LLIX

Programmer’s and User’s
Reference Manual

SE
CLIX

Programmer’s and User’s
Reference Manual

INTERGRAPH

DSYS18410

CLIX Programmer’s & User’s Reference Manual

January 1990

DSYS18412
Edition 1

2

CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

0

()

Warranties and Liabilities

All warranties given by Intergraph Corporation about cquipment or software arc set forth in your purchase
contract.

The information and the software discussed in this document are subject to change without notice and should
not be considered commitments by Intergraph Corporation.
Intergraph Corporation assumes no responsibility for any errors that may appear in this document.

The software discussed in this document is furnished under a license and may be used or copied only in accor-
dance with the terms of this license.

No responsibility is assumed by Intergraph for the use or reliability of software on equipment that is not sup-
plied by Intergraph or its affiliated companies.

Trademarks

Intergraph is a registered trademark of Intergraph Corporation.
CLIX, IGDS, and CLIPPER are trademarks of Intergraph Corporation.

Other brands and product names are trademarks of their respective owners.

Classifications

This equipment is designed to comply with the requirements in Part 15 of the FCC rules for a class A comput-
ing device.

Copyrights

© 1989, 1990 INTERGRAPH CORPORATION
INCLUDING THIS DOCUMENTATION, AND ALL SOFTWARE AND ITS FILE FORMATS AND
AUDIO-VISUAL DISPLAYS DESCRIBED HEREIN; ALL RIGHTS RESERVED; MAY ONLY BE
USED PURSUANT TO THE APPLICABLE SOFTWARE LICENSE AGREEMENT; CONTAINS CON-
FIDENTIAL AND PROPRIETARY INFORMATION OF INTERGRAPH AND/OR OTHER THIRD PAR-
TIES WHICH IS PROTECTED BY COPYRIGHT, TRADE SECRET AND TRADEMARK LAW AND
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE WITHOUT PRIOR WRITTEN
AUTHORIZATION.

RESTRICTED RIGHTS LEGENDS
Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subdi-
vision (c)(1)(ii) of the rights in technical data and computer software clause at 52.227-7013.
Unpublished-rights reserved under the Copyright Laws of the United States.
Intergraph Corporation
One Madison Industrial Park

Huntsville, AL 35807-4201

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California.

Portions of this manual Copyright © 1986, 1987, 1988 Lachman Associates, Incorporated (LAI) All Rights
Reserved

Portions of this manual Copyright © 1984, 1985, 1986, 1987, 1988 AT&T

4 CLIXPROGRAMMER'S & USER’S REFERENCE MANUAL

0

()

()

()

Additional References

The following UNIX System V documentation is required reference material. These
documents can be purchased individually or in sets from Intergraph:

Title Release V.3
AT&T UNIX System V User’s Reference Manual DSYS08110
AT&T UNIX System V User’s Reference Addendum DSYS19410
AT&T UNIX System V Administrator’s Reference Manual DSYS08310
AT&T UNIX System V Administrator’s Reference Addendum DSYS19710
AT&T UNIX System V Programmer’s Reference Manual DSYS08510

AT&T UNIX System V Programmer’s Reference Addendum DSYS19510

The following UNIX System V documentation is suggested reference material. The fol-
lowing documents can be purchased individually or in sets from Intergraph:

Title Release V.3
AT&T UNIX System V User’s Guide DSYS08010
AT&T UNIX System V Programming Guide DSYS08410
AT&T UNIX System V Administrator’s Guide DSYS08210

Ordering Information

To order any of these documents:

O Within the United States contact your Customer Engineer or Sales Account
Representative. -

O For International locations, contact the Intergraph subsidiary or distributor where
you purchased your workstation.

Support Information

If you have trouble with the workstation/server or the procedures described in this
guide, contact Intergraph Customer Support at 1-800-633-7248. International custo-
mers should contact the Intergraph subsidiary or distributor where the workstation was
purchased.

0

O

Introduction

()

()

Introduction

The CLIX Programmer’s & User’s Reference Manual describes the com-
mands that constitute the basic software running on an Intergraph work-
station or server, as well as system calls, library routines, file formats, and
miscellaneous facilities used by programmers and users of a CLIX system
running on an Intergraph workstation or server.

This manual supplements the AT&T UNIX System V documentation and
thus includes only additions and changes found in the CLIX System.

The following documents provide related information:

m The CLIX System Administrator’s Reference Manual describes the
commands and special interfaces used by those who administer a
CLIX system.

m The CLIX System Guide contains procedures and tutorials designed
to give instructions in how to perform tasks and background infor-
mation about when and why these tasks are desirable.

The CLIX Programmer'’s & User’s Reference Manual is divided into the fol-
lowing sections:

(1) Commands
(2) System Calls

(2B) BSD System Calls
(2I) Intergraph System Calls

(3) Library Routines

(3C) and (3S) C Programming Language Utilities
(3B) BSD Library Routines

(3N) Intergraph Network Library Routines

(3R) RPC/XDR/YP Library Routines

(3A) Intergraph Synchronous/Asynchronous Library Rou-
tines

INTRODUCTION 1

Introduction

(4) File Formats
(5) Miscellaneous

The CLIX System Administrator’s Reference Manual is divided into the
following sections:

(1M) System Administrator Commands
(7) Special Interfaces

(7S) Special Files
(7B) BSD Network Interfaces
(7A) Asynchronous Interfaces
The CLIX System Guide is divided into the following sections:

Part 1: System Administrator’s Tutorials

1. FFS Tutorial

2. FFS Check Tutorial

3. BSD LP Spooler Tutorial
4. NQS Tutorial

5. YP Tutorial

Part 2: System Administrator’s Procedures

System Rebuild

New Product Delivery
System Reconfiguration

FFS Installation

BSD Network Configuration
NFS/YP Installation

NQS Installation

N ALY R

2 PROGRAMMER'S & USER'S REFERENCE MANUAL

Introduction

Part 3: Programmer’s & User’s Tutorials

Technical Programming Tutorial
PROC Debugging Tutorial
Network Programming Tutorial
BSD Porting Tutorial
Introductory Socket Tutorial
Advanced Socket Tutorial

NQS Tutorial

RCS Tutorial

RPC/XDR Tutorial

¥ ® N0 bbb

References

Throughout this manual, numbers following a command are intended for
easy cross-reference.

» Look up references followed by (1), (2B), (21), (3C), (3B), (3N),
(3R). (3A). (4), or (5) in this document.

m Look up references followed by (1M), (7S), (7B), or (7A) in the in
the CLIX System Administrator's Reference Manual.

s Look up all other references in the appropriate CLIX document.

If the references are not in the CLIX document, refer to the appropri-
ate UNIX System V manual.

Format

Most sections begin with a page labeled intro. Entries following the intro
page are arranged alphabetically and may consist of more than one page.
Some entries describe several routines, commands, etc. In such cases, the
entry appears only once, alphabetized under its “primary”” name. (An
example of such an entry is chown(1), which also describes the chgrp com-
mand.) To learn which manual page describes a secondary command,

INTRODUCTION 3

Introduction

locate its name in the middle column of the “Permuted Index™ and follow
across that line to the name of the manual page listed in the right column.

All entries are based on a common format, but each part appears only
where applicable:

m NAME gives the name(s) of the entry and briefly states its purpose.

s SYNOPSIS summarizes the use of the program being described. A
few conventions are used, particularly in Section (1) (Commands):

o Boldface strings are literals and are to be typed just as they
appear.

o Italic strings usually represent substitutable argument and pro-
gram names found elsewhere in the manual.

o Brackets[]around an argument indicate that the argument is
optional.

o Braces {} around arguments indicate that one of the arguments
should be chosen.

o Ellipses ... are used to show that the previous argument may be
repeated.

s DESCRIPTION provides an overview of the command.

m EXAMPLES gives examples of usage, where appropriate.

= FILES gives the file names that are built into the program.
m SEE ALSO offers pointers to related information.

8 DIAGNOSTICS discusses the diagnostic indications that may be pro-
duced. Messages that are intended to be self-explanatory are not
listed.

® NOTES gives information that may be helpful under the particular
circumstances described.

s WARNINGS points out potential pitfalls.
s BUGS gives known bugs and sometimes deficiencies.

m CAVEATS gives details of the implementation that might affect
usage.

4 PROGRAMMER’'S & USER'S REFERENCE MANUAL

s iR K S

Introduction

m IDENTIFICATION gives the author of the program.

Table of Contents & Permuted Index

Preceding Section (1) is a “Table of Contents™ (listing both primary and
secondary command entries) and a “Permuted Index.” Each line of the
“Table of Contents’ contains the name of a manual page (with secondary
entries, if they exist) and an abstract of that page. Each line of the “Per-
muted Index” represents a permutation (or sorting) of a line from the
“Table of Contents™ into three columns. The lines are arranged so that a
keyword or phrase begins the middle column. Use the “Permuted Index”
by searching this middle column for a topic or command. When the
desired entry has been found, the right column of that line lists the name
of the manual page on which information corresponding to that keyword
can be found. The left column contains the remainder of the permutation
that began in the middle column.

INTRODUCTION 5

Table of Contents

)

O

()

()

()

Table of Contents

1. Commands

INO(1) wevveriiinceei e introduction to commands and application programs
AD(1) oo s Ada program beautificr
AC(L) ottt s s Ada compiler
acctcom(1) search and print process accounting files
AAD(1) i e absolute debugger

adep(1) Ada program makefile gencrator
aligntrap(1) set/report alignment trap disposition per cxecutable
AI(L) ceeeei e Ada library tool
ansiape(l) oo ANSI-standard magtape label program

AS (1) coerevirnnsie A e s common asscmbler
DACKUP(1) ottt e incremental file system backup
CO(1) et R b RSt Ccompiler
CAMOA (L) i s es change mode
Chown, ChEBIP(L) ot change owner or group
CHL) vt st s e bbb check in RCS revisions
CHH(L) e Intergraph network clearinghouse management program
CO(L) i s e check out RCS revisions
COmPress, UNCOMPIESS, ZCAL(1) ot compress and expand data
CPHOP (L) ot b s bbb s copy floppy disk
CPIO(L) oo s et esenees s enes copy file archives in and out
CIM(L) et e b b s e CLIX Resource Monitor
CSH(1) v a shell (command interpreter) with C-like syntax
CUMAIT(1) oot s b DNP mail transport program
ABG (1) ettt s symbolic debugger
IS(1) it s list contents of MS-DOS directory
domMNAME(L) oo e set or display name of current YP domain
i, WA (L) e e copy betwecn MS-DOS and CLIX
CIII) o s Extended FORTRAN Language
CITOTS (1) coveeveeennirin s sebs st st error logging report generator
ETT(1) oo b bbb e FORTRAN compiler

FIRALY corereerreemrerenseeessessemss s ssss s bbbt Rt s RS SEebEr find files
FINU(L) e st network file management utility
FOIMAL(L) oottt st s floppy disk formatting utility
FIP(L) oo s ARPANET file transfer program
hOSNAME (1) ovovvvrcivirririr s ssssissnrinnnes setor print name of currcnt host system
141 T OO OO OSSP PPO PR ROR identity files
FBCONAG (L) oot s e report the configuration of the jukeboxes

TABLE OF CONTENTS 1

Table of Contents

KDMAP (L) it eietseetsevnees st seenseesesssessesasesssenseeninns change the keyboard layout
KEIMIE(T) oo et e kermit file transfer
ksh, krsh(1) o shell, the standard/restricted command programming language
(L) o e link editor for common object files
INTT) o s s b bbb link files
Ipq(1) . BSD spool queue examination program
IPECL) e s BSD offline print
IPIM(L) s remove jobs from the BSD line printer spooling queue
IPLESH(L) oottt generate line printer ripple pattern
IS(L) et ettt list contents of directory
machid: clipper, ns32000, Vax(1) o get processor type truth value
MAlG(L) i display a listing of the mail qucuc used by sendmail(1M)
mailstats(1) . s display mail statistics
MAN(L) oot et ne printentries in this manual
METEE (1) oot et three-way file merge
MKSHID{L) oottt et b create a shared library
MONPArAM (1) oo CRM utility for monitoring system paramcters
MONPIOC (1) o CRM utility for monitoring a process
MONIEZION (1) oot CRM utility for monitoring memory regions
ML) e e magnetic tape manipulation program
ncp(l) ... U0V O TGO DNP network control program
NELAAAT (1) oot st display nctwork address
RELCP(L) ittt et sereenaee DNP copy command
NELEX(1) it sreeene DNP remote file execution utility
NEUPI(L) it DNP command to print file(s) on remote printers
NEUS(L) o DNP command that lists the directory contents on a remote system
NetMSE(1) o send a message to console devices on the local XNS network
NEIMV (1)t DNP command that moves or renames one or more files
NEIM(LY oo e bseees DNP command that removes filcs
NEWAHASES (1) covoconiiiriici e rebuild the database for the mail aliases file
ApmMOount, NPUMOUNL(L) coiiccinice e essssssnes mount and unmount file systcm
oded (1) c set the current default directory used by optical disk commands
OdChEIP(L) e change the file group of optical disk files or directories
odchmod(1) change the file protection of optical disk files or directories
0dchoWn(1) oo change file ownership of optical disk files or directories
OUCP(L) ot s s e copy optical disk files
OdE(L) v report number of free blocks and i-nodes on an optical volume
OINMTO(1) it esessma i introduction to the optical disk file system

..... associate another name with an existing optical disk file
list contents of optical disk directories
.. create optical disk directorics

2 CLIXPROGRAMMER’'S & USER’'S REFERENCE MANUAL

()

-
~

Q)

0O

BN

()

Table of Contents

... rename optical disk files or directorics

display the current default directory used by optical disk commands
... delete optical disk files
.. delete optical disk directories

OUE(L) o et bbbt e s examine and modifics files
POLLY bt Pascal compiler
GAEL(L) it delete or signal NQS requests
QAEV (1) it display the status of NQS dcvices
qlimit(1)... . show supported batch limits and shell strategy for the local host
QPT(L) ettt ettt neen submit a hardcopy print request to NQS
GSEAL(L) o display the status of NQS queues
GSUD(D) et st submit an NQS batch request
218 (o] { () T OO OO OO rational FORTRAN dialect
TCMA (1) ot s R s remote command
TCP(L) ottt s R R remote file copy
res(1) . change RCS file attributes
ICSCIEAN(L) oot s clean up working files
resdiff(1) oo et bR Rt sE s compare RCS revisions
ICSMETGE (1) wovrvveieneereetiiri st st bbb sraes merge RCS revisions
TESLOTE(L) ovvvrirrninrnniivnsinsis sttt s abs s s incremental file system restore
FlOG(1) vt print log messages and other information about RCS files
TIOZIN(L) cotreiictiit i e remote login
rm, rmdir(1) remove files or directories
TPCBEN(L) vt b s saebeaenes an RPC protocol compiler
TPIPE(1) vttt es st s bbb remote pipe program
FAPE (1) v Reteerreessenes e essesestassasraenne remote tape manipulation program
(o] (0 L OO remote tape control
Tuptime (1) e show host status for each machine on the local network
TWHhO(1) vt einins lists users logged in to machines on the local network
SCCSIOICS (1) wovrrrivciriirnee sttt s bbb nes build RCS file from SCCS file
SCPIO(L) oo s multibuffering and asynchronous [/0 ¢cpio(1)
sdb(1) .coovereee. et R R R AR SRR symbolic debugger
SELNOSL(1) covvvieiniriiet s e DNP remote login DECnet or CLIX node.
SHOWELES(1) worvevreerecntirciccsc st ane CRM utility for monitoring open files
ShowmemOory(1) .. CRM utility for monitoring process memory regions
SHY (1) o s s set the options for a terminal
telnet(1) user interface to the TELNET protocol
LESL(1) et e s s condition cvaluation command
HEEP(L) oot s trivial file transfer program
t0_flop, T_fOP(L) ..ot continuous floppy disk filters
LOPCPU(D) cooorrivvirivrirvrestneeesn s s s CRM utility for monitoring CPU time

TABLE OF CONTENTS 3

Table of Contents

LOPLAUI(L) o CRM utility for monitoring page faults
LOPIO(D) toric CRM utility for monitoring 1/0 activity
LOPMEM (1) oo CRM utility for monitoring physical and virtual memory
LOPSYS(1) ot e CRM utility for monitoring system activity
UCPNICE(L) oo est e e srssnssoes runa process at UCP priority
VISIL() vt ettt Intergraph remote login program
VINSDACKUP (L) ottt s read a VMS backup tape
WaLChEr (1) covn e CRM utility for monitoring system calls and faults
YPCAL(L) it sar s print values in a YP database
yPMAtCh(1) oo print the value of one or more keys from a YP map
YPPASSWA(L) oot change login password in YP
2. System Calls

11111 {¢] (74 R introduction to system calls and error numbers
€Xil, _EXIt(2) trrreriniiiiii terminate process
FENUI(2) iiviiiiiiiit e file control
MOUNE(2) teiivieriiiiiiinirie st st seee s s srs e s sses e e e sesessbanesaneses mount a file system
TEA(2) covvrriiiiiiin i s e eas read from file
SEIPEIP(Z) teeirrriiiiriiii b set process group ID
SINAL(Z) oo specify what to do on receipt of a signal
sigset, sighold, sigrelse, sigignore, Sigpause(2) ..., signal management
WEHE(2) oovvirrinniis s s s s s ses b s sa s st sses et bt aas bbbt write to a file
ACCEPL(ZB) ettt st s ens et s accept a connection on a socket
DINA(2B) oo et bind a name to a socket
€ONNECH(ZB) v e initiate a connection on a socket
LruNCate (ZB) oo e truncate a file to a specified length
EetdLablesize (2B) oo i s getdescriptor table size
gethostid, sethostid(2B) ... get/set unique identifier of current host
gethostname, sethostname (2B) i get/set name of current host
getitimer, setitimer(2B) ..o get/set value of interval timer
BEtPAZESIZE(2B) ..ot get system page size
getpeername (2B) ... e get name of connected peer
BEIPBIP2(ZB) oot e et get process group
getSOCKNAME (2B) ..ottt e eens getsocket name
getsockopt, setsockopt(2B) ... get and set options on sockets
gettimeofday (2B) ... s e reos getdate and time
KIIPG(ZB) .ot s sssesesens send signal to a process group
BISIEN(2B) oo s listen for connections on a socket
ISLAL(2B) ovveiicic e s R bt get file status
FEadlinK (2B) oo e rcad the value of a symbolic link
TCAUV(2B) oo e read input from a socket

4 CLIXPROGRAMMER'S & USER’S REFERENCE MANUAL

()

-,
-

Q)

j

)

Table of Contents

recv, recvirom, recvmsg(2B) receive a message from a socket

1ENAMCE (2B) oo et beneeie s change the name of a file
SCICCH(2B) oot s synchronous /O multiplexing
send, sendto, sendmsg(2B) ..o send a message from a socket
SCIPEIPZ(2B) oo s e set process group
Shutdown(2B) ... shut down part of a full-duplex connection
SOCKCL(2B) .o create an endpoint for communication
socketpair(2B) .. create a pair of connected sockets
SYMUNK(2ZB) oo s make a symbolic link 0 a file
VIOTK(2B) oottt spawn a new process in a virtual memory efficient way
WA (2B) coovceciiicricntser e et wait for process to terminate
WIHEV(2B) oo e sscens s s write output to a socket
exedata(2l) ... setup for code execution in the process data section
GELCPUIA (2I) oot e rcturn CLIPPER processor identifier
getmemsize, getfreemem, getavailsmem (21) ..ocveeevencceeerviconnnneniceiis return memory information
KBMAP(2L) oo change the keyboard layout
1CAdINIO(2I) oo read system activity information
SEtNOAENAME (2I) oo set new node name
sigeld(21) ... modify SIGCLD on stop signal option
SWAP (2] et e e bt swap space control
SYSIA(2I) oo get the system hardware identification number
UCPCIT(2I) v clear process UCP priority
UCPING(2]) o s s return the UCP priority
UCPPII(2L) oo check if a UCP priority is alrcady in use
UCPIElSE (2I) oo reset a process’s priority after handling a signal
UCPSEL(2I) oo set a process to a UCP priority
UCPSIZ(2L) oo set process to a UCP priority on receipt of a signal
VIOCK (2I) it s s sons lock an area of memory
vunlock(2]) unlock an area of memory
WAHZ(2]) oo s wait for process (o terminate
3. Library Functions

INTO(3) wevrriiiiiiniiinin e introduction to functions and librarics
£77initio, f77uninitio(3F)covviviiiiiiniiniinnnnne initialize or terminate FORTRAN I/0 from C
JGTT0IT], HT (K] S oo return FORTRAN logical unit associated with a file descriptor
HUSh(BF) o flush the output for the specified FORTRAN logical unit
fumBF) e, return the file descriptor associated with a FORTRAN logical unit
getgrent, getgrgid, getgrnam, setgreat, endgrent, fgetgrent(3C) .viiinncnnn. get group file entry
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C) get password file entry
intro(3B) introduction to BSD library functions

bstring: bcopy, bemp, bzero, {is(3B) bit and byte string operations

TABLE OF CONTENTS 5

Table of Contents

byteorder: htonl, htons, ntohl, ntohs(3B) convert values between host and network byte order
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent(3B) get network host entry
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent(3B) ..., get network cniry
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent(3B) get protocol entry
getservent, getservbyport, getservbyname, setservent, endservent(3B)oee.... get service entry
inet: inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_Inaof,

inet_netof(3B) ... Internet address manipulation routines
insque, remque (3B) insert/remove element from a queue
ndbm: dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,

dbm_nextkey, dbm_error, dbm_clearerr(3B) ..o database subroutines
random, srandom(3B) ... s better random number generator
remd, rresvport, ruserok(3B) . routines for returning a strcam to a remote command
TEXCC(BB) et return strcam to a remote command
string: indexX, rindeX (3B) ..o s string operations
INTOBN) oo introduction to Intergraph communications environment
Clh_vbYOp(3N) o lookup value by object and property
{mu_conncect, tmu_disconnect(3N) ..o connect/disconnect to remote FMU server
MMU_remd(3N) o execute the specified command on remote system
IMU_receiVe (3N e receive files from a remote system
fMu_send(BN) i s send files to a remote system

TMU_SCHBNY oo b bbb ns set FMU modcs
rte_allocate, ric_dealloc: remote tape control
SNH_ACCEPL(INY oot s accept a connection
SNI_CLOSE(BN) vt e close a connection
sni_connect(3N) connect to a server program
SA_TXW(SIN) oot bt e receive a data bulfer
SR_XW(BIN) ittt s transmit a data butter
IMIOBR) v introduction to RPC/XDR/YP service functions and protocols
getdomainname, setdomainname (3R) ..o get/set name of current domain
getrpeent, getrpcbyname, getrpcbynumber, setrpeent, endrpcent(3R) . get RPC entry
BETPCPOTL(BR) oot s get RPC port number
ypelnt: yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first, yp_next, yp_all,
yp_order, yp_master, yperr_string, ypprot_etr(3R) ..o YP clicat interface
YPPASSWU(IR) 1o update user password in YP
INFO(BA) s introduction to the synchronous/asynchronous I/0 library
AUX_DIEaK(BA) oot e generate a break on a serial port
aux_cancel_modem(3A) cancel modem change state on a serial port
AUX_CANCEL(3AY oo cancel outstanding read on a serial port
AUX_CIOSE(3A) ittt s s sranssiaenies close a serial port
aux_modem, aux_modem_nw(3A) ... get modem change from a serial port
AUX_OPCN(BA) oottt open a serial port

6 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

()

()

i

Table of Contents

aux_rawrd, aux_rawrd_nw(3A) ...t read data with error byte from a serial port
aux_read, aux_read_nwW(BA) ...t sssnseseenens read data from a serial port
aux_write, auX_Write_NW(3A)ccc.ccoviminiriniiiccnnneeinnesenseresessieessienesssnees write data to a serial port
CRV_CIOSE(3A) .ottt ess st sbesses e e sast s sasen s closea CNV channel
CNV_OPEN(3A) oottt ens et sn st ssn s e opena CNV channel
€Si_CanCel(BA) ..o cancel outstandmg asynchronous 1/0 on a CSI port
CSI_CCAN(BA) .ot cancel a specific command on a CSI port

csi_close(3A) ... close a CSI port

csi_cmd, csi cmd nw(3A) .. send command packets to a CSI port
csi_dceath, csi_death_nw(3A) ... wait for a CSI communication lo fail
CSI_AStal_NW(BA) oo ssnes reccive delayed status from a CSI port
CSI_OPEN(BA) oooeiirrerritniti s e e opena CSI port
csi_reset(3A) ... FESEL hardware on CSI port
CSI_SIAUS (BA) ovvrirrieiciis st st read the CSI port DR11 status lines
CSI_UCAN(3A) oo cancel unsolicited status requests on a CSI port
csi_ustat, csi_ustat_nw(3A) ... receive unsolicited status from a CSI port
£8_AHIOC(BA) oottt ettt eeni e allocate a frame grabber
£g_BIank (BA) ..ot eces blank the output signal of the frame grabber
£8_dealloC(BA) oo e et deallocate a frame grabber
fg_fbmode(3A) set the mode of a frame bufler
FE_BSIAL(BA) ..o e eeene get the mode of a frame buffer
fg_tut_in, fg_lut_Out(3A) ...cocoervirrirrnricrerennens load the lookup tables of a frame grabber
fg_priority (3A) ..o, determine frame buffer output priority of the frame grabber
FB_TCSCUBA) oo force the frame grabber to a known state
FB_SIZE(3A) oot e determine the frame grabber window size
fg_video_in, Ig_video_Out(BA) ..o select the video signal types for 1/0
fg_viw_start, {g_viw_SIOP(3A) ..o start and stop video in a window
fpe_cancel_dma(3A) ... cancel write request to an FPE coprocessor
fpe_coproc_alloc(3A) allocate an FPE coprocessor
fpe_coproc_dealloc(3A) . s deallocate an FPE coprocessor
tpe_did_10ad (3A) oo s load an FPE coprocessor image
fpe_did_unload (3A) ..., unload an FPE coprocessor image
fpe_write_dma, [pe_write_dma_nw (3A)ccociniinnienniirnnrinnniinns write data to an FPE coprocessor
gpib_cancel(3BA) ..o cancel all outstanding requests on a GPIB channel
EPIb_ClEAr(3BA) ..o clear a GPIB channel or device
BPIb_CIOSE(BA) ..ottt s closc a GPIB channel
gpib_cmd, gpib_cmd_nw(3A) ..o send commands to a GPIB channel
gPib_10Cal(BA) cooouvic e return a GPIB device to local control
BPIB_IOCKOUL(3A) .ccvvvivrviiricrririscssar st issue a local lockout to a GPIB channcl
BPID_OPEN(BA) oot s opena GPIB channel
gpib_ppconf(BA)ccvvinnininineiineiis configure the parallel poll response of a GPIB device

TABLE OF CONTENTS 7

Table of Contents

EPIb_PPreq(3A) i perform a parallel poll of a GPIB channel
gpib_ppuconf(3A) ..o unconfigure a GPIB device’s parallel poll response
gpib_read, gpib_read_nw(3A) . read data from a GPIB device
gPIb_remOote(3A) i put a GPIB channel in a remote state
EPIb_ESEL(BA) it conduct an IFC operation on a GPIB channel
gpib_service, gpib_service_nw(3A) ..o.inrcinninnne request notification for a GPIB SRQ condition
ZPID_SPIEG(IA) vt conduct a serial poll of a GPIB device
EPID_TEZEET(BA) oottt s s trigger a GPIB device
gpib_write, gpib_write_nW(3A) woriiie write data to a GPIB device

nlf_close(3A) close an NLF channel

nlt_open(3A) open an NLF channel
PAi_cancel(BA) v cancel outstanding asynchronous /0 on a PDI port
PU_CIOSE(BAY oot close a PDI port
pdi_ifh, pdi_ith_nW(3A) i move data from a PDI port to a window
PAI_OPEN(3A) it st s e opena PDI port
pdi_read, pdi_read_nw(3A) .o read data from a PDI port into memory
pdi_sclup(BA) e e e establish parameters for a PDI port
pdi_write, pdi_writc_nw(3A) write data from memory to a PDI port
plot_ctrl_rop: rplt_ctrl, rplt_ctrl_nw(3A) ..ocooverrvrenn. send a control word to the ROP parallel port
plot_ctrl: plt_ctrl, plt_cirl_nw (3A) oo, send a control word to the parallel port
plot_data_rop: rplt_data, rplt_data_nw (3A)cccccercrnnerinncrnnncnn. write data to the ROP paraliel port
plot_data: plt_data, plt_data_nw (BA) ...cc.ccccommmmrmnmmmmrcssessssssnsirceens write data to the parallel port
rle_cancel(3A) . cancel outstanding asynchronous /O on an RLE channel
TIE_CIOSE(BA) woirviiiircirriersr s s st close an RLE channel
T1E_OPEN(3A) vt s s open an RLE channel
rle_pipe_mem, rle_pipe_mem_nW(3A) .o RLE from pipe to memory
FlE_SCLUP(BA) et establish parameters for an RLE channel
sif_cancel (BA) .o e sseanes cancel outstanding asynchronous 1/0 on a SIF channel
SU_CIOSCBAY oottt st e close a SIF channel
sif_mem_pipe, sil_mem_pipe_nw(BA) s transfer data from memory to pipe
SH_OPEN(BA) o s bt st open a SIF channel
sil_scan_mem, sif_scan_mem_nw(3A) .. transfer data from scanner to memory
sif_scan_pipe, sil_scan_pipe_nw (3A) transfer data from scanner to pipe
SI_SEIUP(BA) v e establish parameters for a SIF channel
xio_allocef, xio_deallocef(BA) ... allocate/deallocate an event flag number
XI0_NOtLY (BA) oo, notify a process of an asynchronous request completion
xio_readef, xio_clref, xio_Setef(3A) ... event flag mask functions
xio_waitfr, xio_wfland, xio_wHOr(3A) ... asynchronous cvent control
4. File Formats

HRIEO(4) ceiiiiiiiiii e introduction to file formats

8 CLIXPROGRAMMER'S & USER’S REFERENCE MANUAL

S

0)

()

()

()

O

Table of Contents

A.0UL(4) crrriinii e common assembler and link editor output
AHASES(4) vevvriiniiitiiii aliases file for sendmail(1M)
ansitape(4) ANSI standard magtape labels
backup, dUumMPAAICS(4) .o incremental dump format
DOONCAUCT () e e s e boot file header format
certnote.com(4) Intergraph software certification documentation lile
CIN(4) e Intergraph network clearinghousc databasce
COTE(H) crrrrrieretiereiios s sss bbb bbb s format of core image file
ISKPAL(4) 1o s disk partition header tormat
ISKLAD(A) 1reereeeencevicee et is s s bbb s e disk description file
CITOTATC() cervrrmmncirsie i s b error log configuration file
EXPOTIS(B) covoriimirrimre st st NFS file systems being exported
HESES(4) crvvveverrincnrie sttt s s format of file system volume
ffsinode(4) e s bn bR bR s R structure of an FFS disk i-nodc
fixes.com(4) .. Intergraph software dclivery documentation file
FOPPYPAL(4) covcrvirrirreiiiinreinses st partitioned floppy header format
ESEAD(4) 1ovvveeunrrecremmmmmmsesssess s ssssss s s R file system table
EEOUP(A) e rerereverreveeese 414014484100 group file
NOSES(4) orveveveriamsiiiriss e siasesass st e sss s e s bR host name database
hosts.equiv(4) host equivalency name databasc
JBCFG (4) cooverevviomesssiiire s sisssss s s sssssss s senssonses optical disk jukcbox configuration filc
KBMAP(4) covvvvriinrrvre s st keyboard map file
limits(4) ... file header for implementation-specific constants
MASICT () s stk bR master configuration databasc
IMAUAD(4) vt et s b s R s mounted file system table
NEIWOTKS () cooorrcemreimimeimmnnrinssss s sessssssts st ecan e sess s st a s s network name databasc
PASSWA () orrrirrviereemeesresias s i password file
printcap(4) oo ... BSD printer capability database
PLOLOCOIS(A) oovverereieeceiisis st s s s protocol name database
TCSFIE () crvvevvermmerermeeessssiss s as s s bt st formatof RCS file
reloc(4) ... relocation information for a common object file
TROSIS () wovvermerecemcrseecaimssins s ssses s s e R remote user access list
IMUAD (D) ovveciovicnenre it s ... remotely mounted NFS file system table
TPC(4) oot s RPC program number databasc
© SEIVELAAL(4) covvrrvmreeeereccrmsirreirsses s st XNS server information file
SEIVICES(4) crvvvermmennerissssesssssmsssessssiss s ssarisss s ersess RS e service name databasc
STANDCFG (4) c.cvvveririrninneisssissssisssssessssesssssssosansssssnsss optical disk standalone configuration file
statmon: record, reCover, State(4)crimiensserinneisnnens status daemon directory and filc formats
ypfiles(4) the YP database and directory structure
YPMAPXIAE(4) oo translation table to handle long map names

TABLE OF CONTENTS 9

Table of Contents

5. Miscellaneous

INEFO(S) rvireiiiiiici e introduction to miscellancous facilities
ECIL(S) oot e file control options
SEAL(S) evvreiininii e data rcturned by stat system call
LYPES(S) trririiiii ittt e et srenen primitive system data types
VAIUCS(S) creiiiiiiiicii et machine-dependent values

10 CLIX PROGRAMMER'S & USER’S REFERENCE MANUAL

()

9

Q)

Permuted Index

)

O

P
N

Permuted Index

adb(1)

accept(2B)

sni_accept(3N)

a socket

.rhosts(4) remote user

search and print process
process accounting files
readinfo(2I) read system

CRM utility for monitoring 1/0
CRM utility for monitoring system
Ac(l)

aly(1)

ab(1)

adep(l)

/inet_netof(3B) Internet
netaddr(1) display network
generator

aliases(4)

rebuild the database for the mail
sendmail(1M)

aligntrap(1) set/report

trap disposition per executable
fg_alloc(3A)
fpe_coproc_alloc(3A)
xio_allocef(3A) xio_deallocef(3A)
check if a UCP priority is

ansitape(4)

program ansitape(1)

label program

labels

link editor output

introduction to commands and
cpio(1) copy file

vlock(2I) lock an

vunlock(2]) unlock an

fip(1)

a.out(4) common

as(1l) common

existing optical disk/ odIn(1)
/return FORTRAN logical unit
unit /return the file descriptor
/xio_wiland(3A) xio_wflor(3A)

ab(1l) Ada program beautifiercvenieeiinniiineniiiins ab(1)
absolute debugger e e ebe e adb(1)
Ac(1) Ada COMPIIET ...t ac(l)
accepta connection on a socket . accepl(2B)
acCePta CONNECHONvvveercreriineerisiiseiiniasines sni_accept(3N)
accept(2B) accept a CONNECHON Of .vceverivcuceniniinnisrinines accept(2B)
ACCESS LIS cuveveeereerentisierre st teire sttt et srenenes .rhosts(4)
accounting files acctcom(1) .. . acctcom(l)
acctcom(1) search and Printocevieiininncnnniniciininens acctcom(1)
activity Informationc.eeererieis e readinfo(21)
ACHVILY TOPIO(1) ovovvrrrrvirninnenisnrsisnss st sinerinais topio(1)
activity topsys(1) w.coevivveirennn. ... topsys(1)
Ada compiler .. “ . ac(l)
Ada lbIary 100lcevvornenninie alt(1)
Ada program beaulifier ... ab(1)
Ada program makefile Eneratorcvsenemenvissnininiennens adep(1)
adb(1) absolute dEDUGGETv.vvrierecrcrcreiecrssirimenieniienonaes adb(1)
address manipulation routines . RO inet(3B)
AAAIESS ..vcvvvvirerireriienirieieeeeenes netaddr(1)
adep(1) Ada program maKefileooviniriiiiiiininiiinnns adep(1)
aliases file for sendmail(IM)ccoviriiniiniiniiinincnnncnn aliases(4)
aliases file newaliases(l)cocovevriniieninsncrerrnronnnnn newaliases(1)
aliases(4) aliases file fOrovoveivreinnreiinniccs aliases(4)
alignment trap diSpoSition Perecvniviiinniniisinnns aligntrap(1)
aligntrap(1) set/report alignmentoccoeiviiiiinrnnnnns aligntrap(1)
allocate a frame grabber coocvvviiiininninns fg_alloc(3A)
allocatean FPE COProCessor .. .oeveevirvcvinennnns fpe_coproc_alloc(3A)

allocate/deallocatean event flag/ xio_atlocef(3A)

already in use UCPPri(2I) ..ovcvrveveiserieenicsiminicnsecicines ucppri(21)
alt(1) Ada lbrary toolc.c.e covrersrnnenecsenniniiii aly(l)
ANSI standard magtape labels ansitape(4)

ANSI-standard magtape label ansitape(l)
ansitape(1) ANSI-standard ma gtape .. ansitape(1)
ansitape(4) ANSI standard magtape ..o ansitape(4)
a.out(4) common assembler and ... a.out(4)
application programs intro(1) .. . intro(1)

archives in and out . .. cpio(1)
Area Of MEMOTY ..ocovvrrvrrinrsernsnsarsensnse st ies vlock(2l)
area Of MEMOTY ..ovvvvnirniiinninenisen e vunlock(2l)
ARPANET file transfer Progriaiml c..e..evevvevecsesssessessemesesssisensonns fip(l)
as(1) common assembler as(l)
assembler and link editor output .. a.out(4)

LY 1 110) [RO PIPOOR as(l)
associate another name With an ..o, odin(1)
associated with a file descriptoroccovcniiniinienns fdtounit(3F)

associated with a FORTRAN logical ..o tnum(3F)
asynchronous event CONLIolccviiiininiisiinnss xio_waitfr(3A)

PERMUTED INDEX 1

Permuted Index

scpio(1) multibuffering and
csi_cancel(3A) cancel outstanding
pdi_cancel(3A) cancel outstanding
sif_cancel(3A) cancel outstanding
rle_cancel(3A) cancel outstanding
/notify a process of an

res(1) change RCS file

a serial port

read on a serial port

change state on a serial port

get modem change from a serial/
from a serial port aux_modem(3A)

read data with error byte from a/
error byte from a/ aux_rawrd(3A)
data from a serial port

serial port aux_read(3A)

write data to a serial port

serial port aux_write(3A)
backup(1) incremental file system
vmsbackup(l) read a VMS
backup

incremental dump format

for the/ qlimit(1) show supported
qsub(l) submit an NQS

and byte/ bstring(3B) bcopy(3B)
ffs(3B) bit and byte/ bstring(3B)
ab(1) Ada program

random(3B) srandom(3B)
bind(2B)

/ocmp(3B) bzero(3B) is(3B)
frame grabber fg_blank(3A)
oddf(1) report number of free
bootheader(4)

format

aux_break(3A) generate a
intro(3B) introduction to
Iprm(1) remove jobs from the
Ipr(1)

printcap(4)

program lpg(1)

bzero(3B) fIs(3B) bit and byte/
set the mode of a frame

get the mode of a frame
fg_priority(3A) determine frame
sni_rxw(3N) receive a data
sni_txw(3N) transmit a data

asynchronous I/0 €pio(l) ... cisesenininns scpio(l)
asynchronous I/O on a CSI portccovvevcveneriinnninnee csi_cancel(3A)
asynchronous I/0 on a PDI port pdi_cancel(3A)
asynchronous 1/0 on a SIF channel sif_cancel(3A)
asynchronous I/O on an RLE/ rle_cancel(3A)

asynchronous request COmpletioncevvevnnnresssrens xio_notify(3A)
AUMDULES .ot vernennens FCS(1)
aux_break(3A) generate a break on aux_break(3A)
aux_cancel(3A) cancel outstandingocevvveverennee aux_cancel(3A)
aux_cancel_modem(3A)cancel modem aux_cancel_modem(3A)

aux_close(3A) close a serial port
aux_modem(3A) aux_modem_nw(3A) ...
aux_modem_nw(3A) get modem change

.............. aux_close(3A)
....... aux_modem(3A)
... aux_modem(3A)

aux_open(3A)open a serial POrtccoeveeeceecerinrennenne aux_open(3A)
aux_rawrd(3A) aux_rawrd_nw(3A) ..o aux_rawrd(3A)
aux_rawrd_nw(3A)read data withcccccovercrreeecne aux_rawrd(3A)
aux_read(3A) aux_read_nw(3A) readc.ccocoeureururerenne aux_read(3A)
aux_read_nw(3A)read data fromacoecvevevvererenrerenns aux_read(3A)
aux_write(3A) aux_write_nw(3A) aux_write(3A)
aux_write_nw(3A)writedatatoa aux_write(3A)
DACKUP oreieiiririiiecerce e ieeeesennes sereversessnssesnsasessessensensses backup(l)
backup tape vmsbackup(1)
backup(l) incremental file system .. backup(l)
backup(4) dumpdates(4)couvveveriercrnrerrerensnsrersesesesesernenenes backup(4)
batch limits and shell Strategycovvvieniivivrccrunenne qlimit(1)
DAtCh FEQUESE ...cvivriiivicii et et eaes s qsub(1)
bemp(3B) bzero(3B) IS(3B) bit .v.vviceeecrieencrrenieenenennns bstring(3B)
becopy(3B) bemp(3B) bzero(3B) . . bstring(3B)
DEAULMET .ot eaes ab(1)
better random number gEneratoroovveveveeeevnssenireneinne random(3B)

bind a name to a socket bind(2B)

bind(2B) bind a name to a socket bind(2B)
bit and byte string Operationscocecveceveeemvenceneierrecnens bstring(3B)
blank the output signal of thececorvviiviicniniiciniians fg_blank(3A)
blocks and i-nodes on an OPHCal/o.ovvvireinieesencrncenennens oddf(l)
boot file header format bootheader(4)
bootheader(4) boot file header bootheader(4)
break on a serial port aux_break(3A)
BSD Hlibrary functionsccccoeuveeectreensresesserssnesssenssesnnnes intro(3B)
BSD line printer spooling queue Iprm(1)
BSD offline printccoviunnens Ipr(1)
BSD printer capability database . printcap(4)
BSD spool queue examination Ipq(1)
bstring(3B) bcopy(3B) bemp(3B)oevvinniirincnncenireceneeecnnn bstring(3B)
buffer fg_tbmode(3A)cccrreerrirmnicieiereneenineerennns tg_fbmode(3A)
butfer fg_fbstat(3A) ... fg_fbstat(3A)
butfer output priority of the/ccuveveiriviiiiicicniciines tg_priority(3A)
butfer ., .. sni_rxw(3N)
BULTEE oot ... $Ni_txw(3N)

2 CLIXPROGRAMMER'S & USER’S REFERENCE MANUAL

-~

g

0

)

()

()

Permuted Index

scestores(1)

/read data with error

values between host and network
bzero(3B) tfs(3B) bit and
ntohl(3B) ntohs(3B) convert/
bstring(3B) becopy(3B) bcmp(3B)
ce(l)

or terminate FORTRAN 1/O from
data returned by stat system
intro(2) introduction to system
CRM utility for monitoring system
CSl port csi_ccan(3A)

on a GPIB/ gpib_cancel(3A)
serial port aux_cancel_modem(3A)
[/O on a CSl port csi_cancel(3A)
1/0 on a PDI port pdi_cancel(3A)
1/0 on a SIF/ sif_cancel(3A)

1/0 on an RLE/ rle_cancel(3A)
serial port aux_cancel(3A)
requests on a CSI/ csi_ucan(3A)
coprocessor fpe_cancel_dma(3A)
printcap(4) BSD printer

/Intergraph software

software certification/

disk files or/ odchown(l)
/aux_modem_nw(3A) get modem
yppasswd(l)

chmod(1l)

chown(1) chgrp(1)

res(l)

aux_cancel_modem(3A) cancel modem
disk files or/ odchgrp(l)

optical disk files or/ odchmod(1)
kbmap(l)

kbmap(2I)

rename(2B)

cnv_close(3A) close a CNV
cnv_open(3A)opena CNV
outstanding requests on a GPIB
gpib_close(3A) close a GPIB
send commands to a GPIB

issue a local lockout to a GPIB
gpib_open(3A) open a GPIB
perform a parallel poll of a GPIB
an IFC operation on a GPIB
gpib_remote(3A) put a GPIB
nlf_ciose(3A) close an NLF
nif_open(3A) open an NLF

build RCS file from SCCS file woovvniviviieiriiiiniiiiienins scestores(1)
byte from a serial port aux_rawrd(3A)
byte order /ntohs(3B) convert bytcorder(3B)
byte string operations /bemp(3B) ..o bstring(3B)
byteorder(3B) htonl(3B) htons(3B)cccccovvvvnrrvnnne byteorder(3B)
bzero(3B) tis(3B) bit and byte/covieiiieiiiiiiiine bstring(3B)
CCOMPILET wovivrriiiiie et cc(l)
C /t77uninitio(3F) initialize t77initio(3F)
call stat(5) .ooovvvvirirvieiieiiienienns .. stat(5)

calls and error numbers
calls and faults watcher(l) ...
cancel a specific command ona ..

« INtro(2)
.. watcher(1)
o CSi_ccan(3A)

cancel all outstanding requestsc.ccovvvveeeerinenns gpib_cancel(3A)
cancelmodem change state on acc.c.... aux_cancel_modem(3A)
cancel outstanding asynchronouscccoeevvennnes csi_cancel(3A)
cancel outstanding asynchronouscoooeeeeeen. pdi_cancel(3A)

cancel outstanding asynchronous
canceloutstanding asynchronous ...

.. sit_cancel(3A)
.. rle_cancel(3A)

canceloutstanding readon a aux_cancel(3A)
cancel unsolicited Statuscoovvvveeecnincincniieiiine csi_ucan(3A)
cancelwrite request to an FPE ... fpe_cancel_dma(3A)
capability databaseoooveeriniiieiciinin printcap(4)
CC(1) € COMPIIET oottt ce(l)
certification documentation file ... certnote.com(4)
certnote.com(4) Intergraph ... certnote.com(4)
change file ownership of opticalccccorivriiinrenncnn odchown(1)

change from a serial port aux_modem(3A)
change login password in YP . . yppasswd(l)
change mode ..o chmod(1)
Change OWNET OF GIOUP ..cocoenmiicriiiiicini s chown(l)
change RCS file attributes res(l)
change state on a serial portccocceveeunnne aux_cancel_modem(3A)
change the file group of opticalcocccvinnininnivnininn odchgrp(l)
change the file protection of ... odchmod(1)
change the keyboard layouto kbmap(l)
change the keyboard layout ..o, kbmap(2I)
change the name of a filecooveiiiiniincciii rename(2B)
ChANNEL ..o i cnv_close(3A)
Channel ... cnv_open(3A)
channel /eancel all ..o gpib_cancel(3A)
channel gpib_close(3A)

... gpib_cmd(3A)
. gpib_lockout(3A)

channel /gpib_cmd_nw(3A)
channel gpib_lockout(3A) ...

Channel weciine gpib_open(3A)
channel gpib_ppreq(3A) .ooooveennieniencniienis gpib_ppreq(3A)
channel gpib_reset(3A) conduct ..oovvvvvcinninnnienans gpib_reset(3A)
channel in a remote Stateoovvvevevirvenvinie s gpib_remolc(3A)
ChANNEL v nlf_close(3A)
ChANME] (oo nlf_open(3A)

PERMUTED INDEX 3

Permuted Index

gpib_clear(3A) cleara GPIB
asynchronous 1/0 on an RLE
rle_close(3A) close an RLE
rle_open(3A) open an RLE
establish parameters tor an RLE
asynchronous I/0 on a SIF
sif_close(3A) close a SIF
sif_open(3A) open a SIF
establish parameters for a SIF
already in use ucppri(2l)
ci(l)

co(l)

chown(l)

group

reselean(l)

gpib_clear(3A)

ucpclr(2l)

clh(4) Intergraph network

clh(1) Intergraph network
clearinghouse management program
clearinghousc database

object and property
ypprot_err(3R) YP

shell (command interpreter) with
getcpuid(2I) return

processor type truth/ machid(1)
utd(1) copy between MS-DOS and
DNP remote login DECnet or
crm(1)

cnv_close(3A)

sni_close(3N)

csi_close(3A)

gpib_close(3A)

pdi_close(3A)

aux_closc(3A)

sif_close(3A)

nlf_close(3A)

rle_close(3A)
cnv_close(3A)close a
cnv_open(3A)open a

syntax csh(l)a shell

netcp(1) DNP copy
csi_ccan(3A) cancel a specific
/execute the specified

channel Or devicevvvverieiiiier e gpib_clear(3A)
channel /cancel outstandingcoocovevveoniieceeiecninennennn, rle_cancel(3A)
channelcccivicniicenncane. .. tle_close(3A)
channel tle_open(3A)
channel rle_setup(3A) rle_setup(3A)
channel /cancel outstandingccccoviververervernirenenan sif_cancel(3A)
ChANNEL ... s sif_close(3A)
channcl sif_open(3A)
channel sit_setup(3A) sit_setup(3A)
checkif a UCP priority is uCppri(2l)
check in RCS revisionscvvveeeciveveernsieseseseens ererreerrnre e ci(l)
check 0ut RCS 1eVISIONS ...ccocceriictrininiiirenrieereeiie et co(l)
chgrp(1) change owner or group . chown(1)
chmod(1) change MOdecocovvvinevimineinnseeere s chmod(1)
chown(1) chgrp(l) change owneror chown(l)
ci(1) check in RCS reviSionsc.ccoevvevieieceveicnin e ci(l)
clean up Working filescoccvviivieneninnieenceecese resclean(l)
cleara GPIB channel or device .. gpib_clear(3A)
clear process UCP PHOTILY -..cvvvrvennvoeevvessiseess s seeeseseeens ucpelr(2l)
clearinghouse database ... clh(4)
clearinghouse management PrOgramoceeuerecererseernrerensennees clh(l)
clh(1) Intergraph network ... veeene ClR(1)
clh(4) Intergraph NEWOTKc.eveveceviieerrrrreerinssnnninseissniesess clh(4)
clh_vbyop(3N)lookup value byccccevcmvvermecrrrnccenes cth_vbyop(3N)
client interfac /yperr_string(3R)ccoeevrvvemrercrrveucrverennnnnns ypeint(3R)
C-like syntax cSH(1) @ .cvvvvvcverererrnee e csh(1)

CLIPPER processor identifier .
clipper(1) ns32000(1) vax(l) get

... getepuid(2I)
... machid(1)

CLIX dUUu(1) vt ccissr st sen s sae e enes diu(l)
CLIX node. SethoSt(L) .ccccevuvieveriieririrereceee et eerenseesens sethost(})
CLIX Resource Monitor .. crm(l)
closea CNV channmelcccoeevrveininnnreinnniseinnennnns cnv_close(3A)
ClOSE A CONNECHON .vvvvvvereriirrcecti s sni_closc(3N)
Close a CSEPOI . csi_close(3A)
closca GPIB channel gpib_close(3A)
closea PDI port «... pdi_close(3A)
closea serial Portvcievininininnne ... aux_close(3A)
close a SIF channelc.ccccoocuvevennee ... Sif_close(3A)
closean NLF channelccovvuvcveceeneerennecesnnsrnnennenns nif_close(3A)
closean RLE channelcccooecvevrervninienceririrnse e, rle_close(3A)
CNV channel cnv_close(3A)
CNV channel cnv_open(3A)
cnv_close(3A) close a CNV channel cnv_close(3A)
cnv_open(3A)open a CNV channelccovveeneirniennns cnv_open(3A)
co(1) check out RCS TeVISIONSccocceriernerermnninerenenssensesensessinns co(l)
(command interpreter) With C-liKeccvuvivrrrerverrenrenrivenieanninns csh(l)
COMMANG ...viviniirititiitirenis et e ebar e sss et renenaee netcp(l)
command on a CSI POrtccvevcrvievriennnneseeree e csi_ccan(3A)
command ON TEMOLE SYSIEMcevrrurirnverrererrnssensernseses fmu_rcmd(3N)

4 CLIXPROGRAMMER'S & USER'S REFERENCE MANUAL

()

0

()

¢

Permuted Index

csi_cmd(3A) csi_cmd_nw(3A)send
/shell, the standard/restricted
rcmd(1) remote

returning a stream to a remote
return stream to a remote

test(1) condition evaluation
contents on a/ netls(1) DNP

or more files netmv(l) DNP
netrm(1) DNP

remote printers netlpr(1) DNP
intro(1) introduction to

directory used by optical disk
directory used by optical disk
gpib_cmd(3A) gpib_cmd_nw(3A) send
output a.out(4)

as(l)

relocation information for a

1d(1) link editor for

socket(2B) create an endpoint for
/esi_death_nw(3A) wait for a CSI
/introduction to Intergraph
resdiff(1)

Ac(1) Ada

cc(h)C

77(1) FORTRAN

pe(l) Pascal

rpegen(1)an RPC protocol

of an asynchronous request
compress(1) uncompress(1) zcat(1)
compress and expand data
test(1)

notification for a GPIB SRQ
device gpib_spreq(3A)

GPIB channel gpib_reset(3A)
master(4) master

errord.rc(4) error log

JBCFG(4) optical disk jukcbox
optical disk standalone
jbconfig(1) report the

response of a/ gpib_ppconf(3A)
sni_connect(3N)

on a socket

server /fmu_disconnect(3N)
getpeername(2B) get name of
socketpair(2B) create a pair of
accept(2B) accept a

connect(2B) initiate a

shut down part of a full-duplex
sni_accept(3N) accept a

command packets to a CSI port ... csi_cmd(3A)
command programming languageoocovvereereinveeniniienonens ksh(1)
COMMEANG .ieeiiiiiririiiirie st sres s remd(l)
command /ruserok(3B) routines foroccoevininninne remd(3B)
command rexec(3B) rexec(3B)

command test(1)

command that lists the directory netis(1)
command that moves Or IENANIES ONEocervevervenieiverierenns netmv(l)
command that removes filesccccevererivincciiininnnnnn, netrm(1)
command to print file(S) 0Ncovviivvereiiie netlpr(l)
commands and application programsceecvveninrieenne intro(1)

commands /set the current default ... w 0ded(1)

commands /the current default 0dpwd(l)
commands to a GPIB channel gpib_cmd(3A)
common assembler and link editorccoovvviiiinnenninnn a.out(4)

common assemblercevrinnns e @8(1)
common object file 110C(4)oevriniiiiiniiiier e, reloc(4)
common 0bJect flEscccveiiieiiinininriee ld(1)
COMIMUNICAON cevoreeeritrierieiriie sttt s socket(2B)
communication to fail ... oo, csi_death(3A)
COMMUNICations ENVIroONMEN!coovveveiirceienieiienrneniannen intro(3N)
compare RCS 1evisionscceriniiiiceernnineiniienns resdiff(l)
COMPHIET 1.ovieireic ettt s ac(l)
compiler ... Lee(l)
compiler ... £77(1)
COMPIIET ..ottt e b pe(l)
COMPIIET oot e rpegen(1)
completion /NOtify a ProCessooevvverernivinessrsvennnne xio_notify(3A)
compress and expand dataoeeernienninniienine, compress(l)

. compress(1)
-~ .. test(l)
gpib_service(3A)

compress(1) uncompress(1) zcat(1) ..
condition evaluation command .
condition /requestccveueereene

conduct a serial poll of a GPIBcccoeviveinieinnnnne gpib_spreq(3A)
conductan IFC operation on ac.cocevvernreeccnnnnns gpib_resct(3A)
configuration databasec.cvvvminnnenniinie, master(4)
€onfiguration filecoocveivceninien, errord.re(d)
configuration fileooveveveriinrinineene < jbetg(4)

configuration file STANDCFG(4) standclg(4)
configuration of the JuKeboXesoovevrnenircrvccninns jbconfig(h)
configure the paraliel poll gpib_ppconf(3A)
connectto a server program sni_connect(3N)
connect(2B) initiate a connection connect(2B)
connect/disconnectto remote FMU . fmu_connect(3N)
CONNECIEA PEET .uvvvrviiiririsirrrressrrsessas e getpeername(2B)
€ONNECtEd SOCKELS vvvvrncvreiecrrcenieeiiiiiressrssersniaens socketpair(2B)

connection on a socket . accept(2B)
CONNECLiON 0N @ SOCKEL .oeeverrimiiirinirisieirrereeienere e conncct(2B)
connection shutdown(ZB)cccccevvvevinninnencinnnennnens shutdown(2B)
CONNECHION ..ovvvriiteicnnseeriserserescencrsoncsisnsnesssseneres sni_accept(3N)

PERMUTED INDEX 5

Permuted Index

sni_close(3N) close a
listen(2B) listen for

netmsg(1) send a message to
for implementation-specific
Is(1) list

dis(l) list

directorics odls(1) list
command that lists the directory
to_flop(1) fr_flop(1)

fentl(2) file

return a GPIB device to local
tentl(S) file

ncp(l) DNP network

rte(1) remote tape
rtc_notify(3N) remote tape
swap(2l) swap space
/plt_ctrl_nw(3A)send a

port /rplt_ctrl_nw(3A)send a
xio_wflor(3A) asynchronous event
/htons(3B) ntohl(3B) ntohs(3B)
cancel write request to an FPE
allocate an FPE

Adeallocate an FPE

write data to an FPE
fpe_did_load(3A)load an FPE
{pe_did_unload(3A) unload an FPE
dtu(l) utd(1)

netcp(1) DNP

cpio(l)

cpflop(1)

odep(l)

rep(1) remote file

core(4) format of

out

and asynchronous I/O
CRM utility for monitoring
sockets socketpair(2B)
mkshlib(1)
communication socket(2B)
odmkdir(1)

process monproc(1)

time topcpu(l)

activity topio(1)

regions monregion(1)

files showfiles(l)

faults topfault(1)

physical and virtual/ topmem(1)

CONNECHION ..ot ceenreiereneneseane e reeseaensane ... sni_close(3N)
connections on a Socketc.cccen... e e listen(2B)
console devices on the local XNS/ ... netmsg(l)
constants limits(4) file headerccovvreiiccvnrennceennnenns limits(4)
contents of directory ceeen IS(E)
contents of MS-DOS diFeCtoryccovvvrieviincencirerininesrenrerenane dis(1)
contents of optical diskc.... ... odls(l)
contents on a remote system /DNP ..o, netls(l)
continuous floppy disk fETSccc. vivvviiveriinniiviseenieeninee to_flop(1)
COMITOL et b ese st st st sbsnessassane fentl(2)
control gpib_local(3A) .. . gpib_local(3A)
control options vernnennns fCRLS)
CONLTOl PIOZTAM ..ottt ersnbnaeestenen nep(l)
COMITOL 1ottt e s aaes re(l)

control /ric_deallocate(3N) rtc_allocate(3N)
[&0) 114 () RO ... sSWap(2l)
control word to the parallel port plot_ctri(3A)
control word to the ROP parallelccceevininnnee plot_ctrl_rop(3A)
control /xio_wfland(3A) ... xio_wailfr(3A)
convert values between host and/o.oovvoveirveernnennnn, byteorder(3B)
coprocessor fpe_cancel_dma(3A) tpe_cancel_dma(3A)
coprocessor fpe_coproc_ailoc(3A) tpe_coproc_alloc(3A)

COPIOCESSOF wuunririrniesersneniaesreiseeseensninenens tpe_coproc_dcalloc(3A)
coprocessor /fpe_write_dma_nw(3A)ccoeevee. fpe_write_dma(3A)
coprocessor image fpe_did_load(3A)
COPIOCESSOT IMAZC wovvvrrrirririiinisirn s serssssssenes fpe_did_unload(3A)
copy between MS-DOS and CLIXooviiiiinciennieenniennneieees diu(l)
copy commandccceoiniienns . netep(1)
copy filc archives in and out cpio(1)
copy floppy diskceuue..e. ... cpflop(l)
copy OpHCAl disK fIeS w.....ovcviiiiieiec e odep(h)

COPY ottt et e ettt st bt rep(l)
core image BIC i ... core(4)

core(d) format of core image file core(4)
cptlop(1) copy floppy disk cpflop(l)
cpio(1) copy file archives in andccoeveenrveernnenesisrensernons cpio(l)
cpio(1) scpio(1) Multibuferingovevvvcvivenerrenneevesrecerens scpio(1)
CPU time toPCPU(L) wvvvvviiiiiiiiniiisiiieirceneere s ceeere e topepu()
create a pair 0f CoNNECEdvecveveiercsniniencereererennineene socketpair(2B)
create a shared library mkshlib(1)
create an endpoint forcone.. ... socket(2B)
create optical disk directories odmkdir(1)
CRM utility for mONitOANg Acouvveccveivecrnerccrrenrecerernerans monproc(l)
CRM utility for monitoring CPUccocoeuvereemerninenssnecnnnns topepu(l)
CRM utility for monitoring I/O veccevvecreeenneenscrnnirecssonsenn topio(1)
CRM utility for monitoring memory monregion(1)
CRM utility for monitoring open showfiles(1)
CRM utility for monitoring pageocovveriveerevcureresricrane toptault(l)
CRM utility for mOnitoringoveevivieimiriniivcnerenicrianenne topmem(1)

6 CLIXPROGRAMMER’S & USER’S REFERENCE MANUAL

0

2

Q)

O)

)

O)

Permuted Index

process memory/ showmemory(1)
activity topsys(1)

calls and faults watcher(l)
parameters monparamy(1)

interpreter) with C-like syntax
/esi_death_nw(3A) wait for a
outstanding asynchronous [/O on a
cancel a specific command on a
csi_close(3A) close a

send command packets to a
receive delayed status from a
csi_open(3A) open a
csi_reset(3A) reset hardware on
unsolicited status requests on a
receive unsolicited status from a
csi_status(3A) read the
asynchronous I/0 on a CSI port
command on a CSI port

command packets to a CSI port
packets to a CSI/ csi_cmd(3A)
wait for a CSI communication to/
communication to/ csi_death(3A)
status from a CSI port

CSl pont

DR11 status lines

status requests on a CSI port
receive unsolicited status trom/
unsolicited status/ csi_ustat(3A)
program

optical disk/ odcd(1) set the
optical/ odpwd(1) display the
setdomainname(3R) get/set name of
get/set unique identifier of
sethostname(2B) get/set name of
hostname(1) set or print name of
domname(1) set or display name of
[recover(4) state(4) status
sni_rxw(3N) receive a

sni_txw(3N) transmit a

zcat(1) compress and expand
/gpib_read_nw(3A) read
pdi_read(3A) pdi_read_nw(3A) read
pdi_ifb(3A) pdi_ifb_nw(3A) move
aux_read(3A) aux_read_nw(3A) read
/pdi_write_nw(3A) write
/sif_mem_pipe_nw(3A) transfer

CRM utility for mOonitoningccoevveveernencerennnns showmemory(1l)
CRM utility for monitoning SyStemccoccceenrnenicrsinrene topsys(1)
CRM utility for monitoring Syste€mccoevemnieveensinnns watcher(1)
 CRM utility for monitoring system . .. monparam(1)
crm(1) CLIX Resource MORItorvereeeveccenvesroneisinnnnenns crm(l)
csh(l)ashell (command csh(l)
CSI communication to failcoccviiviiiinininininnnns csi_deuth(3A)

CSI port csi_cancel(3A)cancelcoorinvenininnene csi_canccl(3A)
CSl port csi_ccan(3A) ... ¢si_ccan(3A)
CSIPOIt ot csi_close(3A)
CSI port jcsi_emd_nW(3A) .o csi_cmd(3A)
CSI port csi_dstat_nw(3A) ... csi_dstat_nw(3A)

CSIport ..cvvvevererne .. csi_open(3A)
(@03 11 73) ¢ OO ... csi_reset(3A)
CSl port csi_ucan(3A)cancel ..o, csi_ucan(3A)
CSI port /esi_ustat_nW(3A) ..o csi_ustat(3A)

CSI port DR11 status lines
csi_cancel(3A) cancel outstanding €si_canccl(3A)
csi_ccan(3A) cancel a specific ¢si_ccan(3A)
csi_close(3A) close @ CSI portccccucevcerevninniniivcniens csi_close(3A)
csi_cmd(3A) csi_cmd_nw(3A)sendoooiiiciiininenne csi_cmd(3A)
csi_cmd_nw(3A)send command csi_cmd(3A)
csi_death(3A) csi_death_nw(3A) csi_death(3A)
csi_death_nw(3A)wait fora CSIccoerirrvinirciinnee csi_death(3A)
csi_dstat_nw(3A)receive delayed ..., csi_dstat_nw(3A)
csi_open(3A)open a CSIPOrtovvcenveeniciiniiiinn csi_open(3A)
csi_reset(3A) reset hardware on €si_resel(3A)
csi_status(3A) read the CSI port .. . csi_status(3A)
csi_ucan(3A) cancel unsolicited ¢si_ucan(3A)
csi_ustat(3A) csi_ustat_nw(3A)... ... csi_ustat(3A)
csi_ustat_nw(3A)receive csi_ustat(3A)

..... CSi_status(3A)

cumail(1) DNP mail transportcoeevvreeeerensrinerenescnseinens cumail(l)
current default directory used Y ...coeeeenninieneisceninninins odcd(l)
current default directory used byc.oovvnniciinnnnnninnns odpwd(1)
current domain getdomainname(3R) .. getdomainname(3R)

current host /sethostid(2B) ..coveueieivenciiiiisnseninennne gethostid(2B)
current host gethostname(2B) . . gethostname(2B)
current hOSt SYSEEM ..oveviveinnniineieeieesesne s hostname(1)
current YP domain ... domname(1)
daemon directory and file formats ... statmon(4)
databuffer sni_rxw(3N)
databuffer sni_txw(3N)
data compress(1) uncompress(l) o eeicseceecniniisens compress(l)
data from a GPIB devicecovvvevinicrneniniin, gpib_read(3A)
data from a PDI port into memorycooeevereencenens pdi_read(3A)
data from a PDI port to a Windowcccoecirivnniccninens pdi_itb(3A)
data from a serial portcc.co.. ... aux_read(3A)
data from memory to a PDI port .. . pdi_write(3A)
data from memory t0 PiPecveverreerivrireucuniunene sif_mem_pipe(3A)

PERMUTED INDEX 7

Permuted Index

/sif_scan_mem_nw(3A) transfer
/sif_scan_pipe_nw(3A) transfer
stat(5)

for code execution in the process
/gpib_write_nw(3A) write
Jaux_write_nw(3A) write
/tpe_write_dma_nw(3A) write
/pht_data_nw(3A) write
/rpit_data_nw(3A) write
types(S) primitive system

serial/ /aux_rawrd_nw(3A) read
ypfiles(4) the YP

Intergraph network clearinghouse
file newaliases(1) rebuild the
hosts(4) host name

host equivalency name
master(4) master configuration
networks(4) network name

BSD printer capability
protocols(4) protocol name
rpe(4) RPC program number
services(4) service name
/dbm_error(3B) dbm_clearerr(3B)
ypeat(1) print values in a YP
gettimeofday(2B) get

/dbm_nextkey(3B) dbm_error(3B)
ndbm(3B) dbm_open(3B)
/dbm_fetch(3B) dbm_store(3B)
/dbm_firstkey(3B) dbm_nextkey(3B)
/dbm_open(3B) dbm_close(3B)
/dbm_store(3B) dbm_delete(3B)
/dbm_dclete(3B) dbm_tirstkey(3B)
dbm_fetch(3B)/ ndbm(3B)
/dbm_close(3B) dbm_tetch(3B)
fg_dealioc(3A)
fpe_coproc_dealloc(3A)

adb(1) absolute

dbg(1) symbolic

sdb(1) symbolic

scthost(1) DNP remote login

disk/ odcd(1) set the current
odpwd(1) display the current
csi_dstat_nw(3A) receive
odrmdir(1)

odrm(1)

qdei(l)

fixes.com(4) Intergraph software
disktab(4) disk

data from scanner to memory sif_scan_mem(3A)

data from scanner to pipe sif_scan_pipe(3A)
data returned by stat system call ... stat(5)
datascction exedata(2l) SEtUp ..ot e exedata(2l)
datato a GPIB device gpib_write(3A)

data to aserial Port ... aux_write(3A)
data to an FPE coprocessor fpe_write_dma(3A)
data to the parallel port ... plot_data(3A)
data to the ROP parallel portccocevveecrivnerrennnnnen. plot_data_rop(3A)
AATYPES <ovviriintirieiiti et et types(5)
data with error byte froma aux_rawrd(3A)
database and direCtory SIrUCIUTEc.ocvevevrerrrcrereirivenieesnenens ypliles(4)
database CHh(4) ...t clh(4)
databasc for the mail aliasescovcevviiiirecinnnienne newaliases(1)
ALADASE vttt e s hosts(4)
database hosts.equiv(4) hosts.equiv(4)
QALEDASE 1ot master(4)
AAUADASE .ooviiiviiirieiiecree e e aaes networks(4)
database printeap(d) oo printcap(4)
database ... protocols(4)
AADASE ... s pe(4)
databasc . services(4)
database SUBFOULINESvvivieiiiic e ndbm(3B)
database ... ypeat(1)
datc and time gettimeofday(2B)
dbg(1) symbolic dCDUEEETovovvvvvirieiiicci e dbg(l)
dbm_clearerr(3B)database/ ...t ndbm(3B)
dbm_close(3B) dbm._fetch(3B)/ ndbm(3B)
dbm_declete(3B)dbm_firstkey(3B)/ ndbm(3B)
dbm_error(3B)dbm_clearerr(3B)/ ndbm(3B)
dbm_fetch(3B) dbm_store(3B)/ccccveervereeeenrrrnernverevernnns ndbm(3B)
dbm_firstkey(3B)dbm_nextkey(3B)/cccoevrerrerrererrinerencreenns ndbm(3B)
dbm_nextkey(3B)dbm_error(3B)/ . .. ndbm(3B)
dbm_open(3B) dbm_close(3B) ... ndbm(3B)
dbm_store(3B)dbm_delete(3BY/ccvvvvivervceerreninirarncnns ndbm(3B)
deallocatea frame grabbercocvvenivcivececnnnnnnes fg_dealloc(3A)
deallocatean FPE coprocessor ... fpe_coproc_dealloc(3A)
AEDUZECT 1ttt e adb(l)
debugger .. . dbg(l)
AEDUGECT vt et sdb(1)
DECnct or CLIX ROAC. ..vuviieiviiriiiennisereecr e sethost(l)
default directory used by OPHCAlc..evceeveerercereeeceinieeisrnieas oded(l)
default directory used by Optical/ccoevvvivveniiiiinivinennene odpwd(1)
delayed status froma CSI port ... csi_dstat_nw(3A)
delete optical disk directories ... «o.. 0drmdir(1)
delete optical disk filescccovveerirrvnronenennsnnneeneinnsinne odrm(1)
delete or signal NQS requESLSccoveeveremneerreerineeserennsennneens qdel(1)
delivery documentation filecocvvvovrerermnernenrisenseerenne fixes.com(4)
desCription filevmiviiiviriiine it seses s disktab(4)

8 CLIXPROGRAMMER'S & USER'S REFERENCE MANUAL

()

0

O

()

O)

Permuted Index

FORTRAN/ fnum(3F) return the file
unit associated with a file
getdtablesize(2B) get

priority of the/ fg_priority(3A)
window size fg_size(3A)

clear a GPIB channel or

parallel poll response of a GPIB
read data from a GPIB

conduct a serial poll of a GPIB
gpib_trigger(3A) trigger a GPIB
write data to a GPIB
gpib_local(3A) return a GPIB
/send a message to console
/unconfigure a GPIB

qdev(1) display the status of NQS
ratfor(1) rational FORTRAN
group of optical disk files or

of optical disk files or

of optical disk files or

list contents of optical disk
odmkdir(1) create optical disk
rename optical disk files or
odrmdir(1) delete optical disk
rm(1) rmdir(1) remove files or
/recover(4) state(4) status dacmon
/DNP command that lists the
dis(1) list contents of MS-DOS
Is(1) list contents of

ypfiles(4) the YP database and
odcd(1) set the current default
/display the current default
default directory used by optical
default directory used by oplical
cpilop(1) copy floppy
disktab(4)

odls(1) list contents of optical
odmkdir(1) create optical
odrmdir(1) delete optical

name with an existing optical
introduction to the optical
odcp(1) copy optical

odrm(1) delete optical

/change the file group of optical
the file protection of optical
/change file ownership of optical
odmv(1) rename optical
fr_flop(1) continuous floppy
format(1) floppy

fisinode(4) structure of an FFS

descriptor associated With @ ..., fnum(3F)
descriptor /[FORTRAN logicalcocoeviiinimnnnerinnrenins fdtounit(3F)
descriptor table Sizeoevievninnieicniinnin getdtablesize(2B)

determine frame buffer output fg_priority(3A)
determine the frame grabber ..., fg_size(3A)
device gpib_clear(3A)ccocovivirrniviiiiiniieiiinnn gpib_clear(3A)
device /configure the gpib_ppconf(3A)
device /gpib_read_nwW(3A)ccccveviniirennineiineninnes gpib_rcad(3A)

device gpib_spreq(3A) gpib_spreq(3A)
EVICE .ottt gpib_trigger(3A)
device /gpib_write_nW(3A)cccoeriiiriinneiiciinns gpib_write(3A)
device to local control gpib_local(3A)

devices on the local XNS networkccoeeveneviiiiiiiennns netmsg(l)
device’s parallel poll response gpib_ppucont(3A)
AEVICES oottt et e e qdev(l)
QHALECE .oonvviiiinririi e ratfor(1)

directories /change the file ...
directories /the file protection ..

