

NAME
f pe_ write_dma, f pe_ write_dma_nw - write data to an FPE coprocessor

SYNOPSIS
#include <sys/types.h>
#include <sys/immu.h>
#include <sys/xio/xio.h>
#include < sys/xio/xerr .h >
#include < sys/xio/xfpe.h >

int fpe_ write_dma (fpeno, dbuf, dent, timeout, xfcnt)
int fpeno, dent, timeout;
char *dbuf;
int *Xfcnt;

int fpe_ write_dma_nw (fpeno, dbuf, dent, timeout, xiosb, efn)
int fpeno, dent, timeout, ef n;
char *dbuf;
struct xiosb *Xiosb;

DESCRIPTION

12188

fpe_wrlte_dma transfers data to a Floating-Point Engine (FPE) coprocessor.
Fpeno, obtained by fpe_coproc_aUoc(3A), is the number of the FPE which
receives the data.

Dbuf points to the buffer containing the data to be written to the FPE. Dent
is the size (in bytes) of dbuf. The buff er must be long-word aligned and
have a size that is a multiple of 4 bytes.

Timeout is the number of 1/60 second intervals fpe_write_dma waits before
halting an active transfer. A value of 0 disables the timeout feature.

Upon completion of the synchronous request, the integer pointed to by xfcnt
is updated with the number of bytes successfully written to the FPE.

fpe_wrlte_dma_nw is the asynchronous version of fpe_wrlte_dma, provid­
ing the same capability without waiting for completion of the request. Efn
is the event flag number associated with the request. Xlosb is a pointer to
the xlosb structure updated upon completion of the request (see lntro(3A)).
The xfcnt member of the xlosb structure indicates the number of bytes suc­
cessfully written to the FPE.

fpe_wrlte_dma and /pe_wrlte_dma_nw will fail if one of the following is
true:

[XIO_FAILURE]

[FPE_NOT_PR.ESENT]

[FPE_NOT_OWNER.]

The system does not contain the driver
needed to support this request or efn is
invalid.

Fpeno specifies an FPE that is not in the
system.

Fpeno specifies an FPE that is not
currently allocated by the process.

1

FPE_ WRITE_DMA(3A) FPE_ WRITE_DMA(3A)

[BAD _DATA_BUFFER_ADDRESS]

[BAD _DATA_BUFFER_SIZE]

[P AGE_LOCK_F AILED]

[FPE_DMA_CANCELED]

[FPE_DMA_TIMEOUT]

Dbu.f points to buffer that is not long­
word aligned or is to an invalid memory
space.

Dent is not a multiple of 4 bytes.

The system is unable to lock down all
the pages needed to satisfy the request.

fpe_dma_cancel(3A) canceled the
request.

A timeout occurred before the request
completed.

SEE ALSO
intro(3A), fpe_coproc_alloc(3A), fpe_cancel_dma(3A).
xfpe(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xlosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

GPIB_CANCEL(JA) GPIB_CANCEL(JA)

NAME
gpib_cancel - cancel all outstanding requests on a GPIB channel

SYNOPSIS
#include <syslxio/xerr.h>

int gpib_cancel (channel)
int channel;

DESC.RIPTION
gpib_cancel stops any active operation on the specified General Purpose
Interface Bus (GPIB) channel. In addition, all outstanding control, transfer,
and interrupt requests are canceled.

gpib_cancel will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

The specified channel is beyond the maximum
allowed.

The specified channel is not open.

Channel is currently open by another process.

SEE ALSO
gpib_open(3A), gpib_read(3A), gpib_ write(3A), gpib_service(3A),
gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

·~.

GPIB_CLEA1l(3A) GPIB_CLEA1t(3A)

NAME
gpib_clear - clear a GPIB channel or device

SYNOPSIS
#include <sys/xio/xerr.h>

int gpib_clear (channel, ldev, lent)
int channel, lent;
char •ldev;

DESCltIPTION
gpib_cl.ear allows a user to clear the entire General Purpose Interface Bus
(GPIB) channel or selected devices on channel. An entire channel is cleared
by setting lent to 0. If specific devices are to be cleared, ldev points to an
array GPIB primary addresses for the device and lent equals the number of
addresses in the array.

To clear channel, the driver puts the system controller in an active state and
issues the GPIB message Device Clear (DCL).

To clear specific devices, the driver puts the system controller in an active
state and sends the following GPIB messages:

UNL U nlisten
LAG Listen Address Group
SDC Selected Device Clear

gpib_clear will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[GPIB_OUT_OF_RANGE] The specified channel is beyond the max­
imum allowed.

[GPIB_NOT_OPEN] The specified channel is not open.

[GPIB_NOT_OWNER] Channel is currently open by another
process.

[GPIB_DEVICE_INV ALID] One or more of the specified primary
addresses are incorrect.

[BAD_DATA_BUFFER_ADDRESS] The primary address pointer ldev is
invalid.

[BAD_DATA_BUFFER_SIZE] The device count lent is incorrect.

SEE ALSO
gpib_open(3A), gpib_reset(3A), gpib_cmd(3A), gpib_cancel(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_CLOSE(3A) GPIB_ CLOSE(3A)

NAME
gpib_close - close a GPIB channel

SYNOPSIS
#include < sys/rlo/xerr.h >
int gpib_close (channel)
int channel;

DESC:RIPTION
gpib_cl.ose frees the General Purpose Interface Bus (GPIB) channel that was
previously allocated with gpib_open(3A). The close cancels all outstanding
control, transfer, and interrupt requests queued for the channel. Current
transfers are also aborted.

gpib_cl.ose will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

The specified channel is beyond the maximum
allowed.

The specified channel is not open.

Channel is currently open by another process.

SEE ALSO
gpib_open(3A), gpib_cancel(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_CMD(3A) GPIB_CMD(3A)

NAME
gpib_cmd, gpib_cmd_nw - send commands to a GPIB channel

SYNOPSIS
#include < sys/types.h >
#include <sys/immu.h>
#include < sys/xio/xio.h >
#include < sys/xio/xerr .h >
#include <syslxio/xgpib.h>

int gpib_cmd (channel, cmd, cent, timeout)
int channel, cent, timeout;
char scmd;

int gpib_cmd_nw (channel, cmd, cent, timeout, xiosb, efn)
int channel, cent, timeout, efn;
char scmd;
struct xiosb *Xi.osb;

DESCRIPTION

12/88

gpib_cmd sends device-specific General Purpose Interface Bus (GPIB) com­
mand sequences directly to the GPIB channel. The controller is placed in the
active state before sending the commands and remains in the active state
upon completion.

Cmd points to an array of GPIB messages, while cent reflects the number of
byte messages to be transferred. The user is responsible for ensuring the
validity of GPIB messages, listener addresses, and talker addresses.

If an abort timeout is desired, timeout contains the number of 1/60 second
intervals the driver waits before aborting the request. A value of 0 disables
the timeout mechanism.

gpib_cmd_nw is the asynchronous version of gpib_cmd, providing the same
capability without waiting for completion of the request. Efn is the event
flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transmitted.

gpib_cmd and gpib_cmd_nw will fail if one of the following is true:

[XIO_FAILUR.E] The system does not contain the driver
needed to support this request or efn is
invalid.

[GPIB_OUT_OF _R.ANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER.]

The specified channel is beyond the max­
imum allowed.

The specified channel is not open.

Channel is currently open by another
process.

1

GPIB_CMD(3A) GPIB_CMD(3A)

[GPIB_CANCELED] The request was canceled by
gpib _cancel(3A).

[GPIB_TIMEOUT] A timeout occurred before the request
completed.

[BAD_DATA_BUFFER_ADDRESS] Cmd points to an invalid memory
address.

[BAD_DATA_BUFFER._SIZE] The command count cent is incorrect.

SEE ALSO
intro(3A), gpib_read(3A), gpib_ write(3A), gpib_cancel(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

GPIB_LOCAL(JA) GPIB_LOCAL(JA)

NAME
gpib_local - return a GPIB device to local control

SYNOPSIS
#include < sys/xio/xerr .h >
int gpib_local (channel, ldev, lend
int channel, lent;
char •ldev;

DESCR.IPTION
gpib_local returns specific devices or all devices on the General Purpose
Interface Bus (GPIB) channel to local control. Ldev points to an array of pri­
mary addresses corresponding to the GPIB devices that are to switch to local
operation. Lent is the number of devices to be addressed. If lent is 0, all
devices on the GPIB channel return to local control.

All devices connected to a GPIB channel are returned to local control by
deasserting the GPIB Remote Enable (REN) signal.

gpib_local returns specific devices to local operation by putting the system
controller in an active state and sending the following GPIB messages:

UNL U nlisten
LAG Listen Address Group
GTL Go To Local

gpib_local will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

[GPIB_DEVICE_INV ALID]

The specified channel is beyond the max­
imum· allowed.

The specified channel is not open.

Channel is currently open by another
process.

One or more of the specified primary
addresses are incorrect.

[BAD _DATA_BUFFER_ADDRESS] Ldev points to an invalid memory
address.

[BAD _DATA_BUFFER_SIZE] The device count lent is incorrect.

SEE ALSO
gpib_open(3A), gpib_remote(3A), gpib_lockout(3A), gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_LOCK:OUT(3A) GPIB_LOCKOUT(JA)

NAME
gpib_lockout - issue a local lockout to a GPIB channel

SYNOPSIS
#include <sys/:rlo/:xerr.h>

int gpib_loc:t.out (channel)
int channel;

DESCRIPTION
gpib_lockout puts General Purpose Interface Bus (GPIB) devices in a local
lockout mode, thereby disabling local control. Channel is the GPIB target for
a local lockout operation.

The system controller is put in an active state before a local lockout opera­
tion is performed. The global Local Lock Out (LLO) message is issued on the
GPIB channel.

If the GPIB Remote Enable (REN) condition is not active (the GPIB channel is
not in a remote state), a device's local lockout is not in effect. However, once
the REN condition is active, a device that was previously sent a LLO message
proceeds to the lockout state when addressed.

gpib_lock will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

The specified channel is beyond the maximum
allowed.

The specified channel is not open.

Channel is currently open by another process.

SEE ALSO
gpib_open(3A), gpib_remote(3A), gpib_loca1(3A), gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above f allure codes is returned.

1

GPIB_ OPEN(3A) GPIB_OPEN(3A)

NAME
gpib_open - open a GPIB channel

SYNOPSIS
#include < sys/xio/xerr .h >
int gpib_open (channel)
int channel;

DESCR.IPTION
gpib_open allocates the General Purpose Interface Bus (GPIB) channel for
GPIB operations. A process which successfully opens a channel receives sole
control until it closes the channel, exits, or execs.

gpib_open will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[GPIB_OUT_OF_RANGE]

[GPIB_IN_USE]

[GPIB_NOT_FOUND]

The specified channel is beyond the maximum
allowed.

Channel is currently open by another process.

GPIB channel is not in the system.

SEE ALSO
gpib_close(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GP:m_PPCONP(.1.A) GPIB_PPCONF(3A)

gpib_ppconf - confi.gure the parallel poll response of a GPIB device

SYNOPSIS
#in.elude <sys!Iio/xerr.h>

int gpib_ppconf (channel, ldev, mask)
int channel;
char •ldev, mask;

DESCIIPTION
gpib_ppcon/ configures a device connected to the General Purpose Interface
Bus (GPIB) channel with a specific parallel poll response. Ldev points to the
primary address of the device, while mask contains the response. The for­
mat of the response mask, as defined in the IEEE 488 standard, is given
below.

Bit Field
0-2

Description
binary coded GPIB data line on which the device is
to respond

3 logic level of the response

gplb_ppcon/ configures a GPIB device's parallel poll response by putting the
system controller in an active state and issuing the following sequence of
messages.

UNL
LAG
PPC
PPE
UNL

Unlisten
Listen Address Group
Parallel Poll Configure
Parallel Poll Enable
Unlisten

gpib_ppcon/ will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[GPIB_OUT_OF_RANGE] The specified channel is beyond the max­
imum allowed.

[GPIB_NOT_OPEN] The specified channel is not open.

[GPIB_NOT_OWNER] Channel is currently open by another
process.

[GPIB_DEVICE_INV ALID] The primary address of the specified dev­
ice is incorrect.

[BAD_DATA_BUFFER_ADDRESS] The primary address pointer ldev points
to an invalid memory address.

SEE ALSO

12188

gpib_open(3A), gpib_ppreq(3A), gpib_ppuconf(3A), gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

1

GPIB_PPCONF(3A) GPIB_PPCONF(3A)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

2 12188

GPIB_PPK.EQ(3A) GPIB_PPK.EQ(3A)

NAME
gpib_ppreq - perform a parallel poll of a GPIB channel

SYNOPSIS
#include <sys/xi.o/xerr.h>

int gpib_ppreq (channel, timeout, poll)
int channel, timeout;
char *poll;

DESCK.IPTION
gpib_ppreq conducts parallel polls of the General Purpose Interface Bus
(GPIB) channel. The address pointed to by poll contains the parallel poll
response upon completion.

If an abort timeout is desired, timeout contains the number of 1/60 second
intervals that the driver waits before aborting the request. A value of 0 dis­
ables the timeout mechanism.

gpib_ppreq will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[GPIB_OUT_OF _RANGE] The specified channel is beyond the max­
imum allowed.

[GPIB_NOT_OPEN] The specified channel is not open.

[GPIB_NOT_OWNER] Channel is currently open by another
process.

[GPIB_TIMEOUT] The current request aborted before the
parallel poll response was received from
the GPIB channel.

[BAD_DATA_BUFFER_ADDRESS] Poll points to an invalid memory address.

[GPIB_HARDWARE_CHECK] A hardware error was detected during
the parallel poll of the specified GPIB
channel. For example, none of the dev­
ices had been previously configured for
parallel polling.

SEE ALSO
gpib_open(3A), gpib_ppconf(3A), gpib_ppuconf(3A), gpib_service(3A),
gpib_spreq(3A), gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_PPUCONP(3A) GPIB_PPUCONP(3A)

NAME
gpib_ppuconf - unconfigure a GPIB device's parallel poll response

SYNOPSIS
#include < sys/xi.o/xerr .h >
int gpib_ppuconf (channel, ldev, lent)
int channel, lent;
char •ldev;

DESC:RIPTION
gplb_ppuconf disables a General Purpose Interfaces Bus (GPIB) device's abil­
ity to respond to a parallel poll request on channel. Ldev points to an array
of primary addresses of the GPIB devices to be unconfigured. Lent is the
number of devices. If all devices on a GPIB channel are to be unconfigured,
Zent is 0.

After putting the system controller in its active state, gplb_ppuconf
unconfigures specific GPIB devices with the following messages.

UNL U nlisten
LAG Listen Address Group
PPC Parallel Poll Configure
PPD Parallel Poll Disable
UNL Unlisten

If a global Parallel Poll Unconfigure (PPU) is indicated, the system controller
is switched to an active state, and the PPU message is issued on the GPIB
channel.

gplb_ppuconf will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

[GPIB_DEVICE_INV ALID]

The specified channel is beyond the max­
imum allowed.

The specified channel is not open.

Channel is currently open by another
process.

One or more of the specified primary
addresses are incorrect.

[BAD_DATA_BUFFER_ADD~] Ldev points to an invalid memory

[BAD_DATA_BUFPER_SIZE]

address.

The number of devices specified with Zent
is incorrect.

SEE ALSO

12188

gpib_open(3A), gpib_ppconf(3A), gpib_ppreq(3A), gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

1

GPIB_PPUCONP(3A) GPIB_PPUCONP(3A)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the
above f allure codes is returned.

2 12/88

GPIB_READ(lA) GPIB_READ(lA)

NAME
gpib_read, gpib_read_nw - read data from a GPIB device

SYNOPSIS
#include < sys/xio/xio.h >
#include <sys/xio/xerr.h>

int gpib_read (channel, tdev, tent, dbuf, dent, timeout, eoi, rlcnt)
int channel, tent, dent, timeout;
char atdev, *Cl buf, seoi;
int *X:f cnt;

int gpib_read_nw (channel, tdev, tent, dbuf, dent, timeout, eoi,
xiosb, efn)

int channel, tent, dent, timeout, efn;
char *ldev, *Cl buf, seoi;
struct xiosb sxiosb;

DESCRIPTION

12188

gpib_read allows data to be received from a General Purpose Interface Bus
(GPIB) device on channel. The primary address from which to read is
pointed to by tdev.

Dbuf is a pointer to the buffer to receive the data. The size of the buffer is
specified (in bytes) by dent.

Setting tent to 1 will initialize the specified GPIB device as a talker before the
data transfer begins. Setting tent to 0 indicates the device has already been
addressed to talk by a previous gpib_read, and no device initialization will
occur.

If an abort timeout is desired, timeout contains the number of 1/60 second
intervals the driver waits before aborting the request. A value of 0 disables
the timeout mechanism.

The address pointed to by eoi is updated with a nonzero value if the GPIB
End Or Identify (EOI) condition was active upon completion. Conversely, a
value of 0 indicates a deasserted EOI signal upon reception of the last data
byte. If the driver detects an EOI condition before dent bytes are transferred
to the buffer, the eoi status location is nonzero, and a successful completion
status is returned.

Upon completion of the synchronous request, the integer pointed to by xfcnt
contains the number of bytes transferred to dbuf.

gpib_read_nw is the asynchronous version of gpib_read, providing the
same capability without waiting for completion of the request. Efn is the
event ftag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred to
dbu.f.

1

GPIB_IEAD(3A) GPIB_IEAD(3A)

If a primary address is specified, the controller is put in an active state, and
the following GPIB messages are sent over the specified channel.

UNL Unlisten
UNT Untalk
MTA My Talk Address
LAG Listen Group Address

The system controller is forced to the standby state, and data is read from.
the channel until dent bytes are received or the EOI condition is detected. If
a primary address is not specified (tent is 0), the system controller is put in
a standby state, and the read proceeds as described.

gpib_read and gpib_read_nw will fail if one of the following is true:

[XIO_FAILUltE] The system does not contain the driver
needed to support this request or efn is
invalid.

[GPIB_OUT_OP_:tANGE] The specified channel is beyond the max­
imum allowed.

[GPIB_NOT_OPEN] The specified channel is not open.

[GPIB_NOT_OWNER] Channel is currently open by another
process.

[GPIB_CANCELED] The current request was canceled by
gpib_cancel(3A).

[GPIB_DEVICE_INV ALID] The specified device's primary address
was not correct.

[GPIB_TIMEOUT] A timeout occurred before the request
completed.

[GPIB_HARDWAltE_CHECK] A hardware error was detected during
the request.

[BAD_DATA_BUFFER_ADDRESS] Either tdev points to an invalid memory
address, or eoi, xfcnt, or dbuf points to a
nonwritable memory space.

[BAD_DATA_BUFPER_SIZE] The data transfer size dent is too large.

SEE ALSO
intro(3A), gpib_open(3A), gpib_cmd(3A), gpib_cancel(3A).
xgpib(7A) in theCLIX System Administrator's Reference Manual.

DIAGNOSTICS

l

Upon successful completion of the synchronous request, a value of 0 is
returned. Oth~ise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILUitE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure

12188

GPIB_IEAD(3A) GPIB_IEAD(3A)

codes if unsuccessful.

12/11 3

GPIB_JlEMOTE(JA) GPIB_JlEMOTE(3A)

NAME
gpib_remote - put a GPIB channel in a remote state

SYNOPSIS
#include < sys/no/xerr .h >
int gpib_remote (channel)
int channel;

DESCJllPTION
gpib_remote activates the General Purpose Interface Bus (GPIB) Remote
Enable (REN) signal on GPIB channel. This forces any GPIB device addressed
to a remote state.

The system controller asserts the GPIB REN line to initiate the gpib_rernote
function. The system controller's state is not changed.

gpib_remote will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

The specified channel is beyond the maximum
allowed.

The specified channel is not open.

Channel is currently open by another process.

SEE ALSO
gpib_open(3A), gpib_lockout(3A), gpib_local(3A).
gpib(7A) in theCLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_:R.ESET(3A) GPIB_:R.ESET(3A)

NAME
gpib_reset - conduct an IFC operation on a GPIB channel

SYNOPSIS
#include <syslrlo/xerr .h >
int gpib_reset (channel)
int channel;

DESCUPTION
gpib_reset activates a GPIB Interface Clear (IFC) condition on channel. As
defined in the IEEE 488 standard, the GPIB IFC signal is guaranteed to be
asserted for a minimum of 100 microseconds. When this signal is cleared,
the controller is put in a standby state.

gpib_reset will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

The specified channel is beyond the maximum
allowed.

The specified channel is not open.

Channel is currently open by another process.

SEE ALSO
gpib_open(3A), gpib_clear(3A), gpib_cancel(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_SER.VICE(3A) GPIB_SER.VICE(JA)

NAME
gpib_service, gpib_service_nw - request notification for a GPIB SRQ condi­
tion

SYNOPSIS
#include <sys/xio/xio.h>
#include < sys/xio/xerr .h >

int gpib_service (channel)
int channel;

int gpib_service_nw <channel, xiosb, efn)
int channel, efn;
struct xiosb *Xi.osb;

DESCR.IPTION
General Purpose Interface Bus (GPIB) devices generally request attention of
the system controller through a Service Request (SRQ) interrupt. This condi­
tion can be detected on channel with gpib_service.

The gpib_service function returns only after the SRQ condition is detected.
The initiating process waits indefinitely for an SRQ interrupt.

gpib_service_nw is the asynchronous version of gpib_service, providing the
same capability without waiting for completion of the request. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure is not used.

gpib_service and gpib_service_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request or efn is invalid.

[GPIB_OUT_OF_RANGE] The specified channel is beyond the maximum
allowed.

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

[GPIB_CANCELED]

The specified channel is not open.

Channel is currently open by another process.

The currently queued request was canceled by
gpib _cancel(3A).

SEE ALSO
intro(3A), gpib_open(3A), gpib_cancel(3A), gpib_ppreq(3A),
gpib_spreq(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb

1

GPIB_SER.VICE(3A) GPIB_SER.VICE(3A)

2

structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

OPIB_SP.llEQ(3A) GPIB_SPllEQ(3A)

NAME
gpib_spreq - conduct a serial poll of a GPIB device

SYNOPSIS
#include <sys/:rlo/:x:err.h>
int gpib_spreq (channel, tdev, timeout, poll)
int channel, timeout;
char stdev, apoJJ:

DESC.lllPTION

12/88

The gplb _spreq function conducts a serial poll of a specific device on the
General Purpose Interface Bus (GPIB) channel. Tdev points to the primary
address of the device to be serially polled.
Upon completion, the status location pointed to by poll contains the serial
poll response. If an error occurs during the request, the serial poll response
is not valid.

Abort timeouts are enabled by setting timeout to the number of 1/60 second
intervals the driver waits for the serial poll response. A value of 0 indicates
a timeout is not desired.

To initiate the serial poll request, the system controller is put in an active
state, and the following GPIB messages are sent on the GPIB channel:

UNL Unlisten
UNT Untalk
SPE Serial Poll Enable
TAG Talk Address Group

Following this message sequence, the controller enters a standby state and
reads the serial poll response from the GPIB device. The controller is put in
an active state, and the following GPIB messages are transmitted to ensure
the device does not corrupt serial polls of other GPIB devices:

SPD Serial Poll Disable
UNT Untalk

gplb_spreq will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request.
[GPIB_OUT _OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

[GPIB_DEVICE_INV ALID]

The specified channel is beyond the max­
imum allowed.

The specified channel is not open.

Channel is currently open by another
process.

The specified primary address was
incorrect.

1

GPIB_SPREQ(3A) GPIB_SPRBQ(3A)

[GPIB_TIMEOUT] The current request aborted before the
system controller received the GPIB serial
poll response from the device.