... odchgmp(l)
. odchmod(1)

directorics /file ownershipcocoovvienenns . odchown(1)
directories 0dIS(1) .covvvvrvrecminiininciin s odls(1)
QUTECLOTIES ...covevveerienrerceccaie i esscenss et odmkdir(1)
directories 0dMV(1)ccoevvvvrivirriniininin odmv(l)
QIFECLOTIES 1.vvvc vt odrmdir(1)
QITECLOTIES ..viviimiieviisiiniis i e rm(1)
directory and file formatsccoccovnrriiciniicnnns . statmon(4)
dircctory contents On a remMote/covevevreerrnnecroneneninenanns netls(1)

[11 (0 10] o OO L dis(l)
QITECIOTY wotiiirivnirirerinrenrirer s sne st sssrs st ettt naes Is(1)
directory SINUCHUTCcooviivieiitiritere sttt et ypliles(4)
directory used by optical disk/ocueivveviininiininneninns odcd(l)
directory used by optical disk/ adpwd(l)
disk commands /set the CUITENtocivivnririiiniciinnine oded(l)
disk commands /the CUITENLcocrvverererrinnerirersnniiissenns odpwd(1)
BISK vt s cpflop(l)
disk description file . disktab(4)
disk directories ceeen OdIS(1)
disk directories odmkdir(1)
GiSK dITECLOTIES ...vovnvencicrenecrinci st s sreenaes odrmdir(1)
disk file /associate anotheroeecvcreeeiiiininininnes odin(l)
disk file system odintro(1) odintro(1)
diSK fIlES vuvviviiriniiiieniiiiere bt odep(l)
disk filescooennnne <. odrm(1)
disk files OF dif€CIOTES ...covvverriverriervinsiiiinsnienisienes odchgrp(1)
disk files or directories /changeooevvivnnviinnnnns odchmod(!)
disk files O dire€Ctoriescvvurivvireniieririiinesinnnens odchown(l)
disk files or dir€CtOrICS ...ovvviirnriiiriniinii e, odmv(l)
disk filters to_flop(1) to_flop(1)
disk formatting utility . .. format(l)
diSK I-N0dE ..vvvvricricrciiiiiiis e flsinode(4)

PERMUTED INDEX 9

Permuted Index

JBCFG(4) optical
diskpar(4)

file STANDCFG(4) optical
format

queue used by/ mailq(1)
mailstats(1)

domname(1) set or

netaddr(1)

directory used by/ odpwd(1)
qdev(l)

qstat(1)

/set/report alignment trap
directory

directory contents on a/ netls(1)
one or more files netmv(l)
netrm(1)

remote printers netlpr(l)
netcp(l)

cumail(l)

nep(l)

netex(1)

node. sethost(l)

/Intergraph software certification
Intergraph software delivery

sct or display name of current YP
get/set nume of current

current YP domain
csi_status(3A) read the CSI port
and CLIX

dumpdates(4) incremental
format backup(4)

1d(1) link

common assembler and link

a new process in a virtual memory

remque(3B) insert/remove

group/ /getgrnam(3C) setgrent(3C)
/gethostent(3B) sethostent(3B)
/getnetbyname(3B) setnetent(3B)
socket(2B) create an

entry /setprotoent(3B)
/getpwnam(3C) setpwent(3C)
/getrpcbynumber(3R) sctrpcent(3R)
/getservbyname(3B) sctservent(3B)
man(1) print

fgetgrent(3C) get group file
endhostent(3B) get network host
endnetent(3B) get network

disk jukebox configuration fileo jbefg(4)
disk partition header formatccoccvvciiinininiicnincenisenens diskpar(4)
disk standalone configuration standcfg(4)

diskpar(4) disk partition headerccccecovnvrrcincnininnnn diskpar(4)
disktab(4) disk description file .. . disktab(4)
display a listing of the mailcoocvriciniiiniiiiins mailg(1)
display mail StatiStiCscocvvivvivens e mailstats(1)
display name of current YP domain . . domname(1)
display network address netaddr(l)
display the current default odpwd(1)
display the status of NQS devicescoovviiiiniinininiininnininns qdev(1)
display the status of NQS qUEUESccvvviinrinriciieieiiiienennnas gstat(1)
disposition per executable aligntrap(1)
dis(1) list contents of MS-DOScoovvvciiiiniicinienen dis(1)
DNP command that lists the netls(1)
DNP command that moves OF IENAMESe.covvveriieririvenensens netmv(1l)
DNP command that removes filescccoceervenercererereicneceen. netrm(1)
DNP command to print file(s) on netlpr(1)
DNP copy commandccoovirinniecinincnneesnnnescneees netcp(l)
DNP mail transport programc.ocvivnmicniiireninisisnesnes cumail(l)
DNP network control programceeeeeescvnnnieeeeinnneserennnes ncp(l)
DNP remote file execution utility netex(1)
DNP remote login DECnet or CLIX ...cooiivivicrinircncnincnenee sethost(1)
documentation fil€cevveciciiinciceeeee certnote.com(4)
documentation file fixes.cOM(4)ccovvivvrcvnivrenriininns fixes.com(4)
domain domname(1)ccoeccvnincriinniiininineren e domname(1)
domain /setdomainname(3R) getdomainname(3R)
domname(1)set or display name ofcoeevveiiiiiirennne. domname(l)
DRIL Status lnesococvevviveniieiniines covvivvnncissninssnienes csi_status(3A)
dtu(l) utd(1) copy between MS-DOSc.cocccvivnivninncnnnes dtu(1)
dump format backup(4) . backup(4)
dumpdates(4) incremental dUmpcovvivieriininneinnninne backup(4)
editor for common object filesvieivviiiiiiin e 1d(t)
€ditor QUtPUL A.0UL(4) ..vovvieiiiiriiiiie e a.out(4)
efficient way vfork(2B) spawn e, viork(ZB)
efl(1) Extended FORTRAN Languageccccovniineesricnninenennan, efi(l)
element from a queue insque(3B) insque(3B)
endgrent(3C) fgetgrent(3C) get .. getgrent(3C)
endhostent(3B) get network host/c.ccovveinenne gethostbyname(3B)
endnetent(3B) get network entry ... covcveerecnerieiiccies getnetent(3B)
endpoint fOr COMMUNICALON .u.vvvvvvvivenrieseiesiinci i socket(2B)
endprotoent(3B) get protocol getprotoent(3B)
endpwent(3C) fgetpwent(3C) get/ covvvenvncrninninvininnns getpwent(3C)
endrpcent(3R) get RPC entry ...t getrpcent(3R)
endservent(3B) get Service entryccevereciviiiiinnens getservent(3B)
entries in this MANVALcoviiii e man(1)
entry /setgrent(3C) endgrent(3C)cccovviveninennncsnnnninens getgrent(3C)
entry /sethostent(3B)ecovivenne gethostbyname(3B)
entry /setnetent(3B) getnetent(3B)

10 CLIX PROGRAMMER'S & USER’S REFERENCE MANUAL

()

~—r

()

()

Permuted Index

endprotoent(3B) get protocol
tgetpwent(3C) get password file
endpcent(3R) get RPC

endscrvent(3B) get service -

to Intergraph communications
hosts.equiv(4) host
/aux_rawrd_nw(3A) read data with
errord.rc(4)

errors(1)

introduction to system calls and
configuration file

generator

port pdi_setup(3A)

channel sit_setup(3A)

channel rle_setup(3A)

test(1) condition

xio_wflor(3A) asynchronous
/xio_clref(3A) xio_setef(3A)
/allocate/deallocate an

Ipq(1) BSD spool qucue

odt(l)

alignment trap disposition per
remote system fmu_rcmd(3N)
cexedata(2l) sctup for code
netex(1) DNP remote file
execution in the process data/
/associate another name with an
process

exit(2)

zcat(1) compress and
exports(4) NFS file systems being
exported

efl(1)

initialize or terminate FORTRAN/
terminate FORTRAN/ £77initio(3F)
introduction to miscellaneous

wait for a CSI communication to
CRM utility for monitoring page
for monitoring system calls and

logical unit associated with a/
tfsinode(4) structure of an
/beopy(3B) bemp(3B) bzero(3B)
volume

disk i-node

grabber

signal of the frame grabber

entry /setprotoent(3B) ... getprotoent(3B)
entry /setpwent(3C) endpwent(3C) ..., getpwent(3C)
entry /Setrpcent(3R) .ocovvvviviiviviiniiii s getrpeent(3R)
entry /setservent(3B) ..o getservent(3B)
environment /iNtroductioncccceeveveeereneveeneininesnenene intro(3N)
equivalency name database . . hosts.cquiv(4)
error byte from a serial portccoeviiiiiiiiiiininnn, aux_rawrd(3A)
error log configuration filecooovvviiriiinniiiiiens errord.rc(4)
€rror logging report GENEratorvevviiueieiniscrsrenseseeserenses errors(l)
error NUMbETS iNtro(2) ..c.coerveiiiieiiiicniinireet e e intro(2)
errord.rc(4) €ITor lOgoivenivceviinieriinieiire e errord.rc(4)

errors(1) error logging reportoeveeiieiiiniiirrienieis errors(l)
establish parameters fora PDI pdi_sctup(3A)
establish parameters fora SIFsit_setup(3A)
establish parameters for an RLE . tle_sctup(3A)

cvaluation COMMANo..vveveviierenreninierere e sereersesnseeseeeene test(l)
event control /xio_wfland(3A) xio_waitfr(3A)
event flag mask functions ..c.c.ceeveeeinininiienennn, xio_rcadel(3A)
event flag number ..., xio_allocef(3A)
CXAMINALON PIOGTAM ...cverecvriirireiiietcieiete et Ipq(1)
examine and modifies files ... od(1)

executable /SEYTEPOMc.cviiveviniiiiirieeici e aligntrap(1)

execute the specified command on .. fmu_rcmd(3N)
execution in the process data/ ... exedata(2l)
eXECUION WHILY weoeiericiiiee e netex(l)
exedata(2l) setup for COdeomvvmirerneiniiivnnrensiniirnnens excdata(2l)
existing optical disk fileocoevvininnniini odin(l)
eXit(2) _exit(2) erMINALEo.ervereverrerenrereeniiinereeresenseennes exit(2)
_eXit(2) terminate ProCessovveriemvererrmrsissssssrnsnnesnsesssnans exit(2)

expand data /uncompress(1) ... compress(1)

exportedoooveviieieiieene ... exports(4)
exports(4) NFS file systems being ...c.ooooeiveceinnnieninnnas exports(4)
Extended FORTRAN Languagecccocovvnceninincnninnnennens efi(l)
t77(1) FORTRAN COMPIIEr oovvevriiiiiiiniiicciiiniisiisencinneniens £77(1)
£77initio(3F) t77uninitio(3F) ...cccevvmivivvviniriiiriiccreene t77initio(3F)

£77uninitio(3F) initialize or {77initio(3F)
facilities INtro(5) ..c.cocevrvcrniiniiiiecie intro(5)
fail /csi_death_nw(3A) . csi_death(3A)

faults tOPLAUI(L) woevrveeiveeee toptault(l)
faults watcher(1) CRM utilitycooovevinriiiniiiiiiins watcher(l)
fentl(2) file CONLIolcoviiiiiiiiiiiiiniici s Lentl(2)
fentl(5) file cONtrol OPLioNSovvivivevvererieriiiier e fentl(S)
fdtounit(3F) return FORTRAN ..ot fdtounit(3F)
FFS disKi-N0d€oevvvriireririniiiicciici s fIsinode(4)
ffs(3B) bit and byte String/ccvvvivrreeriiieiiieneeieinns bstring(3B)
fisfs(4) format of file SyStemcccovvvrviiveievciiieiineiiccieennne fists(4)
tisinode(4) structure of an FFS ..o, fisinode(4)
fg_alloc(3A)allocate a frameooevvvneciescicvecncncnnes tg_alloc(3A)
fg_blank(3A)blank the outputc.cooovririiiiienininne fg_blank(3A)

PERMUTED INDEX 11

Permuted Index

grabber

entry /setgrent(3C) endgrent(3C)
entry /setpwent(3C) endpwent(3C)
frame buffer

frame buffer

the lookup tables of a frame/
tables ot a frame/ fg_lut_in(3A)
bufter output priority of the/
grabber to a known state

grabber window size

select the video signal types/
signal types for/ [g_video_in(3A)
start and stop video in a window
video in a/ fg_viw_start(3A)
cpio(1) copy

res(1) change RCS

certification documentation
fentl(2)

fentl(S)

rep(1) remote

core(4) format of core image
FORTRAN/ tnum(3F) return the
logical unit associated with a
disktab(4) disk description
fgetgrent(3C) get group
tgetpwent(3C) get password
crror log configuration

netex(1) DNP remote

soltware delivery documentation
aliascs(4) aliases

intro(4) introduction to

status daemon dircctory and
scestores(1) build RCS

or/ odchgrp(l) change the
group(4) group

limits(4)

bootheader(4) boot

disk jukebox configuration
kbmap(4) keyboard map

fmu(1) network

merge(1) three-way

the database for the mail aliases
with an existing optical disk

files or/ odchown(1) change
passwd(4) password

files or/ odchmod(1) change the
resfile(4) format of RCS

read(2) read from

information for a common object

tg_dealloc(3A)deallocate a framecc.ccovverevvcenrvannans fg_dealloc(3A)
tgetgrent(3C) get group fileoovvviiiiineinicneeinien getgrent(3C)
fgetpwent(3C) get password fileoovveveierieiiiiiiin, getpwent(3C)
fg_fbmode(3A)set the mode of @ cooovvevreicreiniennns fg_fbmode(3A)
tg_tbstat(3A) get the mode of a fg_fhstat(3A)

... tg_lut_in(3A)
... fg_lut_in(3A)
... fg_priority(3A)
fg_resct(3A)

fg_lut_in(3A)fg_lut_out(3A) load
fg_lut_out(3A)load the lookup
fg_priority(3A) determine frame
fg_reset(3A) force the trame

fg_sizc(3A)determine the frame oo tg_size(3A)
fg_video_in(3A) fg_video_out(3A)cccovnveririrennnn fg_video_in(3A)
fg_video_out(3A)select the videoovvevvievinicnennene fg_video_in(3A)
fg_viw_start(3A) fg_viw_Stop(3A) .coovrrrerrinrirnnnans fg_viw_stan(3A)
tg_viw_stop(3A)start and stop fg_viw_start(3A)

file archives in and out cpio(1)
AL AUMIDULES ..c.e. oot res(l)
file /Intergraph SOLtWarecc.ccevimeremreenerenennnnnnnns certnote.com(4)
filecontrolccoeeneee. C b fentl(2)
file CONLIOL OPLONS «.ovcvvivvrercieincciscnreitse e fentl(S)
Il COPY voviviriviiiiirii rep(l)
FH1E ettt st e se s e s e en e saesnssnenneeee core(4)
file descriptor associated with @ ... fnum(3F)
file descriptor /return FORTRAN . .. fdtounit(3F)
FH1€ it s disktab(4)
file entry /endgrent(3C) getgrent(3C)
file entry /endpwent(3C) .o getpwent(3C)
file errord.rC(4) v errord.rc(4)
file eXeCUtion UHLLY ... netex(l)
file fixes.com(4) Intergraph ..o, fixes.com(4)
tile for sendmail(1M) aliases(4)
(e LOTMALS oottt e e e intro(4)
file tormats /recover(4) state(4) . statmon(4)
file from SCCS file ...c.ccvvirniinininines srevicenrirsecreenrenne scestores(l)
file group of optical disk filescceccvvvvviiininiririniins odchgrp(l)
BE oo group(4)
file REAdEr £OI/ ..voviiiiiiiniinirinienti s cericrrsestnsinrere s sasseone limits(4)
file header FOrmatcovveenruvenmerecriernieceenereeeeneeseneenes bootheader(4)
file JBCFG(4) OPicalcuevrienreeveniiriciieneitinenee e jhefg(4)
file coviiririree kbmap(4)
file management utility fmu(1)
€ METLE .o merge(l)
file newaliases(1) rebuild newaliases(1)
file /associate ancther NAMEc.eoevieevreeeicnineicirencsenininniene odin(1)
file ownership of optical disk odchown(1)
fIlE v s passwd(4)
file protection of optical disk odchmod(1)
file resfile(4)
fIIE vt read(2)
file reloc(4) reloCatiONcceveeierereneniireneresrenneeaeesireeesesesaerans reloc(4)

12 CLIX PROGRAMMER'’S & USER’S REFERENCE MANUAL

()

-
~

-
<’

)

)

Permuted Index

rename(2B) change the name of a
build RCS file from SCCS

XNS server information

disk standalone configuration
Istat(2B) get

make a symbolic link to a
backup(1) incremental

mount(2) mount a

npumount(1) mount and unmount
introduction to the optical disk
restore(1) incremental

fstab(4)

mnttab(4) mounted

rmtab(4) remotely mounted NFS
tfsfs(4) format of

exports(4) NFS

ttruncate(2B) truncate a
kermit(1) kermit

fip(1) ARPANET

tftp(1) trivial

write(2) write to a

and print process accounting
find(1) find

tmu_receive(3N) reccive

ident(1) identify

link editor for common object
In(1) link

that moves or renames one or more
netrm(1) DNP command that removes
odcp(1) copy optical disk
odrm(1) delete optical disk
odt(1) examine and modifies
netlpr(1) DNP command to print
the file group of optical disk

file protection of optical disk

file ownership of optical disk
odmv(1) rename optical disk
rm(1) rmdir(1) remove
resclean(1) clean up working

and other information about RCS
CRM utility for monitoring open
fmu_send(3N) send

fr_flop(1) continuous floppy disk
find(1)

delivery documentation file
/xio_clref(3A) xio_setef(3A) event
allocatc/deallocate an event
cpflop(1) copy

fI1€ coviriir s rename(2B)
file SCCSLOICS(L) .ovovviimrrirnriiniiiii e e scestores(1)
file server.dat(4) server.dat(4)

file STANDCFG(4) optical standcfg(4)
file Statuscovceeiviiiiiinnne o Istat(2B)
file symlink(2B)c.ccocoevmvivninmnnrinicrcccieecrecreeene symlink(2B)
Gle SyStem Backupeeeveveericiiiiiiic s backup(l)
file systemcccoeeineee <o mount(2)
file system npmount(1)ccceeiiinrinivinnnniieninnes npmount(1)
file system 0dintro(1) ..o odintro(1)

file system restore ...
file systemtable

... Testore(1)
... [stab(4)

file system table mnttab(4)
file systemtableooovvviiviinii s rmtab(4)
file SYStem VOIUMEcoovvimiviriniricririciiein s ttsts(4)

file systems being exported .
file to a specified length

... exports(4)
. ftruncate(2B)

file transfercccocuune. ... kermit(1)
file transfer programoooverenviinieninininvinneinin fip(1)
file transfer Program ..o up(l)
file oo ... write(2)
files acctcom(1)search acctcom(1)
files ..ovuinnne r e find(1)
files trom a remote SyStemcoocccenvccrninncnirennes fmu_reccive(3N)
fIIES crericiircir s ident(1)

v 1d(1)
o n(l)
. netmv(1)

fIIES 1ovviireiriiiicrisie e

fIlES oot e netrm(1)
FIIES oottt odcp(l)
files .. odrm(1)

fHlES v s odt(1)
file(s) On reMOtE PrINLETSoovvviviveeeeciciieiete e netlpr(1)
files or directories /changeccoeeiiinineccciencecnnnes odchgrp(l)
files or directories /change the odchmod(l)
files or directories /change odchown(1)

files OF AIFECIOTIES ...cviverivenrrererorniverenieeeeseneesensssesseasseoe odmv(l)
£11eS OF diFECLOTIES ...ovvveveicievicirinirneerer e m(1)
fHES oviririic resclean(1)
files rlog(l) print log MESSAZESovvveriereirirerversrnreneiesiesanns rlog(1)
files showfiles(l)c.coeuerurunns ... showfiles(1)
files to a remote system fmu_send(3N)
filters 10_AOP(1) wvververeiiiiec to_flop(1)
fINA fIIES .vovviriiiiiiri find(1)
find(1) find filescovvrivvniicini e find(1)
fixes.com(4) Intergraph SOftwarecccoovvinvvvnnirinnnens fixes.com(4)
flag mask fUnCHONScoveveeeririiirec e, xio_readef(3A)
flag number /xio_deallocef(3A) xio_allocef(3A)
AOPPY disK ..oovvvvviiririiciii e cpilop(l)

PERMUTED INDEX 13

Permuted Index

to_flop(1) fr_flop(l) continuous
format(1)

floppypar(4) partitioned

header format

specified FORTRAN/ flush(3F)
the specitiecd FORTRAN logical/
tmu_set(3N)sct
connect/disconnect to remote
utility

fmu_disconnect(3N)/
Imu_connect(3N)

speciticd command on remote/
from a remotc system

remote system

descriptor associated with a/
known state fg_reset(3A)
dumpdates(4) incremental dump
bootheader(4) boot file header
diskpar(4) disk partition hcader
partitioned floppy header
core(4)

ffsfs(4)

resfile(4)

utility

intro(4) introduction to file
status daemon directory and file
format(1) floppy disk

£77(1)

ratfor(1) rational

/initialize or terminate

efl(1) Extended

with a file/ fdtounit(3F) return
the output for the specified

file descriptor associated with a
/cancel write request to an
tpe_coproc_alloc(3A)allocate an
/deallocate an

/write data to an
fpe_did_load(3A)load an
tpe_did_unload(3A) unload an
request to an FPE coprocessor
FPE coprocessor

an FPE coprocessor
coprocessor image

coprocessor image
fpe_write_dma_nw(3A) write data/
to an FPE/ fpe_writc_dma(3A)
fg_fbmode(3A) sct the mode of a

floppy disk fILETS ..ccvevriiiritimeietinie i to_flop(1)
floppy disk formatting utilitycccooeeiorinnnirininniecene format(1)
floppy header formatccoeemvemerisiecsniss i cseiessensenns floppypar(4)

floppypar(4)
. flush(3F)

floppypar(4) partitioned floppy ...c.ocov ceevrennnne.
flush the output for thecovvecrrecninicnnee.

flush(3F) flush the output for . vonee flush(3F)
FMU MOAES .ccoverieriiiriiiiriniencsnnes i esisssesssssasssssnns fmu_sct(3N)
FMU server /fmu_disconnect(3N) ...ccoovvircnicenennn. tmu_connect(3N)

fmu(1) nctwork file Managementocoieveeinneerninineninne fmu(l)
tmu_connect(3N) tmu_connect(3N)
tmu_disconnect(3N)/ fmu_connect(3N)
fmu_rcmd(3N) exXecute the ..eveevcecriicnicerenccins fmu_rcmd(3N)
fmu_receive(AN)receive filescc.ooovvmivnriinescrccenenns fmu_receive(3N)
fmu_send(3N)send filestoa fmu_send(3N)

fmu_set(3N) sct FMU modes fmu_set(3N)

fnum(3F) retum the file ..., fnum(3F)
force the frame grabberto aoccvevenveincneininiesienan fg_reset(3A)
format Backup(4) «.occceimveriierimiennsinisnin e backup(4)
formatc.oveee. .. bootheader(4)

formatocoeveine ... diskpar(4)
format floppypar(4) floppypar(4)
format of core image fileoovvrvenniinininire e core(4)
format of file system vOIUMEccoviiiiiiivemninin e erieeseanens ftsfs(4)
format of RCS fileccceueuennnnen. ... resfile(4)
format(1) floppy disk formatting format(1)
FOITNALS ..ottt ettt e bereaes intro(4)
formats /recover(4) state(4)oveievivniivninnnns statmon(4)
formatting utilitycccooveeirviiiiniienrne format(1)
FORTRAN COMPIIETcooviiiiiiiiieins it £77(1)
FORTRAN dialectocccveiiiiiriiiiiinninitsressssesiseisnens ratfor(1)
FORTRAN I/O from €cocvirenninnninennnnnensesnsessssssesins t77initio(3F)
FORTRAN Languagecccoeeemrrvnneriirersieeinssenessesstsnsssssssssssssees efl(1)
FORTRAN logical unit associated fdtounit(3F)
FORTRAN logical unit /lushcccvcviveniniiiniicincinnens flush(3F)
FORTRAN logical unit /returntheccovnevinvencnerininene tnum(3F)
FPE COPIOCESSOT ...ovvvvncirrteninsaessssssisnssssasssssenes fpe_cancel_dma(3A)
FPE COPIOCESSOL ...ovecvureeiiverninrnnnnins orssisnensenans fpe_coproc_alloc(3A)
FPE COPIOCESSOLocviniiiinsiniiienissenscenaisianins fpe_coproc_dealloc(3A)
FPE COPIOCESSOT ..uvvvvurenrensinsiorisssensessssssissssssssssnnse fpe_write_dma(3A)
FPE COProcessor iMagecevvrereessesvnsieeensisnesencaens fpe_did_load(3A)
FPE coprocessor image tpe_did_unload(3A)
fpe_cancel_dma(3A)cancel WIitec.occerrriunnes fpe_cancel_dma(3A)

fpe_coproc_alloc(3A)allocate an fpe_coproc_alloc(3A)
fpe_coproc_dealloc(3A)deallocate .. fpe_coproc_dealloc(3A)
fpe_did_load(3A)load an FPE fpe_did_load(3A)
fpe_did_unload(3A) unload an FPE . .. fpe_did_unload(3A)

fpe_write_dma(3A) .o fpe_write_dma(3A)
tpe_write_dma_nw(3A)write datacooevrueine tpe_write_dma(3A)
Lrame BUtEEr ..o fg_tbmode(3A)

14 CLIX PROGRAMMER'S & USER’S REFERENCE MANUAL

)

()

Q)

()

)

Permuted Index

fg_tbstat(3A) get the mode of a
the/ fg_priority(3A) determine
fg_alloc(3A) allocate a

blank the output signal of the
tg_dealloc(3A)deallocate a
load the lookup tables of a
bufYer output priority of the
fg_reset(3A) force the
fg_size(3A) determine the
optical/ odd((1) report number of
filters to_flop(1)

program
aspecified length

shutdown(2B) shut down partof a
intro(3) introduction to

/to RPC/XDR/YP service
introduction to BSD library
xio_setef(3A) event flag mask
aux_break(3A)

pattern Iptest(1)

adep(1) Ada program makefile
errors(1) error logging report
srandom(3B) better random number
getmemsize(2l) getfreemem(2I)
processor identifier
setdomainname(3R) get/set name/
table size

return memory/ getmemsize(2[)
getgrnam(3C) setgrent(3C)/
setgrent(3C)/ getgrent(3C)
getgrent(3C) getgrgid(3C)
sethostent(3B)/ gethostbyname(3B)
gethostbyaddr(3B) gethostent(3B)/
endhostent(3B)/ /gethostbyaddr(3B)
get/set unique identifier of/

get/set name of current host

get/set value of interval timer
getavailsmem(2I) return memory/
setnetent(3B)/ getnetent(3B)
getnetent(3B) getnetbyaddr(3B)
getnetbyname(3B) setnetent(3B)/
size

connected peer

/getprotobynumber(3B)
getprotoent(3B)
getprotobynumber(3B)/
getpwnam(3C) setpwent(3C)/

frame Bufler ..o fg_thstat(3A)
frame butler output priority of fg_priority(3A)
[rame grabbero.oovevecsannes e . fg_alloc(3A)

frame grabber fg_blank(3A) ..o fg_blank(3A)
frame grabbercoveiverieiniineinnesncn s fg_dealloc(3A)
frame grabber /fg_lut_out(3A) fg_lut_in(3A)
frame grabber /determine franie ... fg_priority(3A)
frame grabber 10 @ kKnOwn state ..c.o.coeiviiiiininne fg_resct(3A)
trame grabber window size fg_size(3A)

free blocks and i-ROAES ON ANcveieiiienicncneecrcnns oddt(1)
fr_flop(1) continuous floppy disk . . to_flop(l)
fstab(4) file system tableovvverinnrniiiii Istab(4)
ftp(1) ARPANET file transfer ..o fip(l)

ftruncate(2B) truncate a file to .
full-duplex connection

... [truncate(2B)
..... shutdown(2B)

functions and Hbraries ... intro(3)
functions and ProtoColsvvreaiiennice i intro(3R)
£URCHONS INTO(3B) ovverrrvenerererenseemieesmiessmssmsssss s enesens intro(3B)
functions /xio_clref(3A) xio_rcadef(3A)
generate a break on a serial POtocceeverineninciiis aux_break(3A)
generate line printer Fpple ..o Iptest(1)
F100 1157 100) OO SUPIU PSP adep(1)
ZENETAOT w.ovvvvivreriereenisssier et sssnsnsisnes ... errors(l)
generator 1andom(3B) ..o random(3B)
getavailsmem(2[)return memory/ ... getmemsize(2l)
getepuid(2I) return CLIPPER ..o getcpuid(2l)
getdomainname(3R) coeeveeeeenniieiciiiiins getdomainname(3R)
getdtablesize(2B) get desCriptor ... cmeceiiecinns getdtablesize(2B)
getfreemem(2)getavailsmem(2I) ... getmemsize(2l)
getgrent(3C) getgrgid(3C) coovv e getgrent(3C)
getgrgid(30) getgrnam(3C) . getgrent(3C)
getgrnam(3C) setgrent(3C)/ oo getgrent(3C)

gethostbyaddr(3B) gethostent(3B) .. gethostbyname(3B)
gethostbyname(3B) o.covveviee v ... gethostbyname(3B)
gethostent(3B) sethostent(3B) .ovvveecrceiciennne gethostbyname(3B)
gethostid(2B) sethostid(2B) oo, gethostid(2B)
gethostname(2B) sethostname(2B) . . gethostname(2B)
getitimer(2B) setitimer(2B)cvvvnvviinniiininiinns getitimer(2B)
getmemsize(2) getfreemem(2D) ceoverveniiieiincnnnn. getmemsize(20)
getnetbyaddr(3B) getnetbyname(3B)coovrvinninnnns getnetent(3B)
getnetbyname(3B)setnetent(3B)/ c..ccoviveiniiniiiiininns getnetent(3B)

getnetent(3B) getnetbyaddr(3B) getnetent(3B)

getpagesize(2B) get system page getpagesize(2B)
getpeername(2B) get name of getpeername(2B)
getpgrp2(2B) get process Groupoiminiisesenees getpgip2(2B)
getprotobyname3B)/ ...cees cvvniiininiis getprotoent(3B)
getprotobynumber(3B)/ «..cocevunnne ... getprotoent(3B)
getprotoent(3B) ..o e ... getprotoent(3B)
getpwent(3C) getpwuid(3C) covevrriiininiiiiinss getpwent(3C)

PERMUTED INDEX 15

Permuted Index

getpwent(3C) getpwuid(3C)
setpwent(3C)/ getpwent(3C)
getrpebynumber(3R)/ getrpeent(3R)
getrpeent(3R) getrpcbyname(3R)
getrpcbynumber(3R) setrpcent(3R)/
number

getservent(3B) getservbyport(3B)
getservbyname(3B)/ getservent(3B)
getservbyname(3B) setservent(3B)/
/setdomainname(3R)
gethostname(2B) scthostname(2B)
gethostid(2B) sethostid(2B)
getitimer(2B) setitimer(2B)

and set options on sockets

time

all outstanding requests on a
gpib_close(3A)closc a

send commands to a

issue a local lockout to a
gpib_open(3A)open a

perform a parallel poll of a
conduct an IFC operationon a
gpib_remote(3A) put a
gpib_clear(3A) clear a

the parallel poll response of a
gpib_read_nw(3A) read data from a
conduct a serial poll of a
gpib_trigger(3A) trigger a
gpib_write_nw(3A) write datato a
gpib_local(3A) return a
gpib_ppuconf(3A) unconfigure a
/request notification for a
outstanding requests on a GPIB/
channel or device

channel

commands to a GPIB channel

a GPIB channe! gpib_cmd(3A)
device to local control

lockout to a GPIB channet

parallel poll response of a GPIB/
poll of a GPIB channel

GPIB device's paratlel poll/

read data from a GPIB device
GPIB device gpib_read(3A)
channel in a remote state
operation on a GPIB channel
gpib_service_nw(3A) request/

getpwnam(3C) setpwent(3C)/ccevveerervrrnernenineeniennninns getpwent(3C)
getpwuid(3C) getpwnam(3C) ..vevevrniierereerese e getpwent(3C)
getrpebyname(BR) ..o getrpcent(3R)
getrpebynumber(3R)setrpeent(3R)/ ... getrpcent(3R)
getrpeent(3R) getrpebyname(3R)veceevereenernnrianinnnn. getrpcent(3R)
getrpeport(3R) get RPC Port ...eececvcnnceiiernernnenne, getrpeport(3R)
getservbyname(3B)setservent(3B)/ ... getservent(3B)
£etservbyport(3B) getservent(3B)
getservent(3B) getservbypon(3B)covevcviinnnnnnnnnn, getservent(3B)
get/set name of current domainc.ooveevevivinnan. getdomainname(3R)

get/set name of current host ... gethostname(2B)
get/setunique identificrof/ gethostid(2B)
geysctvalue of interval Hmervvvoeneeceneeneeceernnsennnens getitimer(2B)
getsockname(2B) get socket nameveecvcvccnnnine, getsockname(2B)
getsockopt(2B) setsockopt(2B) getvvueeiiecirrnrinann, getsockopt(2B)
gettimeofday(2B) get date andcccevvvrrvreennnnna. gettimeofday(2B)
GPIB channcl /cancel gpib_cancel(3A)
GPIB CRANMC] ...oeceeevrvarssveessses e sissce s gpib_close(3A)
GPIB channel /gpib_cmd_nw(3A)oocovrerrerererrecrnnann gpib_cmd(3A)

GPIB channcl gpib_lockout(3A)oeeervrcvrrrennnnnnn. gpib_lockout(3A)

GPIB channelccouuivvicrinerncerncnnenrnnisses e gpib_open(3A)
GPIB channel gpib_ppreq(3A) gpib_ppreq(3A)
GPIB channel gpib_reset(3A)ccc. voverercerinrrrrnnnnes gpib_reset(3A)
GPIB channel in a remote stateccocveerererrerennnne gpib_remote(3A)
GPIB channel or device gpib_clear(3A)
GPIB device /configureo..... .. gpib_ppconf(3A)
GPIB device gpib_read(3A)ccovevvvverrrerisenrenrriens gpib_read(3A)
GPIB device gpib_spreq(3A) ..coecnmevvernnnnenensinnenns gpib_spreq(3A)
GPIB dEVICE ...cevvreitiriiteiscrins s ercraesssenenns gpib_trigger(3A)

GPIB device gpib_write(3A) gpib_write(3A)
GPIB device to local CONtIO]c.covvevvvcerrevnnererernrenn. gpib_local(3A)
GPIB device's parallel poll/coc.cvovuvienrirnniennnas gpib_ppucont(3A)
GPIB SRQ conditionoccoecoreurervccrmrnninnisrrnnnnns gpib_service(3A)
gpib_cancel(3A) cancel allccccoeevvvrermnrnnrrennennans gpib_cancel(3A)
gpib_clear(3A)clear a GPIBoocoverveersrnnsrrnnrinns gpib_clear(3A)
gpib_close(3A)close a GPIB gpib_close(3A)
gpib_cmd(3A) gpib_cmd_nw(3A) send . .. gpib_cmd(3A)
gpib_cmd_nw(3A)send commands t0cooevrreennne. gpib_cmd(3A)
gpib_local(3A) return a GPIBcoccovvnvrrcnnrrcrennnee, gpib_local(3A)

gpib_lockout(3A)issue a local
gpib_open(3A) open a GPIB channel .
gpib_ppconf(3A) configure the

gpib_lockout(3A)
.... gpib_open(3A)
. gpib_ppconf(3A)

gpib_ppreq(3A) performa parallelccocovvrrvunnn.n. gpib_ppreq(3A)
gpib_ppucont(3A) unconfigure aco.oeerereerennns gpib_ppuconf(3A)
gpib_read(3A) gpib_read_nw(3A)o gpib_read(3A)

gpib_read_nw(3A)read data fromacoouerrerrrecnnnen, gpib_read(3A)
gpib_remote(3A) put a GPIB gpib_remote(3A)
gpib_reset(3A) conduct an [FCeeivvcvnrivericnnnne, gpib_reset(3A)
gpib_service(3A) ..o ———— gpib_service(3A)

16 CLIX PROGRAMMER'S & USER’S REFERENCE MANUAL

()

0

O

O

\

()

notification/ gpib_service(3A)
poll of a GPIB device

device

write data to a GPIB device
GPIB device gpib_write(3A)
fg_alloc(3A) allocate a frame

the output signal of the frame
fg_deallac(3A) deallocate a frame
load the lookup tables of a frame
output priority of the frame
fg_reset(3A) force the frame
fg_size(3A) determine the frame
chown(1) chgrp(1) change owner or
endgrent(3C) fgetgrent(3C) get
group(4)

getpgrp2(2B) get process
setpgrp(2) set process

send signal to a process
odchgrp(1) change the file
setpgrp2(2B) set process

/translation table to

reset a process’s priority after
qpr(1) submit a

sysid(2I) get the system
csi_reset(3A) reset

limits(4) file

bootheader(4) boot file
diskpar(4) disk partition
floppypar(4) partitioned floppy
/ntohs(3B) convert values between
endhostent(3B) get network
hosts.equiv(4)

unique identifier of current
get/set name of current
hosts(4)

and shell strategy for the local
the local/ ruptime(1) show

set or print name of current
current host system

name database

ntohs(3B) convert/ byteorder(3B)
convert/ bytcorder(3B) htonl(3B)
setpgrp(2) set process group

sysid(2I) get the system hardware
return CLIPPER processor
/sethostid(2B) get/set unique

Permuted Index

gpib_service_nw(3A)request gpib_service(3A)

gpib_spreq(3A)conduct aserialcoovveeieriiinens gpib_spreq(3A)
gpib_trigger(3A) triggera GPIBccccovviinnne. gpib_trigger(3A)
gpib_write(3A) gpib_write_nw(3A) ..c.coovininiiinnee gpib_write(3A)
gpib_write_nw(3A)write datatoa gpib_write(3A)
ERADDET ot tg_alloc(3A)
grabber fg_blank(3A) blankcoceereeiniinnincnnin fg_blank(3A)
Lrabber ...oooovrerrnieiiniirenns .. fg_deatloc(3A)

grabber /fg_lut_out(3A) fg_lut_in(3A)
grabber /determine frame bufter .. fg_priority(3A)
grabberto a Known Stateovvemereeincncciennennnin fg_reset(3JA)
2rabber Window Sizecceviviierniiinnicnscncen fg_size(3A)
L4 (V1] PSP ... chown(l)
group file entry /setgrent(3C) ... getgrent(3C)
BIOUP fIlE oottt s group(4)
BIOUP covittitietetere st s snaes st getpgp2(2B)
ZIOUP ID it e setpgrp(2)
group killpg(2B)cccoevne.. ... killpg(2B)
group of optical disk files O/covviniieivieiciinins odchgrp(l)
141017 SN .. setpgrp2(2B)
group(d) group file ...c.vireeiiieiiiieees group(4)
handle long map NAMESccovrreriiiinnieninnraeninenenes ypmapxlate(4)

handling a signal ucprelse(2l) ucprelse(2l)

hardcopy print request to NQS .. RS)1 (§)
hardware identification DUMDETcovvveivnivinninnninennes sysid(2I)
hardware on CSIPOTtcovveiviiiiiiiiiicncieine csi_reset(3A)
header fOI/ ..ottt limits(4)
header format bootheader(4)
header fOrmatco.cvvrveeninimensenininniinaren e diskpar(4)
header fOrmatoovveemiirenineneneie e floppypar(4)
host and network byte ordercccoevviiiiinninicciinnne byteorder(3B)
host entry /sethostent(3B)...... gethostbyname(3B)
host equivalency name databasecoccenininiiinnns hosts.equiv(4)
host /sethostid(2B) Bet/Setcvveivnvveecrirnnneniiiinicne gethostid(2B)
host /sethostname(2B) vovvenicniiniiiiniene gethostname(2B)
host name databaseoovvviiviiiniiiinini e hosts(4)
host /show supported batch limits qlimit(1)
host status for each machine on ruptime(1)
host system hostname(1)covvveeriieciininnnviincninnnn. hostname(1)
hostname(1) set or print name ofooevvnrivrnenincenns hostname(1)
hosts(4) host name databascocevevincieniiiiiennn hosts(4)
hosts.equiv(4) host equivalency hosts.cquiv(4)
htonl(3B) htons(3B) ntohl(3B)coovevviieriiiiiinie byteorder(3B)
htons(3B) ntohl(3B) ntohs(3B) ..o, byteorder(3B)
ID et e seipgrp(2)
ident(L) identify filesoovrivviieiiinriecee ident(1)
AEntification NUMDET ..o e sysid(2l)
identifier getcpuid(2I) «os getepuid(2h)
identifier of current hostcccovnvviinininins .. gethostid(2B)

PERMUTED INDEX 17

Permuted Index

ident(1)

gpib_reset(3A) conduct an
core(4) format of core

load an FPE coprocessor

unload an FPE coprocessor
limits(4) file header for
backup(4) dumpdates(4)
backup(l)

restore(1)

operations string(3B)
inet_network(3B) inet_ntoa(3B)/
inet_ntoa(3B)/ inet(3B)
/inet_ntoa(3B) inet_makeaddr(3B)
/inet_network(3B) inet_ntoa(3B)
/inet_makeaddr(3B)inet_lnaof(3B)
inet(3B) inet_addr(3B)
/inet_addr(3B) inct_nctwork(3B)
/print log messages and other
server.dat(4) XNS server

file reloc(4) relocation
getavailsmem(2l) return memory
readinfo(21) read system activity
t77initio(3F) t7 7uninitio(3F)
connect(2B)

structure of an FFS disk

/report number of free blocks and
readv(2B) read

queue insque(3B) remque(3B)
inscrt/remove element from a/
ypprot_err(3R) YP client
telnet(1) user

/inet_Inaof(3B) inct_netof(3B)
csh(l) a shell (command
setitimer(2B) get/set value of
and application programs

calls and error numbers
tunctions and libraries
synchronous/asynchronous 1/0/
library tunctions

Intergraph communications/
RPC/XDR/YP service functions and/
formats

miscellancous facilities
tunctions intro(3B)

application programs intro(1)
intro(4)

libraries intro(3)
communications/ intro(3N)
facilitics intro(5)

HAentify fI1ES wvvvvvviriiiiiii s ident(1)
IFC operation on a GPIB channel gpib_reset(3A)
IMAGE fI1€ .o e core(4)
image fpe_did_10ad(3A) ..o tpe_did_load(3A)
image fpe_did_unload(3A)coovvivrvnriicnnnn tpe_did_unload(3A)
implementation-specific CONSLANLScevievriininiiseriviiinns limits(4)

incremental dump format
incremental file system backup ...
incremental file system restore .
index(3B) rindex(3B) string ..

... backup(4)
... backup(1)
... restore(1)

string(3B)

inet(3B)inet_addr(3B) inet(3B)
inet_addr(3B)inet_network(3B)cccovvvcivreinnnriieiicninnnin, inet(3B)
inet_Inaof(3B)inet_netof(3B)/ ..o inet(3B)
inet_makeaddr(3B)inet_Inaof(3B)/coururvivcrieicrriininns inet(3B)
inet_netof(3B) Internet Address/ccvvvmmvnriinvncasninins inet(3B)
inet_network(3B)inet_ntoa(3B)/cccovviinniinininiiiinn inet(3B)
inet_ntoa(3B)inet_makeaddr(3B)/c..ccoviriniinniniinininns inet(3B)
infermation about RCS files wveneen TlOg(L)
information fileococoenui. ... server.dat(4)
information for a common objectcovvvieiiiiviineenniinnes reloc(4)
information /getfrcemem(2i) et getmemsize(2l)
IRLOTIMALON ..ottt et readinfo(21)
initialize or terminate FORTRAN/ ...c.ocooveiviveccvvnenncnniens t77initio(3F)
initiate a CONNECHiON 0N A SOCKEL ...ecuvieiicreercecicrinennaes connect(2B)
i-node {fsinode(d) ..cocovvernenenene. fisinode(4)

i-nodes on an optical volume oddi(1)

input from a socket readv(2B)
insert/removeelement froma nsque(3B)
insque(3B) remque(3B) ..o, .. insque(3B)
interfac /yperr_string(3R)ccoooviiiiniiicniicscccccn ypclni(3R)
interface to the TELNET protocolcccoiiiieniiiiinennnnencs telnet(1)
Internet address manipulation/ inet(3B)
interpreter) With C-HKe SYNMAX ..c.cocev veeriivinceccnneienncincrsnensennnas csh(l)
interval timer getitimer(2B) getitimer(2B)

... intro(1)
< INtTO(2)
.o intro(3)

intro(1) introduction to commands ...
intro(2) introduction to system
intro(3) introduction to

intro(3A) introduction to the intro(3A)
intro(3B) introduction to BSDc.c. cecvvincnnnnciniinnieennns intro(3B)
IMro(3N) introduCtioN 10 ..vvierienireiieeeceer e srane intro(3N)
INO(3R) INTOAUCHON 0 ...vvvecnrecvririrccirreiiee e snvaesase e intro(3R)
intro(4) introduction to fileccooviennecninininenee s intro(4)
INrO(5) INFOQUCHON O ..oovisiiriiiisistii i ceesesenereees intro(5)
introduction to BSD lbrarycoveviiviiiiiiniiniisnnees intro(3B)
introduction to commands andc..ceeercnneene intro(1)
introduction to file FOTMALSccoveeericverirnicrccrceeeerrene e intro(4)
introduction to functions and intro(3)
introduction to Intergraph intro(3N)
introduction to Miscellaneousc.ccvvviveneniniiiennieenicnerenns intro(§)

18 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

()

~

Q)

PN
S

e

()

Permuted Index

service functions and/ intro(3R)
error numbers intro(2)

file system odintro(1)

intro(3A)

CRM utility for monitoring
multibuffering and asynchronous
select the video signal types for
initialize or terminate FORTRAN
to the synchronous/asynchronous
select(2B) synchronous

cancel outstanding asynchronous
cancel outstanding asynchronous
/cancel outstanding asynchronous
/cancel outstanding asynchronous
channel gpib_lockout(3A)
configuration fite

configuration of the jukeboxes
spooling queue Iprm(1) remove
JBCFG(4) optical disk

report the configuration of the
layout

layout

kermit(1)

kbmap(1) change the

kbmap(21) change the

kbmap(4)

print the value of onc or more
process group

force the frame grabber to a
standard/restricted/ ksh(l)
standard/restricted command/
ansitape(1) ANSI-standard magtape
ansitape(4) ANSI standard magtape
efl(1) Extended FORTRAN
command programming

kbmap(1) change the keyboard
kbmap(2l) change the keyboard
object files

truncate a file to a specified
introduction to functions and
intro(3B) introduction to BSD

the synchronous/asynchronous 1/0
mkshlib(1) create a shared

ali(1) Ada

glimit(1) show supported batch
implementation-specific/

Iptest(1) generate

introduction to RPC/XDR/YP ..o intro(3R)
introduction to system calls andcooocoves e intro(2)
introductionto the optical diskoooovveiiviinninicicnn odintro(l)
IREFOAUCHION 10 thE/ ..ooveeiieirci e intro(3A)
1/O activity topio(1) woevreeimeieennriemiiciii s topio(1)
1/O €PIO(1) SCPIO(LY wovvvvrerrrrrrrriinriseniessssessseniseresssiesririsnns scpio(l)
1/0 /fg_video_Out(BA) ...coviivririeiiinineierccnrnnae fg_video_in(3A)
/O from C /f77uninitio(3F) .oovveeiiniieieeceenes 77initio(3F)
[/O library /introductioncooeevenencincininiceninniinnininnnes intro(3A)
/O MUIPIEXING ..coucarvenircrnircrsies st e select(2B)
[/O on a CSI port csi_cancel(3A) «..oocevneninnininins csi_cancel(3A)
[/0 on a PDI port pdi_cancel(3A) ...covevivnccencecn pdi_cancel(3A)
1/0 on a SIF channel sif_cancel(3A)
1/0 on an RLE channel rle_cancel(3A)
issue a local lockout to a GPIB gpib_lockouy(3A)
JBCFG(4) optical disk JUKEDOX .ovvveriiiniiriiniciciiiiniine jhefg(4)
jbcontig(1) report thec.ovviiivinnisccnniniins jbeonfig(l)
jobs from the BSD line printcr ... Iprm(1)
jukebox configuration fileoooveiiiiiiii jbetg(4)
jukeboxes JHCONAG(L) cuvvrrerriecnmmcivencriiiieiceiiineiiians jbconfig(1)
kbmap(1) change the keyboardccooevvinniininn kbmap(1)

kbmap(2l) change the keyboard .
kbmap(4) keyboard map file ...

... kbmap(2l)
kbmap(4)

kermit file transfer ...t . kermit(1)
kermit(1) kermit file transfer ... kermit(1)
Keyboard 1ay0ut ..o kbmap(1)
KCYbBOArd JaYOUL .coovieiiniisieic e kbmap(2h)
keyboard map fle ..o kbmap(4)
keys trom a YP map ypmatch(1) . ypmatch(l)
killpg(2B) send signal to a killpg(2B)
known state fg_reset(3A) ... fg_resci(3A)
Krsh(1) Shell, the ..o ksh(l)
ksh(1) krsh(1) shell, the oo ksh(1)
1abel PrOZFaIN coocvvviiieieeeciei s e e ansitape(l)
JADEIS 1ovviiririeiiiee e s ansitape(4)
LANGUAZE oocvorviieiierieniisnssess e et efi(l)
language /the standard/restricted ..o ksh(1)
1aYOUL v . kbmap(1)
JAYOUL oottt kbmap(21)
1d(1) link editor fOr COMMON .ovuvrivrirerereecneirirsenieinnsias ld()y
length firuncate(ZB) e {truncate(2B)
Hbraries INrO(3) wooocvoviiiiineeierin e intro(3)

Tibrary fUNRCHONS ...vovversiverreieiscens e intro(3B)
library /introduction toeeuervreecevcinennicereninninsinen s intro(3A)
HBFALY oo i e e mkshlib(l)
HDIATY 1001 wovvivirircini st e alt(h)
limits and shell strategy for the/ < glimit(l)
limits(4) file header for ..o, ... limits(4)
line printer ripple PAErN oevvvicvcinimniiiniiis s Iptest(1)

PERMUTED INDEX 19

Permuted Index

Iprm(1) remove jobs from the BSD
rcad the CSI port DR11 status

files 1d(1)

a.out(4) common assembler and
In(1)

read the value of a symbolic
symlink(2B) make a symbolic
Is(1)

dis(l)

directories odls(1)

.thosts(4) remote user access
socket listen(2B)

on a socket

sendmail(1M) mailq(1) display a
remote/ netls(1) DNP command that
on the local network rwho(l)

fpe_did_load(3A)

fg_lut_in(3A) fg_lut_out(3A)
return a GPIB device to

limits and shell strategy for the
gpib_lockout(3A)issue a

status for each machine on the
logged in to machines on the
message to console devices on the
vlock(2l)

gpib_lockout(3A) issue a local
crrord.rc(4) error

information about/ rlog(1) print
local/ rwho(1) lists users
errors(1) error

file/ {dtounit(3F) return FORTRAN
output for the specified FORTRAN
associated with a« FORTRAN
sethost(1) DNP remote
yppasswd(l) change

visit(1) Intergraph remote
rlogin(1) remote
/fg_tut_out(3A)load the

property cth_vbyop(3N)
cxamination program

line printer spooling queue
ripple pattern

vax(l) get processor type truth/
/show host status for cach
values(5)

line printer SPOOIING QUEUE ...cvciiiciiiviviiniiiii et Iprm(1)
lines csi_status(3A) ..o csi_status(3A)

link editor for common object .. e W(L)
link cditor outputc...... a.out(4)
HNK B1ES wooiiii e In(1)
link readlink(2B) ..cooeveieiniiireenre e rcadlink(2B)
LNK 10 @ file i symlink(2B)
list contents of dir€CtOrYccvvuviiiiirinienriiveicieicrecieeeeseeeseanenes Is(1)
list contents of MS-DOS directoryccocovuviveiiernmnincsiscnneeenerene dis(1)

list contents of optical disk .
TSt i
listen for connections on a ..
listen(2B) listen for connections ...

....................................... odls(1)
. .thosts(4)

... listen(2B)

listing of the mail queue used byccevcuiivcuiiecircceercnenenne mailq(l)
lists the directory CONtents 0N @ccoveueeeveereereriiecnreeecseereies netls(1)
lists users logged in to MAchinescoeiiieccveciencnnnenee rwho(l)
IN(LY NK B1ES oottt In(1)
load an FPE coprocessor image fpe_did_load(3A)

load the lookup tables of a frame/
local control gpib_local(3A)

....... fg_lut_in(3A)
. gpib_local(3A)

local host /show supported batchcovvviiniiniivinieiiecees qlimit(1)
local lockout to a GPIB channel gpib_lockout(3A)
local network /Show hostc.ccvit wviciiicinncniiciine ruptime(1)
local network /lStS USCIS ...c.ivviviriniciinicrciccer et rwho(1)
local XNS network /Send acoevcvnnininnivcnenninreienanenns netmsg(l)
lock an arca of MEMOTYcvvviiviiecivinii e viock(2h)

lockout to a GPIB channel ..
log configuration file

gpib_lockow(3A)
. errord.rc(4)

log messages and other rlog(1)
logged in to machines on the RN rwho(l)
10gging rePOTt BENETAOTcouveecminiiiiercicrereseeonaereeeeesanne errors(l)
logical unit associated With @ccccocevvecceiecnrinneens tdtounit(3F)
logical unit flush(3F) flush the ... flush(3F)

logical unit /the file descriptor ..
login DECnet or CLIX node. .
login password in YP
login program
08I v
lookup tables of a frame grabber
lookup value by objectand ...

... fnum(3F)
... sethost(1)
.. yppasswd(!)
. visit(l)
... rlogin(1)
fg_lut_in(3A)
. cth_vbyop(3N)

1pq(1) BSD SPOOL QUEUE ..ottt enaes Ipq(l)
Ipr(1) BSD ofIlin€ Printcocvvimivercvernneceeserenrineisisissesensesennns Ipr(1)
Iprm(1) remove jobs fromthe BSD ..o Iprm(1)
Iptest(1) gencrate lin€ Printerovvvciiiniinicecerersrensnens Iptest(l)
Is(1) list contents Of dirCCLOTYvvceveuereerecrererreerrinireesssressseesenrneas Is(1)
Is1at(2B) get file SLAtUS .o..vvvceeeeereeeens ceererreeieer s Istat(2B)
machid(1) clipper(1) ns32000(1)ovevniviimceerrcirerneenene machid(1)
machinc on the local nEtWOrkcccviiiiciriccnernenens ruptime(1l)
machine-dependentvalues e bes values(5)

20 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

... listen(2B)’

()

_—
A

O

O

)

()

Permuted Index

rwho(1) lists users logged in to
program mt(1)

ansitape(l) ANSI-standard
ansitape(4) ANSI standard
rebuild the database for the
mailq(1) display a listing of the
mailstats(1) display

cumail(1) DNP

mail queue used by sendmail(1M)
statistics

adep(1) Ada program

manual

Intergraph network clcaringhouse
sigignore(2) sigpause(2) signal
fmu(1) network file

mt(1) magnetic tape

rtape(1) remote tape
/inet_netof(3B) Internet address
man(1) print entries in this
kbmap(4) keyboard

translation table to handle long
of one or more keys froma YP
xio_sctef(3A) event flag
master(4)

database

spawn a new process in a virtual
/getavailsmem(2I) return

read data from a PDI port into
CRM utility for monitoring
utility for monitoring process
RLE from pipe to

transfer data from scanner to
/pdi_write_nw(3A) write data from
/transfer data from

monitoring physical and virtual
viock(2I) lock an area of
vunlock(2I) unlock an area of
merge(l) three-way file
rcsmerge(1)

/recvmsg(2B) receive a
sendto(2B) sendmsg(2B) send a
local XNS/ netmsg(1) send a
about RCS/ rlog(1) print log
intro(5) introduction to

library

table

chmod(i) change
fg_thmode(3A) set the

machines on the local network ..., rwho(1)
magnetic tape manipulation ... mt(l)
magtape label program ... ansitape(1)
magtape labels ansitape(4)
mail aliases file newaliases(1) newaliases(l)
mail queue used by sendmail(EM) ..o mailq(l)

MAil StAtISHICS wovveiiiiiiii e e mailstats(1)
mail transport PrOGrAMcvues wevvrerrvensreiiieresismeerensseninniens cumail(l)
mailq(1)display a listing of the ..o, mailq(l)
mailstats(1) display mail mailstats(1)
makefile ZENEraLON ..o adep(l)
man(1) print entries in this ..., man(1)
management program clh(1) ..o, clh(l)
management /sigrelse(2) sigset(2)

management utility fmu(1)
manipulation Program ... mi(1)
manipulation PrOGIAMcc.ovreurerrirereisinsnsesnnsissssissesenns riape(l)
Manipulation FOUINEScouiveiiiciiininirr e inet(3B)
manual man(l)
map file kbmap(4)
map names ypmapxlate(4)cooiveiinniinnineniinnnnn ypmapxlate(4)
map ypmatch(l) print the valueccocvinrinncnnniinnne ypmatch(1)
mask functions /xio_clref(3A)ovvieriniinniininns xio_readef(3A)
mastcr configuration database .. < master(4)
master(4) master configuration . .. master(4)
memory efficient way vEOrk(2B) ..o viork(2B)
memory iNfOrMAtioNuvevvviriiecimeniressensiens getmemsize(2l)
memory /pdi_read_nw(3A) .. cooccnrerinniinninrnnneinnns pdi_rcad(3A)
memory regions monregion(1) .. monregion(l)
memory regions showmemory(1) CRM showmemory(1)
memory /rie_pipe_mem_nw(3A)ccocvrrerrnan. rle_pipe_mem(3A)

memory /sif_scan_mem_nw(3A) il_scan_mem(3A)
memory to a PDI port ... pdi_wrilc(3A)
MEMOrY (0 PiPE wocerrvencesieiienannen, . sif_mem_pipe(3A)
memory topmem(1) CRM utility forcccocovnivininnnns topmem(1)
MEIMOTY ..veuiinmiiieriietsierersssssie s s rsseresessterosabsasassnssnees viock(2l)
.. vunlock(2l)
MCILE 1vverrrerrnrinerirnrss s st et es et st st anen s merge(l)
merge RCS revisions resmerge(h)
merge(1) three-way file MEIgecoovcviinviveiriveinrernrniinen merge(l)
message [T0m a SOCKELovveiiviireecinicin e recv(2B)
message from a socket send(2B) ... send(2B)
message to console devices 0n theceeviieiiinennne netmsg(l)
messages and other informationoooveeeieevccinvinisiieininn rlog(1)

misccllaneous facilities intro(§)
mkshlib(1) create a shared ... mkshlib(l)
mattab(4) mounted file SyStemcooevviinrriiriviniinnnns mnttab(4)
MOAE .ottt chmod(1)

modc of a frame buffer ..., fg_tbmode(3A)

PERMUTED INDEX 21

Permuted Index

fg_fbstat(3A) get the
/aux_modem_nw(3A) get

port aux_cancel_modem(3A)cancel
fmu_set(3N) set FMU

odt(1) examine and

option sigcld(2l)

crm(1) CLIX Resource
monproc(1l) CRM utility for
topcpu(1) CRM utility for
topio(1) CRM utility for
monregion(1) CRM utility for
showfiles(1) CRM utility for
topfault(1) CRM utility for
memory topmem(1) CRM utility for
showmemory(1) CRM utility for
topsys(1) CRM utility for
watcher(1) CRM utility for
monparam(1) CRM utility for
monitoring systcm parameters
monitoring a process

monitoring memory regions
mount(2)

npmount(1) npumount(1)

mnttab(4)

rmtab(4) remotely

pdi_itb(3A) pdi_itb_nw(3A)
files netmv(1) DNP command that
dtu(l) utd(1) copy between
dlis(1) list contents of

program

1/0O cpio(1) scpio(l)
select(2B) synchronous [/O
hosts(4) host

hosts.equiv(4) host cquivalency
networks(4) network
protocols(4) protocol
services(4) service
getsockname(2B) get socket
rename(2B) change the
getpeername(2B) get
/setdomainname(3R) get/sct
fsethostname(2B) get/set
hostname(l) set or print
domname(1) sct or display
setnodename(2l) set new node
bind(2B) bind a

disk/ odin(1) associate another
table to handle long map

mode of a frame buffer . creeneene £g_fhstat(3A)

modem change from a serial portccooevvenennnenen aux_modem(3A)
modem change state on aserialc..eu... aux_cancel_modem(3A)
MNOGES ...vevivvereerrereseerreseesesssrnssssesansesansesesertoreseneesessssssares fmu_set(3N)
MOJIfIES fHlES ...vviriiieiriiiii i odt(1)
modify SIGCLD on stop signal sigeld(2l)
MORIOT oviiriiiicciienc s et sessrisrssns st ss e esessessassnsneosas crm(1)
MONIOFING 8 PIOCESS ...evreverirrrinieie ettt se s erssene monproc(1)
mOnitoring CPU tiME ... topcpu(l)
monitoring I/0 activity topio(1)
mON{tOring MEMOTY TEZIONS ...veveveeviieierririeiseresseninesenss monregion(1)
MONItOring Open filesccoovivvviviinninreiiiceeinne showfiles(1)
monitoring page faultscoeeeieeennneriniesnn, topfauli(1)
monitoring physical and virtualoovevvivniiininnine, topmem(1)
monitoring process memory regions .. showmemory(1)
MONItOTiNg SYStEM ACHVILY .covvvreiiiviriincicccinnens topsys(1)
monitoring system calls and/cocoveeeerivieiicniiircenn, watcher(l)
MONItOring SYStem Parametersccevvevevververerinseneenns monparam(l)
monparam{1)CRM utility forcccoevvvinnniininn monparam(1)
monproc(1) CRM utility for <o monproc(l)
monregion(1) CRM utility fOr ..o monregion(l)
mount a Ale SYSEMoviiviiiviii e mouni(2)
mount and unmount file system npmount(l)
mount(2) mount a file system mount(2)
mounted file systemtable mattab(4)
mounted NFS file system tableccoceeeiccinnininncvcnenene rmtab(4)
move data froma PDI port 10 a/ «...ovvveneicnnnnieineienns pdi_ith(3A)
moOVCs OF FERames one or more netmv(l)
MS-DOS and CLIXccoiiniiiiiiiiirieniesiccensesesseesenens dtu(l)
MS-DOS QIFECIOTY .o.euvreniiiiriiritcr et s nsisene dis(l)
mt(1) magnetic tape manipulationoeveeiieniininienniinnienis m(l)
multibuffering and asynchronouscoveiinecncenns ... SCpiO(1)
multipleXing «vvveereiniiinnnns . sclect(2B)
NAME dAADASEoovivrerrirrrireti s hosts(4)
NAME dAADASE ..o e hosts.equiv(4)
NaMEC database ... networks(4)
NAMC dAKIDASE vt s protocols(4)
NAMC JAADASE ..o services(4)
116111 T getsockname(2B)
name of a file ... <eeennne FENAME(2B)
nAME 0 CONNCCICA PEET v getpeername(2B)
name of current domain ..., getdomainname(3R)
name of current host gethostname(2B)

..... hostname(1)
.... domname(1)

name of current host system ..
name of current YP domain ...

IEIIC ooisiviev st e sese s neenenaene st nens setnodename(2[)
NAME 10 @ SOCKEL .ot bind(Z2B)
name with an existing Opticalccccveviviniiininniniiins odin(1)
names ypmapxlate(4) translationccovivveriviniiniiens ypmapxlate(4)

22 CLIX PROGRAMMER'’S & USER’'S REFERENCE MANUAL

()

O

——
-

()

Lt

Permuted Index

program
dbm_close(3B) dbm_fetch(3B)/
address

execution utility

file(s) on remote printers

the directory contents on a/
console devices on the local XNS/
or recnames one or more liles

files

netaddr(1) display

convert valucs between host and
clh(4) Intergraph

program cth(1) Intergraph

ncp(l) DNP

setnetent(3B) endnetent(3B) get
tmu(l)

/sethostent(3B) endhostent(3B) get
networks(4)

consolc devices on the local XNS
tor each machine on the local

in to machines on the local

databasc for the mail aliascs/
rmtab(4) remotely mounted
exports(4)

nif_close(3A) close an
nlt_open(3A) open an
channel

sctnodename(2l) set new

DNP remote login DECnet or CLIX
/gpib_service_nw(3A) request
asynchronous/ xio_notify(3A)
unmount file system

file system npmount(1)

qsub(1) submit an

qdev(1) display the status of

a hardcopy print request to

gstat(1) display the status of
qdel(1) delete or signal

type truth/ machid(1) clipper(l)
byteorder(3B) htonl(3B) htons(3B)
/htonl(3B) htons(3B) ntohi(3B)
rpc(4) RPC program

srandom(3B) better random
getrpeport(3R) get RPC port

on an optical/ oddf(1) report
system hardware identification

ncp(1) DNP network control ncp(l)
ndbm(3B)dbm_open(3B) ..o ndbm(3B)
netaddr(1) display network netaddr(1)

“netep(1) DNP copy command . .. netep(l)
netex(1) DNP remotefile netex(l)
netlpr(1) DNP command 10 printo.ceeveviivicininneicnnnns netlpr(1)
netls(1) DNP command that lists ..o netls(1)
netmsg(1) send a MESSAEC L0 .vervrvvernincicceinicicennecnnee netmsg(l)
netmv(1) DNP command that movesccevveeeceeecerncnnn. netmv(l)

netrm(1) DNP command that removes .
NEtwork address .oveevveeviiinnns vevneenien

.. netrm()
... netaddr(1)

network byte order /ntohs(3B) . byteorder(3B)
network clearinghouse database ... clh(4)
network clearinghouse Managementcoovvvereervnnsereriirnieens cih(l)
NEtwork CONIOl PrOZIAMceeevvieciericticere e ncp(l)
network entry /getnetbyname(3B) .o getnetent(3B)
network file management utility ...o.oovveiieniiiiniiennene fmu(1)
network host entryoooeerniiveninnnnne .. gethostbyname(3B)
network name databaseo.eovvviiviiiiiiiinie networks(4)
network /send a MeSSage (0 w.vvieevveeiciniiiniicne netmsg(1)
network /Show hoSt StAtuscvvvveeiinenieniniiinee e ruptime(l)
network /1ists users 10gged ..o rwho(l)
networks(4) network name database ... networks(4)
newaliases(1) rebuild the ... newaliases(1)
NFS file system tablecocvvivminnniicieicccines rmtab(4)
NFS file systems being exported ... €Xports(4)
NLF channelccovviiinnne . nlf_closc(3A)
NLF channelcooevrerirnnns .. nltf_open(3A)
nlf_close(3A)close an NLF ... nlt_closc(3A)
nlf_open(3A) open an NLF channel ... nit_open(3A)
NOUE NAME ..oeiiiriniiinie ittt st setnodename(21)
node. SEthOSt(1) .covviinnrirniirniiimniinne e scthost(1)
notification for a GPIB SRQ gpib_service(3A)
notify a process of ancceevveune. xio_notify(3A)
npmount(l) npumount(1) mount andcccoecvrievninens npmount(l)
npumount(1) mount and UNMOUNLcovveriererirnnenenns npmount(1)
NQS batCh FEQUESE ...ververierinrririisrieitnte e gsub(1)
NQS EVICES ..ovnrriiiiiiiiirenie i sesessnees qdev(l)
NQS gpr(L) SUbMt .oueveivereeienrriserersen et qpr(l)
NQS QUEUES «...cvvvviriniriisnrerinrisssssris st snes gstat(1)
NQS TCQUESES ...oeuiirireremirerns srisrsesnisesists st ins qdel(l)
ns32000(1) vax(l) get ProCESSOT cvvucirerinnieseriienniiiines machid(l)
ntohl(3B) ntohs(3B) CONVER/c.covvemrniiienerirenninene byteorder(3B)
ntohs(3B) convert values between/covevevevninenes bytcorder(3B)
NUMDBET dAADASE ..o.viviriieriririnre e pe(4)
number generator random(3B) random(3B)
111117117 POV getrpeport(3R)
number of free blocks and i-nodes ceenees 0ddE(1)
number sysid(2I) Bet the ...vvvvrrneneinerccsieens sysid(2l)

PERMUTED INDEX 23

Permuted Index

allocate/deallocate an event flag
to system calls and error
clh_vbyop(3N) lookup value by
information for a common

1d(1) link editor for common
dircctory used by optical disk/
of optical disk files or/
protection of optical disk files/
of optical disk files or/

blocks and i-nodes on an optical/
optical disk file system

with an existing optical disk/
disk directorics

directorics

or directories

detault directory used by/

directories

Ipr(1) BSD

cnv_open(3A)

csi_open(3A)

gpib_open(3A)

pdi_open(3A)

aux_open(3A)

sif_open(3A)

nlf_open(3A)

rle_open(3A)

CRM utility for monitoring
gpib_reset(3A) conduct an IFC
ffs(3B) bit and byte string
index(3B) rindex(3B) string
current default directory used by
current default directory used by
odls(1) list contents of
odmkdir(1) create
odrmdir(1l)delete

another name with an existing
odintro(1) introduction to the
odcp(1) copy

odrm(1)delete

/change the file group of
/change the file protection of
/change file ownership of
odmv(1) rename

configuration file JBCFG(4)
configuration file STANDCFG(4)
of free blocks and i-nodes on an

number /xio_deallocef(BA)oovnvivivivericincrieenene xio_allocel(3A)
aumbers intro(2) introductioneeceeeeeieeecinecieenreene intro(2)
objcct and propeny ..o, .. clh_vbyop(3N)
objcct file reloc(4) relocation reloc(4)

OBJECLIIES oot et Id(1)
odcd(1) set the current defaultc.oeeieeiverinrveinninesneerenenen oded(l)
odchgrp(1) change the file groupcccocvsvveiverncrcincinenenn 0dchgm(1)
odchmod(1) change the file odchmod(1)
odchown(l) change file ownership odchown(1)
odcp(l) copy optical disk filescoverervererreiretineieirirenrecennne odep(1)
oddf(1) report number of freeoceceveveineivniirnieererererenee. oddf(l)
odintro(1) introduction to thecccvvvmvvenreecnreneeeeinnens odintro(l)
odIn(l) associate another name odin(1)
odIs(1) list contents Of OPUCALceeveveerrveiieicncniirris e odls(1)
odmkdir(l)create optical disk odmkdir(1)
odmv(1) rename optical disk filescooceveveeerinerninecrieennnn odmv(l)
odpwd(1) display the CUITENtcoveriiinieisinerreesee e odpwd(1)
odrm(1) delete optical disk f1€Scvvuvvveiveereieviiireeceeeennee odrm(1)
odrmdir(1)dclete optical disk odrmdir(l)
odi(1) examine and modifies fleso odt(1)
Offline printccovvvirniiiicenirencnreennas e e e enenen Ipr(1)
opena CNV channelcoieies viviiivcnicninenennns cnv_open(3A)

opena CSlport
opena GPIB channel
opena PDI port ...,
openascrial port ...

.... csi_open(3A)
. gpib_open(3A)
... pdi_open(3A)
............. aux_open(3A)
opena SIF channel ...t sif_open(3A)
open an NLF channel nit_open(3A)
openan RLE channel ... rle_open(3A)
open files ShOWHIIES(1) .c.oovreereerreernniircieriveesterrenenens showfiles(1)
operation on a GPiB channel gpib_resct(3A)
operations /bemp(3B) bzero(3B) bstring(3B)
operations string(3B)coouuun. .. string(3B)
optical disk commands /St theecevirvineiveisenicnerserenens odcd(1)
optical disk commands /thecocooceeererrrcenrennenircnecrenans odpwd(1)

optical disk dir€CIOTESvvveeerereecrrrrenreerrinreisereresssaenssnsnas odls(1)
optical disk directories 0dmkdir(1)
optical disk directories odrmdir(1)
optical disk file /aSSOCIALEcceerrereeerrererncerareenssreerereeresenns odin(1)
optical disk file SYSIEMccocvvrreeenrnnereereseerns oo enns odintro(1)
OPHCAl diSK fIES wovvevnrrecii s odep(l)
OPUCALAISK fIES 1.vuvrevriieccit e odrm(1)
optical disk files or direCtoriescc.cvcumerevrerreenen. ... odchgrp(1)
optical disk files or directories odchmod(l1)
optical disk files or directories odchown(l)
optical disk files O dir€CtOTIEsovovveerirenrerrnrnrirneereeenssnrones odmv(l)
Optical disk JUKEDOXvvviiiirimienncceeniieeieneseereresnsenssssnnnes jbetg(4)
optical disk standalone standcfg(4)
optical volume /report NUMDET coceeemreencecrrineenecnecscenerns oddf(1)

24 CLIX PROGRAMMER'S & USER'S REFERENCE MANUAL

)

0)

0

)

o,

()

modify SIGCLD on stop signal
fentl(S) file control

stty(1) set the

/setsockopt(2B) get and set
between host and network byte
common assembler and link editor
logical unit flush(3F) flush the
grabber /determine frame buffer
grabber fg_blank(3A) blank the
writev(2B) write

CSI port csi_cancel(3A) cancel
PDI port pdi_cancel(3A) cancel
SIF/ sif_cancel(3A) cancel

an RLE/ rle_cancel(3A) cancel
aux_cancel(3A) cancel
gpib_cancel(3A) cancel all
chown(1) chgrp(1) change

or/ odchown(l) change file
/esi_cmd_nw(3A) send command
CRM utility for monitoring
getpagesize(2B) get system
socketpair(2B) create a
gpib_ppreq(3A) perform a
/unconfigure a GPIB device's
gpib_ppconf(3A) configure the
send a control word to the

send a control word to the ROP
pht_data_nw(3A) writc data to the
write data to the ROP
pdi_setup(3A) establish
sif_setup(3A) establish
rle_sctup(3A) establish

CRM utility for monitoring system
shutdown(2B) shut down
diskpar(4) disk

floppypar(4)

pe()

endpwent(3C) fgetpwent(3C) get
passwd(4)

yppasswd(1) change login
yppasswd(3R) update user
gencrate line printer ripple

/pdi_read_nw(3A) read data from a
outstanding asynchronous I/O on a
pdi_close(3A) close a
pdi_open(3A) open a

cstablish parameters for a

Permuted Index

option SigEld(2L) .cuvvvvive e sigeld(2l)
OPUOMS «oovrviviiereerisisnens s s b bt rsn s sasabnanes fentl(5)
options for a terminal . sity(1)
OPLiONS ON SOCKELS ...vvvverenreiernvniiinisiniienesnsinessiees getsockopt(2B)
order /ntohs(3B) convert valuescccovviicrinnenns byteorder(3B)
OULPUL A.0UHA) wvvvnrenciieiec ettt a.out(4)

output for the specified FORTRAN flush(3F)
output priority of the framecocoviernienininnnns fg_priority(3A)
output signal of the frame fg_blank(3A)
OULPUL £0 @ SOCKELoveerriiiririiiietcies st sieseesrins writev(2B)
outstanding asynchronous [/Oonaccevevevvennnee csi_cancel(3A)
outstanding asynchronous /O ona .. . pdi_cancel(3A)
outstanding asynchronous [/Oona ..o sif_cancel(3A)
outstanding asynchronous I/0 oncevovciniincnnee rle_cancel(3A)

outstanding read on a serial port ...
outstanding requests on a GPIB/ ..

... aux_cancel(3A)
... gpib_cancel(3A)

OWIIEE OF BIOUP vvevereverirerssssenissnsesssnsnsssssssesesnsessssnessinessnss chown(l)
ownership of optical disk files odchown(1)
packetsto a CSI port esi_cmd(3A)
page faults topfault(1) ...c..ccvvrvcrereineiiinerianisnseseinnennines topfault(1l)

PALE SIZE ueverrerrrenetinrnneee e getpagesize(2B)
pair of connected SOCKELSovrvemererriniersnmessssnsinecss socketpair(2B)
parallel poll of a GPIB channel ... gpib_ppreq(3A)
parallel poll reSponSeccoevvvcreeniiereneniniinns gpib_ppucont(3A)
parallel poll response of a GPIB/cccevivrinnenee gpib_ppconf(3A)
parallel port /plt_ctrl_nw(3A) plot_ctri(3A)
parallel port /rplt_ctrl_nwW(3A) oo plot_ctrl_rop(3A)
parallel port /plt_data(3A) ..ot plot_data(3A)
parallel port /rplt_data_nw(3A) plot_data_rop(3A)
parameters for a PDI POrtcoovvvvininnnicnnicnninnnns pdi_sctup(3A)
parameters for a SIF channelcoococvnvvnnnns sif_setup(3A)
parameters for an RLE channel . .. tle_setup(3A)
parameters monparam(l)oeviencieniiiiieinnn, monparam(1)
part of a full-duplex cONNECHONcvvevvecrenniiiiiinines shutdown(2B)
partition header format diskpar(4)
partitioned floppy header formatcccoeevecncucinecnne foppypar(4)
Pascal COMPIIETovuviviiiiiciercin e e pe(l)
passwd(4) password file ... passwd(4)

password file cntry /setpwent(3C) ... getpwent(3C)
PASSWOIA fIlE oot passwd(4)
Password in YP ..o yppasswd(1)
password in YP ..o ... yppasswd(3R)
pattern IPLEst(L) oo Iptest(1)
pe(1) Pascal COmPIlErovvvieenenieniscnisiiinn e pe(l)
PDI port int0 MEMOFY ..cuevurerineimiieninenseneisstisssessniiines pdi_read(3A)
PDI pont pdi_cancel(3A) cancel . pdi_cancel(3A)
PDIPOIL vt ssanstssiass pdi_close(3A)
PDIPOIT ot ssssnsessissnes pdi_open(3A)
PDI port pdi_setup(3A) .oovvvvrvinrirerenenineneiseiinanns pdi_sctup(3A)

PERMUTED INDEX 25

Permuted Index

write data from memory to a
pdi_ifb_nw(3A) move data froma
asynchronous 1/0 on a PDI port

data from a PDI port to a window
PDI portto a window pdi_ifb(3A)

data from a PDI port into memory
PDI port into/ pdi_read(3A)
parameters for a PDI port

write data from memory to a PDI/
memory to a PDI/ pdi_write(3A)
get name of connected

alignment trap disposition
channel gpib_ppreq(3A)

/CRM uiility for monitoring
pipe(1) remote

transfer data from memory to
transfer data from scanner to
rle_pipe_mem_nw(3A) RLE from
pit_ctrl_nw(3A)send a control/
mplt_ctrl_nw(3A) send a control/
plt_data_nw(3A) write data to/
rplt_data_nw(3A) write data to/

a control word to/ plot_ctrl(3A)
word/ plot_ctrl(3A) plt_ctrl(3A)
write data to the/ plot_data(3A)
plot_data(3A) plt_data(3A)
gpib_ppreq(3A) perform a parallel
gpib_spreq(3A) conduct a serial
a GPIB device's parallel
/contigure the parallel

generate a break on a serial
outstanding read on a serial
modem change state on aserial
aux_close(3A) close ascrial

get modem change {rom aserial
aux_open(3A) open a scrial

with error byte ftom a serial

read data [rom a scrial

write dati 1o ascrial
asynchronous 1/0 on a CS|
aspecific command on a CSI
esi_close(3A) close a CSI

send command packets to a CSI
receive delayed status froma CSI
csi_open(3A) opena CSI

reset hardware on CSI

status requests on a CS|

PDI port /pdi_write_nW(3A)oeveierennninrieinneinnen pdi_writc(3A)
PDI port to a window pdi_ifb(3A) «.c.covvveririiereniniicineannns pdi_ifb(3A)
pdi_cancel(3A) cancel outstanding ... pdi_cancel(3A)
pdi_close(3A) close a PDI portoivieriinvrvenirvcrennens pdi_close(3A)
pdi_ifb(3A) pdi_ifb_nw(3A) MOVEooovverrnrrnrrrrnicriiiscins pdi_iftb(3A)
pdi_ifb_nw(3A) move data from accocovvvvnrenienennin pdi_ifb(3A)
pdi_open(3A) open a PDIportcccoviinnnenniieinnnienns pdi_open(3A)
pdi_read(3A) pdi_read_nw(3A) read ... pdi_read(3A)
pdi_read_nw(3A)read data fromaccccooevveiinnnnnennns pdi_read(3A)
pdi_setup(3A) establishcccoeevieie verevvnieiinniccienne pdi_setup(3A)
pdi_write(3A) pdi_write_nwW(3A) ..o pdi_write(3A)
pdi_write_nw(3A)write data fromccccceveveiririerinninne pdi_write(3A)
peer getpecername(2B) ...c.ovocvene, getpeername(2B)
per exccutable /SE/TEPOTtovieieiivciniiininnre e aligntrap(1)
performa parallel poll of a GPIBccovevnininiannns gpib_ppreq(3A)
physical and virtual MEMOTYovevreerermiiiniiianiinicorennnns topmem(1l)
PIPE PrOZIIM 1ottt b s st sis pipe(l)
pipe /sit_mem_pipe_nw(3A). if_mem_pipe(3A)
pipe /sif_scan_pipe_nW(3A) .c...cccevimrinniiiriiernn, sif_scan_pipe(3A)
pipe to memory rle_pipe_mem(3A)cccoervrinrs rle_pipe_mecm(3A)
plot_ctrl(3A) pit_ctrl(BA) ccoveeieiienrien s plot_ctri(3A)
plot_ctrl_rop(3A) mplt_ctrl(3A) plot_ctrl_rop(3A)
plot_data(3A) pli_data(3A)ccoevvrrrreniinrnnenisrininens plot_data(3A)
plot_data_rop(3A) rplt_data(3A)ccoviriiriniennnne plot_data_rop(3A)
plt_ctri(3A)plt_ctrl_nw(3A) sendccovvvvveniririviininens plot_ctri(3A)
pht_ctrl_nw(3A)send a control plot_ctri(3A)
pit_data(3A) pli_data_nw(3BA)oeerrrrnrrinrnrninrnriancens plot_data(3A)
plt_data_nw(3A)write data to the/ccoovevicniinennans plot_data(3A)
poll of a GPIB channel ..o, gpib_ppreq(3A)
poll of a GPIB device ... gpib_spreq(3A)
poll response /unconfigure gpib_ppucont(3A)
poll response of a GPIB devicecvvvnivnnvcnciinenns gpib_ppconf(3A)
port aux_break(3A)covriviiveriininnsienens aux_break(3A)

............. aux_cancel(3A)
.. aux_cancel_modem(3A)

port aux_cancel(3A) cancel
port aux_cancel_modem(3A)cancel

PO ottt e e sb e aux_close(3A)
port /aux_modem_nw(3A) . aux_modem(3A)
POt ot st seeaes aux_open(3A)
port /aux_rawrd_nw(3A)read dataccoooeirverinnnns aux_rawrd(3A)
port /aux_read_NW(3A) ..o aux_rcad(3A)

... aux_write(3A)
.... csi_cancel(3A)
... ¢si_ccan(3A)

port /aux_writc_nw(3A) .
port /cancel outstanding
port csi_ccan(3A) cancel

POTL ottt ssssisrrearss s snssbsaons csi_closc(3A)
port ¢csi_cmd(3A) csi_cmd_nw(3A) .. .o, csi_cmd(3A)
port csi_dstat_nw(3A) ... csi_dstat_nw(3A)
port csi_open(3A)
port csi_reset(3A) Csi_reset(3A)
port /cancel unsolicited ... csi_ucan(3A)

26 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

4

0

()

0

P
s’

unsolicited status from a CSI
csi_status(3A) read the CSI
read data from a PDI

getrpeport(3R) get RPC

asynchronous 1/0 on a PDI
pdi_close(3A) close a PDI
pdi_open(3A) open a PDI
establish parameters for a PDI
write data from memory to a PDI
a control word to the parallcl
control word to the ROP parallcl
write data to the parallel

writc data to the ROP parallel
move data from a PDI

types(S)

man(1)

netlpr(1) DNP command to
information about RCS/ rlog(1)
Ipr(1) BSD offline

hostname(1) set or

acctcom(1) search and

qpr(1) submit a hardcopy

keys trom a YP map ypmatch(l)
ypeat(1)

capability database

printcap(4) BSD

Iptest(1) generate line

remove jobs from the BSD linc
to print file(s) on remote
ucprelse(2[) reset a process’s
ucppri(2l) check if a UCP
/determine frame butler output
ucpsig(2l) set process to a UCP
ucpelr(2I) clear process UCP
ucping(2l) return the UCP
ucpnice(1) run a process at UCP
ucpset(2]) set a process to a UCP
acctcomy(1) search and print
ucpnice(l) run a

sctup for code execution in the
exiy(2) _exit(2) terminate
getpgrp2(2B) get

setpgrp(2) set

killpg(2B) send signal to a
setpgrp2(2B) set

efticient/ vfork(2B) spawn a new
/CRM utility for monitoring
CRM utility for monitoring a
request/ xio_notify(3A) notify a

Permuted Index

port /csi_ustat_nw(3A)receive .. csi_ustat(3A)
port DR11 status lines €si_status(3A)
port into memory /pdi_ read nw(?A) pdi_read(3A)

POTt NUMDET ..o getrpeport(3R)
port /cancel outstanding . pdi_cancel(3A)
POTE oottt bbb e ben e pdi_close(3A)
POTE ottt pdi_open(3A)
port pdi_setup(3A) pdi_setup(3A)
port /pdi_write_nw(3A) pdi_writc(3A)
port /plt_ctrl_nw(3A)sendcccovrvinnniniiniiiiniiinnns plot_ctrl(3A)
port /iplt_ctrl_nw(3A)send accceeeriiiiiiinns plot_ctrl_rop(3A)
port /plt_data_nw(3A) .cccovii e plot_data(3A)
port /iplt_data_nw(3A) plot_data_rop(3A)

port to a window /pdi_ifb_nw(3A) ..o pdi_ith(3A)
primitive system data typesocovieiinnenieniiiin e types(S)
print entries in this manual ..., man(l)
print file(s) on remote Printers ..covevvveereeirniassnsirncisnnens netlpr(l)
print log messages and other ... «... log(1)
PIINE ittt Ipr(l)
print name of current host SyStemoceevivievicernnennnn, hostname(1)
print process accounting files acctcom(1)

print request to NQS ..o e qpr(l)
print the value of one or more . ypmatch(l)
printvalues in a YP database ... ypeat(1)
printcap(4) BSD printer ... printcap(4)
printer capability database printcap(4)

rinter ripple pattern .. . Iptest(l)
p ppie p I

printer spooling queue lprm(l)

. Iprm(1)
printers netlpr(1) DNP command ... netlpr(l)
priority after handling a signalcccoiiiinninnens ucprelse(2l)
priority is already in USEcooveveervinenieceicsnee ucppri(2l)

priority of the frame grabber fg_priority(3A)
priority on receipt of a $ignal ... ucpsig(2l)
PHOTIY oo ... ucpelr(2l)
priority ucping(2h)
priority ucpnice(1)

PHIOTILY oottt e ucpset(21)
Process acCOUNtng flles ...oeveiiineerecnieniniecineie acctcom(i)
process at UCP prioritycooevvenininnsncnnnncnnns ucpnice(1)

process data section exedata(2l)ooovvriricnnineineninns excdata(2l)
PIOCESS ovuiveriinisiaeinire s rssenssessbesssans s st se b e exit(2)
process group . getpgp2(2B)
process Eroup ID ..o setpgrp(2)
PIOCESS BIOUD ..vocvvreernranrsisenssisestssisssssssnssnssississsseisnesnsnsens killpg(2B)
PTOCESS BIOUP «..vvevivirsiantrrnnnessissssssssssssssenssssssssssssssssinene setpgrp2(2B)
process in a virtual MEMOTY ...covvvererniieremiinneesinninenes vtork(2B)

process memory regions showmemory(l)
process monproc(l) c.uevver e ennsenieiiines monproc(l)
process of an asynChronouscecevererivesnernnennsnens xio_notity(3A)

PERMUTED INDEX 27

Permuted Index

receipt of a/ ucpsig(2l) set
ucpset(2l) set a

wait2(21) wait for

wait3(2B) wait for

ucpelr(2l) clear

getepuid(2I) return CLIPPER
[elipper(1) ns32000(1) vax(1) get
asignal ucprelse(2l) reset a
ANSI-standard magtape label
ab(l) Ada

network clearinghouse management
cumail(1) DNP mail transport
ftp(1) ARPANET file transter
BSD spool qucue examination
adep(1) Ada

mt(1) magnetic tape manipulation
ncp(l) DNP network control
rpc(4) RPC

rpipe(1) remote pipe

rtape(1) remote tape manipulation
connect to a server

tttp(1) trivial file transfer

visit(1) Intergraph remote login
the standard/restricted command
to commands and application
lookup value by object and

or/ odchmod(1) change the file
rpegen(l) an RPC
endprotoent(3B) get

protocols(4)

user interface to the TELNET
RPC/XDR/YP scrvice functions and
database

state gpib_rcmote(3A)

requests

devices

limits and shell strategy for/
request to NQS

NQS queues

request

Ipq(1) BSD spool

inseri/remove element from a

the BSD line printer spooling
/display a listing of the mail
display the status of NQS
random(3B) srandom(3B) better
random number generator

dialect

ratfor(1)

process to a UCP priority onccevvvvvivivnivinnnieninniinenns ucpsig(2l)
process t0 @ UCP PrOTityoovivcinveniceiiennininnesenennns ucpset(2)
Process t0 CIMINALEocveverrieverereiiiniesinirasesesieseneseesenesasens wait2(2l)

process to terminate ...
process UCP priority .