[GPIB_HARDW ARE_ CHECK] A hardware error occurred during the
serial poll request. For example, the
specified primary address may not
correspond to any of the GPIB devices on
channel.

[BAD_DATA_BUFFER_ADDR.£55] Tdev or poll points to an invalid memory
address.

SEE ALSO
gpib_open(3A), gpib_service(3A), gpib_ppreq(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

12/88

GPIB_TJUGGER(3A) GPIB_TRIGGER(JA)

NAME
gpib_trigger - trigger a GPIB device

SYNOPSIS
#include <sys/xi.o/xerr.h>

int gpib_trigger (channel, ldev, lent)
int channel. lent;
char •ldev;

DESCRIPTION
gpib_trigger performs a trigger operation on a General Purpose Interface Bus
(GPIB) device. Ldev points to an array of GPIB primary addresses and lent
specifies the number of devices to be triggered on the GPIB channel.

The system controller transmits the following messages to conduct a GPIB
trigger:

UNL Unlisten
LAG Listen Address Group
GET Group Execute Trigger

gpib_trigger will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[GPIB_OUT_OF _RANGE]

[GPIB_NOT_OPEN]

[GPIB_NOT_OWNER]

[GPIB_DEVICE_INV ALID]

The specified channel is beyond the max­
imum allowed.

The specified channel is not open.

Channel is currently open by another
process.

The specified primary address is
incorrect.

[BAD _DATA_BUFFER_ADDRESS] Ldev points to an invalid memory
address.

[BAD _DATA_BUFFER_SIZE] The size of the primary address array
specified by lent is too big.

SEE ALSO
gpib_open(3A), gpib_cmd(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

GPIB_ W1UTE(3A) GPIB_ WR.ITE(3A)

NAME
gpib_write, gpib_write_nw - write data to a GPIB device

SYNOPSIS
#include <syslxio/xio.h>
#include <sys/xio/xerr.h>

int gpib_ write (channel, ldev, lent, dbuf, dent, timeout, eoi, rlcnt)

int channel, lent, dent, timeout, sx:f cnt;
char •ldev, sd.buf, seoi;

int gpib_ write_nw (channel, ldev, lent, dbuf, dent, timeout, eoi,
xlosb, efn)

int channel, lent, dent, timeout, efn;
char •ldev, sd.buf, seoi;
struct xlosb sxi.osb;

DESCRIPTION

12188

gplb_write writes data to the General Purpose Interface Bus (GPIB) device on

channel. Ldev points to an array of primary addresses corresponding to the

GPIB devices to receive data.

Dbu/ is a pointer to the buffer to be transferred. The size of the buffer is

specified (in bytes) by dent.

Lent reflects the number of devices to be initialized as listeners before the

data transfer begins. A value of 0 indicates the GPIB devices have already

been addressed to listen by a previous gplb_wrlte. In this case, the write

proceeds without device initialization.

If an abort timeout is desired, timeout contains the number of 1/60 second

intervals the driver waits before aborting the request. A value of 0 disables
the timeout mechanism.

If the value pointed to by eol is nonzero, the GPIB End Or Identify (EOI) sig­
nal is asserted during the transfer of the last data byte in the buffer.

Upon completion of the synchronous request, the integer pointed to by xfcnt

contains the number of bytes transferred from dbu/.

gplb_wrlte_nw is the asynchronous version of gplb_wrlte, providing the

same capability without waiting for completion of the request. E/n is the

event flag number associated with the request. Xlosb is a pointer to the xlosb

structure updated upon completion of the request (see lntro(3A)). The xfcnt

member of the xiosb structure indicates the number of bytes transferred

from dbu/.

If a primary address is specified, the controller is put in an active state, and

the following GPIB messages are sent over the specified channel:

UNL Unlisten
UNT Untalk
TAG Talk Address Group
MLA My Listen Address

1

GPIB_ WJtITE(3A) GPIB_ WJtITE(3A)

The system controller is forced to the standby state, and data is written to
channel until dent bytes are transferred. If primary addresses are not
specified, the system controller is simply put in a standby state, and the
write proceeds as described.
gpib_write and gplb_write_nw will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request or efn is
invalid.

[GPIB_OUT_OF_RANGE] The specified channel is beyond the max­
imum allowed.

[GPIB_NOT_OPEN] The specified channel is not open.
[GPIB_NOT_OWNER] Channel is currently open by another

process.
[GPIB_CANCELED] The current request was canceled by

gpib_cancel(3A).
[GPIB_DEVICE_INV ALID] A specified device's primary address was

not correct.
[GPIB_TIMEOUT] A timeout occurred before the request

completed.
[GPIB_HARDWARE_CHECK] A hardware error was detected during

the request.
[BAD_DATA_BUFFER_ADDRESS] Either eoi, xfcnt, tdev, or dbu.f points to

an invalid memory address.
[BAD_DATA_BUFFER_SIZE] Either the data transfer size dent or the

device count lent is too large.
SEE ALSO

intro(3A), gpib_open(3A), gpib_cmd(3A), gpib_cancel(3A).
xgpib(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.
If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_F AILURE will be returned.
Upon completion of an accepted request, the status member of the xlosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

NLF _CLOSE(3A) NLF _CLOSE(JA)

NAME
nlf_close - close an NLF channel

SYNOPSIS
#include < sys/xio/xerr .h >
int nlf _close (channel)
int channel;

DESCRIPTION
nlf _cwse unmaps any hardware registers associated with the specified Non­
Linear Filter (NLF) channel and closes the channel. Channel must have been
opened with nlf _open(3A).

nlf _cwse will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[NLF _CHANNEL_INVALID] The specified channel is beyond the max­
imum allowed.

[NLF_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

SEE ALSO
nlf_open(3A).
xnlf(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

NLF _OPEN(3A) NLF _OPEN(3A)

NAME
nlf_open - open an NLF channel

SYNOPSIS
#include <sys/xio/xerr.h>
int nlf _open (channel, base)
int channel, •base;

DESCRIPTION
nlf _open opens the specified Non-Linear Filter (NLF) channel. Only one
process is allowed to open an NLF channel at a time. Each NLF board in the
system is represented by a channel number so that channel 0 references the
NLF board with the lowest Shared Resource (SR) Bus slot number. If the call
is successful, base will contain the virtual base address of the specified NLF
board. All filter parameters are available to the calling process through this
mapping.

nlf _open will fail if one of the following is true:
[XIO_FAILURE]

The system does not contain the driver needed to support this
request.

[NLF _REDUNDANT_REQ] The specified channel is currently opened by
this process.

[NLF _CHANNEL_INV ALID] The specified channel is beyond the max­
imum allowed.

[NLF_CHANNEL_NOT_FOUND] The specified channel is not in the system.
[NLF _CHANNEL_BUSY] The specified channel is currently opened by

another process.
SEE ALSO

xnlf(7A) in the CLIX System Administrator's Reference Manual.
DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure is returned.

1

PDl_CANCEL(3A) PDI_CANCEL(3A)

NAME
pdi_cancel - cancel outstanding asynchronous VO on a PDI port

SYNOPSIS
#include < sys/xio/:xerr .h >
int pdi_cancel Cchannel)
int channel;

DESCRIPTION
pdi_cancel terminates all requests pending on the Processed Data Interface
(PDI) port of the Image System Interface (ISi) board referenced by channel.
Channel must have been opened with pdi_open(3A).

pdi_cancel will fail if one of the following is true:

[XIO_F AILURE] The system does not contain the driver needed
to support this request.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
pdi_open(3A), pdi_read(3A), pdi_ write(3A), pdi_ifb(3A).
xpdi(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

PDl_CLOSE(3A) PDI_CLOSE(3A)

NAME
pdi_close - close a PDI port

SYNOPSIS
#include <sys/xio/xerr .h >
int pdi_close (channel)
int channel;

DESCRIPTION
pdi_close terminates all requests pending on the Processed Data Interface
(POI) port of the Image System Interface (ISi) board referenced by channel
and closes the port. Channel must have been opened with pdi_open(3A).

pdi_close will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[ISI_ CHANNEL_NOT _OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
pdi_open(3A).
xpdi(7A) in theCLIX System Administrators Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

PDI_IFB(3A) PDI_IFB(3A)

NAME
pdi_ifb, pdi_ifb_nw - move data from a PDI port to a window

SYNOPSIS
#include < sys/rio/xerr .h >
#include <sys/rio/rio.h>

int pdi_ifb (channel, wno, xorg, yorg, xext, yext, timeout, xfcnt)
int channel, wno, xorg, yorg, xext, yext, timeout;
int *Xfcnt;

int pdi_ifb_nw (channel, wno, xorg, yorg, xext, yext, timeout,
xiosb, efn)

int channel, wno, xorg, yorg, xext, yext, timeout, efn;
struct xiosb sxiosb;

DESCltlPTION

12188

pdl_lfb provides a mechanism for moving data directly from the Processed
Data Interface (PDI) port of the Image System Interface (ISi) board refer­
enced by channel to the specified window region on an Intergrated Frame
Buffer (IFB) graphics board. Channel must have been opened with
pdi_open(3A).

Data is transferred to the window specified by wno. Xorg and yorg indicate
the window relative origin of the region to be filled. Xext and yext indicate
the extents of the region to be filled. Both values must be a multiple of 32.

Timeout indicates the time limit in 1/60 second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of 0 disables the timeout function.

Upon completion of the synchronous request, xfcnt indicates the number of
bytes transferred.

pdi_ifb_nw is the asynchronous version of pdi_ifb, providing the same
capability without waiting for completion of the request. Efn is the event
flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred.

pdi_ifb and pdi_ifb_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request or efn is invalid.

[ISI_ CHANNEL_NOT _OPEN] The specified channel is not open for this pro­
cess.

[WINDOW _NONEXISTENT]

[ISI_INV ALID _PARMS]

The specified window does not exist.

The origins and extents do not describe a valid
nonzero region or the extents are not a multi­
ple of 32.

1

PDI_IPB(lA) PDI_IPBC3A)

[ISi_ CANCELED]

[ISl_P ARITY _Ei.ROR]

[181_ CYCLE_Ei.ROR]

[ISi_ TIMEOUT]

The request was canceled with pdi_cancel(3A)
or pdi_close(3A).

A parity error occurred on the transfer.

A hardware handshake error occurred on the
transfer.

The timeout occurred before the transfer com­
pleted.

SEE ALSO
intro(3A), pdi_open(3A), pdi_close(3A), pdi_setup(3A), pdi_cancel(3A).
xpdi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12188

PDI_OPEN(3A) PDI_OPEN(3A)

NAME
pdi_open - open a POI port

SYNOPSIS
#include <sys/xio/.xerr.h>

int pdi_open (channel)
int channel;

DESC:R.IPTION
pdi_open opens the Processed Data Interface (POI) port on the Image System
Interface (ISi) board referenced by channel. Only one process is allowed to
open a POI port at a time. Each ISi board in the system is represented by a
channel number such that channel 0 references the ISi board with the lowest
Shared Resource Bus slot number.

pdi_open will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[ISl_REDUNDANT_REQ] The specified channel is currently open by
this process.

[ISl_CHANNEL_BUSY] The specified channel is currently open by
another process.

[ISl_CHANNEL_INV ALID] The specified channel is beyond the max­
imum allowed.

[ISl_CHANNEL_NOT_FOUND] The specified channel is not present in the
system.

SEE ALSO
xpdi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12/88

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above f allure codes is returned.

1

PDI_JlEAD(.3A) PDl_JlEAD(JA)

NAME
pdi_read, pdi_read_nw - read data from a POI port into memory

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/:xio.h >
int pdi_read (channel, dbuf, dent, timeout, rlcnt)
int channel, dent, timeout;
char adbuf;
int axfcnt;

int pdi_read_nw (channel, dbuf, dent, timeout, :xiosb, efn)
int channel, dent, timeout, ef n;
char adbuf;
struct rlosb s:rlosb;

DESCJllPTION
pdl_read and pdl_read_nw provide a mechanism for reading directly from
the Processed Data Interface (POI) port on the Image System Interface (ISi)
board referenced by channel. Channel must have been opened with
pdl_open(3A).

Dbuf points to the data buffer. The buffer must begin on a long_ word boun­
dary. Dent contains the byte count to be transferred and must be a multiple
of the llnewldth specifted in pdl_setup(3A).

Tl17tfKXlt indicates the time limit in 1/60 second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of 0 disables the timeout function.

Upon completion of the synchronous request, xft;nt indicates the number of
bytes transferred.

pdl_read_nw is the asynchronous version of pdi_read, providing the same
capability without waiting for completion of the request. Efn is the event
flag number associated with the request. Xlosb is a pointer to the xiosb
structure updated upon completion of the request (see lntro(3A)). The xft;nt
member of the xlosb structure indicates the number of bytes transferred.

pdl_read and pdl_read_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

[ISI_CHANNEL_NOT_OPEN] The specifted channel is not open for this
process.

[BAD_DATA_BUFFER_ADDRESS] The data buffer is not long-word aligned
or points to a nonwritable memory
address.

12/88 1

PDI_READ(3A) PDl_R.EAD(3A)

[BAD_DATA_BUFFER_COUNT]

[P AGE_LOCK_F AILED]

[ISi_ CANCELED]

[ISI_P ARITY _ERROR]

[ISI_ CYCLE_ERROR]

[ISi_ TIMEOUT]

The byte count is not a multiple of
llnewidth from pdi_setup(3A).

Not enough physical memory for this
request is available at this time.

The request was canceled with
pdi_cancel(3A) or pdi_close(3A).

A parity error occurred on the transfer.

A hard ware handshake error occurred on
the transfer.

The timeout expired before the transfer
completed.

SEE ALSO
intro(3A), pdi_open(3A), pdi_close(3A), pdi_setup(3A), pdi_cancel(3A).
xpdi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xlosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

SIF _MEM_PIPE(3A) SIF _MEM_PIPE(JA)

NAME
sif_mem_pipe, sif _mem_pipe_nw - transfer data from memory to pipe

SYNOPSIS
#include <sys/xio/xerr.h>
#include <sys/xio/xio.h>

int sif _mem_pipe (channel, dbuf, dent, timeout, xfcnt)
int channel, dent, timeout, *Xfcnt;
char *<lbuf;

int sif _mem_pipe_nw (channel, dbuf, dent, timeout, xiosb, efn)
int channel, dent, timeout, efn;
char *<lbuf;
struct xiosb *Xiosb;

DESCRIPTION

07/89

sif _mem_pipe and sif _mem_pipe_nw provide a mechanism for transferring
data directly from virtual memory to the raster processing pipeline. The
specified Scanner Interface (SIP) channel will move the data. Channel must
have been opened with sif _open(3A).

Dbuf points to the buffer data is being transferred from. The buffer must
begin on a long word boundary. Dent indicates the byte count to be
transferred and must be a multiple of the linewidth specified in
sif _setup(3A).

Timeout indicates the time limit in 1/60-second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of zero disables the timeout function.
Upon completion of the synchronous request, xfcnt indicates the number of
bytes transferred.

sif _mem_pipe_nw is the asynchronous version of sif _mem_pipe, providing
the same capability without waiting the request to complete. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated when the request completes (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred.
sif _mem_pipe and sif _mem_pipe_nw will fail if one of the following is
true:

[XIO _FAIL URE]

[SIF _CHANNEL_INVALID]

[SIF _CHANNEL_NOT _OPEN]

The system does not contain the driver
needed to support this request or efn is
invalid.

The specified channel is beyond the max­
imum allowed.

The specified channel is not open for this
process.

1

SIF _MEM_PIPE(3A) SIF _MEM_PIPE(3A)

[BAD_DATA_BUFFER_ADDRESS] The data buffer is either not long word
aligned or points to an invalid memory
space.

[BAD_DATA_BUFFER_COUNT] The byte count is not a multiple of
linewidth from sif _setup(3A).

[PAGE_LOCK_FAILED] Not enough physical memory for this
request is available at this time.

[SIF_CANCELED] The request was canceled with
sif _cancel(3A) or sif _close(3A).

[SIP _TIMEOUT] The timeout expired before the transfer
completed.

SEE ALSO
intro(3A), sif _open(3A), sif _close(3A), sif _setup(3A), sif _cancel(3A).

xsif(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is

returned. Otherwise, one of the above failure codes is returned.

If the XIO system accepts the asynchronous request, a value of 0 will be

returned by the request. Otherwise, XIO_FAILURE will be returned. Upon

completion of an accepted request, the status member of the xiosb structure

will be set to either 0 if successful, or to one of the above failure codes if

unsuccessful.

07/89

PDl_SETUP(3A) PDl_SETUP(3A)

NAME
pdi_setup - establish parameters for a POI port

SYNOPSIS
#include < sys/:rlo/xerr .h >
int pd.l_setup (channel. resolution. linewidth, write_valid)
int channel. resolution. linewldth, write_ valid;

DESCRIPTION
pdl_setup establishes transfer parameters for the Processed Data Interface
(PDI) port on the Image System Interface (ISi) board referenced by channel.
Channel must have been opened with pdl_open(3A).

Resol.utlon and llnewldth are used together to determine what data is rejected
by hardware on a pdl_read(3A). This should reduce memory and time
requirements. The accepted data consists of the first llnewidth bytes from
each consecutive set of resol.utlon bytes. All other data is rejected. If the
concepts of resol.ution and llnewldth do not apply, both should be set to 1.
Possible values are 1, 32, 64, 128, 256, 512, and 1024. Linewidth must
always be less than or equal to resol.utlon. The def a ult value for both
parameters is 1.

The wrlte_valld ft.ag asserts a hardware signal to be interpreted by the exter­
nal hardware.

pdl_setup will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

[ISI_INVALID_PARMS] The values for resolution and llnewidth do not
meet the stated requirements.

SEE ALSO
pdi_open(3A).
xpdi(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

12188

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above f allure codes is returned.

1

PDI_ WIJTE(JA) PDI_ Wl.ITE(JA)

NAME
pdi_ write, pdi_ write_nw - write data from memory to a PDI port

SYNOPSIS
#include <syshdo/xerr.h>
#include <sysl:rlo/xio.h>

int pdi_ write (channel, dbuf, dent, timeout, rlcnt)
int channel, dent, timeout;
char adbuf;
int sxfcnt;

int pdi_ write_nw (channel, dbuf, dent, timeout, xiosb, efn)
int channel, dent, timeout, efn;
char adbuf;
struct xiosb sxiosb;

DESCJUPTION
pdi_write provides a mechanism for writing directly to the Processed Data
Interface (PDI) port on the Image System Interface (ISi) board referenced by
channel. Channel must have been opened with pdi_open(3A).

Dbuf points to the data buffer. The buffer must begin on a long-word boun­
dary. Dent contains the number of bytes to be transferred.

Timeout indicates the time limit in 1/60 second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of 0 disables the timeout function.

Upon completion of the synchronous request, xfcnt indicates the number of
bytes transferred.

pdi_write_nw is the asynchronous version of pdi_write, providing the same
capability without waiting for completion of the request. Efn is the event
flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred.

pdi_write and pdi_write_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

[ISI_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

[BAD_DATA_BUFFER_ADDRESS] The data buffer is not long-word aligned
or points to an invalid memory space.

[PAGE_LOCK_FAILED] Not enough physical memory for this
request is available at this time.

[ISI_CANCELED] The request was canceled with
pdi_cancel(3A) or pdi_close(3A).

12/88 1

PDI_ WJUTE(3A) PDI_ WJUTE(3A)

[ISI_PARITY_ERROR]

[ISI_CYCLE_ERROR]

[ISi_ TIMEOUT]

A parity error occurred on the transfer.

A hard ware handshake error occurred on
the transfer.

The timeout expired before the transfer
completed.

SEE ALSO
intro(3A), pdi_open(3A), pdi_close(3A), pdi_setup(3A), pdi_cancel(3A).
xpdi(7A) in the CLlX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to one of the above failure
codes if unsuccessful.

12/88

PLOT_ CTltL(JA) PLOT_CTltL(JA)

NAME
plt_ctrl, plt_ctrl_nw - send a control word to the parallel port

SYNOPSIS
#include <sys/types.h>
#include <syslimmu.h>
#include < sys/pop.h >
#include < sys/rlo/xerr .h >
#include < sys/rlo/rio.h >

int plt_ctrl (interface, status, ctrl, timeout, pulse)
int interface, status, ctrl, timeout, pulse;

int plt_ctrl_nw (interface, status, ctrl, timeout, pulse, xiosb, efn)
int interface status, ctrl, timeout, pulse, efn;
struct xiosb *Xi.osb;

DESCltIPTION

12188

plt_ctrl provides a mechanism to send a single word through the control
register on the parallel port. Interface is one of the following values defined
in <syslpop.h>: CENTRONICS, VERSATEC, or INTERGRAPH_DIFF. These
values define the signal mapping for the target device. The user provides the
three-bit mask, status, that determines which incoming signals should be
considered when testing for the clear-to-send condition. Bits that are set in
the mask indicate that the corresponding signals received from the device
should be asserted. The format of the status word is as follows:

2 1 0

READY NO ERROR ONLINE
H H H

Ctrl is a 16-bit word that will be sent to the device (bits 0-7 are data; bits
8-15 are control). The control bits are as follows:

15 14 13 12 11 10 9 8

NOT RESET RFFED 11.EOTR RLTER CLEAR PICLK PRINT

USED H H H H H H H

Pulse indicates whether bit 8 (PRINT H) is toggled as a control bit or inter­

preted as a data bit.

Timeocct indicates the time limit in 1/60 second intervals to wait for the dev­

ice to become ready before aborting the request. This value is limited to

32767.

plt_ctrl_nw is the asynchronous version of plt_ctrl, providing the same
capability without waiting for completion of the request. Efn is the event

flag number associated with the request. Xiosb is a pointer to the xiosb

structure updated upon completion of the request (see intro(3A)). The xfcnt

member of the xiosb structure is not used.

1

PLOT_CTR.L(3A) PLOT _CTR.L(3A)

pl.t_ctrl and pl.t_ctrl_nw will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver needed

to support this request or efn is invalid.
[XIO_DEVICE_FULL] Another process is currently using the parallel

port.

SEE ALSO
intro(3A), plt_data(3A).
xplot(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request a value of 0 is
returned. Otherwise, a nonzero value is returned indicating one of two types
of errors. If the request failed, one of the above failure codes is returned. If
the output device did not accept the data, a negative status is returned and
bits 0-2 reflect the state of the status signals from the device.
If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_F AILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to nonzero if unsuccessful
indicating one of two types of errors. If the request failed, one of the above
failure codes is returned. If the output device did not accept the data, a
negative status is returned and bits 0-2 reflect the state of the status signals
from the device.

12/88

PLOT_CTJtL_JtOP(3A) PLOT_CTJtL_JtOP(3A)

NAME
rplt_ctrl, rplt_ctrl_nw - send a control word to the ROP parallel port

SYNOPSIS
#include <sysltypes.h>
#include < sys/i.mmu.h >
#include <sys/pop.h>
#include < sys/xio/xerr .h >
#include < sys/xio/xio.h >

int rplt_ctrl (interface, status, ctrl, timeout, pulse)
int interface, status, ctrl, timeout, pulse;

int rplt_ctrl_nw (interface, status, ctrl, timeout, pulse, xiosb, efn)
int interface status, ctrl, timeout, pulse, efn;
struct x.losb *Xiosb;

DESCJtIPTION

12/88

rpl.t_ctrl provides a mechanism to send a single word through the control
register on the parallel port residing on the Raster Operation Processor (ROP)
graphics board. Interface is one of the following values defined in
<sys/pop.h>: CENTRONICS, VERSATEC, or INTERGRAPH_DIFF. These
values deftne the signal mapping for the target device. The user provides the
three-bit mask, status, that determines which incoming signals should be
considered when testing for the clear-to-send condition. Bits that are set in
the mask indicate that the corresponding signals received from the device
should be asserted. The format of the status word is as follows:

2 1 0

READY NO ERROR ONLINE
H H H

Ctrl is a 16-bit word that will be sent to the device (bits 0-7 are data; bits
8-15 are control). The control bits are as follows:

15 14 13 12 11 10 9 8

NOT RESET RF FED REOTR RLTER CLEAR PICLK PRINT
USED H H H H H H H

Pulse indicates whether bit 8 (PRINT H) is toggled as a control bit or inter­
preted as a data bit.

Timeout indicates the time limit in 1/60 second intervals to wait for the dev­
ice to become ready before aborting the request. This value is limited to
32767.

rplt_ctrl_nw is the asynchronous version of rplt_ctrl, providing the same
capability without waiting for completion of the request. E/n is the event
flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure is not used.

1

PLOT _CTltL_ltOP(3A) PLOT_CTRL_ROP(3A)

rpl.t_ctrl and rpl.t_ctrl_nw will fail if one of the following is true:

[XIO_F AILURE] The system does not contain the driver needed
to support this request or efn is invalid.

[XIO_DEVICE_FULL] Another process is currently using the parallel
port.

SEE ALSO
intro(3A), plt_data(3A).
xplot(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, a nonzero value is returned indicating one of two types
of errors. If the request failed, one of the above failure codes is returned. If
the output device did not accept the data, a negative status is returned and
bits 0-2 reflect the state of the status signals from the device.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to nonzero if unsuccessful
indicating one of two types of errors. If the request failed, one of the above
failure codes is returned. If the output device did not accept the data, a
negative status is returned and bits 0-2 reflect the state of the status signals
from the device.

12/88

PLOT_DATA(3A) PLOT_DATA(3A)

NAME
plt_data, plt_data_nw - write data to the parallel port

SYNOPSIS
#include < sys/types.h >
#include < sys/imm.u.h >
#include <sys/pop.h>
#include <sys/:xio/:xio.h>
#include < sys/:xio/xerr .h >

int plt_data(interface, dbuf, dent, count, ctrl, timeout, nctrl,
pulse, speed)

int interface, dent, count, ctrl, timeout, nctrl, pulse, speed;
char *dbuf;

int plt_data_nw<interface, dbuf, dent, count, ctrl, timeout, nctrl,
pulse, speed, xiosb, efn)

int interface, dent, count, ctrl, timeout, nctrl, pulse, speed, efn;
char *dbuf;
struct xiosb sxiosb;

DESCltIPTION

12/88

plt_data writes data to a device through the parallel port. Interface is one
of the following values defined in <syslpop.h>: CENTRONICS, VERSATEC,
or INTERGRAPH_DIFF. These values define how signals should be mapped
for the target device. The only signal considered to determine a clear-to­
send condition is the READY H signal.

Dbu.f points to a the data buffer. Dent number of bytes are transferred from
dbu.f to the parallel port.

A mechanism is provided to accommodate devices that require a control sig­
nal at the end of each scan line. Count specifies the number of bytes to send
from dbu.f before sending ctrl. If the count is 0, no control word is sent.
Ctrl is a 16-bit word that may be sent to the device (bits 0-7 are data; bits
8-15 are control). The control bits are as follows:

15 14 13 12 11 10 9 8

NOT RESET RFFED REOTR RLTER CLEAR PICLK PRINT
USED H H H H H H H

Nctrl is the control word that is sent with each byte in dbu.f. The format of
nctrl is the same as ctrl shown in the figure above. Pulse indicates whether
bit 8 (PRINT H) is toggled as a control bit or interpreted as a data bit.

Timeout indicates the time limit in 1/60 second intervals to wait for the dev­
ice to become ready before aborting the request. This value is limited to
32767.

plt_data_nw is the asynchronous version of plt_data, providing the same
capability without waiting for completion of the request. Efn. is the event
flag number associated with the request. Xlosb is a pointer to the xlosb

1

PLOT_DATA(3A) PLOT_DATA(3A)

1tructure updated upon completion of the request (see lntro(3A)). The x/cnt
member of the xiosb structure is not used.
pl.t_data and pl.t_data_nw will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request or efn is
invalid.

[BAD_DATA_BUFFER_ADDRESS] The data buffer points to a invalid
memory address.

[BAD_DATA_BUFFER_SIZE] The size of the data buffer is invalid.
[PAGE_LOCK_FAILED]

[XIO_DEVICE_FULL]

The request is larger than the current
available physical memory. The request
should be broken up into smaller sizes.

The driver cannot accept any more
requests until one completes. The
current limit is 5.

SEE ALSO
intro(3A), plt_ctr1(3A).
xplot(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

BUGS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, a nonzero value is returned indicating one of two types
of errors. If the request failed, one of the above failure codes is returned. If
the output device did not accept the data, a negative status is returned and
bits 0-2 reflect the state of the status signals from the device.
If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xlosb
structure will be set to either 0 if successful, or to nonzero if unsuccessful
indicating one of two types of errors. If the request failed, one of the above
failure codes is returned. If the output device did not accept the data, a
negative status is returned and bits 0-2 reflect the state of the status signals
from the device.

The speed parameter is not currently implemented.

12188

PLOT _DATA_ROP(3A) PLOT_DATA_ROP(3A)

NAME
rplt_data, rplt_data_nw - write data to the ROP parallel port

SYNOPSIS
#include < sys/types.h >
#include <sys/im.mu.h>
#include <syslpop.h>
#include < sys/:rlo/:rlo.h >
#include < sys/:rlo/xerr .h >

int rplt_data(interface, dbuf, dent, count, ctrl, timeout, nctrl,
pulse, speed)

int interface, dent, count, ctrl, timeout, nctrl, pulse, speed;
char *dbuf;

int rplt_data_nw<interface, dbuf, dent, count, ctrl, timeout, nctrl,
pulse, speed, xiosb, efn)

int interface, dent, count, ctrl, timeout, nctrl, pulse, speed, efn;
char *dbuf;
struct :rlosb sxiosb;

DESCRIPTION

12/88

rplt_data writes data to a device through the parallel port. Interface is one
of the following values defined in <syslpop.h>: CENTRONICS, VERSATEC,
or INTERGRAPH_DIFF. These values define how signals should be mapped
for the target device. The only signal considered to determine a clear-to­
send condition is the READY H signal.

Dbuf points to a the data buffer. Dent number of bytes are transferred from
dbuf to the parallel port.

A mechanism is provided to accommodate devices that require a control sig­
nal at the end of each scan line. Count specifies the number of bytes to send
from dbuf before sending ctrl. If the count is 0, no control word is sent.
Ctrl is a 16-bit word that may be sent to the device (bits 0-7 are data; bits
8-15 are control). The control bits are as follows:

15 14 13 12 11 10 9 8
NOT RESET RFFED REOTR RLTER CLEAR PICLK PRINT

USED H H H H H H H

Nctrl is the control word that is sent with each byte in dbuf. The format of
nctrl is the same as ctrl shown in the figure above. Pul.se indicates whether
bit 8 (PRINT H) is toggled as a control bit or interpreted as a data bit.

Tim.ea.a indicates the time limit in 1/60 second intervals to wait for the dev­
ice to become ready before aborting the request. This value is limited to
32767.

rplt_data_nw is the asynchronous version of rplt_data, providing the same
capability without waiting for completion of the request. Efn is the event
flag number associated with the request. Xiosb is a pointer to the xiosb

1

PLOT_DATA_JtOP(3A) PLOT _DATA_R.OP(3A)

structure updated upon completion of the request (see intro(3A)). The xfcnt
member of the xiosb structure is not used.

rplt_data and rplt_data_nw will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

[BAD _DATA_BUFFER_ADDRESS]

[BAD _DATA_BUFFER_SIZE]

[PAGE_LOCK_FAILED]

[XIO_DEVICE_FULL]

The data buff er points to a invalid
memory address.

The size of the data buffer is invalid.

The request is larger than the current
available physical memory. The request
should be broken up into smaller sizes.

The driver cannot accept any more
requests until one completes. The
current limit is 5.

SEE ALSO
intro(3A), rplt_ctr1(3A).
xplot(7A) in theCLJX System Administrator's Reference Manual.

DIAGNOSTICS

BUGS

l

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, a nonzero value is returned indicating one of two types
of errors. If the request failed, one of the above failure codes is returned. If
the output device did not accept the data, a negative status is returned and
bits 0-2 reflect the state of the status signals from the device.

If the asynchronous request is accepted by the XIO system, a value of 0 will
be returned by the request. Otherwise, XIO_FAILURE will be returned.
Upon completion of an accepted request, the status member of the xiosb
structure will be set to either 0 if successful, or to nonzero if unsuccessful
indicating one of two types of errors. If the request failed, one of the above
failure codes is returned. If the output device did not accept the data, a
negative status is returned and bits 0-2 reflect the state of the status signals
from the device.

The speed parameter is not currently implemented.

12188

RLE_CANCEL(3A) RLE_ CANCEL(3A)

NAME
rle_cancel - cancel outstanding asynchronous I/O on an RLE channel

SYNOPSIS
#include <sys/xio/xerr.h>
int rle_cancel (channel)
int channel;

DESCRIPTION
rle cancel terminates all requests pending on the specified Run Length
EnZoding (RLE) channel. Channel must have been opened with
rle_open(3A).

rle_cancel will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request.
[RLE_CHANNEL_INVALID] The specified channel is beyond the max­

imum allowed.
[RLE_CHANNEL_NOT_OPEN] The specified channel is not open for this

process.

SEE ALSO
rle_open(3A), rle_pipe_mem(3A).
xrle(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

R.LE_CLOSE(3A) R.LE_ CLOSE(JA)

NAME
rle_close - close an RLE channel

SYNOPSIS
#include <sys/xio/xerr.h>

int rle_close (channel)
int channel;

DESCRIPTION
rle_close terminates all requests pending on the specified Run Length Encod­
ing (RLE) channel and closes the channel. Channel must have been opened
with rle_open(3A). '

rle_close will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[RLE_CHANNEL_INVALID] The specified channel is beyond the max­
imum allowed.

[RLE_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

SEE ALSO
rle_open(3A).
xrle(7A) in the CLIX Syst.em Administ.rator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

ltLE_OPEN(3A) ltLE_OPEN(3A)

NAME
rle_open - open an RLE channel

SYNOPSIS
#include < sys/xio/xerr .h >
int rle_open (channel)
int channel;

DESCUPTION
rle_open opens the specified Run Length Encoding (RLE) channel. Only one
process is allowed to open an RLE channel at a time. Each RLE board in the
system is represented by a channel number so that channel 0 references the
RLE board with the lowest Shared Resource (SR) Bus slot number.

rle_open will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[RLE_REDUNDANT _REQ]

[RLE_CHANNEL_INV ALID]

The specified channel is currently opened by
this process.

The specified channel is beyond the max­
imum allowed.

[RLE_CHANNEL_NOT_FOUND] The specified channel is not in the system.

[RLE_CHANNEL_BUSY] The specified channel is currently opened by
another process.

SEE ALSO
xrle(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

R.LE_PIPE_MEM(JA) R.LE_PIPE_MEM(3A)

NAME
rle_pipe_mem, rle_pipe_mem_nw - RLE from pipe to memory

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/xio.h >
int rle_pipe_mem(channel, dbuf, dent, scanline, offset, timeout,

xfcnt)
int channel, dent, scanline, offset, timeout, *Xfcnt;
char *d.buf;

int rle_pipe_mem_nw(channel, dbuf, dent, scanline, offset,
timeout, xiosb, efn}

int channel, dent, scanline, off set, timeout, efn;
char *d. buf;
struct xiosb sxiosb;

DESCRIPTION

07/89

rle_pipe_mem and rle_pipe_mem_nw provide a mechanism to run length
encode data directly from the raster processing pipeline to virtual memory.
The specified Run Length Encoding (RLE) channel will move the data. Chan­
nel must have been opened with rle_open(3A).

Dbuf points to the buffer where encoded data is to be written. The buffer
must begin on a long word boundary. Dent indicates the buff er size in bytes
and must be a multiple of four.

Scanline and offset indicate the initial values for the scanline and off set fields
in the RLE header packets.

Timeout indicates the time limit in 1/60-second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of zero disables the timeout function.

Upon completion of the synchronous request, xfcnt ind.icates the number of
bytes transferred.

rle_pipe_mem_nw is the asynchronous version of rle_pipe_mem, providing
the same capability without waiting the request to complete. Efn is the
event :O.ag number associated with the request. Xiosb is a pointer to the xiosb
structure updated when the request completes (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred.

rle_pipe_mem and rle_pipe_mem_nw will fail if one of the following is
true:

[XIO_FAILURE]

[RLE_CHANNEL_INV ALID]

The system does not contain the driver
needed to support this request or efn is
invalid.

The specified channel is beyond the max­
imum allowed.

1

R.LE_PIPE_MEM(3A) R.LE_PIPE_MEM(3A)

[RLE_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

[BAD_DATA_BUFFER_ADDRESS] The data buffer either is not long word
aligned or points to a nonwritable
memory space.

[BAD_DATA_BUFFER_COUNT] The byte count is not a multiple of four.

[PAGE_LOCK_FAILED] Not enough physical memory for this
request is available at this time.

[RLE_CANCELED] The request was canceled with
rle_cancel(3A) or rle_cl.ose(3A).

[RLE_ COMPO_SYNC_ERROR]

[RLE_COMPl_SYNC_ERROR]

[RLE_COMP2_SYNC_ERROR]

[RLE_OVERRUN_ERROR]

[RLE_TIMEOUT]

A synchronization error occurred on
component 0.

A synchronization error occurred on
component 1.

A synchronization error occurred on
component 2.

The output buff er is full and data
remains to be processed.

The timeout expired before the transfer
completed.

SEE ALSO
rle_open(3A), rle_close(3A), rle_cancel(3A).
intro(7A), xrle(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the XIO system accepts the asynchronous request, the request will return a
0. Otherwise, XIO_FAILURE will be returned. Upon completion of an
accepted request, the status member of the xiosb structure will be set to
either 0 if successful or to one of the above failure codes if unsuccessful.

07/89

R.LE_SETUP(3A) R.LE_SETUP(3A)

NAME
rle_setup - establish parameters for an RLE channel

SYNOPSIS
#include <sys/xio/xerr.h>
#include <sys/xio/xrle.h>

int rle_setup Cchan, linewidth, swathsize, top, left, igr, format)
int chan, linewidth, swathsize, top, left, igr, format;

DESCRIPTION

07/89

rle_setup establishes parameters for the specified Run Length Encoding
(RLE) chan. Chan must have been opened with rle_open(3A). Possible
values for linewidth are 32, 64, 128, 256, 512, and 1024. Swathsize
represents the number of lines per swath. Top represents the size of the top
margin to be skipped. Left represents the size of the left margin to be
skipped.

!gr is the value to be placed in the IGR field of each scanline header; a value
of -1 indicates that no scanline headers are to be produced.

Format determines which mode the RLE will operate in. Possible modes are
defined in <sys/xio/xrle.h> and described below.

RLE_BW _RLE black and white RLE

RLE_EKTRON_RLE

RLE_COLOR_RLE

RLE_P ASSTHRUl

RLE_P ASSTHRU3

RLE_REVERSE_BW _RLE

RLE_REVERSE_EKTRON_RLE

RLE_REVERSE_COLOR_RLE

RLE_REVERSE_P ASSTHRUl

ektron format RLE

color RLE

single component; no compression

all components; no compression

reverse black and white RLE

reverse Ektron format RLE

reverse color RLE

reverse single component; no compression

RLE_REVERSE_PASSTHRU3 reverse all components; no compression

rle_setup will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request.

[RLE_CHANNEL_INVALID]

[RLE_CHANNEL_NOT _OPEN]

[RLE_INV ALID _PARMS]

The specified chan is beyond the max­
im um allowed.

The specified chan is not open for this
process.

An invalid value was passed for a
parameter.

1

R.LE_SETUP(3A)

SEE ALSO
rle_open(3A).

R.LE_SETUP(3A)

xrle(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

07/89

SIF _CANCEL(3A) SIF _CANCEL(3A)

NAME
sif_cancel - cancel outstanding asynchronous I/Oona SIP channel

SYNOPSIS
#include <sys/xio/xerr.h>

int sif_cancel (channel)
int channel;

DESCRIPTION
sif _cancel terminates all requests pending on the specified Scanner Interface
(SIP) channel. Channel must have been opened with sif _open(3A).

sif _cancel will fail if one of the following is true:

[XIO_PAILURE] The system does not contain the driver needed
to support this request.

[SIP_ CHANNEL_INV ALID] The specified channel is beyond the maxim um
allowed.

[SIF_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
sif_open(3A), sif_mem_pipe(3A), sif_scan_mem(3A),
sif_scan_pipe(3A).
xsif(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

SIF _CLOSE(3A) SIF _ CLOSE(3A)

NAME
sif_close - close a SIF channel

SYNOPSIS
#include < sys/xio/xerr .h >
int sif _close (channel)
int channel;

DESCRIPTION
sif _close terminates all requests pending on the specified Scanner Interface
(SIF) channel and closes it. Channel must have been opened with
sif _open(3A).

sif _close will fail if one of the following is true:

[XIO_FAILURE] The system does not contain the driver needed
to support this request.

[SIF_CHANNEL_INVALID] The specified channel is beyond the maximum
allowed.

[SIF_CHANNEL_NOT_OPEN] The specified channel is not open for this pro­
cess.

SEE ALSO
sif _open(3A).
xsif(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

SIF _ OPEN(JA) SIF _OPEN(JA)

NAME
sif_open - open a SIF channel

SYNOPSIS
#include <sys/xio/xerr.h>
int sif _open (channel)
int channel;

DESCRIPTION
sif _open opens the specified Scanner Interface (SIF) channel. Only one pro­
cess is allowed to open a SIF channel at a time. Each SIF board in the system
is represented by a channel number so that channel 0 references the SIF
board with the lowest Shared Resource (SR) Bus slot number.
sif _open will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request.
[SIF _REDUNDANT _REQ]

[SIF _CHANNEL_INV ALID]

[SIF _CHANNEL_NOT_FOUND]

[SIF _CHANNEL_BUSY]

The specified channel is currently open
by this process.

The specified channel is beyond the max­
imum allowed.

The specified channel is not present in the
system.

The specified channel is currently open
by another process.

SEE ALSO
xsif(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

07/89

Upon successful completion, a value of 0 is returned. Otherwise, one of the
above failure codes is returned.

1

SIF_SCAN_MEM(3A) SIF _SCAN_MEM(3A)

NAME
sif_scan_mem, sif_scan_mem_nw - transfer data from scanner to memory

SYNOPSIS
#include <sys/xio/xerr.h>
#include < sys/xio/xio.h >

int sif_scan_mem (channel, dbuf, dent, timeout, xfcnt)
int channel, dent, timeout, *Xf cnt;
char *<lbuf;

int sif _scan_mem_nw (channel, dbuf, dent, timeout, xiosb, efn)
int channel, dent, timeout, efn;
char *<lbuf;
struct xiosb *Xi.osb;

DESCRIPTION
sif _scan_mem and sif _scan_mem_nw provide a mechanism for transfer­
ring data directly from the scanner to virtual memory. The specified
Scanner Interface (SIF) channel will move the data. Channel must have been
opened with sif _open(3A).

Dbuf points to the buffer data is being transferred to. The buffer must begin
on a long word boundary. Dent indicates the byte count to be transferred
and must be a multiple of the linewidth specified in sif _setup(3A).
Timeout indicates the time limit in 1/60-second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of zero disables the timeout function.
Upon completion of the synchronous request, xfcnt indicates the number of
bytes transferred.

sif _scan_mem_nw is the asynchronous version of sif _scan_mem, provid­
ing the same capability without waiting the request to complete. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated when the request completes (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred.
sif _scan_mem and sif _scan_mem_nw will fail if one of the following is
true:

[XIO_FAILURE] The system does not contain the driver
needed to support this request or efn is
invalid.

[SIF_CHANNEL_INVALID] The specified channel is beyond the max­
imum allowed.

[SIF_CHANNEL_NOT_OPEN] The specified channel is not open for this
process.

[BAD_DATA_BUFFER_ADDRESS] The data buffer is either not long word
aligned or points to a nonwritable

07/89 1

SIF _SCAN_MEM(3A) SIF _SCAN_MEM(3A)

memory space.

[BAD_DATA_BUFFER_COUNT] The byte count is not a multiple of
linewidth from sif _setup(3A).

[PAGE_LOCK_FAILED] Not enough physical memory for this
request is available at this time.

[SIF_CANCELED] The request was canceled with
sif _cancel(3A) or sif _close(3A).

[SIF _PIX_PER_LINE_ERROR] The scanner transmitted an incorrect
number of pixels per scanline.

[SIF _LINE_PER_SW ATH_ERROR] The scanner transmitted an incorrect
number of scanlines per swath.

[SIF_RED_PARITY_ERROR] A parity error occurred on the red com­
ponent input.

[SIF_GREEN_PARITY_ERROR] A parity error occurred on the green
component input.

[SIF_BLUE_PARITY_ERROR] A parity error occurred on the blue com­
ponent input.

[SIF_CYCLE_ERROR] A hardware handshake error occurred on
the transfer.

[SIF_TIMEOUT] The timeout expired before the transfer
completed.

SEE ALSO
intro(3A), sif_open(3A), sif_close(3A), sif_setup(3A), sif_cancel(3A).
xsif(7A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the XIO system accepts the asynchronous request, the request will return
a value of 0. Otherwise, XIO_FAILURE will be returned. Upon completion
of an accepted rt;quest, the status member of the xiosb structure will be set
to 0 if successful, or one of the above failure codes if unsuccessful.

07/89

SIF _SCAN_PIPE(3A) SIF _SCAN_PIPE(3A)

NAME
sif _scan_pipe, sif_scan_pipe __ nw - transfer data from scanner to pipe

SYNOPSIS
#include < sys/xio/xerr .h >
#include < sys/xio/xio.h >
int si.f _scan_pipe (channel, dent, timeout, xfcnt)
int channel, dent, timeout, *Xfcnt;
int sif_scan_pipe_nw (channel, dent, timeout, xiosb, efn)
int channel, dent, timeout, efn;
struct xiosb sxi.osb;

DESCIUPTION

07/89

sif _scan_pipe and sif _scan_pipe_nw provide a mechanism for transferring
data directly from the scanner to the scanner processing pipeline. The
specified Scanner Interface (SIF) channel will move the data. Channel must
have been opened with sif _open(3A).

Dent indicates the byte count to be transferred and must be a multiple of
the linewidth specified in sif _setup(3A).

Timeout indicates the time limit in 1/60-second intervals for the data
transfer. Any transfer that takes longer is aborted and an appropriate status
is returned. A timeout value of zero disables the timeout function.
Upon completion of the synchronous request, xfcnt indicates the number of
bytes transferred.

sif _scan_pipe_nw is the asynchronous version of sif _scan_pipe, providing
the same capability without waiting the request to complete. Efn is the
event flag number associated with the request. Xiosb is a pointer to the xiosb
structure updated when the request completes (see intro(3A)). The xfcnt
member of the xiosb structure indicates the number of bytes transferred.
sif _scan_pipe and sif _scan_pipe_nw will fail if one of the following is
true:

[XIO_FAILURE]

[SIF _CHANNEL_INV ALID]

[SIF _CHANNEL_NOT_OPEN]

[BAD_DATA_BUFFER_COUNT]

[SIP _CANCELED]

The system does not contain the driver
needed to support this request or efn is
invalid.

The specified channel is beyond the max­
imum allowed.

The specified channel is not open for this
process.

The byte count is not a multiple of
linewidth from sif _setup(3A).

The request was canceled with
sif _cancel(3A) or sif _close(3A).