... wait3(2B)
... ucpelr(2l)

processor identifier getepuid(2h)
processor type truth value ... machid(l)
process’s priority after handling ..., ucprelse(2l)
program ansitape(l) ansitape(1)
program beautifier ab(1)
program clh(1) Intergraph cee CIR(D)

PTOBIAIMY ooiiiirnier e sie st s bbb e sb et s snnr s
PIOZIAM wevoiiititiit ettt srr bbb ser b s
program Ipq(1)

program makefile geRerator ... adep(1)
PIOZIAM Lottt sttt e eresn s mt(l)
PIOGIAM ittt vt abans nep(l)
program number databaseccveiivvrinieriiiiesecnee oo pe(4)
Programcooovvvvenvvnnne ... ipipe(1)
PIOZTAML .ottt et b bbb bbbt b st bsnesaee rtape(1)
program sni_connect(3N) .o.ccvviriiiniiinnniirinnnn, sni_conncct(3N)
PIOZTAIM wooviiciiiiiin et be e st st sbebseesesenenans thp(l)
PIOZIAM oottt et visit(1)
programming language /Shell, ..o ksh(1)
programs intro(1) introductioncccecvvievivcriicnecnencns intro(1)
property clh_vbyop(3N) ..o clh_vbyop(3N)

protection of optical disk files odchmod(1)

Protocol COMPILET w..vciiiriiiii i rpcgen(l)
protocol entry /setprotoent(3B) getprotoent(3B)
protocol name databaseooeveivveviennnenineris protocols(4)
Protocol teINEt(L) i telnet(1)
protocols /introduction to intro(3R)
Pprotocols(4) protocol RAMEcvvvvviniiiriiiiseiiiiines protocols(4)
puta GPIB channel in a remotecoouvveiiiireninnnes gpib_remote(3A)
qdel(l) delete or signal NQScooeivivieninnniiricccninecriee e qdel(1)
qdev(l)display the status of NQSocoviiiviiiiniiicininn qdev(l)
qlimit(1) show supported batch qlimit(l)
qpr(1) submit a hardcopy printc..occevvvvvivnennininiicccnennns qpr(1)
gstat(1) display the status of qstat(1)
gsub(1l) submit an NQS batchccooeviiciiinnniirierenecieiaene gsub(1)
queue CXAMINAtion PrOEIAMccvevvereurimrurniemiicsnierensesessssssesioss Ipg(l)

queue insque(3B) remque(3B) ...
queue Iprm(1) remove jobs from

. insque(3B)

queue used by sendmail(1M) mailq(1)
queues gSLat(L) .o s gstat(1)
random NUMDbET GENETALOTvvcvueirvisiiiveiiieineieseisainienne random(3B)
random(3B) srandom(3B) bettercccocervvverrrrrrenerenene random(3B)
ratfor(1) rational FORTRANccccooivivmniennncnnneerenensnnnnns ratfor(1)
rational FORTRAN dHalectc.ocvvviererivecneiienenivrereesnnsennnnes ratfor(1)

28 CLIX PROGRAMMER'’S & USER’'S REFERENCE MANUAL

()

O

O

()

()

)

Permuted Index

ruserok(3B) routines for/

res(1) change

scestores(1) build

resfile(4) format of

and other information about
ci(1) check in

co(1) check out

resdiff(1) compare
resmerge(1) merge

files

vmsbackup(1)

gpib_read(3A) gpib_read_nw(3A)
pdi_read(3A) pdi_read_nw(3A)
aux_read(3A) aux_read_nw(3A)
aux_rawrd(3A) aux_rawrd_nw(3A)
read(2)

readv(2B)

aux_cancel(3A) cancel outstanding
readinfo(2l)

lines csi_status(3A)

readlink(2B)

information

symbolic link

socket

aliases file newaliascs(1)
signal(2) specify what to do on
set process to a UCP priority on
sni_rxw(3N)

recv(2B) recvfrom(2B) recvmsg(2B)
port csi_dstat_nw(3A)

system fmu_receive(3N)
csi_ustat(3A) csi_ustat_nw(3A)
status daemon/ statmon(4)
directory/ statmon(4) record(4)
receive a message from a socket

a message from a socket recv(2B)
from a/ recv(2B) recvfrom(2B)
CRM utility for monitoring memory
for monitoring process memory
for a common object file

common object file reloc(4)
remd(1)

remd(1) remote command ..o remd(1)
remd(3B) rresvport(3B) ..o remd(3B)
rep(l) remote file COPY .ovvvvniniieeniiiiicicnvce rep(l)

RCS file attributesres(h)
RCS file from SCCS file . scestores(1)
RCS fIl€ ittt ereraes e ee restile(d)
RCS files /print log messages rlog(1)
RCS IEVISIONS ..ceviriiiiiiciciccine et ci(l)
RCS TEVISIONS ..veeireeiiieecise it cse sttt st sn e co(l)
RCS IeVISIONS ...oovniiiieiiiiciiricniccnieii e resditi(l)
RCS revisionsceecvveevenenrecennne . resmerge(l)

res(1) change RCS file attributes 1es(l)
resclean(l) clean up working resclean(1)
resdiff(1) compare RCS 1evisions ... resdifl(1)
resfile(4) format of RCS file ..o resfile(d)
resmerge(1) merge RCS revisions ... resmerge(l)
read a VMS backup tape vmsbackup(1)

read data from a GPIB device ... gpib_read(3A)

read data from a PDI port into/ccoveveviiniiniiienns pdi_rcad(3A)
read data from a serial port ... aux_read(3A)
read data with error byte from a/ .. aux_rawrd(3A)
read from file ..o read(2)
read input from a SOCKCt w.vvcvivcrivvniiniciiinie i readv(2B)
read on a serial Portccoevvcmeerniinieieieriiiinens aux_cancel(3A)
read system activity information ..o readinfo(2l)
read the CSI port DR11 status csi_status(3A)
rcad the value of a symbolic link ... readlink(2B)
read(2) read from filecocoeernirinirnniciierie e read(2)
readinfo(21) read system activity readinfo(21)
readlink(2B) read the value of a readlink(2B)
readv(2B) read input froma ... readv(2B)
rebuild the database for the mailooveveriivinciiininn. newaliases(l)
receipt of a Signal ..o signal(2)
receipt of a signal ucpsig(2l) .ouepsig(2l)
receive a data buffer sni_rxw(3N)
receive a message from a SOCKetcvivevviionnrorerinsinenens recv(2B)
reccive delayed status froma CSIccoevvveenne csi_dstat_nw(3A)
receivefiles froma remoteoveverevivinsinicnnenns fmu_reccive(3N)
receive unsolicited status from a/oveivivieinnniieninee csi_ustat(3A)
record(4) recover(4) state(4) v Statmon(4)
recover(4) state(4) status daemon statmon(4)
recv(2B) recvfrom(2B) recvmsg(2B) ..o recv(2B)
recvirom(2B) recvmsg(2B) receiveoovveviviiiiereeiienne, recv(2B)
recvmsg(2B) receive a meSSageo.ovvvveivernensininiinisinnens recv(2B)
regions MONFEGion(1) ...ovvvvevrvviiinneiininenninssnsennnes monregion(1)
regions /CRM utility showmemory(1)

reloc(4) relocation information . ceeeen TElOC(4)
relocation information fora o reloc(4)
FEMOLE COMMAN ..veeiiiiiiieiiireeienreenreeeeesensresnesnessessaesnes remd(1)

PERMUTED INDEX 29

Permuted Index

for returning a streamto a
rexec(3B) return stream to a
rep(1)

netex(1) DNP
/connect/disconnect to

sethost(1) DNP

visit(1) Intergraph

rlogin(1)

rpipe(1)

DNP command to print file(s) on
put a GPIB channel in a

execute the specified command on
receive files from a
fmu_send(3N) send files to a
lists the directory contents on a
rte(1)

/rtc_deallocate(3N) rtc_notify(3N)
rtape(1)

.rhosts(4)

table rmtab(4)

rm(1) rmdir(l)

printer spooling queuc lprm(1)
netrm(1) DNP command that
from a queue insque(3B)
dircctorics odmv(1)

tile

/DNP command that moves or
errors(l) crror logging

i-nodes on an optical/ oddf(1)
jukeboxes jbconfig(l)

a process of an asynchronous
SRQ/ /gpib_service_nw(3A)
gsub(1) submit an NQS batch
fpe_cancel_dma(3A)cancel write
qpr(L) submit a hardcopy print
/cancel unsolicited status

feancel all outstanding

qdel(1) delete or signal NQS
handling a signal ucprelse(21)
csi_rescl(3A)

crm(1) CLIX

a GPIB device's parallel poll
feonligure the paralle! poll
incremental file system

system restore

control gpib_local(3A)
identifier getepuid(2I)
associated with a/ tdtounit(3F)
/getfreememy(2[) getavailsmem(2I)

30

remote command /TOULNESccocevierrmmirrecssierirenesoenieoinies remd(3B)
remote COMMANGcoiviviriirireeietiene e essrsses s rexec(3B)
remote file copy wenens FEP(L)

remote file execution utility .. netex(1)
remote FMU servercccovu.... .. fmu_connect(3N)
remote login DECnet or CLIX node. . ..o sethost(1)
1emote I0ZIN PIOZIAM ...ocvuvvrrinrinirereseinie s s ensecens visit(1)
TEMOLE IOZIN 1ovviiiiiiniiiriitiiei ettt en e rlogin(1)
TEMOLE PIPE PIOBIAM «..ovrvrriurnaeresrenns s essbsissisescssess s neneneneas pipe(l)
remote printers NEPr(l) .o netlpr(1)
remote state gpib_remote(3A) gpib_remote(3A)
remote system fmu_rcmd(3N) ...cooeevvienninniennnieneens fmu_rcmd(3N)
remote system fmu_receive(3N) ... fmu_receive(3N)
FEMOLE SYSIEM ..orvivrrnieiaeineranenans fmu_send(3N)
remote system /DNP command thatcccvveviieniicisennns netls(1)
remote tape control ne(l)
remote tape control ric_allocate(3N)
remote tape manipulation Programccoevneenncssssmscsinnns rtape(1)
remote user access list .ovieiennn. .. .thosts(4)
remotely mounted NFS file system rmtab(4)
remove files Or direCIOMES ...oiiviviivie s m(1)
remove jobs from the BSD lNeoooviiiiiiniicnicninnnns Iprm(1)
FEMOVES FIIES vt v netrm(1)
remque(3B) insert/remove e1ement ... insque(3B)
rename optical disk files OF ..o odmv(l)
rename(2B) change the name of a ...t . rename(2B)
renames one or more files netmv(l)
L0100 s L0113 £E1C0) ORON: ... errors(l)
report number of tree bIocks and ... oddf(1)
report the configuration of the joconfig(l)
request completion /MOty ..ooevevireeeiie s xio_notify(3A)
request notification for a GPIB ... gpib_service(3A)
TCQUESE 1.oviveriinietenrns e rers et r s e e e b sas e st e b s b aoe st nenenstones qsub(l)
request to an FPE coprocessor ... fpe_cancel_dma(3A)
request to NQS ... serseenereneens QPE(L)
requests on a CSI port ¢si_ucan(3A)
requests on a GPIB channel .. gpib_cancel(3A)
requests ... RPN qdel(1)

reseta process’s priority after ...
resethardware on CSI port ...

. ucprelse(2h)
.. csi_resct(3A)

RESOUICE MONIOT ..ivvvviviiiecreecciiei et s crm(1)
FESPONSE /URCONMGUIE ©ovviviriiiiisreeisnsnnsenees gpib_ppuconf(3A)
response of & GPIB device .o gpib_ppcont(3A)
TESIOTC FESTOTC(L) vovniiiiiiiii e restore(l)
restore()incremental file ... restore(1)
returna GPIB device 1o local .. gpib_local(3A)
return CLIPPER Processorcocveiiiieinincsiensinns getcpuid(21)
return FORTRAN logical unitcoooivenen ... fdtounit(3F)
return memory informationcoeeceninineinnnneeesinns getmemsize(21)

CLIX PROGRAMMER'S & USER’S REFERENCE MANUAL

()

0

Q)

)

Permuted Index

rexec(3B)

associated with a/ tnum(3F)
ucping(2[)

stat(5) data

command /ruserok(3B) routines for
ci(1) check in RCS

co(1) check out RCS
resdiff(1) compare RCS
resmerge(1) merge RCS
remote command

list

string(3B) index(3B)
Iptest(1) generate line printer
asynchronous /O on an
tle_close(3A) close an
rle_open(3A) open an
establish parameters for an
/le_pipe_mem_nw(3A)
asynchronous I/0 on an RLE/
channcl

rle_pipe_mem_nw(3A)RLE frony
to memory rle_pipe_mem(3A)
parameters for an RLE channel
other information about RCS/

directories

directories rm(l)

file system table

/send a control word to the
fwrite data to the

to &/ /rresvport(3B) ruserok(3B)
Internet address manipulation
setrpcent(3R) endrpcent(3R) get
getrpeport(3R) get

pe(d)

rpegen(l) an

database

compiler

intro(3R) introduction to

send a control/ plot_ctrl_rop(3A)
plot_ctrl_rop(3A) rplt_ctri(3A)
write data to/ plot_data_rop(3A)
plot_data_rop(3A) ipht_data(3A)
routines for returning/ remd(3B)
program

ric_deallocate(3N)/

return stream to a remote commandoeeiveeienncinniienes rexec(3B)
return the file descriptor fnum(3F)
return the UCP priority ucping(2l)
returned by stat system call ..o stat(S)
returning a stream to @ rEMOLC oveeveveevecrnenciiissninnees remd(3B)
revisions ci(l)
revisions .. co(l)

revisions ..
FEVISIONS eeeririiiiiniiininiininins
rexec(3B) return streamto a ...

resmerge(1)
.. rexec(3B)

.rhosts(4) remote user accessrhosts(4)
rindex(3B) String Operationscvnmeeesncinnisinesininns string(3B)
PPIE PAUETN oiveiieirinircinicnitcni i Iptest(l)
RLE channel /cancel outstanding . rle_cancel(3A)

RLE channelc..... ... rle_close(3A)
RLE channelccocenueee ... fle_open(3A)
RLE channel rle_setup(3A) ...cooveviriiinrnecincsinccecncs rle_setup(3A)
RLE from pipe t0 MEMOTY ...cuoernrnisisimsinsinsiries rle_pipe_mem(3A)
rle_cancel(3A) cancel outstandingc..cooeivivnnnns rle_cancel(3A)
tle_close(3A)close an RLE tle_close(3A)
rle_open(3A) open an RLE channel ..., rle_open(3A)
rle_pipe_mem(3A) ..ot rle_pipe_mcm(3A)
rle_pipe_mem_nw(3A)RLE trom pipe rle_pipe_mem(3A)
rle_sctup(3A) establish ..o, rlc_sctup(3A)
rlog(1) print log messages andccvinimnieiniviinniinieiinenss rlog(1)
rlogin(1) remote IOZIN .o.cevriiciiie rlogin(1)
rm(1) rmdir(1) remove files OF ..c.oovvcciviiiininniiniens rm(1)
rmdir(1) remove files or ebeerrea e r e a b s rm(1)
rmtab(4) remotely mounted NFS rmtab(4)
ROP parallel port plot_ctrl_rop(3A)
ROP parallel port plot_data_rop(3A)
routines for returning a Streamc.cocoivevereiininiinnn remd(3B)
routines /inet_netof(3B) ..vvvecrcriciiiiiins inet(3B)
RPC entry /getrpcbynumber(3R) .. getrpeent(3R)
RPC pOrt NUMDEToeceeieieiecneiinissiisrcniineessineas getrpcpon(3R)
RPC program number databasecocvmiimienininsisinnns pe(4)
RPC protocol compiler rpegen(l)
rpc(4) RPC program numberccccevmeimninnmininisisieinens pe(4)
rpcgen(l) an RPC protocol rpegen(l)
RPC/XDR/YP service tuncuons and/ intro(3R)
rpipe(l) remote Pipe PrOGramoccvuveisrmsirenssisessesssssssssiseess rpipe(l)
plt_ctrl3A) rplt_ctrl_nw(3A) e . plot_ctrl_rop(3A)
mplt_ctrl_nw(3A)send a control/ plot_ctrl_rop(3A)
mplt_data(3A) rplt_data_nw(3A) plot_data_rop(3A)
mpli_data_nw(3A)write data to/covevcvviiniinnn. plot_data_rop(3A)
rresvport(3B) ruserok(3B) vt remd(3B)
rtape(1) remote tape Manipulation ... rtape(l)
rtc(1) remote tape COMIol ..oiieirciniii rie()
Ae_alocate(3N) e rte_allocate(3N)

PERMUTED INDEX 31

Permuted Index

remote tape/ rtc_allocate(3N)
control /rtc_dcallocate(3N)
ucpnice(l)

each machine on the local/
returning/ remd(3B) rresvport(3B)
machines on the local network
/transfer data from

/transter data from
scestores(1) build RCS file from
SCCS tile

asynchronous 1/O cpio(1)

accounting files acctcom(l)
exccution in the process data
fg_video_in(3A) fg_video_out(3A)
mutltiplexing

/pht_ctrl(3A) plt_ctrl_nw(3A)
/rph_ctrl(3A) rplt_ctrl_nw(3A)
send(2B) sendto(2B) sendmsg(2B)
on the local XNS/ netmsg(1)

port csi_cmd(3A) csi_cmd_nw(3A)
gpib_cmd(3A) gpib_cmd_nw(3A)
tmu_send(3N)

killpg(2B)

send a message from a socket
aliases(4) aliases file for

listing of the mail queue used by
socket send(2B) sendto(2B)
message from a socket send(2B)
gpib_spreq(3A) conduct a
generate a break on a

cancel outstanding read on a
cancel modem change statc on a
aux_close(3A)close a

get modem change from a
aux_open(3A)opena

read data with error byte [rom a
aux_read_nw(3A) read data from a
aux_write_nw(3A) writc datato a
connect/disconnect to remote FMU
server.dat(4) XNS
sni_connect(3N) connect to a
information file

setservent(3B) endservent(3B) get
/introduction to RPC/XDR/YP
services(4)

ucpset(2l)
fmu_sct(3N)

ric_deallocate(3N)rte_notify(3N)coevvvrnenrnnnnn, ric_allocate(3N)
rtc_notify(3N)remote tape rtc_allocate(3N)

runa process at UCP priority ..o, ucpnice(l)
ruptime(1) show host status forococvevevevveiecsreeienne ruptime(l)
Tuserok(3B) rowtines fOrc.ccoevvevevvrernerersensenie e remd(3B)
rwWho(1) lists users 10gged iN 10 .. vvvevrerecerieiese e nwho(1)
scanner to memory sif_scan_mem(3A)
scanner to pipe ... sif_scan_pipe(3A)
SCCSHIIE oiiviveciirreree et e ... scestores(1)
scestores(1) build RCS file from ..., scestores(l)
scpio(1) mubtibulfering andcoccocovevvnrreemeneoenecesnnen. sepio(l)
SUB(1) symbolic debUZLET ..o sdb(l)
SEArCh and Print ProCessvecceveeveres vovrrenrerersnrerinsarensennn. acctcom(l)
SCCHON /SCLUP LOF COAC .ot cxedata(2l)
sclectthe video signal types for/c..cocceeveereveccnnnen fg_video_in(3A)
select(2B) synchronous I/Ococovevcevcnciveniinenienne sclect(2B)
send a control word to the/ plot_ctri(3A)
send a control word to the ROP/ plot_ctrl_rop(3A)
send a message from a SOCKEL ..vuuvenvencerevveeeernsienieneeseee e send(2B)
send a message 10 console dEVICEsovevevccnervnrinrnresinnes netmsg(1)
send command packets t0 a CSIc.cccccevvenvrrenrnnnen, csi_cmd(3A)
send commands to a GPIB channelcccccoeernrnnnn, gpib_cmd(3A)
send files 10 a remOte SYSICM ..ocvvevrerveerneerrinrenniaersinias fmu_send(3N)
send signal to a process group killpg(2B)
send(2B) sendto(2B) scndmsg(2B) ... send(2B)
sendmail(IM) ..o .. aliases(4)
sendmail(IM) mailq(1) display @c.ccocvevererinnrnvnisnrnerennne mailq(1)
sendmsg(2B) send a message from accoouvverrvvnrereninennns send(2B)
sendto(2B) sendmsg(2B) Send @ocuveereererrrerirnnnensesieenne send(2B)
serial poll of a GPIB deviceoccrevcrveereriennenannnns gpib_spreq(3A)
scrial port aux_break(3A) aux_break(3A)
serial port aux_cancel(3A) e aux_cancel(3A)

serial port aux_cancel_modem(3A)... .. aux_cancel_modem(3A)
SETIAl POIL oottt s s aux_close(3A)
serial port /aux_modem_nw(3A) aux_modem(3A)
SCHAL POIT oot ercnnstnaessb s, aux_open(3A)
serial port /aux_rawrd_nw(3A) «.ooooeverurrreeriennrrinn, aux_rawrd(3A)
serial port aux_read(3AYovcvuervecninreinneniesse e, aux_rcad(3A)
serial port auX_WHLE(3A) .ovvrveriricercrrireeereeseeveee e aux_write(3A)
server /fmu_disconnect(3N)cccooovvvernerercinnnnee fmu_conncct(3N)
SErver information fileccvveeinecenennrieieeseneeeens server.dat(4)
SEIVET PIOZIAN wuvviniie it encss s senesnnens sni_connect(3N)
SErVEr.dat(4) XNS SEIVET w...eevecrncrcrereee e server.dat(4)

service entry /getservbyname(3B) ..
service functions and protocols ...

getservent(3B)
.. intro(3R)

service name database services(4)
services(4) service name databasc services(4)
seta process to a UCP priority ..., ... ucpset(21)
SCLEMU MOAECS ..o Imu_set(3N)

32 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

()

0

)

()

setnodename(2l)

/setsockopt(2B) get and

domain domname(1)

system hostname(l)

setpgrp(2)

setpgrp2(2B)

reccipt of a signal ucpsig(2l)

uscd by optical disk/ odcd(1)
fg_tbmodc(3A)

sty (1)

current domain getdomainname(3R)
/getgrgid(3C) getgrnam(3C)

DECnet or CLIX node.
/gethostbyaddr(3B) gethostent(3B)
identifier of/ gethostid(2B)

current host gethostname(2B)
interval timer getitimer(2B)
/getnetbyaddr(3B) getnetbyname(3B)

get protocol/ /getprotobyname(3B)
/getpwuid(3C) getpwnam(3C)
disposition per/ aligntrap(1)

RPC entry /getrpcbynumber(3R)
service entry /getservbyname(3B)
options on/ getsockopt(2B)
process data section exedata(21)
mkshlib(1) create a

C-like syntax csh(1) a

/show supported batch limits and
command/ ksh(1) krsh(l)

on the local nctwork ruptime(1)
shell strategy for the/ qlimit(1)
monitoring open files

monitoring process memory/
connection shutdown(2B)
full-duplex connection
outstanding asynchronous /O on a
sif_close(3A) close a
sif_open(3A)open a

establish paramelters for a
asynchronous 1/0 on a SIF/

sif_mem_pipe_nw(3A) transter/
from memory to/ sif_mem_pipc(3A)

sif_scan_mem_nw(3A) transfer/
from scanner to/ sif_scan_mem(3A)

Permuted Index

setncw node name setnodename(21)

set options on sockets getsockopt(2B)
sct or display name of current YP ..o domname(l)
set or print name of current host .c.ovvvncicnineniicnnne hostname(1)
set process group ID .o setpgrp(2)
SCUPIOCESS ZIOUP ovivrenirerirrensesretse st snseserencaees setpgrp2(2B)
set process to a UCP priority On ..o ucpsig(2l)
set the current default direClory ...ovecvivviiininineiiieiniiieine oded(1)
sct the mode of a frame bufter fg_tbmode(3A)
set the options for a terminalocovveveiiniencncnieennne stiy(1)
setdomainname(3R) get/set name of getdomainname(3R)
setgrent(3C) endgrent(3C)/ ...ovenviiiiniirinie e getgrent(3C)
sethost(1) DNP remote [ogincovoeieieniiveniicnecncnne sethost(1)

sethostent(3B) endhostent(3B) get/ gethostbyname(3B)

sethostid(2B) get/set UNIGUE ...vcvevinreieieiiieneneeene gethostid(2B)
sethostname(2B) get/set name ofocceneiricnene gethostname(2B)
setitimer(2B) get/set value of ... getitimer(2B)
setnetent(3B) endnetent(3B) get/ getnetent(3B)

... setnodename(2I)

setnodename(2]) set new node name

setpgrp(2) set process group 1D .oeeeiecicrcieniinn setpgp(2)
setpgrp2(2B) Set Process group .oeoeevnieceeseseisinnnns setpgrp2(2B)
setprotoent(3B) endprotoent(3B)c..coviererneenenne getprotoent(3B)
setpwent(3C) endpwent(3C)/ getpwent(3C)
set/reportalignment trap aligntrap(l)
setrpcent(3R)endrpcent(3R) get getrpcent(3R)
setservent(3B)endservent(3B) get ... getservent(3B)
setsockopt(2B) get and S€tveveeeevninniiinciicniinns getsockopt(2B)
setup for code execution in theccooeevieeinnincnin exedata(2l)
shared libraryccocovvveienen mkshlib(1)
shell (command interpreter) with ..o esh(l)
shell strategy for the local hostoovivvninincnininenne qlimit(1)
shell, the standard/restrictedo.ocvmiveivieiiiievenieriinsieinnn ksh(l)
show host status for each machine ruptime(1)
show supported batch limits and ... qlimit(1)
showfiles(1) CRM utility for ..o showfiles(1)
showmemory(1) CRM utility for .. showmemory(1)
shut down part of a full-duplex shutdown(2B)
shutdown(2B) shut down part of a ... shutdown(2B)
SIF channel /cancelcocccvivniennnieiiniinninneens sif_canccl(3A)
SIF ChANREL ..ot sit_close(3A)
SIF channel ..o sil_open(3A)
SIF channel sif_setup(3A)ccccvriininnniicrencnienens sif_sctup(3A)

sif_cancel(3A)
v SIL_clOse(3A)
... sif_mem_pipe(3A)

sif_cancel(3A) cancel outstanding ...
sif_close(3A) close a SIF channel ...

sif_mem_pipe(3A) oo .

sif_mem_pipe_nw(3A)transfcrdatac.... sif_mem_pipe(3A)
sif_open(3A)open a SIF channel ..., sif_open(3A)
sif_scan_mem(3A) ..o i sif_scan_mem(3A)

sif_scan_mem_nw(3A)transfer data . sit_scan_mem(3A)

PERMUTED INDEX 33

Permuted Index

sif_scan_pipe_nw(3A)transfer/
data from/ sit_scan_pipe(3A)
parameters for a SIF channel
sigeld(21) modity

signal option

sigignore(2)/ sigset(2)

sigset(2) sighold(2) sigrelse(2)
sigignore(2) sigpause(2)

qdel(l) delete or

fg_blank(3A) blank the output
sigeld(2I) modify SIGCLD on stop
what to do on receiptof a
killpg(2B) send
/fg_video_out(3A)select the video
priority after handling a

to a UCP priority on receiptof a
receipt of a signal

/sigrelse(2) sigignore(2)
sigpause(2)/ sigset(2) sighold(2)
sigignore(2) sigpause(2) signal/
the frame grabber window

get descriptor table
getpagesize(2B) get system page
connection

server program

buffer

accept a connectionon a
bind(2B) bind a name to a
initiate a conncction on a

listen for connections on a
getsockname(2B) get

readv(2B) read input from a
receive a message from a
sendmsg(2B) send a message from a
wrilev(2B) write output to a
communication

connected sockets

getand set options on

create a pair of connected
certnote.com(4) Intergraph

file fixes.com(4) Intergraph
swap(2l) swap

memory efficient way vfork(2B)
csi_ccan(3A) cancel a

system Imu_rcmd(3N) exccute the
/Mush the output for the

truncatc afile to a

Si_SCAN_PIPE(3A) v sif_scan_pipe(3A)
sif_scan_pipe_nw(SAMransferocvvninienins sif_scan_pipe(3A)
Sit_sctup(3A) establish ..o sit_setup(3A)
SIGCLD on stop signal Optioncceveviviniiininiennes sigeld(2l)
sigeld(21) modify SIGCLD on stop sigeld(2l)
Sighold(2) Sigrelse(2) ..o sigset(2)
sigignore(2)sigpause(2) Signal/ccocvevivnvivninnnninnniiinienns sigset(2)
signal management /sigrelse(2) sigset(2)
Signal NQS requeStscccoivmivriiiici s qdel(1)
signal of the frame grabbercc.ocoovcverieieccrnnrencneenn. fg_blank(3A)
signal optioncceevvrnian, ... Sigeld(21)
signal signal(2) specify signal(2)
Signal to @ PrOCESS GIOUP ...cvvvirereriiiiiiiinmsssosesisssessamsessnsens killpg(2B)
signal types for I/Qcoviinicinnninininniiiiciee fg_video_in(3A)
signal /1eset @ PIOCESS™Suiiriienincmrencrninserssnsesesseseananns ucprelse(2I)
signal ucpsig(2l) set process uCpsig(2h)

signal(2) specify what to do on signal(2)

sigpause(2) signal management sigset(2)
SIgrelse(2) Sigignore(2) v esscses s sigset(2)
sigset(2) sighold(2) SigrelSe(2) .occvvrinererrnererenieereerenerrerneenns sigset(2)
size fg_size(3A) determinecocoveveirreerinciensencnninn, fg_size(3A)
size getdtablesize(ZB) ...ovvecvcuereceircnirerccneirenneenene getdtablesize(2B)
SIZE .o .. getpagesize(2B)
SRi_accept(IN)ACCEPLA .oviiviiiireriiiicseirsenesenereeeene sni_accept(3N)
sni_close(3N) close a connectionc.cceevcurviunneneee. SHi_close(3N)
sni_connect(3N)connecttoa sni_connect(3N)
sni_rxw(3N) receive a data buffer . sni_rxw(3N)
sni_txw(3N) transmit a data sni_txw(3N)
SOCKet aCCEPL(2B) ..ovviiiiiiiii et accept(2B)
SOCKEL 1ttt en e sre s e saasens bind(2B)
socket connect(2B) .. . connect(2B)
SOCKEt HiStEN(2B) eoveiviiierireieecrcn e e listen(2B)
SOCKEE IAMC .vvi et et seees e getsockname(2B)
SOCKEL ottt readv(2B)
socket /recvirom(ZB) recvmsg(2B) ..o recv(2B)
socket send(2B) sendto(2B)vvcecceiiinenneiee e scnd(2B)
SOCKEL vt ... writev(2B)
socket(2B) create an endpoint for .. v SOCkEH(2B)
socketpair(2B) create a pair of ..., socketpair(2B)
sockets /setsOCKOpU(2B) ..o getsockopt(2B)

... socketpair(2B)
.. certnote.com(4)
.... fixes.com(4)

sockets socketpair(2B) ...
software certification/
software dclivery documentation

SPACE COMIOL 1ot swap(2l)
Spawn a new process in a virttal ..o vfork(2B)
specific command on a CSIportccviiinicnincnnnnens csi_ccan(3A)
specificd command OR TEMOLEvvvvevenciveinie e fmu_rcemd(3N)
specificd FORTRAN logical unitccoveveivnvcicreniccnennnnnn flush(3F)
specified length firuncate(2B) .cenvvvcinnens .. ftruncate(2B)

34 CLIX PROGRAMMER'S & USER’'S REFERENCE MANUAL

Q)

)

()

asignal signal(2)

Ipq(1) BSD

jobs Lrom the BSD line printer
generator random(3B)

/request notification tor a GPIB
STANDCFG(4) optical disk
ansitape(4) ANSI

ksh(1) krsh(1) shell, the
standalone configuration file
tg_viw_start(3A) fg_viw_stop(3A)
stat(5) data returned by _

system call

statmon(4) record(4) recover(4)
mailstats(1) display mail
state(4) status daemon directory/
/record(4) recover(4) state(4)
local/ ruptime(1) show host
csi_dstat_nw(3A) receive delayed
/receive unsolicited

read the CSI port DR11
Istat(2B) get file

qdev(1) display the

gstat(1) display the
csi_ucan(3A) cancel unsolicited
sigeld(2l) modify SIGCLD on
/tg_viw_stop(3A) start and
supported batch limits and shell
/routines for returning a
rexec(3B) return

bzero(3B) lIs(3B) bit and byte
string(3B) index(3B) rindex(3B)
string operations

fisinode(4)

the YP database and directory
terminal

to NQS qpr(1)

qsub(l)

dbm_clearerr(3B) database
strategy for the/ qlimit(1) show
swap(2l)

dbg(1)

sdb(1)

readlink(2B) read the value of a
symlink(2B) make a

to a file

select(2B)

intro(3A) introduction to the
(command interpreter) with C-like

e,
S

Permuted index

specify what to do on receipt Of e signal(2)
5pool queue examination Program ... Ipg(l)
spooling queue 1Iprm(1) remOvVe ..o Iprm(1)
srandom(3B) better random number ... random(3B)
SRQ conditioneeienenieinienes . gpib_service(3A)
standalonc configuration file ..o standetg(4)
standard magtape 1abels ... ansitape(d)
standard/restricted command/ooviiiiniicc ksh(1)
STANDCFG(4) optical disk standefg(4)
start and stop video in a window ... L fg_viw_start{3A)
Stat SYStemM Call .vviiiinec stay(S)
stat(5) data returned by Stocceieierenininencnei stat(S)
state(4) status daemon direCtory/ covveennceicennniinn statmon(4)
SEALISTICS +vveivieveeuereerereereesermsesionresnesssonessasseressesessssaessans mailstats(l)
statmon(4) record(4) recover(d) ... statmon(4)
status daemon directory and file/ocoevveiieneinncnnnns statmon(4)
status for each machine on the ... ruptime(1)
status from a CST POt ..o.veeeeiirniiieriscicin csi_dstat_nw(3A)
status from a CSLPOTt .c.ovvvevivccciiniiine wooo CSI_ustat(3A)
status lines csi_status(3A) csi_status(3A)

STALUS cveeverereeieerenee
status of NQS devices

<o IS1t(2B)
. qdev(])

status Of NQS qUEUES ...ovivreiviarernreeninscse s qstat(1)
status requests on a CSIport . .o esi_ucan(3A)
SLOP SIZNAL OPHON oottt et sigeld(2h
S10p Video in @ Window .. fg_viw_start(3A)
strategy for the local host /SROW .c.ccviiiiiin qlimit(1)
stream to a remote command Temd(3B)
stream to a remote command Texee(3B)
string operations /bemp(3B) ..o bstring(3B)
SUINE OPETALIONS ..vvoveriieerrieis e string(3B)
string(3B) index(3B) rindex(3B) oo string(3B)
structure of an FFS disk i-n0de ..coooveiviiiininnneninnnn tisinode(4)
structure ypfiles(4)ovenee. . . yptiles(4)
stty(1) set the Options fOr a ..o stty(1)

submit a hardcopy print reques| .. gpr(l)

submit an NQS batCh reqUestocvenvmrcemniiencniriiiieinns gsub(1)
subroutines /dbm_error(3B)c.covceeeniiniiiin ndbm(3B)
supported batch limits and shell ..o qlimit(1)
SWAP SPACE CONLTOL ovovirinciiii e swap(2l)
swap(2I) swap space CONMIOL ..cveeviviiiiiniiniinen swap(2l)
SYMBONC AEDUZEET vvvvvnvenicriiciicisi e dbg(l)
SYMDONC ACDUZLET oo sdb()
SYMBOLC TNK Lo readlink(2B)
Symbolic link t0 a file v symlink(2B)
symlink(2B) make a symbolic link ..o symlink(2B)
synchronous I/0 multiplexing sclect(2B)
synchronous/asynchronous 1/0/ .. intro(3A)
syntax csh(L) ashell ..o csh(l)

PERMUTED INDEX 35

Permuted Index

identification number
readinfo(2I) read

CRM utility for monitoring
backup(l) incremental file
stat(5) data returned by stat
intro(2) introduction to

/CRM utility for monitoring
types(S) primitive

the specified command on remote
receive files from a remote

send files to a remote

number sysid(2I) get the

sct or print name of current host
mount(2) mount a file

dircctory contents on a remote
mount and unmount file

to the optical disk file
getpagesize(2B) get

CRM uiility for monitoring
restore(1) incremental file
tstab(4) file

mattab(4) mounted file
remotely mounted NFS file
ftsfs(4) tormat of ftile
exports(4) NFS file

fstab(4) file system

mattab(4) mounted file system
remotely mounted NFS file system
getdtablesize(2B) get descriptor
ypmapxlate(4) translation
/tg_lut_out(3A) load the lookup
rte(l) remote

rtc_notify(3N) remote

mit(1) magnetic

rtape(1) remote

vmsbackup(1) read a VMS backup
telnet(1) user interface to the
TELNET protocol

stiy(1) set the options tor a
/t77uninitio(3F) initialize or
exit(2) _exit(2)

wait2(21) wait for process to
wait3(2B) wait for process to
command

program

merge(l)

get/set value of interval

floppy disk filters

ali(l) Adalibrary

sysid(2I) get the system hardware sysid(2l)
system activity information readinfo(2I)
SYStEM ACtivity 1OPSYS(1) ouvuivviriiivienireierenrcrrrereiesniseeseninnans topsys(1)
SYSIEM BACKUD oottt backup(l)
SYSIEM CALL vt b e stat(5)
system calls and error NUMDETSocveeeuvcnevirerrinnirirerisinsnnnns intro(2)
systemcalls and faultsccccvvcvvencncvninnnniernnnns e watcher(1)
SYSIEM AAA LYPES w.vvvvirereniitiiieec e et nsssrsene types(5)
system fmu_rcmd(3N) execute .. fmu_rcmd(3N)
system fmu_receive(3N) fmu_receive(3N)
system fmu_send(3N)ccvveeee ... Imu_send(3N)
system hardware identificationcociveeneecnnnneennnennn, sysid(2l)
system hoStnAME(L) wooooveeieniinencceeeee e hostname(1)
SYSICN ittt et s bone e aeben mouni(2)
system /command that lists thecoovvviecinnenirncnsennnennnn, netls(1)
system npmount(1) npumount(1) . <. Dpmount(1)
system odintro(1) introductionccoeevecrvveeeereneeereieverennns odintro(1)
SYSIEN PALE SIZEoevecrerrenrirennes getpagesize(2B)
system paramefers monparam(1) monparam(1)
SYSICM ICSIOTE Testore(l)
SYSICMAADIE wovviiiicn s fstab(d)
SYSIEM LADIC .ovviiiiii et mnttab(4)
system table rmtab(4)ccoocevevernenns e rmtab(4)
system volume Hsts(4)

systems being exported
1able o

exports(4)
... fstab(4)

table ., mnttab(4)
1able TMUAD(4) ..o rmtab(4)
1ADIE SIZE vt e getdtablesize(2B)
table to handle long map namescccccovvreeerreeriennn ypmapxiate(4)
tables of a frame grabbercccevevnrencnicniennenne fg_lut_in(3A)
APE COMMIOL ittt st rie(l)
tape control /rtc_dcallocate(3N) ... tc_allocate(3N)

tape manipulation program mi(l)
tape manipulation PIOZIAMcccoevvrermmecercmerneeireiernsiinsenrens rtape(l)
HPE i e vmsbackup(1)
TELNET ProtoCo]c.ccevivuvirerenssrenrsrensnsnsesssesesseninsessessseresesns telnet(1)
telnet(1) user interface t0 the .uvvervivecvrerereceniereeeee e telnet(l)
LETMINAL Lot bttt e stty(1)
terminate FORTRAN [/O trom Ccoovevrevnvninnnrininnns £77initio(3F)
(EIMINALE PIOCESS ovvcvnrrersisiisisensrereeseessessersssissssessessssssnssserioss exit(2)

terminate ..
(CIMINGLE ooovvenrerriererievrens

... wait2(21)
.. wait3(2B)

test(1) condition evaluation . . test(l)
ttp(1) trivial file transfer L tp(l)
three-way file merge merge(1)
timer /setitimer(2B) ...ovvovnnene. getitimer(2B)
to_flop(1) fr_flop(L) CONtIRUOUSeevvvervrierirnrrrriririerees s, to_flop(1)
00D e et alt(l)

36 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

()

O

()

)

()

Permuted Index

monitoring CPU time
monitoring page faults
monitoring 1/0 activity
monitoring physical and virtual/
monitoring system activity
/sif_mem_pipe_nw(3A)
memory /sif_scan_mem_nw(3A)
pipe /sif_scan_pipe_nw(3A)
kermit(1) kermit file

ftp(1) ARPANET file

tftp(1) trivial file

map names ypmapxlate(4)
sni_txw(3N)

cumail(1) DNP mail
aligntrap(1) set/report alignment
gpib_trigger(3A)

tip(1)

length ftruncate(2B)

vax(1) get processor type
ns32000(L) vax(1) get processor
select the video signal

types(5) primitive system data
types

ucppri(21) check if a

ucpsig(2l) set process to a
ucpclr(2) clear process
ucping(2l) return the

ucpnice(1) run a process at
ucpset(2I) set a process to a
priority

priority

priority

priority is alrcady in use
priority alter handling a signal
priority

priority on receipt of a signal
and expund data compress(1)
parallcl poll/ gpib_ppucont(3A)
/sethostid(2B) get/set

/return FORTRAN logical

for the speciticd FORTRAN logical
associated with a FORTRAN logical
tpe_did_unload(3A)
vunlock(2l)

npmount(1) npumount(1) mount and
port /csi_ustat_nw(3A) receive
CSI port csi_ucan(3A) cancel
yppasswd(3R)

if a UCP priority is already in

topcpu(l) CRM utility fOr v topcpu(l)
topfault(1) CRM utility fOr ..o topfault(l)
topio(1) CRM utility FOT .vveevrrniiiriimnireiecis s topio(l)
topmem(1) CRM utility for .. topmem(1)

topsys(1) CRM utility for topsys(1)
transferdata from memory to pipe . sif_mem_pipe(3A)
transferdata from SCannertococeeeervcrnennen sif_scan_mem(3A)
transferdata from SCannertocooeveveeeeiicnieen sif_scan_pipe(3A)
transferoovveereeneininnne ree kermit(1)
LRANSEET PIOZIAM ..ottt s fip(l)
LFANSEET PIOZIAM .voviietiieiserisssensese st titp(l)
translation table to handle long ypmapxlate(4)
transmit a data buffer sni_txw(3N)
TANSPOTE PIOZIAM covvivenisevssessvesisnssssssrssnesessessesenssrscassiniss cumail(l)
trap disposition per executablec.cccoriiiiiiinnins aligntrap(1)
triggera GPIB device ...coovvvivenvnceienerccnicnns gpib_trigger(3A)
trivial file transfer Programccoovevvenninnenenieiiiennn tp(l)
truncatea file to a specified ..o ... [truncate(2B)
truth value /ns32000(1) machid(l)
type truth value /Clipper(L)coovvverivcnnniiiisinnninns machid(l)
types for I/O /fg_video_out(3A) ..o fg_video_in(3A)
LYPES coverirreerstenenansriss s s e e types(S)
types(S) primitive system data lypes(5)
UCP priority is already in use .. L ucppri(2h)
UCP priority on receiptof 8/ ..oveveveneeiicisiosinnieniinns ucpsig(2h)
UCP PHOTILY ©vvvecrreireniinennrisnisnissreseisenssensisssisisinssiiesis ucpelr(2l)
UCP priofitycocoeeveerenenene ... ucping(2l)
UCP priorfitycoveveeeeesensennee ... ucpnice(l)
UCP prioritycocevceererneenes . ucpset(2l)
ucpelr(2l) clear process UCP ...oviieeneinnniiinsnisiiinins ucpelr(2l)
ucping(20) return the UCP ..o ucping(2l)

... ucpnice(1)

ucpnice(1) run a process at UCP . .
............ ucppri(2l)

ucppri(2l) check if a UCP

ucprelse(2I) 1656t @ Process’s ..o ucprelse(21)
ucpset(2l) set a process t0 @ UCP ... ucpset(2D)
ucpsig(2I) set process 10 @ UCP ... ucpsig(2l)
uncompress(1)zcat(1) COmMPIess «....cvvvveniiireiinniiennns compress(l)

unconfigurea GPIB device’s ..oo.cvvervccricnenennnns gpib_ppucont(3A)
unique identificr of CUrrent hoSt e gethostid(2B)
unit associated with a fille/ ..o tdtounit(3F)
unit flush(3F) flush the output ..ot Mush(3F)
unit /return the file desCriptor .. fmum(3F)

unload an FPE coprocessor image fpe_did_unload(3A)
unlock an area of MEMOTY ...cvviererinieriierinsierereieians vunlock(2l)

unmount file system npmount(1)
unsolicited status from a CSIcooeviviiiniieineninnns csi_ustat(3A)
unsolicited Status TEQUESIS ON & ..curvveurvnecrsnnsssniinsinnns csi_ucan(3A)
update user password in YP ..o yppasswd(3R)
use ucPpri(2l) ChECK .o ucppri(2l)

PERMUTED INDEX 37

Permuted Index

.rhosts(4) remote

protocol telnet(l)

yppasswd(3R) update

the local network rwho(1) lists
CLIX dtu(l)

fmu(1) network file management
monproc(1) CRM

topcpu(l) CRM

activity topio(1) CRM

regions monregion(1) CRM
showtiles(1) CRM

faults topfault(1) CRM

and virtual memory topmem(l) CRM
memory regions showmemory(l) CRM
activity topsys(1) CRM

calls and faults watcher(1) CRM
parameters monparam(l) CRM
format(1) floppy disk formatting
DNP remote file execution
clh_vbyop(3N) lookup

vax(1) get processor type truth
readlink(2B) read the
/setitimer(2B) get/set

YP map ypmatch(1) print the
byte/ /ntohl(3B) ntohs(3B) convert
ypeat(1) print

values(5) machine-dependent
values

machid(1) clipper(1) ns32000(1)
a virtual memory cfficient way
/fg_viw_stop(3A) start and stop
/tg_video_oul(3A) sclect the
/Spawn a new process in a

tor monitoring physical and
program

vmsbackup(l) read a

tape

tfsfs(4) format of file system
blocks and i-nodes on an optical
memory

csi_death(3A) csi_death_nw(3A)
wait2(21)

wait3(2B)

terminate

terminate

monitoring system calls and/
start and stop video in a

move data from a PDI portto a

USETACCESS LISt .. ittt .thosts(4)
user interface to the TELNETccccovvvvvneniiennernieinne. telnet(1)
user password in YP .o yppasswd(3R)
users logged in 10 MAchines oncveincvveeeenececesennssenn rwho(1)
utd(1) copy between MS-DOS andcccovevervreveevcrerenccnne, dtu(l)
ULHEY e, ... fmu(1)
utility for monitoring a process monproc(l)

utility for monitoring CPU time topepu(l)

utility for monitoring I/O e topio(1)
utility for monitoring MEmMOryccccceveerernmrnrennrnnnnne. monregion(1)
utility for monitoring open filescccoecrereiversnenrrerernns showfiles(1)
utility for moNItOring PAgevevevircrvirnircrseiseiserinrasssns toplault(1)
utility for monitoring physicalccoeevcrivervnrernirenssennes topmem(1)
utility for monitoring process .. showmemory(1)
utility for mONItOriNE SYSIEMovueunes cevrerercrnnsenirennseeerennees topsys(1)
utility for monitoring system watcher(l)
utility for monitoring system ... monparam(1)
ULHLY it e e s format(1)
ULLItY NEtEX() oottt s netex(1)
value by object and Propertycocoevecvererereveererenennnns clh_vbyop(3N)
value /clipper(1) ns32000(1) ... machid(1)

readlink(2B)
.. getitimer(2B)
... Ypmatch(l)

value of a symbolic link
value ol interval timer
value of one or more keys froma ...

values between host and network byteorder(3B)
values in @ YP databasecccovvivecerccrenmnresnnsnsinnsssnnns ypeat(l)
VALUES ottt values(5)
values(§) machine-dependent coovevvivveeinerernennerenenn, values(5)
vax(l) get processor type truth/cc.cooveerveinernnvncnnnrerenenns machid(1)
vIork(2B) spawn a new process incooovveeeerererienrereniens viork(2B)
video in a windowocoveeennne. tg_viw_start(3A)
vidco signal types for /O fg_video_in(3A)
virtual memory efficient way ... viork(2B)
virtual memory /CRM Utilitycc.oceeivervionniennnnse s topmem(1)
visit(1) Intergraph remote 10gin ...c..ccveervmnvneinnierienencieieenns visit(l)
vlock(2l) lock an area of MemMOryococeevvererrcrreeievenecrnnne. viock(2h)
VMS Backup tapeceovvervrvrirecrnrcsisesssnnsssssenssenssesssenns vmsbackup(1)
vmsbackup(l) read a VMS backupcccccovvmrerienirennncs vmsbackup(1)
VOIUMIC oottt ettt e e tfsfs(4)
volume /report nUMbET O 10vvu.eviererrecnereesionseese e oddf(l)
vunlock(2l) untock an arca ofcovovereiereeeeieeieseneee vunlock(2l)
wait for a CSI communication to/ ¢si_dcath(3A)
WAl 10T PrOCESS 10 LEMMINALEccce eccerreerrrrirnriiennsrerssiaes wait2(2l)
wait for process to terminate wait3(2B)
wait2(2I) wait for process to < Wait2(20)
wait3(2B) wait for process to wait3(2B)
watcher(1) CRM utility forccoovvevrvvvervenccviriinnnnne .. watcher(1)
window /fg_viw_Stop(3A)ccooeverreercererierirnnsieennans fg_viw_start(3A)
window /pdi_ifb_nw(3A) ...t pdi_itb(3A)

38 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

)

O

0)

Permuted Index

determine the frame grabber
/plt_ctrl_nw(3A) send a control
/rpit_ctrl_nw(3A)send a control
resclean(l) clean up
pdi_write(3A) pdi_write_nw(3A)
gpib_write(3A) gpib_write_nw(3A)
aux_write(3A) aux_write_nw(3A)
/tpe_write_dma_nw(3A)
/plt_data(3A) plt_data_nw(3A)
/rplt_data(3A) rplt_data_nw(3A)
writev(2B)
fpe_cancel_dma(3A)cancel
write(2)

s,

socket

allocate/deallocate an event/
flag mask/ xio_readef(3A)
xio_allocef(3A)

of an asynchronous request/
xio_sctef(3A) event flag mask/
xio_readef(3A) xio_clref(3A)
xio_wHor(3A) asynchronous event/
asynchronous/ xio_wait{r(3A)
xio_waitfr(3A) xio_wiland(3A)
to console devices on the local
server.dat(4)

yperr_string(3R) ypprot_err(3R)
structure ypfiles(4) the

ypeat(1) print values in a

set or display name of current
value of one or more keys troma
change login password in
update user password in
/yp_tirst(3R) yp_next(3R)
/yp_get_default_domain(3R)
database
yp_get_default_domain(3R)/
YP/ /yp_order(3R) yp_master(3R)
directory structure
/yp_unbind(3R) yp_match(3R)
yp_bind(3RY ypcint(3R)

to handle long map names
/yp_all(3R) yp_order(3R)

or more keys from a YP map
/yp_bind(3R) yp_unbind(3R)
/yp_match(3R) yp_first(3R)
/yp_next(3R) yp_ali(3R)

inYP

in YP

i,

window size fg_size(3A) fg_size(3A)

word to the parallel portcoooeveviinininniennne plot_ctri(3A)
word to the ROP parallel portcoovvviinnnene, plot_ctrl_rop(3A)
WOTKING fIlES .ooveriviniriririininiic e resclcan(1)

write data from memory to a PDI/
write data to a GPIB device
write data to a serial port
writedata to an FPE coprocessor ...
write data to the parallel port ...
write data to the ROP parallel,

... pdi_write(3A)
.. gpib_write(3A)
aux_write(3A)
fpe_write_dma(3A)
............ plot_data(3A)
. plot_data_rop(3A)

WTHLE OULPUL tO @ SOCKEL ...vvveercnrierieirseri e writev(2B)
write request 10 an FPE/ ..o fpe_cancel_dmu(3A)
WHLC 10 @ fIlE€ oveerireniieecnieire e e write(2)
write(2) write to a file ... write(2)
Writev(2B) Write OUPUL 10 A ...vveeeririiiniienesieeisnseaes writev(2B)
xio_allocef(3A) xio_deallocef(3A) ...cccovvvevuruncuncens xio_allocet(3A)
xio_clref(3A) xio_setef(3A) eventcoovvrrvrencnnnne xio_readef(3A)
xi0_deallocef(3A)/ ...ccvirriviiommirnirinnsinnssncaenannnns xio_allocef(3A)
xio_notify(3A) notify a process ... Xio_notify(3A)
xio_readef(3A) xio_clref(3A) .cccvrervrernniininines xio_readef(3A)
xio_setef(3A)event flag mask/coooevevnieeiiniiennnan, xio_rcadef(3A)

xio_waitlr(3A)
................................ xio_waitfr(3A)
... Xio_waitfr(3A)

xio_waittr(3A) xio_wfland(3A)
xio_wfland(3A) xio_wflor(3A)
xio_wflor(3A) asynchronous event/ .

XNS network /Send @ MESSALE ...ovverierrerererirarnsnsersssensens netmsg(1)
XNS server information fileocoeevvviiinnienicinenns server.dat(4)
YP client interfac /yp_master(3R)cceeee .. ypeint(3R)

YP database and directory . ypliles(4)

YP dAADASC «..overeceeieririeine st ers bbb b atesessas ypeat(l)
YP domain domname(l)ccoovveeeinininnniinniiiiens domname(1)
YP map ypmatch(1) print theoooueeeiriniiieniinens ypmatch(l)
YP yppasswd(l) ..oceevrerrenee ... yppasswd(1)
YP yppasswd(3R) yppasswd(3R)
yp_all(3R) yp_order(BRY/ .c..ocovemiererrieinisiieecienc ypclnt(3R)
yp_bind(3R) yp_unbind(3R)/ ..covrriniiriniiieiinne ypelni(3R)
ypecat(1) print values in @ YP ...cooveroinieeniiininceiicn ypeat(1)
ypeInt(3R) oo ... ypelnt(3R)
yperr_string(3R) ypprot_err(3R) .. ypcint(3R)
ypfiles(4) the YP database andccceerervenrinmnennronnenees ypliles(4)
yp_{irst(BR) yp_NeXt(BRY/ .oevvverreiiicienensicssinsiniienins ypelnt(3R)
yp_get_default_domain(3R) ..cccoeererrcenrmecncicciviieniinieinns ypeint(3R)
ypmapxlate(4) translation table ... ypmapxlate(4)
yp_master(3R) yperr_string(BR)/ c.oevverierininiineinincincnnns ypcint(3R)
ypmatch(1) print the value of one .. ypmatch(l)
yp_match(3R) yp_firstBRY/ ..veeveeerreienecicrieicieinncnsiinnnns ypcint(3R)
yp_next(3R) yp_all(BR)/ coeevereriecieienecininiensinsiensenne ypcint(3R)
yp_order(3R) yp_master(3R)/ .cvvevreccueniiienicninninsnnenns ypelnt(3R)
yppasswd(1) change login passwordcoccveccrnereae yppasswd(1)
yppasswd(3R) update user passwordooceceenn yppasswd(3R)

PERMUTED INDEX 39

Permuted Index

/yp_master(3R) yperr_string(3R) ypprot_err(3R) YP client interfaccceuevernnes

yp_first(3R)/ /yp_bind(3R) yp_unbind(3R) yp_match(3R)
compress(1) uncompress(1) zcat(1)compress and expand data

40 CLIX PROGRAMMER’S & USER’S REFERENCE MANUAL

................... ypclni(3R)

........ ypcint(3R)
compress(l)

ook

0)

()

£

()

Commands (1)

INTRO(1)

NAME

INTRO(1)

intro - introduction to commands and application programs

DESCRIPTION
This section describes commands available for the CLIX System. A portion
of the commands is standard System V commands that have been modified
under CLIX. The remainder are CLIX-specific commands.

Manual Page Command Syntax

Unless otherwise noted, commands described in the SYNOPSIS section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option ...][cmdarg ...]

where:

[1

name

option

noargletter

argletter
optarg

cmdarg

Surround an option or cmdarg that is not required.

Indicates multiple occurrences of the option or cmdarg.

The name of an executable file,

(Always preceded by a “-’.) noargletter ... or argletter optarg
poes

A letter representing an option without an option-argument.
More than one noargletter option can be grouped after one “-”
(rule 5, below).

A letter representing an option requiring an option-argument,

An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter
must be separated by commas or separated by white space and
quoted (rule 8, below).

Path name (or other command argument) not beginning with
“., or “-” by itself indicating the standard input.

Command Syntax Standard: Rules

These command syntax rules are not followed by all current commands, but
all new commands will obey them, getopts(1) should be used by all shell
procedures to parse positional parameters and to check for legal options. It
supports rules 3-10 below. The command must enforce the other rules,

12/88

1. Command names (name above) must be between two and nine charac-
ters long.

&L s wp

Command names must include only lowercase letters and digits.
Option names (option above) must be one character long.
All options must be preceded by “-”.

Options with no arguments may be grouped after a single

_9
= .

The first option-argument (optarg above) following an option must be

preceded by white space.

INTRO(1) INTRO(1)

Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g., -o
XXX,Z,yy Or -0 "xxx z yy").

9. All options must precede operands (cmdarg above) on the command
line.

10. “--" may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

13. “-” preceded and followed by white space should only be used to mean
standard input,

SEE ALSO
exit(2) in the CLIX System V Programmer’s & User's Reference Manual.
getopts(1) in the UNIX System V User's Reference Manual.
wait(2), getopt(3C) in the UNIX System V Programmer's Reference Manual.
“How to Get Started” at the front of UNIX System V User's Reference
Manual.

DIAGNOSTICS

At termination, each command returns two bytes of status—one supplied by
the system that gives the cause for termination, and (in the case of ‘““‘normal”
termination) one supplied by the program (see wait(2) and exit(2)). The
former byte is O for normal termination; the latter is customarily O for suc-
cessful execution and nonzero to indicate troubles such as erroneous parame-
ters or bad or inaccessible data. The latter byte is called “exit code”, “exit
status”, or “return code”, and is described only where special conventions
are involved.

WARNINGS
Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and

therefore become confused when encountering a null character (the string
terminator) within a line.

2 12/88

()

o

AB(1) AB(1)

NAME
ab - Ada program beautifier

SYNOPSIS
ab [-i indent] [-1 linelen] [-w] [-K [lus]] [-I [lus]] [fle ...]
DESCRIPTION
ab reads Ada source programs either from the specified files or from standard
input and writes them to standard output with spacing and indentation that
displays the structure of the code. If the Ada source has syntax errors, ab

displays the line number and token of the first error before exiting. It may
be used as an Ada syntax checker.

The following options are available:

-1 indent Set the indentation to indent, which must be a natural
number. The default indentation is four spaces.

-1 linelen Set the line length to linelen, which must be a positive
number. The default line length is 64. Warnings will be gen-
erated if this is exceeded. Note that ab will not always
prevent line overflow.

-w Suppress warning messages,

K [lus] Indicate the format of Ada keywords. The 1 option puts them
in lowercase, the u option puts them in uppercase, and the s
option leaves the case unchanged. The s option is used by
default.

-I[lus] Indicate the format of Ada identifiers. The 1 option puts them
in lowercase, the u option puts them in uppercase, and the s
option leaves the case unchanged. The s option is used by
default,

SEE ALSO
act(1), Ac(1).

01/90 1

()

()

()

()

)

Ac(1)

NAME

AcQ1)

Ac - Ada compiler

SYNOPSIS

Ac [option ...] file ...

DESCRIPTION

01/90

Ac is the York (Release 4) Ada compiler. Arguments whose names end with
.H and .A are interpreted as Ada source files; they are compiled, and each
object program whose name is that of the source with .0 substituted for .H
and .o for .A remains in the file. In the same way, arguments whose names
end with .8 are assembled and a .0 file is produced. Arguments whose names
end with .c are interpreted as C source files; they are compiled and placed in
a .o file to be loaded if required. In addition, .0 and .a files may be passed as
arguments to be loaded along with other .o files. Note that any Ada pro-
grams with foreign language bodies must have the corresponding .c or .o file
explicitly mentioned on the command line. These and any other file name
arguments are passed to 1d(1) and are loaded together to form an executable
a.out(4) file.

In addition to creating an object file, a compilation updates a library file,
ADA-LIBRARY, for each compilation unit in the source file. (The library file
is created if it does not already exist.)

The library file contains the locations of the units in the program library
and is read by subsequent compilations to enforce the separate compilation
rules of the language.

Ac recognizes the following options:

-M identifier Make the compilation unit identifier the main subprogram.
The main subprogram must be a procedure body with no
parameters defined. -M main is assumed if this option is
not specified.

-v Produce verbose error messages. In particular, the compiler
will attempt to isolate faults within expressions detected
during overload resolution.

-w Suppress all warning messages from the Ada compiler.

- Do not load the resulting .o files together.

-S Save the assembly code output of the compiler in a file with
suffix .8 or .S. No object files will be produced.

-0 outfile Name the resulting file outfile rather than the default a.out.

-0 Invoke the C object code improver on the compiler output.

-L Load only functions that are actually called (directly or

indirectly). This can considerably decrease the size of the
executable at the expense of a longer assembly and load
time. This optimization does not apply to functions

AcQ1)

FILES

-P

-V
-I directory

-Rstring

Ac(D)

entirely local to a unit., This option is incompatible with
the -g option. When this option is given, the -Re option is
automatically switched on. Otherwise, few savings accrue.
All units that make up an executable file must be compiled
with the same setting of this flag. The standard Ada
library provided is compiled with this option.

Load a global garbage collector to replace the usual garbage
collection scheme. The latter does not reclaim heap space
for access types defined within a library package.

Generate profiling information.

Generate extra symbol table information for dbg(1). Until
the sources become available to the compiler developers,
dbg(1) is very unreliable when used with Ada programs.
The user can set break points, but printing the values of
variables does not always give the expected results. It can
cause the debugger to crash,

Print the version number of the compiler.

Search for library files in the named directory, in the direc-
tory of the source file, and in the standard library
/usr/lib/Ada. Any number of -I options may be given.
Directories are searched in the following order: directory of
the source file, directories specified by -I options (in the
order given), /usr/lib/Ada.

Specify a library name of the form /lib/libx.a, where x is
a string. If the library does not exist, ld(1) tries
/usr/lib/libx.a. A library is searched when its name is
encountered, so the placement of a -1 is significant.

Suppress the following run time checks according to the
characters in the given string. (Compare pragma suppress.)

a access__check

d discriminant__check

i index_ check

1 length_ check

r range_check

z division__check

o overflow__check

e elaboration_ check

] storage_ check

b ¢ all of the above checks are suppressed

All other flags are passed to the loader.

libada.a

runtime support library for basic features

01/90

Q)

()

Ac(D)

01/90

libtask.a
libadastand.a
/bin/1d
/bin/as
oy /1ib/crt0.0
/usr/lib/Ada/ald
had /ust/lib/Ada/asplit
/usr/lib/Ada/elab__clipper
/usr/lib/Ada/ac_ clipper
SEE ALSO
adep(1).
N
A
e

Ac(1)

runtime support library for tasking feature
basic I/0 and memory management library
link editor (standard AT&T)

assembler

runtime startup code

Ada-specific link editor

Ada-specific assembler

entry label generation program

Ada CLIPPER compiler

()

()

)

ACCTCOM(1) ~ ACCTCOM(1)

NAME

acctcom - search and print process accounting files

SYNOPSIS

acctcom [option ...] [file ...]

DESCRIPTION

01/90

acctcom reads file, standard input, or /7usr/adm/pacct in the form described
by acct(4) and writes selected records to standard output. Each record
represents the execution of one process. The output shows the COMMAND
NAME, USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC),
MEAN SIZE (K), F (the fork(2)/exec(2) flag: 1 for fork(2) without exec(2)),
STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR,
CHARS TRNSFD, and BLOCKS READ (total blocks read and written).

A # is prepended to the command name if the command was executed with
super-user privileges. If a process is not associated with a known terminal, a
? is printed in the TTYNAME field.

If no files are specified and if standard input is associated with a terminal or
/dev/null (as is the case when using & in the shell), /usr/adm/pacct is
read; otherwise, standard input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward (in chronological order by process completion
time). The file /usr/adm/pacct is usually the current file to be examined; a
busy system may need several such files of which all but the current file are
found in /usr/adm/pacct?. The options are as follows:

-a Show average statistics about the processes selected. The statis-
tics will be printed after the output records.

-b Read backwards showing latest commands first. This option
has no effect when standard input is read.

-f Print the fork(2)/exec(2) flag and system exit status columns.
The numeric output for this option will be in octal.

-h Instead of showing mean memory size, show the fraction of
total available CPU time consumed by the process during its
execution. This hog factor is computed as follows:

(total CPU time) / (elapsed time)

-i Print columns containing the I/0 counts.

-k Instead of showing memory size, show total kcore-minutes.
-m Show mean core size (the default).

-r Show CPU factor (user time / (system time + user time)).
-t Show separate system and user CPU times.

-V Exclude column headings from the output.

AcCCTCOM(1) ACCTCOM(1)

-1 line Show only processes belonging to terminal /dev/line.

-u user Show only processes, belonging to user, specified by: a user ID, a
login name that is then converted to a user ID, a #, which desig-
nates only those processes executed with super-user privileges,
or ?, which designates only processes associated with unknown
user IDs,

-g group Show only processes belonging to group. Group may be desig-
nated by either the group ID or group name.

-8 time Select processes existing at or after time, given in the format
hrl:min(:secl].

-e time Select processes existing at or before time.

-S time Select processes starting at or after time.

-E time Select processes ending at or before time. Using the same time

for both -S and -E shows the processes that existed at time.

-D pattern Show only commands matching pattern that may be a regular
expression as in ed(1) except that + means one or more
occurrences.

-q Do not print any output records; print only the average statis-
tics as with the -a option.

-0 ofile Copy selected process records in the input data format to ofile;
suppress standard output printing.

-H factor = Show only processes that exceed factor, which is the hog factor
as explained in option -h above.

-0 sec Show only processes with CPU system time exceeding sec
seconds.
-C sec Show only processes with total CPU time, system plus user,
exceeding sec seconds.
-I chars Show only processes transferring more characters than the
cutoff number given by chars.
FILES
/etc/passwd used for login name to user ID conversions
/usr/adm/pacct current process accounting file
/etc/group group ID information
SEE ALSO

BUGS

acct(IM), acctems(1M), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M) in the CLIX System Administrator's
Reference Manual.

acct(2), acct(4), utmp(4) in the UNIX System V Programmer’s Reference
Manual.

acctcom reports only on processes that have terminated; use ps(1) for active

01/90

()

()

()

AccTCcoM(1) AccTCcoM(1)

processes. If time exceeds the present time, time is interpreted as occurring
on the previous day.

()

e’

()

01/90 3

0)

0

()

ADB(1)

NAME

ADB(1)

adb - absolute debugger

SYNOPSIS

adb [-w] [objfil [corfit]]

DESCRIPTION

adb is a general purpose debugging program. It may be used to examine files
and to provide a controlled environment for the execution of CLIX system
programs.

Objfil is normally an executable program file, preferably containing a sym-
bol table. If it does not contain a symbol table, the symbolic features of adb
cannot be used, although the file can still be examined. The default for obj/il
is a.out. Corfil is assumed to be a core(4) image file produced after executing
objfil. The default for corfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the -w option is present, objfil and cor/fil are created, if
necessary, and opened for reading and writing so that files can be modified
using adb. adb ignores QUIT. INTERRUPT causes return to the next adb com-
mand,

In general, requests to adb have the form
[address][, count [command][;]

If address is present, dot is set to address. Initially, dot is set to O, For most
commands, count specifies how many times the command will be executed.
The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged, addresses are interpreted in the usual way in
the address space of the subprocess. For further details of address mapping
see Addresses.

Expressions

12/88

. The value of dot.
+ The value of dot incremented by the current increment,

-~

The value of dot decremented by the current increment.
The last address typed.

integer A hexadecimal, decimal, or octal number, depending on whether
the number begins with 0x, Ot, or 0o, respectively. Otherwise, a
hexadecimal number.

integer . fraction
A 32-bit, floating-point number.

ccec The ASCII value of up to four characters. A \ may be used to
escape a ’.

ADB(1)

<name

__symbol

(exp)

ADB(1)

The value of name is a variable name or a register name. adbd
maintains a number of variables (see Variables) named by single
letters or digits. If name is a register name, the register value is
obtained from the subprocess or the system header in corfil. The
register names are r0 to r15, f0 to £7, fOx to f7x, psw, ssw,
and pc for the general, floating-point, and processor registers. Fp
and sp are synonyms for r14 and r15, respectively. FO to £7 are
the low-order 32 bits of the floating-point registers and fOx to
f7x are the high-order 32 bits,

A symbol is a sequence of uppercase or lowercase letters, under-
scores, or digits not starting with a digit. \ may be used to escape
other characters. The value of the symbol is taken from the sym-
bol table in objfil. An initial __ or ~ will be prefixed to symbol if
needed.

In C, the “true name” of an external symbol begins with _, It
may be necessary to utter this name to distinguish it from inter-
nal or hidden variables of a program.

The value of the expression exp.

Monadic operators:

*exp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer negation.

~exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic

operators.

el te2 Integer addition.

el—e2 Integer subtraction.

elxe2 Integer multiplication.

el%e2 Integer division.

el&e2 Bitwise conjunction.

el|e2 Bitwise disjunction.

el #e2 FEI rounded up to the next multiple of e2,

Commands

Most commands consist of a verb followed by a modifier or list of modifiers.
The following verbs are available. (The commands ? and / may be fol-
lowed by = (see Addresses).)

?r Locations starting at address in objfil are printed according to the
format f. Dot is incremented by the sum of the increments for each
format letter.

12/88

IR —— . . . R S AT e S

ADB(1)

12/88

ADB(1)

/f Locations starting at address in corfil are printed according to the
format £, and dot is incremented as it is for 2.

=f The value of address is printed in the styles indicated by the format
f. (For i format, ? is printed for the parts of the instruction that
reference subsequent words.)

A format consists of one or more characters that specify a printing style.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is
incremented by the amount given for each format letter. If no format is
given, the last format is used. The format letters available are as follows:

o2

04
q2
Q4
d2
D4
x2
X4
a2
U4
f4
F8
b1
cl
Cl1

sn

Sn
Y4

i2
a0

P2
to0

Print 2 bytes in octal. All octal numbers output by adb are
preceded with O,
Print 4 bytes in octal.
Print in signed octal.
Print in long signed octal.
Print in decimal.
Print in long decimal.
Print 2 bytes in hexadecimal,
Print bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32-bit value as a floating-point number,
Print double floating-point.
Print the addressed byte in octal.
Print the addressed character.
Print the addressed character using the following escape con-
vention. Character values 000 to 040 are printed as @ fol-
lowed by the corresponding character in the range 0100 to
0140. The character @ is printed as @@.
Print the addressed characters until a zero character is
reached. The value n is the length of the string including its
zero terminator.
Print a string using the @ escape convention. The value n is
the length of the string including its zero terminator.
Print 4 bytes in date format.
Print as CLIPPER™ instructions.
Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as indi-
cated below.

/ Local or global data symbol.

? Local or global text symbol.

= Local or global absolute symbol.
Print the addressed value in symbolic form using the same
rules for symbol lookup as a.
‘When preceded by an integer, tabs to the next appropriate
tab stop. For example, 8t moves to the next 8-space tab stop.

ADB(1) ADB(1)

r0 Print a space.

no Print a newline.

"..." 0 Print the enclosed string.

- Dot is decremented by the current increment. Nothing is
printed.

+ Dot is incremented by 1. Nothing is printed.

- Dot is decremented by 1. Nothing is printed.

newline
Repeat the previous command with a count of 1.

[?/11 value mask

Words starting at dot are masked with mask and compared to value
until a match is found. The mask argument is optional. The mask
used is Oxff for b and o, Oxffff for w, -1 for 1, mask if supplied, or
-1 by default. The incr argument is optional. Dot is incremented by
1 for b, 2 for w, 4 for 1, the size of the instruction for o, incr if
specified, or 1 by default. If a match is found, dot is set to the
matched location. Otherwise, dot is unchanged.

[?2/]1w value ...
Write the 2-byte value into the addressed location. If the command
is W, write 4 bytes. Odd addresses are allowed under the CLIX sys-
tem when writing to the subprocess address space.

[?2/1mblel f1[?]
New values for (b1, el, fI) are recorded. If less than three expres-
sions are given, the remaining map parameters are unchanged. If the
? or / is followed by #, the second segment (b2, e2, f2) of the map-
ping is changed. If the list is terminated by ? or /, the file (objfil or
corfil, respectively) is used for subsequent requests. (So that, for
example, /m? will cause / to refer to objfil.)

> name
Dot is assigned to the variable or register named,

! A shell is called to read the remainder of the line following !.
$modifier
Miscellaneous commands. The available modifiers are as follows:
<f Read commands from the file f and return.
>f Send output to the file £, which is created if it does not exist.

r Print the general registers and the instruction addressed by
the PC. Dot is set to the PC. All registers are printed as if
they were integer registers, including the floating-point regis-

ters.

b Print all breakpoints and their associated counts and com-
mands.

c C stack backtrace. Routine names are printed for routines

that set up a frame pointer (see cc(1)). If count is given, only

4 12/88

v A R

ADB(1)

4m a0 go

m

smodifier
Manage a subprocess. Some process management commands do not
work until the process is created. :r, and :s, create a process first, if
necessary. Available modifiers are as follows:

Variables

be

k

ADB(1)

the first count frames are printed.

The names and values of external variables are printed.
Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.

Reset integer input as described in Expressions.

Exit from adb.

Print all nonzero variables in octal.

Print the address map.

Set breakpoint at address. The breakpoint is executed
count—1 times before causing a stop. Each time the break-
point is encountered, the command c is executed. If this com-
mand sets dot to zero, the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly, the
program is entered at this point. Otherwise, the program is
entered at its standard entry point. The value count specifies
how many breakpoints are ignored before stopping. Argu-
ments to the subprocess may be supplied on the line the com-
mand is on. An argument starting with < or > causes the
standard input or output to be established for the command.
All signals are turned on when the subprocess is entered.

The subprocess is continued with signal s (see signal(2)). If
address is given, the subprocess continues at this address. If
no signal is specified, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as for r.

Same as for ¢ except that the subprocess is single stepped
count times. If there is no current subprocess, objfil is run as
a subprocess as it is for r. In this case, no signal can be sent;
the remainder of the line is treated as arguments to the sub-
process.

The current subprocess, if any, is terminated.

Named variables are set initially by adb but are not used subsequently.
Numbered variables are reserved for communication as follows.

12/88

0

The last value printed.

ADB(1) ADB(1)

On entry, the following are set from the system header in the corfil. If corfil
does not appear to be a core(4) file, these values are set from objfil.

b The base address of the data segment.

d The data segment size.

e The entry point,

m The “magic”’ number (0405, 0407, 0410 or 0411).
s The stack segment size.

t The text segment size.

Addresses

FILES

The address in a file associated with a written address is determined by a
mapping associated with the file. Each mapping is represented by two tri-
ples, (b1, el, fI) and (b2, €2, f2), and the file address corresponding to a
written address is calculated as follows:

bl<address<el — file address=address+fI1—bl
Otherwise, it is calculated as follows:
b2< address<e2 — file address=address+f2—b2

If one of these methods does not succeed, the requested address is not legal.
In some cases (i.e., for programs with separated I and D space), the two seg-
ments for a file may overlap. If a ? or / is followed by an %, only the second
triple is used.

The initial setting of both mappings is suitable for normal a.out(4) and
core(4) files. If neither file is the kind expected, for that file b7 is set to 0, el
is set to the maximum file size, and fI is set to 0. In this way, the whole file
can be examined with no address translation.

For adb to be used on large files, all appropriate values are kept as signed,
32-bit integers.

/dev/mem
/dev/swap
a.out

core

SEE ALSO
" a.out(4), core(4).

ptrace(2) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS

BUGS

The string “adb” is displayed when there is no current command or format.
Otherwise, comments about inaccessible files, syntax errors, abnormal com-
mand termination, etc. are displayed. Exit status is O unless the last com-
mand failed or returned a nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the
program.

12/88

i,

ADB(1) ADB(1)

Local variables whose names are the same as an external variable may cause
problems in accessing the external,

12/88 7

O e 5 e

)

ADEP(1) ADEP(1)

NAME

adep - Ada program makefile generator

SYNOPSIS

adep [-f makefile] [-M main-unit] [-o objfile] [-t target] [-c compiler]
[-1x] fite ... [-I file ...]

DESCRIPTION

01/90

adep takes a set of files and constructs a makefile containing all dependencies
necessary to produce an executable a.out(4) file. The user may request a rule
for an executable file to be produced or a rule to maintain only the object
files. A rule for cleaning up the directory is also available (invoked with the
make clean command.)

If the name of the makefile is not supplied, makefile is assumed.
The following options are available:
-f makefile Name a makefile explicitly.

-M main-unit Cause adep to treat main-unit as the name of the main pro-
gram unit. main is used by default.

-o objfile Specify the name of the executable file to be produced. By
default, a.out is produced.

-t target Indicate that no executable file will be produced and specify
the name of the main target.

-c compiler Specify the Ada compiler to be used. By default, Ac(l) is
assumed.

-1 file ... Indicate that all following Ada source files should be
included as possible prerequisites but not as targets in the
makefile. Typically this option could be used to construct
dependencies between directories or program libraries. (This
option may follow the list of files.)

-1x Specify a library name of the form /lib/libx.a, where x is a
string. If the library does not exist, /usr/lib/libx.a is
tried. Libraries specified in this manner are assumed to con-
tain object files to be loaded to create the required execut-
able,

Extra flags to the Ada compiler may be set as follows :
adep "AFLAGS=-O -v" *.[HA]

This passes the optimizer flag and verbose flag to all calls of the Ada com-
piler. In a similar way, the user may pass any variable and value to adep
(such as CFLAGS) and these will be included in the makefile.

File suffixes are interpreted as follows:

A file with the suffix .H or .A is an Ada source file and will be
scanned to determine the list of dependencies.

ADEP(1) ADEP(1)

A file with the suffix .c is a C source file and will be compiled and
loaded with other object files to produce any required executable.

A file with the suffix .s is an assembly language source file and will
be assembled and loaded with other object files to produce any
required executable.

A file with the suffix .0 is an object file and will be loaded with other
object files to produce any required executable. Note that object files
produced from Ada source files are loaded automatically and must
not be included here.

A file with the suffix .a is an archive file containing object files and
will be loaded with other object files to produce any required execut-
able. Alternatively, the user may specify archive files using the -1
option (see cc(1) and 1d(1)).

All other files are ignored.

adep marks the start of the generated dependencies in the makefile with the
following line:

Ada dependencies generated by adep
adep marks the end of them with the following line:
End of Ada dependencies

Everything outside of these lines remains untouched by adep, so any addi-
tions to the makefile by the user will not be affected by later use of adep
with this file.

The dependency set is replaced each time adep is used; dependencies cannot
be added or removed incrementally.

adep is not an Ada language parser. It looks for with clauses, separate
clauses, and the unit or subunit information. It then attempts to reach the
end of the current unit before repeating the process for any following units
in the file. It does so by relying on the positioning of semicolons and certain
reserved words (such as end, loop, and begin.) Consequently, a serious
syntax error will cause adep to terminate with an error message and a line
number. In this case running the Ada compiler may help to obtain more
information about the error.

SEE ALSO

BUGS

Ac(1).
make(1) in the UNIX System V Programmer's Reference Manual.

For an instantiation of an external generic, adep records a dependency on the
generic body and all subunits of the generic. adep will become confused if
different generics have the same name or a generic has the same name as the
unit in which it occurs. However, it will usually print a message in this
case.

01/90

0

-~
e

()

ALIGNTRAP(1) ALIGNTRAP(1)

NAME
aligntrap - set/report alignment trap disposition per executable

SYNOPSIS
aligntrap [-y | -n] file ...