1

SIF _SCAN_PIPE(JA) SIF _SCAN_PIPE(JA)

[SIP _PIX_PER_LINE_ERROR] The scanner transmitted an incorrect
number of pixels per scanline.

[SIF_LINE_PER_SWATH_ERROR] The scanner transmitted an incorrect
number of scanlines per swath.

[SIF_RED_PARITY_ERROR] A parity error occurred on the red com­
ponent input.

[SIF_GREEN_PARITY_ERROR] A parity error occurred on the green
component input.

[SIF_BLUE_PARITY_ERROR] A parity error occurred on the blue com­
ponent input.

[SIF_CYCLE_ERROR] A hardware handshake error occurred on
the transfer.

[SIP _TIMEOUT] The timeout expired before the transfer
completed.

SEE ALSO
intro(3A), sif_open(3A), sif_close(3A), sif_setup(3A), sif_cancel(3A).
xsif(7 A) in the CLIX System Administrator's Reference Manual.

DIAGNOSTICS

2

Upon successful completion of the synchronous request, a value of 0 is
returned. Otherwise, one of the above failure codes is returned.

If the XIO system accepts the asynchronous request, the request will return a ~

value of 0. Otherwise, XIO_FAILURE will be returned. Upon completion of
an accepted request, the status member of the xiosb structure will be set to 0
if successful, or one of the above failure codes if unsuccessful.

07/89

SIF _SETUP(3A) SIF _SETUP(3A)

NAME
sif_setup - establish parameters for a SIF channel

SYNOPSIS
#include < sys/xio/xerr .h >
#include <sys/xio/xsif .h>
int sif _setup (channel, resolution, linewidth, swathsize, mode)
int channel, resolution, linewidth, swathsize, mode;

DESCRIPTION
sif _setup establishes Direct Memory Access (DMA) parameters for the
specified Scanner Interface (SIF) channel. Channel must have been opened
with sif _open(3A).

Resolution and linewidth are used together to determine the data hardware
rejects automatically. This should reduce memory and time requirements
for the system. The accepted data consists of the first linewidth bytes from
each consecutive set of resolution bytes. All other data is rejected. If the
concepts of resolution and linewidth do not apply, they should be set the
same. Possible values for linewidth are 32, 64, 128, 256, 512, and 1024.
Possible values for resolution are 256, 512, and 1024. Linewidth must
always be less than or equal to resolution.
Swathsize represents the number of lines per swath.
Mode determines which color mode the SIF will operate in. Possible modes
are defined in <sys/xio/xsif.h> and described below.
SIF_MONO_RED Scan in monocolor mode using the red component.
SIF _MONO_GREEN Scan in monocolor mode using the green component.
SIF_MONO_BLUE Scan in monocolor mode using the blue component.
SIF _COLOR Scan in color mode using all three components.
sif _setup will fail if one of the following is true:
[XIO_FAILURE] The system does not contain the driver

needed to support this request.
[SIF _CHANNEL_INV ALID]

[SIF _CHANNEL_ NOT_ OPEN]

[SIF _INVALID _PARMS]

The specified channel is beyond the max­
imum allowed.

The specified channel is not open for this
process.

The values for resolution and linewidth
do not meet the stated requirements.

SEE ALSO
sif _open(3A).
xsif(7A) in the CLIX System Administrator's Reference Manual.

07/89 1

SIP _SETUp(3A) SIF _SETUP(3A)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, one of the

above failure codes is returned.

2 07/89

XIO_ALLOCEF(JA) XIO_ALLOCEF(3A)

NAME
xio_allocef, xio_deallocef - allocate/deallocate an event flag number

SYNOPSIS
unsigned long rio_allocef (efn)
int sefn;

void rio_deallocef (mask)
unsigned long mask;

DESCRIPTION
xio_allocef allocates an event flag number used for asynchronous requests.
Efn points to the integer location updated with an event flag number. The
event flag number is an argument passed to an asynchronous routine to track
the completion of the request. xio_allocef returns a mask that corresponds
to the event flag number.

xio_deallocef deallocates event flag numbers obtained with xio_allocef. The
bits set in mask correspond to the event flag numbers to be deallocated.

SEE ALSO
intro(3A), xio_readef(3A), xio_ waitfr(3A), xio_notify(3A).

DIAGNOSTICS

12/88

Upon successful completion, of xio_allocef, a nonzero mask is returned.
Otherwise, all event flag numbers have been allocated and a value of 0 is
returned.

1

XIO_NOTIPY(3A) XIO_NOTIFY(3A)

NAME
xio_notify - notify a process of an asynchronous request completion

SYNOPSIS
#include < sys/xio/xerr .h >
int xio_notify (mask, signal. var, valO, valt)
unsigned long mask;
int signal, var[2], valO, vall;

DESCRIPTION
xlo_notlfy provides a mechanism to detect completion of an asynchronous
request via signal or memory location update. Either or both of these
methods of notification is available.

Mask corresponds to the event flag numbers of the asynchronous requests
for which the process requires notification.

Signal is sent to the process upon completion of any of the specified asyn­
chronous requests. The signal must be chosen in accordance with defined
system signals, and the signal-catching handler must be established with
standard signal management system calls (see slgset(2) or slgnal(2)).

Var is an array of two integers; xlo_notlfy updates these locations with the
values contained in valO and vall. Var must be aligned on a long-word
boundary. If var is 0, this feature is disabled.

xlo_notlfy will fail if either mask is 0, signal is not a valid signal number,
or var is invalid.

SEE ALSO
intro(3A), xio_readef(3A), xio_ waitf r(3A), xio_allocef(3A), signal(2), sig­
set(2).

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise,
XIO_FAILURE is returned.

Only one xlo_notlfy request (specifying either a signal notification, a
memory location update, or both) may be active. If a subsequent xlo_notify
call is made, the previous call is no longer in effect.

WAR.MINGS

12/88

After notification, the process must call either xio_reade/(3A),
xlo_waltfr(3A), xlo_wftor(3A), or xlo_wftand(3A) before the xiosb struc­
tures for the completed asynchronous requests are valid.

1

XIO_R.EADEF(3A) XIO_R.EADEF(3A)

NAME
xio_readef, xio_clref, xio_setef - event flag mask functions

SYNOPSIS
unsigned long xi.o _readef ()

unsigned long xi.o_clref (mask>
unsigned long mask;

unsigned long xi.o _setef (mask>
unsigned long mask;

DESCltlPTION
xio_readef returns the event flag mask. Cleared bits in the mask possibly
represent asynchronous requests that have not completed. The process is
responsible for "knowing" which bits in the event flag mask are currently
used by asynchronous requests.

xlo_clref provides a mechanism to clear event flag numbers in the event flag
mask. All bits set in mask will be cleared.

xlo_setef provides a mechanism to set event flag numbers in the event flag
mask. All bits set in mask will be set.

SEE ALSO
intro(3A), xio_allocef(3A), xio_ waitfr(3A), xio_notify(3A).

DIAGNOSTICS

12/88

Upon successful completion, the event flag mask is returned. No errors are
possible.

1

XIO_ W AITPJl(.3A) XIO_ W AITFR.(3A)

NAME
xio_waitfr, xio_wfland, xio_wflor - asynchronous event control

SYNOPSIS
unsigned long xio_ waitfr (efn)
int efn;

unsigned long xio _ wfland (mask)
unsigned long mask;

unsigned long xio _ wflor (mask)
unsigned long mask;

DESCRIPTION
xlo_waitfr provides a mechanism for a process to wait for the bit in the
event flag mask corresponding to efn to be set. A bit set in the event flag
mask usually corresponds to the completion of an asynchronous request. If
no error occurred, the event flag mask is returned.

xio_wftand will return control to the caller when all bits in the event flag
mask that correspond to all set bits in mask are set. This provides a mechan­
ism for a process to wait for the completion of many outstanding asynchro­
nous requests. The event flag mask is returned.

xio_wftor will return control to the caller when any of the bits in the event
flag mask that correspond to set bits in mask are set. The call, in effect,
waits for one of the outstanding asynchronous requests to complete. The
event flag mask is returned.

SEE ALSO
intro(3A), xio_allocef(3A), xio_readef(3A), xio_notify(3A).

DIAGNOSTICS

12188

Upon successful completion of xio_waitfr, the event flag mask is returned.
Otherwise, a value of 0 is returned to indicate that efn is not valid. No
errors are possible for xlo_wftand and xio_wftor.

1

F77INITI0(3F) F77INITI0(3F)

NAME
f77initio, f77uninitio - initialize or terminate FORTRAN I/O from C

SYNOPSIS
void f77initio 0
void f77uninitio ()

DESCRIPTION
f77initio initializes FORTRAN 1/0 by calling the appropriate routines in the
FORTRAN library. f77initio must be called in programs that define their
main routine in C and also use FORTRAN I/O. f77uninitio terminates FOR­
TRAN I/O by calling the appropriate routines in the FORTRAN library.
f77uninitio flushes data and closes any open FORTRAN logical unit numbers.
These two routines are designed to be called from C source only.

SEE ALSO
fnum(3F), flush(3F), f dtounit(3F).

07/89 1

FDTOUNIT(3F) FDTOUNIT(3F)

NAME
fdtounit - return FORTRAN logical unit associated with a file descriptor

SYNOPSIS
integer lun, f d

lun """ f dtounit (fd)

DESCRIPTION
fdtounit returns the FORTRAN logical unit number associated with a particu­
lar file descriptor. fdtounit assumes the file descriptor has been returned by
some past open(2) or creat(2) system call.

DIAGNOSTICS
Upon successful completion, the FORTRAN logical unit number is returned.
Otherwise, a value of -1 is returned.

SEE ALSO
fnum(3F), f77initio(3F).
cexternal keyword in the FORTRAN User's Guide.
open(2), creat(2) in the UNIX System V Programmer's Reference Manual.

07/89 1

FLUSH(3F) FLUSH(3F)

NAME
flush - flush the output for the specified FORTRAN logical unit

SYNOPSIS
integer i, lun

i - :0.ush Oun)
DESCRIPTION

flush flushes the output for the specified FORTRAN logical unit. The FORTRAN
library utilizes the buffered 1/0 routines /open(3S), fread(3S), fwrite(3S),
etc., for logical unit 1/0. Thus, after a FORTRAN write statement is executed,
some or all data may reside in a buffer and will not necessarily have been
written to the device or file associated with the logical unit. Data will
always be flushed when the program exits or a logical unit is closed. How­
ever, when a user requires data to be flushed to a device or file immediately,
flush is provided.

DIAGNOSTICS
Upon successful completion, the FORTRAN logical unit number is returned.
Otherwise, a value of -1 is returned.

SEE ALSO
fnum(3F), f77initio(3F).
fopen(3S), fclose(3S) in the UNIX System V Programmer's Reference Manual.

07/89 1

FNUM(3F) FNUM(3F)

NAME
fnum - return the file descriptor associated with a FORTRAN logical unit

SYNOPSIS
integer i, lun

i - fnum Oun)

DESCRIPTION
fnum accepts a logical unit number as input and returns the associated file
descriptor. The file descriptor is suitable for use in subsequent file-related
system calls such as read(2), write(2), and Zseek(2).

DIAGNOSTICS
Upon successful completion, the FORTRAN logical unit number is returned.
Otherwise, a value of -1 is returned.

SEE ALSO
ftush(3F), f77initio(3F).
cexternal keyword in the FORTRAN User's Guide.

07/89 1

c

c

c

INTK.0(4) INTK.0(4)

NAME
intro - introduction to file formats

DESCK.IPTION

12/88

This section outlines the formats of various files. The C structure declara­
tions for the file formats are given where applicable. Usually, the header
files containing these structure declarations can be found in the directory
Lusr/include or the directory /usr/include/sys. For inclusion in C
language programs, however, the syntax #include <file-name.h> or
#include <sys/jil.e-name.h> should be used.

1

A.OUT(4) A.OUT(4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION

12/88

The file name a.out is the default output file name from the link editor Zd(l).
The link editor makes a.out executable if no errors occur during linking. The
output file of the assembler as(l) follows the common object file format of
the a.out file although the default file name is different.

A common object file consists of a file header, a CLIX system header (if the
file is link editor output), a table of section headers, relocation information,
(optional) line numbers, a symbol table, and a string table. The order is
given below.

file header
CLIX system header
section 1 header

section n header
section 1 data

section n data
section 1 relocation

section n relocation
section 1 line num hers

section n line numbers
symbol table
string table

The last three parts of an object file (line numbers, symbol table and string
table) may be missing if the program was linked with the -s option of Zd(l)
or if they were removed by strip(l). Also, the relocation information will
be absent after linking unless the -r option of Zd(l) was used. The string
table exists only if the symbol table contains symbols with names longer
than eight characters.

The sizes of each section (contained in the header and discussed below) are in
bytes.

When an a.out file is loaded in memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all O's), and a stack. On
the CLIPPER, the text segment starts at location OxO.

The a.out file produced by Zd(l) has the magic number 0413 in the first field
of the CLIX system header. The headers (file header, CLIX system header,

1

A.OUT(4) A.OUT(4)

2

and section headers) are loaded at the beginning of the text segment. The
text immediately follows the headers in the user address space. The first
text address will equal OxO plus the size of the headers, and will vary
depending on the number of section headers in the a.out file. In an a.out file
with three sections (.text, .data, and .bss), the first text address is at Oxd8 on
the CLIPPER. The text segment is not writable by the program; if other
processes are executing the same a.out file, the processes will share a text seg­
ment.

The data segment starts at the next 4M boundary past the last text address.
The first data address is determined by the following. If an a.out file is split
into 4K byte pages, one of the pages would contain both the end of text and
the beginning of data. When the core(4) image is created, that page will
appear twice: once at the end of text and once at the beginning of data (with
some unused space in between). The duplicated page of text that appears at
the beginning of data is never executed; it is duplicated so that the operating
system may bring in pieces of the file in multiples of the page size without
having to realign the beginning of the data section to a page boundary.
Therefore, the first data address is the sum of the next segment boundary
past the end of text plus the remainder of the last text address divided by
4K. If the last text address is a multiple of 4K, no duplication is necessary.
On the CLIPPER, the stack begins at location OxCOOOOOOO and grows toward
lower addresses. The stack is automatically extended as required. The data
segment is extended only as requested by the brk(2) system call.
For relocatable, files the value of a word in the text or data portions that is
not a reference to an undefined external symbol is the value that will appear
in memory when the file is executed. If a word in the text involves a refer­
ence to an undefined external symbol, there will be a relocation entry for the
word, the storage class of the symbol-table entry for the symbol will be
marked as an "external symbol", and the value and section number of the
symbol-table entry will be undefined. When the file is processed by the link
editor and the external symbol becomes defined, the value of the symbol
will be added to the word in the file.

File Header
The format of the filehdr header is as fallows:

struct filehdr {
unsigned short
unsigned short
long
long
long
unsigned short

};
unsigned short

CLIX System. Header

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
f_1lags;

I• magic number•/
I• number of sections•/
I• time and date stamp •/
I• file ptr to symtab •/
I• # symtab entries •/
I• sizeof(opt hdr) •/
I• 1lags •I

The format of the CLIX system header is as follows:

12/88

A.OUT(4) A.OUT(4)

typedef struct aouthdr
{

short
short
long
long
long
long
long
long
unsigned long
unsigned char
unsigned char
unsigned char

} AOUTHDR;

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;
cliflags;
tcache;
dcache;
scache;

I• magic number •/
I• version stamp •/
I• text size in bytes, padded•/
I• initialized data (.data) •I
I• uninitialized data (.bss) •/
I• entry point •/
I• base of text used for this file */
I• base of data used for this file •/
I• CLIPPER flags */
/* text region caching policy •I
/* data region caching policy •/
/* stack region caching policy •/

Section Header
The format of the section header is as follows:

struct scnhdr {
char
long
long
long
long
long
long

};

unsigned short
unsigned short
long

s_name [SYMNMLEN]; /• section name •/
s_paddr; /*physical address•/
s_ vaddr; /* virtual address •I
s_size; /*section size•/
s_scnptr; I• file ptr to raw data •/
s_relptr; /*file ptr to relocation•/
s_lnnoptr; /* file ptr to line numbers •/
s_nreloc; /* # reloc entries •/
s_nlnno; /* # line number entries •/
s_flags; I• flags •/

Relocation
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will have the following
format:

struct reloc {
long
long
ushort

};

r_ vaddr; /* (virtual) address of reference •/
r_symndx; /*index into symbol table•/
r_type; /*relocation type •I

The start of the relocation information is s_relptr from the section header.
If there is no relocation information, s_relptr is 0.

Symbol Table
The format of each symbol in the symbol table is as follows:

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

12/88 3

A.OUT(4)

struct syment {
union {

};

char
struct {

long
long

} _n_n;
char

} _n;
long
short
unsigned short
char
char

#define n_name
#define n_zeroes
#define n_off set
#define n_nptr

A.OUT(4)

I• all ways to get a symbol name•/
_n_name[SYMNMLEN]; I• name of symbol •/

_n_zeroes;
_n_offset;

* _n_nptr[2];

n_value;
n_scnum;
n_type;
n_sclass;
n_numaux;

I• = OL if in string table •/
I• location in string table•/

I• allows overlaying •/

I• value of symbol•/
I• section number•/
I• type and derived type•/
I• storage class •/
I• number of aux entries •/

_n._n_name
_n._n_n._n_zeroes

n. n n. n offset
_n.=n=nptr[tl

Some symbols require more information than a single entry; they are fol­
lowed by "auxiliary entries" that are the same size as a symbol entry. The
format is as follows:

union auxent {
struct {

long x_tagndx;
union {

struct {
unsigned short x_lnno;
unsigned short x_size;

} x_lnsz;
long x_fsize;

} x_misc;
union {

struct {
long x_lnnoptr;
long x_endndx;

} x_fcn;
struct {

unsigned short x_dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x_tvndx;

} x_sym;

struct {
char x_f name[FILNMLEN];

4 12/88

A.OUT(4) A.OUT(4)

};

} x_file;

struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct {
long
unsigned short
unsigned short

} x_tv;

x_tvfill;
x_tvlen;
x_tvran[2];

Indexes of symbol table entries begin at 0. The start of the symbol table is
f _symptr (from the file header) bytes from the beginning of the file. If the
symbol table is stripped, f _symptr is 0. The string table (if one exists)
begins at f _symptr + (/ _nsyms * SYMESZ) bytes from the beginning of the
file.

SEE ALSO

12/88

as(l), cc(l), ld(l), core(4), reloc(4).
brk(2), filehdr(4), ldfcn(4), linenum(4), scnhdr(4), syms(4) in the UNIX
System V Programmer's Reference Manual.

5

ALIASES(4) ALIASES(4)

NAME
aliases - aliases file for sendmail(lM)

SYNOPSIS
/usr /lib/ aliases

DESCRIPTION

01/90

The aliases file defines aliases used by sendmail(lM). Alias definitions in
this file have one of the following formats:

name: namel [, name2, •••]
name: :include: filename
name: • 1 program•

The first format above simply lists the addresses that should be aliased to
the alias name. The second format specifies a file that contains addresses
listed one per line. For example, the following alias would cause
sendmail(lM) to read the "/usr/local/poets.list" file for a list of recipients:

poets: :incl ude:/usr /local/ poets.list

The third format specifies a program to which mail messages should be
piped. The double quotation marks are necessary to prevent sendmail(lM)
from suppressing the blanks between arguments. For example, the following
alias would cause sendmail(lM) to pipe mail messages to stdin of the pro­
gram called "/usr/frank/mymailer":

mymailer: "1/usr/frank/mymailer -a"

Complete path names must be furnished in the second and third formats.

Only local names may be aliased. In other words, an alias name cannot con­
tain a ! or @ character. For example, the following would not have the
desired effect:

eric@mit-xx: eric@berkeley .EDU

Aliases may be continued by starting any continuation lines with a space or
tab. Blank lines and lines beginning with a pound sign (#) are treated as
comments.

When sendmail(lM) is first installed on a host and when the aliases file is
modified, newaliases(l) should be invoked to rebuild the database and create
the ndbm(3B) files /usr/lib/aliases.dir and /usr/lib/aliases.pag.
sendmail(lM) reads these files to resolve aliases. Reading these files instead
of the aliases file itself improves performance.

If the contents of the file in the second format or the program in the third
format have been modified, newaliases(l) does not need to be invoked.

After aliasing is performed, local and valid recipients who have a .forward
file in their home directory have messages forwarded to the list of users
defined in that file.

1

ALIASES(4) ALIASES(4)

SEE ALSO
newaliases(l), ndbm(3B).
sendmail(lM) in the CLIX System Administrator's Reference Manual.

CAVEATS

2

Because of restrictions in ndbm(3B), a single alias cannot contain more than
1000 bytes of information. Longer aliases may by implemented by chaining.
Chaining involves making the last name in the alias a dummy name that is a
continuation alias.

01/90

ANSITAPE(4) ANSITAPE(4)

NAME
ansitape - ANSI standard magtape labels

DESCRIPTION

12/88

An ANSI-labeled tape starts with a volume header. This header specifies the
volume name and protection, the owner of the volume, and the ANSI label
standard level that the tape conforms to.

Every file on the tape has a header, data blocks, and a trailer. A tape mark
follows each element. At the end of the tape, two tape marks follow the
trailer to indicate logical end-of-tape.

If a file is too large to be copied on one tape, it may be continued on another
tape by modifying the trailer section.

Field

VOLl

Label

Access

IGNl
IGN2

Owner

IGN3
Level

Owner

VOLUME HEADER
Width Exam....12_le Use

4 VOLl Indicates this is a volume header.

6 VAXl The name of the volume.

1 <SPACE> Volume protection. <SPACE>
means unprotected.

20 < < !g_nored > >
6 < < !g_nored > >
14 Joe User The name of the user.

28 < < !g_nored > >
1 3 ANSI standard level.

The owner field is 14 characters in ANSI labels. IBM labels cut the
owner field to 10 characters. The IGN2 field is 10 characters on
IBM-format tapes.

1

ANSIT APE(4)

Field

HDRl

Name

Set Name

Vol Num

File Num

Generation

Gen Version

Created

Expires

Access

Blockcount

System

IGN

Name

Set Name

Generation

Created

Blocks

2

ANSITAPE(4)

FILE HEADER 1

Width Exam....Q_le Use

4 HDRl Identifies first file header.

17 FILE.DAT Leftmost 17 characters of file
name.

6 VAXl Name of volume set this file is
part of.

4 0001 Number of this volume
within volume set.

4 0001 Number of file on this tape.

4 0001 Resembles a major release
number.

2 00 Version of a file within a
release.

6 b86001 The date of file creation.

6 b86365 Date file expires.

1 <SPACE> File protection. <SP ACE>
means unprotected.

6 000000 Number of blocks in the file.

13 OS360 The name of the software sys-
tern that created the tape.

7 < < ignored > >

The file name may have up to 17 characters in IBM labels,
and ANSI labels before standard level 3. On ANSI level 3
and after, the HDR4 record provides overflow storage for up
to 63 more characters of the file name.

On multireel tape sets, a name identifying the set as a whole.
Normally, this is just the volume name of the first reel in
the set.

Resembles a major release number. The version field is a
version within a generation. On VAX/VMS systems, these
two fields are mathematically related to the (single) version
number of disk files.

The date the file was created. This is a six-character field;
the first character is always a <SPACE>. The next two are
the year. The final three are the day within the year,
counting January 1st as day 1.

The number of blocks in the file. In HDRl records, this is
always 0. The corresponding EOFl or EOVl contains the
number of tape blocks written in the file on the current reel.

12188

ANSITAPE(4) ANSITAPE(4)

12188

FILE HEADER 2
Field Width Exam_Q_le Use

HDR2 4 HDR2 Second file header.