DESCRIPTION

C200 and C300 revisions of the CLIPPER processor will optionally trap and
provide a signal to a process on misaligned memory accesses. The disposition
of alignment traps is controlled per executable through a flag in the CLIX
system header of the common object (COFF) file. This flag is read by the
operating system during the exec(2) system call and determines the align-
ment trap action for the created process. aligntrap with no option will
report the current state of the alignment trap enable flag for each specified
file. Specifying -y enables the alignment trap for processes created from file.
Specifying -n disables the alignment trap for processes created from file.

SEE ALSO
a.out(4) in the CLIX Programmer’s & User’s Reference Manual.

NOTES
Checks are performed to verify that each file operated on is actually a
CLIPPER executable,

12/88 1

)

j

e,
e’

ALT(Q1)

NAME

alt - Ada library tool

SYNOPSIS
alt [file]

DESCRIPTION

ALT(1)

alt allows the interactive display and editing of an Ada library file produced
by Ac(1). If the file is a directory, the file ADA-LIBRARY is sought within
the directory. If no file is specified, ADA-LIBRARY is assumed.

alt recognizes the following commands:

1[-dist] [name...]

d [-i] name...

w [fite]

q
end-of-file

lcommand

List the library contents. The default format lists
each unit name followed by a description of the unit
kind.

The 1 command recognizes the following options:

-d Display the dependencies recorded for each
compilation unit,.

-1 List in long format giving the source file and
last compilation date of each compilation
unit.

-s Display subunit information. The full

parent name is given for each subunit and a
list of all subunits is given for each parent.

-t Sort compilation units by compilation times
(latest first) instead of by name.

Delete all named compilation units from the library.
If the -i (interactive) option is specified, the user will
be asked whether each compilation unit should be
deleted.

Save the library in the given file. If no file is
specified, the original is used.

Quit the session.

Escape to the shell to execute command.

Names given in an 1 or & command can be expressed as regular expressions in

the style of egrep(1).

SEE ALSO
Ac(1), adep(1).

egrep(1) in the UNIX System V User’s Reference Manual.

01/90

)

9

()

ANSITAPE(1) ANSITAPE(1)

NAME

ansitape - ANSI-standard magtape label program

SYNOPSIS

ansitape [-] t | x | r | ¢ [vqfaei3] [mt=device] [vomvolume-name]
[rs=[r | record-size]] [bs=block-size] [xf=[v | £]] [cc=[i | f | e]]
filename ...

DESCRIPTION

12/88

ansitape reads, writes, and creates magtapes conforming to the American
National Standards Institute (ANSI) standard for magtape labeling. Pri-
marily, this is useful to exchange tapes with VAX/VMS"" which makes this
kind of tape by default,

ansitape is controlled by a function key letter (t, X, ¢, or r). Various
options modify the format of the output tape.

The function letters describe the overall operation desired. A minus sign (-)
is allowed, but optional, to introduce the first keyword option set. The
function is specified with one of the following:

r Write to a magtape.

c Create a new magtape. The tape is initialized with a new ANSI
volume header. All files previously on the tape are destroyed. This
option implies r.

x Extract all files from the tape. Files are placed in the current direc-
tory. Protection is read/write to everyone, modified by the current
umask(2).

t List all file names on the tape.

These key letters may follow the function letter:

\ 4 Normally, ansitape works silently; the v (verbose) option displays
the name of each file ansitape treats, preceded by the function letter.
It also displays the volume name of each tape as it is mounted.
When used with the t option, ansitape displays the number of tape
blocks used by each file, the record format, and the carriage control
option,

q Query before writing. On write (c or r options), this causes ansitape
to ask before writing to the tape. On extract operations, ansitape
displays the CLIX path name and asks if it should extract the file,

Any response starting with a “y” or “Y” means yes, and any other
response (including an empty line) means no.

f File /O is done to standard /O instead. For example, when writing a
tape file that will contain a lint listing, the follwing could be
specified:

lint xyz.c | ansitape rf xyz.lint

ANSITAPE(1) ANSITAPE(1)

instead of

lint xyz.c > /tmp/xyz.lint
ansitape r /tmp/xyz.lint
rm /tmp/xyz.lint

When reading, this option causes the extracted files to be sent to
stdout instead of to a disk file.

a The tape should be read or written with the ASCII character set. This
is the default.
e The tape should be written with the EBCDIC character set. The map-

ping is the same one used by the dd(1M) program with
conv=ebcdic. This option is automatically enabled if IBM® format
labels are selected.

i Use IBM format tape labels, The IBM format is similar but not ident-
ical to the ANSI standard. The major difference is that the tape will
contain no HDR3 or HDR4 records and restricts the names of the files
on the tape to 17 characters. This option automatically selects the
EBCDIC character set for output. To make an IBM format label on a
tape using the ASCII character set, use the option sequence ia.

K] Do not write HDR3 or HDR4 labels. The HDR3 label is reserved for
the use of the operating system that created the file. HDR4 is for
overflow of file names longer than the 17 characters allocated in the
HDR1 label. Not all systems process or ignore these labels correctly.
This switch suppresses the HDR3 and HDR4 labels when the tape will
be transferred to a system that cannot support these types of labels.

Function modifiers should be given as a separate argument to ansitape. Mul-
tiple modifiers may be specified. They must appear after the key-letter
options above and before any file name arguments,

mt=device

Select an alternate drive on which the tape is mounted. The default
is /dev/rmt/mtOn.

vo=volume-name
Specify the name of the output volume. Normally, this defaults to
the first six characters of the login name. The string “UNIX™” is
used as the default if ansitape cannot determine the login name.

rs=record-size
Specify the output record size in bytes. This is the maximum size in
the case of variable-format files. This option also turns on the
fixed-record-format option. Thus, for variable record sizes with a
smaller maximum,

rs$=record-size rf=v

must be specified. When the record size is manually given, ansitape
does not read disk files to determine the maximum record length.

12/88

ity

ANSITAPE(1) ANSITAPE(1)

rs=r This is a variant of the rs= option. It causes ansitape to read all disk
files for record size, regardless of their size. Normally, files larger
than 100K bytes are not scanned for record size. Using this option
also implies variable-length records.

bs=block-size
Specify the output block size, in bytes. As many records as will fit
are written into each physical tape block. ANSI standards limit this
to 2048 bytes (the default), but more or less may be specified. Speci-
fying more may prevent some systems from reading the tape.

rf=v Record format is variable-length. In other words, they are text files.
This is the default and normally should not be changed.

rf=f Record format is fixed-length. This is usually a bad choice, and
should be reserved for binary files.

cc=i Carriage control is implied (default), Unlike CLIX text files where
records are delimited by a newline character, ANSI files do not nor-
mally include the newline as part of the record. Instead, a newline
is automatically added to the record whenever the record is sent to a
printing device.

cc=f Carriage control FORTRAN. Each line is expected to start with a FOR-
TRAN carriage-control character, ansitape does not insert these char-

acters automatically, it merely marks the file as having them. This is
of limited usefulness.

cc=e Carriage control is embedded. Carriage control characters (if any)
are part of the data records. This is usually used with binary data
files.

Writing ANSI Tapes

12/88

The list of files on the command line is written to the tape. A full CLIX path
name may be specified. However, only the last path name component
(everything after the last /) is used as the file name on the tape.

Normally, regular text files are to be exchanged. ansitape reads the files one
line at a time and transfers them to the tape. The newline character at the
end of each line is removed, and the file is written in a variable-length
record format. Variable-format files have the length of the longest record
specified in a file header. Therefore, ansitape will read each input file from
disk before the file is written to tape, to determine the maximum record size.
The read is skipped if the file is more than 100,000 bytes long. The default
carriage control (implied) instructs the other host to restore the newline
character before printing the record.

If ansitape assumes that the input file is a CLIX text file (FORTRAN or
implied carriage control), it will automatically strip the CLIX newline from
the end of each record. Stripping is not done with embedded carriage control
(cc=e) files. If the size of a nontext file (cc=e) is not a multiple of the
record size, the partial record at the end will be lost.

ANSITAPE(1) ANSITAPE(1)

For binary files, fixed-length records should be used. VAX/VMS normally
uses a record length of 512 bytes for things like directories and executable
files, but data files may have any record length. Binary files should be
flagged for embedded carriage control.

Reading ANSI Tapes

When reading, the input file list is presumed to be the names of files to be
extracted from the tape. The shell wildcard characters asterisk (*) and ques-
tion mark (?) may be used. Of course, they must be quoted to prevent the
shell from interpreting them before ansitape sees them.

None of the options for record format or carriage control need to be specified
when reading files. ansitape will automatically pick up this information
from the header records on the tape and run accordingly. If ansitape does
not fulfill requirements, the resulting files may be run through dd(1M).

Multivolume support

When ansitape reaches the end of a tape while reading, it requests the next
volume with the message ‘“Mount continuation tape and push return’.
However, the tape is not checked to ensure that the correct volume was
mounted,

When ansitape reaches the end of a tape it is writing, it requests the next
volume as described above. When the new volume is online, ansitape ini-
tializes it with an ANSI volume header containing a volume name generated
from the volume name of the first tape of the set. If the original name is
fewer than six characters long, it is padded to six characters with under-
scores (__). Then, the last two characters of the name are replaced by a
two-digit sequence number. For example, tap becomes tap_02, mylabl
becomes myla02, and so forth. The sequence number is the tape’s position
in the set.

FILES
/dev/rmt/mtx half-inch magnetic tape interface
/dev/rmt/ms* quarter-inch magnetic tape interface
SEE ALSO

dd(1M) in the UNIX System V System Administrator's Reference Manual.
umask(2) in the UNIX System V Programmer's Reference Manual.

CAVEATS

The r (write) option cannot be used with quarter-inch archive tapes, since
these tape drives cannot backspace,

The n-th occurrence of a file cannot be requested.

File names longer than 80 characters are truncated. This is a limitation of
the ANSI labeling standard. If the tape is made without HDR3 and HDR4
labels (3 or i switch), the name is limited to 17 characters.

The record size of files transferred with embedded carriage control must be a
multiple of the block size.

12/88

R b T R B S S S R s

it

AS(1) As(1)

NAME
as - common assembler

SYNOPSIS
as [option ...] file-name

DESCRIPTION
The as command assembles the named file. The following options may be
specified in any order:

-0 objfile Put the assembly output in odjfile. By default, the output file
name is formed by removing the .8 suffix, if it has one, from
the input file name and appending a .o suffix.

-Farg Arg is the string c1, c2, or ¢3. This option controls the gen-
eration of instruction fixups required for the CLIPPER C100,
C200, and C300 processors., The fixups are upward-
compatible but not downward-compatible. For example, code
generated for C100 will run on the other two processors, but
code generated for C200 or C300 will not execute on C100
processors., If downward compatibility is not required and
the program is compute-intensive, removing instruction
fixups may improve performance.

-n Turn off long/short address optimization. By default,
addresses are optimized.

-m Run the m4(1) macro processor on the assembler input.

-R Remove (unlink) the input file after assembly is complete.

-dl Do not produce line number information in the object file,

-V Write the version number of the assembler being run on the

standard error output.

-Y [mdldir Find the m4(1) preprocessor (m) and/or the file of predefined
macros (d) in directory dir instead of in the customary place.
FILES
$STMPDIR/* temporary files
$TMPDIR is usually /usr/tmp but can be redefined by setting the environ-
ment variable TMPDIR (see tmpnam(3S)).
SEE ALSO
cc(1), 1d(1), a.out(4).
m4(1), nm(1), strip(1), tmpnam(3S) in the UNIX System V Programmer’s
Reference Manual.
NOTES
When possible, the assembler should be accessed through a compilation sys-
tem interface program (such as cc(1)).

12/88 1

As(1) As(1)

WARNINGS
If the -m (m4(1) macro processor invocation) option is used, keywords for
m4(1) cannot be used as symbols (variables, functions, or labels) in the
input file since m4(1) cannot distinguish assembler symbols from real m4(1)

macros.

BUGS
The .align assembler directive may not work in the .text section when
optimization is performed.

CAVEATS
Arithmetic expressions may only have one forward-referenced symbol per
expression.

2 12/88

BACKUP(1) BACKUP(1)

NAME
backup - incremental file system backup

SYNOPSIS
/etc/backup [key [argument ...] file-system]

DESCRIPTION
backup copies to magnetic tape all files changed after a certain date in the
file-system. The key specifies the date and other options about the backup.
Key consists of characters from the set 0123456789fusd Wnbc.

0-9 This is the backup level. All files modified since the last date stored in
the file /etc/dumpdates for the same file-system at lesser levels will
be backed up. If no date is determined by the level, the beginning of
time is assumed; thus, the option O causes the entire file-system to be
backed up.

f Place the backup on the next argument file instead of on the tape. If
the name of the file is -, backup writes to standard output. rtc(1) can be
used with backup to backup to a remote tape device.

u If the backup completes successfully, write the date of the beginning of
the backup on the file /etc/dumpdates. This file records a separate
date for each file-systen and each backup level. The format of
/etc/dumpdates is readable text, consisting of one free format record
per line: file-system name, increment level and backup date.
/etc/dumpdates may be edited to change any of the fields if neces-
sary.

s The size of the backup tape is specified in feet. The number of feet
comes from the next argument. When the specified size is reached,

backup will wait for reels to be changed. The default tape size is 2300
feet. A gap length of 0.8 inches is assumed for each write to the tape.

d The density of the tape, expressed in BPI, is taken from the next a~~-
ment. This is used in calculating the amount of tape used per reel. e
default is 1600.

W backup tells the operator what file systems need to be backed up. Tnis
information is gathered from the files /etc/dumpdates and
/etc/fstab. For each file system in /etc/dumpdates, backup prints
the most recent backup date and level, and highlights the file systems
that should be backed up. If the W option is set, all other options are
ignored and backup exits immediately.

w Resembles W, but prints only the file systems that need to be backed
up.

n When backup requires operator attention, notify all of the operators in
the group “operator”,

b The number of 1K byte blocks written to the tape at a time comes from
the next argument. This will affect how much tape is used for gaps

12/88 1

BACKUP(1) BACKUP(1)

between writes. This number cannot exceed 10 when using
/dev/rmt/rtcs as the tape device (see rtc(1) and the f key above).

c Specify that a cartridge tape is being used. The default density is §700
BPL. The default length is 600 feet. A gap length of O is assumed.

If no arguments are given, the key is assumed to be 9u and a default file sys-
tem is backed up to the default tape.

backup requires operator intervention on these conditions: end of tape, end of
backup, tape write error, tape open error, or disk read error (if more than a
threshold of 32 occur). In addition to alerting all operators implied by the
n key, backup interacts with the operator on backup’s control terminal when
backup can no longer proceed or when something is grossly wrong. All ques-
tions backup poses must be answered by typing ‘“‘yes” or ‘“no’’ appropri-
ately.

Since a full backup requires much time and effort, backup checkpoints itself
at the start of each tape volume. If writing the volume fails, backup will,
with operator permission, restart from the checkpoint after the old tape has
been rewound and removed, and a new tape has been mounted.

backup informs the operator periodically of usually low estimates of the
number of blocks to write, the number of tapes the write will take, the time
until completion, and the time until the tape change. The output is verbose
so that others know that the terminal controlling backup is busy, and will be
for some time.

The recommended method of performing backups is to first start with a full
level O backup:

backup Oun

Next, active file systems are backed up daily, using a modified Tower of
Hanoi algorithm with this sequence of backup levels:

3254769899...

For the daily backups, a set of 10 tapes per backed up file system is used on
a cyclical basis. Each week, a level 1 backup is performed and the daily
Hanoi sequence repeats with 3. For weekly backups, a set of five tapes per
backed-up file system is used. The set is also used on a cyclical basis. Each
month, a level O backup is performed on a set of fresh tapes that is saved
permanently,

FILES
/dev/dsk/sOu0p7.3 default file system to backup
/dev/rmt/Om default tape unit to backup to
/etc/dumpdates backup date record
/etc/fstab backup table: file systems and frequency
/etc/group to find group operator

SEE ALSO

restore(1), backup(4), fstab(4).

12/88

e

BACKUP(1) BACKUP(1)

DIAGNOSTICS

BUGS

12/88

backup exits with zero status on success. Startup errors are indicated with
an exit code of 1; abnormal termination is indicated with an exit code of 3.

Fewer than 32 read errors on the file system are ignored. Each reel requires
a new process, so parent processes for reels already written wait until the
entire tape is written.

backup with the W or w key does not report file systems that are not
recorded in /etc/dumpdates even if they are listed in /etc/fstab,

Eae N

i,

cc(n)

NAME

cc()

cc - C compiler

SYNOPSIS

cc [option ...] file ...

DESCRIPTION

The cc command controls compilation and link editing of C and assembler
source programs. The compilation process is divided into many phases.
Each phase is invoked with appropriate arguments and options.

cc uses the high performance CLIPPER C compiler developed by Green Hills
Software under Intergraph® contract. The CLIPPER C compiler performs
optimizations not found in many other C compilers (such as the portable C
compiler).

Compilation Phases

07/89

The compilation phases and their names are largely historic. Each phase is
approximately implemented as a single command. There are a number of
options that control the invocation of each phase. Such options use key
letters to indicate a particular phase.

The phases and their key letters are:

P The preprocessor phase. This phase processes the preprocessor direc-
tives in a C source file. Preprocessor directives are given on lines
whose first character is the # symbol. The preprocessor implements
file inclusion, conditional code inclusion, macro definition, and
macro expansion (see cpp(1)).

0 (zero) The source analysis phase. This phase analyzes the (preprocessed)
source file according to the rules of the C language proper. Syntax
and semantic errors are detected here. Typically, an internal or
intermediate representation of the source file is built.

1 The code generation phase. This phase generates assembler code
from the internal or intermediate representation.

2 The code improver phase. This optional phase examines the assem-
bler code generated and attempts a number of improvements.

a The assembler phase, The assembler phase translates the assembler
code into an object (or binary) file. See as(1), the “Assembler” sec-
tion of the “Technical Programming Tutorial” in the CLIX System
Guide, and the CLIPPER User's Manual.

1 The link edit phase. Startoff routines, generated objects, and stan-
dard libraries are linked together into an image file (see ld(1)).

The CLIPPER C compiler implements the preprocessor, source analysis, and
code generation phases in one program (/lib/comp). For the options that
take a phase key letter, O indicates this program, and the key letters p, 1,
and 2 are ignored.

cc(1)

cc1)

The assembler (/bin/as) and link editor (/bin/1d) implement the assembler
and link editor phases, respectively.

Each input file is processed by each phase in sequence. If an error occurs in a
phase, further processing of the input file that contained the error is aban-
doned. (The assembler will not be invoked if a compiler error occurred).
Any remaining input files are compiled (or assembled), but the link edit
phase is not performed.

Command Arguments

Each argument represents an option or a file name. Many options (discussed
below) and three types of file names are understood. All file names and
options not recognized are passed on to the link editor.

File names that end with .c are considered C source programs. They are
compiled by applying the preprocessor through the assembler phases. Each
object (relocatable binary) file is left in the current directory whose name is
that of the source with .o substituted for .c. For example, compiling the file
src/prog.c results in the file prog.o in the current directory.

Similarly, file names that end with .8 are considered assembler source pro-
grams. They are processed by the assembler phase. Each object file is left in
a file in the current directory whose name is that of the source with .0 sub-
stituted for .s.

File names that end with .0 are considered object files. They are passed
directly to the link edit phase.

If only one .c or .8 file is processed and no .o files are specified, the object file
is normally deleted after the link edit phase completes. The object file is not
deleted if the link edit phase is suppressed, an error occurs during the link
edit phase, or the generated object file already existed before compilation.

The input files are processed in the left-to-right order in which they appear
on the command line. The generated object files are passed to the link edit
phase in the same order,

Options

Many options are intentionally undocumented. The undocumented options
are disabled, obsolete, or for compiler debug only. Using undocumented
options may generate poor or incorrect code. Before the description of each
option and enclosed in parentheses, there may be a restriction on the use of
the option. The option is only to be used when that restriction applies.

-B string (Obsolete; use -Y instead) See the description of -t also.

Construct path names for substitute compiler, assembler, and
link editor passes by concatenating string with the suffixes
comp, as, and 1d respectively. If string is empty, it is assumed
to be /lib/o.

- Suppress the link edit phase of the compilation and force an
object file to be produced even if only one program is compiled.

07/89

S L VR L A e S A S i

cc(1)

07/89

-D name

cc()

Retain comments in the preprocessor output. The default is to
strip comments from the output.

Define name to the preprocessor with the value 1. This is
equivalent to putting the following at the top of the source file:

#define name 1

-D name=string

-I string

-0 file-name

Define name to the preprocessor with the value string. This is
equivalent to putting the following at the top of the source file:

#define name string
See the description of -P also.

Do not compile the program; instead, run only the preprocessor
portion of the CLIPPER C compiler and place the output on the
standard output. This is useful for debugging preprocessor
macros. When preprocessing for a purpose other than debug-
ging macros, use cpp(1) for best performance.

(Ignored) Link the object program with the floating-point inter-
preter for systems without hardware floating-point.

Cause the compiler to generate additional information needed to
use source language debuggers like sdb(1) and force the com-
piler to generate frame pointers for stack traces.

Generate a frame pointer for stack traces. -g in cc also produces
a frame pointer, but -ga does not produce the extra debugging
information.

File names in #include preprocessor directives that are not
absolute (do not start with /) are searched for in the directory
string before a default list of directories. Multiple -I options
can be specified. They will be searched in the left to right order
encountered.

Place the executable binary output from the link edit phase in
the file named file-name. If this option is not specified, the exe-
cutable file will be named a.out. This option is ignored if ¢ or
-S is present.

The -O option activates Green Hills optimizers that are safe to
use on all programs, except for the loop optimizer.

This option is equivalent to -O except that it also allows the
optimizer to assume that memory locations do not change
except by explicit stores. That is, the optimizer is guaranteed
that no memory locations are /O device registers that can be
changed by external hardware and no memory locations are
shared with other processes that can change them asynchro-
nously with respect to the current process. This compile time
option must be used with extreme caution (or not at all) in

cc()

-OLM
-OML

-S

cc(n)

device drivers, operating systems, shared memory environ-
ments, and when interrupts (or CLIX signals) are present.

Optimize the program to be as fast as possible even if the pro-
gram must be bigger. In particular, most of the available
resources are allocated to optimizations of the innermost loops.
The -OL compile time option will perform optimizations that
may make the program faster but larger. It is counter-
productive to specify -OL on code that contains no loops or that
is rarely executed as it will make the whole program larger but
no faster. After experimenting with a program, it is possible to
discover which modules benefit from -OL and which ones do
not.

This option is equivalent to -OL and -OM.
This option is equivalent to -OLM.

Arrange for the compiler to produce code that counts the
number of times each routine is called; also, if link editing
occurs, replace the standard startoff routine by one that
automatically calls monitor(3C) at the start and arranges to
write out a mon.out file at normal termination of execution of
the object program. An execution profile can then be generated
by using prof(1).

See the description of -E also.

Do not compile the program; instead, run just only preprocessor
portion of the CLIPPER C compiler and place the output in a
corresponding file suffixed with .i. Line control information for
the next pass of the compiler is not provided. This is useful for
debugging preprocessor macros. When preprocessing for a pur-
pose other than debugging macros, use cpp(1) for best perfor-
mance,

Compile the named C programs and leave the assembly
language output on corresponding files suffixed with .s. The
assembler and link edit phases are suppressed.

-t [p012al] Find only the designated phase(s) in the file whose name is con-

-U name

-w

structed by a -B option. If an explicit -B option is missing, -B
/1ib/n is implied. The option -t "" is equivalent to -tp012.

Undefine the predefined preprocessor symbol name. This is
equivalent to putting the following at the top of the source file:

#undef name

Suppress warning diagnostics.

-Wc,argl[,arg2...]

Pass the listed argument(s) argi to phase ¢ where ¢ is one of
[pO12al].

07/89

i,

cc)

07/89

-Xn

cc(1)

Enable ANSI-compliant compilation. With this option enabled,
source code is compiled against the definition of the C language
presented in the draft ANSI standard. This option causes the
compiler to enforce ANSI syntax and use ANSI semantics in cases
where K&R C and ANSI C conflict. The directory
/usr/include/ansi is automatically searched for include files
and, when linking, the library /usr/lib/libansi.a is automati-
cally added to the default library list.

Turn on compile time option number n. The available compile
time options are listed below,

6 Allocate each enumerated type as the smallest size
predefined type that allows all listed values (char,
short, int, unsigned char, unsigned short, or
unsigned) to be represented. The default is to allocate

as an int.
9 Disable the local (peephole) optimizer.
18 Do not allocate programmer-defined local variables to a

register unless the variables are declared register. This
option suppresses optimizations that frustrate debuggers
and setjmp(3C).

32 Display the names of files as they are opened. This is
useful for finding out why the compiler cannot find an
include file.

37 Emit a warning when dead code is eliminated.

39 Do not move frequently used procedure and data
addresses to registers.

50 Push arguments on the stack. The default is to pass the
first two arguments in registers. This option is not
recommended because it produces a calling sequence
incompatible with the rest of the CLIX System.

54 Inform the optimizer that no memory locations can
change value asynchronously with respect to the run-
ning program. -02 sets this compile time option. (See
-02 above).

55 Make fields of type int, short, and char be signed.
The default is for all fields to be unsigned,

S8 Do not put an underscore in front of the names of glo-
bal variables and procedures. This option is not recom-
mended because it produces symbols that are incompati-
ble with the rest of the CLIX System.

62 (Default) The target processor is a CLIPPER microproces-
sor.

cc(1)

74
80

81

83

84

85

87

89

105

164

167

168

176

190

cc)

(Default) The target system is CLIX System V.

Disable the code hoisting optimization. This can speed
compilation in some cases,

Allow external variables to be initialized (by turning off
extern). Ordinarily, initialized externs are an error.

(Default) Enable the va_ type, va__stkarg, va_intregn,
va__dblregn, va__argnum, va_regtyp, and va_align
intrinsic functions to support varargs(5). See the
description of varargs support in the *“‘C Language”
chapter of the CLIPPER C Reference Manual.

Generate error messages for C anachronisms. By
default, the old assignment operators (such as =+ and
=—), initialization (int i 1), and references to members
of other structures compile correctly but generate warn-
ing messages.

Generate .bss assembler directives for uninitialized stat-
ics. The default is to allocate initialized data.

Disable the optimization that deletes all code that stores
into or modifies variables that are never read from.

Pack structures with no space between members, even if
elements become inaccessible due to machine data align-
ment constraints.

Allow #define symbols to be redefined to the prepro-
cessor.

(Unsupported) Do not stop if a code generator abort
occurs or an ‘“‘Internal Compiler Error” error message
appears. This is occasionally useful in determining the
cause of a compiler failure,

(Unsupported) Evaluate expressions involving only
float operands as float (not double). Do not expand
float arguments to double. Do not expand float return
values to double. This option is not recommended
because it produces code incompatible with the rest of
the CLIX System.

Do not move invariant floating-point expressions out of
loops.

Always convert computations involving floating-point
values to double. By default, the compiler tries to
shorten computations to float if the result would be the
same.

Assume half word objects are not aligned.

07/89

Y

cc()

cc(1)

191 Assume word objects are not aligned.
192 Assume single-precision objects are not aligned.
193 Assume double-precision objects are not aligned.

194 Assume word objects are aligned only to halfword
boundaries.

195 Assume single precision objects are aligned only to half-
word boundaries.

196 Assume double precision objects are aligned only to
half word boundaries.

197 Assume double precision objects are aligned only to
word boundaries.

-Y [p012alSILU], dirname

FILES

file.c
file.s
file.o

07/89

Use dirname to locate the phase(s) or directory(ies) specified by
the key letter(s). The key letters [p012al] represent the phases
described above. The additional key letters have the following
meanings:

S The directory containing the startup routines.

I The default directory searched for the #include
preprocessor directives.

L The first default library directory searched (see 1d(1)).

u T}Ee))second default library directory searched (see
d(1)).

If the location of a phase is being specified, the new path name
for the phase will be dirname/phasename. The exact name used
for phasename depends on the compiler driver used and the
phase involved. See FILES below, If more than one -Y option
is applied to a phase or directory, the last specification is used.

Turn off option number n. This is the reverse of the -X option,
This option is useful if a version of the compiler has an option
turned on by default and the user wants to turn it off.

(Subject to change) Print out the program name and command
line arguments as each phase is invoked.

(Subject to change) Verbose like -#, only more so.

(Subject to change) Print out the program name and command
line arguments for each phase, but do not actually invoke the
phase.

C source input file
assembler source input file
object file; generated or input

cc(1)

a.out

/tmp/ctmx*
/usr/tmp/ctmx
/1ib/cpp
/1lib/comp
/bin/as

/bin/1d
/liv/ert[1n].0
/lib/mert[1n].0
/1ib/libc.a

/usr/lib/libansi.a
/ustr/include/ansi/*.h

/1ib/1ibp/lib*.a
SEE ALSO

cc(1)

linked output

temporary

temporary

C preprocessor cpp(1)

CLIPPER C compiler, cc

assembler, as(1)

link editor, Id(1)

runtime startoff

profiling startoff

standard C library; see sections (3C) and (3S) in
the UNIX System V Programmer’s Reference Manual
library of ANSI C support functions

Include files containing macros and data structure
definitions specific to ANSI C.

profiled versions of libraries

adb(1), as(1), 1d(1), sdb(1), exit(2).
cpp(1), prof(1), monitor(3C) in the UNIX System V Programmer’s Reference

Manual.

The C Programming Language by B. W, Kernighan.

Programming in C - A Tutorial by B. W. Kernighan.

C Reference Manual by D. M. Ritchie.

The “Release Notes” appendix of the CLIPPER C Reference Manual.
The Green Hills Software Users Manual C-CLIPPER.

DIAGNOSTICS

The diagnostics produced by C are self-explanatory. Occasional messages
may be produced by the assembler or the link editor.

NOTES

By default, the return value from a C program is completely random. The
only two guaranteed ways to return a specific value are to explicitly call
exit(2) or to leave the function main() with a return expression; construct.

CAVEATS

If empty strings are given with the -B or -t options, they must be specified
as separate command line arguments (e.g., -t ", not -t" "),

07/89

CHMOD(1) CHMOD(1)

NAME

chmod - change mode

SYNOPSIS

chmod mode file ...
chmod mode directory ...

DESCRIPTION

12/88

The permissions of the named files or directories are changed according to
mode, which may be symbolic or absolute. Absolute changes to permissions
are stated using octal numbers as follows:

chmod nnnn file...

N is a number from O to 7. Symbolic changes are stated using mnemonic
characters as follows:

chmod xyz,... file...

X is one or more characters corresponding to user, group, or other; y is +, —,
or =, signifying permission assignment; and z is one or more characters
corresponding to permission type.

If a named file is a symbolic link, the permissions of the referenced file (or
directory) are changed, and the permissions of the symbolic link are undis-
turbed.

An absolute mode is given as an octal number constructed from the OR of
the following modes:

4000 set user ID on execution

20#0 set group ID on execution if # is 7,5, 3,0r 1
enable mandatory locking if # is 6,4, 2, 0or 0

1000 sticky bit is turned on ((see chmod(2))

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0040 read by group

0020 write by group

0010 execute (search) by group

0004 read by others

0002 write by others

0001 execute (search) by others

Symbolic changes are stated using letters that correspond both to access
classes and to the individual permissions. Permissions to a file may vary
depending on the user identification number (UID) or group identification
number §GID). Permissions are described in three sequences, each having
three characters:

User Group Other
IWX TIWX IWX

CHMOD(1) CHMOD(1)

This example (meaning that user, group, and others all have read, write, and
execute permissions for a given file) demonstrates two categories for granting
permissions: the access class and the permissions themselves.

Thus, to change the mode of a file’s (or directory’s) permissions using chmod
symbolic method, use the following syntax for mode:

[who loperator [permission(s)], ...

A command line using the symbolic method would appear as follows:
chmod g+rw file

This command would make allow group to read and write file.

Who can be stated as one or more of the following letters:

u User’s permissions.

g Group’s permissions.

o Other’s permissions.

a Equivalent to ugo (all) and is the default if who is omitted.

Operator can be + to add permission to the file's mode, — to take away per-
mission, or = to assign permission absolutely. (Unlike other symbolic
operations, = has an absolute effect in that it resets all other bits.) Omitting
permission is only useful with = to remove all permissions.

Permission is any compatible combination of the following letters:

Read permission.

‘Write permission.

Execute permission.

User or group set-ID is turned on.

Sticky bit is turned on,

Mandatory locking will occur during access.

Hnnnql‘l

Multiple symbolic modes separated by commas may be given, though no
spaces may intervene between these modes. Operations are performed in the
order given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter 8 is
only meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file’s ability to have its
read or write permissions locked while a program is accessing that file, It is
not possible to permit group execution and enable a file to be locked on exe-
cution at the same time. In addition, it is not possible to turn on the set-
group-ID and enable a file to be locked on execution at the same time. The
following examples,

chmod g+x,+1 file
chmod g+s,+1 file

are, therefore, illegal uses and will elicit error messages.

Only the owner of a file or directory (or the super-user) may change a file’s
mode. Only the super-user may set the sticky bit. To turn on a file’s set-
group-ID, the user’s own group ID must correspond to the file’s and group

2 12/88

CHMOD(1) CHMOD(1)

execution must be set.

EXAMPLES
To deny execution permission to all, the following commands are used. The
absolute (octal) example permits only reading permissions.
chmod a-x file
chmod 444 file
To enable reading and writing of a file by the group and others, use one of
the following:
chmod go=rw file
chmod 066 file

This causes a file to be locked during access:
chmod +1 file

The last two examples enable all to read, write, and execute the file; and
they turn on the set-group-ID.

chmod =rwx,g+s file
chmod 2777 file
SEE ALSO
1s(1).
chmod(2) in the UNIX System V Programmer’s Reference Manual.
NOTES
In a Remote File Sharing environment, a user may not have the permissions
that the output of the 1s -1 command implies. For more information, see the

“Mapping Remote Users” section of Chapter 10 of the UNIX System V System
Administrator’'s Guide.

12/88 3

CHOWN(1) CHOWN(1)

NAME

chown, chgrp - change owner or group

SYNOPSIS

chown owner file ...
chown owner directory ...

chgrp group file ...
chgrp group directory ...

DESCRIPTION

FILES

chown changes the owner of the files or directories to owner. The owner may
be either a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files or directories to group. The group
may be either a decimal group ID or a group name found in the group file,

Unless either command is invoked by the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000, respectively, will be
cleared.

Only the owner of a file (or the super-user) may change the owner or group
of that file.

If the named file is a symbolic link, ownerships of the link itself are
modified and the ownerships of the referenced file are undisturbed.

/etc/passwd
/etc/group

SEE ALSO

NOTES

12/88

chmod(1), group(4), passwd(4).
chown(2) in the UNIX System V Programmer's Reference Manual,

In a Remote File Sharing environment, a user may not have the permissions
that the output of the Is -1 command implies. For more information see the
“Mapping Remote Users” section in Chapter 10 of the UNIX System
Administrator’s Guide.

CI(1) CcI(1)
NAME
ci - check in RCS revisions
SYNOPSIS
ci [option . | JSile ...
DESCRIPTION

12/88

¢l stores new revisions in Revision Control System (RCS) files. Each file
name ending in “,v” is interpreted to be an RCS file; all others are assumed to
be working files containing new revisions. ci deposits the contents of each
working file in the corresponding RCS file. If only a working file is given, ¢l
tries to find the corresponding RCS file in the ./RCS directory and then in the
current directory. For more details, see the File Naming section below.

For ci to work, the caller’s login must be on the access list, except if the
access list is empty or the caller is the super-user or owner of the file, To
append a new revision to an existing branch, the tip revision on that branch
must be locked by the caller. Otherwise, only a new branch can be created.
This restriction is not enforced for the owner of the file unless locking is set
to strict (see rcs(1)). A lock held by another user may be broken with the
rcs(1) command.

Normally, ci checks whether the revision to be deposited is different from
the preceding one. If it is not, ci either aborts the deposit (if —q is given) or
asks whether to abort (if -q is omitted). A deposit can be forced with the -f
option.

For each revision deposited, ci prompts for a log message. The log message
should summarize the change and must be terminated with a line containing
a single . or a <CONTROL>-D. If several files are checked in, ci asks
whether to reuse the previous log message. If the standard input is not a ter-
minal, ci suppresses the prompt and uses the same log message for all files.
See also -m.

The number of the deposited revision can be given by any of the options -r,
-f, -k, -1, -u, or q.

If the RCS file does not exist, ci creates it and deposits the contents of the
working file as the initial revision (with a default number of 1.1). The
access list is initialized to empty. Instead of requesting the log message, ci
requests descriptive text (see -t below).

-rlrev] Assigns the revision number rev to the checked-in revision,
releases the corresponding lock, and deletes the working file.
This is the default. Rev may be symbolic, numeric, or mixed.

If rev is a revision number, it must be higher than the latest one
on the branch to which rev belongs or it must start a new
branch.

If rev is a branch rather than a revision number, the new revi-
sion is appended to that branch. The level number is obtained

CI(1)

flrev]

k{rev]

-1[rev]

-ulrev]

-q[rev]

-ddate

-mms, 4

cI(1)

by incrementing the branch’s tip revision number. If rev indi-
cates a nonexisting branch, the branch is created with the initial
revision numbered rev.1.

If rev is omitted, c¢i tries to derive the new revision number
from the caller’s last lock. If the caller has locked the tip revi-
sion of a branch, the new revision is appended to that branch.
The new revision number is obtained by incrementing the tip
revision number. If the caller locked a nontip revision, a new
branch is started at that revision by incrementing the highest
branch number at that revision, The default initial branch and
level numbers are both 1.

If rev is omitted and the caller has no lock but is the owner of
the file and locking is not set to strict, the revision is appended
to the default branch (normally the trunk; see rcs(1) -b).

However, on the trunk, revisions can be appended, but not
inserted.

Forces a deposit. The new revision is deposited even it does not
differ from the preceding one.

Searches the working file for keyword values to determine its
revision number, creation date, state, and author (see co(1)),
and assigns these values to the deposited revision, rather than
computing them locally. It also generates a default login mes-
sage noting the login of the caller and the actual checkin date,
This option is useful for software distribution. A revision sent
to several sites should be checked in at these sites with the -k
option to preserve the original number, date, author, and state.
The extracted keyword values and the default log message may
be overridden with -r, -d, -8, -w, and -m.

Works like -r, except it performs an additional co(1) -1 for the
deposited revision. Thus, the deposited revision is immediately
checked out again and locked. This is useful for saving a revi-
sion although one wants to continue editing it after the checkin,

‘Works like -1, except that the deposited revision is not locked.
This is useful to process (compile) the revision immediately
after checkin.

Quiet mode; diagnostic output is not printed. A revision that is
not different from the preceding one is not deposited unless -f is
given,

Uses date for the checkin date and time. Date may be specified
in free format as explained in co(1). Useful for lying about the
checkin date and for -k if no date is available,

Uses the string msg as the log message for all revisions checked
in,

12/88

cI(1)

-nname

-Nname
-Sstate

-t[extfile]

-wlogin

File Naming

CI(1)

Assigns the symbolic name name to the number of the
checked-in revision. ¢i{ prints an error message if name is
assigned to another number.

Same as -n, except that it overrides a previous assignment of
name.

Sets the state of the checked-in revision to the identifier state.
The default is Exp.

Writes descriptive text into the RCS file. (Deletes the existing
text). If txtfile is omitted, ci prompts the user for text supplied
from the standard input, terminated with a line containing a
single *“.” or <CONTROL>-D. Otherwise, the descriptive text is
copied from the file txtfile. During initialization, descriptive
text is requested even if -t is not given. The prompt is
suppressed if standard input is not a terminal.

Uses login for the author field of the deposited revision. Useful
for lying about the author and for -k if no author is available,

Pairs of RCS files and working files may be specified in three ways (see also
the example section of co(1)).

1) Both the RCS file and the working file are given. The RCS file name
has the form pathl/workfile,v and the working file name has the
form path2/workfile, where pathl/ and path2/ are (possibly
different or empty) paths and workfile is a file name,

2) Only the RCS file is given. Then, the working file is assumed to be in
the current directory and its name is derived from the name of the
RCS file by removing pathl/ and the suffix “,v”,

3) Only the working file is given. Then ci looks for an RCS file with the
form path2/RCS/workfile,v or path2/workfile,v (in this order).

If the RCS file is specified without a path in 1) and 2), ci looks for the RCS
file first in the directory ./RCS and then in the current directory.

File Modes

An RCS file created by ci inherits the read and execute permissions from the
working file, If the RCS file exists, ci preserves its read and execute permis-
sions. ci always turns off all write permissions of RCS files.

SEE ALSO

co(1), ident(1), res(1), resclean(1), resdiff(1), resmerge(1), rlog(1), resfile(4),

scestores(1)

Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS

For each revision, ci prints the RCS file, the working file, and the number of
both the deposited and the preceding revision. The exit status always refers

12/88

CI(1) cI1(1)

to the last file checked in and is O if the operation was successful or 1 other-
wise.

NOTES

' The caller of the command must have read/write permission for the direc-
tories containing the RCS file and the working file, and read permission for
the RCS file itself. A number of temporary files are created. A semaphore
file is created in the directory containing the RCS file. ci always creates a
new RCS file and unlinks the old one. This strategy makes links to RCS files
useless,

IDENTIFICATION
Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright © 1982 by Walter F. Tichy.

4 12/88

o

CLH(1) CLH(1)
NAME
clh - Intergraph network clearinghouse management program
. SYNOPSIS
_ clh [[-adur] object]
e clh [-v | -bep [arg]] -1 object
DESCRIPTION
clh provides a user interface for modifying and examining the Intergraph
clearinghouse database. If command-line arguments are not given, clh pro-
vides a menu-driven interface.
The following options are available. owned, local, and heard refer to sub-
directories under /usr/lib/nodes.
-a Add object to the owned directory as an alias for the node name
of the local machine.
-d Delete object from the owned directory.
-u Update object in the owned directory to the current Local Area
Network (LAN) and to all LANs to which it is scoped (see cth(4)).
-T Copy all entries in the heard directory on the machine object to
the heard directory on the local machine.
-1 Look up object in the local clearinghouse. The clearinghouse
oo directories local, heard, and owned will be searched in respec-
—_— tive order, and the first occurrence of object will be printed.
-v Print the entire contents of object.
-b[arg] Look up all node names associated with the specified network
address of arg.
-p [arg] Print the property arg in object.
—<[arg] Look up the address of object on the machine arg.
FILES
/usr/lib/nodes/owned well-known node name and aliases
/usr/lib/nodes/local local files used by the clearinghouse
/usr/lib/nodes/heard all heard objects from the network
SEE ALSO
clh(4).
“XNS Network Programming Tutorial” in the CLIX System Guide.
-

01/90

O

9

()

co(1)

NAME

co(1)

co - check out RCS revisions

SYNOPSIS

co [optlon]ﬁle

DESCRIPTION

12/88

co retrieves a revision from each Revision Control System (RCS) file and
stores it into the corresponding working file. Each file name ending in “,v”
is assumed to be an RCS file; all other files are assumed to be working files.
If only a working file is given, co tries to find the corresponding RCS file in
the directory ./RCS and then in the current directory. For more details, see
the File Naming section below.

Revisions of an RCS file may be checked out locked or unlocked. Locking a
revision prevents overlapping updates. A revision checked out for reading or
processing (compiling) need not be locked. A revision checked out for edit-
ing and later checkin must normally be locked. co with locking fails if the
revision to be checked out is currently locked by another user. (A lock may
be broken with the rcs(1) command.) co with locking also requires the caller
to be on the access list of the RCS file unless the caller is the file owner or the
super-user, or the access list is empty. co without locking is not subject to
access list restrictions, and is not affected by locks.

A revision is selected by options for revision or branch number, checkin
date/time, author, or state,. When the selection options are applied in combi-
nation, co retrieves the latest revision that satisfies all of them. If no selec-
tion option is specified, co retrieves the latest revision on the default branch.
(Normally the trunk, see rcs(1) -b.) A revision or branch number may be
attached to any of the options -f, -1, -p, -q, -I, or -u. The options -d (date),
-8 (state), and -w (author) retrieve from a single branch, the selected branch,
that is either specified by -f, -1, -p, q, -r, —u, or the default branch.

A co command applied to an RCS file with no revisions creates a zero-length
working file. co always performs keyword substitution (see below).

-r[rev] Retrieves the latest revision whose number is less than or equal
to rev. If rev indicates a branch rather than a revision, the latest
revision on that branch is retrieved. If rev is omitted, the latest
revision on the default branch (see rcs(1) -b) is retrieved. Rev is
composed of one or more numeric or symbolic fields separated by
[{31]

.. The numeric equivalent of a symbolic field is specified with
the -n option of the commands ci(1) and rcs(1).

-1[rev] Same as -r except that it also locks the retrieved revision for the
caller. See -r to see how revision number rev is handled.

-u[rev] Same as -r except that it unlocks the retrieved revision (if it was
locked by the caller). If rev is omitted, -u retrieves the latest
revision locked by the caller. If no such lock exists, it retrieves
the latest revision on the default branch.

co(1)

frev]

-plrev]

~qlrev]
-ddate

-Sstate

-w[login]

-jjoinlist

co(1)

Forces the working file to be overwritten. Useful when used
with -q. See also the section on File Modes below.

Prints the retrieved revision on the standard output rather than
storing it in the working file. This option is useful when co is

part of a pipe.
Quiet mode; diagnostics are not printed.

Retrieves the latest revision on the selected branch whose checkin
date/time is less than or equal to date. The date and time may
be given in free format and are converted to local time, Exam-
ples of formats for date include the following:

22-April-1982, 17:20-CDT

2:25 AM, Dec. 29, 1983

Tue-PDT, 1981, 4pm Jul 21 (free format)
Fri, April 16 15:52:25 EST 1982 (output of ctime)

Most fields in the date and time may be defaulted. co determines
the defaults in the order of year, month, day, hour, minute, and
second (most to least significant). At least one of these fields
must be provided. For omitted fields with higher significance
than the highest provided field, the current values are assumed.
For all other omitted fields, the lowest possible values are
assumed. For example, the date *‘20, 10:30”’ defaults to 10:30:00
of the 20th of the current month and year. The date/time must
be quoted if it contains spaces.

Retrieves the latest revision on the selected branch whose state is
set to state.

Retrieves the latest revision on the selected branch that was
checked in by the user with login name login. If the argument
login is omitted, the caller’s login is assumed.

Generates a new revision that is the join of the revisions on join-
list. Joinlist is a comma-separated list of pairs of the form
rev2irev3, where rev2 and rev3 are (symbolic or numeric) revi-
sion numbers. For the initial such pair, rev! denotes the revision
selected by the above options -r, ... , -w. For all other pairs,
revl denotes the revision generated by the previous pair. (Thus,
the output of one join becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with respect to
rev2. This means that all changes that transform rev2 into revl
are applied to a copy of rev3. This is useful if revl and rev3 are
the ends of two branches that have rev2 as a common ancestor.
If revl<rev2<rev3 on the same branch, joining generates a new
revision that is like rev3, but with all changes that lead from
revl to rev2 undone. If changes from rev2 to revl overlap
changes from rev2 to rev3, co prints a warning and includes the
overlapping sections, delimited by the lines < <<<<<<

12/88

b,

co(1) co(1)

revl, =======,and >>>>>>> rev3,

For the initial pair, rev2 may be omitted. The default is the
common ancestor. If any arguments indicate branches, the latest
revisions on those branches are assumed. The -1 and -u options
lock or unlock revl.

Keyword Substitution
Strings with the form $keyword$ and $keyword: ...$ embedded in the text
are replaced with strings with the form $keyword: value $, where keyword
and value are pairs listed below. Keywords may be embedded in literal
strings or comments to identify a revision.

Initially, the user enters strings with the form $xeyword$. On checkout, co
replaces these strings with strings with the form $keyword: value $. If a
revision containing strings with the latter form is checked back in, the value
fields will be replaced during the next checkout. Thus, the keyword values
are automatically updated at checkout.

Keywords and their corresponding values are as follows:
$Author$ The login name of the user who checked in the revision.
$Date$ The date and time the revision was checked in.

$Header$ A standard header containing the full path name of the RCS
file, the revision number, the date, the author, the state, and
the locker (if locked).

$1d4$ Same as $Header$ except that the RCS file name has no path,

$Locker$ The login name of the user who locked the revision (empty if
not locked).

Log The log message supplied during checkin, preceded by a header

containing the RCS file name, the revision number, the author,
and the date. Existing log messages are NOT replaced. Instead,
the new log message is inserted after $Log: ...$. This is useful
for accumulating a complete change log in a source file,

$RCSfile$ The name of the RCS file without path.

$Revision$ The revision number assigned to the revision.

$Source$ The full path name of the RCS file.

$State$ The state assigned to the revision with rcs(1) -8 or ci(1) -s.

File Naming
Pairs of RCS files and working files may be specified in three ways (see also
the example section).

1) Both the RCS file and the working file are given. The RCS file name
has the form pathl/workfile,v and the working file name has the
form path2/workfile, where pathl/ and path2/ are (possibly
different or empty) paths and workfile is a file name.

12/88 3

co(1) co(1)

2) Only the RCS file is given. Then, the working file is created in the
current directory and its name is derived from the name of the RCS
file by removing pathl/ and the suffix “,v"’,

3) Only the working file is given. Then, co looks for an RCS file with
the form path2/RCS/workfile,v or path2/workfile,v (in this order).

If the RCS file is specified without a path in 1) and 2), co looks for the RCS
file first in the directory ./RCS and then in the current directory.

File Modes
The working file inherits the read and execute permissions from the RCS file,
In addition, the owner write permission is turned on, unless the file is
checked out unlocked and locking is set to strict (see rcs(1)).

If a file with the name of the working file exists and has write permission, co
aborts the checkout if -q is given or asks whether to abort if not. If the
existing working file is not writable or -f is given, the working file is deleted
without asking.

EXAMPLES
Suppose the current directory contains a subdirectory RCS with an RCS file
io.c,v. Then, all of the following commands retrieve the latest revision
from RCS/io.c,v and store it in io.c.

co io.c; co RCS/io.c,v;
co io.c,v; co io.c RCS/io.c,v;
co io.c io.c,v; co RCS/io.c,v io.c;
co io.c,v io.c;
SEE ALSO
ci(1), ident(1), rcs(1), resclean(1), resdiff(1), resmerge(1), rlog(1), resfile(4),
scestores(1).
Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982,
DIAGNOSTICS
The RCS file name, the working file name, and the revision number retrieved
are written to the diagnostic output. The exit status always refers to the last
file checked out and is O if the operation was successful or 1 otherwise.
NOTES
The caller of the command must have write permission in the working direc-
tory, read permission for the RCS file, and either read permission (for read-

ing) or read/write permission (for locking) in the directory that contains the
RCS file.

A number of temporary files are created. A semaphore file is created in the
directory of the RCS file to prevent simultaneous update.

WARNINGS

The option -d gets confused in some circumstances, and accepts no date
before 1970.

4 12/88

o g e AR S e A R BT S L

co(1) co(1)

Links to the RCS and working files are not preserved.

The expansion of keywords cannot be suppressed except by writing them
differently. In nroff and troff, this is done by embedding the null-character
‘“\&” in the keyword.

BUGS

The option ~j does not work for files that contain lines with a single “.".

IDENTIFICATION
Author: Walter F. Tichy,
Purdue University, West Lafayette IN, 47907,
Copyright © 1982 by Walter F. Tichy.

12/88 S

o,

st

COMPRESS(1) COMPRESS(1)

NAME

compress, uncompress, zcat - compress and expand data

SYNOPSIS

compress [-f]1 [-v] [] [-V] [-d] [-b maxbits] [file ...]
uncompress [-f] [-v] [<] [-V] [fte ...]
zcat [-V] [fle ...]

DESCRIPTION

12/88

compress reduces the size of the named files using adaptive Lempel-Ziv cod-
ing. Whenever possible, each file file is replaced by one with the form file.Z,
while keeping the same ownership modes, access and modification times. If
no files are specified, the standard input is compressed to the standard out-
put. Compressed files can be restored to their original form using
uncompress, zcat, or compress -d.

The -f option forces compression of file. This is useful for compressing an
entire directory, even if some of the files do not actually shrink. If -f is not
given and compress is run in the foreground, the user is prompted as to
whether an existing file should be overwritten.

The -c option makes compress and uncompress write to the standard output;
no files are changed. The nondestructive behavior of zcat is identical to that
of uncompress -c.

compress uses the modified Lempel-Ziv algorithm popularized in “A Tech-
nique for High Performance Data Compression”, Terry A, Welch, JEEE Com-
puter, vol. 17, no. 6 (June 1984), pp. 8-19. Common substrings in the file
are first replaced by 9-bit codes 257 and up. When code 512 is reached, the
algorithm switches to 10-bit codes and continues to use more bits until the
limit specified by the -b flag is reached (default 16). Maxbits must be
between 9 and 16. The default can be changed in the source to allow
compress to be run on a smaller machine.

After the maxbits limit is attained, compress periodically checks the
compression ratio. If it is increasing, compress continues to use the existing
code dictionary. However, if the compression ratio decreases, compress dis-
cards the table of substrings and rebuilds it from scratch. This allows the
algorithm to adapt to the next “block” of the file.

Note that the -b flag is omitted for uncompress, since the maxdits parameter
specified during compression is encoded within the output, along with a
magic number to ensure that neither decompression of random data nor
recompression of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the
number of bits per code, and the distribution of common substrings. Typi-
cally, text such as source code or English is reduced by 50-60%. Compres-
sion is generally much better than that achieved by Huff man coding or adap-
tive Huff man coding, and takes less time to compute.

COMPRESS(1) COMPRESS(1)

Under the -v option, a message is printed yielding the percentage of reduc-
tion for each file compressed.

If the -V option is specified, the current version and compile options are
printed on stderr.

DIAGNOSTICS

BUGS

Exit status is normally O; if the last file is larger after (attempted) compres-
sion, the status is 2; if an error occurs, exit status is 1.

Usage: compress [-dfvcV] [-b maxbits] [fite ...]

Invalid options were specified on the command line.
Missing maxbits

Maxbits must follow -b,

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xx bits, can only handle yy bits
File was compressed by a program that could deal with a larger
maxbits than the compress code on this machine. Recompress the file
with smaller maxbits.

file: already has .Z suffix — no change
The file is assumed to be already compressed. Rename the file and
try again.

file: filename too long to tack on .Z
File cannot be compressed because its name is longer than 12 charac-
ters. Rename and try again.

file already exists; do you wish to overwrite (y or n)?
Respond “y” if the output file should be replaced; “n” if not.

uncompress: corrupt input
A SIGSEGV violation was detected which usually means that the
input file has been corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for
-v.)

- not a regular file: unchanged
When the input file is not a regular file, (e.g., a directory), it is left
unaltered.

— has xx other links: unchanged
The input file has links; it is left unchanged. See in(1) for more
information.

— file unchanged
No savings are achieved by compression. The input remains virgin.

Although compressed files are compatible between machines with large
memory, -b12 should be used for file transfer to architectures with a small

12/88

iy

COMPRESS(1) COMPRESS(1)

process data space (64K bytes or less, as exhibited by the DEC™ pDP™
series, the Intel 80286, etc.)

12/88 3

CPFLOP(1) CPFLOP(1)

NAME

cpflop - copy floppy disk

SYNOPSIS

cpflop [-1s] [-n numcopies]

DESCRIPTION

FILES

cpflop duplicates a floppy disk using a single floppy drive. In the default
operation mode, with no command line parameters or input/output redirec-
tion, cpflop copies one floppy to another, prompting for insertion of the
source and destination floppies. If stdin is a terminal or /dev/null, cpfiop
assumes that the source for the copy is a floppy and prompts for the source
disk to be inserted. Stdout is investigated in the same way to determine the
destination of the copy. If the file is not a terminal or /dev/null, the file
associated with stdin and/or stdout is accessed instead of the floppy. No
prompt is issued for devices other than floppy.

The options supported are as follows:

-1 Floppy is low density (720 blocks).

-0 numcoples Numcoples is the number of copies of the source floppy to
make.

- No prompting for floppy insertion. This option is not valid if

both the source and destination are floppies. The -8 option
assumes that the amount of data involved can be contained
on one floppy.

/dev/rdsk/floppy

CAVEATS

12/88

cpflop does not support multiple-sequenced volumes. It transfers a max-
imum of 2400 blocks (720 for low density) from the source to the destina-
tion, repeating this action with the same source data if multiple copies are
requested.

R R N A RSB S

A

CPIO(1) CPIO(1)

NAME

cpio - copy file archives in and out

SYNOPSIS

cpio -o[acBvV] [-C bufsize] [[-O file] [-M messagel]

cpio -i[BcdmrtavVfsSb6k] [-C bufsize] [[-1 file] [-M message]]
[pattern .. .]

cpio -pladlmuvV] directory

DESCRIPTION

12/88

cpio -0 (copy out) reads the standard input to obtain a list of path names
and copies those files on the standard output with path name and status
information. Qutput is padded to a 512-byte boundary by default.

cpio -i (copy in) extracts files from the standard input, which is assumed to
be the product of a previous cpio -0. Only files with names that match pat-
terns are selected. Patterns are regular expressions given in the file name
generating notation of sh(1). In patterns, meta-characters ?, %, and [...]
match the slash (/) character, and backslash (\) is an escape character. A !
meta-character means NOT. (For example, the labcs pattern excludes all files
that begin with abc.) Multiple patterns may be specified and if no patterns
are specified, the default for patterns is # (select all files). Each pattern must
be enclosed in double quotes; otherwise, the name of a file in the current
directory is used. Extracted files are conditionally created and copied in the
current directory tree based on the options described below. The permissions
of the files will be those of the previous cpio -0. The file owner and group
will be the current user’s unless the user is super-user, which causes cpio to
retain the file owner and group of the previous cpio -o.

If cpio -i tries to create a file that exists and the existing file is the same age
or newer, cpio will output a warning message and not replace the file. (The
-u option can be used to unconditionally overwrite the existing file.)

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied in the destination directory tree
based on the options described below.

The meanings of the available options are as follows:

-a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pla is
specified,

-b Reverse the order of the bytes within each word. Use -b only
with the -i option.

-B Input/output is to be blocked 5,120 bytes to the record., The

default buffer size is 512 bytes when this option and the -C
option are not used. (-B does not apply to the pass option; -B
is meaningful only with data directed to or from a character
special device, e.g., /dev/rmt/Om.)

CPIO(1)

-c

-C bufsize

-M message

-0 file

-r

CPIO(1)

Write header information in ASCII character form for portabil-
ity., Always use this option when origin and destination
machines are different types.

Input/output will be blocked bufsize bytes to the record, where
bufsize is replaced by a positive integer. The default buffer size
is 512 bytes when this and -B options are not used. -C does
not apply to the pass option; -C is meaningful only with data
directed to or from a character special device (e.g.,
/dev/rmt/Om.)

Directories will be created as needed.

Copy all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

Read the contents of file as input, If file is a character special
device, when the first medium is full, replace the medium and
type a carriage return to continue to the next medium. Use
only with the -i option.

Attempt to skip corrupted file headers and I/O errors that may
be encountered. To copy files from a medium that is corrupted
or out of sequence, this option lets only files with good headers
be read. (For cplo archives that contain other cpio archives, if
an error is encountered, cpio may terminate prematurely. cpio
will find the next good header, which may be for a smaller
archive, and terminate when the smaller archive’s trailer is
encountered.) Used only with the -i option.

When possible, link files rather than copying them. Usable
only with the -p option.

Retain previous file modification time. This option is
ineffective on directories and symbolic links that are being
copied.

Define a message to use when switching media. When using the
-0 or -I options and specifying a character special device, this
option can be used to define the message printed when reaching
the end of the medium. One %d can be placed in the message
to print the sequence number of the next medium needed to
continue.

Direct the output of cpio to file. If file is a character special
device, when the first medium is full, replace the medium and
type a carriage return to continue to the next medium. Use
only with the -o option,

Interactively rename files, If the user types a null line, the file
is skipped. If the user types a “.” the original path name will
be copied. (Not available with cpio -p.)

12/88

CPIO(1) CPIO(1)

-s Swap bytes within each half word. Use only with the -i
option.

-S Swap halfwords within each word. Use only with the -i
option.

-t Print a table of contents for the input. No files are created.

-u Copy unconditionally. (Normally, an older file will not
replace a newer file with the same name.)

-V Verbose, Print a list of file names, When used with the -t

option, the table of contents resembles the output of an Is -1
command (see Is(1)).

-V Special verbose. Print a dot for each file seen. This assures the
user that cpio is working without printing all file names.
-6 Process an old (i.e., UNIX System Sixth Edition format) file,

Use only with the -i option.

If cpio reaches the end of medium (such as end of a tape), when writing to
(-0) or reading from (-i) a character special device and -O and -I are not
used, cpio will print the message:

If you want to go on, type device/file name when ready.

To continue, the medium must be replaced and the character special device
name (such as /dev/rmt/Om) and a carriage return typed. The user may
want to continue by directing cpio to use a different device. For example, if
two tape drives are available, it may be desirable to switch between them so
cplo can proceed while tapes are being changed. (A carriage return alone
causes the cpio process to exit.)

EXAMPLES

12/88

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the files
so they can be directed (>) to a single file (../newsile). The -c option
ensures that the file can be ported to other machines. Instead of Is(1),
find(1), echo(1), or cat(1) could be used to pipe a list of names to cpio. Out-
put could be directed to a device instead of a file.

1s | cpio -oc > ../newfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat in
the example), extracts the files that match the patterns (memo/al,
memo/bs), creates directories below the current directory as needed (-d
option), and places the files in the appropriate directories. The -c option is
used when the file is created with a portable header. If no patterns were
given, all files from newfile would be placed in the directory.

cat newfile | cpio -icd "memo/a1” "memo/bs"

cpio -p copies or links (-1 option) the file names piped to it to another direc-
tory (newdir in the example). The -d option says to create directories as
needed. The -m option says to retain the modification time. (It is important

CPIO(1) cPI0(1)

to use the -depth option of find(1) to generate path names for cpio. This
eliminates problems cpio could have trying to create files under read-only
directories.)

find . -depth -print | cpio -pdlmv newdir

SEE ALSO
find(1), 1s(1), scpio(1).

sh(1), tar(1), ar(4), cpio(4) in the UNIX System V Programmer’s Reference
Manual.

cat(1), echo(1) in the UNIX System V User’s Reference Manual.

NOTES
cpio assumes four-byte words.

Path names are restricted to 256 characters.
Only the super-user can copy special files,
Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than O characters, and the user is
not root, the file will not be saved or restored.

4 12/88

()

s

CRM(1) CRM(1)

NAME

crm - CLIX Resource Monitor

SYNOPSIS

/usr/ip32/crm/crm.sh
/usr/ip32/crm/crm.server

DESCRIPTION

crm, the CLIX Resource Monitor (CRM), invokes a menu-driven interface for
monitoring the CLIX operating system. crm monitors either the system as a
whole or individual processes and provides either alphanumeric displays
based on the curses facilities or graphics displays based on Environ V facili-
ties. On a graphics system, typing the first line of the synopsis invokes crm
from the command line. The second line is used to invoke crm on a non-
graphics system.

The initial crm window allows access to online instructions for using crm,
entering the System Monitor and Process Monitor menus, or exiting crm.
Use arrow keys to scroll through the choices and <RETURN> to execute.
The following describes the choices available:

Instructions Explain how to use the crm labels at the bottom of
the crm window, menus, and forms.

System Monitors Provide information about the system in areas such as
1/0 activity and file, memory, and CPU use. crm pro-
vides the following system monitors:

Monitor Parameters (monparam(1))
Top Fault Monitor (topfault(1))

Top Memory Monitor (topmem(1))
Top CPU Monitor (topcpu(1))

Top I/0 Monitor (topio(1))

Top Sys Monitor (topsys(1))

Show Open Files (showfiles(1))

Show Memory Usage (showmemory(1))

Process Monitors Provide the capability to profile a process and show
its paging, I/0, system call, and instruction execution.
crm provides the following process monitors:

Profiler (watcher(1))
Memory Monitor (monregion(1))
Process Monitor (monproc(1))

Exit Exit crm.

System Monitors

01/90

Each of the system monitors can be executed from the crm menus or from
the command line by entering the command in parentheses. However, the
only way to execute these monitors (except topsys(1)) in graphics-based for-
mat is from the command line, topsys(1) displays only in graphics-based

CRM(1) CRM(1)

format.
The following choices are available from the System Monitor menu:

Change Defaults
The change defaults menu option allows the user to change the
defaults for the remaining menu options.

The following defaults can be changed:

Sample Interval Specify how frequently the monitor samples and
displays information.
Input File Read the data from the input file. The input file

must have been previously created as a crm out-
put file. A - for the input file reads input from
stdin.

Output File Direct output to the output file, A - for the out-
put file directs output to stdout.

Graphic Windows Invoke graphically oriented windows such as
topsys(1).

Learn Mode Display the command and options used to exe-
cute a monitor.

Separate Windows Invoke a window separate from the fmli win-
dow and run the selected process in the separate
window.

Monitor Parameters
Execute monparam(1).

Top Fault Monitor
Execute topfault(1).

Top Memory Monitor
Execute topmem(1).

Top CPU Monitor

Execute topcpu(1).
Top /O Monitor

Execute topio(1).
Top System Monitor

Execute topsys(1).
Show Open Files

Execute showfiles(1).

Show Memory Usage
Execute showmemory(1).

Process Monitors
All crm process monitors display in curses-based format by default. How-
ever, the memory and process monitor can also display in a graphics-based

2 01/90

()

()

()

)

i,

CRM(1) CRM(1)

01/90

format by selecting an option from crm menus, Select the Delete icon to exit
from graphics-based monitors; press <CONTROL>-C to exit from curses-

based Profiler and Q or X to exit from curses-based Memory and Process
monitors.

crm process monitors may be executed through the crm menus or from the
command line.

The following choices are available from the process monitor menu:

Select Process to Monitor
Before a process can be monitored, the user must specify the process
to monitor. The user can key in ps -e at the system prompt to deter-
mine the name or process ID (PID) of processes running on the sys-
tem.

Then, to select the process to monitored, the user chooses the Select
Process to Monitor option from the main process monitor menu. A
Change Default options form appears. One of the first four fields
must be completed to specify which process to monitor. The rest of
the fields are optional. A brief description of each field follows:

Name of program to monitor
Allow the user to enter the process name of the process to
monitor.

PID Allow the user to enter the PID of an active process to moni-
tor,

program to execute
Allow the user to enter the path name (and options) of a pro-
gram to execute and monitor simultaneously.

Pre-recorded File
Allow the user to enter the file name (path name) of a previ-
ously recorded monitoring session.

Output File
Allow the user to enter the file name (path name) of a file
where the monitoring session will be recorded.

Separate Windows
Allow the user to execute a monitor in graphics-based format
when set to Y. This field applies only to the memory and
process monitors; the Profiler does not run in graphics-based
format, This option should be set to N when an attempt is
made to run Profiler; otherwise, it will not execute.

Sample Interval
Allow the user to define how frequently (in seconds) a moni-
tor will gather information and update the monitor fields.
Enter a positive number in this field. This field applies only
to the process monitor (monproc(1)).

CRM(1) CRM(1)

Learn mode
Display the command and options used to execute a monitor.

Select Profiler Options
The Profiler monitors the page faults and system calls of a specified
process. Before the Profiler is run, page faults and system calls must
be enabled. Choose Select Profile Options from the main process
monitor menu. To accept the default values for each option listed on
the Page Faults and System Calls forms, press the SAVE key
(<PF3>).

Select the Enable Page Faults option, See topfault(1) for a descrip-
tion of the Demand Zero, Swap, Cache, File, Copy on Write, and
Steal fields. The last three fields on the form are described as fol-
lows:

Starting Virtual Address

Ending Virtual Address
Allow the user to monitor faults occurring only at certain
addresses in the process. These fields allow the user to define
the section of the process in which faults will be watched.

Maximum Samples
Allow the user to define the number of samples for the moni-
tor to collect. This definition may prevent the monitor from
running indefinitely.

Select the Enable System Calls option. A description of the fields
follows:

All System Calls
Direct the Profiler to report all system calls. The default set-
ting is Y.

/o Direct the Profiler to ignore all system calls except for I/O
calls. The default setting is N.

Summary Only
Direct the monitor to print only a summary of system calls
when the monitoring interval is complete instead of listing
all system calls as they are encountered. The default setting
is N.
Run Profiler
Execute watcher(1).

Run Memory Monitor
Execute monregion(1).

Run Process Monitor
Execute monproc(1).

SEE ALSO
monparam(1), monproc(1), monregion(1), showfiles(1), showmemory(1),
topcpu(1), topfault(1), topio(1), topmem(1), topsys(1), watcher(1).

4 01/90

Q)

0O

-
L

CRM(1) CRM(1)

WARNINGS
Sending raw data to a file can create a very large file.

5

S

01/90 5

()

0

O

CSH(1) CSH(1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS .
csh [-cefinstvvxX] {arg ...]

DESCRIPTION
csh is a first implementation of a command language interpreter incorporat-
ing a history mechanism (see History Substitutions), job control facilities
(see Jobs), interactive file name and user name completion (see File Name
Completion), and a C-like syntax.

csh begins by executing commands from the file .cshrc in the home direc-
tory of the invoker. If this is a login shell, it also executes commands from
the file .login there.

Normally, the shell will then begin reading commands from the terminal,
prompting with “% . Argument Processing and the use of the shell to pro-
cess files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of com-
mand input is read and broken into ‘“words”. This sequence of words is
placed on the command history list and then parsed. Finally, each command
in the current line is executed.

When a login shell terminates, it executes commands from the file .logout in
the user’s home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following
exceptions: the characters &, |, ;, <, >, (, and) form separate words. If
doubled in &&, Il, < <, or > > these pairs form single words. These parser
metacharacters may be made part of other words, or prevented their special
meaning by preceding them with \. A newline preceded by a \ is equivalent
to a blank.

In addition, strings enclosed in matched pairs quotations, **,”*, or * *, form
parts of a word; metacharacters in these strings, including blanks and tabs,
do not form separate words. These quotations have semantics to be
described subsequently, Within ** or " ", a newline preceded by a \ gives a
true newline character.

‘When the shell’s input is not a terminal, the character # introduces a com-
ment that continues until the end of the input line. It does not have this
special meaning when preceded by \ and in quotations using**%,*’,and " °.

Commands
A simple command is a sequence of words, with the first specifying the com-
mand to be executed. A simple command or a sequence of simple commands
separated by | characters forms a pipeline. The output of each command in a
pipeline is connected to the input of the next. Sequences of pipelines may be
separated by ;, and are then executed sequentially. A sequence of pipelines

12/88 1

CSH(1) CSH(1)

may be executed without immediately waiting for it to terminate by follow-
ing it with an &.

Any of the above may be placed in () to form a simple command (which
may be a component of a pipeline, etc.). Pipelines can also be separated with
Il or && indicating, as in the C language, that the second is to be executed
only if the first fails or succeeds respectively. (See Expressions.)

Jobs
The shell associates a job with each pipeline, It keeps a table of current jobs
(printed by the jobs command) and assigns them small integer numbers.
When a job is started asynchronously with &, the shell prints a line that
looks like the following, indicating that the job started asynchronously was
job number 1 and had one (top-level) process with process ID 1234,

[111234

If a job is running and the user wishes to do something else, <CONTROL>-Z
may be pressed, which sends a STOP signal to the current job. The shell will
then normally indicate that the job has been “Stopped’”’, and print another
prompt. the state of this job can then be manipulated, putting it in the
background with the bg command, or run other commands and then eventu-
ally bring the job back to the foreground with the foreground command fg.
A <CONTROL>-Z takes effect immediately and, like an interrupt, pending
output and unread input are discarded when it is typed.

A job running in the background will stop if it tries to read from the termi-
nal. Background jobs are normally allowed to produce output, but this can
be disabled by giving the command stty tostop. If this tty option is set,
background jobs will stop when they try to produce output as they do when
they try to read input.

Jobs in the shell can be referred to in several ways. The character % intro-
duces a job name. To refer to job number 1, it can be named %1. Naming a
job brings it to the foreground; thus, %1 is a synonym for fg %1, bringing
job 1 to the foreground. Similarly, saying %1 & resumes job 1 in the back-
ground. Jobs can also be named by prefixes of the string typed to start them
if these prefixes are unambiguous; thus, %ex would normally restart a
suspended ex(1) job, if only one suspended job’s name began with the string
“ex”. Saying %?string, which specifies a job whose text contains string if
only one such job exists, is also possible,

The shell maintains a status of the current and previous jobs. In output per-
taining to jobs, the current job is marked with a + and the previous job with
a —. The abbreviation %+ refers to the current job and %— refers to the
previous job. For close analogy with the syntax of the history mechanism
(described below), %% is also a synonym for the current job.

Status Reporting
This shell learns immediately when a process changes state. It normally
informs the user when a job becomes blocked so that no further progress is
possible, However, this information is only received just before it prints a

2 12/88

CSH(1) CSH(1)

prompt. This is done so that it does not otherwise disturb the user’s work.
If, however, the shell variable notify is set, the shell will notify the user
immediately of changes of background job status. Also, a shell command,
notify, marks a single process so that its status changes will be immediately
reported. By default, notify marks the current process; simply entering
notify after starting a background job marks it.

When trying to leave the shell while jobs are stopped, the user will be
warned that “You have stopped jobs.” The jobs command may be used to
see what they are. If the user does this or immediately tries to exit again,
the shell will not give a second warning, and the suspended jobs will be ter-
minated.

File Name Completion
When the file name completion feature is enabled by setting the shell vari-
able filec (see set), csh will interactively complete file names and user names
from unique prefixes when they are input from the terminal f ollowed by the
escape character (the <ESC> key, or <CONTROL>-{). For example, if the
current directory contains the following:

DSC.OLD bin cmd 1lib xmpl.c
DSC.NEW chaosnet cmtest mail xmpl.o
bench class dev mbox xmpl.out

and the input is
% vi ch<ESC>

csh will complete the prefix “ch” to the only matching file name chaosnet,
changing the input line to the following:

% vi chaosnet

However, given
% vi D<ESC>

csh will only expand the input to
% vi DSC.

and will sound the terminal bell to indicate that the expansion is incomplete,
since two file names match the prefix “D”.

If a partial file name is followed by the end-of-file character (usually
<CONTROL>-D), then, instead of completing the name, csh will list all file
names matching the prefix. For example, the input

% vi D<KCONTROL>-D

causes all files beginning with “D” to be listed:
DSC.NEW DSC.OLD

while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand partial
user names if the word to be completed (or listed) begins with the character

12/88 3

CSH(1) CSH(1)

~. For example, typing

cd ~ro<CONTROL >-D
may produce the expansion

cd ~root

The use of the terminal bell to signal errors or multiple matches can be inhi-
bited by setting the variable nobeep.

Normally, all files in the directory are candidates for name completion.
Files with certain suffixes can be excluded from consideration by setting the
variable fignore to the list of suffixes to be ignored. Thus, if the command

% set fignore = (.0 .out)
was entered, then typing
% vi x<ESC>
would result in the completion to
% vi xmpl.c

ignoring the files xmpl.o and xmpl.out. However, if the only completion
possible requires not ignoring these suffixes, they are not ignored. In addi-
tion, fignore does not affect the listing of file names by <CONTROL>-D. All
files are listed regardless of their suffixes.

Substitutions
We now describe the various transformations the shell performs on the
input in the order in which they occur.

History Substitutions

History substitutions place words from previous command input as portions
of new commands, making it easy to repeat commands, repeat arguments of
a previous command in the current command, or fix spelling mistakes in the
previous command with little typing and a high degree of confidence. His-
tory substitutions begin with the character ! and may begin anywhere in the
input stream (with the proviso that they do not nest.) This ! may be pre-
ceded by a \ to prevent its special meaning; for convenience, a ! is passed
unchanged when it is followed by a blank, tab, newline, = or (. (History
substitutions also occur when an input line begins with °, This special
abbreviation will be described later.) Any input line that contains history
substitution is echoed on the terminal before it is executed as it could have
been typed without history substitution.

Commands input from the terminal that consist of one or more words are
saved on the history list. The history substitutions reintroduce sequences of
words from these saved commands in the input stream. The size of the his-
tory list is controlled by the history variable; the previous command is

always retained, regardless of its value. Commands are numbered sequen-
tially from 1.

4 12/88

CSH(1) CSH(1)

For definiteness, the following output from the history command should be
considered:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. Using even numbers is
usually not necessary, but the current event number can be made part of the
prompt by placing an ! in the prompt string.

With the current event 13, previous events can be referred to by event
number as in 111, relatively as in !-2 (referring to the same event), by a
prefix of a command word as in !'d for event 12 or twri for event 9, or by a
string contained in a word in the command as in !?mic? (also referring to
event 9). These forms, without further modification, simply reintroduce the
words of the specified events, each separated by a single blank. As a special
case, 1! refers to the previous command; thus ! alone is essentially a redo.

To select words from an event, The event specification can be followed by a :
and a designator for the desired words. The words of an input line are
numbered from O, the first (usually a command) word being O, the second
word (first argument) being 1, etc. The basic word designators are as fol-
lows:

0 first (command) word

n nth argument

- first argument, i.e., 1

$ last argument

% word matched by (immediately preceding) ?s? search
x-y range of words

-y abbreviates O-y

= abbreviates "-$, or nothing if only 1 word in event
X% abbreviates x-$
x- like x* but omitting word $§

The : separating the event specification from the word designator can be
omitted if the argument selector begins with a %, % -, or %. After the
optional word designator, a sequence of modifiers can be placed, each pre-
ceded by a :. The following modifiers are defined:

h Remove a trailing path name component, leaving the head.
r Remove a trailing .xxx component, leaving the root name.
e Remove all but the extension .xxx part.

8/lU/r/ Substitute for r.

Remove all leading path name components, leaving the tail.
Repeat the previous substitution.

Apply the change globally, prefixing the above, as in g&.
Print the new command, but do not execute it.

Quote the substituted words, preventing further substitu-
tions,

QY 0Q Pt

12/88 5

CSH(1) CSH(1)

X Like q, but break into words at blanks, tabs, and newlines.

Unless preceded by a g, the modification is applied only to the first
modifiable word. With substitutions, an error results when no word is
applicable.

The left-hand side of substitutions are not regular expressions in the sense of
the editors, but rather strings. Any character may be used as the delimiter
in place of /; a \ quotes the delimiter in the I and r strings. The character &
in the right-hand side is replaced by the text from the left. A \ quotes &
also. A null uses the previous string either from an Z or from a contextual
scan string s in 12s?. The trailing delimiter in the substitution may be omit-
ted if a newline follows immediately as the trailing ? may in a contextual
scan,

A history reference may be given without an event specification, i.e., 1$. In
this case, the previous command is being referenced unless a previous history
reference occurred on the same line. In this case, the form repeats the previ-
ous reference. Thus, 12/00?" t$ gives the first and last arguments from the
command matching ?foo?.

A special abbreviation of a history reference occurs when the first nonblank
character of an input line is a . This is equivalent to 1:8”, providing a con-
venient short-hand for substitutions on the text of the previous line., Thus
“B"d fixes the spelling of lib in the previous command. Finally, a history
substitution may be surrounded with { and } if necessary to insulate it from
the characters that follow. Thus, after 1s -1d ~paul, !{1}a could be used
to do 1s -1d ~paula, while 11a would look for a command starting with la,

Quotations With Single And Double Quotes
Quoting by * * and " " can prevent all or some remaining substitutions.
Strings enclosed in ** are prevented from any further interpretation. Strings
enclosed in * * may be expanded as described below.

In both cases, the resulting text becomes (all or part of) a single word; only
in one special case (see Command Substitution below) does a " " quoted
string yield parts of more than one word; * * quoted strings never do.

Alias Substitution

The shell maintains a list of aliases that can be established, displayed, and
modified by the alias and unalias commands. After a command line is
scanned, it is parsed into distinct commands and the first word of each com-
mand, left-to-right, is checked to see if it has an alias. If it does, the text
that is the alias for that command is reread with the history mechanism
available as though that command were the previous line input. The result-
ing words replace the command and argument list, If the history list is not
referred to, the argument list is unchanged,

Thus, if the alias for “Is” is “Is -1 the command 1s /usr would map to Is -1
/usr; the argument list would not be disturbed. Similarly if the alias for
“lookup” was “grep 1" /etc/passwd”, lookup bill would map to grep bill
/etc/passwd.

6 12/88

o o T b e S . . - RS AR e o

CSH(1) CSH(1)

If an alias is found, the word transformation of the input text is performed
and the aliasing process begins again on the reformed input line. Looping is
prevented if the first word of the new text is the same as the old by flagging
it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax.
Thus, alias print ’pr \!= | 1pr’ can be done to make a command that pr’s
its arguments to the line printer.

Variable Substitution
The shell maintains a set of variables. Each variable has a list of zero or
more words as a value, Some of these variables are set by the shell or
referred to by it. For instance, the argv variable is an image of the shell’s
argument list, and words of this variable’s value are referred to in special
ways.

The values of variables may be displayed and changed by using the set and
unset commands. Of the variables referred to by the shell, a number are
toggles; the shell does not care what their value is, only whether they are set
or not. For instance, the verbose variable is a toggle that causes command
input to be echoed. The setting of this variable results from the -v com-
mand line option.

Other operations treat variables numerically. The @ command permits
numeric calculations to be performed and the result assigned to a variable.
Variable values are, however, always represented as (zero or more) strings.
For numeric operations, the null string is considered to be zero, and the
second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed and before each command is exe-
cuted, variable substitution is performed as keyed by $ characters. This
expansion can be prevented by preceding the $ with a \ except within * °,
where it always occurs, and within ”°, where it never occurs. Strings quoted
by * * are interpreted later (see Command Substitution below) so $ substi-
tution does not occur there until later, if at all. A $ is passed unchanged if
followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion and are
variable expanded separately. Otherwise, the command name and entire
argument list are expanded together. Thus, the first (command) word to this
point can generate more than one word. The first word becomes the com-
mand name, and the rest become arguments.

Unless enclosed in * * or given the :q modifier the results of variable substi-
tution may eventually be command and file name substituted. Within "% a
variable whose value consists of multiple words expands to a (portion of) a
single word, with the words of the variable value separated by blanks.
When the :q modifier is applied to a substitution, the variable will expand to
multiple words with each word separated by a blank and quoted to prevent
later command or file name substitution.

12/88 ‘ 7

CSH(1) CSH(1)

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, referring to a variable that is not set
results in an error,

$name

${name} These are replaced by the words of the value of vari-
able name, each separated by a blank. Braces insulate
name from following characters that would otherwise
be part of it. Shell variables have names with up to 20
letters and digits starting with a letter. The underscore
character is considered a letter,

If name is not a shell variable but is set in the environ-
ment, then that value is returned. (But : modifiers and
the other forms given below are not available in this
case.)

$namel selector]

${name[selector]} May be used to select only some of the words from the
value of name. The selector is subjected to $ substitu-
tion and may consist of a single number or two
numbers separated by a -. The first word of a variable
value is numbered 1. If the first number of a range is
omitted, it defaults to 1, If the last member of a range
is omitted it defaults, to $#name. The selector ® selects
all words. An empty range is not an error if the second
argument is omitted or is in range.

$#name

${#name} Gives the number of words in the variable. This is use-
ful for later use in a [selector].

$0 Substitutes the name of the file from which command
input is being read. An error occurs if the name is not
known.

$rnumber

${number} Equivalent to $argv[number].

$= Equivalent to $argv[=].

The modifiers :h, :t, :r, :q and :X may be applied to the substitutions above
as may :gh, :gt and :gr. If braces appear in the command form, the
modifiers must appear within the braces. The current implementation
allows only one : modifier for each $ expansion,

The following substitutions may not be modified with : modifiers.

$?2name

${?name} Substitutes the string 1 if name is set, O if it is not.

$20 Substitutes 1 if the current input file name is known, O if it is
not.

8 12/88

CSH(1)

CSH(1)
$$ Substitutes the (decimal) process number of the (parent) shell.
$< Substitutes a line from the standard input, with no further

interpretation. It can be used to read from the keyboard in a
shell script.

Command And File Name Substitution

12/88

The remaining substitutions, command and file name substitution, are
applied selectively to the arguments of built-in commands. Thus, portions
of expressions not evaluated are subject to these expansions. For commands
not internal to the shell, the command name is substituted separately from
the argument list. This occurs very late, after input-output redirection is
performed, and in a child of the main shell.

Command substitution is indicated by a command enclosed in * *. The out-
put from such a command is normally broken into separate words at blanks,
tabs, and newlines, with null words discarded. This text then replaces the
original string. Within " ", only newlines force new words; blanks and tabs
are preserved.

In any case, the final newline does not force a new word. Thus, a command
substitution can yield only part of a word even if the command outputs a
complete line.

If a word contains %, ?, [, or { or begins with the character ~, the word is a
candidate for file name substitution, also known as “globbing”. This word
is then regarded as a pattern and replaced with an alphabetically-sorted list
of file names that match the pattern. In a list of words specifying file name
substitution, no pattern matching an existing file name results in as error,
but it is not required for each pattern to match. Only the metacharacters %,
?, and [imply pattern matching. The characters ~ and { being more like
abbreviations.

In matching file names, the character . at the beginning of a file name or
immediately following a /, and the character / must be matched explicitly.
The character * matches any character string, including the null string. The
character ? matches any single character. The sequence [...] matches any
one of the characters enclosed. Within [...], a pair of characters separated
by — matches any character lexically between the two.

The character ~ at the beginning of a file name refers to home directories.
Standing alone (“~), it expands to the invokers home directory as reflected
in the value of the variable home. When followed by a name consisting of
letters, digits, and — characters, the shell searches for a user with that name
and substitutes their home directory; thus, ~ken might expand to
/usr/ken and ~ken/chmach to /usr/ken/chmach. If ~ is followed by
a character other than a letter or / or does not appear at the beginning of a
word, it is undisturbed.

The metanotation a{b,c,d}e is shorthand for abe ace ade. Left to right order
is preserved, and results of matches are sorted separately at a low level to
preserve this order. This construct may be nested. Thus,

CSH(1)

10

CSH(1)

~src/s1/{oldls,Is}.c expands to /usr/src/s1/oldls.c /usr/src/s1/ls.c
whether or not these files exist with no chance of error if the home directory
for src is /usr/src. Similarly, ../{memo,*box} might expand to ../memo
../box ../mbox. (Note that memo was not sorted with the results of
matching #box.) As a special case {, }, and {} pass undisturbed.

Input/QOutput

The standard input and output of a command may be redirected with the
following syntax:

< name

< < word

> name
> & name
> & name

> > name
> > & name
> >V name
> > &! name

Open file name (which is first variable, command and file
name expanded) as the standard input.

Read the shell input up to a line which is identical to word.
Word is not subjected to variable, file name or command sub-
stitution, and each input line is compared to word before any
substitutions are performed on this input line, Unless a quot-
ing \, %, *, or * appears in word, variable and command substi-
tution is performed on the intervening lines, allowing \ to
quote $§, \, and *. Commands that are substituted have all
blanks, tabs, and newlines preserved, except for the final new-
line, which is dropped. The resulting text is placed in an
anonymous temporary file given to the command as standard
input.

The file name is used as standard output. If the file does not
exist, it is created; if the file exists, it is truncated and previ-
ous content is lost.

If the variable noclobber is set, the file must not exist or be a
character special file (i.e.,, a terminal or /dev/null) or an
error results. This helps prevent accidental destruction of
files. In this case, the ! forms can be used and suppress this
check.

The forms involving & route the diagnostic output to the
specified file and the standard output. Name is expanded as <
input file names are.

Uses file name as standard output like >, but places output at
the end of the file. If the variable noclobber is set, then it is an
error for the file not to exist unless one of the ! forms is given.
It is otherwise similar to >,

A command receives the environment the shell was invoked in as modified
by the input/output parameters and the presence of the command in a

12/88

SR,

CSH(1) CSH(1)

pipeline. Thus, unlike some previous shells, commands run from a file of
shell commands cannot access the text of the commands by default. Instead,
they receive the original standard input of the shell. The < < mechanism
should be used to present inline data. This permits shell command scripts to
function as components of pipelines and allows the shell to block read its
input. Note that the default standard input for a command run detached is
not modified to be the empty file /dev/null; rather, the standard input
remains the original standard input of the shell. If this is a terminal and if
the process attempts to read from the terminal, the process will block and
the user will be notified (see Jobs above),

Diagnostic output may be directed through a pipe with the standard output.
To do so, the form | & rather than | should be used.

Expressions
A number of the built-in commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the same
precedence. These expressions appear in the @, exit, if, and while com-
mands. The following operators are available:
N & | = & == 1= =~ 1~ <K= >= < >
<< >> + — = / % t ~ ()

Here the precedence increases to the right, ==, 1=, =~, and ¥~; <=, >=,
<,and >; << and >>; + and —; and %, /, and % being, in groups, at the
same level. The ==, =, =~, and !~ operators compare their arguments as
strings; all others operate on numbers. The operators =~ and 1~ are like
= and == except that the right-hand side is a pattern (containing, e.g., *’s,
?’s, and instances of [...]) that the left hand operand is matched against.
This reduces the need to use the switch statement in shell scripts when only
pattern matching is needed.

Strings that begin with O are octal numbers. Null or missing arguments are
0. The result of all expressions are strings, which represent decimal
numbers. No two components of an expression can appear in the same word.
When adjacent to components of expressions syntactically significant to the
parser (&, 1, (,), <, >) they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions
enclosed in { and } and file inquiries of the form -l name, where { is one of
the following:

r read access
write access
execute access
existence
ownership
zero size
plain file
directory

A NOO®KMg

12/88 11

CSH(1)

12

CSH(1)

The specified name is command and file name expanded and then tested for
the specified relationship to the real user. If the file does not exist or is inac-
cessible, all inquiries return false (0). Command executions succeed, return-
ing true (1), if the command exits with status 0. Otherwise, they fail,
returning false (0). If more detailed status information is required, the com-
mand should be executed outside of an expression and the variable status
should be examined.

Control Flow

The shell contains a number of commands used to regulate the fliow of con-
trol in command files (shell scripts) and (in limited but useful ways) from
terminal input. These commands operate by forcing the shell to reread or
skip in its input and, due to the implementation, restrict the placement of
some of the commands.

The foreach, switch, and while statements, and the if-then-else form of
the if statement require the major keywords to appear in a single simple
command on an input line as shown below.

If the shell’s input is not seekable, the shell buffers input whenever a loop is
read and performs seeks in this internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, backward goto’s will
succeed on nonseekable inputs.)

Built-in Commands

Built-in commands are executed within the shell. If a built-in command
occurs as any component of a pipeline except the last, it is executed in a sub-
shell.

alias [name [wordlist 1]
If no arguments are given, prints all aliases. If just name is given,
prints the alias for name. Otherwise, assigns the specified wordlist as
the alias of name; wordlist is command and file name substituted.
Name cannot be “alias” or ‘“‘unalias”,

alloc Shows the amount of dynamic memory acquired, broken into used
and free memory. With any argument, shows the number of free
and used blocks in each size category. The categories start at size 8
and double at each step. This command’s output may vary across
system types.

bg [%jod ...]
Puts the current or specified jobs in the background, continuing them
if they are stopped.

break Causes execution to resume after the end of the nearest enclosing
foreach or while. The remaining commands on the current line are
executed. Multilevel breaks are thus possible by writing them all
on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

12/88

i,

i,

A

CSH(1) CSH(1)

case label:
A label in a switch statement as discussed below.

cd [name]l

chdir [name]
Change the shell’s working directory to directory name. If no argu-
ment is given, change to the home directory. If name is not found as
a subdirectory of the current directory (and does not begin with /,
./ or ../), each component of the variable cdpath is checked to see if
it has a subdirectory name. Finally, if all else fails but name is a
shell variable whose value begins with /, the name is tried to see if it
is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The
remaining commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should
follow all case labels.

dirs Prints the directory stack. The top of the stack is at the left. The
first directory in the stack is the current directory.

echo [-n] wordlist
The specified words are written to the shell’s standard output,
separated by spaces, and terminated with a newline unless the -n
option is specified.

else

end

endif

endsw See the description of the foreach, if, switch, and while state-
ments below.

evalarg...
As in sh(1).) The arguments are read as input to the shell and the
resulting command(s) executed in the context of the current shell.
This is usually used to execute commands generated as the result of
command or variable substitution, since parsing occurs before these
substitutions. See tset(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.
exit[(expr)]
If expr is not given, the shell exits with the value of the status vari-
able. Otherwise, the shell exits with the value of the specified expr.
fg [®jod ...]
Brings the current or specified jobs to the foreground, continuing
them if they are stopped.

12/88 13

CSH(1)

14

CSH(1)

foreach name (wordlist)

end The variable name is successively set to each member of wordlist and
the sequence of commands between this command and the matching
end are executed. (Both foreach and end must appear alone on
separate lines.)

The built-in command continue may be used to continue the loop
prematurely and the built-in command break may be used to ter-
minate it prematurely. When this command is read from the termi-
nal, the loop is read once, prompting with “?"’ before any statements
in the loop are executed. If a mistake is made while typing in a loop
at the terminal, it can be erased.

glob wordlist
Like echo, but no \ escapes are recognized and words are delimited
by null characters in the output. Useful for programs that wish to
use the shell to file name expand a list of words.

goto word
The specified word is file name and command expanded to yield a
string of the form label. The shell rewinds its input as much as pos-
sible and searches for a line with the form label:, possibly preceded
by blanks or tabs. Execution continues after the specified line,

history [-rh][r]
Displays the history event list. If n is given, only the n most recent
events are printed. The -r option reverses the order of printout so
that the most recent is first, not the oldest. The -h option prints the
history list without leading numbers. This will produce files suit-
able for sourcing using the -h option to source.

if (expr) command
If the specified expression evaluates true, the single command with
arguments is executed. Variable substitution on command happens
early, when it does for the rest of the if command. Command must
be a simple command, not a pipeline, a command list, or a
parenthesized command list. Input/output redirection occurs even if
expr is false and command is not executed. (This is a bug.)

if (expr) then

[else if (expr2) then]

[else]

endif If the specified expr is true, the commands to the first else are exe-
cuted; otherwise, if expr2 is true, the commands to the second else
are executed, and so on. Any number of else-if pairs are possible;

only one endif is needed. The else is optional. (The words else and
endif must appear at the beginning of input lines; the if must

12/88

g,

iR,

CSH(1) CSH(1)

appear alone on its input line or after an else.)

jobs [-1]
Lists the active jobs. With the -1 option, it lists process IDs in addi-
tion to the normal information,

kill [-1] [-sig] [B®job ...1[pid ...]

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in <signal.h>, without the prefix “SIG”). The sig-
nal names are listed by Kill -1. This command has no default.
Therefore, using only kill will not send a signal to the current job.
If the signal being sent is TERM (terminate) or HUP (hangup), the job
or process will be sent a CONT (continue) signal as well.

limit [-h] [resource] [maximum-use]

Limits the consumption by the current process and each process it
creates so that it does not individually exceed maximum-use on the
specified resource. If no maximum-use is given, the current limit is
printed; if no resource is given, all limitations are given. If the -h
flag is given, the hard limits are used instead of the current limits,
The hard limits impose a ceiling on the values of the current limits,
Only the super-user may raise the hard limits, but a user may lower
or raise the current limits within the legal range.

The resource that can currently be controlled is filesize (the largest
single file which can be created).

The maximum-use may be given as a (floating-point or integer)
number followed by a scale factor. The default scale is k or kilo-
bytes (1024 bytes). A scale factor of m or megabytes may also be
used.,

For both resource names and scale factors, unambiguous prefixes of
the names suffice.

login Terminate a login shell, replacing it with an instance of /bin/login.
This method for logging off is compatible with sh(1).

logout Terminate a login shell. Especially useful if ignoreeof is set.

nohup [command]
Without a command, nohup can be used in shell scripts to ignore
hangups for the remainder of the script. Specifying a command runs
the command with hangups ignored. All processes detached with &
are effectively nohuped.

notify [%job ...]
Causes the shell to notify the user asynchronously when the status
of the current or specified jobs changes; normally notification is
presented before a prompt. This is automatic if the shell variable
notify is set,

12/88 15

CSH(1)

16

CSH(1)

onintr [-]

onintr [labet]
Control the action of the shell on interrupts. With no options,
onintr restores the default action of the shell on interrupts, which is
to terminate shell scripts or to return to the terminal command input
level. The form onintr - causes all interrupts to be ignored. The
form onintr label causes the shell to execute a goto label when an
interrupt is received or a child process terminates because it was
interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts con-
tinue to be ignored by the shell and all invoked commands.

popd [+n]
Pops the directory stack, returning to the new top directory. With
an argument +n, this discards the nth entry in the stack. The ele-
ments of the directory stack are numbered from O starting at the top.

pushd [name]

pushd [+n]
With no arguments, pushd exchanges the top two elements of the
directory stack. Given a name argument, pushd changes to the new
directory (ala cd) and pushes the old current working directory (as
in csw) on the directory stack, With a numeric argument, rotates
the nth argument of the directory stack to be the top element and
changes to it. The members of the directory stack are numbered
from the top starting at O.

rehash
Causes the internal hash table of the contents of the directories in the
path variable to be recomputed. This is needed if new commands are
added to directories in the path while the user is logged in. This
should only be necessary if commands are added to one of the user’s
directories or if a systems programmer changes the contents of one of
the system directories.

repeat count command
The specified command, subject to the same restrictions as the com-
mand in the one-line if statement above, is executed count times. 1/0
redirections occur exactly once, even if count is O,

set [name[[index]]=word ...]

set name=(wordlist) ...
With no options, shows the value of all shell variables. Variables
that have more than a single word as a value print as a parenthesized
word list. The form set name sets name to the null string. The form
set name=word sets name to the single word. The form set
name[index] =word sets the indexth component of name to word;
this component must exist. The form set name={(wordlist) sets name
to the list of words in wordlist, The value is command and file name

12/88

g,

gy,

CSH(1)

12/88

CSH(1)

expanded.

These arguments may be repeated to set multiple values in a single
set command. However, variable expansion happens for all argu-
ments before any setting occurs.

setenv [name [value]]

With no options, setenv lists all current environment variables.
When only name given, it is set to an empty string. If both name
and value are given, the value of environment variable name is set to
value, a single string. The most commonly-used environment vari-
ables USER, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path; setenv is not
needed for these.

shift [variable]
The members of argv are shifted to the left, discarding argv(1].
argv must be set and have one word or more for a value. If variable
is given, shift performs the same function on the specified variable.

source [-h] name
The shell reads commands from name. Source commands may be
nested. If they are nested too deeply, the shell may run out of file
descriptors. An error in a source at any level terminates all nested
source commands. Normally, input during source commands is not
placed on the history list; the -h option causes the commands to be
placed in the history list without being executed.

stop [%job ...]
Stops the current or specified job executing in the background.

suspend
Causes the shell to stop as if it had been sent a stop signal with
<CONTROL>-Z, This is most often used to stop shells started by
su(1).

switch (string)
case strl:

breaksw
default:

breaksw

endsw Each case label is successively matched against the specified string,
which is first command and file name expanded. The file metachar-
acters %, ? and [...] may be used in the case labels, which are vari-
able expanded. If no labels match before a default label is found,
execution begins after the default label. Each case label and the
default label must appear at the beginning of a line. The command
breaksw causes execution to continue after the endsw. Otherwise,
control may fall through case labels and default labels as in C, If

17

CsH(1)

18

CSH(Q1)
no label matches and there is no default, execution continues after
the endsw.

umask value

The file creation mask is either displayed if no argument is given or
set to the specified value. The mask is given in octal. Common
values for the mask are 002, giving all access to the group and read
and execute access to others, and 022, giving all access except no
write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by unalias =, It is not an error for
nothing to be unaliased.

unhash
Using the internal hash table to speed location of executed programs
is disabled.

unlimit [-h] [resource]
Removes the limitation on resource. If no resource is specified, then
all resource limitations are removed. If -h is given, the correspond-
ing hard limits are removed. Only the super-user may use this.

unset pattern
All variables whose names match the specified pattern are removed.
Thus, all variables are removed by unset %; this has noticeably dis-
tasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose names match the specified pattern from
the environment., See the setenv command above.

wait Waits for all background jobs. If the shell is interactive, an inter-
rupt can disrupt the wait. At this time the shell prints names and
job numbers of all jobs known to be outstanding.

while (expression)

end While the specified expression evaluates to be nonzero, the commands
between the while and the matching end are evaluated. Break and
continue may be used to terminate or continue the loop prema-
turely. (The while and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for the
foreach statement if the input is a terminal.

%job Brings the specified job to the foreground.
%job &
Continues the specified job in the background.

@ [name[[index] 1=expr]
With no options, prints the values of all shell variables, The form
@ name=expr sets the specified name to the value of expr. If the

12/88

e

CSH(1)

CSH(1)

expression contains <, >, &, or |, this part of the expression must be
placed in (). The form @ namel[index]=expr assigns the value of
expr to the index'th argument of name. Both name and its indexth
component must exist.

The operators ®#=, +=, etcetera are available as they are in C. The
space separating the name from the assignment operator is optional.
Spaces are, however, mandatory in separating components of expr
that would otherwise be single words.

Special postfix ++ and —— operators increment and decrement
name, respectively, e.g., @ i++.

Predefined and Environment Variables

The following variables have special meaning to the shell. Of these, argv,
cwd, home, path, prompt, shell, and status, the shell always sets. Except for
cwd and status, this setting occurs only at initialization; these variables will
not then be modified unless done explicitly by the user.

12/88

This shell copies the environment variable USER in the variable user, TERM
in term, and HOME in home and copies these back in the environment when
the normal shell variables are reset, The environment variable PATH is like-
wise handled; it is not necessary to worry about setting it other than in the
file .cshrc, as inferior csh processes will import path’s definition from the
environment, and re-export it if it is changed.

argv

cdpath

cwd
echo

filec
histchars

history

Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, i.e., $I is replaced by
Sargvl1], etc.

Lists alternate directories searched to find subdirectories in
chdir commands.

The full path name of the current directory.

Set when the -x command line option is given. Echoes each
command and its arguments just before it is executed. For
nonbuilt-in commands, all expansions occur before echoing.
Built-in commands are echoed before command and file name
substitution, since these substitutions are then performed
selectively.

Enable file name completion.

Can be assigned a string value to change the characters used
in history substitution., The first character of its value is the
history substitution character, replacing the default character
I. The second character replaces the character " in quick sub-
stitutions.

Can be assigned a numeric value to control the size of the his-
tory list. Any command referenced in this many events will
not be discarded. Too large values of history may run the
shell out of memory. The last executed command is always

19

CSH(1)

20

home

ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

CSH(1)

saved on the history list.

The invoker’s home directory, initialized from the environ-
ment. The file name expansion of ~ refers to this variable.

Causes the shell to ignore end-of-file from input devices that
are terminals. This prevents shells from accidentally being
killed by <CONTROL>-D.

The files where the shell checks for mail. The check is done
after each command completion that results in a prompt, if a
specified interval has elapsed. The shell says ‘“You have new
mail” if the file exists with an access time not greater than its
modify time.

If the first word of the value of mail is numeric, it specifies a
mail checking interval, in seconds, that differs from the
default, which is 10 minutes.

If multiple mail files are specified, the shell says ‘‘New mail
in name’ when mail is in the file name.

As described in the Input/Output section, output redirection
is restricted to ensure that files are not accidentally destroyed
and that > > redirections refer to existing files.

If set, file name expansion is inhibited. This is most useful in
shell scripts that do not deal with file names or after a list of
file names has been obtained and further expansions are not
desirable,

If set, it is not an error for a file name expansion to not match
any existing files; rather, the primitive pattern is returned.
However, the primitive pattern still may not be malformed
(e.g., echo [still gives an error).

If set, the shell notifies the user of job completions asynchro-
nously. The default is to present job completions just before
printing a prompt.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable,
only full path names will execute. The usual search path is .,
/bin, and /usr/bin, but this may vary from system to sys-
tem. For the super-user the default search path is /etc, /bin,
and /usr/bin. A shell given neither the - nor the -t option
will normally hash the contents of the directories in the path
variable after reading .cshrc, and each time the path variable
is reset. If new commands are added to these directories
while the shell is active, the rehash command may need to
be executed or the commands may not be found.

12/88

i,

CSH(1) CSH(1)

prompt The string printed before each command is read from interac-
tive terminal input. If a ! appears in the string it will be
replaced by the current event number unless a preceding \ is
given. Defaultis “% ”. (“# " for the super-user.)

savehist The numeric value that controls the number of entries in the
history list that are saved in ~/.history when the user logs
out. Any command referenced in this many events will be
saved. During startup, the shell sources ~/.history into the
history list, enabling history to be saved across logins. Exces-
sively large values of savehist will slow down the shell dur-
ing startup.

shell The file in which the shell resides. This is used in forking
shells to interpret files with execute bits set, but cannot be
executed by the system. (See the description of Nonbuilt-in
Command Execution below.) It is initialized to the
(system-dependent) home of the shell.

status The status returned by the last command. If it terminated
abnormally, 0200 is added to the status. Built-in commands
that fail set status to 1. All other built-in commands set
status to 0,

time Controls automatic timing of commands. If set, any com-
mand that takes more than this many cpu seconds will cause
a line giving user, system, and real times and a utilization
percentage, which is the ratio of user plus system times to
real time to be printed when it terminates.

verbose Set by the -v command line option, causes the words of each
command to be printed after history substitution.

Nonbuilt-in Command Execution

When a command to be executed is not a built-in command, the shell
attempts to execute the command using execve(2). Each word in the variable
path names a directory from which the shell will attempt to execute the
command, If it is given neither a -c nor a -t option, the shell will hash the
names in these directories into an internal table so that it will only try an
exec in a directory if there is a possibility that the command resides there.
This greatly speeds command location when a large number of directories is
present in the search path. If this mechanism is turned off (through
unhash), or if the shell has a -¢ or -t argument, and in any case for each
directory component of path that does not begin with a /, the shell concaten-
ates with the given command name. The concatenation forms a path name
of a file that it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus, (cd ;
pwd) ; pwd prints the home directory, but the current directory is
unchanged (printing the current directory after the home directory). cd ;
pwd changes the current directory to the home directory. Parenthesized
commands are most often used to prevent chdir from affecting the current

12/88 21

CSH(1)

22

CSH(1)

shell.

If the file has execute permission but is not an executable binary to the sys-
tem, it is assumed to be a file containing shell commands and a new shell is
spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to
the argument list to form the shell command. The first word of the alias
should be the full path name of the shell (i.e., $shell). Note that this is a
special, late occurring case of alias substitution and only allows words to be
prepended to the argument list without modification.

Argument List Processing

If argument O to the shell is -, this is a login shell. The flag arguments are
interpreted as follows:

-b This flag forces a ‘““break’ from option processing, causing any further
shell arguments to be treated as nonoption arguments. The remaining
arguments will not be interpreted as shell options. This may be used to
pass options to a shell script without confusion or possible subterfuge.
The shell will not run a set-user ID script without this option.

-« Commands are read from the (single) following argument that must be
present. Any remaining arguments are placed in argv.

- The shell exits if any invoked command terminates abnormally or
yields a nonzero exit status,

-f The shell will start faster because it will neither search for nor execute
commands from the file .cshrc in the invoker’s home directory.

-1 The shell is interactive and prompts for its top-level input even if it
appears to not be a terminal. Shells are interactive without this option
if their input and output are terminals.

-n Commands are parsed, but not executed. This aids in syntactic check-
ing of shell scripts.

-8 Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to escape
the newline at the end of this line and continue onto another line.

-v Causes the verbose variable to be set., This variable causes command
input to be echoed after history substitution,

-X Causes the echo variable to be set so that commands are echoed
immediately before execution,

-V Causes the verbose variable to be set before .cshrc is executed.
-X Causes the echo variable to be set before .cshrc is executed.

After flag argument processing, if arguments remain but no —c, -i, -8, or -t
options is given, the first argument is interpreted as the name of a command
file to be executed. The shell opens this file and saves its name for possible
resubstitution by $0. Since many systems use the standard version 6 or

12/88

iy,

P

Yo

CSH(1)

CSH(1)

version 7 shells whose shell scripts are not compatible with this shell, the
shell will execute such a ‘“standard’ shell if the first character of a script is
not # (if the script does not start with a comment). Remaining arguments
initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. Jobs running detached (either by &
or the bg or %... & commands) are immune to signals generated from the
keyboard, including hangups. Other signals have the values the shell inher-
ited from its parent. The shell’s handling of interrupt and terminate signals
in shell scripts can be controlled by onintr. Login shells catch the ter-
minate signal; otherwise this signal is passed on to children from the state in
the shell’s parent. Interrupts are never allowed when a login shell is reading
the file .logout.

FILES
~/.cshrc read at beginning of execution by each shell
~/.login read by login shell, after .cshrc at login
~/.logout read by login shell, at logout
/bin/sh standard shell, for shell scripts not starting with a #
/tmp/shx temporary file for < <
/etc/passwd source of home directories for ~name
SEE ALSO
signal(2), sigset(2), killpg(2B), a.out(4).
termio(7S) in the CLIX System Administrator's Reference Manual.
sh(1), access(2), execve(2), fork(2), pipe(2), ulimit(2), umask(2), wait(2) in
the UNIX System V Programmer’s Reference Manual.
environ(5) in the UNIX System V System Administrator's Reference Manual.
BUGS

12/88

When a command is restarted from a stop, the shell prints the directory it
started in if it differs from the current directory. This can be misleading as
the job may have changed directories internally.

Shell built-in functions cannot be stopped or restarted. Command sequences
with the form a ; b ; c are also not handled gracefully when stopping is
attempted. If b is suspended, the shell will then immediately execute c.
This is especially noticeable if this expansion results from an alias. It
suffices to)place the sequence of commands in () to force it to a subshell, i.e.,
(a;b;c).

Tty output control after processes are started is primitive; a good virtual ter-
minal interface with improved output control is needed. In a virtual termi-
nal interface much more interesting things could be done with output con-
trol.

Alias substitution is most often used to clumsily simulate shell procedures;
shell procedures should be provided rather than aliases.

Commands within loops (prompted for by “?”) are not placed in the history
list. Control structure should be parsed rather than recognized as built-in

23

CSH(1) CSH(1)

commands. This would allow control commands to be placed anywhere, to
be combined with |, and to be used with & and ; metasyntax,

It should be possible to use the : modifiers on the output of command substi-

tutions, All (at least more than one) : modifiers should be allowed for § “™

substitutions.

Implementation of the filec facility is ugly and expensive.

CAVEATS

Words can be no longer than 1024 characters. The system limits argument

lists to 12K characters. The number of arguments to a command that

involves file name expansion is limited to 1/6 the number of characters

allowed in an argument list. Command substitutions may substitute no

more characters than those allowed in an argument list. To detect looping,

the shell restricts the number of alias substitutions on a single line to 20.
_~
gt
L

24 12/88

i el B G G B . S G i B 3

N

s,

CUMAIL(1) CUMAIL(1)

NAME
cumail - DNP mail transport program
SYNOPSIS
cumail rmail-path ...
DESCRIPTION
cumail is the Digital Network Protocol (DNP) electronic mail facility that
allows mail to be exchanged between users on any host that supports the
VAX/VMS mail protocol.
The format of mail-path for sending mail from curmail to DECnet node reci-
pients is one of the following:
node__name:: mail-address
node__number :: mail-address
area__number.node_number :: mail-address
mail-address@node_name.CommUnity
mail-address is a string that is handled by the remote node to determine the
recipient. This address is passed to the remote node as a string and can cause
further routing by the remote node if supported on that node.
cumail receives the body of incoming messages in either VAX/VMS variable
record file format or Ultrix stream format and sends all outgoing mail in
variable record format. cumaild(1M) is the server that receives requests
from a cumail client,
cumail processes mail requests that contain DECnet-style addressing as part
of a recipient address. cumail depends on sendmail(1) to route local mail or
send requests to a remote recipient that does not have a DECnet address.
EXAMPLES
The following is an example of using mail(1):
mail mary vax::sally mike@node.uucp brian@vax.CommUnity
This command line uses other mailers for ‘““mary” and ‘“mike”. It also calls
cumail with the following command to send mail to ‘“‘sally”’ and “brian’:
cumail vax::sally vax::brian
SEE ALSO
cumaild(1).
01/90 1

)

9

0

S’

DBG(1)

NAME

DBG(1)

dbg - symbolic debugger

SYNOPSIS

dbg [option ...] objfil

DESCRIPTION

01/90

dbg is an Intergraph-developed symbolic debugger supporting high-level
language debugging for executables derived from C and FORTRAN source
code. Executables derived from other languages can be examined and mani-
pulated, but in a symbolic or absolute disassembly mode only. dbg features
include built-in language expression parsing and evaluation for C and FOR-
TRAN, a multiple screen window display mode, conditional breakpoints,
hardware-assisted watchpoints, command-line recall, core-file debugging,
and online help.

Objfil is assumed to be an executable program file, If source-line debugging
will be performed, one or ‘more routines in objfil should be compiled with
the -g (debug) compiler option,

When invoked, dbg will examine the symbol table of objfil and attempt to
create a process from the executable. Assuming the process creation is suc-
cessful, dbg will then open the address space of the process through the proc
file system. If the -c (core file debugging) option is specified, dbg will set the
process state according to the contents of the core(4) file. A set of commands
may be read and executed from an input file. Once these steps have been
completed, dbg is ready for command input.

Command interpretation in dbg is table-driven and supports abbreviation of
command names and options. Options are always introduced by the slash
(/) character. Argument interpretation is handled primarily by the language
expression parsers and a common expression evaluator.

Variables and expressions used during a debugging session are interpreted
according to the current high-level source language. (The current source
language setting is controlled through the language command described
below.) Syntax errors similar to those displayed by the respective language
compilers are generated for improper variable references and expressions.

High-level language expressions are the primary vehicles for formulating
requests and initiating action in dbg. Expressions are used to perform com-
mon operations such as examining variables, depositing data in variables,
and controlling the flow of debugger commands. The evaluate command is
provided for parsing and evaluating language expressions.

In addition to evaluating source language expressions involving variables
declared in the process being debugged, users can, through the declare com-
mand, create instances of local debugger variables. These variables, like
expressions, are interpreted in the context of the current high-level source
language. Once defined, debugger variables may be used in expressions just
as if they were variables contained within the process with one exception:

DBG(1)

local debugger variables cannot reference addresses in the address space of
the process, nor can process variables reference addresses of debugger vari-
ables. A fixed precedence order resolves name conflicts between process vari-
ables and local variables. Mechanisms for overriding precedence are pro-
vided. Local debug variable definitions may be removed with the unde-
clare command.

dbg supports iteration and flow control commands in the form of built-in
while and if statements. These commands rely on the expression parsing
and evaluation for the condition portion of the command. The action por-
tion of the command can be a combination of debugger commands and
expressions.

The command-line options available are as follows:

~c corfil Set process to the state defined in cor/il, which should
be a core(4) file. Open file information, shared
memory, and semaphores are not recorded.

-p path[:path ...] Define the search path for source files.

-w Display any caveat about the symbol table when the
process is loaded for debugging (suppressed by
default).

-e Make evaluate the default dbg command.

-h histfile Use histfile as the history file for this debug session.
The default is SHOME/.dbg_ history.

-P prompt Define the prompt for dbg.

All command-line options must precede the name of the process file to be
debugged. Arguments to the debug process must be positioned after the pro-
cess file name.

Commands

The following conventions are used in describing commands:

1) Permissible abbreviations for commands and options are indicated with
bolded characters.

2) Cmd-list may be a single command or several commands enclosed in
braces { } and separated by semicolons.
break
Display the breakpoints,
break bp[,bp ...] cmd-list
Set breakpoints.
break/count bp[,bp ...] cmd-list
Break on countth occurrence,

break/delete
Delete breakpoints and confirm before deletion.

01/90

O

0

DBG(1) DBG(1)

break/delete
Delete breakpoints.
break/delete/all
Delete all known breakpoints.,
break/quiet p[,bp ...]
Do not display stop information for this breakpoint.
break/return bp[,bp ...]
Establish a breakpoint at the last instruction of the function identified

by bp. The return value of the function will be displayed when the
break occurs.

e,

declare
Display local variable declarations.

declare declaration|[,declaration ...]
Declare the specified local debug variables. Declaration may be any
valid C or FORTRAN declaration statement. The source language used
to parse declaration is established by the language command.

evaluate
Display the succeeding data item using the type and formet of the
preceding evaluate command. The starting address is incremented
according to the data type.

evaluate expression[,expression ...]
Evaluate expression.

it evaluate/type: [count] special-expression

Evaluate the contents of the address yielded from the special-
expression as count items of type type.

evaluate/format expression
Evaluate the expression and display as format.

evaluate/special expression
Evaluate the expression using the special method.

Expression may be any valid C or FORTRAN expression. Special-
expression may be an integer constant, function name, or an expression
yielding an lvalue. Type, format, and special may be combined to con-
trol the action of evaluate.

Type applies only to expression results that possess addresses (Ivalues).
Valid type values are character, double, float, instruction, integer,
long, and short. The following rules apply to the default type used for
the display when addresses are specified as integer constants:
/instruction:1 if the address is a text address
/char:1 if the address is not on an even-byte boundary
o
- /short:1 if the address is not aligned on a four-byte boun-
dary

01/90 3

DBG(1)

/int:1

DBG(1)

otherwise

Format controls the display of expression evaluation results. Valid
values for format are decimal, hexadecimal, octal, unsigned, and x
(same as hexadecimal). The default format is decimal,

Special options modify the behavior of evaluate as indicated:

address
debug

environ
follow

global
quiet
register

static

string
symbolic
type

value

Examine the address, not the contents, of the given symbol.
Search only variables local to the debugger.

Change the search algorithm to check environment variables
first.

Modify the display algorithm to follow pointers to struc-
tures and unions.

Change the search algorithm to check global variables first.
Suppress output generated by the evaluated command.

Change the search algorithm to check register names first. If
no expression is given, all registers are displayed.

Change the search algorithm to check static variables first.

Display ASCII characters until the first null byte is encoun-
tered.

Display the closest symbol plus offset (if any) for text and
data values.

Display the type of the variable or expression. (The expres-
sion is not evaluated.)

Echo back integer constants., (This option is useful to
display a constant using a different format.)

The default search order for looking up symbol names in expressions is
as follows: process local variables, process static variables, process glo-
bal variables, debugger variables, environment variables, and process

registers,

find pattern

find Repeat the last search.

Search for a pattern in the currently scoped source file. Pattern is a
nonempty sequence of characters delimited by any character not in the

sequence.

find/forward

The search begins at the current line.

Repeat last search forward.

find/forward pattern

Search forward for a pattern.

find/backward

Repeat last search backward.

01/90

()

O

e

L,

DBG(1)

01/90

DBG(1)

find/backward pattern
Search backward for a pattern.

find/regular pattern

Interpret pattern as a regular expression. The regular expression fol-
lows the conventions described in ed(1).

go Resume executing the process after dbg received control due to a break,
watch, signal, or user intervention.

gobpl,bp...]

Set temporary breakpoints and continue processing.
go/pass

Continue processing; pass any pending signals to the process.
go/pass bp[,bp ...]

Pass signals, set temporary breakpoints, and continue processing.

go/delete bp[,0p ...]
Delete specified breakpoints and continue,

go/delete/all
Delete all breakpoints and continue.

go/return

Continue processing; stop at the end of the current function and
display its return value.

go/return function
Continue processing; stop at the end of function and display its return
value.

help [dbg-cmd [/dbg-option ...]
Access the dbg online help facility.

if (condition) cmd-list1
[else crmd-list2]
If condition is true, execute cmd-list. Otherwise, execute cmd-list2.

The if statement is most useful when used as part of a command list
on statements such as break, watch, and step.

kill Terminate the currently active process, The currently active process
can also be killed through the run command by either restarting the
process or defining a new one.

language
Display the language setting. The language setting controls interpreta-
tion of language expressions and declarations.

language/c
Set the default language to C.

language/fortran
Set the default language to FORTRAN.

DBG(1) DBG(1)

language/macro
Set the default language to the machine language. This affects the step
command by altering the default action from /line to /instruction
and causes symbol lookup to check for matches on register names
before process or debug variables,

process

Display information on all currently active dbg processes.
process/attach exefil

Attach to the existing process exefil.
process/attach pid

Attach to the existing process whose ID is pid.

process/create exefil [args]
Create a new process under the control of dbg.

process/Kkill
Kill all processes using the confirmation mode.

process/kill exefil
Kill the process exefil.

process/kill pid
Kill the process with process ID pid.

process/kill/all
Kill all processes.

quit Terminate the debugging session.

redirect file-name
Redirect the output of dbg to file-name.

redirect/append file-name.
Append the output of dbg to file-name.

redirect/off
Redirect the output of dbg back to stdout.

run Start or restart the process. Any previously defined arguments are
recalled.

run args
Start or restart the process, passing the argument list specified in args
to it,

run args > file-name
Start or restart the process, passing the argument list specified in args

to it and redirecting the output to filename. Full shell I/0 redirection
syntax is supported.

run/clear
Start or restart the process, clearing any arguments previously passed.

run/clear args
Start or restart the process, passing args to it.

01/90

()

0

DBG(1) DBG(1)

run/recall
Start or restart the process, recalling any previously defined arguments.
run/recall args

o, Start or restart the process, appending args to any previously defined
arguments.

run/new process-file
Start the process whose .text and .data reside in process-jile.

run/new process-file args
Start the process whose .text and .data reside in process-file. The argu-
ment list specified in args is passed to the new process.

scope
Display the current scope setting. The current scope defines source
lines available for viewing with the type command and for searching
with the find command. When control is returned to dbg due to a
breakpoint or watchpoint, the scope is set to the function containing
the current program counter (PC).

scope function-name
Set scope to the specified function.

scope file-name
Set scope to the specified file.

scope "file-name”function
Set scope to function-name in file-name.

screen

Enter screen window display mode. In this mode the screen is divided
into three windows, one for source display, one for process and
debugger output, and one for command entry. The source display win-
dow contents are automatically updated based on the current scope
setting. The process/debugger output display window captures all
information displayed on the standard output and error devices by dbg
and the process being debugged. The source display window contents
may also be altered through the type and find commands.
<CONTROL>-W will switch between screen display windows.
<CONTROL>-P and <CONTROL>-N will scroll up and down, respec-
tively, in the current screen display window.

oo,

N

screen/assembly
Display, in addition to the standard windows associated with the
screen command, a disassembly window. The contents of this win-
dow are updated based on the value of the PC.

screen/off
Terminate the screen window display mode.
sl signal
Display all signal settings. This command allows individual signals
affecting the process to be ignored by the process and/or by dbg, set so

01/90 7

DBG(1) DBG(1)

that they return control to dbg (the default), or set so that they are
passed to the process without causing dbg to regain control,

signal signal[, signal ...]
Display settings of the listed signals.

signal/stop
Display all signals set to stop.

()

signal/stop signal [signal ...]
Specify signals that, when caught, cause processing to stop and control
to be passed to dbg.

signal/go
Display all signals set to be ignored by dbg and the process.

signal/go signall, signal ...]

Specify signals to be ignored by both dbg and the process being
debugged.

signal/go/pass

Display all signals set to be ignored by dbg but passed to the process.
signal/go/pass signal[,signal ...]

Specify signals to be ignored by dbg but passed to the process.

Signals can be specified by name or number. A range of signals can be

specified by separating signal numbers with a colon (:). Names cannot
be used in a range specification.

O

source
Display the default source path. This command expands or restricts
the source file directories searched for high-level language source files.
source ™"
Delete the current source definition.

source "path-name(:path-name ...]"
Set the default source path.

source/append "path-namel:path-name ...]"
Append given path names to the default source path.

stack

Display a default number of frames.
stack/count

Display count frames,
stack/all

Display all frames.

stack/default
Show the default stack command. Specified with other options, this ﬂ
command establishes those options as the default. ~

step Step instructions or source lines.

01/90

DBG(1)

()

owesten

S

01/90

DBG(1)

step/count
Step count instructions or source lines.

step/line
Step to the next source line.

step/instruction
Step to the next instruction.

step/over
Step over any function call to the next instruction or source line.

step/into

Step into any function call to the next instruction of source line.
step/quiet

Do not display source and/or instruction lines when stepping.

step/verbose
Display source and/or instruction lines when stepping. This option can
be used to temporarily override the /quiet option.

step/default
Display the default step command. Specified with other options, this
command will establish those options as the default. No stepping
occurs.,

type Display the next source line. This assumes that the current source line
is defined. The current source line is defined and/or altered by the
type, find, scope, and step commands and also as a result of interrup-
tion of process execution, The current source line will not be defined or
altered if the process being debugged was not compiled with the -g
(debug) switch., All forms of the type command will alter the current
source line.

type/pc
Display the source line representing the current PC.
type.
Display the current source line. The current source line may differ

from the source line representing the current PC due to prior use of the
scope, type, or find command.

type number
Display the specified source line.
type number:number
Display a range of source lines. If the first number is omitted, it

defaults to line number 1. The second number defaults to the last
known line within the file, . can be used in either position.

type/count
Display the next count source lines.

type/-count
Display the previous count source lines. The current source line is set

DBG(1)

10

DBG(1)

to current — count.

undeclare

Undeclare local debug variables using the confirmation mode.
undeclare variable[,variable ...]

Undeclare the specified local debug variables.

undeclare/all
Undeclare all local debug variables.

watch
Display the current watchpoint settings.

watch wp[,wp ...] cmd-list
Set watchpoints.

watch/count wpl,wp ...] cmd-list
Set watchpoints to stop on the countth modification of the memory
associated with the respective wp,

watch/type[:count] wp[,wp ...] cmd-list

Watch locations as count number of elements of data type type.
watch/delete

Delete watchpoints using the confirmation mode.

watch/delete wp[,wp ...]
Delete watchpoints,

watch/delete/all

Delete all watchpoints.
watch/quiet

Do not display stop information about the specified watchpoints.
while (condition) cmd-list

While condition is true, execute the commands in cmd-list.

\command
Execute command in the default shell.

{<RETURN>
Escape to the default shell.

The default shell is defined through the environment variable SHELL.
sh(1) is used if this definition does not exist. To pass a semicolon or a
right brace (}) to the shell so it is not seen as a dbg command separa-
tor, escape it by prefixing it with a backslash (\).

Miscellaneous Features

Command-line recall and editing features are as follows:
<RETURN > Recall and execute the most recent command.
<CONTROL >-A Go to the beginning of the line.

<CONTROL >-E Go to the end of the line.

01/90

O

O

DBG(1)

DBG(1)

<CONTROL>-D Delete the character the cursor is on.

<CONTROL>-P
<UP-ARROW > Recall the previous command or scroll the window con-
tents in screen display mode.

<CONTROL>-K Delete all characters to the right of the cursor.

<CONTROL>-N
<DOWN-ARROW > Recall the next command or scroll the window contents
in screen display mode.

<CONTROL>-B
<LEFT-ARROW > Move the cursor to the left one position.

<CONTROL>-F
<RIGHT-ARROW > Move the cursor to the right one position.

<CONTROL >-W In screen mode, switch to the next screen display win-
dow. The windows are visited in top-to-bottom order.

<CONTROL>-V In screen mode, move the cursor down one page.

<ESC>-V In screen mode, move the cursor up one page.
<DELETE> Delete the character to the left of the cursor.

<KILL> Delete the entire line.

<EOF>

<RETURN>

<LINE FEED> Designate the end of a command. dbg then executes the

line contents.

Environment Variables

DBGHISTSIZ defines the maximum number of lines written to the dbg his-
tory file. If this variable is not set, 50 is the maximum,

EXAMPLES

01/90

break main
Set a breakpoint at function main.

break @20
Set a breakpoint at line 20 of the current file,

break @"input.c"20
Set a breakpoint at line 20 of the file input.c.

break/delete main
Delete the breakpoint set at function main.

break/10 printf
Set a breakpoint at function printf and return control to dbg every
10th time printf is called.

break/return get_ token { eval/str token; go}
Print the return value of get_token and display token each time the
function get__token returns.

11

DBG(1)

12

DBG(1)

break read_ file if (file_number = 5) go
Break on function read_ file if the variable file_number equals 5;
otherwise, continue execution. The expressions in the condition and
action portions of the if statement are executed when the break
occurs and in the scope of the function where the break occurs.

evaluate/hex i, j, k&
Display the values of variables ¢, j, and k in hexadecimal.

evaluate/double:10 dbl_ ptr
Display the contents of the 10 double precision values beginning at
the address contained in the variable dbl_ ptr.

e/addr ¢
Display the address of the variable i.

e/hex stat.st_dev > > 8 & Oxff
Examine the low-order byte of the st_dev field of the stat structure,

e/reg f0 - (double)1.234
Display the result of subtracting 1.234 from the floating point regis-
ter £O.

find /if (i ==/
Search for the string if ({ == in the current file beginning at the
current source line.

find/back ’now is the time’
Search backward from the current line in the current file for the
string now is the time.

find/pat a[bd]=
Search for a string beginning with ab or ad in the current file.

if (i==j+20)go

else { break func; go }
Continue execution if variable { exceeds variable j by 20. Otherwise,
set a breakpoint at function func and then continue execution.

run a.out >/dev/ttx01 2> &1
Start or restart a.out with standard output and standard error
redirected to /dev/ttx01.

signal/go sighup
Ignore SIGHUP in both dbg and the process.

signal/go/pass 10
If signal number 10 is received by the process, pass it to the process
without returning control to dbg.

step/def/sou/into/line
Establish the default step action to be step by source line and step
into called functions.

watch x_ pos
Watch the address range associated with variable x_ pos and break

01/90

0O

O

S

DBG(1)

DBG(1)

when a write to this range occurs.

watch/double i
Watch the eight-byte address range beginning at the address of { and
break when a write to this range occurs.

watch/char:20 q if (pc > main && pc < funcl) go
Watch the 20-byte address range beginning at the address associated
with variable a. Break if the PC register is not in the address range
associated with main. This effectively watches for writes to the
array a that occur outside of the function main.

while (i < 1000) step
Step until the variable i equals or exceeds 1000,

declare short =s

eval s = (short ®)pc

while ((ss & 0xff00) = 0x4500) { step/instr ; eval s = (short =) pc }
Step from the current PC in the process until a call instruction is
encountered. (0x4500 is the opcode for a call instruction.) When a
call instruction is found, control will be returned to dbg. This exam-
ple also illustrates the use of debugger variables.

$ dbg a.out <dbgcmds
Read commands from file dbgcmds. Input will revert to /dev/tty
when EOF is encountered in dbgcmds.

FILES
$HOME/.dbghistory dbg command history file
/usr/1lib/dbg.hlp online help file

SEE ALSO

01/90

cc(1), £77(1), a.out(4).

proc(7S) in the CLIX System Administrator’s Reference Manual.
sh(1) in the UNIX System V User's Reference Manual.

syms(1) in the UNIX System V Programmer’s Reference Manual.
“PROC Debugging Tutorial” in the CLIX System Guide.

13

()

0

)

e

o

S

DLS(1)

NAME

DLS(1)

dls - list contents of MS-DOS directory

SYNOPSIS

dls [-adfimrtFR] name ...

DESCRIPTION

dls lists the directory contents for MS-DOS directories. (dls performs the
same function for MS-DOS directories as Is(1) does for CLIX directories.) If
no directories are named on the command line, the root directory of drive a:
is assumed.

The long form of the directory listing supplies the file name; the read, hid-
den, system, volume, directory, and archive bits; the date and time of the
last file modification; the beginning File Allocation Table (FAT) entry of the
file; and the total size (in bytes) of the file.

The options supported are as follows:

-a List all entries, including hidden files, system files, ., and ...
-d For each directory argument, list only its name, not its contents.
-f Force each argument to be interpreted as a directory and list the

name found in each entry. This option turns off -1, -t, -s, and -r and
turns on -a.

-1 List in long format.

-m Force stream output format.

-r Reverse the sort order to get reverse alphabetic (default) or oldest
first (if the -t option is specified).

-t Sort by time modified (latest first) instead of by name.

-F Mark directories with a trailing /.

-R Recursively list subdirectories encountered.,

Drive a: (the floppy drive), b: (the external floppy drive for systems with
two floppy drives), or c: (the DOS partition of the hard disk) may be
accessed with this program. If no drive is specified, a: (the floppy drive) is
assumed.

EXAMPLES
dis (lists contents of a:\)
dis -al a:\foo
disc:
FILES
/dev/dsk/f1 default floppy device
/dev/dsk/ufloppy 3% inch floppy driver
/dev/dsk/floppy 5% inch floppy driver
/dev/dsk/s0u0p9.0 DOS partition
01/90 1

DLS(1)

SEE ALSO
dtu(1).

DLS(1)

01/90

O

O

DOMNAME(1) DOMNAME(1)

NAME
domname - set or display name of current YP domain

SYNOPSIS
domname [nameofdomain]

DESCRIPTION
Without an argument, domname displays the name of the current domain.
Only the super-user can set the domain name by giving an argument.
Currently, domains are only used by the Yellow Pages (YP) to refer collec-
tively to a group of hosts.

FILES
/etc/domainname used to hold name of YP domain

SEE ALSO
ypinit(1M) in the CLIX System Administrator's Reference Manual.

12/88 1

e,

DTU(1) DTU(1)

NAME

dtu, utd - copy between MS-DOS and CLIX

SYNOPSIS

dtu [-p] filel file2
dtu [-p] fle ... directory
dtu [-p] file ... >file

utd [-p] filel file2
utd [-p] fle ... directory
utd [-p] <file file2

DESCRIPTION

dtu copies files from MS-DOS to CLIX, and utd copies files from CLIX to MS-
DOS.

Not all CLIX file names are legal under MS-DOS. An MS-DOS file name con-
sists of eight or fewer characters and an extension of three or fewer charac-
ters. The following characters are illegal in MS-DOS file names:

7.,;:=*/\+"<>

If necessary (when using utd to copy several CLIX files to an MS-DOS direc-
tory), utd forms legal MS-DOS file names from CLIX file names. It does so by
truncating any names or extensions that are too long and changing any ille-
gal characters to @.

Normally, utd and dtu assume that text files are being copied and adjust for
the difference in end-of-line and end-of-file conventions between the two
systems. The -p flag will override this feature and cause the files to be
transferred with no interpretation.

Drive a: (the floppy drive), b: (the external floppy drive for systems with
two floppy drives), or c: (the DOS partition of the hard disk) may be
accessed with this program. If no drive is specified, a: (the floppy drive) is
assumed.

EXAMPLES
utd *.c a:\csrc
dtu=xhlp
dtu "a:\xx . (copy root directory of drive a: to current directory)
dtu -p a:command.com binfile

FILES
/dev/dsk/fl default floppy device
/dev/dsk/floppy 5% inch floppy driver
/dev/dsk/ufloppy 3% inch floppy driver
/dev/dsk/s0u0p9.0 DOS partition

SEE ALSO
dtu(1).

01/90 1

DTU(1)

NOTES

DTU(1)

MS-DOS path names that contain wildcards should be enclosed in quotation
marks to prevent the shell from interpreting them.

01/90

()

0

O

EFL(1) EFL(1)

NAME
efl - Extended FORTRAN Language

SYNOPSIS
efl [option ...] [file ...]

DESCRIPTION
efl compiles a program written in the EFL language into clean FORTRAN on
the standard output. eff provides the C-like control constructs of ratfor(1):
statement grouping with braces.
decision-making:
if, if-else, and select-case (also known as switch-case)
while, for, FORTRAN do, repeat, and repeat ... until

loops
multilevel break and next

EFL has C-like data structures, i.e.:

struct {
integer flags(3)
character(8) name
long real coords(2)
} table(100)

The language offers generic functions, assignment operators (4=, &=, etc.),
and sequentially evaluated logical operators (&& and II). It has a uniform
input/output syntax:

write(6,x,y:£(7,2), do i=1,10 { a(i,j),z.b()
EFL also provides some syntactic “sugar”

free-form input:
multiple statements per line; automatic continuation; state-
ment label names (not just numbers)

comments:
this is a comment

translation of relational and logical operators:
>, >=, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

efl understands several option arguments: -W suppresses warning messages,
-# suppresses comments in the generated program, and the default option -C
includes comments in the generated program.

12/88 1

EFL(1) EFL(1)

An argument with an embedded = (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. A set of
defaults for a particular target machine may be selected by one of the

choices: system=unix, system=gcos, or system=cray. The default set- .
ting of the system option is the same as the machine the compiler is running
on.

Other specific options determine the style of input/output, error handling,
continuation conventions, the number of characters packed per word, and
default formats.

efl is best used with f77(1).

SEE ALSO
cc(1), £77(1), ratfor(1).

Y

—

2 12/88

R S R Y

ERRORS(1)

NAME

ERRORS(1)

errors - error logging report generator

SYNOPSIS

errors [-hnsrb] [-f fite] [-z "time"] [-t "time"] [-i types] [-e types]

DESCRIPTION

errors generates a report from an error log file. The report is sent to stan-
dard output. If no options are used, errors reports all entries in
/usr/adm/errlog on the current system. Available options are as follows:

-h

-n

-r

-f file

-t "time"

-z "time"

-1 types

01/90

Display a help screen.

Report errors for a system other than the current system. errors
will prompt for the network address, user name, and password.
The error logging file for that system will be copied to
/usr/tmp/errlog on the current system. This option will not
work with -f or -r.

Report the number of errors per device and per error type on a
system. This option can be used with options -n, -t, -z, and -f.

Instruct the error daemon, errord(1M), to send error messages to
the error log file and to errors for immediate display. This
option can be used with options -i, -, and -b.

Give an abridged version of the error logging report. This option
cannot be used with -s,

Specify the log file to be used. The default is /usr/adm/errlog.
This option will not work with -n or -r.

Specify the date and time to start the report. Iime must be in
quotation marks. This option will not work with -r. These are
examples of valid times:

"yesterday 13:34"
"29-feb 1988 12:01"
"12/25/88 10:30"

Specify the date and time to end the report. See examples above.
This option will not work with -r.

Include only the error types specified by types in the report.
Valid types are device, user, panic, memory, slave, disk,
tape, floppy, ascn, scan, parallel, digitizer, timeout, secu-
rity, stray, optic, soft, retry, and hard. If multiple types are
specified, they must be separated by commas and/or spaces; if
spaces are used, the entire types string must be enclosed in quota-

ERRORS(1) ERRORS(1)

tion marks. This option will not work with -e or -s.

-e types Exclude only the error types specified by types from the report.
Valid types are device, user, panic, memory, slave, disk,
tape, floppy, asycn, scan, parallel, digitizer, timeout, secu-
rity, stray, optic, soft, retry, and hard. This option will not
work with -i or -s.

EXAMPLES
The following command will report all errors in the error log file:

errors

The following will prompt the user for the system to connect to and a
username/password combination to use. That system’s error log file is
placed on the current system in /usr/tmp/errlog.

errors -n -t "yesterday 12:00" -i disk,memory

FILES

/usr/adm/errlog system error log file

/usr/tmp/errlog temporary error log (for errors from another system)
SEE ALSO

errord(1M) in the CLIX System Administrator’s Reference Manual.

2 01/90

0

0

F77(1) F77(1)

NAME
f77 - FORTRAN compiler

SYNOPSIS
£77 [option ...] fite ...

DESCRIPTION
The f77 command controls the compilation and link editing of FORTRAN and
other source programs. The compilation process is divided into several
passes. Each pass is invoked with appropriate arguments and options.

f77 uses the high-performance CLIPPER FORTRAN compiler developed by
Green Hills Software, Inc. under Intergraph Corporation contract. The
CLIPPER FORTRAN compiler has been designed to improve general code per-
formance based on selectable optimizations.

Each command line argument represents an option or a file name. A large
number of options (discussed below), and seven types of file name argu-
ments are understood. Any file name or option not recognized are passed to
the link editor.

The file arguments are processed in left to right order as they appear on the
command line. The generated object files are passed on to the link edit pass
in the same order.

Compilation Phases
The compilation phases and their names are largely historic. Each phase is
approximately implemented as a single command. There are a number of
options that control the invocation of each phase. Such options use key
letters to indicate a particular phase,

The phases and their key letters are:

P The C preprocessor phase. This phase processes the preprocessor
directives in a source file. Preprocessor directives are given on lines
whose first character is the # symbol. The preprocessor implements
file inclusion, conditional code inclusion, macro definition, and
macro expansion (see cpp(1)).

0 (zero) The C source analysis phase. This phase analyzes the (preprocessed)
source file according to the rules of the C language proper. Syntax
and semantic errors are detected here. Typically, an internal or
intermediate representation of the source file is built.

1 (one) The Fortran source analysis phase. This phase analyzes the source
file according to the rules of the Fortran language proper. Syntax
and semantic errors are detected here. Typically, an internal or
intermediate representation of the source file is built.

a The assembler phase. The assembler phase translates the assembler
code into an object (or binary) file. See as(1), the “Assembler” sec-
tion of the “Technical Programming Tutorial” in the CLIX System
Guide, and the CLIPPER User’'s Manual.,

07/89 1

F77(1) F77(1)

1 The link edit phase. Startoff routines, generated objects, and stan-
dard libraries are linked together into an image file (see d(1)).

m The macro preprocessing phase. The macro preprocessing phase
expands m4(1) macros into the appropriate character sequences, (see
m4(1)).

e The ef1(1) phase. This phase preprocesses efi(1) commands and con-

structs into the appropriate Fortran source, (see efi(1)).

r The ratfor(1) phase. This phase preprocesses ratfor(1) commands
and constructs into the appropriate Fortran source, (see ratfor(1)).

c The cc(1) phase. This phase invokes the cc(1) command on the
indicated C source files, (see cc(1)).

The CLIPPER Fortran compiler implements the source analysis, and code gen-
eration phases in one program (/lib/fcom). For the options that take a
phase key letter, 1 indicates this program.

The assembler (/bin/as) and link editor (/bin/1d) implement the assembler
and link editor phases, respectively.

Each input file is processed by each phase in sequence. If an error occurs in a
phase, further processing of the input file that contained the error is aban-
doned. (The assembler will not be invoked if a compiler error occurred).
Any remaining input files are compiled (or assembled), but the link edit
phase is not performed.

File Names
f77 recognizes seven types of file name arguments. Based on the suffix of
each input file, /77 selects the various preprocessors and compilers used to
process the file. The output of each pass is a file whose suffix indicates the
type of result. The suffixes f77 recognizes or generates are listed below
approximately in the order that the passes are performed.

e EFL source file. The source file is translated using an EFL preproces-
sor resulting in a .f source file that is then processed as described
under .f below. .e files may be optionally preprocessed by the m4(1)
macro-processor before they are translated by the EFL preprocessor

(see efi(1)).

.r RATFOR source file. The source file is translated using a RATFOR
preprocessor resulting in a .f source file, that is then processed as
described under .f below. .r files may be optionally preprocessed by
the m4(1) macro-processor before they are translated by the RATFOR
preprocessor (see ratfor(1)).

F FORTRAN source file. The source file is compiled using the CLIPPER
FORTRAN compiler. .F files may contain C preprocessor directives
(i.e., #define) handled by the built-in CLIPPER FORTRAN C prepro-
cessor. The compiler generates a .8 file that is processed as described
under .8 below.

2 07/89

F717(1)

£

.C

.8

.0

Options
Before the description of each option and enclosed in parentheses, a restric-
tion may be placed on the use of the option. The option is only to be used
when that restriction applies.

07/89

-C

-C

F77(1)

FORTRAN source file. The source file is compiled using the CLIPPER
FORTRAN compiler. The compiler generates a .8 file that is processed
as described under .8 below.

C source file. The source file is compiled using the cc(1) command
resulting in a .0 file (see cc(1)).

(Command Argument) Assembler source file. Each .s file given as a
command argument is processed by the cc(1) command resulting in a
.o file (see cc(1)).

(Generated) Assembler source file. Each assembler source file gen-
erated by the CLIPPER FORTRAN compiler is processed using the as(1)
command resulting in a .o file (see as(1)).

Relocatable object file. The object file name is simply passed to the
link edit pass.

Suppress the link edit pass of the compilation and force an object
file to be produced even if only one program is compiled.

Turn on run-time checking of subranges and array bounds. The
code will be much slower under this option.

-D name (.F file only) Define name to the preprocessor with the value 1.

This is equivalent to putting
#define name 1
at the top of the source file.

-Dname=string

-E xxx

(.F file only) Define name to the preprocessor with the value
string. This is equivalent to putting

#define name string
at the top of the source file.

Pass the string xxx to EFL as an option when preprocessing .e files
into .f files.

Do not produce assembly, object, or executable files. Produce
only FORTRAN source files. For each .F source language file,
preprocess the file with the C preprocessor and leave the prepro-
cessor output on a file whose name ends in .f. Similarly, prepro-
cess each .e file with the EFL preprocessor and each .r file with the
RATFOR preprocessor.

Cause the compiler to generate additional information needed for
the use of source language debuggers like sdb(1). A frame pointer
is generated to facilitate stack backtracing.

F77(1)

-ga

-1dir

-i2

-m

F77(1)

A frame pointer is generated, but -ga does not produce the extra
debugging information that is generated when -g is specified.

Add the directory dir to the list of directories searched for
include file names that are not absolute (do not start with /).
Mutltiple -I options can be specified, and each directory will be
searched, in the order encountered, before a standard list of direc-
tories is searched.

Make the type INTEGER be INTEGER*2 and the type LOGICAL be
LOGICAL#*2. By default, INTEGER is the type INTEGER*4 and LOG-
ICAL is the type LOGICAL*4.

Process RATFOR (.r) and EFL (.e) files with m4(1) before running
the appropriate preprocessor,

-0 file-name

-onetrip

-1 (one)

Place the executable binary output from the link edit pass into
the file named file-name. If this option is not specified the execut-
able file will be named a.out. This option is ignored if -c, -S, or
-F is present.

Execute at least one iteration of every DO loop. The default case
assumes that if the lower bound exceeds the upper bound, no
iterations of the DO loop are to be performed (as specified by the
ANSI FORTRAN-77 standard). The resolution of this case was
unspecified under the ANSI FORTRAN-66 standard and some
important implementations (especially IBM) chose to always exe-
cute the loop at least once. The use of this option makes the com-
piler incompatible with the ANSI FORTRAN-77 standard, but it
may be necessary for compatible processing when certain old
FORTRAN-66 programs are involved.

Equivalent to -onetrip.

The -O option activates Green Hills optimizers that are safe to use
on all programs, except for the loop optimizer.

This option is equivalent to -O except that it also allows the
optimizer to assume that memory locations do not change except
by explicit stores. That is, the optimizer is guaranteed that no
memory locations are I/0 device registers that can be changed by
external hardware and no memory locations are shared with other
processes that can change them asynchronously with respect to
the current process. This compile time option must be used with
extreme caution (or not at all) in device drivers, operating sys-
tems, shared memory environments, and when interrupts (or CLIX
signals) are present,

Optimize the program to be as fast as possible even if the program
must be bigger. In particular, most of the available resources are
allocated to optimizations of the innermost loops. The -OL com-
pile time option will perform optimizations that may make the

07/89

F77(1) F77(1)

program faster but larger. It is counter-productive to specify -OL
on code that contains no loops or that is rarely executed as it will
make the whole program larger but no faster. After experiment-
ing with a program, it is possible to discover which modules
benefit from -OL and which ones do not,

-OLM This option is equivalent to -OL and -OM.
-OML This option is equivalent to -OLM.

-p Arrange for the compiler to produce code that counts the number
of times each routine is called. If link editing occurs, replace the
standard libraries with libraries compiled for profiling. Also, if
link editing, replace the standard startoff routine by one that
automatically calls monitor(3C) at the start and arranges to write
out a mon.out file at normal termination of execution of the
object program. An execution profile can then be generated by
using prof(1).

-R str Pass the string str to the RATFOR preprocessor as an option when
translating .r files into .f files.

-S Compile the named source programs and leave the assembler-
language output on corresponding files suffixed by .s. The assem-
bler and link edit passes are suppressed.

-u Make the default data type for undeclared variables undefined.
This is equivalent to putting

IMPLICIT UNDEFINED(A-Z)
at the top of the source file.

-U Do not convert uppercase letters in names to lowercase. By
default, FORTRAN is not case sensitive and all externally visible
FORTRAN names contain only lowercase letters. This option can
be used to gain access to external names that contain uppercase.
However, using this option makes the compiler incompatible with
the ANSI FORTRAN-77 standard.

-v Print the program name and command line arguments as each pass
is invoked.

-w Suppress warning diagnostics.

-Wc,argl[,arg2...]
Pass the listed argument(s) argi to phase ¢ where ¢ is one of
[pOlalmerc]. (See the section on compilation phases above.)

-Xn Turn on compile-time option number n. The available compile-
time options are listed below.

9 Disable the local (peephole) optimizer.,

18 Do not allocate programmer-defined local variables to a
register. This option suppresses optimizations that

07/89 5

F77(1)

32

37
39

50

54

58

62
68

1
74
77

79

80

82

87

89

F77(1)

frustrate debuggers.

Display the names of files as they are opened. This is use-
ful for determining why the compiler cannot find an
include file,

Emit a warning when dead code is eliminated.

Do not move frequently used procedure and data
addresses to registers.

Push arguments on the stack. The default is to pass the
first two arguments in registers. This option is not recom-
mended because it produces a calling sequence incompati-
ble with the rest of the CLIX System,

Inform the optimizer that no memory locations can change
value asynchronously with respect to the running pro-
gram. -02 sets this compile-time option (see -02 above),

Do not put an underscore in front of the names of global
variables and procedures. This option is not recommended
because it produces symbols incompatible with the rest of
the CLIX System.,

(Default) The target processor is a CLIPPER microprocessor,

This makes characters unsigned as they are in some imple-
mentations of FORTRAN. The default is signed characters.

Use the single precision math library interface,
(Default) The target system is CLIX System V.

Turn off compile-time checking of FORMAT statements.
Use this option if the run-time library supports FORMAT
statement features that the FORTRAN compiler is not
aware of.

Pad Hollerith constants on the right with blanks. The
default is that only the first byte of the Hollerith is
significant and the constant is zero padded on the left.

Disable the code hoisting optimization. This can speed up
compilation in some cases.

Process lines starting with x, X, d, and D. The default is
to treat them as comments. Used for enabling debugging
statements.

Disable the optimization that deletes all code that stores
into or modifies variables that are never read from.

Pack structures with no space between members even if
doing so makes the elements inaccessible due to machine
data alignment constraints,

07/89

oo,

F77(1)

07/89

F77(1)

105 Allow #define symbols to be redefined to the preproces-
sor,

151 Do not allow dollar signs in names. The default allows
dollars signs for VMS compatibility.

168 Do not move invariant floating-point expressions out of
loops.

175 (Default) For System V compatibility, name the main pro-
gram MAIN__ __ . If this option is not specified or turned
off (with -Z175), the name for the main program is
MAIN_.

176 Always convert computations involving floating-point
values to DOUBLE PRECISION. By default, the compiler
tries to shorten computations to REAL if the result would
be the same.

190 Assume half-word objects are not aligned.

191 Assume word objects are not aligned.

192 Assume single precision objects are not aligned.

193 Assume double precision objects are not aligned.

194 Assume word objects are aligned only to half-word boun-
daries.

195 Assume single precision objects are aligned only to half-
word boundaries.

196 Assume double precision objects are aligned only to half-
word boundaries.

197 Assume double precision objects are aligned only to word
boundaries.

Y[p012aclSILU 1, dirname

Use dirname to locate the phase(s) or directory(ies) specified by
the key letter(s). The key letters [p012acl] represent the phases
described above. The additional key letters have the following

meanings:

S The directory containing the startup routines.

I The default directory searched for the #include prepro-
cessor directives.

L The first default library directory searched (see 1d(1)).

U The second default library directory searched (see 1d(1)).

If the location of a phase is being specified, the new path name for
the phase will be dirname/phasename. The exact name used for
phasename depends on the compiler driver used and the phase
involved. See FILES below. If more than one -Y option is applied

F77(1)

FILES

F77(1)

to a phase or directory, the last specification is used.

-Zn Turn off option number n. This is the reverse of the -X option.
This option is useful if a version of the compiler has an option
that is turned on by default, and the user wants to turn it off.

-# Print the program name and command line arguments as each pass
is invoked.

-## Verbose like -#, only more so.

~#H## Print the program name and command line arguments for each
pass, but do not invoke the pass.

file.f FORTRAN source input file

file.F FORTRAN source input file, C preprocessor used

file.e EFL source input file

filex RATFOR source input file

file.c C source input file

file.s assembler source input file; generated or input

file.o object file; generated or input

a.out default linked output

/tmp/F77% temporary

/ust/tmp/F77* temporary

/bin/cc C compiler

/usr/bin/RATFOR RATFOR preprocessor

/usr/bin/efl EFL preprocessor

/usr/bin/m4 m4 macro-processor

/bin/as assembler, as(1)

/bin/1d link editor, 1d(1)

/lib/crt[1n].0
/lib/mert{1n].o
/1ib/1ibF77.a
/1ib/libm.a
/1ib/libec,a
/usr/1ib/libbsd.a

/usr/lib/libp/lib*.a

/1ib/1ibf.a

SEE ALSO
adb(1), cc(1), as(1), 1d(1), sdb(1), ratfor(1), efi(1).
prof(1), m4(1), monitor(3C) in the UNIX System V Programmer’s Reference

Manual.

run-time start-off

profiling start-off

standard FORTRAN library

standard math library

standard C library

BSD support library (referenced by /1ib/libf.a)
profiled versions of libraries

Green Hills FORTRAN library

The “Release Notes” appendix of the CLIPPER FORTRAN Reference Manual.

DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-explanatory.
Occasional messages may be produced by the various preprocessor, C com-
piler, assembler, or link editor passes.

07/89

FIND(1)

NAME
find - find files

SYNOPSIS

FIND(1)

find path-name-list expression

DESCRIPTION

find recursively descends the directory hierarchy for each path name in the
path-name-list (that is, one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descriptions,
the argument n is used as a decimal integer, where +n means more than n, -n
means less than n and n means exactly n. Valid expressions are as follows:

-name file

[-perm] -onum

-typec

-links n

-user uname

-group gname

-size n[c]
-atime n

-mtime n
—ctime n
-exec cmd

-ok cmd

12/88

True if file matches the current file name, Normal shell
argument syntax may be used if escaped (watch out for [,
?,and %),

True if the file permission flags are identical to the octal
number onum (see chmod(1)). If onum is prefixed by a
minus sign, only the bits set in onum are compared with the
file permission flags and the expression evaluates true if
they match.

True if the type of the file is ¢, wherecis b, c,d, 1, p,or f
for block special file, character special file, directory, sym-
bolic link, fifo (also known as named pipe), or plain file
respectively.

True if the file has n links.

True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is interpreted as a user ID.

True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
interpreted as a group ID.

True if the file is n blocks long (512 bytes per block). If n
is followed by a c, the size is in characters.

True if the file has been accessed in n days. The access time
of directories in path-name-list is changed by find.

True if the file has been modified in n days.
True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semi-
colon, A command argument {} is replaced by the current
path name.

Resembles -exec except that the generated command line is
printed with a question mark first and is executed only if

FIND(1)

-print
-cpio device

-newer file

-depth

-mount

-local

(expression)

FIND(1)

y').
Always true; prints the current path name,

the user responds by typing a

Always true; write the current file on device in cpio(1) for-
mat (5120-byte records).

True if the current file was modified more recently than the
argument file.

Always true; causes descent of the directory hierarchy to
be done so that all entries in a directory are acted on before
the directory itself. This can be useful when find is used
with c¢pio(1) to transfer files contained in directories
without write permission.

Always true; restricts the search to the file system contain-
ing the directory specified. (or if no directory was
specified, the current directory.)

True if the file physically resides on the local system.

True if the parenthesized expression is true. (Parentheses
are special to the shell and must be escaped.)

The primaries may be combined using the following operators (in the order
of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtapo-
sition of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLES

To remove all files named a.out or ®.0 that have not been accessed for a

week:

find / \(-name a.out -0 -name ’*.0’ \) -atime +7 -exec rm {} \;

FILES
/etc/passwd
/etc/group

SEE ALSO

chmod(1), cpio(1), test(1), fs(4).
stat(2), umask(2) in the UNIX System V Programmer’s Reference Manual.
sh(1) in the UNIX System V User's Reference Manual.

BUGS

find / -depth always fails with the message:
find: stat failed: No such file or directory.

12/88

A S R A

FMU(1) FMU(Q1)

NAME

fmu - network file management utility

SYNOPSIS

fmu [—cefaiqrsvx 1 [host .user[. [password 1] [command 1]

DESCRIPTION

01/90

fmu is a network file transfer and remote command utility. The host may be
either a node name or an Ethernet address. Once the remote connection has
been established, the privileges and working directory are the same as if a
login(l) for the specified user occurred on the remote system.

For security, fmu requires a login, specified by user, on the remote system. If
the login on the remote system has a password, password must be supplied.
If a . followed by a <RETURN> or white space is specified after user, fmu
will prompt for a password (with echoing disabled). Otherwise, the word
immediately following the . is used as the password.

fmu has an interactive and a noninteractive mode. To use noninteractive
mode, host, user, and command must be specified on the command line.
Pipes can also be used on the command line.

Interactive mode is entered when command is not specified. After a user
enters interactive mode, an FMU> prompt appears.

The following options are available:

-a Inhibit automatic compression when transferring files. By default, if
fmu detects a slow transfer rate, it will automatically compress
before being sent.

-c Force the output file to be created contiguously. This feature is valid
only if supported by the receiving system.

-e Echo all commands before executing them. This feature is useful to
view commands if stdin has been redirected from a file.

-f Force the output file to be created in fixed-length, 512-byte records.
This feature is valid only if supported by the receiving system.

-i Designate files being transferred as Interactive Graphics Design Sys-
tem (IGDS) files. This option is equal to specifying both the -c and -f
options. This feature is valid only if supported by the receiving sys-
tem.

-p Execute the login profiles (/etc/profile and the user’s .profile) on
the remote system. If either profile requires input, fmu will not
succeed in connecting to the remote system.

-q Suppress the FMU> prompt. This is useful if stdin is redirected
from a file.
-r Print the fmu release date (version number).

FMU(1)

FMU(1)

-s Turn on software checksumming when transferring files.

-v Turn on verbose mode. When transferring files, fmu will print
statistics of the files being transferred.

-X Turn on compression when transferring files.

command specifies a function to be performed. Only as many characters as
needed to uniquely identify a command need to be specified.

The following commands are available:

receive in [out]

send in [out]

cat file ...

connect nodespec

1s [dir]

rm file ...
cd [dir]

rcd [dir]

command string

tcommand

Receive a file or multiple files from the remote host. The
in parameter represents the file(s) on the remote host to be
received and out is the name of the output file or directory
on the local machine. If in consists of multiple files, out
must be a directory. If out is not specified, the current
directory is used. If this command is specified on the com-
mand line, received data may be sent to stdout if out is -.

Send a file or multiple files to the remote host. The in
parameter represents the file(s) on the local machine to be
sent and out is the name of the output file (or directory)
on the remote host. If in consists of multiple files, out
must be a directory. If out is not specified, the current
directory is used. If this command is specified on the com-
mand line, data to be sent may be received from stdin if
in is -,

Display the remote files to stdout on the local machine.

Terminate the present connection (if any) and establish a
connection with the remote system specified by nodespec.
The nodespec syntax has the same form as
host .user [.[password 1] specified on the command line.

List the contents of the directory dir on the remote host.
The argument dir is passed to the directory listing pro-
gram on the remote host, which checks for proper syntax.
If dir is not provided, the current directory is used.

Remove the specified files from the remote host.

Change to the directory dir on the local machine. If dir is
not provided, the environment variable HOME is used.

Change to the directory dir on the remote host. If dir is
not provided, the environment variable HOME on the
remote host is used.

Execute string on the remote host. All stdout written by
the remote command will be written to stdout on the
local machine.

Execute command on the local machine.

01/90

0

O

S

FMU(1)

01/90

FMU(1)

help [arg] Print a one-line summary of arg. If arg is not provided,
all available commands are listed.

exit Close the current connection (if any) and exit.

set option Set the specified option. Valid options are as follows:
[nolchecksum Function the same as the -s option.
[no]Jcompress Function the same as the -x option.
[nolcontiguous Function the same as the —c option.
[noJecho Function the same as the -e option.
[no]fixed Function the same as the -f option.
[noJigds Function the same as the -i option.
[nolinhibit Function the same as the -a option.
[no]quiet Function the same as the -q option.
[no]verbose Function the same as the -v option.

type file ... Synonym for cat.

directory [dir] Synonym for lIs.

delete file ... Synonym for rm.

chdir [dir] Synonym for cd.

rchdir [dir] Synonym for red.

Wildcards can be used when specifying files. However, for output files, no
partial wildcard specifications are accepted. For example, ®is a valid output
file specification, but ®.txt is not. Wildcards entered on the command line
must be quoted to prevent the shell from expanding them.

While in interactive mode command-line recall and editing features are
available. The key definitions are as follows:

<RETURN>

<CONTROL>-A
<CONTROL>-E
<CONTROL>-D

< CONTROL>-P
<UP-ARROW >

<CONTROL>-K

<CONTROL>-N
<DOWN-ARROW >

<CONTROL>-B
<LEFT-ARROW >

<CONTROL>-F
<RIGHT-ARROW >

Recall and execute the most recent command.
Go to the beginning of the line.
Go to the end of the line.

Delete the character the cursor is on. If no command is
being edited, this key sequence will terminate the ses-
sion,

Recall the previous command.

Delete all characters to the right of the cursor.
Recall the next command.
Move the cursor to the left one position.

Move the cursor to the right one position.

FMU(1) FMU(1)

<DELETE> Delete the character to the left of the cursor.

<KILL> Delete the entire line,

<EOF >

<RETURN >

<LINE FEED > Designate the end of a command. fmu then executes the

line contents.