Rec Format 1 D Record format.
Blk Length 5 02048 Tape block size.
Rec Len_g_th 5 00080 Record size.
Densi~ 1 3 Recordin_g_ density code.

Vol Switch 1 0 1 if this is a continuation
of a file from a previous
reel.

Job 17 user/program See following notes.
Recordin_g_ 2 <SPACE> Unused in 9-track t~s.

Car Control 1 <SPACE> See following notes.
Blocking 1 B See following notes.

IGN 11 < < ignored > >
Offset 2 00 Bytes to skip at front of

each block.

Rec Format A single character indicating what type of records are provided.
The codes are as follows:

Code Meaning
F Fixed-length
D Variable up to rec length
v IBM code for variable
u Unknown

Job The name of the job (user name in CLIX) right-padded to eight
characters, a slash(/), and the job step (program name in CLIX)
right-padded to eight characters. This identifies where the JCL
was located when this file was created.

Carriage Control

Blocking

Normally a <SPACE>, indicating that the records do not con­
tain carriage control information. When printed, each record is
placed on a separate line. If an "A" is used, the first character
of each record is presumed to be a FORTRAN carriage-control
character. VAX/VMS also uses "M" to indicate that carriage­
control is embedded as part of the data. This is usually used in
the case of binary files.

The B indicates that the number of records that will fit are
placed in a physical tape block. Records do not cross block
boundaries. A <SPACE> indicates only one record per physical
tape block.

3

ANSITAPE(4) ANSIT APE(4)

4

The HDR3 and HDR4 labels are not written on IBM tapes. ANSI allows but
does not require these labels.

FILE HEADER 3
Field Width Exam_Q_le Use

HDR3 4 HDR3 Third file header.
OS 76 O~ratin_g_-~stem d~ndent.

OS This field is reserved for the operating system that created the file to
use. Other operating systems should disregard HDR3 records. On
VAX/VMS, this record contains the RMS file description.

FILE HEADER 4
Field Width Exam_Q_le Use

HDR4 4 HDR4 Fourth file header.
Name 2 63 Name continuation from HDRl.

Unknown 2 ()() Unknown, fill with 00.
IGN 11 < < !.g_nored > >

Name2
On ANSI tapes, if the file name is longer than 17 characters, the first
1 7 are placed in the HDRl record. The next 63 are put in HDR4. File
names longer than 80 characters are truncated. A HDR3 record is not
required in order to have a HDR4.

File Trailing Labels
These labels are written after a tape file. Every label written at the head of
the file will have a corresponding label at the tail. Except for the bl.ock count
field in HDRl, the only difference is in the name of the label. If we have
reached the logical end of the file, the characters HOR in the headers are
replaced by the characters EOF in the trailing labels. If we are not at the
logical end of the file, but are merely pausing at the physical end of tape
before continuing on another reel, the HOR characters are replaced by EOV
(end-of-volume).

The bl.ockcount field of HDRl was initially recorded as 000000. When the
trailers are written, the block count is changed to indicate the number of
tape data blocks written. A file continued over several volumes maintains
separate counts for each reel.

Record Formats
The two basic record formats are fixed and variable.

Fixed format uses records that all have a constant length. This is true with
VAX/VMS executable images (record length = 512). It is also used by IBM
systems for text files, with a record length of 80 (card images). The record
size field of HDR2 tells the length of each record.

With fixed-length records, the bl.ock-size is usually selected to be some mul­
tiple of the record-size. The number of records that will fit is placed in each

12/88

ANSITAPE(4) ANSITAPE(4)

block. Since records do not (normally) span physical tape blocks, extra
space at the end of a block is wasted.

Variable-length records are used by VAX/VMS for text files. The CLIX pro­
gram ansitape(l) also turns CLIX text files into variable-length tape files.
With this format, the record length specified in HDR2 is an upper limit.

Each record is proceeded by a four digit (zero-filled) byte count. The count
included the digits themselves, so the minimum valid number is 0004.
These four digits specify the length of the record. The data follows the
digits, and is, in turn, followed by the digits for the next record.

When writing, ansitape(l) checks to ensure enough room is in the tape block
for the next record. If the record (including its length digits) will not fit,
the current block is sent to the tape and a new block is started. Unused
space at the end of the tape block is filled with circumflex (...) characters.

SEE ALSO
ansitape(l).

12188 5

BACKUP(4)

NAME
backup, dumpdates - incremental dump format

SYNOPSIS
#include < sys/types.h >
#include < sys/inode.h >
#include <protocols/dumprestore.h>

DESCltIPTION
Tapes used by backup(!) and restore(!) contain the following:

A header record
Two groups of bit map records
A group of records describing directories
A group of records describing files

BACKUP(4)

The format of the header record and the first record of each description as
given in the include file <protocols/dumprestore.h> is as follows:

12188

#define TP _BSIZE 1024
#define NTREC 10
#define TP _NINDIR (TP _BSIZE/2)

1
2
3
4
5
6

#define TS_TAPE
#define TS_INODE
#define TS_BITS
#define TS_ADDR
#define TS_END
#define TS_CLRI
#define OFS_MAGIC
#define NFS_MAGIC
#define CHECKSUM

{int) 60011
(int) 60012
(int) 84446

struct u_spcl {
char dummy [TP _BSIZE];
struct s_spcl {

int
time_t
time_t
int
daddr_t
ino_t
int
int

#ifdef FPS

#else

#endif

struct

struct

int
char

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c_inumber;
c_magic;
c_checksum;

ff sdinode c_dinode;

di node c_dinode;

c_count;
c_addr (TP _NINDIR];

1

BAC:X:UP(4) BAC:X:UP(4)

} s_spcl;
} u_spcl;

#define spcl u_spcl.s_spcl

#defineDUMPOUTPMT "%-20s %c %s" /*for printf •/
/*name, incno, ctime(date) •/

#defineDUMPINPMT "%20s %c %[\n]\n" /•inverse for scanf •/
NTREC is the number of 1024-byte records in a physical tape block.
TP _BSIZE is the size of file blocks on the dump tapes. NTREC is the number
of TP _BSIZE blocks written in each tape record. TP _NINDIR is the number of
indirect pointers in a TS_ADDR record. It must be a power of two.
The TS_ entries are used in the c_type field to indicate the type of header
this is. The types and their meanings are as follows:

TS_TAPE Tape volume label.

TS_INODE

TS_BITS

TS_ADDR

TS_END

TS_CLRI

MAGIC

CHECKSUM

A file or directory follows. The c_dinode field is a copy of
the disk i-node and contains bits telling the type of file this
is.

A bit map follows. This bit map has a 1 bit for each i-node
that was backed up.

A subrecord of a file description. See c_addr below.
End of tape record.

A bit map follows. This bit map contains a zero bit for all
i-nodes that were empty on the file system when backed up.
All header records have this number in c_magic.
OFS_MAGIC is the old file system magic number.
NFS_MAGIC is the new file system magic number.
Header records checksum to this value.

The fields of the header structure are as fallows:

c_type The type of the header.

c_date The date the backup was taken.

c_ddate The date the file system was backed up from.

c_ volume The current volume number of the backup.

c_tapea The current number of this (1024-byte) record.
c_inumber The number of the i-node being backed up if this has type

TS_INODE.

c_magic The value NFS_MAGIC above, truncated as needed.
c_checbum The value needed to make the record sum to CHECKSUM.
c_dinode A copy of the i-node as it appears on the file system.

2 12/88

BACKUP(4) BACKUP(4)

FILES

c_count

c_addr

The count of characters in c_addr.

An array of characters describing the blocks of the backed
up fl.le. A character is zero if the block associated with that
character was not present on the file system. Otherwise, the
character is nonzero. If the block was not on the file system,
no block was backed up; the block will be restored as a hole
in the file. If space in this record is not sufficient to describe
all blocks in a file, TS_ADDR records will be scattered
through the file, each picking up where the last left off.

Each volume except the last ends with a tape mark (read as an end of file).
The last volume ends with a TS_END record and then the tape mark.

The structure idates describes an entry in the file /etc/dumpdates where
backup history is kept.

struct ida tes {
char
char
time_t

};

id_name[16];
id_incno;
id_ddate;

The fields of the structure are as follows:

id_name The dumped file system is /dev/dsk/s?u?p?.?.

id_incno The level number of the dump tape; see backup(!).

id_ddate The date of the incremental backup.

I etc/ dumpda tes

SEE ALSO
backup(l), restore(!).

12188 3

BOOTHEADEJt(4) BOOTHEADEJt(4)

NAME
bootheader - boot file header format

DESCltIPTION

12188

System processors have individual boot files containing a bootheader, execut­
able code, and initialized data. The bootheader starts at the beginning of the
first block of the file, and the processor specific code and data start at the
beginning of the second block of the file.

The format of the bootheader is as follows:

struct bootheader {

};

long
u_short
short
long
u_long
long
u_long
long
long

b_magic;
b_checksum;
b _processor;
b_loadaddr;
b_loadsize;
b_uinitaddr;
b_uinitsize;
b_entry;
b_time;

I• magic number= Ox5441534b •/
I• file checksum •/
I• processor type •/
I• load address •/
I• code and initialized data size•/
I• uninitialized data start address•/
I• uninitialized data size •/
I• start address •/
I• time of file creation •I

The members of this structure are as follows:

b_magic A 32-bit signed integer value that identifies the boot file
type.

b_checltsum The two's complement of the 16-bit unsigned sum of the
boot file including the boot header block.

b_processor The type of processor to be loaded using the information in
the bootheader. The valid types are listed below:

#define PROC_IOP
#define PROC_UE
#define PROC_ROP
#define PROC_DATA
#define PROC_DIAG
#define PROC_IFB
#define PROC_FPE
#define PROC_DIG

0
1
2
3
4
5
6
7

I• IOP •/
I• CLIPPER engine •/
I• ROP •/
/* raw data •/
I* diagnostics •/
/* IFB */
I• FPE */
/*digitizer•/

b_loadaddr The address where processor code and initialized data are
loaded.

b_loadsize A 32-bit unsigned integer that specifies the number of bytes
to be loaded.

b_uinitaddr The address where uninitialized data is loaded.

b_uinitsize A 32-bit unsigned integer that specifies the number of bytes
to be filled.

1

BOOTHEADE:R.(4)

b_entry

b_time

SEE ALSO

BOOTHEADE:R.(4)

The location where the booted processor begins execution.

Encoded in seconds since 00:00:00 GMT, January 1, 1970.

bootinfo(lM) in the CLIX System Administrator's Reference Manual.

CAVEATS

2

Some processors can only begin execution at a fixed address. Therefore, the
b_entry field on these processors will be ignored.

12188

CERTNOTE.COM(4) CERTNOTE.COM(4)

NAME
certnote.com - Intergraph software certification documentation file

DESCRIPTION

12/88

certnote.com is a documentation file delivered with every Intergraph
software product. certnote.com documents Trouble Reports (TRs) and
Change Requests (CRs) filed on a product at the time of its release. Also
noted are potential pitfalls, troubleshooting hints, and suggested ways to
avoid problems with the product.

A certnote.com file consists of a header section followed by the certification
comments. The following is an example header section:

Product:
Product version:
Product No.:
Operating System:
Menus:

System V 3.1 Boot Images
5.3.1
SS043 Fixes date: 23-AUG-1988
System V
N/A

Hard ware Dependencies:
InterPro• 120/InterView• 120
InterPro 32C/InterAct• 32C/InterView 32C
InterServe™ 200
InterPro 220/InterAct 220/InterView 220
InterPro 240/InterPro 245
InterServe 300/InterServe 305/InterServe 400
InterPro 340/InterAct 340/InterView 340
InterPro 360/InterAct 360/InterView 360

Software Dependencies:
None.

Document Name:
None.

11111UU+111 Utttttt++

The first section of the header identifies the product. Where applicable, the
"Menus" field identifies the Intergraph paper menu associated with the pro­
duct.

"Hardware Dependencies" lists the systems on which the product runs.

"Software Dependencies" lists other software products necessary for proper
use of this product.

"Document Name" lists the documents and manuals available for purchase
or included with purchase of the product.

1

CER.TNOTE.COM(4) CER.TNOTE.COM(4)

The following is an example comment section:

Comments:

o First 4000 (or 8000 depending on disk type) blocks of the
hard disk are allocated for boot images. At download, at
least 4000 blocks must be available for temporary
(download only) space.

Conditions:

o This product must be loaded by the "newprod" utility
located in the DELTOOLS product.

The following trouble reports are currently open against this
product:

o None.

The following change requests are currently open against this
product:

CR# 88IOOOO
Would like to be able to change the peripheral config­
uration, especially floating menu present, without having
to reboot.

The comment section is designed to communicate documented problems with
the product to the user.

SEE ALSO
fi.xes.com(4).

NOTES

2

newprod(lM) in the CLIX System Administrator's Reference Manual.

certnote.com fi.les generally reside on Intergraph delivery systems. They are
downloaded to Intergraph CLIX-based systems during product installation
for local examination.

12/88

CLH(4) CLH(4)

NAME
clh - Intergraph network clearinghouse database

DBSCR.IPTION

12/88

The Intergraph clearinghouse is a network-wide distributed database. Its
main use is to bind names to network addresses so that users do not need to
use addresses. It can also be used to access any information that needs to be
available to the network.

The clearinghouse nodes directory has three subdirectories: local, owned,
and heard. These subdirectories store information about the nodes and
individuals on the network. The files in these subdirectories are called
objects. Each clearinghouse object is a text file stored in at least one of the
subdirectories. An object name can have up to 14 characters and contain
only lowercase alphanumeric characters and underscores. In each object's
file is a list of one or more properties and property values with the form:

property: value

Although an entry can contain any property name, the following "well­
know" properties are used by programs that access the clearinghouse:

address A network address stored as a hexadecimal character
string. (The maximum size is 26 characters.)

node-name An object representing a node that the clearinghouse can
use to look up a network address (maximum size is 14
characters).

alias Same as node-name.

scope A list of Local Area Networks (LANs) to which this object
should be propagated. (The object is always propagated to
the local LAN.)

namex nam.ex(l) uses this property to indicate that it created or
modified the object.

tcp_address A TCP/IP Internet address stored as a decimal, hexade­
cimal, or octal character string. (The maximum size is 19
characters.)

netmap_inf o A formatted line containing information about the system
and its components. This line is added or updated
automatically at system startup.

owner The hexadecimal network address of the node from which
the object was broadcast. This property is added automat­
ically when the object is received from the network and
therefore should only appear in objects in the heard sub­
directory.

The following entries are provided for network maintenance purposes:

primary _user The name of the primary user of the local node.

1

CLH(4)

phone

location

The phone number of the primary_user.

The location of the local node.

EXAMPLES

FILES

address: 000b2345 .08-00-36-76-09-00
tcp_address: 122.9.100.6
scope: 000b2343,b2344
scope: b2343
NETMAP_info : UNIX System V rel 3.1,
Primary_user : John Smith
Location: Bismarck, North Dakota
Phone :701-555-1212
Favorite color : green

/usr /lib/ nodes/local
/usr/lib/ nodes/heard
/usr/lib/ nodes/ owned

SEE ALSO
clh(l).
"Network Programming Guide" in the CLIX System Guide.

2

CLH(4)

12/88

COR.E(4) COR.E(4)

NAME
core - format of core image file

DESCR.IPTION
The CLIX system writes out a core image of a terminated process when cer­
tain errors occur. See signal(2) for the list of reasons; the most common are
memory violations, illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in the process's work­
ing directory (if allowed, normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for
the process, including the registers as they were at the time of the fault. The
size of this section depends on the parameter usize, which is defined in
<sys/param.h>. The remainder represents the actual contents (excluding
the text area) of the user's core area when the core image was written. For a
paged image file, which is standard, the dump of the data segment begins
after any portion overlapped with the text section. Each segment in the core
file begins on a page boundary.

The format of the information in the first section is described by the user
structure of the system, defined in <sys/user.h>. Not included in this file
are the locations of the registers. These are outlined in <sys/reg.h>.

SEE ALSO

12/88

adb(l), sdb(l), signal(2).
nocore(lM) in the CLIX System Administrator's Reference Manual.
setuid(2) in the UNIX System V Programmer's Reference Manual.

1

DISX:PAR.(4) DISX:PAR.(4)

NAME
diskpar - disk partition header format

DESCRIPTION
All Intergraph disks are divided into sections called partitions. Each· disk
partition is preceded by a single-block diskpar header which provides infor­
mation about the partition. The partition number, the modifier number, the
partition size in blocks, and the disk partition magic number are contained in
the diskpar header. The organization of the diskpar header is listed below.

Byte Offset Description
0 partition number
1 modifier number

2 - 5 size in blocks
6-9 magic number

The partition size and the magic number are 32-bit unsigned integer values
with the least significant byte of each value corresponding to the least
significant byte of its header location.

The disk partition magic number is Ox454e4153.

SEE ALSO

12/88

mkpar(lM), parck(lM), dc(7S) in the CLIX System Administrator's Refer­
ence Manual.

1

DISICT AB(4) DISICTAB(4)

NAME
disktab - disk description file

DESCR.IPTION

PILES

disktab is a simple database which describes disk geometries and disk parti­
tion characteristics. Entries in disktab consist of a number of ":" separated
fields. The first entry for each disk gives the names which are known for the
disk, separated by "I" characters. The last name given should be a long
name which uniquely identifies the disk.

The following list indicates the normal values stored for each disk entry:

Name Type Description
ns num number of sectors per track
nt num number of tracks per cylinder
nc num total number of cylinders on the disk
se num sector size in bytes
sf bool supports bad144-style bad sector forwarding
so bool partition offsets in sectors
ty str Type of disk (e.g., removable or winchester)

The following are for 4.3 Berkeley Software Distribution (BSD) compatibility:

Name Type Description
ba num block size for partition (bytes)
fa num fragment size for partition (bytes)
pa num size of partition in sectors

I etc/ disk tab

SEE ALSO
newfs(lM) in the CLIX System Administrator's Reference Manual.

12188 1

-

ER.R.OltD.R.C(4) ER.R.OR.D.R.C(4)

NAME
errord.rc - error log configuration file

SYNOPSIS
/usr/ adm/ errord.rc

DESCR.IPTION

01/90

errord.rc contains configuration information for the error daemon,

errord(lM). The set of keywords understood by errord(lM) are as follows:

function-

node-

name-

max-

include-

exclude-

Send error messages to a remote system if s is specified,
receive error messages from remote systems if r is specified,
and do not send or receive error messages from remote sys­
tems if n is specified. n is the default.

Specify the node name of the system to send errors to.

Specify the name of the file to be used as the error log file.
The default is /usr/adm/errlog.

Specify the maximum size (in blocks) of the error log file.
When the error log file reaches this size, it is renamed
/usr/adm/olderrorlog and a new error log file is created.
The default maximum size is 500 blocks.

Specify a list of error types to log in the error log file. If an
include- line exists and an error type is not listed on the
include- line, that error type is not logged. If multiple
include- lines appear in the file, only the error types
specified on the first include- line will be logged. The
def a ult action of errord(lM) is to log all error types.

Valid error types for include- arE" as follows: device,
user, panic, memory, slave, disk, tape, :ftoppy, asycn,
scan, parallel, digitizer, timeout, security, stray,
optic, soft, retry and hard.

Specify a list of error types not to log in the error log file. If
an error type is not listed on an exclude- line, that error
type is logged. If multiple exclude- lines appear in the file,
only the error types specified on the first exclude- line will
not be logged. The default action of the daemon is to log all
error types. Valid error types for exclude- are the same as
the error types for include-.

Comment. All text fallowing the # character will be
ignored by errord(lM).

1

ER.R.OltD.R.C(4) ER.R.OR.D.R.C(4)

EXAMPLES
#Send errors to node bike. Do not log retries, soft errors, or tape errors.
function=s

FILES

node= bike
#Notice there is no space around the=.
#Log local errors to /usr/tmp/err.
name=/usr/tmp/err
ex cl ude=retry ,soft, tape

/usr/adm/errlog
/usr I adm/ olderrlog
/usr/adm/errord.rc

default system error log file
old system error log file
error daemon configuration file

SEE ALSO
errord(lM) in the CLIX System Administrator's Reference Manual.

2 01/90

EXPOR.TS(4) EXPOR.TS(4)

NAME
exports - NFS file systems being exported

DESCRIPTION
The file /etc/exports describes the file systems which are being exported to
Network File System (NFS) clients. It is created by the system administrator
using a text editor and processed by the mount request daemon mountd(lM)
each time a mount request is received.

The file consists of a list of file systems and the net groups(4) or machine
names that can remotely mount each file system. The file system names are
left justified and followed by a list of names separated by white space. The
names are searched for first in /etc/netgroups and then in /etc/hosts. A
file system name with no name list means "export to world". A "#" any­
where in the file indicates a comment extending to the end of the line it
appears on. Lines beginning with white space are continuation lines.

EXAMPLES

FILES

/usr
/usr/local
/usr2

clients

ip ingr opus

#export to my clients
export to the world
export to only these machines

I etc/ exports

SEE ALSO

BUGS

12188

mountd(lM) in the CLIX System Administrator's Reference Manual.

The identification of the remote system is dependent on the local network
transport mechanism employed.

1

PPSPS(4) PPSPS(4)

NAME
ft'sfs - format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/irsfs.h>
#include < sys/f s/irsinod.e.h >

DESCRIPTION

12188

Every file system storage volume (disk or nine-track tape, for instance) has a
common format for certain vital information. Every such volume is divided
into a certain number of blocks. The block size is a parameter of the file sys­
tem.

The actual file system begins at sector SBLOCK with the super-block that is of
size SBSIZE. The layout of the super-block as defined by the include file
<sys/fs/irsfs.h> is as follows:

#define FS_MAGIC Ox011954

struct fs {
struct fs *fs_link; /•linked list of file systems•/
struct f s *f s_rlink; I• used for incore super blocks •/
daddr_t fs_sblkno; /* addr of super-block in filesys •/
daddr_t f s_cblkno; I• off set of cyl-block in filesys •/
daddr_t fs_iblkno; /*offset of inode-blocks in filesys •/
daddr_t fs_dblkno; /*offset of first data after cg•/
long fs_cgoffset; /•cylinder group offset in cylinder•/
long f s_cgmask; /* used to calc mod f s_ntrak */
time_t fs_time; I• last time written•/
long fs_size; I• number of blocks in fs •I
long f s_dsize; I• number of data blocks in f s •I
long f s_ncg; /* number of cylinder groups •/
long fs_bsize; /*size of basic blocks in fs •I
long fs_fsize; /*size of frag blocks in fs •I
long fs_frag; /*number of frags in a block in fs •I

/*these are configuration parameters*/
long fs_minfree; /*minimum percentage of free blocks*/
long fs_rotdelay; /* num of ms for optimal next block•/
long f s_rps; /* disk revolutions per second */

/*these fields can be computed from the others•/
long fs_bmask; /* "blkoff" calc of blk offsets•/
long fs_fmask; /* "fragoff" calc of frag offsets•/
long fs_bshift; /* "lblkno" calc of logical blkno •/
long fs_fshift; /* "numfrags" calc number of frags •/

/* these are configuration parameters •/
long fs_maxcontig; /*max number of contiguous blks •/
long fs_maxbpg; /*max number of blks per cyl group•/

I• these fields can be computed from the others•/

1

FFSFS(4) FFSPS(4)

2

long fs_fragshift; I• block to frag shift •I
long f s_f sbtodb; I• f sbtodb and dbtof sb shift constant •/
long f s_sbsize; I• actual size of super block •/
long f s_csmask; I• csum block off set •/
long f s_csshift; /* csum block number •/
long f s_nindir; /• value of NINDIR •/
long fs_inopb; /*value of INOPB •/
long f s_nspf; I• value of NSPF */
long fs_optim; /*optimization preference, see below•/
long f s_sparecon[5]; /* reserved for future constants •/

I• sizes determined by number of cylinder groups and their sizes•/
daddr_t fs_csaddr; I• blk addr of cyl grp summary area•/
long f s_cssize; I• size of cyl grp summary area •/
long f s_cgsize; /* cylinder group size •/

I• these fields should be derived from the hardware•/
long fs_ntrak; /*tracks per cylinder•/
long fs_nsect; I• sectors per track•/
long fs_spc; /*sectors per cylinder•/

I• this comes from the disk driver partitioning•/
long f s_ncyl; I• cylinders in file system •/

I• these fields can be computed from the others•/
long f s_cpg; I• cylinders per group •/
long f s_ipg; I• inodes per group •/
long fs_fpg; I• blocks per group* fs_frag •/

I• this data must be re-computed after crashes•/
struct csum fs_cstotal; I• cylinder summary information•/

I• these fields are cleared at mount time •/
long fs_clean; /•file system is clean ft.ag •/
char fs_fmod; I• super block modified ft.ag •/
char fs_clean; /*unused byte•/
char f s_ronly; /* mounted read-only ft.ag •/
char f s_ft.ags; I• currently unused ft.ag •/
char f s_f smnt[MAXMNTLEN]; /* name mounted on •/

I• these fields retain the current block allocation info•/
long fs_cgrotor; /•last cg searched•/
struct csum *fs_csp[MAXCSBUFS]; I• list of fs_cs info buffers•/
long f s_cpc; I• cyl per cycle in post bl •/
short fs_postbl[MAXCPG][NRPOS]; /*head of blocks for each rotation•/
long fs_magic; /*magic number•/
char fs_fname[6]; I• used by labelit •/
char fs_fpack[6]; /*used by labelit •/
u_char fs_rotbl[l]; /•list of blocks for each rotation•/

/*actually longer•/
};

Each disk drive contains some number of file systems. A file system consists
of a number of cylinder groups. Each cylinder group has i-nodes and data.