EXAMPLES

The following command sends all files beginning with foo and ending with
c to /tmp on the remote host abc:

fmu abc.guest send ’foox.c’ /tmp
foo*.c must be quoted because * is a shell special character,

The following command sends a cpio(1) backup to the file backupfile on the
remote host backup using stdin:

find src -print | cpio -ov | fmu backup.guest send - backupfile
To restore the previous example, use the following command:
fmu backup.guest rec backupfile - | cpio -iv

The following example is an interactive session with fmu to execute the
who(1) command on the remote host:

$ fmu 08-00-36-23-08-00.remote.guest
FMU> com who
root console Dec 7 17:12

FMU> exit
$
SEE ALSO
rpipe(1).

fmus(1M) in the CLIX System Administrator’s Reference Manual.
cat(1), 1s(1), rm(1), sh(1) in the UNIX System V User’s Reference Manual.

CAVEATS
If the remote command requires input, fmu will hang.

fmu does not handle the binary output of a remote command (such as tar(1)
or cpio(1)).

4 01/90

0)

O

O

Lon,

FORMAT(1) FORMAT(1)

NAME

format - floppy disk formatting utility

SYNOPSIS

/etc/format [-wl]

DESCRIPTION

format formats the floppy disk in the floppy drive. This operation prepares
the floppy disk for subsequent writes by any utility.

The format operation consists of writing ID fields, gaps, and address marks
for each block on the floppy disk. This servo information is then used to
identify tracks and sectors during read(2) and write(2) operations.

The high density format provides 1.2M on the floppy disk (1.44M on a 3.5-
in disk). This type of format consists of 80 tracks with fifteen (eighteen)
512-byte sectors on each side of the floppy disk. By default, format will use
high density.

The low density format provides 360K on the floppy disk (720K on a 3.5-in
disk). This type of format consists of 40 (80) tracks with nine S12-byte
sectors on each side of the floppy disk.

The following options are supported:

-1 Indicate low density. (The default is high density.)
-w Disable the warning and prompt.

FILES
/dev/rdsk/f1 default floppy device

SEE ALSO

fi(7S) in the CLIX System Administrator’s Reference Manual.

WARNINGS

01/90

All data on the floppy disk will be overwritten during a format operation.
By default, a warning and prompt are printed before the floppy is format-
ted.

O

()

()

FTP(1) FTP(1)

NAME
ftp - ARPANET file transfer program

SYNOPSIS
ftp [-v] [-d[valuel]l [-i] [-n] [-g] [-r] [Rost[port]]

DESCRIPTION
ftp is the user interface to the ARPANET standard File Transfer Protocol
(FTP). The program allows a user to transfer files to and from a remote or
local network site.
The client host that ftp will communicate with can be specified on the com-
mand line. If the host is specified, ftp immediately attempts to establish a
connection to an FTP server on that host. Otherwise, ftp enters its command
interpreter and awaits instructions from the user. When ftp is awaiting
commands from the user, the ftp> prompt is displayed.
If a host name is specified on the command line, an optional port number can
be specified. In this case, ftp will attempt to connect an FTP server at that
port.

Options

Options may be specified at the command line or to the command inter-
preter. The following options are available:

-v Show all responses from the remote server and report data
transfer statistics.

-n Do not attempt auto-login on initial connection. If auto-login is
enabled, ftp checks the .netrc file (see below) in the user’s home
directory for an entry describing parameters to be used in logging
in to the remote machine. If no entry exists, ftp prompts for a
login name to be used on the remote machine. If no login name is
given, a login is attempted with the user’s local login name. If the
user name exists and has a password, ftp will prompt for a pass-
word and an account (see the account command).

-i Turn off interactive prompting during multiple file transfers.

-d [value] Enable debugging. If an integer value is specified, value becomes
the debugging level.

4 Disable file name globbing. (Do not expand wildcard characters
(see the glob command).)

-T Display the ftp version number.

The .netrc file

01/90

The .netrc file contains login and initialization information used by the
auto-login process. It resides in the user’s local home directory. The follow-
ing tokens are recognized; they may be separated by spaces, tabs, or new-
lines:

FTP(1)

Commands

FTP(1)

machine name

Identify a remote machine name. The auto-login process
searches the .netrc file for a machine token followed by
a name that matches the host given on the ftp command
line or as an argument to the open command. Once a
match is found, subsequent .netrc tokens are processed
until the end of the file is reached or another machine
token is encountered.

login name

Identify a user name on the remote machine. If this token
is present, the auto-login process will initiate a login using
name.

password string

Supply a password. If this token is present, the auto-
login process will supply string if the remote server
requires a password as part of the login process. Note that
if this token is present in the .netrc file, ftp will abort the
auto-login process if the .netrc file is readable by anyone
other than the user,

account string

Supply an additional account password. If this token is
present, the auto-login process will supply the specified
string if the remote server requires an additional account
password. The auto-login process will initiate an ACCT
command if it does not.

macdef name

Define a macro. This token functions as the ftp macdef
command does. A macro called name is defined; its con-
tents begin with the next .netrc line and continue until a
null line (consecutive newline characters) is encountered.
If a macro named init is defined, it is automatically exe-
cuted as the last step in the auto-login process.

ftp recognizes the following commands:

t [command [args]]

Invoke an interactive shell on the local machine. If there
are arguments, the first is interpreted as a command to
execute; the remaining arguments are the command’s argu-
ments,

s macro-name [args]

Execute the macro macro-name that was defined with the
macdef command. Arguments are passed to the macro
unglobbed.

01/90

()

O

()

FTP(1)

01/90

FTP(1)

account [passwd]

Supply a supplemental password required by a remote
system to access resources once a login has been success-
fully completed. If no argument is included, the user will
be prompted for an account password in a nonechoing
input mode.

append local-file [remote-file]

ascii
bell
binary

bye

case

Append a local file to a file on the remote machine. If
remote-file is unspecified, the local file name is used to
name the remote file after the local file name is altered by
any ntrans or nmap setting. File transfer uses the
current settings for type, form, mode, and struct,

Set the file transfer type to network ASCII. This is the
default type.

Set the bell to be sounded after each file transfer com-
mand is completed.

Set the file transfer type to support binary image
transfer.

Terminate the FTP session with the remote server and exit
ftp. An end of file will also terminate the session and
exit.

Toggle remote computer file name case mapping during
mget commands. When case is on (default is off), remote
computer file names with all letters in uppercase are writ-
ten in the local directory with the letters mapped to
lowercase.

cd remote-directory

cdup

close

Ccr

Change the working directory on the remote machine to
remote-directory.

Change the remote machine working directory to the
parent of the current remote machine working directory.

Terminate the FTP session with the remote server and
return to the command interpreter. Any defined macros
are erased.

Toggle carriage-return stripping during ascii-type file
retrieval. Records are denoted by a carriage-
return/linefeed sequence during ascii-type file transfer.
When cr is on (the default), carriage returns are stripped
from this sequence to conform to the CLIX single linefeed
record delimiter. Records on non-CLIX remote systems
may contain single linefeeds; when an ascii-type transfer
is made, these linefeeds may be distinguished from a
record delimiter only when cr is off.

FTP(1)

FTP(1)

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Set or toggle the debugging mode. If an optional debug-
value is specified, this value sets the debugging level. If
debug-value is not specified, debugging mode is toggled.
When debugging is on, ftp prints each command sent to
the remote machine, preceded by the string —>. If
debug-value is set to 1, a user’s password will not be
displayed.

dir [remote-d z'rectory] [local-file]
Print a listing of the contents of the remote-directory and,
optionally, place the output in local-file. If no directory is
specified, the current working directory on the remote
machine is used. If no local file is specified or local-file is
-, output comes to the terminal.

disconnect
A synonym for close.

form form
Set the file transfer form to form. The default format is
file.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine,
If the local file name is not specified, it is given the name
it has on the remote machine. However, the current case,
ntrans, and nmap settings can alter this name. The
current settings for type, form, mode, and struct are
used while the file is being transferred.

glob Toggle file name expansion for mdelete, mget and mput.
If globbing is turned off with glob, ftp interprets file
name characters literally and not as wildcard characters.
Globbing for mput is performed as it is in sh(1). For
mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not
merged. Expansion of a directory name will likely differ
from expansion of an ordinary file name: the exact result
depends on the foreign operating system and ftp server
and can be previewed by executing mls remote-files -.
mget and mput are not meant to transfer entire directory
subtrees of files. This can be done by transferring a tar(1)
archive of the subtree (in binary mode).

hash Toggle hash-sign (#) printing for each data block
transferred. The size of a data block is 1024 bytes.

01/90

()

FTP(1)

01/90

FTP(1)

help [command]
Print an informative message about the meaning of com-
mand. If no argument is given, ftp prints a list of the
known commands.

Icd [directory]
Change the working directory on the local machine. If no
directory is specified, the user’s home directory is used.

18 [remote-directory] [local-file]
Print an abbreviated listing of a directory’s contents on
the remote machine. If remote-directory is unspecified, the
current working directory is used. If no local file is
specified or if local-file is -, the output is sent to the termi-
nal.

macdef macro-name

Define a macro. Subsequent lines are stored as the macro
macro-name; a null line (consecutive newline characters in
a file or carriage returns from the terminal) terminates
macro input mode. There is a limit of 16 macros and
4096 total characters in all defined macros. Macros
remain defined until a close command is executed. The
macro processor interprets $ and \ as special characters. A
$ followed by a number (or numbers) is replaced by the
corresponding argument on the macro invocation com-
mand line. A $§ followed by an i signals the macro pro-
cessor that the executing macro is to be looped. On the
first pass, $i is replaced by the first argument on the
macro invocation command line; on the second pass it is
replaced by the second argument; and so on. A \ followed
by any character is replaced by that character. Use the \
to prevent special treatment of the L

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-flle
Resembles dir except multiple remote files may be
specified, If interactive prompting is on, ftp will prompt
the user to verify that the last argument is indeed the tar-
get local file for receiving mdir output.

mget remote-files

Expand the remote-files on the remote machine and execute
get for each file name produced. See glob for details on
the file name expansion. Resulting file names will then be
processed according to case, ntrans, and nmap settings.
Files are transferred into the local working directory,
which can be changed with lcd directory; new local direc-
tories can be created with { mkdir directory.

FTP(1)

FTP(1)

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Resembles 1s, except multiple remote files may be
specified. If interactive prompting is on, ftp will prompt
the user to verify that the last argument is indeed the tar-
get local file for receiving mls output.

mode [mode-name]
Set the file transfer mode to mode-name. The default
mode is stream mode.

mput local-files
Expand wild cards in the list of local files given as argu-
ments and execute put for each file in the resulting list.
See glob for details of file name expansion. Resulting file
names will then be processed according to ntrans and
nmap settings.

nmap [inpattern outpattern]
Set or unset the file name mapping mechanism. If argu-
ments are not specified, the file name mapping mechanism
is unset. If arguments are specified, remote file names are
mapped during mput commands and put commands
issued without a specified remote target file name. If
arguments are specified, local file names are mapped dur-
ing mget commands and get commands issued without a
specified local target file name. This command is useful
when connecting to a non-CLIX remote computer with
different file naming conventions or practices. The map-
ping follows the pattern set by inpattern and outpattern.
Inpattern is a template for incoming file names (which
may have been processed according to the ntrans and
case settings). Variable templating is accomplished by
including the sequences $1, $2, ..., $9 in inpattern. A \
prevents this special treatment of the $ character. All
other characters are treated literally and determine the
nmap inpattern variable values. For example, given
inpattern $1.$2 and the remote file name mydata.data,
$1 would have the value mydata, and $2 would have the
value data. The outpattern determines the resulting
mapped file name. The sequences $1, $2, ... , $9 are
replaced by any value resulting from the inpattern tem-
plate. The sequence $0 is replace by the original file name,
Additionally, the sequence [seql,seq2] is replaced by seq!
if seql is not a null string; otherwise it is replaced by
seq2, For example, the command nmap $1.$2.$3
[$1,$2].[$2,file] would yield the output file name
myfile.data for input file names myfile.data and

01/90

Q)

FTP(1) FTP(1)

myfile.data.old, myfile.file for the input file name

myfile, and myfile.myfile for the input file name

.myfile. Spaces may be included in outpattern as in the

example nmap $1 | sed "s/ s§//" > $1. A \ prevents
e, special treatment of the $, [,], and, characters.

N ntrans [inchars [outchars]]

Set or unset the file name character translation mechan-
ism. If arguments are not specified, the file name charac-
ter translation mechanism is unset. If arguments are
specified, characters in remote file names are translated
during mput commands and put commands issued
without a specified remote target file name. If arguments
are specified, characters in local file names are translated
during mget commands and get commands issued
without a specified local target file name. This command
is useful when connecting to a non-CLIX remote computer
with different file naming conventions or practices. Char-
acters in a file name matching a character in inchars are
replaced with the corresponding character in outchars. If
the character’s position in inchars is longer than the
length of outchars, the character is deleted from the file
name,

open kost [port]

Establish a connection to the specified Aost FTP server. An
g optional port number may be supplied. If a port number
is specified, ftp will attempt to contact an FTP server at
that port. If the auto-login option is on (default), ftp will
also attempt to automatically log the user in to the FTP
server (see below).

prompt Toggle interactive prompting. Interactive prompting
occurs during multiple file transfers to allow the user to
selectively retrieve or store files. If prompting is turned
off (default is on), any mget or mput will transfer all
files, and any mdelete will delete all files.

Proxy ftp-command
Execute an ftp command on a secondary control connec-
tion. This command allows simultaneous connection to
two remote FTP servers for transferring files between the
two servers. The first proxy command should be an
open to establish the secondary control connection. Enter
the command proxy ? to see other ftp commands that are
o executable on the secondary connection. The following
commands behave differently when prefixed by proxy:
open will not define new macros during the auto-login
process; close will not erase existing macro definitions;
get and mget transfer files from the host on the primary

01/90 7

FTP(1)

FTP(1)

control connection to the host on the secondary control
connection; and put, mput, and append transfer files
from the host on the secondary control connection to the
host on the primary control connection, Third-party file
transfers depend on the server on the secondary control
connection supporting the FTP protocol PASV command.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is
left unspecified, the local file name is used after processing
according to any ntrans or nmap settings in naming the
remote file. File transfer uses the current settings for
type, form, mode, and struct.

pwd Print the name of the current working directory on the
remote machine,

quit A synonym for bye.

quote argl arg?2 ...
The specified arguments are sent, verbatim, to the remote
FTP server.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-
name is specified, it is supplied to the server.

rename [from][zo]
Rename the file from on the remote machine to the file to.

reset Clear the reply queue. This command resynchronizes
command/reply sequencing with the remote FTP server,
Resynchronization may be necessary following a violation
of the FTP protocol by the remote server.

rmdir directory-name
Delete a directory on the remote machine,

runique Toggle storing of files on the local system with unique file
names. If a file already exists with a name equal to the
target local file name for a get or mget command, a .1 is
appended to the name. If the resulting name matches
another existing file, a .2 is appended to the original name.
If this process continues up to .99, an error message is
printed and the transfer does not occur. The generated
unique file name will be reported. Note that runique
will not affect local files generated from a shell command
(see below). The default value is off.

send local-file [remote-file]
A synonym for put.

01/90

O

0)

L

FTP(1)

01/90

FTP(1)

sendport Toggle the use of PORT commands. By default, ftp will

status

attempt to use a PORT command when establishing a con-
nection for each data transfer. PORT commands can
prevent delays during multiple file transfers. If the PORT
command fails, ftp will use the default data port. When
PORT commands are disabled, no attempt will be made to
use PORT commands for each data transfer. This is useful
for certain FTP implementations that ignore PORT com-
mands but incorrectly indicate that they have been
accepted.

Show the current status of ftp.

struct [struct-name]

sunique

tenex

trace

Set the file transfer struct to struct-name. By default,
stream structure is used.

Toggle storing of files on remote machine under unique file
names. The remote FTP server must support the FTP pro-
tocol STOU comimand for successful completion. The
remote server will report a unique name. The default
value is off.

Set the file transfer type to that needed to communicate
with TENEX machines.

Toggle packet tracing. This mode is not currently imple-
mented.

type [type-namel

Set the file transfer type to type-name. If no type is
specified, the current type is printed. The default type is
network ascii.

user user-name [password] [account]

verbose

Identify the user to the remote FTP server if the -n option
is not used. If the password is not specified and the server
requires it, ftp will prompt the user for it (after disabling
local echo). If an account field is not specified and the FTP
server requires it, the user will be prompted for it. If an
account field is specified, an ACCT command will be
relayed to the remote server after the login sequence is
complete if the remote server did not require it for logging
in. Unless ftp is invoked with auto-login disabled, this
process occurs automatically when the FTP server is ini-
tially connected to. If an invalid user name or password
was given in the auto-login process or in a previous user
command, the user command should be used to specify a
valid user-name (and password, if necessary).

Toggle verbose mode. In verbose mode, all responses from
the FTP server are displayed to the user. In addition, if

FTP(1) FTP(1)

verbose is on, when a file transfer completes, statistics
regarding the efficiency of the transfer are reported. By
default, verbose is on.

? [command]
A synonym for help.

Command arguments that have embedded spaces may be quoted with
quotation (" ") marks.

Aborting File Transfer

To abort a file transfer, press the terminal interrupt key (usually
<CONTROL>-C). Sending transfers will be immediately halted. Receiving
transfers will be halted by sending an FTP protocol ABOR command to the
remote server and discarding any further data received. The speed at which
this is accomplished depends on the remote server’s support for ABOR pro-
cessing. If the remote server does not support the ABOR command, an ftp>
prompt will not appear until the remote server has completed sending the
requested file.

The terminal interrupt key sequence will be ignored when fzp has completed
any local processing and is awaiting a reply from the remote server. A long
delay in this mode may result from the ABOR processing described above or
from the remote server behaving unexpectedly, including violation of the
FIP protocol. If the delay results from unexpected remote server behavior,
the local ftp program must be killed manually.

File Naming Conventions
Files specified as arguments to ftp commands are processed according to the
following rules.

1) If the file name - is specified, stdin (for reading) or stdout (for
writing) is used.

2) If the first character of the file name is |, the remainder of the argu-
ment is interpreted as a shell command. ftp then forks a shell using
popen(3C) with the argument supplied. It then reads (writes) from
stdout (stdin). If the shell command includes spaces, the argument
must be quoted as in "l 1s -1t", A useful example of this mechanism
is "dir = Ipg".

3) Failing the above checks, if globbing is enabled, local file names are
expanded according to the rules used in the sA(1) (see the glob com-
mand). If the ftp command expects a single local file (such as put),
only the first file name generated by the globbing operation is used.

4) For mget and get commands with unspecified local file names, the
local file name is the remote file name, which may be altered by a
case, ntrans, or nmap setting. The remote server may then alter
the resulting file name if runique is on,

5) For mput and put commands with unspecified remote file names, the
remote file name is the local file name, which may be altered by a

10 01/90

O

FTP(1) FTP(1)

ntrans or nmap setting. The resulting file name may then be
altered by the remote server if sunique is on.

File Transfer Parameters
The FTP specification specifies many parameters that may affect a file
transfer. The type may be ascii, image (binary), ebcdic, or local byte
g size (for PDP-10s and PDP-20s mostly). ftp supports the ascii and image
types of file transfer plus local byte size 8 for tenex mode transfers. ftp
treats image and tenex 8 file types the same when transferred.

i,

Jtp supports only the default values for the remaining file transfer parame-
ters: mode, form, and struct.

SEE ALSO
ftpd(1M) in the CLIX System Administrator’s Reference Manual.

WARNINGS
Correct command execution depends on the remote server behaving properly.

01/90 11

()

O

Q)

HOSTNAME(1) HOSTNAME(1)

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname [nameofhost]

DESCRIPTION
The hostname command prints the name of the current host, as given before
the “login” prompt, and defaults to the value set on the “Operating System
Parameters” page in the Startup Utility. The super-user may change the
host name by giving an argument.

SEE ALSO
gethostname(2B), sethostname(2B).

CAVEATS
Permanent host name changes can only be made from the Startup Utility.

12/88 1

g

s

JBCONFIG(1) JBCONFIG(1)

NAME
jbconfig - report the configuration of the jukeboxes

SYNOPSIS
jbconfig

DESCRIPTION

jbconfig lists the current jukebox configuration including all jukeboxes,
drives, and volumes.

SEE ALSO
JBCFG(4).
jbinventory(1M) in the CLIX System Administrator’s Reference Manual.

CAVEATS
If numerous volumes are in the database, the report can be lengthy.

07/89 1

IDENT(1) IDENT(1)

NAME
ident - identify files

SYNOPSIS
ident [q] [fite ...]

DESCRIPTION
ident searches the named files or, if no file name appears, the standard input
for all occurrences of the pattern $keyword:...$, where keyword is one of the
following:

Author
Date
Header
Id
Locker
Log
Revision
RCSfile
Source
State

These patterns are normally inserted automatically by the RCS command
co(1), but can also be inserted manually. The option -q suppresses the
warning given if no patterns are in a file.

tdent works on text files, object files, and dumps. For example, if the C pro-
gram in file f.c contains

char rcsid[] = "$Header: Header information §";
and f.c is compiled into f.0, then the command

ident f.c f.0
will print

f.c

$Header: Header information $
f.o:

$Header: Header information $

SEE ALSO
ci(1), co(1), res(1), resclean(1), resdiff(1), resmerge(1), rlog(1), resfile(4).
Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

IDENTIFICATION
Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907
Copyright © 1982 by Walter F. Tichy.

12/88 1

Sy

.

N

KBMAP(1) KBMAP(1)

NAME
kbmap - change the keyboard layout

SYNOPSIS
kbmap mapfile

DESCRIPTION
kbmap changes keyboard layouts to reflect the standard layouts used in
different cultures. Only the letter, number, and punctuation keys on the
main section of the keyboard are affected. The keypad and function keys are
not changed.

EXAMPLES
To change the keyboard layout to a standard French layout, use the follow-
ing command:

kbmap /usr/lib/kbmap/French

FILES
/usr/lib/kbmap/* files for each keyboard type

SEE ALSO
kbmap(4).

01/90 1

0

KERMIT(1) KERMIT(1)

NAME

kermit - kermit file transfer

SYNOPSIS

kermit [option ...] [file ...]

DESCRIPTION

kermit is a file transfer program that allows files to be moved among
machines of different operating systems and architectures. This manual page
describes version 4C of the program.

Arguments are optional. If kermit is executed without arguments, it enters
command mode. Otherwise, kermit reads the arguments from the command
line and interprets them.

The following notation is used in command descriptions:

m A CLIX file specification, possibly containing either of the wildcard
characters ® or 2. (* matches all character strings; ? matches any
single character.)

sl A CLIX file specification that may not contain ® or ?.

rfn A remote file specification in the remote system’s syntax, which may
denote a single file or a group of files.

rfnl A remote file specification should denote only a single file.

n A decimal number between O and 94.

c A decimal number between O and 127 representing the value of an
ASCII character.

cc A decimal number between O and 31, or else exactly 127, represent-

ing the value of an ASCII control character.
[1 Any field in square braces is optional.
{x,y»z} Alternatives are listed in braces.

kermit command line options may specify either actions or settings. If ker-
mit is invoked with a command line that specifies no actions, it will issue a
prompt and begin interactive dialog. Action options specify either protocol
transactions or terminal connection.

Command Line Options

12/88

8 fn Send the specified file or files. If fn contains wildcard (meta) charac-
ters, the shell expands it to a list. If fn is -, kermit sends from stan-
dard input, which must come from a file:

kermit -s - < foo.bar
or a parallel process:
1s -1| kermit -s -

This mechanism cannot be used to send from the terminal keyboard.
To send a file whose name is -, precede it with a path name, as in

KERMIT(1) KERMIT(1)

kermit -s ./-
-r Receive a file or files. Wait passively for files to arrive.
-k Receive (passively) a file or files, sending them to standard output. .
This option can be used in several ways:
kermit -k

Displays the incoming files on the screen; to be used only in local
mode (see below).

kermit -k > fnl

Sends the incoming file or files to the named file, fnl. If more than
one file arrives, all are concatenated together into the single file fn1,

kermit -k | command

Pipes the incoming data (single or multiple files) to the indicated
command, as in

kermit -k | sort > sorted.stuff
-a fnl If a file transfer option is specified, an alternate name for a single
file may be specified with the -a option, For example,
kermit -s foo -a bar
sends the file foo telling the receiver that its name is bar. If more

than one file arrives or is sent, only the first file is affected by the -a -
option:

kermit -ra baz
stores the first incoming file under the name baz.
-X Begin server operation. May be used in either local or remote mode,

kermdit is local if it is running on a PC directly, or if it is running on a mul-
tiuser system and transferring files over an external communication line—
not the job’s controlling terminal or console, kermit is remote if it is run-
ning on a multiuser system and transferring files over its own controlling
terminal’s communication line connected to a PC.

If kermit is running on a PC, it is in local mode by default, with the “back
port” designated for file transfer and terminal connection. If kermit is run-
ning on a multiuser (timesharing) system, it is in remote mode unless expli-
citly pointed at an external line for file transfer or terminal connection. The
following command sets kermit’s mode:

-ldev Line — Specify a terminal line to use for file transfer and terminal
connection, as in

kermit -1 /dev/tty00

‘When an external line is used, some additional options may be used for suc-
cessful communication with the remote system:

2 12/88

i o S

KERMIT(1) KERMIT(1)

12/88

-bn Baud — Specify the baud rate for the line given in the -1 option, as in
kermit -1 /dev/tty00 -b 9600

This option should always be included with the -1 option, since the
speed of an external line is not always as expected.

-px Parity — e, 0, m, 8, n (even, odd, mark, space, or none). If parity is
other than none, the eighth-bit prefixing mechanism will be used for
transferring eight-bit binary data if the opposite kermit agrees. The
default parity is none.

-t Specifies half-duplex line turnaround with XON as the handshake
character.

The following commands may be used only with a kermit that is local—
either by default or because the -1 option has been specified.

-g rfn Actively request a remote server to send the named file or files; r/fn
is a file specification in the remote host’s syntax. If rfn contains any
special shell characters like “*”” these must be quoted, as in

kermit -g "x».7"
-f Send a finish command to a remote server.

-c Establish a terminal connection over the specified or default com-
munication line before any protocol transaction occurs. Return to
the local system by typing the escape character (normally
<CONTROL>-\) followed by the letter c.

-n Resembles -c, but after a protocol transaction occurs; € and -n may
both be used in the same command. The use of -n and -c is illus-
trated below.

On a timesharing system, the -1 and -b options must also be included with
the -r, -k, or -8 options if the other kermit is on a remote system.

If kermit is in local mode, the screen (stdout) is continuously updated to
show the progress of the file transfer. A dot is printed for every four data
packets. Other packets are shown by type (i.e., S for Send-Init), T is printed
when a timeout occurs, and % is printed for each retransmission. In addi-
tion, certain “interrupt” commands may be typed (to stdin) during file
transfer:

<CONTROL>-F Interrupt the current file and proceed to the next Gf
any).

<CONTROL>-B Interrupt the entire batch of files and terminate the tran-
saction.

<CONTROL>-R Resend the current packet.
<CONTROL>-A Display a status report for the current transaction.

These interrupt characters differ from the ones used in other kermit imple-
mentations to avoid conflict with CLIX shell interrupt characters. With Sys-
tem III and System V implementations of UNIX, interrupt commands must

KERMIT(1) KERMIT(1)

be preceded by the escape character (e.g., <CONTROL>-\).

Several other command line options are provided:

-1 Specifies that files should be sent or received exactly “‘as is” with no
conversions. This option is necessary for transmitting binary files.

It may also be used to slightly boost efficiency in UNIX-to-UNIX text
file transfers by eliminating CRLF/newline conversion.

R,

-w Write-Protect — Avoid file name collisions for incoming files.

-q Quiet — Suppress screen update during file transfer. (For instance,
to allow a file transfer to proceed in the background.)

-d Debug — Record debugging information in the file debug.log in the
current directory. Use this option if the program is not working
properly.

-h Help — Display a brief synopsis of the command line options.

The command line may contain no more than one protocol action option,

Interactive Operation
kermit’s interactive command prompt is “C-Kermit>". In response to this
prompt, any valid command may be entered, kermit executes the command
and prompts for another command. The process continues until the user
instructs the program to terminate.

Commands begin with a keyword, normally an English verb, like send. .em,
Trailing characters may be omitted from any keyword so long as sufficient
characters are specified to distinguish it from any other keyword valid in

that field. Certain commonly-used keywords (such as send, receive, and
connect) have special nonunique abbreviations (s for send, r for receive,

and c for connect).

Certain characters have special functions in interactive commands:

? A question mark typed at any point in a command, will
produce a message explaining the action possible or
expected at that point. Depending on the context, the
message may be a brief phrase, a menu of keywords, or
a list of files,

<ESC> (The Escape or Altmode key) — Request completion of
the current keyword or file name, or insertion of a
default value. The result will be a beep if the requested
operation fails,

 (The Delete or Rubout key) — Delete the previous char-
acter from the command. A <BACK SPACE> (back
space key or <CONTROL>-H) may also be used for this o
function,

<CONTROL>-W Erase the right-most word from the command line.

4 12/88

SR S S P R e

KERMIT(1) KERMIT(1)

12/88

<CONTROL>-U Erase the entire command.
<CONTROL>-R Redisplay the current command.

<SPACE> (Space bar) — Delimits fields (keywords, file names,
numbers) within a command. <TAB> (horizontal tab)
may also be used for this purpose.

<RETURN> (Carriage return) — Enters the command for execution.
<LINE FEED> (linefeed) or <FF> (formfeed) may
also be used for this purpose.

\ Enter any of the above characters in the command,
literally, To enter a backslash, type two backslashes
(\\). A single backslash immediately preceding a car-
riage return allows the continuation of the command on
the next line.

The editing characters (i.e., and <CONTROL>-W) may be typed
repeatedly to delete to the prompt. No action will be performed until the
command is entered by typing carriage return, linefeed, or formfeed. If mis-
takes are made and an informative error message and a new prompt are
received, it is advisable to use the help command.

Interactive kermit accepts commands from files and the keyboard. When
interactive mode is entered, kermit looks for the file .kermrc first in the
home directory and then in the current one and executes any commands it
finds. These commands must be in interactive format, not CLIX command
line format. A take command is also provided to use at any time during an
interactive session, Command files may be nested to any reasonable depth.

Here is a brief list of kermit interactive commands:

! Execute a CLIX shell command.

bye Terminate and log out from a remote kermit
server.

close Close a log file.

connect Establish a terminal connection to a remote sys-
tem.

cwd Change working directory.

dial Dial a telephone number.

directory Display a directory listing.

echo Display arguments literally.

exit Exit from the program, closing any open logs.

finish Instruct a remote kermit server to exit, but not
log out.

get Get files from a remote kermit server.

KERMIT(1)

help
log

quit
receive
remote

script
send
server
set

show
space
statistics
take

The set parameters are:

block-check
delay

duplex
escape—character

file
flow-control
handshake

line
modem-dialer
parity
prompt
receive

send

speed

The remote commands are:

cwd
delete

KERMIT(1)

Display a help message for a given command.

Open a log file — debugging, packet, session,
transaction.

Same as exit.
Passively wait for files to arrive,

Issue file management commands to a remote
kermit server.

Execute a login script with a remote system.
Send files.

Begin server operation.

Set various parameters.

Display values of set parameters.

Display current disk space usage.

Display statistics about most recent transaction.
Execute commands from a file.

Level of packet error detection.
How long to wait before sending first packet.
Specify which side echoes during connect.

Character to prefix escape commands during
connect,

Set various file parameters,
Communication line full-duplex flow control.

Communication line half-duplex turnaround
character,

Communication line device name,

Type of modem-dialer on communication line.
Communication line character parity.

Change the kermit program’s prompt.

Set various parameters for inbound packets.
Set various parameters for outbound packets.
Communication line speed.

Change remote working directory.
Delete remote files.

12/88

ey

KERMIT(1) KERMIT(1)

directory Display a listing of remote file names.
help Request help from a remote server.
host Issue a command to the remote host in its own
command language.
space Display the current disk space usage on remote
system.
type Display a remote file on the screen.
who Display who’s logged in or information about a
user.
PILES
$HOME/ .kermrc kermit initialization commands
./ kermrc more kermit initialization commands
SEE ALSO

cu(1C), uwucp(1C) in the UNIX System V User's Reference Manual.
Frank da Cruz and Bill Catchings, Kermit User’s Guide, Columbia Univer-
sity, 6th Edition
DIAGNOSTICS
The diagnostics produced by kermit are self-explanatory.
NOTES

See recent issues of the Info-Kermit digest (on ARPANET or Usenet) for a list
of bugs.

12/88 7

KSH(1)

NAME

KSH(1)

ksh, krsh - shell, the standard/restricted command programming language

SYNOPSIS

ksh [-aefhikmnoprstuvx] [-o option] ... [« string] [arg ...]
krsh [-aefhikmnoprstuvx] [-o0 option] ... [-c string] [arg ...]

DESCRIPTION

ksh is a command programming language that executes commands read from
a terminal or a file. krsh is a restricted version of the standard command
interpreter ksh; it is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard shell. See
Invocation below for the meaning of arguments to the shell.

Definitions

A metacharacter is one of the following characters:
; & () | < > newline space tab

A blank is a tab or a space. An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore. Identifiers are used as
names for aliases, functions, and named parameters. A word is a sequence of
characters separated by one or more nonquoted metacharacters.

Commands

12/88

A simple-command is a sequence of blank separated words that may be pre-
ceded by a parameter assignment list. (See Environment below.) The first
word specifies the name of the command to be executed. Except as specified
below, the remaining words are passed as arguments to the invoked com-
mand. The command name is passed as argument O (see exec(2)). The value
of a simple-command is its exit status if it terminates normally or (octal)
200+status if it terminates abnormally. (See signal(2) for a list of status
values.)

A pipeline is a sequence of one or more commands separated by |. The stan-
dard output of every command except the last is connected by a pipe(2) to
the standard input of the next command. Each command runs as a separate
process; the shell waits for the last command to terminate. The exit status
of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or Il and
optionally terminated by ;, &, or I&. Of these five symbols, ;, &, and | &
have equal precedence, which is lower than && and |l. The symbols &&
and |l also have equal precedence. A semicolon (;) causes sequential execu-
tion of the preceding pipeline; an ampersand (&) causes asynchronous execu-
tion of the preceding pipeline (the shell does not wait for that pipeline to
finish). The symbol | & causes asynchronous execution of the preceding com-
mand or pipeline with a two-way pipe established to the parent shell. The
parent shell can read to and write from the standard input and output of the
spawned command using the -p option of the special commands read and
print described later. Only one such command can be active at any given

KSH(1)

time. The symbol && (lI) causes the list following it to be executed only if
the preceding pipeline returns a zero (nonzero) value. An arbitrary number
of newlines may appear in a list instead of semicolons to delimit commands.

A command is either a simple-command or one of the following. Unless oth-
erwise stated, the value returned by a command is that of the last simple-
command executed in the command.

for identifier [in word ...] do list done
Each time a for command is executed, identifier is set to the next
word taken from the in word list. If in word ... is omitted, the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below). Execution ends when
no more words are in the list.

select identifier [in word ...] do list done

A select command prints on standard error (file descriptor 2) the set
of words each preceded by a number. If in word ... is omitted, the
positional parameters are used instead (see Parameter Substitution
below). The PS3 prompt is printed and a line is read from the stan-
dard input. If this line consists of the number of one of the listed
words, the value of the parameter identifier is set to the word
corresponding to this number. If this line is empty, the selection list
is printed again. Otherwise the value of the parameter identifier is
set to null. The contents of the line read from standard input is
saved in the parameter REPLY. The list is executed for each selection
until a break or end-of-file is encountered.

case word in [pattern [Ipattern ...) list ;;]... esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that used
for file name generation (see File Name Generation below).

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list fol-
lowing elif is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else list is executed. If no
else list or then list is executed, the if command returns a zero exit
status.

while list do list done

until Zist do list done
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list;
otherwise the loop terminates. If no commands in the do list are
executed, the while command returns a zero exit status; until may
be used instead of while to negate the loop termination test.

(list)
Execute list in a separate environment. If two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid

12/88

wsgy

e

KSH(1) KSH(1)

arithmetic evaluation as described below.

{ ust;}
List is simply executed. Note that { is a keyword and requires a
blank to be recognized.,

function identifier { list;}

identifier () { list ;}
Define a function referenced by identifier. The body of the function
is the list of commands between { and }. (See Functions below.)

time pipeline
The pipeline is executed and the elapsed time as well as the user and
system time are printed on standard error.

The following keywords are only recognized as the first word of a command
and not within quotes:

if then else elif fi case esac for while until do
done { } function select time

Comments
A word beginning with # causes the word and all following characters up to
a newline to be ignored.

Aliasing

The first word of each command is replaced by the text of an alias if an
alias for this word has been defined. The first character of an alias name
can be any nonspecial printable character, but the remaining characters must
be the same as they are for a valid identifier. The replacement string can
contain any valid shell script including the metacharacters listed above. The
first word of each command of the replaced text will not be tested for addi-
tional aliases. If the last character of the alias value is a blank, the word
following the alias will also be checked for alias substitution. Aliases can
be used to redefine special built-in commands but cannot be used to redefine
the keywords listed above. Aliases can be created, listed, and exported with
the alias command and can be removed with the unalias command.
Exported aliases remain in effect for subshells but must be reinitialized for
separate invocations of the shell (see Invocation below).

Aliasing is performed when scripts are read, not while they are executed,
Therefore, for an alias to take effect the alias command must be executed
before the command that references the alias is read.

Aliases are frequently used as a short-hand for full path names. An option
to the aliasing facility allows the value of the alias to be automatically set
to the full path name of the corresponding command. These aliases are
called tracked aliases. The value of a tracked alias is defined the first time
the corresponding command is looked up and becomes undefined each time
the PATH variable is reset. These aliases remain tracked so that the next
subsequent reference will redefine the value. Several tracked aliases are
compiled into the shell. The -h option of the set command causes each com-
mand name that is a valid alias name to be tracked alias.

12/88 3

KSH(1)

KSH(1)

The following exported aliases are compiled into the shell but can be unset
or redefined:

false="let O’
functions="typeset -f’
history="fc -1’
integer="typeset -i’
nohup="nohup ’

r="fc -e -’

true=":

type="whence -v’
hash="alias -t’

Tilde Substitution

After alias substitution is performed, each word is checked to see if it begins
with an unquoted ~. If it does, the word up to / is checked to see if it
matches a user name in the /etc/passwd file. If a match is found, the ~
and the matched login name are replaced by the login directory of the
matched user. This is called a tilde substitution. If no match is found, the
original text is unchanged. A ~ by itself or in front of a / is replaced by
the value of the HOME parameter. A ~ followed by a + or - is replaced by
the value of the parameter PWD or OLDPWD, respectively,

In addition, the value of each keyword parameter is checked to see if it begins
with a ~ or if a ~ appears after a :. In either of these cases a tilde substi-
tution is attempted.

Command Substitution

The standard output from a command enclosed in parentheses preceded by a
dollar sign ($()) or a pair of grave accents (* *) may be used as part or all
of a word; trailing newlines are removed. In the second (archaic) form, the
string between the quotes is processed for special quoting characters before
the command is executed. (See Quoting below.) The command substitution
$ (cat file) can be replaced by the equivalent but faster $(<file). Command
substitution of most special commands that do not redirect input or output
is carried out without creating a separate process.

Parameter Substitution

A parameter is an identifier, one or more digits, or any of the characters =,
@, #, 7 -, 8§ and .. A named parameter (a parameter denoted by an
identifier) has a value and zero or more attributes. Named parameters can be
assigned values and attributes by using the typeset special command. The
attributes supported by the shell are described later with the typeset special
command. Exported parameters pass values and attributes to subshells but
only pass values to the :y/i ent,

The shell supports a lintited one-dimensional array facility. An element of
an array paramefer is geferenced by a subscript. A subscript is denoted by a
[, followed by an aritizmetic expression, followed by a] (see Arithmetic
Evaluation below). The value of all subscripts must be in the range of 0
through 511. Arrays need not be declared. Any reference to a named

12/88

KSH(1) KSH(1)

parameter with a valid subscript is legal and an array will be created if
necessary. Referencing an array without a subscript is the same as referenc-
ing the first element.

The value of a named parameter may also be assigned by writing:
name = value [name = value] ...

If the integer attribute -i is set for name, the value is subject to arithmetic
evaluation as described below.

Positional parameters (those denoted by a number) may be assigned values
with the set special command. Parameter $0 is set from argument zero
when the shell is invoked.

The character $ is used to introduce substitutable parameters.

${parameter}

The value (if any) of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name or when a named
parameter is subscripted. If parameter is one or more digits, it is a
positional parameter. A positional parameter of more than one digit
must be enclosed in braces. If parameter is ®* or @, all positional
parameters, starting with $1, are substituted (separated by a field
separator character). If an array identifier with subscript ® or @ is
used, the value for each of the elements is substituted (separated by
a field separator character).

${#parameter}
If parameter is or @, the number of positional parameters is substi-
tuted. Otherwise, the length of the parameter value is substituted.

${#identifier[=]}
The number of elements in the array identifier is substituted.
"parametcr:—word}
If parameter is set and is non-null, substitute its value; otherwise,
substitute word.

${parameter:=word}
If parameter is not set or is null, set it to word; the parameter’s value
is then substituted. Positional parameters may not be assigned to in
this way.

${parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, a standard
message is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise, sub-
stitute nothing.

12/88 5

KSH(1) KSH(1)

${parameter #pattern}

${parameter # #pattern}
If the shell pattern matches the beginning of the parameter’s value,
the value of this substitution is the parameter’s value with the
matched portion deleted; otherwise, the parameter’s value is substi-
tuted. In the first form, the smallest matching pattern is deleted and
in the latter form the largest matching pattern is deleted.

${parameter®pattern}

${parameter%®pattern}

If the shell pattern matches the end of the parameter’s value, the
value of this substitution is the parameter’s value with the matched
portion deleted; otherwise, the parameter’s value is substituted. In
the first form, the smallest matching pattern is deleted and in the
latter form the largest matching pattern is deleted.

In the above, word is not evaluated unless it will be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set

or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, the shell only checks
whether parameter is set.

The shell automatically sets the f ollowing parameters:

#

PPID
PWD
OLDPWD
RANDOM

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set
command.

The decimal value returned by the last command exe-
cuted,

The process number of this shell,

The last argument of the previous command. This
parameter is not set for asynchronous commands. This
parameter is also used to hold the name of the matching
MAIL file when checking for mail. Finally, the value of
this parameter is set to the full path name of each pro-
gram the shell invokes and is passed in the environment.

The process number of the last background command
invoked.

The process number of the parent of the shell,
The present working directory set by the cd command.
The previous working directory set by the cd command.

Each time this parameter is referenced, a random integer
is generated. The sequence of random numbers can be
initialized by assigning a numeric value to RANDOM.

12/88

T Sy Y R Y S PRI

gy

KSH(1)

12/88

REPLY

SECONDS

KSH(1)

This parameter is set by the select statement and by the
read special command when no arguments are supplied.

Each time this parameter is referenced, the number of
seconds since shell invocation is returned. If this param-
eter is assigned a value, the value returned upon refer-
ence will be the value assigned plus the number of
seconds since the assignment.

The following parameters are used by the shell:

CDPATH
COLUMNS

EDITOR

FCEDIT
IFS

HISTFILE

HISTSIZE

HOME

LINES

The search path for the cd command.

If this variable is set, the value is used to define the
width of the edit window for the shell edit modes
and for printing select lists.

If the value of this variable ends in emacs, gmacs, or
vi and the VISUAL variable is not set, the
corresponding option will be turned on (see the spe-
cial command set below),

If this parameter is set, parameter substitution is per-
formed on the value to generate the path name of the
script to be executed when the shell is invoked. (See
Invocation below.) This file is typically used for
alias and function definitions.

The default editor name for the fc command.

Internal field separators, normally space, tab, and
newline, that are used to separate command words
which result from command or parameter substitu-
tion and for separating words with the special com-
mand read. The first character of the IFS parameter
is used to separate arguments for the $= substitution.
(See Quoting below.)

If this parameter is set when the shell is invoked, the
value is the path name of the file that will store the
command history. (See Command Re-entry below.)

If this parameter is set when the shell is invoked, the
number of previously entered commands that are
accessible by this shell will be greater than or equal
to this number. The default is 128.

The default argument (home directory) for the cd
command.

If this variable is set, the value is used to determine
the column length for printing select lists. Select
lists will print vertically until about two-thirds of
LINES lines is filled.

KSH(1)

MAIL

MAILCHECK

MAILPATH

PATH

PS1

PS2
PS3

SHELL

TMOUT

VISUAL

0 B

KSH(1)

If this parameter is set to the name of a mail file and
the MAILPATH parameter is not set, the shell informs
the user of mail arrival in the specified file.

This variable specifies how often (in seconds) the shell
will check for changes in the modification time of any
of the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds, When
the time has elapsed the shell will check before issu-
ing the next prompt.

A list of file names separated by colons (:). If this
parameter is set, the shell informs the user of any
modifications to the specified files that have occurred
within the last MAILCHECK seconds, Each file name
can be followed by a ? and a message that will be
printed. The message will undergo parameter and
command substitution; the name of the file that
changed will be substituted for the parameter $_.
The default message is “you have mail in §__".

The search path for commands (see Execution
below). The user may not change PATH when execut-
ing under krsh (except in .profile).

The value of this parameter is expanded for parame-
ter substitution to define the primary prompt string
thta is “$ ” by default. The character ! in the pri-
mary prompt string is replaced by the command
number (see Command Re-entry below).

Secondary prompt string. (“> > by default.)

Selection prompt string used within a select loop.
(“#7 > by default.)

The path name of the shell is kept in the environ-
ment. At invocation, if the value of this variable
contains an r in the basename, the shell becomes res-
tricted.

If set to a value greater than zero, the shell will ter-
minate if a command is not entered within the
prescribed number of seconds after issuing the PS1
prompt. (The shell can be compiled with a maximum
bound for this value that cannot be exceeded.)

If the value of this variable ends in emacs, gmacs, or
vi, the corresponding option will be turned on (see
the special command set below),

The shell gives default values to PATH, PS1, PS2, MAILCHECK, TMOUT and
IFS, while the shell does not set HOME, SHELL, ENV, and MAIL (although

12/88

3R RPN

KSH(1) KSH(1)

login(1) sets HOME). On some systems login(1) also sets MAIL and SHELL.

Blank Interpretation
After parameter and command substitution, the substitution results are
scanned for the field separator characters (those found in IFS) and split into
distinct arguments where such characters are found. Explicit null arguments
(" or *’) are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation

Following substitution, each command word is scanned for the characters %,
?, and [unless the -f option has been set. If one of these characters appears,
the word is regarded as a pattern. The word is replaced with alphabetically
sorted file names that match the pattern., If no file name is found that
matches the pattern, the word remains unchanged. When a pattern is used
for file name generation, the character . at the start of a file name or immedi-
ately following a /, and the character /, must be matched explicitly., In
other instances of pattern matching, the / and . are not treated specially.

s Matches any string, including the null string.
Matches any single character.

?

[...] Matches any of the enclosed characters. A pair of characters
separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening
“[* is an ‘1", any character not enclosed is matched. A - can
be included in the character set by making it the first or last
character.

Quoting

Each metacharacter listed above has a special meaning to the shell and causes
termination of a word unless quoted. A character may be quoted (made to
stand for itself) by preceding it with a \. The pair \newline is ignored. All
characters enclosed between a pair of single quote marks (* *) are quoted. A
single quote cannot appear within single quotes. Inside double quote marks
(" %), parameter and command substitution occurs and \ quotes the charac-
ters \, %, ¥, and §. The meanings of $2 and $@ are identical when not quoted
or when used as a parameter assignment value or file name. However, when
used as a command argument, "$2" is equivalent to "$1d$2d...", where d is
the first character of the IFS parameter; whereas, "$@" is equivalent to "$1"
°$2" Inside grave quote marks (* *), \ quotes the characters \, %, and §.
If the grave quotes occur within double quotes, \ also quotes the character ".

The special meaning of keywords or aliases can be removed by quoting any
character of the keyword. The recognition of function names or special com-
mand names listed below cannot be altered by quoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with the special com-
mand let. Evaluations are performed using long arithmetic. Constants have
the form [base#]n where base is a decimal number between 2 and 36,

12/88 9

KSH(1) KSH(1)

representing the arithmetic base, and n is a number in that base. If base is
omitted, base 10 is used.

An internal integer representation of a named parameter can be specified
with the -i option of the typeset special command. When this attribute is
selected, the first assignment to the parameter determines the arithmetic base
to be used when parameter substitution occurs.

Since many arithmetic operators require quoting, an alternative form of the
let command is provided. For any command that begins with ((, all charac-
ters until a matching)) are treated as a quoted expression. More precisely,
(C...)) is equivalent to let "...",

Prompting
When used interactively, the shell prompts with the value of PS1 before
reading a command. If a newline is typed and further input is needed to
complete a command, the secondary prompt (the value of PS2) is issued.

Input/Output

Before a command is executed, its input and output may be redirected using
a special notation interpreted by the shell. The following may appear any-
where in a simple-command or may precede or follow a command and not be
passed to the invoked command. Command and parameter substitution
occurs before word or digit is used except as noted below. File name genera-
tion occurs only if the pattern matches a single file and blank interpretation
is not performed.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1), If the file
does not exist, it is created; otherwise, it is truncated to zero
length,

> > word Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

< <[-lword The shell input is read up to a line that is the same as word,
or to an end-of-file. No parameter substitution, command
substitution, or file name generation is performed on word.
The resulting document, called a here-document, becomes the
standard input. If any character of word is quoted, then no
interpretation is placed on the characters of the document;
otherwise, parameter and command substitution occurs,
\newline is ignored, and \ must be used to quote the charac-
ters \, §, *, and the first character of word. If - is appended to
<<, all leading tabs are stripped from word and from the

document,

<&digit The standard input is duplicated from file descriptor digit
(see dup(2)). Similarly for the standard output using
>&digit.

10 12/88

KSHQ1) KSH(1)

<&- The standard input is closed. Similarly for the standard out-
put using > &-,

If one of the above is preceded by a digit, the file descriptor number referred

to is that specified by the digit (instead of the default O or 1). For example:

e 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

The order in which redirections are specified is significant. The shell evalu-
ates each redirection in terms of the (file descriptor, file) association at the
time of evaluation. For example:

eoo 1> fame 2> &1

first associates file descriptor 1 with file fname. It then associates file
descriptor 2 with the file associated with file descriptor 1 (fname). If the
order of redirections is reversed, file descriptor 2 would be associated with
the terminal (assuming file descriptor 1 had been) and then file descriptor 1
would be associated with file fname.

If a command is followed by & and job control is not active, the default
standard input for the command is the empty file /dev/null. Otherwise,
the environment for execution contains the file descriptors of the invoking
shell as modified by input/output specifications.

Environment

The environment (see environ(5)) is a list of name-value pairs that is passed
to an executed program as a normal argument list is, The names must be
identifiers and the values are character strings. The shell interacts with the
environment in several ways. On invocation, the shell scans the environ-
ment and creates a parameter for each name found, giving it the correspond-
ing value and marking it export. Executed commands inherit the environ-
ment. If the user modifies the values of these parameters or creates new
ones, using the export or typeset -x commands they become part of the
environment. The environment seen by any executed command is thus com-
posed of any name-value pairs originally inherited by the shell, whose
values may be modified by the current shell, plus any additions that must be
noted in export or typeset -x commands.

The environment for any simple-command or function may be augmented
by prefixing it with one or more parameter assignments. A parameter
assignment argument is a word with the form identifier=value. Thus

TERM=450 cmd args
and
(export TERM; TERM=450; cmd args)
are equivalent (as far as the execution of cmd shown above is concerned).

If the -k flag is set, all parameter assignment arguments are placed in the
environment, even if they occur after the command name. The following

12/88 11

KSH(1)

12

KSH(1)

first prints a=b c and then c:
echo a=bc
set -k
echo a=b ¢

Functions

The function keyword, described in the Commands section above, defines
shell functions. Shell functions are read and stored internally. Alias names
are resolved when the function is read. Functions are executed like com-~
mands with the arguments passed as positional parameters. (See Execution
below).

Functions execute in the same process as the caller and share all files, traps
(other than EXIT and ERR), and present working directory with the caller.
A trap set on EXIT in a function is executed after the function completes.
Ordinarily, variables are shared between the calling program and the func-
tion. However, the typeset special command used within a function defines
local variables whose scope includes the current function and all functions it
calls.

The special command return is used to return from function calls. Errors
within functions return control to the caller,

Function identifiers can be listed with the -f option of the typeset special
command. The text of functions will also be listed. Function can be
undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The
-xf option of the typeset command allows a function to be exported to
scripts executed without a separate invocation of the shell, Functions that
need to be defined across separate invocations of the shell should be placed in
the ENV file.

Jobs

If the monitor option of the set command is turned on, an interactive shell
associates a job with each pipeline. It keeps a table of current jobs, printed
by the jobs command, and assigns them small integer numbers. When a job
is started asynchronously with &, the shell prints a line that looks like:

[1]1234

indicating that the job started asynchronously was job number 1 and had
one (top-level) process, whose process ID was 1234,

This paragraph and the next require features that are not in all versions of
UNIX and may not apply. If a job is running and the user wishes to do
something else, the key <CONTROL>-Z may be hit, which sends a STOP sig-
nal to the current job. The shell will then normally indicate that the job
has been “Stopped” and print another prompt. The state of this job can then
be manipulated, putting it in the background with the bg command, or run
some other commands and then eventually bring the job back to the fore-
ground with the foreground command fg. A <CONTROL>-Z takes effect

12/88

KSH(1) KSH(1)

immediately and is like an interrupt in that pending output and unread
input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the ter-
minal. Background jobs are normally allowed to produce output, but this
can be disabled by giving the command stty tostop. If this tty option is
set, background jobs will stop when they try to produce output as they do
when they try to read input.

There are several ways to refer to jobs in the shell. The character % intro-
duces a job name. To refer to job number 1, it can be named as %1. Jobs
can also be named by prefixes of the string typed in to kill or restart them.
Thus, on systems that support job control, fg %ed would normally restart a
suspended ed(1) job if a suspended job whose name began with the string
“ed” existed.

The shell maintains a notion of the current and previous jobs. In output
pertaining to jobs, the current job is marked with a + and the previous job
with a -. The abbreviation %+ refers to the current job and %- refers to the
previous job. %% is also a synonym for the current job.

This shell learns immediately when a process changes state. It normally
informs the user when a job becomes blocked so that no further progress is
possible, but only just before it prints a prompt. This is done so that the
user’s work is not otherwise disturbed.

When trying to leave the shell while jobs are running or stopped, the user
will be warned that “You have stopped(running) jobs.” The jobs command
can then be used to see what they are. If this is done or exiting is immedi-
ately tried again, the shell will not give a second warning, and the stopped
jobs will be terminated.

Signals
The INT and QUIT signals for an invoked command are ignored if the com-
mand is followed by & and job monitor option is not active. Otherwise,
signals have the values inherited by the shell from its parent (but see also
the trap command below).

Execution

Each time a command is executed, the above substitutions occur. If the com-
mand name matches one of the special commands listed below, it is executed
within the current shell process. Next, the command name is checked to see
if it matches one of the user defined functions. If it does, the positional
parameters are saved and then reset to the arguments of the function call.
When the function completes or issues a return, the positional parameter
list is restored and any trap set on EXIT within the function is executed.
The value of a function is the value of the last command executed. A func-
tion is also executed in the current shell process. If a command name is not
a special command or a user-defined function, a process is created and an
attempt is made to execute the command using exec(2).

12/88 13

KSH(1) KSH(1)

The shell parameter PATH defines the search path for the directory contain-
ing the command. Alternative directory names are separated by a colon (:),
The default path is /bin:/usr/bin: (specifying /bin, /usr/bin, and the
current directory in that order). The current directory can be specified by
two or more adjacent colons or by a colon at the beginning or end of the
path list. If the command name contains a /, the search path is not used.
Otherwise, each directory in the path is searched for an executable file. If
the file has execute permission but is not a directory or an a.out file, it is
assumed to be a file containing shell commands. A sub-shell is spawned to
read it. All nonexported aliases, functions, and named parameters are
removed in this case. If the shell command file does not have read permis-
sion or if the setuid and/or setgid bits are set on the file, the shell executes
an agent who sets up the permissions and executes the shell with the sheil
command file passed as an open file, A parenthesized command is also exe-
cuted in a subshell without removing nonexported quantities.

Command Re-entry

The text of the last HISTSIZE (default 128) commands entered from a ter-
minal device is saved in a history file. The file SHOME/.sh__history is used
if the HISTFILE variable is not set or is not writable. A shell can access the
commands of all interactive shells that use the same named HISTFILE. The
special command fc is used to list or edit a portion of this file. The portion
of the file to be edited or listed can be selected by number or by giving the
first characters of the command. A single command or range of commands
can be specified. If an editor program is not specified as an argument to fc,
the value of the parameter FCEDIT is used. If FCEDIT is not defined,
/bin/ed is used. The edited command(s) is printed and re-executed on leav-
ing the editor. The editor name - is used to skip the editing phase and to re-
execute the command. In this case, a substitution parameter with the form
old=new can be used to modify the command before execution. For example,
if r is aliased to ’fc -e -*, typing r bad=good ¢ will re-execute the most
recent command that starts with c, replacing the first occurrence of the
string “bad” with the string “good”.

In-line Editing Options
Normally, each command line entered from a terminal device is simply
typed followed by a newline (<RETURN> or <LINE FEED>). If either the
emacs, gmacs, or Vi option is active, the user can edit the command line.
To be in either of these edit modes, set the corresponding option. An editing
option is automatically selected each time the VISUAL or EDITOR variable is
assigned a value ending in either of these option names.

The editing features require that the user’s terminal accept <RETURN> as a
carriage return without a line feed and that a space (*‘ ”’) must overwrite the
current character on the screen. ADM terminal users should set the “space -
advance” switch to “space”. Hewlett-Packard® series 2621 terminal users
should set the straps to “bcGHxZ etX”,

The editing modes implement a concept where the user is looking through a
window at the current line. The window width is the value of COLUMNS if

14 12/88

KSH(1) KSH(1)

it is defined; otherwise it is 80. If the line is longer than the window width
minus two, a mark is displayed at the end of the window to notify the user.
As the cursor moves and reaches the window boundaries, the window will
be centered about the cursor. The mark is a > (<, #) if the line extends on
the right (left, both) side(s) of the window.

Emacs Editing Mode

This mode is entered by enabling either the emacs or gmacs option. The
only difference between these two modes is the way they handle “T. To
edit, the user moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. All editing commands are
control characters or escape sequences. The notation for control characters is
caret (*) followed by the character. For example, "F is the notation for
<CONTROL>-F. This is entered by pressing “f”’ while holding down the
<CONTROL> key. The <SHIFT> key is not pressed. (The notation “? indi-
cates the (delete) key.)

The notation for escape sequences is M- followed by a character. For exam-
ple, M-f (pronounced Meta f) is entered by pressing <ESC> (ASCII 033) fol-
lowed by “f”. (M-F would be the notation for <ESC> followed by
<SHIFT > (capital) “F".)

All edit commands operate from any place on the line (not just at the begin-
ning)., Neither the <RETURN> nor the <LINE FEED> key is entered after
edit commands except when noted.

“F Move cursor forward (right) one character.

M-f Move cursor forward one word. (The editor interprets a word as
a string of characters consisting of only letters, digits and under-
scores.)

"B Move cursor backward (left) one character.

M-b Move cursor backward one word.

“A Move cursor to start of line.

“E Move cursor to end of line.

*Ychar Move cursor to character char on current line,

XX Interchange cursor and mark.

erase (User-defined erase character as defined by the stty(1) command,
usually "H or #.) Delete previous character.

D Delete current character.

Md Delete current word.

M-"H (Meta-backspace) Delete previous word.

M-h Delete previous word.

M-"? (Meta-) Delete previous word (if the interrupt character
is °? (, the default), this command will not work).

°T Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.

“C Capitalize current character.

M-c Capitalize current word.

M-1 Change the current word to lowercase.

12/88 15

KSH(1) KSH(1)

K Kill from the cursor to the end of the line. If given a parameter
of zero, kill from the start of line to the cursor.

W Kill from the cursor to the mark.

M-p Push the region from cursor to mark on the stack.

kill (User-defined kill character as defined by the stty(1) command,

usually "G or @.) Kill the entire current line. If two k{Il char-
acters are entered in succession, all kill characters from then on
cause a line feed (useful when using paper terminals).

Y Restore last item removed from line. (Yank item back to the
line.)

‘L Line feed and print current line,

‘@ (Null character) Set mark.

M- (Meta space) Set mark.

°J (<LINE FEED>) Execute current line.

M (<RETURN>) Execute current line.

eof End-of-file character, normally "D, will terminate shell if
current line is null,

P Fetch previous command. Each time “P is entered, the previous
command is accessed.

M-< Fetch least recent (oldest) history line.

M-> Fetch most recent (youngest) history line.

N Fetch next command. Each time "N is entered the next com-

mand is accessed.

“Rstring Reverse search history for a previous command line containing
string. If a parameter of zero is given, the search is forward.
String is terminated by a <RETURN> or <LINE FEED>. If
string is omitted, the next command line containing the most
recent string is accessed. In this case, a parameter of zero rev-
erses the direction of the search.

¢ Operate - Execute the current line and fetch the next line relative
to it from the history file.

M-digits (<ESC>) Define numeric parameter. The digits are interpreted
as a parameter to the next command. The commands that accept
a parameter are ., 'F, ‘B, erase, ‘D, 'K, "R, P, "N, M-., M-_,
M-b, Mc, M-d, M-f, M-h, and M-"H,

M-letter Soft-key - The alias list is searched for an alias with the name
__letter; if an alias with this name is defined, its value will be
inserted on the input queue, The letter must not be one of the
above meta-functions.

M-. The last word of the previous command is inserted on the line,
If preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

M-_ Same as M-..

M-= Attempt file name generation on the current word. An asterisk
is appended if the word does not contain any special pattern
characters.

16 12/88

KSH(1)

KSH(1)
M-<ESC> Same as M-*.
M- List files matching current word pattern if an asterisk was
appended.
‘U Multiply parameter of next command by 4.
\ Escape next character. Editing characters, the user’s erase, kill,

and interrupt (normally “?) characters may be entered in a com-
mand line or in a search string if preceded by a \. The \ removes
the next character’s editing features (if any).

v Display version of the shell.

Vi Editing Mode

12/88

There are two typing modes. Initially, when a command is entered the user
is in the input mode. To edit, the user enters control mode by typing <ESC>
(ASCII 033) and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control commands
accept an optional repeat count before the command.

When in vi mode on most systems, canonical processing is initially enabled
and the command will be echoed again if the speed is 1200 baud or greater
and it contains any control characters or less than one second has elapsed
since the prompt printed. The <ESC> character terminates canonical pro-
cessing for the remainder of the command and the user can then modify the
command line. This scheme has the advantages of canonical processing with
the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal’s canonical processing will
always be disabled. This mode is implicit for systems that do not support
two alternate end-of-line delimiters and may be helpful for certain termi-
nals.

Input Edit Commands
By default, the editor is in input mode,

erase (User-defined erase character as defined by the stty(1)
command, usually “H or #.) Delete previous character,

w Delete the previous blank separated word.

‘D Terminate the shell,

v Escape next character. Editing characters, the user’s erase
or kill characters may be entered in a command line or in
a search string if preceded by a “V. The "V removes the
next character’s editing features (if any).

\ Escape the next erase or kill character.

Motion Edit Commands

These commands will move the cursor.

[count]l Cursor forward (right) one character.

[count]w Cursor forward one alphanumeric word,

[count]W Cursor to beginning of next word that follows a blank.
[count]e Cursor to end of word.

[count]E Cursor to end of current blank-delimited word.

17

KSH(1)

18

[count]h
[count]lb
[count]B
{count]lfc
[count]Fc
[count]te
[count] Tc

0
$

KSH(1)

Cursor backward (left) one character.

Cursor backward one word.

Cursor to preceding blank-separated word.

Find next character ¢ in current line,

Find the previous character c in the current line.
Equivalent to f followed by h.

Equivalent to F followed by 1.

Repeats the last single-character find command, f, F, t, or
T.

Reverses the last single-character find command.
Cursor to start of line.

Cursor to first nonblank character in line,
Cursor to end of line.

Search Edit Commands
These commands access the command history.

[count]k

[count]-
[countlj

[count] +
[count]G

/string

?string
n

N

Fetch previous command. Each time k is entered, the pre-
vious command is accessed.

Equivalent to k.

Fetch next command. Each time j is entered, the next
command is accessed.

Equivalent to j.

The command number count is fetched. The default is the
least recent history command.

Search backward through history for a previous command
containing string. String is terminated by a <RETURN>
or <LINE FEED>. If string is null, the previous string
will be used.

Same as / except that search will be forward.

Search for next match of the last pattern to / or ? com-
mands.

Search for next match of the last pattern to / or ?, but in
reverse direction. Search history for the string entered by
the previous / command.

Text Modification Edit Commands
These commands will modify the line.

a Enter input mode and enter text after the current
character.

A Append text to the end of line. Equivalent to $a.

[count]emotion

c[count]motion Delete current character through the character that

motion would move the cursor to and enter input
mode. If motion is c, the line will be deleted and
input mode entered.

Delete the current character through end of line and
enter input mode. Equivalent to cs

12/88

R A N e e i

KSH(1)

12/88

KSH(1)
s Equivalent to cc.
D Delete the current character through the end of line.
Equivalent to d$.
[count]ldmotion

d [count]motion Delete current character through the character that

i
|
[count]P
[count] p
f:wnt] x

[count]X
[count].

~

[eount] _

motion would move to. If motion is d, the line will
be deleted.

Enter input mode and insert text before the current
character.

Insert text before beginning of line. Equivalent to
the two-character sequence " 1i.

Place the previous text modification before the cur-
SOT.

Place the previous text modification after the cursor.
Enter input mode and replace characters on the
screen with characters typed overlaying them.
Replace the current character with c.

Delete current character.

Delete preceding character.

Repeat previous text modification command.

Invert case of the current character and advance cur-
sor.

Causes the count word of the previous command to
be appended and input mode entered. The last word
is used if count is omitted.

Causes an = to be appended to the current word and
file name generation attempted. If no match is
found, it rings the bell. Otherwise, the word is
replaced by the matching pattern and input mode is
entered.

Other Edit Commands
Miscellaneous commands.

[count] ymotion
¥ [count] motion

Yank current character through character that motion
would move the cursor to and put them in the delete
buffer. The text and cursor are unchanged.

Yanks from current position to end of line. Equivalent to
Undo the last text modifying command.

Undo all the text modifying commands performed on the
line.

Returns the command fc -e {VISUAL:-${EDITOR:-vi}}
count in the input buffer, If count is omitted, the current
line is used.

Line feed and print current line. Works only in control
mode.

19

KSH(1)

20

KSH(1)

"3 (<LINE FEED>) Execute the current line, regardless of
mode.

M (<RETURN>) Execute the current line, regardless of
mode,

Sends the line after inserting # in front of line and after

each newline. Useful for causing the current line to be
inserted in the history without being executed.

- List the file names that match the current word with an
asterisk appended it.

@letter The alias list is searched for an alias with the name
_ letter and if an alias with this name is defined, its value
will be inserted on the input queue for processing.

Special Commands
The following simple-commands are executed in the shell process.
Input/output redirection is permitted. Unless otherwise indicated, the out-
put is written on file descriptor 1. Commands preceded by one or two 1 are
treated specially in the following ways:

1. Parameter assignment lists preceding the command remain in effect
when the command completes.

2. They are executed in a separate process when used in command sub-
stitution,

3. Errors in commands preceded by 1t cause the script that contains
them to abort,.

t:larg...]

The command only expands parameters. A zero exit code is
returned.

tt. file [arg ...]

Read and execute commands from file and return. The commands
are executed in the current shell environment. The search path
specified by PATH is used to find the directory containing file. If any
arguments arg are given, they become the positional parameters.
Otherwise, the positional parameters are unchanged.

alias [-tx] [name[=value] ...]

Alias with no arguments prints the list of aliases in the form
name=value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next word
to be checked for alias substitution. The -t flag is used to set and
list tracked aliases. The value of a tracked alias is the full path
name corresponding to the given name. The value becomes undefined
when the value of PATH is reset but the aliases remained tracked.
Without the -t flag, for each name in the argument list with no value
given, the name and value of the alias is printed. The -x flag sets or
prints exported aliases. An exported alias is defined across subshell
environments. Alias returns true unless a name is given for which
no alias has been defined.

12/88

KSH(1) KSH(1)

bg [%job]
This command is only built-in on systems that support job control.
It puts the specified job in the background. The current job is put in
the background if job is not specified.

break [n]
Exit from the enclosing for, while, until, or select loop, if any. If
n is specified, break n levels.

continue [~]
Resume the next iteration of the enclosing for, while, until, or
select loop. If n is specified, resume at the nth enclosing loop.

1 cd [arg]

t cd old new
This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is -, the directory is
changed to the previous directory. The shell parameter HOME is the
default arg. The parameter PWD is set to the current directory. The
shell parameter CDPATH defines the search path for the directory
containing arg. Alternative directory names are separated by a colon
(:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg begins with a
/, the search path is not used. Otherwise, each directory in the path
is searched for arg.

The second form of cd substitutes the string new for the string old in
the current directory name, PWD, and tries to change to this new
directory.

The cd command may not be executed by krsh.

echo [arg ...]
See echo(1) for usage and description.

tt eval [erg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

1t exec [arg ...]

If arg is given, the command specified by the arguments is executed
in place of this shell without creating a new process. Input/output
arguments may appear and affect the current process. If no argu-
ments are given, this command modifies file descriptors as prescribed
by the input/output redirection list. In this case, any file descriptor
numbers greater than 2 opened with this mechanism are closed when
invoking another program.

exit [n]
Causes the shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. An

12/88 21

KSH(1)

22

KSH(1)

end-of-file will also cause the shell to exit unless the shell’s
ignoreeof option is on (see set below). on.

1t export [name ...]
The given names are marked for automatic export to the environment
of subsequently-executed commands.

t1 fc [-e ename][-nlr] [first] [last]

t1 fc -e - [old=new] [command]
In the first form, a range of commands from first to last is selected
from the last HISTSIZE commands typed at the terminal. The argu-
ments first and last may be specified as a number or as a string. A
string is used to locate the most recent command starting with the
given string. A negative number is used as an offset to the current
command number. If the flag -1 is selected, the commands are listed
on standard output. Otherwise, the editor program ename is invoked
on a file containing these keyboard commands. If ename is not sup-
plied, the value of the parameter FCEDIT (default /bin/ed) is used
as the editor. When editing is complete, the edited command(s) is
executed. If last is not specified, it will be set to first. If first is not
specified, the default is the previous command for editing and -16
for listing. The flag -r reverses the order of the commands and the
flag -n suppresses command numbers when listing. In the second
form, the command is re-executed after old=new is substituted.

fg [Bjod]
This command is only built-in on systems that support job control.
If job is specified, the command brings it to the foreground. Other-
wise, the current job is brought to the foreground.

jobs [-1]
Lists the active jobs. The -1 option lists process id's in addition to
the normal information.

kill [-sig] process ...

Sends either the TERM (terminate) signal or the signal sig to the
specified jobs or processes. Signals are given by number or by names
(as given in /usr/include/signal.h, stripped of the prefix “SIG™).
The signal numbers and names are listed by kill -1. If the signal
being sent is TERM (terminate) or HUP (hangup), the job or process
will be sent a CONT (continue) signal if it is stopped. The argument
process can be either a process ID or a job,

letarg...
Each arg is an arithmetic expression to be evaluated. All calcula-
tions are performed as long integers and overflow is not checked.
Expressions consist of constants, named parameters, and operators.
The following set of operators, listed in order of decreasing pre-
cedence, have been implemented:

— unary minus

12/88

o g,

KSH(1)

12/88

KSH(1)
! logical negation
=/ % multiplication, division, remainder
+ — addition, subtraction
<= >= < > comparison
== 1= equality, inequality

arithmetic replacement

Subexpressions in parentheses () are evaluated first and can be used
to override the above precedence rules. The evaluation within a pre-
cedence group is from right to left for the = operator and from left
to right for the others.

A parameter name must be a valid identifier. When a parameter is
encountered, the value associated with the parameter name is substi-
tuted and expression evaluation resumes, Up to nine levels of recur-
sion are permitted.

The return code is O if the value of the last expression is nonzero,
and 1 otherwise.

1t newgrp [arg ...]

Equivalent to exec newgrp arg

print [-Rnprsu[n]][arg...]

pwd

The shell output mechanism. With no flags or with flag -, the argu-
ments are printed on standard output as described by echo(1). In
raw mode, -R or -r, the escape conventions of echo(1) are ignored.
The -R option will print all subsequent arguments and options other
than -n. The -p option causes the arguments to be written to the
pipe of the process spawned with |& instead of standard output. The
-8 option causes the arguments to be written to the history file
instead of standard output. The -u flag can be used to specify a
one-digit file descriptor unit number n on which the output will be
placed. The default is 1, If the flag -n is used, no newline is added
to the output.

Equivalent to print -r - $PWD.

read [-prsuln]] [name?prompt] [name ...]

The shell input mechanism. One line is read and is broken into
words using the characters in IFS as separators. In raw mode, -r, a \
at the end of a line does not signify line continuation. The first word
is assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The -p option
causes the input line to be taken from the input pipe of a process
spawned by the shell using |&. If the -s flag is present, the input
will be saved as a command in the history file. The flag -u can
specify a one-digit file descriptor unit to read from. The file descrip-
tor can be opened with the exec special command. The default value
of n is 0. If name is omitted, REPLY is the default name. The return
code is O unless an end-of-file is encountered. An end-of-file with
the -p option causes cleanup for this process so that another can be

23

KSH(1) KSH(1)

spawned. If the first argument contains a ?, the remainder of this
word is used as a prompt when the shell is interactive. If the given
file descriptor is open for writing and is a terminal device, the
prompt is placed on this unit. Otherwise the prompt is issued on file
descriptor 2. The return code is O unless an end-of-file is encoun-
tered.

t1 readonly [name ...]
The given names are marked read-only and these names cannot be
changed by subsequent assignment,

41 return [n]
Causes a shell function to return to the invoking script with the
return status specified by n. If n is omitted, the return status is that
of the last command executed. If return is invoked while not in a
function or a . script, it is the same as an exit.

set [-aefhkmnostuvx] [-o option ...][arg ...]
The flags for this command are defined as follows:

-a All subsequent parameters that are defined are automatically
exported. .
-e If the shell is noninteractive and a command fails, execute

the ERR trap, if set, and exit immediately, This mode is dis-
abled while reading profiles.

-f Disables file name generation.

-h Each command whose name is an identifier becomes a tracked
alias when first encountered.

-k All parameter assignment arguments, not just those that pre-
cede the command name, are placed in the environment for a
command.

-m Background jobs will run in a separate process group and a

line will print on completion. The exit status of background
jobs is reported in a completion message. This flag is turned
on automatically for interactive shells.

-n Read commands, but do not execute them. Ignored for
interactive shells.

-0 The following argument can be one of the following option
names:
allexport Same as -a.
errexit Same as -e.
bgnice All background jobs run at a lower priority.
emacs Puts ksh in an emacs-style in-line editor for

command entry.

gmacs Puts ksh in a gmacs-style in-line editor for com-

mand entry.

ignoreeof The shell will not exit on end-of-file. The com-
mand exit must be used.

keyword Same as -k,

24 12/88

iy,

KSH(1)

P

KSH(1)

markdirs All directory names resulting from file name
generation have a trailing / appended.

monitor Same as -m.

noexec Same as -n.

noglob Same as -f.

nounset Same as -u.

protected Same as -p.

verbose Same as -v.

trackall Same as -h.

vi Puts ksh in insert mode of a vi-style in-line edi-
tor until <ESC> is pressed. This puts ksh in
move mode. A <RETURN> executes the line,

viraw Each character is processed as it is typed in vi
mode.
xtrace Same as -X,

If no option name is supplied, the current option settings are
printed.

Resets the PATH variable to the default value, disables pro-
cessing of the $HOME/.profile file, and uses the file
/etc/suid_ profile instead of the ENV file. This mode is
automatically enabled when the effective UID (GID) does not
equal the real UID (GID).

Sort the positional parameters.

Exit after reading and executing one command.

Treat unset parameters as an error when substituting.

Print shell input lines as they are read.

Print commands and their arguments as they are executed.
Turns off -x and -v flags and stops examining arguments for
flags.

Dogjxot change any flags; this is useful in setting $1 to a value
beginning with -, If no arguments follow this flag, the posi-
tional parameters are unset.

Using + rather than - turns these flags off. These flags can also be
used when the shell is invoked. The current setting of flags is found
in §-. The remaining arguments are positional parameters and are
assigned, in order, to $1 $2 If no arguments are given, the
values of all names are printed on the standard output.

t shift [n]

The positional parameters from $n+1 ... are renamed $1 The
default n is 1. The parameter n can be any arithmetic expression
that evaluates to a non-negative number less than or equal to $#.

test [expr]

Evaluate conditional expression expr (see test(1) for use and descrip-
tion). The arithmetic comparison operators are not restricted to
integers. They allow any arithmetic expression. Four additional
primitive expressions are allowed:

12/88

25

KSH(1)

26

KSH(1)

-L file True if file is a symbolic link.

filel -nt file2 True if filel is newer than file2.

filel -ot file2 True if filel is older than file2.

filel -ef file2 True if filel has the same device and i-node number
as file2,

times Print the accumulated user and system times for the shell and for

processes run from the shell.

trap [arg] [sig]...

Arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Each sig can be given as a number or as
the name of the signal. Trap commands are executed in the order of
signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. If arg is omitted
or is -, all trap(s) sig are reset to their original values. If arg is the
null string, the shell and the commands the shell invokes ignore sig.
If sig is ERR, arg will be executed when a command has a nonzero
exit code. This trap is not inherited by functions. If sig is O or EXIT
and the trap statement is executed in the body of a function, the
command arg is executed after the function completes. If sig is O or
EXIT for a trap set outside any function, the command arg is exe-
cuted on exit from the shell, The trap command with no arguments
prints a list of commands associated with each signal number.

11 typeset [-HLRZfilprtux[n] [name[=valuell...]

When invoked inside a function, a new instance of the parameter
name is created. The parameter value and type are restored when the
function completes. The following list of attributes may be
specified:

-H This flag provides CLIX to host name file mapping on non-
CLIX machines.

-L Left justify and remove leading blanks from value. If n is
nonzero it defines the width of the field. Otherwise, it is
determined by the width of the value of the first assignment.
When a value is assigned to name, it is filled on the right
with blanks or truncated if necessary to fit in the field.
Leading zeros are removed if the -Z flag is also set. The -R
flag is turned off.

-R Right justify and fill with leading blanks. If n is nonzero it
defines the width of the field. Otherwise, it is determined by
the width of the value of the first assignment. When a value
is assigned to name, it is filled on the left with blanks or
truncated from the end if necessary to fit in the field. The -L
flag is turned off.

-Z Right justify and fill with leading zeros if the first nonblank
character is a digit and the -L flag was not been. If n is
nonzero it defines the width of the field. Otherwise, it is

12/88

KSH(1)

12/88

KSH(1)

determined by the width of the value of first assignment.

-f The names are function names rather than parameter names.
No assignments can be made and the only other valid flags
are -t, which turns on execution tracing for this function,
and -X, to allow the function to remain in effect across shell
procedures executed in the same process environment.

-i Parameter is an integer. This makes arithmetic faster. If n is
nonzero it defines the output arithmetic base. Otherwise, the
first assignment determines the output base.

-1 All uppercase characters are converted to lowercase. The
uppercase flag -u is turned off.

-p The output of this command, if any, is written on the two-
way pipe

-r The given names are marked as read-only and cannot be
changed by subsequent assignment.

-t Tags the named parameters. Tags are user-definable and have
no special meaning to the shell.

-u All lowercase characters are converted to uppercase. The
lowercase flag -1 is turned off.

-X The given names are marked for automatic export to the

environment of subsequently executed commands.

Using + rather than - turns these flags off. If no name arguments are
given but flags are specified, a list of names (and optionally the
values) of the parameters that have these flags set is printed. (Using
+ rather than - keeps the values to be printed.) If no names or flags
are given, the names and attributes of all parameters are printed.

ulimit [»]
Imposes a size limit of n 512 byte blocks on files written by child
processes. (Files of any size may be read.) If n is not given, the
current limit is printed.

umask [nnn]
The user’s file-creation mask is set to nnn (see umask(2)). If nnn is
omitted, the current value of the mask is printed.

unalias name ...
The parameters given by the list of names are removed from the
alias list.

unset [-f] name ...
The parameters given by the list of names are unassigned. (Their
values and attributes are erased.) Read-only variables cannot be
unset. If the flag -f is set, the names refer to function names.

wait [n]
Wait for the specified child process and report its termination status.

If n is not given, all currently active child processes are waited for.
The return code from this command is that of the process waited for.

27

KSH(1)

28

KSH(1)

whence [-v] name ...
For each name, indicate how it would be interpreted if used as a
command name. The flag -v produces a more verbose report.

Invocation

If the shell is invoked by exec(2) and the first character of argument zero
($0) is -, the shell is assumed to be a login shell and commands are read
from /etc/profile and then from either .profile in the current directory or
$HOME/ .profile (if either file exists). Next, commands are read from the
file named by performing parameter substitution on the value of the
environment parameter ENV if the file exists. If the -s flag is not present
and arg is, a path search is performed on the first arg to determine the name
of the script to execute. The script arg must have read permission and any
setuid and getgid settings will be ignored. Commands are then read as
described below; the following flags are interpreted by the shell when it is
invoked:

= string If the -c flag is present, commands are read from string.

-8 If the -s flag is present or if no arguments remain, commands are
read from the standard input. Shell output, except for the output
of the special commands listed above, is written to file descriptor
2,

-i If the -i flag is present or if the shell input and output are
attached to a terminal (as told by ioctl(2)), this shell is interac-
tive. In this case, TERM is ignored (so that kill O does not kill an
interactive shell) and INTR is caught and ignored (so that wait is
interruptible). In all cases, the shell ignores QUIT.

-r If the -r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above,.

krsh Only

krsh is used to set up login names and execution environments whose capa-
bilities are more controlled than those of the standard shell. The actions of
krsh are identical to those of ksh, except that the following are disallowed:

Changing directory (see cd(1))

Setting the value of SHELL, ENV, or PATH
Specifying path or command names containing /
Redirecting output (> and > >)

The restrictions above are enforced after .profile and the ENV files are inter-
preted,

When a command to be executed is a shell procedure, krsh invokes ksh to
execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell while imposing a
limited menu of commands. This scheme assumes that the end-user does not
have write and execute permissions in the same directory.

12/88

KSH(1) KSH(1)

The net effect of these rules is that the writer of the .profile controls user
actions completely, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (such as
/usr/rbin) that can be safely invoked by krsh. Some systems also provide
a restricted editor red.

FILES
/etc/passwd
/etc/profile
/etc/suid__profile
$HOME/.profile
/tmp/shx
/dev/null

SEE ALSO
test(1), signal(2), a.out(4).
cat(1), cd(1), echo(1), env(1), newgrp(1), umask(1), vi(1) in the UNIX Sys-
tem V User's Reference Manual.
dup(2), exec(2), fork(2), ioctl(2), lseek(2), pipe(2), umask(2), ulimit(2),
wait(2), rand(3C), profile(5) in the UNIX System V Programmer's Reference
Manual.
environ(5) in the UNIX System V System Administrator's Reference Manual.

DIAGNOSTICS

Errors, such as syntax errors, detected by the shell cause the shell to return a
nonzero exit status. Otherwise, the shell returns the exit status of the last
command executed (see also the exit command above). If the shell is being
used noninteractively, shell file execution is abandoned. Runtime errors
detected by the shell are reported by printing the command or function
name and error condition. If the line number that the error occurred on is
greater than one, the line number is also printed in square brackets ([])
after the command or function name.

CAVEATS
If a command that is a “tracked alias’ is executed, and then a command
with the same name is installed in a directory in the search path before the
directory where the original command was found, the shell will continue to
exec the original command. Use the -t option of the alias command to
correct this situation.

Some old shell scripts contain a " as a synonym for the pipe character |.

If a command is piped to a shell command, all variables set in the shell com-
mand are lost when the command completes.

Using the fc built-in command within a compound command will cause the
whole command to disappear from the history file.

The built-in command . file reads the whole file before any commands are
executed, Therefore, alias and unalias commands in the file will not apply
to any functions defined in the file.

12/88 29

N . R AT

LD(1)

NAME

LD(1)

1d - link editor for common object files

SYNOPSIS

1d [option ...] filename

DESCRIPTION

12/88

The Id command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for sym-
bolic debugging. In the simplest case, the names of several object programs
are given. ld combines the objects, producing an object module that can
either be executed or, if the -r option is specified, used as input for a subse-
quent Id run. The output of Ud is left in a.out. By default, this file is exe-
cutable if no errors occurred during the load. If any input file, file-name, is
not an object file, Id assumes it is either an archive library or a text file con-
taining link editor directives. (See “Link Editor Directives’ in the UNIX Sys-
tem V Programmer’s Guide for a discussion of input directives.)

If any argument is a library, it is searched once at the point it is encountered
in the argument list. The library may be either a relocatable archive library
or a shared library. (See “Shared Libraries” in the UNIX System V
Programmer’s Guide for a discussion of shared libraries.) Only the routines
defining an unresolved external reference are loaded. The library (archive)
symbol table (see ar(4)) is searched sequentially with as many passes as
necessary to resolve external references that can be satisfied by library
members. Thus, the ordering of library members is functionally unimpor-
tant unless multiple library members defining the same external symbol
exist.

The following options are recognized by ld:

-e epsym Set the default entry point address for the output file to be
that of the symbol epsym.
-f fil Set the default fill pattern for “holes’” within an output sec-

tion as well as initialized bss sections. The argument £l is a
two-byte constant.

-1 x Search a library libx.a, where x is up to nine characters. A
library is searched when its name is encountered, so the place-
ment of a -1 is significant. By default, libraries are located in
LIBDIR or LLIBDIR.

-m Produce a map or listing of the input/output sections on the
standard output.

-0 outfile Produce an output object file with the name outfile. The name
of the default object file is a.out.
-r Retain relocation entries in the output object file. Relocation

entries must be saved if the output file is to become an input
file in a subsequent Id run. The link editor will not complain

LD(1)

-a

-u symname

Ctcem

Cdcm
Cscm
-L dir

LD(1)

about unresolved references, and the output file will not be
executable,

Create an absolute file. This is the default if the -r option is

not used. Used with the -r option, -a allocates memory for
common symbols,

Strip line number entries and symbol table information from
the output object file,

Turn off the warning about multiply-defined symbols that are
not the same size.

Enter symname as an undefined symbol in the symbol table.
This is useful for loading entirely from a library, since ini-
tially the symbol table is empty and an unresolved reference
is needed to force the loading of the first routine. The place-
ment of this option on the Id line is significant; it must be
placed before the library will define the symbol.

Do not preserve local symbols in the output symbol table;
enter external and static symbols only. This option saves
some space in the output file,

Do not bind to address zero. This option will allow runtime
detection of null pointers.

Set the cache mode for the text region to cm, where cm is one
of the following:

pPw Private, write through.
sw Shared, write through.
ch Private, copy back.

nc Noncached.

daf Default for the region. Defaults are defined in the
kernel as sw for the text region and cb for stack and
data. (NOTE: These are also the defaults assumed by
ld in absence of any cache mode directives.)

Set the cache mode for the data region to cm.

Set the cache mode for the stack region to crm.

Change the algorithm of searching for libx.a to look in dir
before looking in LIBDIR and LLIBDIR. This option is effective
only if it precedes the -1 option on the command line.

Output a message for each multiply-defined external
definition.

Put the text section at the beginning of the text segment rather
than after all header information, and put the data section
immediately after text in the core image.

12/88

LD(1)

LD(1)

-v Output a message giving information about the version of ld
being used.

~VS num Use num as a decimal version stamp identif ying the a.out file

produced. The version stamp is stored in the optional header.

-Y [LU],dir Change the default directory used for finding libraries. If L is
specified, the first default directory that ld searches, LIBDIR, is
replaced by dir. If U is specified and Id has been built with a
second default directory, LLIBDIR, that directory is replaced
by dir. If ld was built with only one default directory and U
is specified, a warning is printed and the option is ignored.

FILES
SLIBDIR/libx.a libraries
$LLIBDIR/libx.a libraries
a.out output file
$LIBDIR usually /1ib
SLLIBDIR usually /usz/lib
SEE ALSO

as(1), cc(1), mkshlib(1), exit(2), a.out(4).

end(3C), ar(4) in the UNIX System V Programmer'’s Reference Manual.

“Link Editor Directives” and ‘“‘Shared Libraries” in the UNIX System V
Programmer's Gulde.

CAVEATS

12/88

Through its options and input directives, the common link editor gives users
great flexibility; however, those who use the input directives must assume
some added responsibilities. Input directives and options should ensure the
following properties for programs:

— C defines a zero pointer as null, A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the program’s address space.

— When the link editor is called through cc(1), a startup routine is linked
with the user’s program. This routine calls exiz(2) after execution of
the main program, If the user calls the link editor directly, the user
must ensure that the program always calls exit(2) rather than falling
through the end of the entry routine.

The symbols etext, edata, and end (see end(3C)) are reserved and defined by
the link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error message identi-
fying “syntax errors”.

Arithmetic expressions may only have one forward-referenced symbol per
expression.

e

e

Sy

LN(1)

NAME

LN(1D)

In - link files

SYNOPSIS

In [-£f] [-s] file ... target

DESCRIPTION

In links file ... to target. File and target can never be the same. If target is
a directory, one or more files are linked to that directory. If target is a file,
its contents are destroyed.

By default, In makes hard links. A hard link to a file cannot be dis-
tinguished from the original directory entry; any changes to a file are
effective independently from the name used to reference the file. Hard links
cannot span file systems and may not refer to directories.

The -8 option causes In to create symbolic links. A symbolic link contains
the name of the file to which it is linked. The referenced file is used when
an open(2) operation is performed on the link. A stat(2) on a symbolic link
will return the file that was linked to; an Istat(2) must be executed to obtain
information about the link. The readlink(2) call may be used to read the
contents of a symbolic link. Symbolic links may span file systems and refer
to directories. If a symbolic link is made to a file and the file is removed, the
link remains and is invalid.

If In determines that the mode of target forbids writing, it displays the
mode (see chmod(2)), prompts for a response, and reads from standard input
for one line. If the line begins with y, the link occurs if it is permissible. If
not, the command exits. When the -f option is used or if the standard input
is not a terminal, no questions are asked and the link is executed.

SEE ALSO

chmod(1), rm(1).
cp(1) in the UNIX System V User's Reference Manual.

WARNINGS

01/90

In will not create hard links across file systems,

Shell metacharacters should be used carefully.

Q)

0

LPQ(1) LPQ(1)

NAME
1pq - BSD spool queue examination program

SYNOPSIS
1pq [+[~]1] [-1] [-P printer] [job ...] [user ...]

DESCRIPTION

Ipq examines the spooling area used by lpd(1M) for printing files on the line
printer and reports the status of the specified jobs or all jobs associated with
a user. lpq invoked without any arguments reports on any jobs currently in
the queue. A -P option may be used to specify a particular printer. Other-
wise, the default line printer is used (or the value of PRINTER in the
environment). If a + argument is supplied, [pg displays the spool queue
until it empties. Supplying a number immediately after the + sign indicates
that Ipg should sleep n seconds between queue scans. All other arguments
supplied are interpreted as user names or job numbers to filter only jobs of
interest,

For each job submitted (invocation of 1pr(1)) lpg reports the user’s name,
current rank in the queue, the names of files composing the job, the job
identifier (a number that may be supplied to lprm(1) for removing a specific
job), and the total size in bytes. The -1 option prints information about each
of the files composing the job. Normally, only the amount of information
that will fit on one line is displayed. Job ordering depends on the algorithm
used to scan the spooling directory and is supposed to be first in first out
(FIFO). File names composing a job may be unavailable (when Ipr(1) is used
as a ;ink in a pipeline). In this case, the file is indicated as “(standard
input)”,

If lpqg warns that no daemon is present (e.g., due to a malfunction), the
ipc(1M) command can be used to restart the printer daemon.

FILES

/etc/terminfo for manipulating the screen for repeated display
/etc/printcap to determine printer characteristics
/usr/spool/* the spooling directory, as determined from printcap
/usr/spool/*/cfx control files specifying jobs
/usr/spool/*/lock the lock file to obtain the currently-active job

SEE ALSO

1pr(1), 1prm(1).
1pc(1M), 1pd(1M) in the CLIX Programmer’s & User's Reference Manual.

DIAGNOSTICS
lpqg may be unable to open various files, have the lock file be malformed, or
produce garbage files when no daemon is active but files are in the spooling
directory.

12/88 1

LPQ(1) LPQ(1)

BUGS
Due to the dynamic nature of the information in the spooling directory, lpg
may report unreliably. Output formatting is sensitive to the line length of
the terminal. This can result in widely-spaced columns. o

ot

2 12/88

LPR(1)

NAME

LPR(1)

1pr - BSD offline print

SYNOPSIS

Ipr [-P printer] [-# num] [-C class] [-J job] [-T title] [-i [numcols]]
[-w num] [-pltngvfrmhs] [name ...]

DESCRIPTION

12/88

Ipr uses a spooling daemon to print the named files when facilities become
available. If no names appear, the standard input is assumed. The -P option
may be used to force output to a specific printer. Normally, the default
printer is used (site dependent), or the value of the environment variable
PRINTER is used.

The following single letter options are used to notify the line printer spooler
that the files are not standard text files. The spoolmg daemon will use the
appropriate filters to print the data accordingly.

-p Use pr(1) to format the files.

-1 Use a filter that allows control characters to be printed and
suppresses page breaks.

-t The files are assumed to contain data from troff (cat phototypesetter
commands),

-n The files are assumed to contain data from ditroff (device-
independent troff).

-g The files are assumed to contain standard plot data as produced by
the plot(3X) routines.

-v The files are assumed to contain a raster image for devices like the
Benson® Varian.

-f Use a filter that interprets the first character of each line as a stan-
dard FORTRAN carriage control character.

The remaining single-letter options have the following meanings:

-T Remove the file when spooling or printing (with the -8 option) is
complete.
-m Send mail on completion.

-h Suppress the printing of the burst page.
-s Use symbolic links. Usually files are copied to the spool directory.

The -C option has the following argument as a job classification to use on the
burst page. For example,

1pr -C EECS foo.c

causes the system name (the name returned by hostname(1)) to be replaced
on the burst page by EECS and the file foo.c to be printed.

LPR(1)

LPR(1)

The -J option has the following argument as the job name to print on the
burst page. Normally, the first file’s name is used.

The -T option uses the next argument as the title used by pr(1) instead of
the file name.

To get multiple copies of output, use the -#num option, where num is the
number of copies for each file named. For example,

1pr -#3 foo.c bar.c more.c

would result in three copies of the file foo.c, followed by three copies of the
file bar.c, etc. On the other hand,

cat foo.c bar.c more.c | 1pr -#3
will give three copies of the concatenation of the files.

The -i option indents the output. If the next argument is numeric, it is used
as the number of blanks to be printed before each line; otherwise, eight char-
acters are printed.

The -w option takes num to be the page width for pr(1).

The -8 option will use symlink(2B) to link data files rather than trying to
copy them so that large files can be printed. This means the files should not
be modified or removed until they have been printed.

FILES
/etc/passwd personal identification
/etc/printcap printer capabilities database
/usr/lib/1pd= line printer daemons
/usr/spool/x directories used for spooling
/usr/spool/*/cfx daemon control files
/ust/spool/x/dfx data files specified in ‘“‘cf” files
/usr/spool/»/tfx temporary copies of ‘‘cf” files

SEE ALSO

1pq(1), 1prm(1), symlink(2B), printcap(4).
1pc(1M), 1pd(1M) in the CLIX System Administrator's Reference Manual.
pr(1) in the UNIX System V User's Reference Manual.

DIAGNOSTICS

NOTES

Ipr will object to printing binary files.

If a user other than the super-user prints a file and spooling is disabled, Ipr
will print a message saying so and will not put jobs in the queue.

If a connection to Ipd(1M) on the local machine cannot be made, Ipr will say
that the daemon cannot be started.

Diagnostics may be printed in the daemon’s log file regarding missing spool
files by Ipd(1M).

lpr truncates files that are too large.

12/88

A R gt S 115 N

sy

LPR(1) LPR(1)

BUGS
Fonts for troff and TeX are on the host with the printer. It is not currently
possible to use local font libraries.

12/88 3

LPRM(1) LPRM(1)

NAME

lprm - remove jobs from the BSD line printer spooling queue

SYNOPSIS

lprm [-P printer] [-] [job# ...] [user ...]

DESCRIPTION

FILES

lprm removes jobs from a printer’s spool queue. Since the spooling directory
is protected from users, using lprm is normally the only method by which a
user may remove a job,

Without arguments Iprm will delete the currently-active job if it is owned
by the user who invoked lprm.

If the - flag is specified, {prm will remove all jobs that a user owns. If the
super-user employs this flag, the spool queue will be emptied entirely. The
owner is determined by the user’s login name and host name on the machine
where the lpr command was invoked.

Specifying a user’s name or a list of user names causes lprm to attempt to
remove any jobs queued belonging to the user(s) This form of invoking lprm
is useful only to the super-user.

A user may dequeue a job by specifying its job number. This number may
be obtained from the lpg(1) program as follows:

$1pq -1

1st: ken [job #013ucbarpa]
(standard input) 100 bytes

$1prm 13

lprm announces the names of any files it removes and is silent if no jobs in
the queue match the request list,

lprm kills the ipd(1M) daemon if necessary before removing any spooling
files. If a daemon is killed, a new one is automatically restarted on comple-
tion of file removals,

The -P option may be used to specify the queue associated with a specific
printer. (Otherwise, the default printer or the value of the PRINTER variable
in the environment is used).

/etc/printcap printer characteristics file

/usr/spool/* spooling directories

/usr/spool/#/lock lock file used to obtain the pid of the current daemon
and the job number of the currently-active job

SEE ALSO

1pr(1), 1pq(1).
1pd(1M) in the CLIX System Administrator’s Reference Manual.

DIAGNOSTICS

12/88

“Permission denied”’ if the users try to remove files other than their own.

LPRM(1) LPRM(1)

BUGS
Since race conditions are possible in the lock file update, the currently-active
job may be incorrectly identified.

2 12/88

LPTEST(1) LPTEST(1)

NAME
Iptest - generate line printer ripple pattern

SYNOPSIS
1ptest [length [count]]

DESCRIPTION
Iptest writes the traditional “ripple test” pattern on standard output. In 96
lines, this pattern will print all 96 printable ASCII characters in each posi-
tion. While originally created to test printers, it is quite useful for testing
terminals, driving terminal ports for debugging purposes, or any other task
where a quick supply of random data is needed.

The length argument specifies the output line length if the default length of
79 is inappropriate.

The count argument specifies the number of output lines to be generated if
the default count of 200 is inappropriate,

12/88 1

o

S

Ls(1)

NAME

Ls(1)

1s - list contents of directory

SYNOPSIS

Is [-RadCxmlnogrtucpFbqisfL] [name ...]

DESCRIPTION

01/90

Is lists the directory contents for each directory argument; for each file argu-
ment, Is repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments appear before directories and
their contents.

There are three major listing formats. The default format lists one entry per
line. The -C and -X options enable multicolumn formats, and the -m option
enables stream output format. To determine output formats for the -C, -x,
and -m options, Is uses the environment variable COLUMNS to determine the
number of character positions available on one output line. If this variable
is not set, the terminfo(4) database is used to determine the number of
columns based on the environment variable TERM. If this information can-
not be obtained, 80 columns are assumed.

The following options are available:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are
normally not listed.

-d If an argument is a directory, list only its name (not its contents).
This option is often used with -1 to get the directory’s status.

-C Print multicolumn output with entries sorted down the columns.

-X Print multicolumn output with entries sorted across rather than

down the page.

-m Print in stream output format; files are listed across the page
separated by commas.

-1 List in long format giving mode, number of links, owner, group, size
(in bytes), and time of last modification for each file (see below). If
the file is a special file, the size field will contain the major and
minor device numbers rather than a size. If the file is a symbolic
link, the path name the link references is printed preceded by an
arrow (—>).

-n Same as -1 except that the owner’s UID and group’s GID numbers are
printed rather than the associated character strings.

¢

Same as -1 except that the group is not printed.
=4 Same as -1 except that the owner is not printed.

Ls(1)

-r

-L

Ls(1)

Reverse the sort order to get reverse alphabetic or oldest first as
appropriate.

Sort by time stamp (latest first) instead of by name. The default is
the last modification time, (See -u and —c.)

Use the last access time instead of modification time for sorting (with
the -t option) or printing (with the -1 option),

Use the last i-node modification time (such as when a file was created
or a mode changed) for sorting (-t) or printing (-1).

Put a slash (/) after each file name if the file is a directory.

Put a slash (/) after each file name if the file is a directory, put an
asterisk (%) after each file name if ihe file is executable, and put an at
sign (@) after each file name if the file is a symbolic link.

Force nongraphics characters in file names to be printed in the octal
\ddd notation.

Force nongraphics characters in file names to be printed as the char-
acter ?2.

For each file, print the i-node number in the first column of the
report.

Give size in blocks (including indirect blocks) for each entry.

Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -1, -t, -s, and -r and
turns on -a; the order is the order in which entries appear in the
directory.

If an argument is a symbolic link, print the information about the
file or directory the link references rather than about the link itself.

The mode printed under the -1 option consists of ten characters. The first
character may be one of the following:

The entry is a directory.

The entry is a block special file.

The entry is a character special file.

The entry is a symbolic link.

The entry is a fifo (named pipe) special file.
The entry is an ordinary file.

| =0 oha

The next nine characters are interpreted as sets of three bits each. The first
set refers to the owner’s permissions; the next set refers to permissions of
others in the file’s user group; and the last set refers to all others. Within
each set, the three characters indicate (respectively) permission to read,
write, and execute the file as a program. Execute permission for a directory
is permission to search the directory for a specified file.

1s -1 prints its output as follows:

01/90

0)

0)

Lo

R’

Ls(1)

01/90

Ls(1)

—rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a lot of information. Reading from
right to left, it is seen that the current directory holds one file, “part2”’,
Next, the last time the file’s contents were modified was 9:42 AM on May 16.
The file is moderately sized, containing 10,876 characters, or bytes. The file
owner, or the user, belongs to the group ‘‘dev”, and the login name is
“smith”’. The number (in this case “1”’) indicates the number of links to file
“part2”. Finally, the row of dashes and letters shows that user, group, and
others have permission to read, write, and execute “part2”.

The execute (X) symbol occupies the third position of the three-character
sequence. A — in the third position would have indicated a denial of execu-
tion permissions.

The permissions are indicated as follows:

The file is readable.

The file is writable,

The file is executable,

The indicated permission is not granted,

Mandatory locking will occur during access. (The set-group-ID

bit is on and the group execution bit is off.)

The set-user-ID or set-group-ID bit and the corresponding user or

group execution bit are on.

S Undefined bit-state. (The set-user-ID bit is on and the user exe-
cution bit is off).

t The 1000 (octal) bit, or sticky bit (see chmod(1)), and the execu-
tion bit are on.

T The 1000 bit is on and execution is off (undefined bit-state).

For user and group permissions, the third position is sometimes occupied by
a character other than x or —. The 8, referring to the state of the set-ID bit
(the user’s or the group’s), may also occupy this position. For example, the
ability to assume the same ID as the user during execution is used during
login when the user begins as root but needs to assume the identity stated at
login.

—INGH

In the sequence of group permissions, 1 may occupy the third position. 1
refers to mandatory file and record locking. This permission describes a
file’s ability to allow other files to lock its reading or writing permissions
during access.

For others permissions, the third position may be occupied by t or T. These
refer to the state of the sticky bit and execution permissions.

EXAMPLES

This example describes a file that the user can read, write, and execute and
that group and others can read:

Ls(1)

Ls(1)

—IWXr——r——

This example describes a file that the user can read, write, and execute and
that group and others can read and execute. This permission allows the user
presently executing it to assume its user ID during execution:

—IWSI—XIr—X
This example describes a file that only the user and group can read and write
and that can be locked during access:

—Iw—Iwl———

This command will print the names of all files in the current directory,
including those that begin with a dot (.), which normally do not print:

1s -a

This command will provide information such as all files (including non-
printing ones (a)); the i-number, the memory address of the i-node associ-
ated with the file, printed in the left-hand column (i); and the size of the
files (in blocks) printed in the column to the right of the i-numbers (s). The
report is printed in the numeric version of the long list, printing the UID
(instead of user name) and GID (instead of group name) numbers associated
with the files.

1s -aisn

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES
/etc/passwd UIDs for 1s -1 and 1s -0
/etc/group GIDs for Is -1 and 1s g
/usr/lib/terminfo/7/* terminal information database

SEE ALSO
chmod(1), find(1).

NOTES
In a Remote File Sharing (RFS) environment, a user may not have the per-
missions that the output of the 1Is -1 command implies. For more informa-
tion, see the “Mapping Remote Users” section in Chapter 10 of the UNIX Sys-
tem V System Administrator's Guide.

BUGS
Unprintable characters in file names may confuse the columnar output
options.

4 01/90

()

()

MACHID(1) MACHID(1)

NAME
machid: clipper, ns32000, vax - get processor type truth value

SYNOPSIS
clipper
ns32000
pdp11
u3b
u3b2
u3bs
vax
DESCRIPTION
The following commands return a true value (exit code of 0) if the processor
matches the command as follows:

clipper CLIPPER-based system.
ns32000 NSC32000-based system.

pdpll PDP-11/45 or PDP-11/70.
u3b 3B20 computer.

u3b2 3B2 computer.

u3bs 3BS5 computer.

vax VAX-11/750 or VAX-11/780.

These commands are often used within makefiles (see make(1)) and shell
procedures (see sh(1)) to increase portability.

The commands that do not apply return a false (nonzero) value.

SEE ALSO
test(1).
sh(1), true(1), make(1) in the UNIX System V User’s Reference Manual.

12/88 1

e

e,

e A

MAILQ(1) MAILQ(1)

NAME

mailq - display a listing of the mail queue used by sendmail(1M)
SYNOPSIS

mailq [-v]
DESCRIPTION

mailg prints a listing of the mail queue used by sendmail(1M). For each
message in the queue, mailg displays the queue ID, the message size, the date
when the message entered the queue, the sender, and recipients. If the -v
option is specified, the message priority is also displayed.

SEE ALSO
sendmail(1M) in the CLIX System Administrator’s Reference Manual.

01/90 1

()

O

0

MAILSTATS(1) MAILSTATS(1)

NAME
mailstats - display mail statistics
SYNOPSIS
mailstats [-f file]
DESCRIPTION
For each message received by or sent from the local machine, sendmail(1M)
logs statistics, including the mailer name and the number of bytes in the
message. mailstats reads this information and displays each mailer name,
the number of messages sent or received through that mailer, and the total
number of kilobytes sent or received through that mailer.
The -f option directs mailstats to read statistics from file. If sendmatl(1M)
is logging statistics to a file other than the default, /usr/lib/sendmail.st,
the -f option must be specified for mailstats to read the statistics.
Invoking mailstats displays a list similar to the following:
Statistics from Thu Sep 6 14:30:43 1990
M mailer_name msgsfr bytes_from msgsto bytes_to
0 local 99 99K 60 54K
2 ether 9 9K 2 2K
3 uucp 22 30K 1 1K
6 community 16 18K 41 39K
SEE ALSO

sendmail(1M) in the CLIX Programmer's & User’s Reference Manual.

01/90 1

()

0

MAN(1) MAN(1)

NAME
man - print entries in this manual

SYNOPSIS
man [option ...] [section] title ...

DESCRIPTION
man locates and prints the entry of this manual named title in the specified
section. (For historical reasons, the word “page” is often used as a synonym
for “entry” in this context.) The title is entered in lowercase. The section
number may not have a letter suffix. If no section is specified, the whole
manual is searched for title and all occurrences of it are printed. Options
and their meanings are as follows:

~Tterm Print the entry as appropriate for terminal type term. For a list of
recognized values of term, type help term2.

-W Print on the standard output only the path names of the entries rela-
tive to /usr/ip32/sysvdoc/catman or to the current directory for
the -d option.

d Instead of /usr/ip32/sysvdoc/catman, search the current direc-
tory; requires the full file name (such as cu.1c rather than just cu).

- Causes man to invoke col(1); note that col(1) is invoked automati-
cally by man unless term is 300, 300s, 450, 37, 4000a, 382, 4014,
tek, 1620, or X,

man examines the environment variable TERM (see environ(5)) and attempts
to select options that adapt the output to the terminal being used. The
-Tterm option overrides the value of TERM; in particular, the user should use
-Tlp when sending the output of man to a line printer.

Section may be changed before each title.

The following example would reproduce this entry (man(1)) and any other
entries named man that may exist in other sections of the manual on the ter-
minal.

man man

FILES
/ust/ip32/sysvdoc/catman/?__man/man[1-8]/#

SEE ALSO
term(5) in the UNIX System V Programmer’s Reference Manual.

CAVEATS
The man command prints manual entries that were formatted by nroff when
the SYSVDOC product was installed. Entries are originally formatted with
terminal type 37 and are printed using the correct terminal filters as derived
from the -Tterm and TERM settings. Typesetting or other nonstandard
printing of manual entries requires installation of the UNIX System \%
Documenter’s Workbench™,

12/88 1

AR N AR

MERGE(1) MERGE(1)

NAME
merge - three-way file merge

SYNOPSIS
merge [-p] filel file2 file3

DESCRIPTION
merge incorporates all changes that lead from jfile2 to file3 in filel. The
result goes to standard output if -p is present, or to filel otherwise. merge is
useful for combining separate changes to an original. Suppose file2 is the ori-

ginal and both filel and file3 are modifications of file2. Then, merge com-
bines both changes.

An overlap occurs if both filel and file3 have changes in a common segment
of lines. merge prints how many overlaps occurred and includes both alter-
natives in the result. The alternatives are delimited as follows:

<< << <K<K filel
lines in filel

lines in file3
>>>>>>> file3

If overlaps occur, the user should edit the result and delete one of the alter-
natives.

SEE ALSO

resmerge(1), co(1).

diff3(1), diff(1) in the UNIX System V User’s Reference Manual.
IDENTIFICATION

Author: Walter F. Tichy,

Purdue University, West Lafayette, IN 47907.
Copyright © 1982 by Walter F. Tichy.

12/88 1

A R MO

e

MESHLIB(1) MKSHLIB(1)

NAME

mkshlib - create a shared library

SYNOPSIS

mkshlib -s specfil -t target [-h host] [-n] [-L dir ...]1[q]

DESCRIPTION

12/88

The mkshlib command builds both the host and target shared libraries. A
shared library is similar in function to a normal, nonshared library, except
that programs that link with a shared library will share the library code
during execution, whereas programs that link with a nonshared library will
receive their own copy of each library routine used.

The host shared library is an archive used to link-edit user programs with
the shared library (see ar(4)). A host shared library can be treated exactly
as a nonshared library and should be included on cc(1) command lines in
the usual way. Further, all operations that can be performed on an archive
can also be performed on the host shared library.

The target shared library is an executable module bound to a process’s
address space during execution of a program using the shared library. The
target shared library contains the code for all routines in the library and
must be fully resolved. The target will be brought into memory during exe-
cution of a program using the shared library, and subsequent processes that
use the shared library will share the copy of code already in memory. The
text of the target is always shared, but each process will receive its own
copy of the data.

The user interface to mkshlib consists of command line options and a shared
library specification file. The shared library specification file describes the
contents of the shared library.

The mkshlib command invokes other tools such as the archiver, ar(1), the
assembler, as(1), and the link editor, 4d(1). Tools are invoked through the
use of execvp (see exec(2)), which searches directories in the user’s PATH.
Also, prefixes to mkshlib are parsed in the same manner as prefixes to the
cc(1) command, and invoked tools receive the prefix where appropriate. For
example, pfxmkshlib will invoke pfxld.

The following command line options are recognized by mkshlib:

-8 specfil Specifies the shared library specification file, specfil. This file
contains the information necessary to build a shared library.

-t target Specifies the output file name of the target shared library being
created. It is assumed that this file will be installed on the target
machine at the location given in the specification file (see the
#target directive below). If the -n option is used, then a new
target shared library will not be generated.

-h host Specifies the output file name of the host shared library being
created. If this option is not given, the host shared library will

MKSHLIB(1)

-n

-L dir ..

-q

-V

MKSHLIB(1)

not be produced.

Do not generate a new target shared library. This option is use-
ful when producing only a new host shared library. The -t
option must still be supplied since a version of the target shared
library is needed to build the host shared library.

Change the algorithm of searching for the host shared libraries
specified with the #objects noload directive to look in dir
before looking in the default directories. The -L option can be
specified multiple times on the command line, In that case, the
directories given with the -L options are searched in the order
given on the command line before the default directories.

Quiet warning messages. This option is useful when warning
messages are expected but not desired.

Print out the command line arguments of the programs invoked
for the user.

The shared library specification file contains all information necessary to
build both the host and target shared libraries. The contents and format of
the specification file are given by the directives listed below.

All directives that can be followed by multiline specifications are valid until
the next directive or the end of the file.

#address sectname address

Specifies the start address, address, of section sectname for the target,
This directive typically is used to specify the start addresses of the
-text and .data sections. One #address per section name is valid.
An #address directive must be given exactly once for the .text sec-
tion and once for the .data section, See the table in the section “The
Building Process” in the ““‘Shared Libraries” chapter of the UNIX Sys-
tem V Programmer’s Guide for standard addresses.

#target path-name

Specifies the absolute path name, path-name, at which the target
shared library will be installed on the target machine. The operating
system uses this path name to locate the shared library when execut-
ing a.out(4) files that use this shared library. This directive must be
specified exactly once per specification file,

#branch

Specifies the start of the branch table specifications. The lines fol-
lowing this directive are interpreted as branch table specification
lines.

Branch table specification lines have the following format:
Juncname <white space> position

where funcname is the name of the symbol given a branch table
entry and position specifies the position of funcname’s branch table
entry. Position may be a single integer or a range of integers with

12/88

MKSHLIB(1)

MKSHLIB(1)

the form positionl-position2. Each position must be greater than or
equal to one; the same position cannot be specified more than once;
and every position from one to the highest given position must be
accounted for.

If a symbol is given more than one branch table entry by associating
a range of positions with the symbol or by specifying the same sym-
bol on more than one branch table specification line, the symbol is
defined to have the address of the highest associated branch table
entry. All other branch table entries for the symbol can be thought
of as “empty” slots and can be replaced by new entries in future
versions of the shared library. Only functions should be given
branch table entries, and those functions must be external symbols.

This directive must be specified exactly once per shared library
specification file,

#objects

The lines following this directive are interpreted as the list of input
object files in the order they are to be loaded in the target. The list
consists of each path name followed by a newline character. This
list is also used to determine the input object files for the host shared
library, but the order for the host is given by running the list
through lorder(1) and tsort(1).

This directive must be specified exactly once per shared library
specification file,

#objects noload

The #objects noload is followed by a list of host shared libraries.
These libraries are searched in the order listed to resolve undefined
symbols from the library being built. During the search, a
nonshared version of a symbol found before a shared version of the
symbol is an error.

Each name given is assumed to be a path name to a host or an argu-
ment of the form -1X, where libX.a is the name of a file in LIBDIR or
LLIBDIR. This behavior is identical to that of Id(1), and the -L
option can be used on the command line to specify other directories
to locate these archives in.

Note that if a host shared library is specified using #objects
noload, any cc(1) command that links to the shared library being
built will need to specify that host also.

#hide linker (=]

12/88

This directive changes normally external symbols to static symbols,
local to the library being created. A regular expression may be given
(see sh(1) and find(1)). In this case, all external symbols matching
the regular expression are hidden. The #export directive (see
‘below) can be used to counter this effect for specified symbols.

MKSHLIB(1) MKSHLIB(1)

The optional # is equivalent to

#hide linker
x

and coverts all external symbols to static symbols,

All symbols specified in #init and #branch directives are assumed
to be external symbols and cannot be changed to static symbols using
the #hide directive.

#export linker [=]
Symbols given in the #export directive are external symbols (global
among files) that, because of a regular expression in a #hide direc-
tive, would otherwise have been made static. For example,

#hide linker *
#export linker
one
two

tags all symbols except one, two, and those used in #branch and
#init entries as static,

#init object
Specifies that the object file, object, requires initialization code. The
lines following this directive are interpreted as initialization
specification lines.
Initialization specification lines have the following format:

ptr <white space> import

ptr is a pointer to the associated imported symbol, import, and must
be defined in the current specified object file, object. The initializa-
tion code generated for each such line has the form:

ptr = &import;

All initializations for a particular object file must be given once and
multiple specifications of the same object file are not allowed.

#ident string
Specifies a string, string, to be included in the .comment section of
the target shared library.

Specifies a comment. All information on the line beginning with
is ignored,

FILES
STEMPDIR/* temporary files
TEMPDIR is usually /usr/tmp but can be redefined by set-
ting the environment variable TMPDIR (see tempnam() in
tmpnam(38)).
$LIBDIR usually /lib

4 12/88

R,

MKSHLIB(1) MKSHLIB(1)

SLLIBDIR usually /usr/lib

SEE ALSO
as(1), cc(1), 1d(1), a.out(4).
ar(1), chkshlib(1), lorder(1), tsort(1), ar(4) in the UNIX System V
Programmer’s Reference Manual.
*“Shared Libraries” chapter in the UNIX System V Programmer's Guide.
CAVEATS
The -n option cannot be used with the #objects noload directive.
If mkshlid is asked to create a host library and a host when that name exists,
mkshlib will update the host using ar(1) -ru. This means that the host

should always be removed before rebuilding when an object file previously
included in the library is removed or renamed.

If the address specified with the #address directive is outside user space, the
library build may return successfully, but it might not work when it is
used.

12/88 5

e

L A

N

MONPARAM(1)

NAME

MONPARAM(1)

monparam - CRM utility for monitoring system parameters

SYNOPSIS

/usr/ip32/crm/monparam [-I intervall [-i input-file] [-0 output-file]

DESCRIPTION

monparam monitors the parameters of a running system. For example, mon-
param can show whether the user is running out of a resource. This monitor
is a complement to the configurable UNIX utility. (Configurable UNIX allows
the user to change system parameters.)

The following options are available:

-I interval

-1 input-file

-0 output-file

Specify how frequently the monitor samples and displays
information. Interval is the number of seconds, The default
is 2.

Read the data from input-file each interval. Input-file must
have been created as an output-file using the -o option. A -
for input-file reads input from stdin.

Direct output to output-file. A - for output-file directs output
to stdout.

The following describes each monparam field:

Sample time

Name
Current
Max

Configured

Displays how frequently (in seconds) the monitor gathers
and displays information. The default setting is two seconds.
This time interval can be changed by pressing the up arrow
key (to increment) and the down arrow key (to decrement).

Displays the name of the parameter being monitored.
Displays the current value of the parameter being monitored.

Displays the maximum value of the parameter since the sys-
tem was booted last.

Displays the value specified for the parameter under
Configurable UNIX.

A parameter line will be highlighted when the maximum value is 90 percent
or more of the configured value.

SEE ALSO
crm(1).

WARNINGS

Sending raw data to a file can create a very large file.

01/90

O

O

0

O

N

MONPROC(1) MONPROC(1)

NAME

monproc - CRM utility for monitoring a process

SYNOPSIS

/usr/ip32/crm/monproc [-w] [-I interval] [-o output-file] input-option

DESCRIPTION

01/90

monproc monitors CPU use, status, priority, hard and soft fault rates, and
current PC (program counter) for a process.

The following options are available:

-0 output-file Direct output to output-file. A - for output-file directs output

to stdout.

-1 interval Specify how frequently the monitor samples and displays
information. Interval is the number of seconds. The default
is 2.

-w Execute monproc in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the
length of the window with the standard modify icon. To receive a descrip-
tion of each category represented in the monitor bar graphs, select the ques-
tion mark (?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in monproc, select the
color palette icon from the window icon box. A small Color menu will
appear. The foreground color is displayed when the menu first appears.
Clicking the mouse button moves to the next color. Exit and save the
changes by selecting the delete icon in the Colors window. These colors are
saved for the current monitoring session only.

The following input-options are available:

-i input-file Read the data from input-file each interval. Input-
file must have been created as an output-file using the
-0 option. A - for input-file reads input from stdin.

-p pid Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

- process-name Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

-e command [arg ...] Allow the user to run, provide arguments for, and
monitor a program,

A brief explanation of the monproc fields follows.
CPU user time

MONPROC(1)

CPU system time

Status
Priority
Username

Hard fault rate
Soft fault rate

Physical Memory
Virtual Memory

Elapsed time
PC

MONPROC(1)

Displays the amount of CPU time used by the process
(user) and the system since the beginning of the moni-
toring session.

Displays the process activity (such as SLEEP or STOP)
when the CPU examines it.

Displays the priority assigned by the system to the pro-
cess being monitored.

Displays the user name that is running the process being
monitored.

Displays the number of hard and soft faults that
occurred per second during the sample interval,

Displays the amount of physical and virtual memory
the system assigns to the process being monitored.

Displays how long the process has been running.

Displays the address where the program counter was
located the last time the monitor polled it. If the pro-
gram was compiled to include debugger symbols (such
as to be used by Intergraph’s dbg(1)), the monitor can
read those symbols and provide more logical values in
this field, For instance, the PC might display a more
logical address such as subl + 10, where subl is the
name of a procedure in the program and 10 is the
number of bytes offset into subl.

In graphics-based format, the first bar shows activity for the last sample
period. The second bar shows average activity for the last 10 sample

periods.

You will notice two separate color bar graphs when you execute the
graphics-based process monitor. The first bar shows activity for the last
sample period; the second bar shows average activity for the last 10 sample

periods.
EXAMPLES

The following is an example of a monproc session:
Process is xns__listen Thu May 25 11:14:53 1990
CPU user time 00 00:00:00.41 CPU system time 00 00:00:06.31

Status: STOP

Priority: 14 Username: root

Hard fault rate 00/sec Soft fault rate 00/sec

Physical Memory 196 k Virtual Memory 532 k
Elapsed time: 00 00:52:16:00

PC: 0000efe6 /current

PC: 0000efe6 /last

01/90

O

)

MONPROC(1) MONPROC(1)

SEE ALSO
crm(1).
WARNINGS
. Sending raw data to a file can create a very large file,
A
A
S

01/90 3

Q)

O

O

o,

MONREGION(1) MONREGION(1)

NAME

monregion - CRM utility for monitoring memory regions

SYNOPSIS

/usr/ip32/crm/monregion [-w] [-0 output-file] input-option

DESCRIPTION

01/90

monregion monitors the memory regions used by a specified process.

The following options are available:

-0 output-file Direct output to output-file. A - for output-file directs output
to standard output.

-w Execute monregion in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the
length of the window with the standard modify icon. To receive a descrip-
tion of each category represented in the monitor bar graphs, select the ques-
tion mark (?) icon from the window icon box. A help window will appear.

The following input-options are available:

-1 input-file Read the data from input-file. Input-file must have
been created as an output-file using the -o option. A -
for input-file reads input from stdin,

-p pid Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

-n process-name Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

-e command [arg ...] Allow the user to run, provide arguments for, and
monitor a program.

A brief explanation of the monregion fields follows.

TEXT

DATA

STACK Displays three memory regions that are monitored for any
process.

SHARED

PRIVATE Displays whether the region can be shared with other
processes or is local to this process.

RDONLY

RD/WRT Displays whether the process has write access to the region

or the region is read-only.

GROWDOWN Displays whether or not the stack region is monitored
according to stack region structure. Since a stack region is

MONREGION(1)

size
valid

EXAMPLES

MONREGION(1)

structured to begin at high addresses and decrease to low
addresses, the region is monitored from high to low. Pages
added to a stack region are added at the lowest virtual
address rather than the highest. Thus, when a stack region
grows, it grows downward.

Displays the number of virtual pages in the region.

Displays the number of physical pages mapped to virtual
pages in the region. The rows of numbers, asterisks, amper-
sands, and other alphanumeric characters below the names
of the memory regions provide information about the
memory pages as follows:

The alphanumeric characters (00000000, 00400000, etc)
directly below the memory regions specify the starting
address (in the region) for that line in the monitor. Since
the activity of the entire region cannot be displayed on a
single line in the monitor, the monitor breaks the region into
several parts for display purposes.

The asterisks (%) represent a physical page of memory
mapped to that region. Every blank space between the *
represents a page of virtual memory without a physical page
mapped to it.

The ampersand (&) indicates the memory page that the PC is
on,

The “L” indicates a physical page of memory that is locked
to a process. A locked page cannot be taken from that pro-
cess, For example, if the I/O system will need a page for an
I/0 request, the system will lock a page in memory until the
process is finished with that page.

The vertical bar (1) represents the end of the section of the
memory region shown on that line,

The following is an example of a monregion session:

TEXT

SHARED RDONLY size:35 valid:23

00000000; ¥5¥5% *x%5x *3&‘ Riad il]

DATA PRIVATE RD/WRT size:4S valid:16
00400000; ¥**+$x x| % *REEREXE|
00440000: *k5%% % * % % ¥

004 80000: * *%% *EEE5%% X % %% q

STACK PRIVATE RD/WRT GROWDOWN size:2 valid:1
Jisidisghd

SEE ALSO
crm(1).

01/90

()

()

o

)

MONREGION(1)

WARNINGS
Sending raw data to a file can create a very large file.

01/90

MONREGION(1)

()

O

O

MT(1) MT(1)

NAME .
mt - magnetic tape manipulation program

SYNOPSIS
mt [-f tape-name] command [count]

DESCRIPTION
mt is used to give commands to a magnetic tape drive. If a tape name is not
specified with the -f option, the environment variable TAPE is used. If TAPE
does not exist, mt uses the device /dev/rmt/Omn. By default, mt performs
the requested operation once. Operations may be performed count times by

specifying count.
The available commands are listed below.
eof , weof Write count end-of-file marks at the current position
on the tape.
fsf Forward space count files.
fsr Forward space count records.
bsf Backward space count files.
bsr Backward space count records.
rewind Rewind the tape (count is ignored).
offline, rewoff Rewind the tape and place the tape unit offline (count is
ignored).
fseot Forward space to end of recorded media (count is
ignored).
erase Erase the entire tape (count is ignored).
retension Retension the tape (count is ignored).
density Set recording density to count.
status Print status information about the tape unit (count is
ignored).
FILES
/dev/rmt/%
/dev/rmt/Omn
SEE ALSO
1c(7S) in the CLIX System Administrator’s Reference Manual.
DIAGNOSTICS

mt returns a O exit status when the command was successful, 1 if the com-
mand was unrecognized, and 2 if the command failed.

12/88 1

—

e B RS AT

NCP(1) NCP(1)

NAME
ncp - DNP network control program

SYNOPSIS
ncp [command]

DESCRIPTION
ncp (Network Control Program) provides the Digital Network Protocol
(DNP) a set of interactive commands to configure, control, monitor, and test
a Digital Network Architecture (DNA) network to ensure its effective opera-
tion.

()

Invoking ncp without command causes ncp to enter interactive mode and
display the NCP> prompt on the next line. ncp commands are not case-
sensitive except when user-id or password is specified. Lowercase letters are
automatically converted to uppercase internally.

An ncp command consists of a command keyword, an entity, and one or
more entity options that qualifies the command by supplying additional
information. Keywords may be abbreviated as long as they are still unique
and are a minimum of three characters.

The clear, define, disconnect, set, and zero commands require super-user
privileges. All users can use the show, loop, and tell commands.

The set, clear, and show commands deal with information in the volatile
Py database. define commands affect the permanent database.

s General Definitions
The following are some general definitions of the terminology used.

end node An end node has a single circuit connecting it to
the rest of the network. An end node can send
packets to any other DNA node and receive packets
addressed to itself from other Phase IV nodes. An
end node is a nonrouting node. It cannot route
packets,

local node The local node where the user is physically
located.

remote node Remote nodes are all other nodes in relation to the
local node.

executor node The executor node is where ncp commands are exe-
cuted. The executor node is usually the local node.
However, through the ncp command set executor,
any remote node can be designated as the executor
node; thus, any ncp commands issued on the local
node are executed on the remote node.

-’ reachable or active node
A reachable or active node is one that is available
for connection requests. A node is unreachable or

01/90 1

NCP(1)

adjacent node

node state

circuits

lines

counters

Node Identification

NCP(1)

inactive when it is powered down or unavailable
for connection requests.

An adjacent node is connected to the local node by
a single physical line. All nodes on a single Ether-
net line are considered adjacent.

The node state is the operational state of the local
node on the network. This state can be controlled
and is used to restrict the operation of the node or
to shut it down. When the state is set to off, the
node is unreachable. When the state is set to on,
the node is active or reachable.

Circuits are logical communications data paths
between nodes. They operate over physical lines.

Ethernet circuits enable multiaccess connection
between a number of nodes on the same physical
medium. Each node is considered adjacent to
every other node on the circuit and is equally
accessible, Each node is identified by an Ethernet
address,

Lines are physical data paths between nodes and
are the lowest-level communications path. The
Ethernet line physically connects the different
nodes on the local network.

Counters are performance variables that track
various events in a network. Information obtained
from counters may be useful in measuring the per-
formance and throughput for a given circuit.

There are counters tracking performance on nodes,
circuits, and lines. Node counters are available
only after a connection has been attempted
between the executor and the specified node. If no
logical link has been established between the exe-
cutor and the specified node, the show node
node-id counters command returns with the mes-
sage “NO INFORMATION AVAILABLE.”

Many of the commands allow a node-id to be specified. Node-id can either
be a node-name or an node-address.

node-name

Specifies a node name. A node name can have up to
six alphanumeric characters. At least one character
of the node name must be a letter. A node name is
not case-sensitive. Lowercase letters are converted to
uppercase.

01/90

()

0

NCP(1)

NCP(1)

The address and name for the local and remote nodes
are stored in the configuration database. The
configuration database for the local node must con-
tain information about the local node and the remote
nodes.

node-address Specifies a node address in the following form:
[area-number . 1 node-number

area-number is a group of nodes in the network that
can run independently as a subnetwork, Each area
has a unique number in a network. The area number
must be an integer in the range of 1-63. The area
number defaults to the local area if none is provided.

node-number must be an integer in the range of 1-
1023. Node numbers must be unique to the specific
network area.

Commands

01/90

ncp includes the following commands. show commands are described in
separate subsections.

clear executor node
Reset the executor to the local node. Clear the default executor node
designation previously specified through the set executor node
command.

clear node node-id all
Identify the remote node whose parameters will be removed from
the volatile database.

clear node node-id all should be used with caution, especially if
links are open to the node being cleared. Before this command is
invoked, the ncp set executor state off or disconnect known
links command should be used.

define executor all
copy the contents of the volatile database to the permanent database.

define known nodes all
Copy, for each of the known nodes, the contents of each volatile
database record to the permanent database.

define node-id all
Copy, for the specified node-id, the contents of the volatile database
to the permanent database. Node-id is a node name or address,

disconnect link link
Disconnect a logical link link. Use the ncp command, show known
links, to determine the link number to use for this command.

The disconnect link commands are used primarily to recover from
network failure. The disconnect link commands cause applications

NCP(1) NCP(1)

using the specified links to fail and should be used with caution,

disconnect known links
Disconnect all logical links. This command should be used with cau-
tion. See the disconnect link command.

exit Exit ncp from the interactive session. Alternately, a <CONTROL>-D
can be used.

loop executor [count count] [length length]

[with {zeroslonesimixed }] [user user-id] password password
Test the logical links within a single node. This test is performed by
looping messages to the loopback mirror on the local node. The
options have the following meanings:

count count Specify the number of times the command will be
repeated. The default is 1 and the maximum is
65535.

count length Specify the number of bytes in the loop message.
The default value is 40 and the maximum value is
245.

with {zeroslonesimixed }
Specify the test data. The default is mixed.

user user-id Specify the user name to be used for access control
information in connecting to the remote mirror.

password password
Specify the password that corresponds to user-id.

loop node node-id [count count][length length]

[with {zerosionesimixed }] user user-id password password
Test the logical links to a remote node. The options have the follow-
ing meanings:
node node-id Identify the node name or address.

count count Specify the number of times the command will be
repeated. The default is 1 and the maximum is
6553s.

length length Specify the number of bytes in the loop message.
The default value is 40 and maximum is value 245 a
CommUnity or CLIX remote node or 1458 for
another DECnet remote node.

with {zerosionesimixed }
Specify the test data. The default is mixed,

user user-id Specify the user name to be used for access control
information in connecting to the remote mirror.

password password
Specify the password that corresponds to user-id.

4 01/90

()

O

NCP(1)

O)

oo

()

01/90

NCP(1)

set executor address node-address
Specify a new node address for the executor node. This command
can be issued only if the state of the executor is off. It is not possible
to issue ncp commands to a remote executor node when the state of
that node is off. Therefore, it is essential, when this command is
issued, that the executor node be the local node. node-address
specifies the node address for the local (executor) node.

set executor all

Copy the contents of the permanent database to the volatile database
for the executor node.

set executor delay factor factor
Set the delay factor. Factor is in the 0-255 range. This value is
multiplied by one sixteenth of the estimated round trip delay time to
determine the appropriate value for the time to retransmit certain
Network Server Protocol (NSP) messages. The default value delay
factor is 80.

set executor delay weight weight
Set the delay weight. Weight is in the 0-255 range. NSP estimates
the current delay in round trip transmission to a node with which it
is communicating. Weight is used to calculate a new value of the
estimated round trip delay. The default delay weight is 5.

set executor inactivity timer timer

Set the inactivity timer interval. A logical link is inactive when no
data is transmitted in either direction for a given interval of time.
The inactivity timer regulates the frequency with which CLIX tests
the viability of an inactive link. The inactivity timer parameter is
used to specify the maximum duration of inactivity before the local
CLIX node tests the viability of the link. When the timer expires,
CLIX generates artificial traffic to test the link. The default inactivity
timer value is 10.

set executor name node-name
Specify node-name as the executor node name.

set executor node node-id [userid user-id password password]
Specify the local or remote node as the executor for all subsequent
ncp commands.

node node-id Identify the local or remote node name or
address.

userid user-id Identify the user-id on the remote system
for the connection.

password password Specify the password associated with user-
id.

If a user is not specified, the default account on the target node is
used. The clear executor node command resets the executor to the

NCP(1) NCP(1)

local node.

set executor retransmit factor factor
Set the retransmit factor. Factor specifies the number of times a
packet may be retransmitted before a link is declared broken. The
value of the retransmit factor regulates the number of times the NSP
layer reattempts a transmission when its retransmission timer
expires for a logical link. A number in the 0-65535 range should be
used for this value. The default retransmit factor is 10.

set executor segment buffer size size
Specify, in bytes, the maximum size of transmit buffers for the exe-
cutor node. Size is in the 255-1458 range. The default value is
1458.

When a logical link is established between two nodes, the nodes
exchange their segment buffer sizes. The smaller of the two sizes is
used as the negotiated segment buffer size for the link. Two end
nodes may agree on a segment buffer size but have an intermediate
router with a smaller segment buffer size (such as a router handling
both DDCMP and Ethernet circuits). The end nodes can communicate
unless one of them transmits a packet that exceeds the router’s seg-
ment buffer size. When this happens, the router truncates the packet
and the logical link is broken.

set executor state {onloff}
Turn the state of the node off and on. When the node state is on, the
node is reachable from other network nodes; that is, new logical
links to that node can be created. When the node state is off, the
node is unreachable.

on Allow creation of new logical links. on is the normal opera-
tional state of a node.

off Prevent creation of new logical links, terminate existing
links, and shut down the node.

Setting the state off terminates any active links to the node and could
result in loss of data.
set known nodes all

Copy the contents of the permanent database to the volatile database
for all nodes in the database.

set node node-id address node-address name node-name
Specify remote node names and address when building the executor’s
volatile configuration database.

node-id Identifies the local node and can be a name or an
address.

node-address Specifies the address of the node to be included in the
configuration database.

6 01/90

0

()

()

PN
)

()

NCP(1)

NCP(1)

node-name Specifies the name of the node to include in the
configuration datatase. Only one name can be
assigned to a node address. Duplicate node names
are not permitted.
set node node-id all

Copy the contents of the permanent database to the volatile database
for a single node node-id.

tell node-id command
Identify the executor for a particular ncp command. The node-id is
set for only one ncp command.

zero executor counters
Reset all counters to zero on the executor node.

zero known circuit counters
Reset circuit counters to zero for all known circuits.

zero known line counters
Reset line counters to zero for all known lines.

zero known nodes counters
Reset node counters to zero for all known nodes.

zero node node-id counters
Reset node counters to zero for node-id. Node-id is the name or
address of a local or remote node.

Show Characteristics Commands

01/90

show executor characteristics

show node node-id characteristics

show active nodes characteristics

show known nodes characteristics
Display static node information for the executor, a specified node-id,
all active nodes, or all known nodes. The following information is
included in the display:

Identification
Management Version
NSP Version
Maximum Links
Delay Factor

Delay Weight
Inactivity timer
Retransmit factor
Routing Version
Type

Maximum Address
Max Broadcast Nonrouters
Segment buffer size

NCP(1) NCP(1)

Show Counters Commands
show executor counters
show node node-id counters
show active nodes counters
show known nodes counters
Display information about the user traffic between the executor and
the specified node. The following information is included in the
display:
Seconds since last zeroed
User data bytes received
User data bytes sent
User data messages received
User data messages sent
Connects received
Connects sent
Response timeouts
Received connect resource errors
Packet format errors

Show Status Commands
show executor status
Display executor status information. This consists of the node name
and address, state, and Ethernet physical address.

show node node-id status

show active nodes status
Display the status of node-id or all nodes. Node-id is is a node name
or address. The display consists of the following information:

Node address and name

Routing state

Number of active logical links associated with the node
Delay timer to set the retransmission

Node type

Show Summary Commands
show executor summary
show node node-id summary
show active nodes summary
show known nodes summary
Display summary information. The display includes the following
information:

Node address and name

Routing state

Number of active logical links associated with the node
Delay timer to set the retransmission

Node type

8 01/90

0

O

O

()

NCP(1) NCP(1)

Show Circuit Commands
show known circuit characteristics
Display circuit characteristics. The following information is
included in the display:

State

Designated router
HELLO timer
Type

Adjacent node
Listen timer

show known circuit counters
Display circuit counters. The following information is included in
the display:

Seconds since last zeroed
Data blocks sent

Data blocks received
Bytes sent

Bytes received

show known circuit status
Display circuit status. The following information is included in the
display:

Circuit ID

Circuit current state

Address and name of adjacent nodes on that circuit
Adjacent node ID

Block size

show known circuit sammary
Display circuit summary. The following information is included in
the display:
Circuit ID
Circuit current state
Address and name of adjacent nodes on that circuit
Adjacent Node ID
Block size

Show Line Commands
show known line characteristics
Display line characteristics. The display includes the line’s protocol
and hardware address.

show known line counters
Display line counters. The display includes the following informa-
tion:

Seconds since last zeroed
Data blocks received

01/90 9

NCP(1) NCP(1)

Data blocks sent

Blocks sent, multiple collisions
Collision-detect check failure
System buffer unavailable

show known line status
Display line status. The display includes the line and state.

show known line summary
Display line summary. The display includes the line and state.

Show Links Command
show known links
Display information for all known links connected to the local node.

SEE ALSO
Digital Network Protocol (DNP) Network Manager's Guide.

10 01/90

()

()

)

)

NETADDR(1) NETADDR(1)

NAME
netaddr - display network address

SYNOPSIS
netaddr

DESCRIPTION
netaddr returns the network address for the node executing this command.
Depending on which communication protocols are running, a subset of the
following information is returned:

LAN-number.host-number

Interface name "xx":

Internet Address: nnn.nnn.nnn.nnn
Subnet Mask: nnn.nnn.nnn.nnn

SEE ALSO
“BSD Network Configuration Tutorial” in the CLIX System Guide.
Intergraph Network Core User’s Guide.

01/90 1

()

0

@

()

NETCP(1)

NAME

SYNOPSIS

DESCRIPTION

01/90

NETCP(1)

netcp - DNP copy command

netcp [-ilnrtvxz] filel file2
netcp [-ilnrtvxz] file ... directory
netcp -r

netcp copies files between hosts that support the Digital Network Architec-
ture (DNA). This includes DECnet, CommUnity, and CLIX hosts on a net-
work. File and specifications can be either simple file specifications of local
files or the lengthy DNP remote file specifications.

The following options are available:

-i

-n

-r

Set interactive mode.. Prompt the user to confirm each file copy
operation by entering one of the following responses:

Yory Copy the file and continue the interactive file copy mode.

Norn Do not copy the file and continue the interactive file copy
mode.

Rorr Copy the file and all the remaining files. This terminates
the interactive file copy mode.

Qorq Quit.

The interactive option is particularly useful in a selective transfer
with wildcard specification.

Set logging mode. Print logging information on the standard output
to indicate the start of data transfer for each file.

Set noisy mode. Print a message on the standard error stream indi-
cating when there is an attempt to connect to fal(1M), the remote file
transfer server. This often takes several seconds, and the message
provides a way to monitor the operation.

Display release number. Specify the release and revision numbers of
netcp and its components, If the release number switch is the sole
argument to netcp, netcp prints the release information and ter-
minates.

Display the total number of bytes and files transferred.,

Set verbatim mode. Transfer (byte for byte) all input files without
record format conversion and with no bytes lost, altered, or inserted.
Output files are created with a record format appropriate to their
byte-stream nature. On VMS, the output files always have VARIABLE
RECORD format and NO RECORD attributes. When data is copied
from one CLIX system to another CLIX system, the verbatim mode
increases copying speed.

NETCP(1) NETCP(1)

-X Submit the input files for execution on the remote system. These
files are deleted after execution.

-z Set append mode. Append the input files to the destination files
rather than overwriting them.

Options to netcp can be placed anywhere on the command line and in any
order.

File-spec is a DNP file specification that can be specified in one of the follow-
ing ways:

[node-spec| " username [password [account 11" 1::1 file-spec
[-u username} [-p password] [-a account] [node-spec::] file-spec

Node-spec specifies a DECnet, CommUnity, or CLIX host name or address.
The optional information enclosed in double quotation marks or specified
with the -u, -p, or -a option is regarded as the access information. The
remote system uses this infomation to determine accessibility on the remote
host. The final portion of the syntax is the file specification on the remote
host. The keywords are defined as follows:

node-space Specifies a Digital Network Architecture (DNA) host name
or address. For example, DECnet, CommUnity, and CLIX
hosts support DNA., The name or address is defined as fol-
lows:

node-name Specifies a host name. Node-name can be
up to six characters long.

[area-number. 1 node-number

Specifies an address. The optional area-
number is an integer in the range of 1-63
that specifies the network area of the host,
Node-number is an integer in the range of
1-1023 that is unique in the network area.
If the remote node-number is located in the
same local network area, area-number need
not be specified.

username

-u username Identifies the user on the remote system in whose name the
access will be performed. The NET_USER environment
variable, if defined, is used if no username is specified on
the command line,

password

-p password Specifies password for username. A null password can be
specified with "*,

account

-a account Indicates the party to be billed for network access time.

This option is used by some DECnet systems. It is not valid
for CLIX systems. The NET_ACCOUNT environment

01/90

()

()

()

S

O)

NETCP(1) NETCP(1)

variable, if defined, is used if no account is specified on the
command line. A null account can be specified with "",

file-spec Specifies a file conforming to naming conventions on the
remote host. UNIX-, VMS-, and MS-DOS-style file
specifications are examples of some file-naming conventions.
Copying files between hosts using different file-naming con-
ventions may produce unexpected results. File-spec may be
a wildcard specification.

The standard input device, such as the keyboard, can be used instead of the
source input file by using a -. A standard output device can be used instead
of file2 or directory by using a -.

‘When multiple source input files are specified, the target directory must be a
remote or local directory or standard output. The output files retain much
of their original names. The destination node may shorten some file names.

When remote files are copied to a target directory on CLIX, their names are
converted, if necessary, to names that are suitable for use on the CLIX sys-
tem. Files are stripped of version numbers, and if the files are from a non-
case-sensitive system like VAX/VMS, they are converted to lowercase. For
example, SYS$SYSDEVICE:[LEE.PROJ1IJMYFIL.RNO becomes myfil.rno on
CLIX. The names of files from another CLIX or case-sensitive system are
unchanged.

SEE ALSO

fal(1M) in the CLIX System Administator’s Guide.

CAVEATS

01/90

VMS file type VARIABLE FIXED CONTROL (VFC) is not supported.

()

O

()

)

()

NETEX(1)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

01/90

NETEX(1)

netex - DNP remote file execution utility

netex [-ilnr] datch-file ...
netex -r

netex is a Digital Network Protocol (DNP) command that allows CLIX users
to execute batch-files on a remote system. netex locates the batch-file on the
remote system and sends an access message to the remote system to submit
that file to execute. After the batch-file executes, the submitted batch-file
remains unchanged.

Batch-file is a standard DNP remote file specification as described in netcp(1).
The following options are allowed:

-i

-n

-T

Set interactive mode. Prompt the user to confirm each file copy
operation by entering one of the following responses:

Yory Execute the file and continue the interactive file execution
mode,

Norn Do not execute the file and continue the interactive file
execute mode.

Rorr Execute the file and all remaining files. This terminates
the interactive file execution mode.

Qorq Quit.

The interactive option is particularly useful in a selective execution
with wildcard specification.

Set logging mode. Print logging information to the terminal to indi-
cate the start of the operation.

Set noisy mode. Print a message on standard error indicating when
there is an attempt to connect to fal(1M), the remote file transfer
server. This often takes several seconds, and the message provides a
way to monitor the operation.

Display the release and revision numbers of netex and its com-
ponents. If the release number switch is the sole argument to netex,
netex prints the release information and terminates.

netcp(1),
fal(1M) in the CLIX System Administrator’s Reference Manual.

()

O

()

()

Sz

)

NETLPR(1)

NAME

NETLPR(1)

netlpr - DNP command to print file(s) on remote printers

SYNOPSIS

netlpr [+q [queue-spec] [+n node] [+u user] [+p password]
[+a account] [-option ... 1 file ...

DESCRIPTION
netlpr is a Digital Network Protocol (DNP) utility that prints any accessible
text file on any printer attached to a remote host supporting the Digital Net-
work Architecture (DNA), including the local node. The arguments to netlpr
are remote file specifications as described in netcp(1), optionally interspersed
with the following options:

01/90

+q [queue-spec]

+n node

+u user

Specify, in the form of a remote file specification, the
printer on which to print all files specified up to the
next +q option or the end of the command line. The
form of queue-spec is as follows:

[[node-spec ["access-info" 1::1[queue-name]
The keywords have the following meaning:

node-spec
Specifies either a host name or address as
described in netcp(1). If node-spec is mnot
specified, queue-name refers to a local queue.

"access-info"
Specifies optional access control information
used to access queuename on the remote host.
The syntax of access-info is as follows:

"luser [password [account11]”

User, password, and account are equivalent to
the +u, +p, and +a options. The meaning, as
applied to remote file specification, is described
in netcp(1).

queue-name
Specifies the remote queue to be used. The +q
option is required to specify any printer other
than the local default printer. If a node-spec is
given and no queue-name is specified, output goes
to the default printer on that node-spec.

Specify the default node on which to search for subse-
quently named files. The current default access control
information remains in effect.

Specify the default user name to use when accessing files
on remote nodes. The +u, +p, and +a options in netlpr
have the same meaning as the -u, -p, and -a options in

NETLPR(1) NETLPR(1)

netcp(1).

+p password Specify the default password to use when accessing files
on remote nodes.

+a account Specify the default account to use when accessing files
on remote nodes.

-option Treat any argument beginning with a - as an argument
for the local print spooling program. The interpretation
of such arguments is controlled by the netlpr
configuration file described below.,

netlpr works with a local spooling program (see 1p(1), Ipr(1), and gpr(1)) or
a printer device driver. The interface to the local spooling program or
printer must be defined in the /usr/lib/netlpr.cf file for netlpr to function.

For example, the netlpr.cf file for [pr(1) is as follows:

/usr/bin/lpr
PrCJTil234

The format of the configuration file using a spooling program is as follows:
The first line contains the full path name of the spooling program.

The first character of the second line indicates the option to use when
specif ying a nondefault local printer. For example, if this character
is P, netlpr invokes the local spooler with the fcllowing command:

1pr -P printer file
If this facility is not provided by the local spooling program, this
character should be a space,

The second character of the second line indicates the option that
specifies that a file will be deleted after printing. If this facility is
not provided by the local spooling program, this character should be
a space.

The third and succeeding characters of the second line represent the
set of options to the spooler that take a separate argument, as in the
following line:

1pr -o value file
rather than

1pr -ovalue file

The nondefault printer and delete options mentioned above may be
members of this set. If no spooler options behave in this manner, a
single space should be inserted in this field.

If no spooling program is available, netlpr.cf should contain a single line
giving the name of the device in /dev to which printed output should be
sent. The name given should not start with a /. For example, if the device
is /dev/lp, netlpr.cf should contain only the following:

01/90

()

O

A~
N’

gz

)

NETLPR(1) NETLPR(1)

Ip
netlpr may be used as a replacement for Ipr and then appears to behave
identically as long as the user prints only local files and does not use any
options specific to netlpr. The only requirement in this case is that the local

spooling program must remain present on the system and netlpr.cf must
contain a valid description of its location and characteristics.

EXAMPLES

01/90

The following command prints “filel” and “file2” on the local default
printer:

netlpr filel file2

The following command prints “filel” on the local default printer and
“file2” on the local printer named ‘‘printer.”

netlpr filel +q printer file2

The commands issued by the previous example (using the example netlpr.cf
above) are as follows:

1pr filel
1pr -Pprinter file2

The following examples are equivalent:

netlpr nodea”joe montana”:filel
netlpr +n nodea +u joe +p montana filel

Both examples print “filel,” resident on “nodea” (accessed with user-name
“joe” and password “montana’), on the local default printer. They then
delete the file after printing. netlpr copies the file to ““/tmp” on the local
node and then issues the following command to 1pr(1):

1pr -r /tmp/filel

The following command prints “filel” from *‘nodea” on the local default
printer as in the previous example and prints “file2” from “nodeb,” also
accessed using user-name ‘“‘doug” and password “flutie’” on the same printer:

netlpr nodea"doug flutie™::filel +n nodeb file2

The following command prints “filel”” and “file2,” both from ‘“nodea” and
accessed using the same access control information, on the local default
printer:

netlpr +n nodea +u dan +p marino filel file2

The following command prints the local file “filel1” on the default printer
attached to node “vax’’:

netlpr +q vax: filel

The following command prints “filel,” resident on ‘“vax2,” on the default
printer attached to “vaxl.” It does this by copying the file to “vax1” along
with a message specifying that it will be printed and subsequently deleted
when the copy is complete.

NETLPR(1) NETLPR(1)

netlpr +q vaxl:: vax2:filel

The following command prints the local “filel”” on printer “lca0’ attached
to node ‘“vax” (presumably a VMS node):

netlpr +q vax::lcaO: filel

SEE ALSO
netcp(1), 1pr(1), 1p(1), qpr(1).

CAVEATS
There is a known problem with using any spooler program that does not
copy the file to be printed to a saved area for the spooler. The spooler pro-
gram selected must (by default) copy the file to be printed when it is being
scheduled for printing. Ip(1) does not copy the file by default, but Ipr(1)

and gpr(1) do copy the file by default. The netlpr.cf file indicates to netlpr
the spooler to use.

4 01/90

()

)

)

Sewso

()

NETLS(1) NETLS(1)
NAME
netls - DNP command that lists the directory contents on a remote system
SYNOPSIS
netls [chlrstU1] name ...
netls -r
DESCRIPTION
netls is a Digital Network Protocol (DNP) utility that lists the contents of
directories. name is a remote file specification as defined in netcp(1). If name
is a file specification, the files matching it are listed. The file specification
must conform to the wildcard rules of the remote system. By default, the
files are sorted alphabetically by name.
- List files by the creation time instead of the last modification time.

01/90

-U

When used with the -t option, this option sorts files according to the
creation time. This works only with -1.

Do not display headers that describe the directory that the following
files belong to. (By default, they are displayed.)

List files in long format. The protection mode, owner, size in bytes,
and last modification time are listed with the file name.

When the long output format is requested, the 12-character protec-
tion mode is printed showing the following four protection levels:

1. System, for the system user (a VMS concept).
2. Owner, for the file owner.

3. Group, for users in the owner’s group.

4, World, for all other users.

Each set of three characters specifies the privileges for designated
users to read, write, and execute a file,

The privileges are as follows:

r file may be read
w file may be written to
b o file may be executed

permission denied
Display the release and version level of netls.

Print the file size (in kilobytes) before the rest of each file’s informa-
tion.

Sort by time stamp (latest first) instead of by name. The default is
the last modification time.

List the time of the last access instead of the modification time.
When used with the -t option, sort files according to the time of last
access. This works only with -1.

NETLS(1) NETLS(1)

-1 Print only one file entry on each line. This is the default mode for
long format or when the standard output is not a terminal.

When netls generates multicolumn output, it checks the environment vari-
able COLUMNS for the number of columns that can be displayed on the
standard output device. (The default is 80.) netls formats each line of the
listing accordingly.

SEE ALSO
netep(1).
fal(1M) in the CLIX System Administrator's Reference Manual.

2 01/90

()

0)

()

)

()

NETMSG(1) NETMSG(1)

NAME
netmsg - send a message to console devices on the local XNS network

SYNOPSIS
/usr/ip32/inc/netmsg [-?] [-y] [-n node] [message]

DESCRIPTION
netmsg broadcasts message to the console devices of all machines on the
Xerox Network Services (XNS) local area network (LAN) running the
xns_listener(1M). If no message is supplied on the command line, the user
is prompted to enter a one-line message that is broadcast upon confirmation.

-n Sends message to the console on node rather than to all machines.

-y Suppresses confirmation. If the -n and -y options are not present,
netmsg will prompt for confirmation before transmitting message to
the entire network.

-? Displays a usage message.
If no options are specified, a usage message is displayed.

SEE ALSO
Intergraph Network Core User's Guide.

01/90 1

()

()

()

e aiaie

NETMV(1)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

01/90

NETMV(1)

netmv - DNP command that moves or renames one or more files

netmv [-ilnr] source-filespec destination-filespec
netmv [-ilnr] file ... destination-filespec
netmv -r

netmv moves a file or a group of files using ihe Digital Network Protocol
(DNP). When netmv moves a file, two file specifications are required: source-
filespec, or a number of files, and the destination-filespec. A source-filespec is
a valid remote file specification as described in netcp(1) that may contain
wildcards. A destination-filespec may contain a directory name, a file name,
or both. When multiple files are being moved, the destination must be a
directory. In any case, destination-filespec may not contain a node specifier
or Access Control Information (ACI) because they are assumed to be the
same as source-filespec. The following options are available:

-i

-n

Set interactive mode. Prompt the user to confirm the operation
before each input file is copied

1

Yory

Tort Move the file and continue the interactive file move
mode.

Norn Do not move the file and continue the interactive file
move mode,

Rorr Move the file and all remaining files. This terminates the
interactive file move mode. The interactive option is par-
ticularly useful in a selective move with wildcard
specification.

Set logging mode. Display an acknowledgement on the screen for
each file moved when the move is successful.

Set noisy mode. Print a message on the standard error stream indi-
cating when there is an attempt to connect to fal(1M), the remote file
transfer server. This often takes several seconds, and the message
provides a way to monitor the operation.

Display the release number. Specify the release and revision
numbers of netmv and its components. If the release number switch
is the sole argument to netmv, nietmv prints the release information
and terminates.

netcp(1).
fal(1M) in the CLIX System Administrator’s Reference Manual.

NETMV(1) NETMV(1)

DIAGNOSTICS
When an error occurs during netmv command execution, an error message in
the following form is displayed:

node::file-spec <error description>

The error message is displayed even if the logging option was not selected.

2 01/90

()

)

NETRM(1)

NAME

NETRM(1)

netrm - DNP command that removes files

SYNOPSIS
- netrm [-ilnr] Jfilespec ...
Sz netrm -r

DESCRIPTION

netrm deletes specified filespecs using the Digital Network Protocol (DNP).
Both the remote file specification and the methods of specifying access con-
trol information are as described in netcp(1).

-i

-n

-r

SEE ALSO

Set interactive mode. Prompt the user to confirm each file deletion
by entering one of the following responses:

Yory Delete the file and continue the interactive file deletion
mode.

Norn Do not delete the file and continue the interactive file
deletion mode.

Rorr Delete the file and all remaining files. This terminates
the interactive file deletion mode.

Qorq Quit.

Set logging mode. Print an acknowledgement, following the deletion
of a remote file, on the standard output terminal.

Set noisy mode. Print a message on the standard error stream indi-
cating when there is an attempt to connect to fal(1M), the remote file
transfer server. This often takes several seconds, and the message
provides a way to monitor the operation.

Display the release number. Specify the release and revision
numbers of netrm and its components. If the release number switch
is the sole argument to netrm, netrm prints the release information
and terminates.

netcp(1).
fal(1M) in the CLIX System Administrator's Reference Manual.

)

01/90

()

0O

()

s

.

S

A 4

NEWALIASES(1) NEWALIASES(1)

NAME
newaliases - rebuild the database for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION
newaliases rebuilds the random access database for the sendmail(1M) aliases

file, /usr/lib/aliases. It must be run each time /usr/lib/aliases is
changed.
SEE ALSO

aliases(4).
sendmail(1M) in the CLIX System Administrator's Reference Manual.

01/90

()

()

N

NPMOUNT(1) NPMOUNT(1)

NAME
npmount, npumount - mount and unmount file system

SYNOPSIS
/usr/bin/npmount [-r] [-f fstype] special directory
/usr/bin/npmount [-r] -f NFS [,options] resource directory
/usr/bin/npmount [-r] [-c] -d resource directory
/usr/bin/npumount directory
/usr/bin/npumount -d resource

DESCRIPTION
npmount and npumount run setuid(2) to set the user ID (UID) to root, allow-
ing a nonprivileged user to mount and unmount file systems, with certain
access restrictions,

The following restrictions apply for npmount or npumount:

1. The user must have write permission on both the mount point and its
parent directory. If not, the command will fail with an error message.

2. The user must have read permission on the disk partition being
mounted. If not, the command will fail with an error message.

3. npumount(1M) requires that the user have write permission in the
parent directory of the mount point.

npmount and npumount accept exactly the same arguments as mount(1M) and
umount(1M), respectively. The only exception is that npmount will print a
usage summary if executed with no arguments; mount(1M) will print a list
of currently mounted file systems.

The following options are available:

-r Indicates that special or resource is to be mounted read-only.
If special or resource is write-protected, this flag must be used.

-d Indicates that resource is a remote resource that is to be
mounted on directory or unmounted., To mount a remote
resource, Remote File Sharing (RFS) must be running and the
resource must be advertised by a remote computer (see
rfstart(1M) and adv(1M)).

- Disables RFS client caching of file system reads and writes on
this resource.

-f fstype Indicates that fstype is the file system type to be mounted. If
this argument is omitted, it defaults to the root fstype. If
fstype is Network File System (NFS), NFS options may be
added after the fstype separated by commas. The available
NFS options are as follows:

soft Return an error if the server does not respond.
rsize=n Set the read buffer size to n bytes.

01/90 1

NPMOUNT(1) NPMOUNT(1)

wsize=n Set the write buffer size to n bytes.
timeo=n Set the initial NFS timeout to n tenths of a
second.
retrans=n Set the number of NFS retransmissions to n.
port=n Set the server IP port number to n. W
special Indicates the block special device to be mounted on directory.
If fstype is NFS, special should have the form host-
name:/ path-name.
resource Indicates the remote resource name to be mounted on a direc-
tory.
directory Indicates the directory mount point for special or resource.
(The directory must exist.)
SEE ALSO
mount(1M) in the CLIX System Administrator’'s Reference Manual.
-~
R
m
-

2 01/90

oDpep(1) oDncn(1)

NAME
odcd - set the current default directory used by optical disk commands

SYNOPSIS
odcd odpathname
DESCRIPTION

odcd is a shell function that manipulates a ksh(1) environment variable,
The optical disk utilities use this variable. To use the odcd f unction, add the

following line to the environment file specified by the Zsh(1) environment
variable ENV:

. /ip32/0d/odenv
The odcd user must have execute (search) permission in odpathname.

Because a new process is created to execute each command, odcd would be
ineffective if it were written as a normal command; therefore, it is recog-
nized by and is internal to the shell, Optical disk commands use this path
name when relative path names are used.

SEE ALSO
odintro(1), odpwd(1), ksh(1).

07/89 1

—

ODCHGRP(1) ODCHGRP(1)

NAME
odchgrp - change the file group of optical disk files or directories

SYNOPSIS
odchgrp group odfile ..
odchgrp group oddirectory ...
DESCRIPTION
odchgrp functions identically to its CLIX equivalent, chgrp(1), except that
odchgrp operates on an optical disk.

This utility changes the group ID of files or directories. The group may be
either a decimal group ID or a group name found in the group file.

Unless this command is invoked by the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be

cleared.

Only the file owner (or super-user) may change the group for that file,
FILES

/etc/passwd

/etc/group
SEE ALSO

odintro(1), odchmod(1), od1s(1), group(4), passwd(4).

07/89 1

A A B S

ODCHMOD(1) ODCHMOD(1)

NAME

odchmod - change the file protection of optical disk files or directories

SYNOPSIS

odchmod mode odfile ...
odchmod mode oddirectory ...