12/88

FFSFS(4) FFSFS(4)

12188

A file system is described by its super-block, which in turn describes the
cylinder groups. The super-block is critical data and is replicated in each
cylinder group to protect against catastrophic loss. This is done at file sys­
tem creation time and the critical super-block data does not change, so the
copies need not be referenced further unless disaster strikes.

Addresses stored in i-nodes are capable of addressing fragments of "blocks".
File system blocks of at most size MAXBSIZE can be optionally broken into 2,
4, or 8 pieces, each of which is addressable; these pieces may be DEV _BSIZE,
or some multiple of a DEV _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted
disk space, the last data block of a small file is allocated only as many frag­
ments of a large block as are necessary. The file system format retains only
a single pointer to such a fragment, which is a piece of a single large block
that has been divided. The size of such a fragment is determinable from
information in the i-node, using the blksize(/s, ip, tbn) macro.

The file system records space availability at the fragment level; to determine
block availability, aligned fragments are examined.

The root i-node is the root of the file system. I-node 0 can't be used for nor­
mal purposes and historically bad blocks were linked to i-node 1, thus the
root i-node is 2 (i-node 1 is no longer used for this purpose, however
numerous dump tapes make this assumption, so we are stuck with it). The
lost+found directory is given the next available i-node when it is initially
created by jfsmkfs(lM).

fs_minfree gives the minimum acceptable percentage of file system blocks
that may be free. If the freelist drops below this level only the super-user
may continue to allocate blocks. This may be set to 0 if no reserve of free
blocks is deemed necessary, however severe performance degradations will
be observed if the file system is run at greater than 90% full; thus the
def a ult value of fs_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk
utilization at a loading of 90% comes with a fragmentation of 4, thus the
default fragment size is a fourth of the block size.

fs_optim specifies whether the file system should try to minimize the time
spent allocating blocks, or if it should attempt to minimize the space frag­
mentation on the disk. If the value of fs_minfree (see above) is less than
10%, then the file system defaults to optimizing for space to avoid running
out of full sized blocks. If the value of minf ree is greater than or equal to
10%, fragmentation is unlikely to be problematical, and the file system
defaults to optimizing for time.

Cylinder group related limits: Each cylinder keeps track of the availability
of blocks at different rotational positions, so that sequential blocks can be
laid out with minimum rotational latency. NRPOS is the number of rota­
tional positions which are distinguished. With NRPOS 8 the resolution of the
summary information is two milliseconds for a typical 3600 rpm drive.

3

FFSFS(4) FFSFS(4)

4

fs_rotdelay gives the minimum number of milliseconds to initiate another
disk transfer on the same cylinder. It is used in determining the rotationally
optimal layout for disk blocks within a file; the def a ult value for
fs_rotdelay is two milliseconds.

Each file system has a statically allocated number of i-nodes. An i-node is
allocated for each NBPI bytes of disk space. The i-node allocation strategy is
extremely conservative.

MAXIPG bounds the number of i-nodes per cylinder group, and is needed
only to keep the structure simpler by having the only a single variable size
element (the free bit map). MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is
possible to create files of size 2"32 with only two levels of indirection.
MINBSIZE must be big enough to hold a cylinder group block, thus changes to
the cg structure must keep its size within MINBSIZE. MAXCPG is limited
only to dimension an array in the cg structure; it can be made larger as long
as that structure's size remains within the bounds dictated by MINBSIZE.
Note that super-blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in
fs_Jsmnt. MAXMNTLEN defines the amount of space allocated in the super­
block for this name. The limit on the amount of summary information per
file system is defined by MAXCSBUFS. It is currently parameterized for a
maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the
first cylinder group's data blocks. These blocks are read in from fs_csaddr
(size fs_cssiz.e) in addition to the super-block.

The size of the csum structure must be a power of two in order for the fs_cs
macro to work.

Super-bl.eek for a fi"le system: MAXBPC bounds the size of the rotational lay­
out tables and is limited by the fact that the super-block is of size SBSIZE.
The size of these tables is inversely proportional to the block size of the file
system. The size of the tables is increased when sector sizes are not powers of
two, as this increases the number of cylinders included before the rotational
pattern repeats (fs_cpc). The size of the rotational layout tables is derived
from the number of bytes remaining in the fs structure.

MAXBPG bounds the number of blocks of data per cylinder group, and is
limited by the fact that cylinder groups are at most one block. The size of
the free block table is derived from the size of blocks and the number of
remaining bytes in the cylinder group structure the cg structure.

I-node: The i-node is the focus of all file activity in the CLIX file system.
There is a unique i-node allocated for each active file, each current directory,
each mounted-on file, text file, and the root. An i-node is "named" by its
device/i-number pair. For further information, see the include file
< sys/f s/Jf sinode.h >.

12188

PPSINODE(4)

NAME
ffsinode - structure of an FFS disk i-node

SYNOPSIS
#include < sys/types.h >
#include <sys/fs/ffsinode.h>

DBSC:l.IPTION

PPSINODE(4)

An i-node for a plain file or directory has the following structure defined in
<syslfs/ffsinode.h>.

struct icommon {
u_short
short
uid_t
gid_t
quad
time_t
long
time_t
long
time_t
long
daddr_t
daddr_t
long
long
long

};
long

struct :ffsdinode {
union {

ic_mode;
ic_nlink;
ic_uid;
ic_gid;
ic_size;
ic_atime;
ic_atspare;
ic_mtime;
ic_mtspare;
ic_ctime;
ic_ctspare;
ic_db [NDADDR];
ic_ib [NIADDR];
ic_ft.ags;
ic_blocks;
ic_gen;
ic_spare [4];

I• 0: mode and type of file •/
I• 2: number of links to file•/
I• 4: owner's user ID•/
I• 6: owner's group ID •/
I• 8: number of bytes in file•/
I• 16: time last accessed •I

I• 24: time last modified•/

I• 32: last time inode changed •/

/* 40: disk block addresses •/
/* 88: indirect blocks•/
I• 100: status, currently unused•/
I• 104: blocks actually held•/
/* 108: generation count for NFS•/
I• 112: reserved, currently unused */

struct
char

icommon di_icom;
di_size [128] ;

} di_un;
};

SEE ALSO
ffsfs(4).
stat(2) in the UNIX System V Programmer's Reference Manual.

12/88 1

PIXES.COM(4) PIXBS.COM(4)

NAME
fixes.com - Intergraph software delivery documentation file

DESCRIPTION

12188

fixes.com is a documentation file delivered with every Intergraph software
product. A fixes.com file consists of a header section followed by one or
more delivery, or "fix", sections.

The following is an example header section:

PRODUCT NUMBER : SS043
PRODUCT NAME : System V 3.1 Boot Images
PRODUCT DIRECTORY : UNIXBOOT
PRODUCT VERSION : 5.3.1

In the header illustrated above, the colon is a delimiter and the names to the
left of the colon are keywords. The important fields are the product number
and the product version number. The five character product number is a
unique Intergraph-assigned identifier used by some Intergraph software ins­
tallation utilities. The product version number is also used by Intergraph
software installation utilities to distinguish among major software releases.
The product name and product directory are informational fields.

The following is an example "fix" section:

DATE : 23-AUG-1988
UNIXl.PROD : 23-AUG-1988
INSTALL.SH : 23-AUG-1988
I

UNIXl.PROD
- Added support for new workstation

INSTALL.SH
- Modified installation script to check for correct exit

status from cpio.

The "fix" section is divided into two areas with the ! delimiter separating
them. The part before the ! must begin with a "fix" date with form illus­
trated. The only allowed deviation from the format shown is in the amount
of white space found between the DATE keyword and the colon and between
the colon and the date. The date must have the form DD-MMM-YYYY. One
or more product file description lines come after the date line. These must
adhere to the same format as the date line. Each file description line can
have a different date. The ! delimiter ends the required portion of the "fix"
section. The section following is a free-form comment area for describing
the features of the new software release.

"Fix,, entries are always inserted in the fixes.com file immediately following
the header section. Thus the most recent software deliveries for a given pro­
duct are documented near the top of the file.

1

FIXES.COM(4) FIXES.COM(4)

SEE ALSO

NOTES

2

newprod(lM) in the CLIX System Administrator's Reference Manual.

fixes.com files generally reside on Intergraph delivery systems and are down- ~
loaded to Intergraph CLIX systems during product installation for local
examination.

12/88

PLOPPYPAR.(4) PLOPPYPAR.(4)

NAME
:6.oppypar - partitioned :6.oppy header format

DESCRIPTION
The mkpar(lM) command is used to divide a :6.oppy into one or more logical
sections called partitions. Information about each partition is contained in
the :6.oppy partition header (ftoppypar) that resides on the first block of a
partitioned :6.oppy.

The organization of the :6.oppy header is as follows:

Byte Offset Description
0-3 magic number
4 -5 number of logical partitions

6 partition number of logical partition 1
7 modifier number of logical partition 1

8-9 block number of the first block of logical partition 1
10-11 block number of the last block of logical partition 1

12 partition number of logical partition 2
13 modifier number of logical partition 2

14-15 block number of the first block of logical partition 2
16 -1 7 block number of the last block of logical partition 2

18 partition number of logical partition 3
19 modifier number of logical partition 3

20-21 block number of the first block of logical partition 3
22-23 block number of the last block of logical partition 3

(6*n)
(6*n+l)

(6*n+2)-(6*n+3)
(6*n+4)-(6*n+5)

partition number of logical partition n
modifier number of logical partition n
block number of the first block of logical partition n
block number of the last block of logical partition n

where n < 86.

The magic number is Ox454e4153.

The number of logical partitions is a 16-bit unsigned integer value.

The partition number and the modifier number of each logical partition are
8-bit unsigned integer values.

The first block and last block values for each logical partition are 16-bit
unsigned integer values.

SEE ALSO

12/88

mkpar(lM), parck(lM), :6.(7S) in the CLIX System Administrator's Reference
Manual.

1

FSTAB(4) FSTAB(4)

NAME
fstab - file system table

DESCRIPTION

FILES

The fJ.le /etc/fstab contains
mount(lM) and mountaU(lM).
ing order:

information about file systems for use by
Each entry should be specified in the follow-

Order Entry
1st block special flle name of file system or advertised

remote resource
2nd mount-point directory
3rd -r if to be mounted read-only; -d [r] if remote

4th (optional) fJ.le system type string

5th (optional) file system type dependent local file system:
backup frequency used by backup(l)

Network File System (NFS):
string of NFS mount options separated by
commas

Remote File System:
ignored

White space separates columns. Lines beginning with "#,, are comments.
Empty lines are ignored.

The following is an example of the file system table:

/dev/dsk/s0u0p7.3 /usr S51K 3
/dev/dsk/s0u0p7.4 /usr/src -r
/dev/dsk/slu0p7.3 /usr2 5
adv_resource /mnt -d

/etc/fstab

SEE ALSO

12/88

mount(lM) in the CLIX System Administrator's Reference Manual.
mountall(lM), rmountall(lM) in the UNIX System V System Administrator's

Reference Manual.

1

GR.OUP(4) GR.OUP(4)

NAME
group - group file

DESCRIPTION
The file I etc/ group contains the following information for each group:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is on a
separate line. If the password field is null, no password is demanded.

Because of the encrypted passwords, the file can and does have general read
permission and can be used, for example, to map numerical group IDs to
names.

A group file can have a line beginning with a plus (+) which means to incor­
porate entries from the Yellow Pages (YP). There are two styles of "+"
entries. "+:" means to insert the entire contents of the YP group file at that
point. "+name" means to insert the entry (if any) for name from the YP at
that point. If a "+" entry has a non-null password or group member field,
the contents of that field will override what is contained in the YP. The
numerical group ID field cannot be overridden.

EXAMPLES

PILES

+myproject:::bill, steve
+:

If these entries appear at the end of a group file, the group "myproject" will
have members "bill" and "steve", and the password and group ID of the YP
entry for the group "myproject". All the groups listed in the YP will be
pulled in and placed after the entry for "myproject".

/etc/group
/etc/yp/group

SEE ALSO
passwd(4).

12/88

newgrp(l), passwd(l) in the UNIX System V User's Reference Manual.
crypt(3C) in the UNIX System V Programmer's Reference Manual.

1

HOSTS(4) HOSTS(4)

NAME
hosts - host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the net­
work.. For each host a single line should he present with the following
information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#,,
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file.

This file is updated periodically by namex(lM), or may be hand edited.

Network. addresses are specified in the conventional "." notation using the
lnet_addr :routine from the Internet address manipulation library, inet(3B).
Host rmme£ may contain any p:dntable cha.racteT other than a field delimiter,
newline~ 01: ::1n:nmen.t character,

/etc/host~

SEE Al.SO
gethostbyname(3B), ~--,~···-.~--~,,

thfCLIX

12/88 1

HOSTS.EQUIV(4) HOSTS.EQUIV(4)

NAME
hosts.equiv - host equivalency name database

DESCRIPTION

FILES

The hosts.equiv file contains a list of hosts. If a user on a remote host has an
entry in the local /etc/passwd file and the remote host name is in the
hosts.equiv file, the remote user gains access to the local host. The format of
the hosts.equiv file is one host name per line.

The hosts.equiv file is used by commands such as rlogin(l), rcmd(l), and
rcp(l).

The hosts.equiv file is not consulted if a user is trying to gain access as root.

/etc/hosts.equiv

SEE ALSO
rlogin(l).

07/89 1

JBCFG(4) JBCFG(4)

NAME
JBCFG - optical disk jukebox configuration file

DESCRIPTION

01/90

The JBCFG configuration file describes the configuration of the Jukebox Inter­
face Management System (JIMS). The file specifies the location of JIMS pro­
grams, the program startup options, the terminal device names for the robot­
ics, the generic Small Computer System Interface (SCSI) character device

names for the optical drives controlled by the jukeboxes, and logical names
for the jukeboxes and the optical drives.

When JIMS is initialized, the configuration file is read to obtain information
necessary for the JIMS subtasks to operate successfully. If JIMS cannot

understand the configuration file's contents, it will never be successfully ini­
tialized. A sample JIMS configuration is included with the optical disk pro­
duct.

JBCFG can be edited and changed any time, even when JIMS is running. Any

changes, however, will not take effect until JIMS is shut down and restarted.

The general format for JBCFG is as follows, where keyword-vakre may be a

literal or an aggregate consisting of {, one or more keyword - vakre, and an
ending}.

Keywords are separated by commas. The major sections of the configuration
are as follows:

JIMS == {
ke-yword-value ...

},

ROUTER= {
keyword-value ...

},

DATABASE== {
keyword-value ...

},

JUKEBOX= {
keyword-value ...

},

OPERATOR= {
keyword-value ...

},

ERRORLOG == {
keyword-value ...

One JUKEBOX entry is required for each jukebox that JIMS manages. Other
keywords are nested within this generalized framework, with secondary and

tertiary nesting of additional keywords as necessary. Keywords may be in
either upper or lowercase, whereas the information following the keyword is

1

JBCPG(4) JBCPG(4)

2

case sensitive. A description of the current valid keywords and their legiti­
mate values follows:

JIMS

ROUTER

The valid keyword for the JIMS entry is in the JIMS
configuration file as follows:

JIMS- {
checkpoint - ON

},

This specifies whether checkpointing is to be turned on or off.
Checkpointing consists of writing the time of the request
block's current state and the volume database at each change. It
is needed with the WARM start capability of JIMS.

The valid keyword for the ROUTER entry is in the JIMS
configuration file as follows:

ROUTER- {
filename - RTR.chkpt

},

Filename is the path name of the file that contains the request
checkpoint file. If no directory is specified, it will default to
/usr/ip32/od.

DATABASE The three valid keywords for the DATABASE entry are in the
JIMS configuration file as follows:

DATABASE- {
path - . ./bin,
module - VRSmain,
filename - vdb

},

Path describes the directory where the module is located.
Module is the name of the executable file that maintains the
volume resolution subsystem database. Filename is the path
name of the file that contains the VRS database. If filename is
only a base name, the database is located in the user's current
working directory. Path and module are required for JIMS to
operate. Filename defaults to vdb if filename is not supplied.

JUKEBOX Four valid keywords for the JUKEBOX entry are in the JIMS
configuration file as follows:

JUICEBOX- {
path - . ./bin,
module - JBCmain,
name - JBOl,
JBC - { """'

JBD- {I
path - . ./bin,
module - JBDmain

01/90

JBCFG(4)

.~.

01/90

JBCFG(4)

},
JBI - {

path - . ./bin,
module - JBimain,
device - I dev /tty02

},
filename - JBCOl.ckpt,
series - 1800,
exchange - NOEXCHANOE,
mount - VERIFY,
unmount - VERIFY,
export - VERIFY,
drive - {

device - /dev/gs/s3u0,
name - 00001,
status - ONLINE

},
drive - {

device - /dev/gs/s3ul,
name - 00002,
status - ONLINE

}
}

},

Path and module are the same as the path and module
described for database, except that in this context they refer to
the Jukebox Control (JBC) module. Name is the ASCII name of
the jukebox that JIMS uses internally. Currently, JIMS can sup­
port 10 jukeboxes.

The JBD entry has two valid keywords: path and module. The
JBI entry has three valid keywords: path, module, and dev­
ice. The device is the name of the tty port that the jukebox
robotics is connected to.

The DRIVE entry has three valid keywords: device, name, and
status. Device is the name of the generic SCSI character device
for the optical drives that the jukebox controls. Name is the
ASCII name of the drive that JIMS uses internally. Status is the
default status of the drive when JIMS is started. Valid values
are ONLINE and OFFLINE.

Other valid keywords in the JUKEBOX JBC entry are as fallows:

filename

series

exchange

The name of the checkpoint file used in warm
starts.

1800.

NOEXCHANGE is the only valid value keyword
at this time.

3

JBCFG(4) JBCFG(4)

FILES

mount VERIFY or NOVERIFY is for the optical disk
labels when platter mounting is requested.

unmount VERIFY or NOVERIFY is for the optical disk
labels when platter unmounting is requested.

export VERIFY or NOVERIFY is for the optical disk
labels when platter export is requested.

OPERATOR Three valid keywords for the OPERATOR entry are in the JIMS
configuration file as follows:

ERRORLOG

OPERATOR- {

},

path - . ./bin,
module - OPMmain,
filename - OPMlogfile

Path and module were described previously. Filename is the
name of the output file containing operator messages.

Two valid keywords for the ERRORLOG entry are in the JIMS
configuration file as follows:

ERRORLOO- {
filename - jimserrorlog,

}
debug - RTR;JBC

Filename is the name of the output file containing error mes­
sages. Debug defines the modules that will print debug output.
The value of debug can be all if all modules are to print debug
messages or the first three letters of a module name as follows:

RTR RTRmain
VRS VRSmain
OPM OPMmain
JBC JBCmain
JBI JBimain
JBD JBDmain

If debug messages are needed from more than one module, list
the module prefixes separated by semicolons. If debug has no
value, no debug messages will be written to the error log.

/dev/gs/•
/usr/ip32/od/JBCFO

generic SCSI device files
juke box configuration file

SEE ALSO
STANDCFG(4).

4 01/90

KBMAP(4) KBMAP(4)

NAME
kbmap - keyboard map file

DESCRIPTION
The layout of the keyboard can be changed to match the standard keyboard

of a particular region by using kbmap(l). The file read by kbmap(l) con­

tains the information needed to define the eight possible values for each key

that can be redefined. The keys that can be redefined are the letter, number,

and punctuation keys on the main section of the keyboard. The keypad and

function keys cannot be redefined.

The file is arranged in eight groups of 48 hexadecimal numbers, one group

for every valid key and qualifier combination. The numbers represent the

ASCII codes generated for each key. A -1 is used if a code will not be gen­

erated. White space and any line starting with #are ignored.

Each group of hexadecimal numbers must be in the same sequence as the

keys on the keyboard. This sequence begins at the top left and contiunes to

the lower right by rows. On a North American keyboard, for example, the

numbers begin with~, continue right to=, move down to Q on the next row,

and eventually end with/. At the end of this sequence, 48 keys have been

specified.

The code specifications must be grouped in the following order:

unshifted keys
unshif ted control keys
unshifted alternate keys
unshifted caps lock keys
shifted keys
shifted control keys
shifted alternate keys
shifted caps lock keys

The groups do not need to be separated by delimiters.

EXAMPLES

01/90

Denmark keymap

Unshifted
Ox7e Ox31 Ox32 Ox33 Ox34 Ox35 Ox36 Ox37 Ox38 Ox39 Ox30 Ox2b Ox27

Ox71 Ox77 Ox65 Ox72 Ox? 4 Ox79 Ox75 Ox69 Ox6f Ox70 Oxe5 Ox22

Ox61 Ox73 Ox64 Ox66 Ox67 Ox68 Ox6a Ox6b Ox6c Oxe6 Oxf8 Ox27

Ox3c Ox7a Ox78 Ox63 Ox76 Ox62 Ox6e Ox6d Ox2c Ox2e Ox2d

Unshifted, Ctrl
Ox7e Ox31 OxOO Ox33 Ox34 Ox35 Oxle Ox37 Ox38 Ox39 Ox30 Ox2b Ox27

Oxll Oxl 7 Ox05 Ox12 Ox14 Ox19 Oxl5 Ox09 OxOf OxlO Oxld Ox22

OxOl Ox13 Ox04 Ox06 Ox07 Ox08 OxOa OxOb OxOc OxOO Ox23 Ox27

Ox3c Oxla Ox18 Ox03 Ox16 Ox02 OxOe OxOd Ox2c Ox2e Oxlf

1

KBMAP(4) KBMAP(4)

PILES

U nshifted, Alt Mode
Oxel Oxe2 Oxe4 Oxe6 Oxe8 Oxea Oxec Oxee OxfO Oxf2 Oxf4 Oxlc OxcO
Oxc7 Oxc9 Oxcb Oxcc Oxce OxdO Oxd2 Oxd4 Oxd6 Oxd8 Ox5d Oxcl
Ox9d Ox9f Oxal Oxa3 Oxa5 Oxa7 Oxa8 Oxba Oxbb OxOO Ox23 OxcO
Ox89 Ox8b Ox8c Ox8e Ox90 Ox92 Ox93 Ox95 Ox97 Ox99 Oxfb
U nshifted, Caps Lock
Ox7e Ox31 Ox32 Ox33 Ox34 Ox35 Ox36 Ox37 Ox38 Ox39 Ox30 Ox2b Ox27
Ox51 Ox57 Ox45 Ox52 Ox54 Ox59 Ox55 Ox49 Ox4f Ox50 Oxc5 Ox22
Ox41 Ox53 Ox44 Ox46 Ox47 Ox48 Ox4a Ox4b Ox4c Oxc6 Oxd8 Ox27
Ox3c Ox5a Ox58 Ox43 Ox56 Ox42 Ox4e Ox4d Ox2c Ox2e Ox2d
#Shifted
OxbO Ox21 Ox22 Oxa7 Ox24 Ox25 Ox26 Ox2f Ox28 Ox29 Ox3d Ox3f Ox60
Ox51 Ox57 Ox45 Ox52 Ox54 Ox59 Ox55 Ox49 Ox4f Ox50 Oxc5 Ox5e
Ox41 Ox53 Ox44 Ox46 Ox47 Ox48 Ox4a Ox4b Ox4c Oxc6 Oxd8 Ox2a
Ox3e Ox5a Ox58 Ox43 Ox56 Ox42 Ox4e Ox4d Ox3b Ox3a Ox5f
Shifted, Ctrl
OxOO Ox21 Ox22 OxOO Ox24 Ox25 Ox26 Ox2f Ox28 Ox29 Ox3d Ox3f Ox60
Oxll Oxl 7 Ox05 Ox12 Ox14 Ox19 Ox15 Ox09 OxOf OxlO Oxlb Oxle
OxOl Ox13 Ox04 Ox06 Ox07 Ox08 OxOa OxOb OxOc OxOO Oxlc Ox2a
Ox3e Oxla Oxa8 Ox03 Ox16 Ox02 OxOe OxOd Ox3b Ox3a Oxlf
Shifted, Alt Mode
OxOO Oxe3 Oxcl Ox40 Oxe9 Oxeb Oxef Ox9b Oxf3 Oxfa Ox06 Ox9c OxeO
Oxc8 Oxca Oxcb Oxcd Oxcf Oxdl Oxd3 Oxd5 Oxd7 Oxd8 Ox5b Oxed
Ox9e OxaO Oxa2 Oxa4 Oxa6 Oxa7 Oxa9 Oxba Oxbc OxOO Ox5c Oxfl
Ox8a Ox8b Ox8c Ox8f Ox91 Ox92 Ox94 Ox96 Oxbe Oxbf Ox02
Shifted, Caps Lock
OxbO Ox21 Ox22 Ox40 Ox24 Ox25 Ox26 Ox2f Ox28 Ox29 Ox3d Ox3f Ox60
Ox51 Ox57 Ox45 Ox52 Ox54 Ox59 Ox55 Ox49 Ox4f Ox50 Oxc5 Ox5e
Ox41 Ox53 Ox44 Ox46 Ox47 Ox48 Ox4a Ox4b Ox4c Oxc6 Ox5c Ox2a
Ox3e Ox5a Ox58 Ox43 Ox56 Ox42 Ox4e Ox4d Ox3b Ox3a Ox5f

/usr/lib/k bmap/*

SEE ALSO

fi.les for each keyboard type

kbmap(l).

2 01/90

LIMITS(4) LIMITS(4)

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION

12188

The header file <limits.h> is a list of magnitude limitations imposed by a
specific implementation of the operating system. All values are specified in
decimal.

#define ARG_MAX 5120 I• max length or arguments to exec •/

#define CHAR_BIT 8 I• # or bits in a "char"•/

#define CHAR_MAX 255 I• max integer value of a "char" •/

#define CHAR_MIN 0 I• min integer value or a "char"•/

#define CHILD _MAX 25 I• max # or processes per user ID •/

#define CLK_TCK 100 I• # or clock ticks per second •/

#define DBL_DIG 15 I• digits or precision or a "double" •/

#define DBL_MAX 1. 797693134862314 70e+308 I• max decimal value of a "double"•/

#define DBL_MIN 4. 94065645841246544e-324 I• min decimal value or a "double"•/

#define FCHR._MAX 1048576 I• max size or a file in bytes •/

#define FLT_DIG 7 I• digits or precision or a "float" •/

#define FLT_MAX 3.40282346638528860e+38 I• max decimal value of a "float" •/

#define FLT_MIN 1.40129846432481707e-45 I• min decimal value or a "float" •/

#define HUGE_ VAL 3.40282346638528860e+38 I• error value returned by Math lib •/

#define INT_MAX 2147483647 I• max decimal value or an "int"•/

#define INT_MIN -2147483648 I• min decimal value of an "int"•/

#define LINK_MAX 1000 I• max # or links to a single file •/

#define LONG_MAX 2147483647 I• max decimal value of a "long" •/

#define LONG_MIN -2147483648 I• min decimal value or a "long" •/

#define NAME_MAX 14 I• max # or characters in a file name •/

#define OPEN_MAX 20 I• max # or files a process can have open •/

#define PASS_MAX 8 I• max # of characters in a password •/

#define PATH_MAX 256 I• max # of characters in a path name •/

#define PIO _MAX 30000 I• max value for a process ID•/

#define PIPE_BUF 5120 I• max # bytes atomic in write to a pipe •/

#define PIPE_MAX 5120 I• max# bytes written to pipe in a write•/

#define SHR.T_MAX 32767 I• max decimal value or a "short" •/

#define SHRT_MIN -32768 I• min decimal value or a "short" •/

#define STD_BLK 1024 I• # bytes in a physical 1/0 block •/

#define SYS_NMLN 9 I• # or chars in uname-returned strings •/

#define UID _MAX 60000 I• max value for a user or group ID•/

#define USI_MAX 4294967295 I• max decimal value or an "unsigned"•/

#define WORD _BIT 32 I•# or bits in a "word" or "int"•/

1

MASTER.(4) MASTER.(4)

NAME
master - master configuration database

DESCRIPTION

01/90

The master configuration database is a collection of files that contain
configuration information for devices and modules included in the system.
This collection of files is contained in several directories. The default direc­
tories are /usr/src/uts/clipper/master.d/machine, where machine is the
name of the machine for which the files apply. A file is named with the
module name to which it applies.

The files are used by two programs. Consequently, there are two sets of
directives contained in the files. One program is mkconfig(lM), which uses
the files to generate a configuration file. The other is sysconfig(lM), which
obtains configuration data used to allow the configuration and values in the
files to be changed.

The set of directives understood by mkconfig(lM) are as follows:

$[[-]namel [&& [-]name2]]:
$[[-]name] [II [-]name2]]:

Name a section of a file. The named section begins on the line after
the directive and ends either at the end of the current file or before
another named section or macro begins. The null section name $:
may also be used to end a named section. Named sections may not
be nested. A named section with its name prepended with the minus
sign (-) is output only if file name is not in the argument list. A
named section with a logical OR (11) or AND (&&) of another named
section is output only if the logical condition results in a TRUE value.
A section with the special name _end is output only after the last of
any generated configuration tables.

$name ([argl, arg2, ... argn]):
Define a simple macro with optional arguments. A macro definition
is ended as a named section is. A macro is much like a named section
except that it is output only if it is invoked by a MACRO directive or
appears in the model specifier of the VECTOR. directive. Any
occurrence of the argument strings in the body of the macro are
replaced by the argument strings of the invoking instance of the
macro. Macro bodies may not contain macro references or new
macro definitions.

$MACRO macroname(argl, arg2, ... argn)
Invoke a defined macro. The argument count must match the argu­
ment count of the defined macro. The body of the macro is output
with invoking arguments substituted for defined arguments.

$name section
Write section to the output file if the file name is present in the argu­
ment list and it contains a section segment.

1

MASTER(4) MASTER(4)

2

$*section
If any files in the argument list contain a named section, these files
are copied to the output file.

$DEVICE [b I c] major=n I n-m prefix==string
$DEVICE [b I c] major-n I n-m identifier-name •••

Add an entry to a device table. Cmajor specifies the cdevsw table
and bmajor specifies the bdevsw table. The major number can be a
single number or a span of major numbers, such as 0-7. Prefix takes
a string as an argument and is used to form the standard names for
the switch table entries. For nonstandard names, the device directive
can explicitly specify each entry in the cdevsw or bdevsw table.
After the major number is specified, the remainder of the line may
have identifiers followed by - and the nonstandard name. The valid
cmajor identifiers are open, close, read, write, ioctl, tty, and
stream. The valid bmajor identifiers are open, close, strategy,
and print. More than one DEVICE line may exist for the same
major slot as long as specific table entries are not redefined.

$TTY _DEVICE cmajor-n I n-m prefix-string
$TTY _DEVICE cmajor-n I n-m identifier-name ...

Identical to the DEVICE directive, but allows automatic generation of
the tty field for terminal devices.

$XIO _DEVICE xmajor-n I n-m prefix-string
$XIO_DEVICE xmajor-nln-m identifier-name •••

Identical to the DEVICE directive, but adds the entry to the xdevsw
table, and the valid xmajor identifiers are init, start, finish, exit,
exec, and fork.

$STREAM_DEVICE cmajor-n I n-m prefix-string
Identical to the DEVICE directive, but allows automatic generation of
the stream field for stream devices.

$STREAM_MODULE name-strlngl module-strlng2
Identical to the $DEVICE directive, but adds entries to the fmodsw []
array.

$FILESYSTEM prefix=-sl flags-s2 pipe-s3 name=s4 notify==s5
Add an entry to the file system switch table fstypsw [] and a
corresponding entry to the fsinfo [] table. The arguments are taken
as strings and are inserted in the tables as is. The prefix directive is
used to form the prefixes to the standard entry points in the
fstypsw [] table.

$VECTOR model-macroCargJ, ... , argn) service-name vector-g,Z ssw-vaZ
Specify the interrupt service linkages for a given vector. model
names a macro and its optional arguments to be used in generating
the assembly language stub that calls the kernel interrupt service
routine. Service specifies the name of the address that will be writ­
ten into the actual interrupt vector. The service routine name is typ­
ically generated by the macro specified by the model directive.

01/90

-

MASIE:R(4) MASTE:R(4)

01/90

Vector may be specified as group,level or as a single address specify­

ing the physical address of the interrupt vector. Vector addresses are

understood to be hexadecimal when preceeded with a leading 'Ox'.

Ssw is the value that specifies the new value of the System Status

Word (SSW) for the specified vector. Val must be a decimal or hexa­

decimal constant or the name of a constant defined earlier as by the

C preprocessor.

$FAMILY code-family-code bname-board-name probe-routine

Specify the startup routine for a given Shared Resource (SR) Bus

board. Code provides the family code number of the board and

must be given in hexadecimal format. Bname specifies the name of

the board. The name may be more than one word and is delimited

by the probe keyword. Probe is the routine that will be called to

initialize the board.

$LOAD name-sJ [init-s2] objects-s3[(s4[,s5])] ...
Identify the code that will be loaded in memory upon demand.

Name takes a string as an argument and is used to name the section

of memory that will be reserved. Init takes as an argument the

name of the initialization routine that will be executed immediately

after the code is loaded into memory. Objects specifies the object

files that will be loaded. An entire library may be specified by the

name of the library. If only certain objects in a library are needed,

they are specified by a comma-separated list enclosed in parentheses

following the library name. The list may not contain white space.

There must be a separate objects identifier for each library refer­

enced. Objects identifiers may be separated by either spaces or tabs.

The set of directives understood by sysconfig(lM) are as follows:

s$CONFI6 [category $IN I $OUT I $NOLIST] [$ADVANCED]

s$CONFI6 [$NOLIST] [$ADVANCED]
Identifies the file as a configuration file. It must be the first line in

the file. If it is not found, the file is ignored.

If category is specified, all parameters in the file are grouped together

and given a name that is the same as the file name. This group is

then placed in the menu category category. If no category is

specified, the categories in the •PAR directives are used. If category

contains any spaces, it must be enclosed within single or double quo­

tation marks.

$IN specifies that the default is to include the file when a system is

made.

$OUT specifies that the default is not to include the file when a sys­

tem is made.

$NOLIST specifies that the file is never to be included when a system

is made.

3

MASTER(4) MASTER(4)

If the line -$CONFIG or the Jine -tCONFIG $ADVANCED is used, the
file will always be included.

$ADVANCED specifies that the file and any parameters in it have an
advanced nature.

Up to three lines of descriptive help, each 80 characters long, may be
included. The help lines must immediately follow the *CONFIG
directive and have an asterisk (a) as the first character. To mark the
end of the *$CONFIG help lines, the line

-$$
must immediately follow them.

*SP AR [category] default [$ADVANCED]

EXAMPLES

The •PAR directive identifies a "#define" parameter as being tunable.
It must be immediately followed by up to three descriptive help
lines, and then by the "#define" statement.

Category specifies the catego1y that the parameter should be placed
under. This category will be the default for all following •PAR
directives until another category is specified. If a category was
specified in the -CONFIG directive, the •PAR category option is
ignored. If neither the -CONFIG directive nor any •PAR directives
specify a category, category defaults to the name of the file. If
category contains any spaces, it must be enclosed within single or
double quotation marks.

Default is the default value of the parameter. If it contains any
spaces, it must be enclosed within single or double quotatation
marks.

$ADVANCED specifies that the parameter has an advanced nature. If
the ADVANCED option is included in the -CONFIG directive, all
parameters in the file automatically default to advanced.

This is a sample file showing the use cf some of the directives for both
mkconfig(lM) and sysconfig(lM).

*SCONFIG "Inter-process Communication" $IN $ADVANCED
*The XYZ terminal driver. The /dev entries associated
*With this driver are /dev/ttxyz??.
*$$

$includes:
#include "sys/xio/xyz.h"

$defines:
*SPAR 20
*The total number of xyz terminals available on the system.
#define NXYZ 20

$code:
int nxyz = NXYZ;

4 01/90

MASTER.(4) MASTER.(4)

FILES

struct tty xyz_tty [NXYZ];
struct xyzproc xyzproc [NXYZ];

$TTY_DEVICE cmajor=25 prefix=xyz

$XIO_DEVICE xmajor=2 start=xyz_start finish=xyz_finish

$FAMILY code=Ox2a bname=XYZ Communication Board probe=xyz_probe

$LOAD name=xyz init=xyz_init objects= . .llib.io(xyz.o)

/usr/src/uts/clipper/master.d/machlne/* configurable kernel files

SEE ALSO

01/90

mkconfig(lM), sysconfig(lM) in the CLIX System Administrator's Reference
Manual.

5

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>

DESC:RIPTION
The fl.le /etc/mnttab contains an entry for each device mounted by
mount(lM). Each entry is a structure in <mnttab.h> defined as follows:

struct mntta b {
char mt_dev[32];

mt_filsys[32];
mt_ro_ftg;
mt_time;

};

char
short
time_t
char
char

mt_f styp[16];
mt_mntopts[64];

Each entry is 150 bytes in length. The members of the structure are as fol­
lows:

mt_dev

mt_filsys

mt_ro_flg

mt_time

mt_fstyp

The null-padded name of the place where the special file is
mounted.

The null-padded root name of the mounted special file.

The mounted special file's read/write permissions.

The date on which the special file was mounted.

The null-padded name of file system type.

mt_mntopts The null-padded string of mount options. The mount
options are only used in the case of a Network File System.

SEE ALSO

12/88

mount(lM) in the CLIX System Administrator's Reference Manual.
setmnt(lM) in the UNIX System V System Administrator's Reference Manual.

1

NETWOK.X:S(4) NETWO:R.X:S(4)

NAME
networks - network name database

DESCK.IPTION

FILES

The file /etc/networks contains information regarding the known networks
which comprise the Defense Advanced Research Project Agency (DARPA)
Internet. For each network a single line should be present with the follow­
ing information:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#"
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file. It will be necessary to
make local changes to this file to bring it up to date regarding unofficial
aliases and/or unknown networks for a specific site.

Network number may be specified in the conventional"," notation using the
lnet_network routine from the Internet address manipulation library,
inet(3B). Network names may contain any printable character other than a
field delimiter, newline, or comment character.

/etc/networks

SEE ALSO
getnetent(3B), inet(3B).

12/88 1

.~.

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCR.IPTION
The file /etc/passwd contains for each user the following information:

name

password

numerical user ID

numerical group ID

user's real name

initial working directory

shell

User's login name-contains no uppercase
characters and must not be greater than eight
characters long.

Encrypted password.

This is the user's ID in the system and it must
be unique.

This is the number of the group that the user
belongs to.

In some versions of UNIX, this field also con­
tains the user's office, extension, home phone,
and so on. For historical reasons this field is
called the GCOS field.

The directory that the user is positioned in
when they log in-this is known as the home
directory.

Program to use as shell when the user logs in.

The user's real name field may contain "&", meaning insert the login name.
The password file is an ASCII file. Each field within each user's entry is
separated from the next by a colon. Each entry is on a separate line. If the
password field is null, no password is demanded; if the shell field is null,
/bin/sh is used.

The passwd file can also have line beginning with a plus(+), which means to
incorporate entries from the Yellow Pages (YP). There are three styles of
"+" entries. "+" means to insert the entire contents of the YP password file
at that point; "+name" means to insert the entry (if any) for name from the
YP at that point; "+@name" means to insert the entries for all members of
the network group name at that point. If a "+" entry has a non-null pass­
word, directory, GCOS, or shell field, it overrides what is contained in the YP.
The numerical user ID and group ID fields cannot be overridden.

EXAMPLES

12/88

Here is a sample /etc/passwd file:

root:q.mJzTnu8icF.:0:10:Administrator:/:/bin/ksh
tut:6k/7KCFRPNVXg:508:10:Bill Tuthill:/usr2/tut:/bin/ksh
+john:
+@documentation:no-login:
+:::Guest

1

PASSWD(4) PASSWD(4)

FILES

In this example, there are specific entries for users "root" and "tut", in case
the YP are out of order. The user "john" will have his password entry in the
YP incorporated without change; anyone in the netgroup documentation will
have their password field disabled, and anyone else will be able to log in
with their usual password, shell, and home directory, but with a GCOS field
of "Guest",

Because of the encrypted passwords, the file has general read permission and
can be used, for example, to map numerical user IDs to names.

Appropriate precautions must be taken to lock the /etc/passwd file against
simultaneous changes if it is to be edited with a text editor.

I etc/ passwd

SEE ALSO

2

getpwent(3C), group(4).
login(l), passwd(l) in the UNIX System V User's Reference Manual.
crypt(3C) in the UNIX System V Programmer's Reference Manual.

12/88

PIUNTCAP(4) PJUNTCAP(4)

NAME
printcap - BSD printer capability database

DESC:R.IPTION
prlntcap is a printer capability database used to describe line printers. The
spooling system accesses the prlntcap file every time it is used, allowing
dynamic addition and deletion of printers. Each entry in the database
describes one printer.

The environment variable PRINTER may be used to specify a printer. Each
spooling utility supports an option, -P printer, to allow explicit naming of a
destination printer.

Refer to the "BSD LP Spooler Tutorial" in the CLIX System Guide for a com­
plete discussion on how to set up the database for a given printer.

Capa bllities
Name Type Def a ult Description

12/88

af str
br num
cf str
df str
ff str
fo bool
gf str
bl bool
ic
if
lf
lo
lp
mx
nd
nf
of
pc
pl
pw
px
PY
rf
rg
rm
rp
rs
rw
sb
SC

sd
sf

bool
str
str
str
str
num
str
str
str
num
num
num
num
num
str
str
str
str
bool
bool
bool
bool
str
bool

NULL name of accounting file
none if lp is a tty, set the baud rate (ioctl(2) call)
NULL cif P.lot data filter
NULL Tex™ data filter (DVI format)
\f string to send for a form feed
false print a form feed when device is opened
NULL graph data filter (plot(3X) format)
false print the burst header page last
false supports (nonstandard) ioctl(2) to indent printout
NULL name of text filter which does accounting
/dev/console error logging file name
lock name of lock file
/dev/lp device name to open for output
1000 max file size (in BUFSIZ blocks), zero=unlimited
NULL next directory for list of queues (unimplemented)
NULL ditrofl data filter (device-independent troff)
NULL name of output filtering program
200 price per foot or page in hundredths of cents
66 page length (in lines)
132 page width (in characters)
0 page width in pixels (horizontal)
0 page length in pixels (vertical)
NULL filter for printing FORTRAN-style text files
NULL restricted group, only members allowed access
NULL machine name for remote printer
lp remote printer name argument
false restrict remote users to those with local accounts
false open the printer device for reading and writing
false short banner (one line only)
false suppress multiple copies
/usr/spool/lpd spool directory
false suppress form feeds

1

PJUNTCAP(4) PJUNTCAP(4)

2

sh bool false suppress printing of burst page header
st str status status file name
tf str NULL troff data filter (cat phototypesetter)
tr str NULL trailer string to print when queue empties
vf str NULL raster image filter
Cc num 0 clear control modes (termio(1S))
Cs num 0 set control modes (termlo(1S))
le num 0 clear input modes (termio(1S))
Is num 0 set input modes (term.io(7S))
Le num 0 clear local modes (termio(1S))
Ls num 0 set local modes (term.lo(7S))
Oc num 0 clear output modes (termio(1S))
Os num 0 set output modes (termio(1S))
If the local line printer driver supports indentation, the daemon must under­
stand how to invoke it.

The following is a sample entry from a prlntcap file.
lp I local line printer:

:lp=/ dev /lp:sd-/usr/ spool/lpd:lf-/usr/adm/lpd-errs:
Entries may continue on to multiple lines by giving a"\" as the last charac­
ter of a line, and empty fields may be included for readability (here between
the last field on a line and the first field on the next). Comments may be
included on lines beginning with"#".

Filters
The lpd(lM) daemon creates a pipeline of filters to process files for various
printer types. The filters selected depend on the flags passed to Zpr(l). The
pipeline setup is as follows:

-p pr I if regular text+ pr(l)
none if regular text
-c cf cif plot
-d df DVI (TeX)
-g gf plot(3)
-n nf ditro/J
-f rf FORTRAN
-t tf troff
-v vf raster image

The if filter is invoked with the following arguments:
if [-c] -wwidth -!length -iindent -n login -h host acct-file

-c is passed only if the -1 flag (pass control characters literally) is specified
to lpr. Width and length specify the page width and length (from pw and
pl respectively) in characters. The -n and -h parameters specify the login
name and host name of the owner of the job, respectively. Acct-file is passed
from the af printcap entry.

12/88

PJUNTCAP(4) PJUNTCAP(4)

If no if is specified, of is used instead. However, of is opened only once,
while if is opened for every job. Thus, if is better suited for performing
accounting. The of is only given the width and length :ft.ags.

All other filters are called as follows:

fi1:ter -I.width -ylength -n login -h host acct-file

Width and length are represented in pixels, specified by the px and py
entries, respectively.

All filters take std.in as the file, stdout as the printer, will log to stderr,
and must not ignore SIGINT.

SEE ALSO

12/88

lpr(l), lpq(l), lprm(l).
lpc(lM), lpd(lM), pac(lM) in the CLIX System Administrator's Reference
Manual.
"BSD LP Spooler Tutorial" in the CLIX System Guide.

3

PROTOCOLS(4) PROTOCOLS(4)

NAME
protocols - protocol name database

DESCR.IPTION

FILES

The file I etc/ protocols contains information regarding the known protocols
used in the Defense Advanced Research Project Agency (DARPA) Internet.
For each protocol, a single line should be present with the following infor­
mation:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A"#"
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines that search the file.

Protocol names may contain any printable character other than a field del­
imiter, newline, or comment character.

/etc/protocols

SEE ALSO
getprotoent(3B).

12/88 1

.RCSPILE(4) .RCSPILE(4)

MAME
rcsfile - format of RCS file

DESC.RIPTIOH

12188

A Revision Control System (RCS) file is an ASCII file. Its contents are
described by the grammar below. The text is free format. (Spaces, tabs, and
newlines have no significance except in strings.) Strings are enclosed by
"@". Ha string contains a"@", it must be doubled.

The meta syntax uses the following conventions: "I" (bar) separates alterna­
tives; " { " and " } " enclose optional phrases; " { " and " } *" enclose phrases
that may be repeated zero or more times;" {"and"}+" enclose phrases that
must appear at least once and may be repeated; and "<" and ">" enclose
nonterminals.

<rcstext>

<admin>

<delta>

<desc>

<delta text>

<num>

<digit>

<id>

<letter>

<idchar>

<special>

:::m

::-

::==

::-

::=-

::=-

::-

::-=

::-

::=-

::-

<admin> {<delta>}• <desc> { <deltatext> }•

head { <num>};
branch { <num> };
access {<id>}•;
symbols {<id> : <num> }•;
locks {<id> : <num> }•;
comment {<string>} ;

<num>
date
author
state
branches
nert

desc

<num>
log
tert

{<digit>{.}}+

0111 ... 19

<num>;
<id>;
{<id>};
{<num>}•;
{<num> };

<string>

<string>
<string>

<letter> { < idchar > } *
AIBl ... IZlalbl ... lz

Any printing ASCII character except space,
tab, carriage return, new line, and <special>.

;1:1,1@

<string> ::- @{any ASCII character, with"@" doubled}•@

Identifiers are case-sensitive. Keywords are in lowercase only. The sets of
keywords and identifiers may overlap.

The <delta> nodes form a tree. All nodes whose numbers consist of a sin­
gle pair (such as 2.3, 2.1, 1.3, etc.) are on the trunk and are linked through

1

RCSFILE(4) RCSFILE(4)

2

the nert field in the order of decreasing numbers. The head field in the
<admin> node points to the head of that sequence (contains the highest
pair). The branch node in the admin node indicates the default branch (or
revision) for most RCS operations. If empty, the default branch is the
highest branch on the trunk.

All <delta> nodes whose numbers consist of 2n fields (n~2) (such as
3.1.1.1, 2.1.2.2, etc.) are linked as follows. All nodes whose first (2n)-1
number fields are identical are linked through the nert field in the order of
increasing numbers. For each such sequence, the <delta> node whose
number is identical to the first 2(n-1) number fields of the deltas on that
sequence is called the branchpoint. The branches field of a node contains a
list of the numbers of the first nodes of all sequences for which it is a bran­
chpoint. This list is ordered in increasing numbers.

12/88

R.CSPILE(4) R.CSPILE(4)

Example:

I \
I \

I \
/1.2.1.3\

I
I

I \
I \

I \
/1.2.1.1\

I \

Head
I

v

I \ 2.1
I \

/1.3.1.1\

v

I \ 1.3 I

---------\ I
\ I
\ I

v

I \
I \

I \
/1.2.2.2\

I

I \

I \
I \

I \
/1.2.2.1.1.1\

I \ I

I \-----------
/1. 2. 2 .1 \

I \ 1.2 I I

----------------------\ /---------
\ I
\ I

v

\ 1.1 I
\ I
\ I
\ I

Fig. 1: A revision tree

SEE ALSO

12188

ci(l), co(l), ident(l), rcs(l), rcsclean(l), rcsdi1f(l), rcsmerge(l), rlog(l).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision

3

RCSFILE(4) RCSFILE(4)

Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

IDENTIFICATION

4

Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright o 1982 by Walter F. Tichy.

12/88

IELOC(4) IELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include < reloc.h >

DESCIIPTION

12/88

Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will have the following
format.

struct reloc {

};

#define
#define
#define
#define
#define
#define
#define

long r_ vaddr ; I• (virtual) address of reference •/
long r_symndx; I• index into symbol table•/
ushort r_type; I• relocation type•/

R._ABS 0
R._R.ELBYTE 017
R._R.EL WORD 020
R._R.ELLONO 021
R._PCR.BYTE 022
R._PCR.WOR.D 023
R._PCR.LONO 024

As the link editor reads each input section and performs relocation, the relo­
cation entries are read. They direct the treatment of references found within
the input section.

R._ABS The reference is absolute and no relocation is necessary. The
entry will be ignored.

R._R.ELBYTE

R._R.EL WORD

R._RELLONG

R._PCRBYTE

R._PCR.WORD

R._PCR.LONO

A direct 8-bit reference to the symbol's virtual address.

A direct 16-bit reference to the symbol's virtual address.

A direct 32-bit reference to the symbol's virtual address.

A "PC-relative" 8-bit reference to the symbol's virtual
address. The actual address is calculated by adding a con-
stant to the PC value.

A "PC-relative" 16-bit reference to the symbol's virtual
address. The actual address is calculated by adding a con­
stant to the PC value.

A "PC-relative" 32-bit reference to the symbol's virtual
address. The actual address is calculated by adding a con-
stant to the PC value.

A relocation entry with a symbol index of -1 indicates that the relative
difference between the current segment's start address and the program's
load address is added to the relocation address.

1

RELOC(4) R.ELOC(4)

More relocation types exist for other processors. Equivalent relocation types
on different processors have equal values and meanings. New relocation
types will be defined (with new values) as they are needed.

Relocation entries are generated automatically by the assembler and used
automatically by the link editor. Link editor options exist for both preserv­
ing and removing the relocation entries from object files.

SEE ALSO
as(l), ld(l), a.out(4).
syms(4) in the UNIX Syst.em V Programmer's Reference Manual.

2 12/88

.R.HOSTS(4) .R.HOSTS(4)

NAME
.rhosts - remote user access list

DESCRIPTION

FILES

A .rhosts file in a user's home directory allows users on remote hosts to gain
access as the local user. The format for the file is as follows:

host-name [user-name]

Items are separated by any number of blanks and/or tab characters. If a
user name is not specified, all users on the specified host may gain access. If
a user name is specified then only that user on the given host may gain
access.

Either the super-user or the local user must own the .rhosts file.

-1.rhosts

SEE ALSO
rlogin(l).

07/89 1

JtMTAB(4) :R.MTAB(4)

NAME
rmtab - remotely mounted NFS file system table

DESCRIPTION

PILES

The file letc/rmtab contains a record of all clients who have performed
remote mounts of Network File Systems (NFS) from the server machine.
Whenever a remote mount(lM) is done, an entry is made in the rmtab file of
the machine serving that file system. The table is a series of lines with the
following form:

host-name:dlrectory

This table is used only to preserve information between crashes, and is read
only by mountd(lM) when it starts up. mountd(lM) keeps an in-core table,
which it uses to handle requests from programs like showmount(l) and
shutdown(lM).

/etc/rmtab

SEE ALSO

BUGS

12188

showmount(lM), mountd(lM), mount(lM) in the CLIX System Admin­
istrator's Reference Manual.
shutdown(lM) in the UNIX System V System Administrator's Reference
Manual.

Although the rmtab table is close to the truth, it is not always 100% accu­
rate. It is removed each time the server is rebooted to clean up lingering
mount entries.

When a remotely mounted file system is unmounted using umount(lM), the
entry is removed.

1

RPC(4) :R.PC(4)

NAME
rpc - RPC program number database

DESCRIPTION

FILES

The Remote Procedure Call (RPC) file contains user readable names that can
be used in place of RPC program numbers. Each line has the following infor­
mation:

name of server for the RPC program
RPC program number
aliases

Items are separated by any number of blanks and/or tab characters. A "#,,
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file.

/etc/rpc

SEE ALSO
getrpcent(3R).

12/88 1

SE:R.VE:R..DAT(4) SE:R.VE:R..DAT(4)

NAME
server.dat - XNS server information file

DESCRIPTION
server.dat contains information about Xerox Network System (XNS) servers

on the local machine. server.dat allows client and server programs to be

linked together. The sernum and server arguments to sni_connect(3N) are

used to access the proper server entry in server.dat.

Every server started by the xns_listener(lM) has one entry in server.dat.

Each entry in server.dat has four fields delimited by!, with the first and the

last character of the entry also containing a !. Each entry contains the fol­

lowing information:

server number
flags
server path and arguments
default login name

The server number is a value from 0-32767, inclusive, which corresponds to

sernum. The flags allow the xns_listener(lM) to control access to a server.

The following flags are supported:

U require user name
P require password
D use def a ult user name
N disallow null passwords

If a user name or a password is required, the xns_listener(lM) will not start

the server unless sni_connect(3N) gives a proper user name and/or pass­

word. If the flags specify a default user name, the default login name is

used. If sni_connect(3N) specifies a sernum of 0, the server argument is

used as the path to the server. Otherwise, the server path in the server.dat

file is used.

EXAMPLES

FILES

An example server.dat file is as follows:

IOIUP!ll
161UPl/usr/ip32/inc/f mus!!
!7!D!/usr/ip32/inc/rtape_slrootl
1100010!/usr/joe/sni/server!joe!

/usr/ip32/inc/server.dat server list

SEE ALSO

~ NOTES

01/90

sni_connect(3N), sni_accept(3N).
xns_listener(lM) in the CLIX System Administrator's Reference Manual.

"XNS Network Programming Tutorial" in the CLIX System Guide.

Server number 0 can be useful for debugging.

1

SERVER.DAT(4) SERVER.DAT(4)

The xns_listener(lM) reads server.dat every time a server is started. It does
not need to be restarted to know about new server entries.

WARNINGS
Intergraph reserves server numbers 0-999.

2 01/90

SEJl.VICES(4) SEJl.VICES(4)

NAME
services - service name database

DESCltIPTION

PILES

The file /etc/services contains information regarding the known services
available in the Defense Advanced Research Project Agency (DARPA) Inter­
net. For each service, a single line should have the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The
port number and. protocol name are considered a single item; a"/" is used to
separate the port and protocol (such as 512/tcp). A "#" indicates the
beginning of a comment; characters up to the end of the line are not inter­
preted by routines that search the file.

Service names may contain any printable character other than a field delim­
iter, newline, or comment character.

I etc/ services

SEE ALSO
getservent(3B).

12/88 1

STANDCFG(4) STANDCFG(4)

NAME
STANDCFG - optical disk standalone configuration file

DESCRIPTION
STANDCFG describes the configuration of the optical disk file system. The
file specifies the generic Small Computer System Interface (SCSI) character
device names for the optical drives not controlled by an optical disk
jukebox. Each entry must appear on a separate line.

EXAMPLES
/dev/gs/s3u0
/dev/gs/s4u0

FILES
/dev/gs/*

SEE ALSO
JBCFG(4).

07/89 1

STATMON(4) STATMON(4)

NAME
statmon: record, recover, state - status daemon directory and file formats

SYNOPSIS
/etc/sm/record

/etc/sm/recover

/etc/sm/state

DESCR.IPTION
record and recover are text files generated by statd(lM). Each host name in
record represents the name of a machine to be monitored by statd(lM).
Each host name in recover represents the name of a machine to be notified by
statd(lM) upon its recovery from interruption of locking services.

state is a text file generated by statd(lM) to record the status daemon's
current version number. This version number is incremented each time a
crash or recovery occurs.

SEE ALSO

01/90

statd(lM), lockd(lM) in the CLIX System Administrator's Reference
Manual.

1

YPFILES(4) YPFILES(4)

NAME
ypfiles - the YP database and directory structure

DESCRIPTION

12/88

The Yellow Pages (YP) network lookup service uses a database of ndbm files
in the directory hierarchy at /etc/yp. An ndbm database consists of two
files, created by calls to the dbm(3B) library package. One has the file name
extension ".pag" and the other has the file name extension ".dir". For
instance, the database named hosts.byname, is implemented by the pair of
files hosts.byname.pag and hosts.byname.dir. An ndbm database served
by the YP is called a YP map. A YP domain is a named set of YP maps. Each
YP domain is implemented as a subdirectory of /etc/yp containing the map.
Any number of YP domains can exist. Each may contain any number of
maps.

No maps are required by the YP lookup service itself, although they may be
required for the normal operation of other parts of the system. There is not
a list of maps which YP serves-if the map exists in a given domain, and a
client asks about it, the YP will serve it. For a map to be accessible con­
sistently, it must exist on all YP servers that serve the domain. To provide
data consistency between the replicated maps, an entry to run ypxfr(lM)
periodically should be made in cron(lM) on each server. More information
on this topic is in ypxfr(lM).

YP maps should contain two distinguished key-value pairs. The first is the
key YP_LAST_MODIFIED, having as a value a ten-character ASCII order
number. The order number should be the CLIX time (in seconds) when the
map was built. The second key is YP_MASTER_NAME, with the name of the
YP master server as a value. makedbm(lM) generates both key-value pairs
automatically. A map that does not contain both key-value pairs can be
served by the YP, but the ypserv(lM) process will not be able to return
values for "Get order number" or "Get master name" requests. In addition,
values of these two keys are used by ypxfr(lM) when it transfers a map
from a master YP server to a slave. If ypxfr(lM) cannot figure out where to
get the map, or if it is unable to determine whether the local copy is more
recent than the copy at the master, extra command line switches must be set
when it is run.

YP maps must be generated and modified only at the master server. They are
copied to the slaves using ypxfr(lM) to avoid potential byte-ordering prob­
lems among YP servers running on machines with different architectures, and
to minimize the amount of disk space required for the ndbm files. The YP
database can be initially set up for both masters and slaves by using
ypinit(lM).

After the server databases are set up, it is probable that the contents of some
maps will change. In general, some ASCII source version of the database
exists on the master, and it is changed with a standard text editor. The
update is incorporated into the YP map and is propagated from the master to
the slaves by running /etc/yp/Makefile. All supplied maps have entries in

1

YPPILES(4) YPPILES(4)

/etc/yp/Makefile. If a YP map is added, this file should be edited to sup­
port the new map. The makefile uses m.akedbm.(lM) to generate the YP map
on the master, and yppush(lM) to propagate the changed map to the slaves.
yppush(lM) is a client of the map ypservers(lM), which lists all the YP
servers (see yppush(lM)).

SEE ALSO

2

makedbm(lM), ypinit(lM), ypmake(lM), ypxf r(lM), yppush(lM),
yppoll(lM), ypserv(lM), rpcinfo(lM) in the CLIX System Administrator's
Reference Manual.

12/88

YPMAPXLATE(4) YPMAPXLATE(4)

NAME
ypmapxlate - translation table to handle long map names

DESCRIPTION

PILES

A map name X under domain Y exists as the two files named X.pag and

X.dir, both under the directory /etc/yp/Y. Thus, the length of the name X

can be no more than ten characters, since ten added to the length of the

extension ".pag" or ".dir" is equal to 14, which is the maximum file name

length. A critical map name such as passwd.byname will clearly be a

problem to represent.

The file /etc/yp/YP _MAP _X_LATE contains entries of the following

form:

long_map_name short_map_name

When the Yellow Pages (YP) server receives a packet containing a logical

(long) map name, this file is looked up to determine the physical (short) map

name. Conversely, when the server transmits a packet that will contain a

map name, the physical map name is looked up in the translate file to find

the logical name for transmission.

/etc/yp/YP _MAP _X_LATE

SEE ALSO
ypfiles(4).

BUGS
Comments (#) cannot be put in the map file.

12/88 1

c

c

INTR0(5) INTR0(5)

NAME
intro - introduction to miscellaneous facilities

DESCRIPTION

12188

This section describes miscellaneous facilities such as macro packages, char­
acter set tables, and include file definitions.

1

PCHTL(J) PCHTL(5)

HAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>
#include <sys/file.h>

DESCJUPTIOH

12/88

The fcntl(2) function provides for control over open files. These include
files describe cmds and args to fcntl(2) and open(2).

I• Flag values accessible to open(2) and fcntl(2) •I
I• (The first three can only be set by open)•/
#define O_RDONLY 0
#define O_WRONLY 1
#define O_RDWR 2
#define O_NDELAY 04 I• Nonblocking VO •I
#define O_APPEND 010 I• append (writes guaranteed at the end) •/
#define O_SYNC 020 I• synchronous write option•/

I• Flag values accessible only to open(2) •I
#define O_CREAT 00400 I• open w/file create (uses third open arg) •/
#define O_TRUNC 01000 /•open with truncation•/
#define O_EXCL 02000 I• exclusive open •/

I• Flag values accessible only to fcntl(2) •I
#define FASYNC Ox8000 I• Enable the SIGIO signal•/

I• fcntl(2) requests•/
#define F _DUPFD 0
#define F_GETFD 1
#define F_SETFD 2
#define F_GETFL 3
#define F_SETFL 4
#define F_GETLK 5
#define F _SETLK 6
#define F_SETLKW 7
#define F_CHKFL 8
#define F_SETOWN 126
#define F_GETOWN 127

I• Duplicate fildes •/
I• Get fildes flags •/
I• Set fildes flags •/
I• Get file flags •/
I• Set file flags •/
I• Get file lock •/
I• Set file lock •/
I• Set file lock and wait•/
I• Check legality of file flag changes•/
I• Set to receive signals •/
I• Get ID of signal receiver•/

I• file segment locking control structure •/
struct flock {

short l_ type;
short l_ whence;
long l_start;
long l_len;
short l_sysid;

I• if 0 then until EOF •/
I• returned with F_GETLK •/

1

PCNTL(5)

short l_pid; I• returned with F_GETLK •/
};

I• file segment locking types •/
#define F_RDLCK 01 /•Read lock•/
#define F _ WRLCK 02 I• Write lock •/
#define F_UNLCK 03 I• Remove locks•/

SEE ALSO
fcnt1(2).
open(2) in the UNIX System V Programmer's Reference Manual

2

PCNTL(5)

12/88

STAT(5) STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESC:R.IPTION

12188

stat(2) and /stat(2) return data whose structure is defined by the
<sys/stat.h> include file. The encoding of the field st_mode is defined in
this file also.

Structure of the result of stat(2) is as follows:

struct stat {
dev_t
ushort
ushort
short
ushort
ushort
dev_t
off_t
time_t
time_t
time_t

};

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

#define S_IFMT 0170000 I• type of file•/
#define S_IFDIR. 0040000 I• directory•/
#define S_IFCHR 0020000 I• character special •/
#define S_IFBLK 0060000 I• block special•/
#define S_IFREG 0100000 I• regular •/
#define S_IFIFO 0010000 /• fifo •/
#define S_IFSOCK 0070000 I• socket•/
#define S_ISUID 04000 I• set user ID on execution•/
#define S_ISGID 02000 I• set group ID on execution•/
#define S_ISVTX 01000 I• save swapped text even after use•/
#define S_IREAD 00400 /•read permission, owner•/
#define S_IWRITE 00200 /• write permission, owner •/
#define S_IEXEC 00100 /•execute/search permission, owner•/
#define S_ENFMT S_ISGID I• record locking enforcement flag •/
#define S_IRWXU 00700 /• read,write, execute: owner •/
#define S_IRUSR 00400 /•read permission: owner•/
#define S_IWUSR 00200 /• write permission: owner •/
#define S_IXUSR 00100 /•execute permission: owner•/
#define S_IRWXG 00070 I• read, write, execute: group •/

1

STAT(5)

#define S_IRGRP
#define S_IWGRP
#define S_IXGRP
#define S_IRWXO
#define S_IROTH
#define S_IWOTH
#define S_IXOTH

SEE ALSO
types(5).

00040
00020
00010
00007
00004
00002
00001

I• read permission: group •/
I• write permission: group•/
I• execute permission: group•/
I• read, write, execute: other •I
I• read permission: other •I
I• write permission: other•/
I• execute permission: other•/

stat(2) in the UNIX System V Programmer's Reference Manual.

2

STAT(S)

12/88

TYPES(5) TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
#include < S)Ts/types.h >

DESCJUPTION

12/88

The data types defined in the include file are used in CLIX system code; some
data of these types are accessible to user code:

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

struct { int r [1] ; } * physadr;
long daddr_t;
char * caddr_ t;
unsigned char unchar;
unsigned short ushort;
unsigned int uint;
unsigned long ulong;

I• <disk address> type •/
I• <core address> type •/

ushort ino_t; I• <inode> type•/
short cnt_t; /* <count> type•/
long time_t; /* <time> type•/
int label_t [44];
short dev_t;
long off_t;
long paddr_t;
int key_t;
unsigned char use_t;
short sysid_t;
short index_ t;
short lock_ t;
unsigned int size_t;
unsigned char u_char;
unsigned short u_short;
unsigned int u_int;
unsigned long u_long;
u_short uid_ t;

I• <old device number> type•/
I• <offset> type•/
I• <physical address> type•/
/* IPC key type •/
I• use count for swap. •/

/*lock work for busy wait*/
/* len param for string funcs •/

u_short gid_t;
struct _quad { long val [2]; } quad;
long swblk_ t;

#define NBBY 8 I• number of bits per byte•/
#define FD SETSIZE 256
#define NFDBITS (sizeof(long) * NBBY) /• bits per mask */
#ifndef howmany
#define howmany(x, y) (((x)+((y)-1))/(y))
#endif

typedef struct fd_set {
long f ds_bits [howmany (FD_SETSIZE, NFDBITS)];

} fd_set;

1

TYPES(5) TYPES(S)

2

#deftne FD _sBT(n, p)
#deftne FD_ CLR(n, p)
#deftne FD_IssET(n, p)
#deftne FD _ZERo(p)

((p)->fds_bits[(n)/NFDBITS] I- (1 < < ((n) % NFDBITS)))
((p)->fds_bits[(n)/NFDBITS] &- -(1 < < ((n) % NFDBITS)))
((p)->fds_bits[(n)/NFDBITS] & (1 < < ((n) % NFDBITS)))
bzero((char •Xp), sizeof(-(p)))

The form daddr _t is used for disk addresses except in an i-node on disk, see
fs(4). Times are encoded in seconds since 00:00:00 GMT, January 1, 1970.
The major and minor parts of a device code specify kind and unit number of
a device and are installation-dependent. Offsets are measured in bytes from
the beginning of a file. The 1.obel_t variables save the processor state while
another process is running.

12/88

VALUES(5) VALUES(5)

NAME
vaiues - machine-dependent values

SYNOPSIS
include < values.h >

DESC:R.IPTION
This file contains a set of manifest constants, conditionally defined for par­
ticular processor architectures.

The model assumed for integers is binary representation (one's or two's com­
plement), where the sign is the value of the high-order bit.

BITS(type) The number of bits in a specified type (e.g., int).

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXINT

MAXFLOAT

The value of a short integer with only the high-order bit set
(in most implementations, Ox8000).

The value of a long integer with only the high-order bit set
(in most implementations, Ox80000000).

The value of a regular integer with only the high-order bit
set (usually the same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most
implementations, Ox7FFF = 32767).

The maximum value of a signed long integer (in most imple­
mentations, Ox7FFFFFFF = 2147483647).

The maximum value of a signed regular integer (usually the
same as MAXSHORT or MAXLONG).

The maximum value of a single-precision floating-point
number.

MAXOOUBLE, LN_MAXOOUBLE

MINFLOAT

The maximum value of a double-precision floating-point
number and its natural logarithm.

The minimum positive value of a single-precision floating­
point number.

MINOOUBLE, LN_MINDOUBLE

FSIGNIF

DSIGNIF

The minimum positive value of a double-precision floating­
point number and its natural logarithm.

The number of significant bits in the mantissa of a single­
precision floating-point number.

The number of significant bits in the mantissa of a double­
precision floating-point number.

SEE ALSO
intro(3).
math(S) in the UNIX System V Programmer's Reference Manual.

12/88 1