DESCRIPTION

07/89

odchmod functions identically to its CLIX equivalent, chmod(1), except that
odchmod operates on an optical disk.

The permissions of the named odfiles or oddirectories are changed according
to mode, which may be symbolic or absolute. Absolute changes to permis-
sions are stated using octal numbers as follows:

odchmod nnnn odfile...

N is a number from O to 7. Symbolic changes are stated using mnemonic
characters as follows:

odchmod xyz,... odfile...

X is one or more characters corresponding to user, group, or other; y is +, —,
or =, signifying permission assignment; and z is one or more characters
corresponding to permission type.

An absolute mode is given as an octal number constructed from the OR of
the following modes:

4000 set user ID on execution

20#0 set group ID on execution if #is7,5, 3,0r 1
enable mandatory locking if # is 6,4, 2,0r 0

1000 sticky bit is turned on (see chmod(2))

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0040 read by group

0020 write by group

0010 execute (search) by group

0004 read by others

0002 write by others

0001 execute (search) by others

Symbolic changes are stated using letters that correspond both to access
classes and to the individual permissions, Permissions to a file may vary
depending on the user identification number (UID) or group identification
number (GID). Permissions are described in three sequences, each having
three characters:

User Group Other
ITWX WX IWX

This example (meaning that user, group, and others all have read, write, and
execute permissions for a given file) demonstrates two categories for granting

ODCHMOD(1) ODCHMOD(1)

permissions: the access class and the permissions themselves.

Thus, to change the mode of a file’s (or directory’s) permissions using
odchmod’s symbolic method, use the following syntax for mode:

[who loperator [permission(s)1, ...

A command line using the symbolic method would appear as follows:
odchmod g+rw odfile

This command would allow group to read and write odfile.

Who can be stated as one or more of the following letters:

u User’s permissions.
Group’s permissions.
o Other’s permissions.
a Equivalent to ugo (all) and is the default if who is omitted.

Operator can be + to add permission to the file's mode, — to take away per-
mission, or = to assign permission absolutely. (Unlike other symbolic
operations, = has an absolute effect in that it resets all other bits.) Omitting
permission is only useful with = to remove all permissions.

Permission is any compatible combination of the following letters:

Read permission.

Write permission,

Execute permission.

Set-user-ID or set-group-ID is turned on, -
Sticky bit is turned on.

Mandatory locking will occur during access.

e g

Multiple symbolic modes separated by commas may be given, although these
modes cannot have spaces between them. Operations are performed in the
order given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter 8 is
only meaningful with u or g, and t works only with u.

Mandatory file and record locking (1) refers to a file’s ability to have its
read or write permissions locked while a program is accessing the file. It is
not possible to permit group execution and enable a file to be locked on exe-
cution at the same time, In addition, it is not possible to turn on the set-
group-ID and enable a file to be locked on execution at the same time. There-
fore, the following examples are illegal uses and will elicit error messages:

odchmod g+x,+1 odfile
odchmod g+s,+1 odfile

Only the owner of a file or directory (or the super-user) may change a file’s
mode., Only the super-user may set the sticky bit. Before the file’s set-
group-ID can be turned on, the user’s group ID must correspond to the file’s
and group execution must be set.

2 07/89

ODCHMOD(1) ODCHMOD(1)

EXAMPLES

The following commands deny execution permission to all users. The abso-
lute (octal) example permits only reading permissions.

odchmod a-x odfile
odchmod 444 odfile

The following commands enable the group and others to read and write a
file:

odchmod go=rw odfile
odchmod 066 odfile

This command causes a file to be locked during access:
odchmod +1 odfile

These examples enable all to read, write, and execute the file. They also turn
on the set-group-ID.

odchmod =rwx,g+s odfile
odchmod 2777 odfile

SEE ALSO

07/89

odintro(1), odis(1).

ODCHOWN(1) ODCHOWN(1)

NAME

odchown - change file ownership of optical disk files or directories

SYNOPSIS

odchown owner odfile ...
odchown owner oddirectory ...

DESCRIPTION

FILES

odchown functions identically to its CLIX equivalent, chown(1), except that
odchown operates on an optical disk,

odchown changes the owner of the odfiles or oddirectories to owner. The
owner may be a decimal user ID or a login name in the password file,

Unless the super-user invokes this command, the set-user-ID and set-group-
ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of the file (or the super-user) may change the owner for that
file.

/etc/passwd
/etc/group

SEE ALSO

07/89

odintro(1), odchmod(1), od1s(1), group(4), passwd(4).

g

andbeiie,

S S

ODCP(1) ODCP(1)

NAME

odcp - copy optical disk files

SYNOPSIS

odcp filel [fite2 ...] target

DESCRIPTION

odcp copies files to target. It is used to copy files from a magnetic disk to an
optical disk, from an optical disk to a magnetic disk, or from one optical
disk to another. Either the source file (filel), target file (target), or both may
be an optical disk path specification. If target is an existing file on the opti-
cal disk, a new copy of the file is created since blocks cannot be rewritten on
a Write Once Read Many (WORM) medium.

Filel and target can never be the same. If target is a directory, one or more
files are copied to that directory. If target is a file, its contents are des-
troyed.

If target is not a file, a new file is created with the same mode as filel except
that the sticky bit is not set unless you are super-user; the owner and group
of target are those of the user. If target is a file, copying a file to target does
not change the file’s mode, owner, or group. The last modification time for
target (and last access time if target did not exist) and the last access time of
filel are set to the time the copy was made.

SEE ALSO

odintro(1), odchmod(1), odin(1), odrm(1).

WARNINGS

07/89

Be careful when using shell metacharacters.

e

ODDF(1) ODDEF(1)

NAME
oddf - report number of free blocks and i-nodes on an optical volume

SYNOPSIS
oddf [-t] [-f] volume

DESCRIPTION
oddf displays the number of free blocks and i-nodes in the mounted volume
specified by volume by examining the counts kept in the super-blocks.

The oddf command uses the following options:

-t Report both the total allocated blocks and i-nodes, and the total allo-
cated free blocks and i-nodes.

-f Report free blocks.

SEE ALSO
odmount(1M) in the CLIX System Administrator’s Reference Manual.

07/89 1

P,

S i i e R N SR

ODINTRO(1) ODINTRO(1)

NAME

odintro - introduction to the optical disk file system

DESCRIPTION

07/89

The optical disk file system is implemented for the Write Once Read Many
(WORM) optical disk media. It emulates the design of the UNIX System V file
system, though it is not mounted as a normal file system. It can be accessed
only through utilities converted to use this file system. Many of the basic
UNIX file system utilities have been converted, as well as fmu(1).

An optical disk platter is a two-sided storage medium. A volume is one side
of a platter. Volumes are not partitioned. Each volume contains a root
directory and a tree of user-defined subdirectories.

Files are referenced on an optical disk file system through an optical disk
path specification. The specification consists of a colon (:), volume name,
colon, and path name, For example, an absolute optical disk path
specification could be as follows:

wvolume:/directoryl/directory2/basename

A volume name can have 1 to 16 characters. These characters may come
from the set of all character values excluding colon, \O (null), and slash.

Absolute path specifications must specify the volume name and the path
name must begin with a slash. Relative path specifications may be used if
odcd(1) was used to define a default optical disk directory. A relative path
specification omits the volume name in the specification and the path name is
not required to begin with a slash. For example, a relative optical disk path
specification could be as follows:
4
::file

Regardless of whether the volume name is specified, the colons that would
surround it must be present. If a path name begins with a slash, the path
search begins at the volume’s root directory. Otherwise, the search begins at
the current default optical disk directory. A path name consisting of a slash
by itself names the volume’s root directory.

In other optical disk documentation, odpnathname refers to an optical disk
path specification, This specification can be a file or directory. Odfile refers
to an optical disk file and oddirectory refers to an optical disk directory.

Directory entries are called links. By convention, a directory contains at
least two links, . and .., referred to as dot and dot-dot, respectively. Dot is
the directory itself and dot-dot is its parent directory. Thus, ::. is the
current default optical disk directory and ::.. is its parent.

The optical disk file system is accessed in two different environments: stan-
dalone and jukebox. In the standalone environment, an optical disk platter
must be manually loaded in an optical disk drive. The system administrator
must then mount a volume on that platter so that the optical disk utilities

ODINTRO(1) ODINTRO(1)

may then access it. In the jukebox environment, an optical disk jukebox
will mount optical disk platters as needed by fmu(1) or at the request of the
system administrator.

If an optical disk path specification is used in the fmu(1) commands send,
receive, rcd, or cd, the volume implied by the specification will automati-
cally be loaded in a drive and mounted if the volume resides in a jukebox.
An fmu(1) session can mount only one volume at a time. Also, as soon as
fmu(1) exits, the volume is unmounted and unloaded. If the volume is in a
standalone environment, the system administrator must have already
mounted the volume using the odmount(1M) command.

SEE ALSO

oded(1), odchgrp(1), odchmod(1), odchown(1), odcp(1), oddf(1), odin(1),
0d1s(1), odmkdir(1), odmv(1), odpwd(1), odrm(1), odrmdir(1), jbconfig(1),
JBCFG(4), STANDCFG(4).

odfsck(1M), odlabel(1M), odmount(1M), odreadlabel(1M), odumount(1M),
jbexport(1M), jbimport(1M), jbinventory(1M), jblabel(1M), jbstart(1M),
jbterminate(1M), jbvaryoff(1M), jbvaryon(1M) in the CLIX System
Administrator's Reference Manual.

e

2 07/89

AR S DA 1 e g o B

ODLS(1) ODLS(1)

NAME

odls - list contents of optical disk directories

SYNOPSIS

odls [-RadCxmlnogrtucpFbqisf] [odpathname]

DESCRIPTION

07/89

odls functions identically to its CLIX equivalent, Is(1), except that odls lists
files in an optical disk directory.

For each directory argument, odls lists the directory contents; for each file
argument, odls repeats its name and any other information requested. The
output is sorted alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are given, the argu-
ments are first sorted appropriately, but file arguments appear before direc-
tories and their contents.

There are three major listing formats. The default format is to list one
entry per line. The -C and -x options enable multicolumn formats, and the
-In option enables stream output format. To determine output formats for
the -C, -x, and -m options, odls uses the environment variable COLUMNS to
determine the number of character positions available on one output line. If
this variable is not set, the terminfo(4) database is used to determine the
number of columns, based on the environment variable TERM. If this infor-
mation cannot be obtained, 80 columns are assumed.

The following options are available:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are
normally not listed.

-d If an argument is a directory, list only its odpathname (not its con-
tents); of ten used with -1 to obtain the directory’s status.

-C Print multicolumn output with entries sorted down the columns.

-X Print multicolumn output with entries sorted across rather than

down the page.

-m Print in stream output format; files are listed across the page,
separated by commas.

-1 List in long format giving mode, number of links, owner, group, size
in bytes, and last modification time for each file (see below). If the
file is a special file, the size field will contain the major and minor
device numbers rather than a size.

-n Same as -1 except that the owner’s UID and group’s GID numbers are
printed, rather than the associated character strings.
-0 Same as -1 except that the group is not printed.
1

oDLs(1) ODLs(1)

- Same as -1 except that the owner is not printed.

-r Reverse the sort order to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time stamp (latest first) instead of by name. The default is
the last modification time. (See -n and -c.)

-u Use the last access time instead of modification time for sorting (with
the -t option) or printing (with the -1 option).

- Use the last i-node modification time (such as when a file was created
or a mode changed) for sorting (-t) or printing (-1).

-p Put a slash (/) after each file name if the file is a directory.

-F Put a slash (/) after each file name if the file is a directory and put
an asterisk (%) after each file name if the file is executable.

-b Force nongraphics characters in file names to be printed in the octal
\ddd notation.

-q Force nongraphics characters in file names to be printed as the char-
acter ?2.

-i For each file, print the i-number in the first column of the report.

-s Give size in blocks (including indirect blocks) for each entry.

-f Force each argument to be interpreted as a directory and list the

name found in each slot. This option turns on -s; the order is the
order in which entries appear in the directory.

The mode printed under the -1 option consists of ten characters. The first
character may be one of the following:

d The entry is a directory.

b The entry is a block special file.

c The entry is a character special file.

p Theentry is a fifo (“named pipe”) special file.
— The entry is an ordinary file,

The next nine characters are interpreted as sets of three bits each. The first
set refers to the owner’s permissions; the next set refers to permissions of
others in the user group of the file; the last set refers to all others. Within
each set, the three characters indicate permission to read, write, and execute
the file as a program, respectively. Execute permission for a directory is per-
mission to search the directory for a specified file.

odls -1 prints its output as follows:
—rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a lot of information. Reading from
right to left, it is seen that the current directory holds one file, named
part2. Next, the last time the file’s contents were modified was 9:42 AM on
May 16. The file is moderately sized, containing 10,876 characters, or bytes.
The owner of the file, or the user, belongs to the group dev, and the login

07/89

TR i

.

ODLS(1) ODLS(1)

name is smith. The number (in this case 1) indicates the number of links to
file part2, Finally, the row of dashes and letters shows that user, group,
and others have permission to read, write, and execute part2,

The execute (X) symbol occupies the third position of the three-character
sequence. A — in the third position would have indicated a denial of execu-
tion permissions,

The permissions are indicated as follows:

The file is readable.

The file is writable.

The file is executable.

The indicated permission is not granted.

Mandatory locking will occur during access. (The set-group-ID

bit is on and the group execution bit is off.)

The set-user-ID or set-group-ID bit and the corresponding user or

group execution bit are on.

S Undefined bit-state. (The set-user-ID bit is on and the user exe-
cution bit is off.)

t The 1000 (octal) bit, or sticky bit (see chmod(1), and the execu-
tion bit are on,

T The 1000 bit is on and execution is off (undefined bit-state).

"‘le"l

w

For user and group permissions, the third position is sometimes occupied by
a character other than x or —. s, referring to the state of the set-ID bit (the
user’s or the group’s), may also occupy this position. For example, the abil-
ity to assume the same ID as the user during execution is used during login
when the user begins as root but needs to assume the identity stated at login.

In the sequence of group permissions, 1 may occupy the third position. 1
refers to mandatory file and record locking. This permission describes a
file’s ability to allow other files to lock its reading or writing permissions
during access.

For other permissions, the third position may be occupied by t or T. These
refer to the state of the sticky bit and execution permissions.

EXAMPLES

07/89

This example describes a file that the user can read, write, and execute and
that group and others can read:

—IWXr—=—r——

This example describes a file that the user can read, write, and execute; the
group and others can read and execute it. This permission allows the user
presently executing it to assume its user ID during execution:

—IWSI—Xr—Xx

This example describes a file that only the user and group can read and write
and that can be locked during access:

—tw—rwl———

ODLS(1) ODLS(1)

This command will print the names of all files in the current directory,
including those that begin with a dot (.), which normally do not print:

odls -a

This command will provide information such as all files (including non-
printing ones (a)); the i-number, the memory address of the i-nodes associ-
ated with the file, printed in the left-hand column (i); and the size of the
files (in blocks) printed in the column to the right of the i-numbers (s). The
report is printed in the numeric version of the long list, printing the UID
(instead of user name) and GID (instead of group name) numbers associated
with the files.

odls -aisn

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES
/etc/passwd UIDs for 1s -1 and 1s -o
/etc/group GIDs for Is -l and 1s -g
/usr/lib/terminfo/?7/* terminal information database
SEE ALSO

BUGS

odintro(1), odchmod(1).

Unprintable characters in file names may confuse the columnar output
options.

07/89

A R i R BRI

PRy

e,

ODMEKDIR(1) ODMKDIR(1)

NAME
odmkdir - create optical disk directories

SYNOPSIS
odmkdir [-m mode] [-p] oddirectory
DESCRIPTION
odmkdir creates the specified directory on the volume implied by the optical

disk directory name oddirectory. Default permissions as defined by
umask(1) are set on the directory unless the -m option is specified.

Standard entries in a directory (such as the files . for the directory itself and
.. for its parent) are created automatically. odmkdir cannot create these

entries by name. Directory creation requires write permission in the parent
directory.

The owner ID and group ID for the new directories are set to the process’s
user ID and group ID, respectively.

The following options are available:

-m mode Create the directory with the specified protection mode, An
absolute mode is given as an octal number constructed from
the OR of the following modes:

4000 set user ID on execution

20#0 set group ID on execution if #is7,5,3,0r1
enable mandatory locking if # is 6, 4, 2, or O

1000 sticky bit is turned on (see chmod(2))

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0040 read by group

0020 write by group

0010 execute (search) by group

0004 read by others

0002 write by others

0001 execute (search) by others

-p Create the last directory in the path name and any parent
directories in the path that do not exist.

EXAMPLES

Use the following command line to create the subdirectory structure
/1tr/jd/jan on volume development:

odmkdir -p :development:/1tr/jd/jan

SEE ALSO
odintro(1), odrm(1), intro(2).
sh(1), umask(1) in the UNIX System V User's Reference Manual.

07/89 1

ODMKDIR(1) ODMKDIR(1)

DIAGNOSTICS
odmkdir returns exit code O if all directories given in the command line were
created successfully. Otherwise, it displays a diagnostic message and returns
a nonzero exit code.

SRR

2 07/89

T s R e R OSSR SS

ODMV(1) oDMV(1)

NAME
odmv - rename optical disk files or directories

SYNOPSIS
odmv [-f] odpathname ... odtarget

DESCRIPTION
odpathname is moved to odtarget. Odpathname and odtarget can never be
the same. If odtarget is a directory, one or more files are moved to that
directory. If it is a file, its contents are destroyed.
If odmv determines that the target mode forbids writing, it prints the mode
(see odchmod(1)), prompts the user, and reads standard input for one line.
If the line begins with y, the move occurs (if permissible); if not, the com-
mand exits. When the -f option is used or if the standard input is not a ter-
minal, no questions are asked and the move is performed.
odmv will allow odpathname to be a directory. The directory is renamed
only if the two directories have the same parent; odpathname is renamed
odtarget. If odpathname is a file and odtarget is a link to another file with
links, the other links remain and odtarget becomes a new file,

SEE ALSO
odintro(1), odchmod(1), odcp(1), od1n(1), odrm(1).

WARNINGS
If odpathname and odtarget are on different volumes, odmv must copy the
file and delete the original. In this case, any linking relationship with other
files is lost.
Be careful when using shell metacharacters.

07/89 1

e k5 - .

R P SRR

ODPWD(1) ODPWD(1)

NAME
odpwd - display the current default directory used by optical disk com-
mands

SYNOPSIS
odpwd

DESCRIPTION
odpwd displays the current optical disk default path name as defined by
odcd(1). The optical disk commands use this path name when relative path
names are used.

SEE ALSO
odintro(1), odcd(1).

DIAGNOSTICS
“Cannot open ..” and “Read error in ..” indicate possible file system trouble
and should be referred to a CLIX system administrator. odfsck(1M) may be
used to correct the problem.

07/89 1

iy

W s R T - .

()

g

ODRM(1)

NAME

odrm -

SYNOPSIS

ODRM(1)

delete optical disk files

odrm [-f] [-i] odfile ...
odrm -r [-f] [-i] oddirectory [odfile ...]

DESCRIPTION

odrm removes the entries for one or more files from a directory. If an entry
is the last link to the file, the file can no longer be accessed, Removal of a
file requires write permission in its directory, but neither read nor write per-
mission on the file itself.

If a file has no write permission and the standard input is a terminal, the
full set of permissions (in octal) for the file is printed followed by a ques-
tion mark. There is a prompt for confirmation, If the answer begins with y
(for yes), the file is deleted. Otherwise, the file remains. If the standard
input is not a terminal, the command operates as if the -f option is in effect.

Three options apply to odrm:

-f

-r

SEE ALSO

Remove all files (whether write-protected or not) in a directory
without prompting the user. In a write-protected directory, how-
ever, files are never removed (regardless of individual file permis-
sions). If the user attempts to remove a write-protected directory,
the -f option does not suppress an error message.

Recursively remove all directories and subdirectories in the argument
list. Files in the directory will be removed and then the directory
will be removed, The user is normally prompted to remove any
write-protected files the directory contains. However, if the -f
option is used or if the standard input is not a terminal and the -1
option is not used, write-protected files are removed without
prompting.

When removal of a nonempty, write-protected directory Iis

attempted, the command will always fail, resulting in an error mes-
sage.

Interactively confirm removal of each file and directory. This option
overrides the -f option and remains in effect even if the standard
input is not a terminal,

odintro(1), odin(1), odcp(1), odmv(1).

DIAGNOSTICS

All messages are self-explanatory. Removing the files . and .. is forbidden
to avoid the consequences of inadvertently making the following type of
mistake:

01/90

odrm -r::.*

ODRM(1) ODRM(1)

odrm returns exit codes of O if all specified directories are removed success-
fully. Otherwise, a nonzero exit code is returned.

2 01/90

()

()

ODRMDIR(1) ODRMDIR(1)

NAME
odrmdir - delete optical disk directories

SYNOPSIS
odrmdir [—p 1[-s] oddirectory ...

DESCRIPTION
odrmdir removes only empty directories.
Two options apply to odrmdir:

-p Remove the specified directories and their parent directories that
become empty. A message is printed on standard output explaining
whether the whole path was removed or part of the path remains.

-s Suppress the message printed when a standard error occurs and when
-p is in effect.
SEE ALSO
odintro(1), odmkdir(1).

DIAGNOSTICS
All messages are generally self-explanatory. odrmdir returns an exit code of
0 if all specified directories are removed successfully. Otherwise, it returns a
nonzero exit code,

07/89 1

e S e S g e

ODT(1)

NAME

ODT(1)

odt - examine and modifies files

SYNOPSIS
odt file

DESCRIPTION

odt is an interactive program that allows the user to examine and modify the
contents of a file. Both location pointers and contents are displayed in hexa-
decimal format. Input is also interpreted as hexadecimal.

The commands available within odt are:

/

addr/

value<CR>
<LF>

values

<ESC>

Display the current location within the file and the contents
of that location.

Set the current location pointer equal to addr and display
this location.

Set display to byte mode and display current location.

Set display to word mode and display current location.

Set display to long word mode and display current location.
Set the contents of the current location equal to value.
Increment the current location pointer and display location.
Decrement the current location pointer and display location.

Search for value in the file starting at the current location
and display location.

Continue the search for the last number searched for start-
ing at the current location.

Exit from odt.

All changes are made to file immediately, and there is no backup mechanism
for restoring unwanted changes.

WARNINGS

odt is dangerous when used with special files.

12/88

.

PC(1) PC(1)
NAME
pc - Pascal compiler
SYNOPSIS
pec [option ...] fite ...
DESCRIPTION

12/88

pc is the interface to the Green Hills Pascal compiler. Files ending in .p are
assumed to be Pascal source files and are compiled to relocatable object files
whose names are derived by replacing the .p suffix of the source file name
with .0. If no compilation errors are detected, pc will attempt to link the
relocatable objects to produce an executable file. If the linking is successful,
the intermediate object files are deleted.

pc works similarly on files with a .8 suffix. In this case, however, the files are
assumed to be assembly source and the compilation phase is bypassed.

pc will also accept other file types or combinations of file types as input. It
will compile or assemble files that end in .p or .8 and pass the results and/or
other file names to the link editor. When invoking the link editor, pc will
specify -1pc, -1m, and -Ic on the link editor command line,

An executable may be built from separately-compiled source files. However,
only one of the source files may contain a program statement. Variables
may be shared among source files by declaring them at the outermost level in
the files in which they are referenced. A function or procedure defined in one
file may be called from another file provided the caller declares the function
or procedure with an external declaration. The syntax for an external
declaration is identical to the syntax of a forward declaration.

Pascal object files may be linked with C and/or FORTRAN object files. Pascal
passes parameters by value unless the var keyword is used in the formal
parameter declaration. In this case, parameters are passed by reference, C
always passes parameters by value, FORTRAN always passes by reference.
Note that all FORTRAN function, subroutine, and common names are stored
in the symbol table with an underscore (__) appended.

A list of command line options follows.

- Suppress the link edit phase of the compilation and force an object
file to be produced even if only one program is compiled.

-g Cause the compiler to generate additional information needed for the
use of source language debuggers like sdb(1).

C Enable run-time checking of subranges and array bounds.
-ga Generate a frame pointer for stack traces.

-0 file-name
Place the executable binary output from the link edit phase in the
file named file-name. If this option is not specified, the executable file
will be named a.out. This option is ignored if -c or -S is present.

PC(1)

“P

-w
Xn
Zn

PC(1)

Optimize the program for speed at the expense of code space. The
default compiler settings cause Green Hills Pascal to perform most or
all optimizations that other compilers perform only under the -O
option. Experiment with this option to determine whether the addi-
tional code size and compilation time are worth the execution speed
gain.

Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing occurs, replace the
standard startoff routine with one that automatically calls
monitor(3C) at the start and arranges to write out a mon.out file at
normal object program termination. An execution profile can then be
generated by using proA(1).

Compile the program in ANSI-compatible mode. Generate errors
when extensions to the ANSI Pascal standard are used. Using this
option will change the default subrange of the set type from 0-31 to
0-255, resulting in poorer code for set handling.

Compile the named Pascal programs and leave the assembler-
language output on corresponding files suffixed with .8. The assem-
bler and link edit phases are suppressed.

Print the program name and command line arguments of each phase
of the compilation/link process.

Suppress warning diagnostics,
Turn on compile-time option number n.

Turn off compile-time option number n. The available compile-time
options are listed below.

9 Disable the local (peephole) optimizer.

18 Do not allocate programmer-defined local variables to a regis-
ter unless they are declared register,

32 Display the names of files as they are opened. This is useful
for determining why the compiler cannot find an include file,

37 Emit a warning when dead code is eliminated.

39 Do not move frequently-used procedure and data addresses to
registers.

58 Do not put an underscore in front of the names of global
variables and procedures. This option is not recommended
because it produces symbols that are incompatible with the
rest of the CLIX System.

59 Turn off case sensitivity.

87 Disable the optimization that deletes all code that stores in or
modifies variables that are never read from.

12/88

A i

pC(1) pPC(1)
89 Pack structures with no space between members. WARNING:
This may make the structure members impossible to access.
156 Export the names of variables declared in the outermost scope
of a Pascal main program for use in other modules of a
multiple-module executable. The default is for variables
declared in the outer scope of a Pascal main program to be
static and inaccessible from other modules,
168 Do not move invariant floating-point expressions out of loops.
174 Append an underscore to the names of all external procedures
and functions to avoid name conflicts with library routines.
Set by default if -8 is specified.
190 Assume half word objects are not aligned.
191 Assume word objects are not aligned.
192 Assume single-precision objects are not aligned.
193 Assume double-precision objects are not aligned.
194 Assume word objects are aligned only to halfword boun-
daries.
195 Assume single-precision objects are aligned only to halfword
boundaries.
196 Assume double-precision objects are aligned only to half
word boundaries.
197 Assume double-precision objects are aligned only to word
boundaries.
FILES
file.p Pascal source input file
file.o object file; generated or input
/usr/lib/pcom, 1lib/pcom Pascal compiler
/bin/as assembler, as(1)
/bin/1d link editor, 1d(1)
/lib/crt[1n].0 run-time startoff
/lib/mcrt[1n].0 profiling startoff
/ust/1ib/libpc.a, /1ib/libpc.a Pascal intrinsic functions and I/0 library
/1ib/libe.a standard C library, see sections (3C) and
(3S) in the UNIX System V Programmer's
Reference Manual
/1ib/1ibp/libx.a profiled versions of libraries
SEE ALSO

adb(1), as(1), 1d(1), sdb(1).
prof(1) in the UNIX System V Programmer's Reference Manual.
The Greenhills Software Users Manual Pascal-CLIPPER.

12/88

QDEL(1) QDEL(1)

NAME

01/90

qdel - delete or signal NQS requests

qdel [k] [—signo] [-a user-name] request—id[@host] ...

gdel deletes or signals the Network Queuing System (NQS) requests specified
by request-ids. If @host is specified, the host is deleted. Queued and waiting
requests are deleted. Running requests are signaled if the -k or the -signo
options are used. The -k option will send the SIGKILL signal and the -signo
option will send the signal associated with signo to the specified requests.
Routing, arriving, and departing requests are not affected.

To delete or signal an NQS request, the invoking user must be the owner of
the request. The -u option, however, provides a way to avoid this rule. The
-u option specifies requests owned by the user user-name. This option may
be used only if the invoking user is the super-user or has NQS operator
privileges. If a request-id that is not owned by user-name is specified, an
error message will be generated.

Request-id uniquely identifies an NQS request regardless of where the request
is in the network of NQS machines. Reguest-id has the form segno | .host-
namel. Segno identifies the sequence number assigned to the request on the
originating host. Host-name identifies the originating host. If the host-name
portion of a request-id is omitted, the local host is assumed.

The request-id of an NQS request is displayed when the request is first sub-
mitted (unless the silent mode of operation is specified). The user can also
obtain the request-id of any request by using the gstat(1) command.

qdev(1), qlimit(1), qpr(1), gstat(1), gsub(1), setpgrp(2), signal(2).
qmgr(1M) in the CLIX System Administrator’s Reference Manual.
kill(1) in the UNIX System V Programmer's Reference Manual.

When an NQS request is spawned, a new process group is established for all
processes in the request. If the -k or -signo option is used, a signal will be
sent to all processes in the process group. However, if a process successfully
executes a setpgrp(2) call, it will not receive any signals sent by gdel. T he
kill(1) command may be used to delete such processes.

SYNOPSIS
S
=~ DESCRIPTION
AR
g

SEE ALSO

W ARNINGS
e,
S

0)

()

()

.

S

QDEV(1) QDEV(1)

NAME

qdev - display the status of NQS devices

SYNOPSIS

qdev [devicename[@host] ...]

DESCRIPTION

gdev displays the status of Network Queuing System (NQS) devices. gdev,
without any arguments, displays the current status of all NQS devices on the
local host. Otherwise, gdev displays the status of the devices specified by
device-name. If @host is specified, the device located on host is displayed.
The device is assumed to be on the local machine unless a particular host is
specified by @host.

A device header with the following format is displayed for each of the
specified devices:

device-name@host-name
Fullname:

Server:

Forms:

Status=[1;

“Fullname:” lists the full path name of the special file associated with the
device. “Server:” lists the command line that will be used to execve(2) the
device server. “Forms:” lists the forms configured for the device. “Status:”
displays the general state of the device.

The general state of a device is defined by two principal properties. The first
property is whether the device is willing to continue accepting queued
requests. If it is willing, the state of the device is ENABLED. If the device is
unwilling to continue accepting queued requests and is idle, its state is DIS-
ABLED. The state of the device is ENABLED/CLOSED if the device is unwil-
ling to continue accepting queued requests but is not yet idle.

The second principal property of a device is whether the device is busy. If
the device is busy, it is in an ACTIVE state. If the device is idle and not out
of service, it is in an INACTIVE state. If the device is idle and out of service,
it is in a FAILED state. The FAILED state covers both hardware and software
failures.

If a device is busy, information about the active request follows the device
header. The name of the request, the ID of the request, and the name of the
request owner are displayed.

SEE ALSO

01/90

qdel(1), qlimit(1), gpr(1), gstat(1), and gsub(1).
qmgr(1M) in the CLIX System Administrator’'s Reference Manual.

QDEV(1) QDEV(1)

CAVEATS
gdev does not currently support requests to display the status of devices on
remote hosts. If the specified host is not the local host, an error will be gen-
erated.,

2 01/90

0

()

QLIMIT(1) QLIMIT(1)

NAME

qlimit - show supported batch limits and shell strategy for the local host

SYNOPSIS

qlimit

DESCRIPTION

12/88

qlimit displays the batch request resource limits that can be directly
enforced on the local host and the batch request shell strategy for the local
host.

Network Queuing System (NQS) supports many batch request resource limits
that can be applied to an NQS batch request. However, this implementation
does not support the entire set of limits that NQS provides. The limits sup-
ported are a per-process nice value and a per-process file size.

The limits applied to a batch request are always restricted to the limits that
can be directly supported by the underlying implementation. If a batch
request specifies a limit that cannot be enforced by the underlying imple-
mentation, the limit is ignored and the batch request will operate as though
a limit (other than the physical maximums) had not been placed on that
resource.

When an attempt is made to queue a batch request, each limit specified by
the request (that can also be supported by the local implementation) is com-
pared to the corresponding limit for the destination batch queue. If a limit
for a batch queue is defined to be “unlimited” or greater than or equal to the
corresponding limit of the batch request, the request will be successfully
queued (barring other abnormal conditions). If a request specifies a limit of
“infinity”, the corresponding limit for the queue must also be “infinity”.

The limit checks are performed regardless of whether the batch request was
submitted by directly using the gsub(1) command or by indirectly placing
the request in a pipe queue. It is impossible for a batch request to be queued
in an NQS batch queue if any of these limit checks fail.

If a request does not specify a limit that is supported on the local host, the
corresponding limit as configured for the destination queue becomes the limit
for the request.

Upon the successful queuing of a request in a batch queue, the limits under
which the request executes are frozen and are not modified by subsequent
gmgr(1M) commands that alter the limits of the containing batch queue.

As mentioned above, this command also displays the shell strategy as
configured for the local host. Without a shell specification for a batch
request, NQS must choose the shell that should be used to execute the
request. NQS supports three different strategies to solve this problem: fixed,
Jree, and login.

A fixed shell strategy means that all batch requests will be executed using
the shell chosen by the system administrator.

QLIMIT(1) QLIMIT(1)

A free shell strategy means that the batch requests will be run the same as
an interactive invocation of the request would be run,

A login shell strategy means that the batch requests will be executed by the
user’s normal login shell.

The default shell strategy is free. Hosts machines which reach the maximum
number of process’s allowed on the system should use a fixed or login stra-
tegy because a single shell will be exec’d to run all commands in the request
script. glimit will display the chosen shell if the fixed strategy has been
selected.

SEE ALSO
qdel(1), qdev(1), qpr(1), gstat(1), gsub(1).
qmgr(1M) in the CLIX System Administrator’s Reference Manual.

2 12/88

PN

a0

QPR(1)

NAME

QPR(1)

gpr - submit a hardcopy print request to NQS

SYNOPSIS

qpr [optz’on ... [ﬁle ...

DESCRIPTION

01/90

qpr places the named files in a Network Queuing System (NQS) queue to be
printed by a device such as a line printer or a laser printer. If a file is not
specified, gpr reads from stdin.

NQS has queue access restrictions. For each queue with a queue type other
than network, access may be either unrestricted or restricted. If access is
unrestricted, any request may enter the queue. If access is restricted, a
request can enter the queue only if the requester or the requester’s login
group has access to that queue (see gmgr(1M)). Requests submitted by the
super-user are an exception; they are always queued, even if the super-user
has not explicitly been given access. gstat(1l) may be used to determine who
has access to a particular queue.

qpr prints a request ID to stdout when a request is queued successfully.
This request ID can be compared with what is reported by gdev(1) and
gstat(1) to learn the outcome of a request. It can also be given as an argu-
ment to gdel(1) to delete a request. A request ID has the form segno.host-
name, where segno refers to the sequence number assigned to the NQS
request, and host-name refers to the name of the originating machine. This
identifier is used throughout NQS to uniquely identify the request anywhere
in the network.

The following options are available and may be intermixed with file names.

-a date-time
Submit at the specified date and/or time. When this option is not
specified, gpr submits the request immediately.

If a date-time specification is composed of two or more tokens
separated by white space characters, the date-time specification must
be enclosed in quotation marks as in "-a July, 4, 2026 12:31-EDT".
If not specified in quotation marks, the specification should be
escaped so that the shell will interpret the date-time specification as a
single lexical token,

The syntax accepted for the date-time parameter is flexible,
Unspecified date and time values default to an appropriate value.
(For example, if a date is not specified, the current month, day, and
year are assumed.)

A date can be specified as a month and a day (current year assumed).
The year can also be explicitly specified. It is also possible to specify
the date as a weekday name (such as Tues), or as one of the strings
today or tomorrow. Weekday and month names can be abbrevi-
ated by any three-character (or longer) prefix to the actual name.

QPR(1)

QPR(1)

An optional period can follow an abbreviated month or day name.

Time of day specifications can be given using a 24-hour clock or am
and pm specifications may be used alternatively. When a meridian is
not specified, a 24-hour clock is assumed.

The time of day specification is interpreted using the precise meridian
definitions. 12am refers to the 24-hour clock time of 0:00:00; 12m
refers to noon; and 12-pm refers to 24:00:00. Alternatively, the
phrases midnight and noon are accepted as time of day
specifications, where midnight refers to 24:00:00.

A time zone may also appear at any point in the date-time
specification. Thus, "April 1, 1987 13:01-PDT" is a legal
specification. When a time zone is not specified, the local time zone is
assumed, with daylight savings time being inferred when appropriate
based on the date specified.

Not all alphabetic comparisons are case-sensitive. Both WeD and
weD refer to Wednesday.

Examples of valid date-time specifications are as follows:

"01-Jan-1986 12am, PDT"
"Tuesday, 23:00:00"
"11pm tues."

"tomorrow 23-MST"

-d name=value

Define an environment variable name with the given value to be put
in the environment of the device server. This option is specific to
devserver,

-e tag=filename

Associate tag with the filename, export the file to the server machine,
and put tag in the environment of the device server so that the server
can access the ancillary file by looking at the environment variable
tag. This option is specific to devserver.

-f form-name

Limit the set of acceptable devices to devices that are loaded with the
form form-name. When this option is not specified, gpr submits the
request only to a device loaded with the default form. If a default
form is not defined, the request is submitted to the first available
output device without regarding the forms configured for the device.
In any case, only devices associated with the chosen queue are con-
sidered.

-1 message

Log message in the device accounting file if device accounting is
turned on at the destination device queue. This option is specific to
devserver.,

01/90

)

Q)

|

QPR(1)

01/90

QPR(1)

Send mail to the user on the originating machine when the request
begins execution. If the -mu option is also present, mail is sent to
the user specified by the -mu option instead of to the invoking user.

Send mail to the invoking user on the originating machine when the
request has ended execution. If the -mu option is also present, mail
is sent to the user specified by the -mu option instead of to the
invoking user.

-mu user-name

Specify that any mail concerning the request should be delivered to
the user user-name. User-name has the form user [@machine]. When
this option is not specified, any mail concerning the request is sent to
the invoker on the originating machine.

-n number-of-copies

Print number-of-copies copies. The default is 1.

-0 options

Place the following options on the end of the argument list of the
device filter before it is started to process the output file. Since
options is one argument, multiple options must be quoted as one
argument. This option is specific to devserver.

-p priority

Assign an intraqueue priority to this request. The specified priority
must be an integer, and must be in the 0-63 range, inclusive. A
value of 63 defines the highest iniraqueue request priority, while a
value of O defines the lowest. This priority does not determine the
execution priority of the request. This priority is used only to deter-
mine the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position
within the queue so that it appears ahead of all existing requests
with priorities less than the priority of the new request. Similarly,
all requests with a higher priority remain ahead of the new request
when the queuing process is complete. When the priority of the new
request equals the priority of an existing request, the existing request
takes precedence over the new request.

If the user does not choose an intraqueue priority, the value
configured by the system administrator will be used. If a value has
not been configured by the system administrator, a default value of
31 is assigned to the request,.

-q queue-name

Specify the queue to which the device request is to be submitted, If
the —q queue-name specification is not given, the user’s environment is
searched for the variable QPR_QUEUE. If this environment variable
is found, the character string value for QPR_QUEUE is presumed to
be the name of the queue to which the request should be submitted.
If the QPR_QUEUE environment variable is not found, the request is

QPR(1)

QPR(1)

submitted to the default device request queue if one has been defined
by the local system administrator. Otherwise, the request cannot be
queued and an appropriate error message is displayed.

-T request-name

-t type

-X

Assign a name to this request. When the -r option is not specified,
the request-name defaults to the name of the first print file (with the
leading path name removed) specified on the command line. If a
print file was not specified, the default request-name assigned to the
request is stdin,

In all cases, if the request-name begins with a digit, the character R is
prefixed to prevent a request-name from beginning with a digit. All
request-names are truncated to a maximum length of 15 characters.

Delete the original files after NQS is finished with them. This nor-
mally means that the original files are deleted immediately after the
files are successfully copied into the spool directory.

If the -8 is specified with the -R option, the original files will not be
deleted until one of two events occurs. If the file is printed/plotted
locally, the original files are deleted after the job has completed. If
the request is routed to a remote machine, the files are deleted after
the request has been transferred to the remote machine.

The -R option is intended for use with temporary files. Requests
that are deleted or aborted will also cause the original files to be
deleted.

Symbolically link the files into the NQS spool directories rather than
copying them. If the -8 option is used, files submitted should not be
renamed, moved, or deleted until the device request has left the
machine or has completed printing. Using the -8 option speeds up
the submission of very large files because they are not copied into the
spool directory.

Specify that the format of the data is type. This option is specific to
devserver,

When a device request is submitted, the following environment vari-
ables are automatically defined in the environment of the device
server: QPR_HOST, QPR_REQID, QPR_REQNAME, and QPR_QUEUE.
These environment variables refer to the host name the request ori-
ginated from, the request ID, the request name, and the name of the
queue the request eventually executes in, If the -x option is
specified, all remaining environment variables are exported to the
environment of the device server. This option is specific to
devserver.

Submit the request silently. If the request is submitted successfully,

01/90

()

O

QPR(1) QPR(1)

nothing will be written to stdout or stderr.

SEE ALSO
qdel(1), qdev(1), qlimit(1), gstat(1), qgsub(1).
gmgr(1M) in the CLIX System Administrator's Reference Manual.
- mail(1) in the UNIX System V User’'s Reference Manual.

)

01/90 5

()

()

()

QSTAT(1) QSTAT(1)

NAME

gstat - display the status of NQS queues

SYNOPSIS

qstat [-a] [-b] [-d] [-1] [-m] [-p] [-r] [-u user-name] [-x]
[queue-name[@host-name] ...1]

gstat [c] [complex-name ...]

DESCRIPTION

01/90

gstat displays the status of Network Queuing System (NQS) queues. gstat,
without a queue-name argument, displays the current status of all NQS
queues on the local host. Otherwise, gstat displays the status of the queues
specified by queue-name. The queue is assumed to be on the local machine
unless a particular host is specified by @host-name.

gstat normally displays information only about requests in the specified
queues owned by the invoker. This may be changed by one of the following
options.

-a Display the status of all requests in the queue.

-b Restrict the display to batch queues.

-d Restrict the display to device queues.

-p Restrict the display to pipe queues.

-r Recursively display pipe queue destinations. After a pipe

queue is displayed, display each of the respective queues
appearing in the pipe queue’s destination list. This option
should be used with the -b, -d, or -p option to limit the
queues displayed.

-u user-name Display the status only about requests owned by user-name.

For each specified queue, a queue header is displayed. The queue header
displays the queue name, queue type, queue state, an indication of whether
the queue accepts requests only from pipe queues, and the number of
requests in the queue. Additional information about the queue may be
obtained with the -x (extended format) option. This option will display the
queue’s priority, run limit, access restrictions, cumulative use statistics,
server and destinations (if a pipe queue), queue-to-device mappings (if a
device queue), and resource limits (if a batch queue).

The general state of a queue is defined by two principal properties. The first
property determines whether requests can be submitted to the queue. If
they can and the local NQS daemon is present, the state of the queue is
ENABLED. If the local daemon is not present, the queue is in a CLOSED state.
If a request cannot be submitted, it is in a DISABLED state. Requests can be
submitted only when the queue is in the ENABLED state.

The second principal property of a queue determines if requests that are
ready to run but are not running will be allowed to run when running

QSTAT(1) QSTAT(1)

requests complete. It also determines whether any requests are running in
the queue. If queued requests are blocked and no requests are running, the
queue is in a STOPPED state. If queued requests are blocked and at least one
request is running, the queue is in a STOPPING state. In this state, requests
that are running will be allowed to complete. However, no new requests
will be spawned.

If the NQS daemon prevents queued requests from running and at least one
request is running, the queue is in a RUNNING state. If the daemon prevents
queued requests from running and no requests are running, the queue is in
an INACTIVE state. If the daemon is not running but the queue would other-
wise be in the RUNNING or INACTIVE state, the queue is in a SHUTDOWN
state.

Following each queue header, information about requests in the queue is
displayed. For each request, the following information is displayed: the
request name, the request ID, the request owner, the relative request prior-
ity, the current request state, the process group (if the request is running),
and the request size (if a device queue). Additional information may be
obtained with one of the following options:

-1 Display information about requests in long format.
-m Display information about requests in medium-length format.
- Display information about queue complexes.

The -1 option displays the time when the request was created, an indication
of whether mail will be sent, where mail will be sent, the user name on the
originating machine, and the requested forms (if a device queue). If the
queue is a batch queue, resource limits, planned disposition of stderr and
stdout, advice concerning the command interpreter, and the umask(2) value
are also displayed.

The -m option displays the time and date the request will run.

The -¢ option displays information about queue complexes and ignores all
other options. For each queue complex, the run limit and a listing of the
member queues in the complex is shown.

The disposition of a request defines the state of the request. If it is being
queued from a remote host, the state of the request is ARRIVING. If it is sub-
mitted with a time constraint that has not yet arrived, its state is WAITING.
If it is eligible to proceed to a ROUTING or a RUNNING state, it is in a
QUEUED state, If it is at the head of a pipe queue and is receiving service
there, it is in a ROUTING state, If it departed from a pipe queue and has not
yet arrived at its destination, it is in a DEPARTING state, If it reached its
destination and is executing, it is in a RUNNING state,

EXAMPLES

A batch request originating on a workstation and destined for the batch
queue of a remote machine to be run immediately would first undergo the
states, QUEUED, ROUTING, and DEPARTING, in a local pipe queue. The

01/90

()

)

QSTAT(1) QSTAT(1)

request would then leave the pipe queue and be received by a batch queue on
the remote machine. Here, it undergoes the states, ARRIVING, QUEUED, and

RUNNING.
SEE ALSO
o qdel(1), qdev(1), qlimit(1), gpr(1), and qsub(1).
-~ qmgr(1M) in the CLIX System Administrator's Reference Manual.

N

)

01/90 3

()

()

QSUB(1) QSUB(1)

NAME

gsub - submit an NQS batch request

SYNOPSIS

gsub [option ...] [script-file]

DESCRIPTION

12/88

gsub submits a batch request to the Network Queuing System (NQS). If a
script-file is not specified, gsub reads from stdin. All script-files are spooled
so that later changes will not affect previously queued batch requests.

NQS has queue access restrictions. For each queue with a queue type other
than “network”, access may be either ‘“unrestricted” or “restricted”. If
access is “unrestricted”, any request may enter the queue. If access is “res-
tricted”, a request can only enter the queue if the requester or the requester’s
login group has access to that queue (see gmgr(1M)). Requests submitted by
the super-user are an exception; they are always queued, even if the super-
user has not explicitly been given access. gstat(1) may be used to determine
who has access to a particular queue.

gpr prints a request-id to stdout, upon the successful queuing of a request.
This request-id can be compared with what is reported by qdev(1) and
gstat(1) to learn what happened to a request and given as an argument to
qdel(1) to delete a request. A request-id has the form segno.host-name where
seqno refers to the sequence number assigned to the NQS request, and host-
name refers to the name of originating machine. This identifier is used
throughout NQS to uniquely identify the request anywhere in the network.

All of the command line options can also be specified within the first com-
ment block in the batch request script-file as embedded default options. Such
options appearing in the batch request script-file set default characteristics
for the batch request. If the same option is specified on the command line,
the command line option (and any associated value) takes precedence over
the embedded option. The algorithm used to scan for embedded default
options is as follows:

1. Read the first line of the script-file.

2. If the current line contains only white space characters, or the first

nonwhite space character of the line is “:”, go to step 7.

3. If the first nonwhite space character of the current line is not a “#”, go
to step 8.

4. If the second nonwhite space character in the current line is not “@" or
the character immediately following the second nonwhite space charac-
ter in the current line is not “‘$”, go to step 7.

5. If a “-” is not the character immediately following the “@$" sequence,
go to step 8.

6. Process the embedded option, stop the parsing process when the end of
the line or the first unquoted “#" character is reached.

QSUB(1) QSUB(1)

7. Read the next line of the script-file. Go to step 2.
8. End. Embedded options will no longer be recognized.
The following is an example of using embedded options withing a script-file. g

#

Batch request script example:

#

@$-a "11:30pm EDT"

Run request after 11:30 EDT by
default,

@$-mb -me # Send mail at beginning and end of

request execution.

@$-q batchl # Submit request to queue, batchl by

default,

@s # No more embedded options.

#

make all

The following options are available,

-a date-time
Do not run the batch request before the specified date and/or time.

If a date-time specification is composed of two or more tokens
separated by white space characters, the date-time specification must ey
be in double quotes as in: "-a July, 4, 2026 12:31-EDT". If not
specified in double quotes, it should be escaped so that the shell will
interpret the date-time specification as a single lexical token.

The syntax accepted for the date-time parameter is flexible.
Unspecified date and time values default to an appropriate value.
(For example, if a date is not specified, the current month, day, and
year are assumed.)

A date can be specified as a month and a day (current year assumed).
The year can also be explicitly specified. It is also possible to specify
the date as a weekday name (i.e., “Tues”), or as one of the strings
“today” or “tomorrow.” Weekday and month names can be abbre-
viated by any three-character (or longer) prefix to the actual name.
An optional period can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour
clock or “am” and “pm” specifications may be used alternatively.
When a meridian is not specified, a twenty-four hour clock is
assumed.

The time of day specification is interpreted using the precise meridian
definitions. “12am” refers to the twenty-four hour clock time of
0:00:00; “12m” refers to noon; and *“12-pm” refers to 24:00:00,
Alternatively, the phrases “midnight” and “noon” are accepted as
time of day specifications, where “midnight” refers to 24:00:00.

2 12/88

QSUB(1)

12/88

QSUB(1)

A timezone may also appear at any point in the date-time
specification. Thus, it is legal to say: "April 1, 1987 13:01-PDT".
When a timezone is not specified, the local timezone is assumed, with
daylight savings time being inferred when appropriate based on the
date specified.

All alphabetic comparisons are not case-sensitive. Both “WeD” and
“weD” refer to Wednesday.

Examples of valid date-time specifications are:

"01-Jan-1986 12am, PDT"
"Tuesday, 23:00:00"
"11pm tues."

"tomorrow 23-MST"

Send mail to the user on the originating machine when the request
begins execution. If the -mu option is also present, mail is sent to
the user specified by the -mu option instead of to the invoking user.

Send mail to the invoking user on the originating machine when the
request has ended execution. If the -mu option is also present, mail
is sent to the user specified by the -mu option instead of to the
invoking user.

-mu user-name

Specify that any mail concerning the request should be delivered to
the user user-name. User-name has the form user [@machine]. When
this option is not specified, any mail concerning the request is sent to
the invoker on the originating machine,

-p priority

Assign an intraqueue priority to this request. The specified priority
must be an integer, and must be in the range 0-63, inclusive. A
value of 63 defines the highest intraqueue request priority, while a
value of O defines the lowest. This priority does not determine the
execution priority of the request. This priority is only used to deter-
mine the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position
within the queue so that it appears ahead of all existing requests
with priorities less than the priority of the new request. Similarly,
all requests with a higher priority remain ahead of the new request
when the queuing process is complete, When the priority of the new
request equals the priority of an existing request, the existing request
takes precedence over the new request.

If the user does not choose an intraqueue priority, the value
configured by the system administrator will be used. If a value has
not been configured by the system administrator, a default value of
31 is assigned to the request.

QSUB(1) QSUB(1)

-q queue-name .
Specify the queue to which the bat¢h request is to be submitted. If

the -q queue-name specification is not given, the user’s environment is
searched for the variable QSUB_QUEUE. If this environment variable
is found, the character string value for QSUB_QUEUE is presumed to
be the name of the queue to which the request should be submitted.
If the QSUB_QUEUE environment variable is not found, the request is
submitted to the default batch request queue if one has been defined
by the local system administrator. Otherwise, the request cannot be
queued and an appropriate error message is displayed.

-I request-name
Assign a name to this request. When the -r option is not specified,
the request-name defaults to script-file (leading path name removed)
specified on the command line. If a script-file is not specified, the
default reguest-name assigned to the request is stdin.

In all cases, if the request-name begins with a digit, the character “R"”
is prefixed to prevent a request-name from beginning with a digit.
All request-names are truncated to a maximum length of 15 charac-
ters.

-e [machine:] stderrfilename
Direct stderr output generated by the batch request to stderr
Jfilename on machine.

If an explicit machine destination is not specified, the destination
machine defaults to the machine where the batch request originated
or to the machine where the request will eventually be run, depend-
ing on the absence or presence of the -ke option.

If a machine destination is not specified and the stderrfilename does
not begin with a “/”, the current working directory is prefixed to
create a fully-qualified path name, if the -ke option is absent. In all
other cases, any partial stderr-filename is interpreted relative to the
user’s home directory on the stderr destination machine. This
option cannot be specified when the -eo option is present.

If the -eo and -e options are not specified, all stderr output for the
batch request is sent to the file whose name consists of the first seven
characters of the request name followed by the characters “.e”, fol-
lowed by the sequence number portion of the request-id. Without
the -Kke option, the default stderr output file will be placed in the
directory where the request was submitted on the originating
machine. Otherwise, the file will be placed in the user’s home direc-
tory on the execution machine,

-o [machine:] stdout-filename
Direct stdout output generated by the batch request to stdout-
Jfilename on machine.

4 12/88

B A AR S 5P e S S e

QSUB(1)

12/88

QSUB(1)

If an explicit machine destination is not specified, the destination
machine defaults to the machine where the batch request originated
or to the machine where the request will eventually be run, depend-
ing on the absence or presence of the -ko option.

If a machine destination is not specified and the stdout-filename does
not begin with a “/”, the current working directory is prefixed to
create a fully-qualified path name, if the -ko option is absent. In all
other cases, any partial stdout-filename is interpreted relative to the
user’s home directory on the stdout destination machine,

If the -0 option is not specified, all stdout output for the batch
request is sent to the file whose name consists of the first seven char-
acters of the request name followed by the characters “.0”, followed
by the sequence number portion of the request-id. Without the -ko
option, the default stdout output file will be placed in the directory
where the request was submitted on the originating machine. Other-
wise, the file will be placed in the user’s home directory on the exe-
cution machine.

Direct all output, for the batch request, that would normally be sent
to the stderr file to the stdout file. This option cannot be specified
when the -e option is present.

In the absence of an explicit machine destination for the stderr file
produced by a batch request, the destination chosen is the machine
where the batch request originated. The -ke option, however,
instructs NQS to leave any stderr output file produced by the
request on the machine where the batch request was executed.

This option is meaningless if the -eo option is specified and cannot be
specified if an explicit machine destination is given with the -e
option.

In the absence of an explicit machine destination for the stdout file
produced by a batch request, the destination chosen is the machine
where the batch request originated. The -ko option, however,
instructs NQS to leave any stdout output file produced by the
request on the machine where the batch request was executed.

This option cannot be specified if an explicit machine destination is
given with the -0 option.

-If file-size-limit

Set a per-process file size limit for all processes that constitute the
running batch request. If any process in the running request
attempts to write to a file such that the file size exceeds file-size-limit,
that process is terminated by a signal chosen by the underlying
implementation.

The format for file-size-limit is either .fraction[units] or
integer [.fraction}[units] when the limit is a finite limit. If an infinite
limit is needed, the file-size-limit may be specified as ‘““‘unlimited” or

QSUB(1)

QSUB(1)

any initial substring. The integer and fraction portions of a finite
limit may be specified as strings of up to eight decimal digits. The
units may be specified as one of the following case-insensitive
strings.

b -bytes

w -words

kb -kilobytes (2710 bytes)

kw -kilowords (2710 words)

mb -megabytes (2720 bytes)

mw -megawords (2720 words)

gb -gigabytes (2730 bytes)

gw -gigabytes (2°30 words)
‘When units are not specified, bytes are assumed. If the limit is set to

“unlimited”, the only limitations imposed are those of the physical
hardware involved.

-In nice-value

-nr

Set a per-process nice value for all processes in the running batch
request.

A nice value determines the execution-time priority of a process rela-
tive to all other processes in the system. By letting the user set a
limit on the nice value for all processes in the running request, a user
can cause a request to consume less (or more) of the CPU resources.

Increasingly negative nice values cause the relative execution priority
of a process to increase, while increasingly positive nice values cause
the relative priority to decrease. Thus, “~1n -10" has a higher execu-
tion priority than “-ln 0",

The nice-value must be acceptable to the batch queue in which the
request is ultimately placed.

NQS will, by default, restart, upon system boot, any request that
were running at the time of an NQS shutdown or system crash. The
-Ir option will, however, not restart any request that were running.
Requests that were not running are always preserved.

-8 shell-name

-X

Specify the absolute path name for the shell that will interpret the
batch request script. This option unconditionally overrides any shell
strategy configured on the execution machine. When this option is
not specified, the NQS system on the execution machine will use one
of three shell strategies, fixed, free, or login (see qlimit(1) for a
description of the shell strategies), to determine the shell that will be
used,

When a batch request is submitted, the current values of the follow-
ing environment variables are automatically exported: HOME, SHELL,
PATH, LOGNAME, MAIL, and TZ. When the batch request is spawned,
these variables are re-created respectively as the environment

12/88

s,

S

QSUB(1)

12/88

QSUB(1)

variables QSUB_HOME, QSUB_SHELL, QSUB_PATH, QSUB_LOGNAME,
QSUB_MAIL, and QSUB_TZ If the -x option is specified, all remain-
ing environment variables, with names that do not conflict with the
automatically-exported variables, are also exported. When the batch
request is spawned, these additional variables are re-created under
the same name.

Submit the batch request silently. If the request is submitted suc-
cessfully, messages are not displayed indicating this fact. Error mes-
sages will, however, always be displayed.

The following sequence of events takes place when an NQS batch request is
spawned.

1.

2,
3.

10.

11.

The process that will head the process group for all processes compos-
ing the batch request is created by NQS.

Resource limits are enforced.

The real and effective group ID’s of the process are set to the group ID as
defined in the local password file of the request owner.

The real and effective user ID’s of the process are set to the real user ID
of the batch request owner.

The user file creation mask is set to the value that the user had on the
originating machine when the batch request was submitted.

The shell with which to execute the batch request script is chosen.

The environment variables HOME, SHELL, PATH, LOGNAME, and MAIL
are set from the user’s password file entry as though the user had
logged directly into the execution machine,

The environment string: ENVIRONMENT=BATCH is added to the
environment so that shell scripts (and the user’s .profile (Bourne shell)
or .cshrc and .login (C-shell) scripts) can test for batch request execu-
tion when appropriate and not set any terminal characteristics, since a
batch request is not connected to an input terminal.

The environment variables QSUB_WORKDIR, QSUB__HOST,
QSUB_REQNAME, and QSUB_REQID are added to the environment.
These environment variables equal the respective strings of the work-
ing directory when the request was submitted, the name of the ori-
ginating host, the name of the request, and the id of the request.

All remaining environment variables saved for re-creation when the
batch request is spawned are added at this point to the environment.

The current working directory is then set to the user’s home directory
on the execution machine and the chosen shell is exec’d. If the Bourne
shell is chosen, the .profile is read. If the C-shell is chosen, the .cshrc
and .ogin scripts are read. The batch request is then executed with
the environment as constructed in the steps outlined above.

QsUB(1) QsUB(1)

SEE ALSO
qdel(1), qdev(1), qlimit(1), qpr(1), gstat(1), setpgrp(2), signal(2).
qmgr(1M) in the CLIX System Administrator’s Reference Manual.
kill(2) in the UNIX System V Programmer Reference Manual.
mail(1) in the UNIX System V User’s Reference Manual.

NOTES

When an NQS batch request is spawned, a new process group is established so
that all processes of the request exist in the same process group. If the
gdel(1) command is used to send a signal to an NQS batch request, the signal
is sent to all processes of the request in the created process group. However,
if one or more processes of the request successfully executes a setpgrp(2)
system call, the processes will not receive signals sent by the gdel(1) com-
mand. The kill(1) command may be used to delete such processes.

All processes of an NQS request should catch SIGTERM signals. By default,
the receipt of a SIGTERM signal causes the receiving process to die. NQS sends
a SIGTERM signal to all processes in the established process group for a batch
request as a notification that the request should be prepared to be killed.

The spawned shell ignores SIGTERM signals. If the current immediate child
of the shell does not ignore or catch SIGTERM signals, it will be killed by the
receipt of such and the shell will proceed to execute the next command from
the script (if there is one). In any case, the shell will not be killed by the
SIGTERM signal, though the executing command will have been killed.

After receiving a SIGTERM signal delivered from NQS, a process of a batch
request typically has 60 seconds before receiving a SIGKILL signal (the 60-
second duration can be changed by the operator).

A sufficient method to echo commands executed by unmodified versions of
the Bourne shell and C-shell are not available. While the C-shell can be
spawned so that it echoes the commands it executes, it is often difficult to
distinguish an echoed command from output produced by the batch request
because a magic character such as a “$” is not displayed in front of the
echoed command. The Bourne shell does not support any echo option. Thus,
one of the better ways to write the shell script for a batch request is to place
lines in the shell script of the form:

echo "explanatory-message”

CAVEATS
Network queues have not yet been implemented.

In this implementation, it is not possible to see the stderr or stdout files
produced by the batch request while the request is running unless the -re
and -ro options have been respectively specified.

3 12/88

R LA B S

RATFOR(1) RATFOR(1)

NAME
ratfor - rational FORTRAN dialect

SYNOPSIS
ratfor [-h] [-C] [-6x] [file ...]
DESCRIPTION
ratfor converts a rational dialect of FORTRAN into ordinary irrational FOR-
TRAN. Ratfor provides control flow constructs essentially identical to those
in C:
statement grouping: { statement; statement; statement }

decision-making: if (condition) statement [else statement]
switch (integer-expression) {
case integer-expression: statement

[default:] statement

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

and some syntactic sugar to make programs easier to read and write:

free form input: ; - multiple statements/line
automatic continuation

comments: # this is a comment.

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define: define name replacement
include: include file

The option -h causes quoted strings to be turned into 27H constructs. The
-C option copies comments to the output and attempts to format it neatly.
Normally, continuation lines are marked with a & in column 1; the option
-6x makes the continuation character x and places it in column 6.

ratfor is best used with f77(1).

SEE ALSO
efi(1), £77Q1).

12/88 1

S

e

s,

RCMD(1) RCMD(1)

NAME

remd - remote command

SYNOPSIS

remd host [-1 user-name] [-n] [command]

DESCRIPTION

FILES

rcmd connects to the specified host and executes the specified command.
remd copies its standard input to the remote command, the standard output
of the remote command to its standard output, and the standard error of the
remote command to its standard error. Interrupt, quit, and terminate signals
are propagated to the remote command; rcmd normally terminates when the
remote command does.

The remote user name used is the same as the local user name, unless a
different remote name is specified with the -1 option. This remote name
must be equivalent to the originating account; no provision is made for
specifying a password with a command. If no input to the remote command
is desired, the -n option is used to redirect stdin of rcmd to /dev/null.

If command is omitted, instead of executing a single command, the remote
host will be logged in to using rlogin(1).

Unquoted shell metacharacters are interpreted on the local machine, while
quoted metacharacters are interpreted on the remote machine. Thus the
command

rcmd otherhost cat remote-file > > local-file
appends the remote file remote-file to the local file local-file, while
rcmd otherhost cat remote-file "> > " other-remote-file
appends the remote file remote-file to the other remote file other-remote-file.

Host names are given in the file /etc/hosts. Each host has one standard
name (the first name given in the file), which is long and unambiguous and
optionally one or more nicknames.

/etc/hosts

SEE ALSO

BUGS

12/88

rlogin(1).

An interactive command (like vi(1)) cannot be run and rlogin(1) cannot be
used.

“Stop” signals stop the local rcmd process only; this is arguably wrong, but
currently hard to fix for reasons too complicated to explain here.

R 8

.

RCP(1) RCP(1)

NAME
rcp - remote file copy

SYNOPSIS
rcp [-p] filel file2
rcp [-p] [-r] fite ... directory

DESCRIPTION
rcp copies files between machines. Each file or directory argument is either a
remote file name of the form rhost:path or a local file name (either contain-
ing no ““:” characters or having a “\”” before any ‘“:").
If the -r option is specified and any of the source files are directories, rcp
copies each subtree rooted at that name. In this case, the destination must be
a directory.
By default, the mode and owner of file2 are preserved if it already existed.
Otherwise, the mode of the source file modified by the umask(1) on the desti-
nation host is used. The -p option attempts to preserve (duplicate) in the
copies the modification times and modes of the source files, ignoring the
umask(1).
If file is not a full path name, it is interpreted relative to the login directory
on the remote host. A file on a remote host may be quoted (using \, ", or ’)
so that the metacharacters are interpreted remotely.
rcp does not prompt for passwords. The remote user name is assumed to be
the same as the local user name unless the remote file argument has the form
ruser@rhost:path.

SEE ALSO
ftp(1), remd(1), rlogin(1).
cp(1), umask(1) in the UNIX System V User’s Reference Manual.

BUGS
rcp does not detect all cases where the target of a copy might be a file when
only a directory should be legal.
rcp is confused by any output generated by commands in a .login, .profile,
or .cshrc file on the remote host.

12/88 1

i,

RCS(1)

NAME

RCS(1)

rcs - change RCS file attributes

SYNOPSIS

rcs [option ...] file ...

DESCRIPTION

rcs creates new Revision Control System (RCS) files or changes attributes of
existing ones. An RCS file contains multiple revisions of text, an access list, a
change log, descriptive text, and some control attributes. For rcs to work,
the caller’s login name must be on the access list unless the access list is
empty, the caller is the owner of the file or the super-user, or the -i option is

present.

Files ending in “,v" are RCS files. All others are working files. If a working
file is given, rcs tries to find the corresponding RCS file first in directory
/RCS and then in the current directory as explained in co(1).

-i

-alogins
-Aoldfile

—e[logins]

-blrev]

-Cstring

-1[rev]

—ulrev]

12/88

Creates and initializes a new RCS file, but does not deposit
any revision. If the RCS file has no path prefix, rcs tries to
place it first in the subdirectory ./RCS and then in the
current directory. If the RCS file exists, an error message is
printed.

Appends the login names appearing in the comma-separated
list logins to the access list of the RCS file.

Appends the access list of oldfile to the access list of the RCS
Sile.

Erases the login names appearing in the comma-separated list
logins from the access list of the RCS file. If logins is omit-
ted, the entire access list is erased.

Sets the default branch to rev. If rev is omitted, the default
branch is reset to the (dynamically) highest branch on the
trunk.

Sets the comment leader to string. The comment leader is
printed before every log message line generated by the key-
word Log during checkout (see co(1)). This is useful for
programming languages without multiline comments. Dur-
ing initial checkin, the comment leader is determined from
the suffix of the working file.

Locks the revision with number rev. If a branch is given,
the latest revision on that branch is locked. If rev is omit-
ted, the latest revision on the default branch is locked.
Locking prevents overlapping changes. A lock is removed
with ci(1) or rcs -u (see below).

Unlocks the revision with number rev. If a branch is given,
the latest revision on that branch is unlocked. If rev is

RCS(1)

-nnamel[:rev]

-Nname{:rev]

-oran ge

-q
-sstate[:rev]

-t[txtfile]

RCS(1)

omitted, the most recent lock held by the caller is removed.
Otherwise, the most recent lock is broken. Normally, only
the locker of a revision may unlock it. Somebody else
unlocking a revision breaks the lock. This sends a mail mes-
sage to the original locker. The message contains a commen-
tary solicited from the breaker. The commentary is ter-
minated with a line containing a single ““.” or <CONTROL >-
D.

Sets locking to strict, Strict locking means that the owner of
an RCS file is not exempt from locking for checkin. This
option should be used for shared files.

Sets locking to nonstrict. Nonstrict locking means that the
owner of a file need not lock a revision for checkin. This
option should not be used for shared files. The default (-L
or -U) is determined by the system administrator.

Associates the symbolic name name with the branch or revi-
sion rev. rcs prints an error message if name is already asso-
ciated with another number. If rev is omitted, the symbolic
name is deleted.

Same as -n, except that it overrides a previous assignment of
name.

Deletes (“‘outdates”) the revisions given by range. A range
consisting of a single revision number denotes that revision.
A range consisting of a branch number denotes the latest
revision on that branch. A range with the form revI-rev2
represents revisions revl to rev2 on the same branch, -rev
represents the beginning of the branch containing rev up to
and including rev, and rev- represents revision rev to the end
of the branch containing rev. None of the outdated revisions
may have branches or locks.

Quiet mode. Diagnostics are not printed.

Sets the state attribute of the revision rev to state. If rev is a
branch number, the latest revision on that branch is
assumed. If rev is omitted, the latest revision on the default
branch is assumed. Any identifier is acceptable for state. A
useful set of states is Exp (for experimental), Stab (for
stable), and Rel (for released). By default, ci(1) sets the
state of a revision to Exp.

Writes descriptive text to the RCS file. (Deletes the existing
text.) If txtfile is omitted, rcs prompts the user for text sup-
plied from the standard input, terminated with a line con-
taining a single “.” or <CONTROL>-D, Otherwise, the
descriptive text is copied from the file txtfile. If the -i
option is present, descriptive text is requested even if -t is

12/88

R A S SR

)

RCS(1) RCS(1)

not given. The prompt is suppressed if the standard input is
not a terminal.

FILES
The caller of the command must have read/write permission for the direc-
tory containing the RCS file and read permission for the RCS file itself. rcs
creates a semaphore file in the same directory as the RCS file to prevent
simultaneous update, For changes, rcs always creates a new file, On suc-
cessful completion, rcs deletes the old one and renames the new one. This
strategy makes links to RCS files useless.

SEE ALSO
co(1), ci(1), ident(1), resclean(1), resdiff(1), resmerge(1), rlog(1), resfile(4),
scestores(1).
Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS
The RCS file name and the revisions outdated are written to the diagnostic
output. The exit status always refers to the last RCS file operated on, and is
0 if the operation was successful and 1 otherwise.

IDENTIFICATION
Author: Walter F. Tichy,

Purdue University, West Lafayette, IN 47907,
Copyright © 1982 by Walter F. Tichy.

12/88 3

S

A S SR 5

Ay

g,

RCSCLEAN(1) RCSCLEANQ1)

NAME
rcsclean - clean up working files

SYNOPSIS
rcsclean [-rrev] [q fite ...

DESCRIPTION
rcsclean removes working files that were checked out and never modified.
For each file given, rcsclean compares the working file and a revision in the
corresponding Revision Control System (RCS) file. If it finds no difference, it
removes the working file, and, if the revision was locked by the caller,
unlocks the revision,

A file name ending in *“,v”’ is an RCS file name. Otherwise, it is a working file
name. rcsclean derives the working file name from the RCS file name and
vice versa, as explained in co(1). Pairs consisting of both an RCS and a
working file name may also be specified.

Rev specifies the revision the working file is compared to. If rev is omitted,
rcsclean compares the working file to the latest revision on the default
branch (normally the highest branch on the trunk). The option —q
suppresses diagnostics.

resclean is useful for “clean” targets in makefiles. Note that rcsdiff(1)
prints the differences. Also, ci(1) normally asks whether to check in a file if
it was not changed.

EXAMPLES
The command

resclean *.c x.h

% 9

removes all working files ending in “.c” or *“.h” that were not changed since
their checkout.

SEE ALSO
co(1), ci(1), ident(1), rcs(1), resdiff(1), resmerge(1), rlog(1), resfile(4).

DIAGNOSTICS
The exit status is O if there were no differences during the last comparison or
if the last working file did not exist, 1 if there were differences, and 2 if
there were errors.

IDENTIFICATION
Author: Walter F. Tichy,

Purdue University, West Lafayette, IN 47907,
Copyright © 1982 by Walter F. Tichy.

12/88 1

i,

A O 5

RCSDIFF(1) RCSDIFF(1)

NAME
rcsdiff - compare RCS revisions

SYNOPSIS
rcsdiff [-b] [-cefhn] [q] [-rrevi] [-rrev2] fite ...

DESCRIPTION
resdiff compares two revisions of each Revision Control System (RCS) file
given. A file name ending in “,v”’ is an RCS file name; otherwise, it is a
working file name. rcsdiff derives the working file name from the RCS file
name and vice versa, as explained in co(1). Pairs consisting of an RCS and a
working file name may also be specified.

Except for -b, -q and -r, which may be used with any other options, the fol-
lowing options are mutually exclusive.

-e Produces a script of a, c and d commands for the editor ed(1), which
will recreate file2 from filel. In connection with -e, the following
shell program may help maintain multiple versions of a file, Only
an ancestral file (§1) and a chain of version-to-version ed(1) scripts
($2, $3, ...) made by di{(1) need be available. A “latest version”
appears on the standard output.

(shift; cat $*; echo ’L,$p’) | ed - $1

Extra commands are added to the output when comparing directories
with -e so that the result is a sh(1) script for converting text files
common to the two directories from their state in dirl to their state
in dir2.

-f Produces a script similar to that of -e, not useful with ed(1), and in
the opposite order.

-c[#] Produces a dif(1) with lines of context. The default is to present 3
lines of context and may be changed (for example to 10) by -c10.
With -c, the output format is modified slightly: the output begins by
identifying files involved and their creation dates, and then each
change is separated by a line with 12 s, The lines removed from
filel are marked with “— *’; those added to file2 are marked “+ .
Lines changed from one file to the other are marked in both files with
‘(! ”.

Changes that are in context lines of each other are grouped on out-
put. (This is a change from the previous “diff -c”, but the resulting
output is usually much easier to interpret.)

-h Does a fast, less thorough job. It works only when changed stretches
are short and well separated, but does work on files with unlimited

length,
-n Generates an edit script of the format used by RCS.
-q Suppresses diagnostic output.

12/88 1

RCSDIFF(1) RCSDIFF(1)

-b Causes trailing blanks (spaces and tabs) to be ignored, and other
strings of blanks to compare equally.

-r If revl and rev2 are omitted, rcsdiff compares the latest revision on
the default branch (normally the highest branch on the trunk) with
the contents of the corresponding working file. This is useful for
determining what was changed since the last checkin,

If rev1 is given, but rev2 is omitted, rcsdiff compares revision revl of
the RCS file with the contents of the corresponding working file.

If revl and rev2 are given, rcsdiff compares revisions revl and rev2
of the RCS file.

Rev! and rev2 may be given numerically or symbolically, and may
actually be attached to any of the options.

EXAMPLES
The command

resdiff f.c

produces differences on the latest revision on the default branch of RCS file
f.c,v and the contents of working file f.c.

SEE ALSO
ci(1), co(1), ident(1), rcs(1), resclean(1), rcsmerge(1), rlog(1), resfile(4).
Walter F. Tichy, ‘“Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software, IEEE, Tokyo, Sept. 1982,

DIAGNOSTICS
The exit status is O if there were no differences during the last comparison, 1
if there were differences, and 2 if there were errors.

IDENTIFICATION
Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright © 1982 by Walter F. Tichy.

2 12/88

S A R A e

RCSMERGE(1) RCSMERGE(1)

NAME

rcsmerge - merge RCS revisions

SYNOPSIS

rcsmerge -rrevl [-rrev2] [-p] file

DESCRIPTION

rcsmerge incorporates the changes between revl and rev2 of a Revision Con-
trol System (RCS) file into the corresponding working file. If -p is given, the
result is printed on the standard output. Otherwise, the result overwrites
the working file,

A file name ending in “,v” is an RCS file name; otherwise, it is a working file
name. rcsmerge derives the working file name from the RCS file name and
vice versa, as explained in co(1). A pair consisting of an RCS and a working
file name may also be specified.

Revl may not be omitted. If rev2 is omitted, the latest revision on the
default branch (normally the highest branch on the trunk) is assumed. Revl
and rev2 may be given numerically or symbolically.

rcsmerge prints a warning if there are overlaps and delimits the overlapping
regions as explained in the co(1) -j option. The command is useful for incor-
porating changes into a checked-out revision.

EXAMPLES

Suppose revision 2.8 of f.c has just been released. Revision 3.4 has just been
completed when updates to release 2.8 are received from someone else. To
combine the updates to 2.8 and the changes between 2.8 and 3.4, put the
updates to 2.8 in file f.c and execute the following:

rcsmerge -p -r2.8 -13.4 f.c >f.merged.c

Then, examine f.merged.c. Alternatively, to save the updates to 2.8 in the
RCS file, check them in as revision 2.8.1.1 and execute co -j:

ci-r2.8.1.1f.c
co -13.4 -j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes between
revision 2.4 and 2.8 in the currently-checked-out revision in f.c.

rcsmerge -12.8 -12.4 f.c
Note the order of the arguments and that f.c will be overwritten.

SEE ALSO

BUGS

12/88

ci(1), co(1), merge(1), ident(1), rcs(1), resclean(1), resdiff (1), rlog(1),
resfile(4).

Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

6 9
.

rcsmerge does not work with files that contain lines with a single *.

RCSMERGE(1) RCSMERGE(1)

IDENTIFICATION
Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907,
Copyright © 1982 by Walter F. Tichy.

12/88

RESTORE(1) RESTORE(1)

NAME
restore - incremental file system restore

SYNOPSIS
/etc/restore key [name ...]

DESCRIPTION

restore teads tapes backed up with the backup(1) command.’ Its actions are
controlled by the key argument. The key is a string of characters containing
at most one function letter and possibly one or more function modifiers.
Other arguments to the command are file or directory names specifying the
files to be restored. Unless the h key is specified (see below), the appearance
of a directory name refers to the files and (recursively) subdirectories of that
directory.

The function portion of the key is specified by one of the following letters:

r The tape is read and loaded in the current directory. This should not
be done lightly; the r key should only be used to restore a complete
backup tape on a clear file system or to restore an incremental
backup tape after a full-level O restore. Thus

mkfs 3000 /dev/dsk/sOuOp7.4
mount /dev/dsk/sOu0p7.4 /mnt
cd /mnt

restore r

is a typical sequence to restore a complete backup. Another restore
can be done to put an incremental backup on top of this. Note that
restore leaves a file restoresymtab in the root directory to pass
information between incremental restore passes. This file should be
removed when the last incremental tape has been restored.

A backup(1) followed by a mkfs(1) and a restore is used to change
the size of a file system.

R restore requests a particular tape of a multivolume set to restart a
full restore (see the r key above). This allows restore to be inter-
rupted and then restarted.

X The named files are extracted from the tape. If the named file
matches a directory whose contents were written to the tape and the
h key is not specified, the directory is recursively extracted. The
owner, modification time, and mode are restored (if possible). If no
file argument is given, the root directory is extracted, which results
in the entire contents of the tape being extracted unless the h key
was specified.

t The names of the specified files are listed if they occur on the tape.
If no file argument is given, the root directory is listed, which results
in the entire contents of the tape being listed unless the h key has
been specified.

12/88 1

RESTORE(1)

RESTORE(1)

This mode allows files to be interactively restored from a backup
tape. After reading the directory information from the tape, restore
provides a shell-like interface that allows the user to move around
the directory tree, selecting files to be extracted. The available com-
mands are given below; for the commands that require an argument,
the default is the current directory.

1s [dir]

cd dir
pwd

add [arg]

delete [arg]

extract

setmodes

verbose

help

List the current or specified directory. Entries that are
directories are appended with a *“/”’. Entries that have
been marked for extraction are prepended with a “s”,
If the verbose key is set, the i-node number of each
entry is also listed.

Change the current working directory to the specified
argument.,

Print the full path name of the current working direc-
tory.

The current directory or specified argument is added to
the list of files to be extracted, If a directory is
specified, it and all its descendants are added to the
extraction list (unless the h key is specified on the com-
mand line). Files on the extraction list are prepended
with a “*” when they are listed by Zs(1).

The current directory or specified argument is deleted
from the list of files to be extracted. If a directory is
specified, it and all its descendants are deleted from the
extraction list (unless the h key is specified on the com-
mand line). The most expedient way to extract most
files from a directory is to add the directory to the
extraction list and then delete the files that are not
needed.

All files on the extraction list are extracted from the
backup tape. restore will ask which volume the user
wishes to mount. The fastest way to extract a few files
is to start with the last volume and work toward the
first volume,

All directories added to the extraction list have their
owner, modes, and times set; nothing is extracted from
the tape. This is useful for cleaning up after a restore
has been prematurely aborted.

The sense of the v key is toggled. When set, the ver-
bose key causes the 1s command to list the i-node
numbers of all entries. It also causes restore to print
information about each file as it is extracted.

List a summary of the available commands.

12/88

S S R

RESTORE(1) RESTORE(1)

quit restore immediately exits even if the extraction list is
not empty.

The following characters may be used in addition to the letter that selects
the function desired,

b The next argument to restore is used as the block size of the tape (in
kilobytes). If the -b option is not specified, restore tries to determine
the tape block size dynamically.

f The next argument to restore is used as the name of the archive
instead of /dev/rmt/Om. rtc(1) can be used to restore tapes from a
remote tape device. If the name of the file is ““-”, restore reads from
standard input. Thus, backup(1l) and restore can be used in a pipe-
line to backup and restore a file system with the following com-
mand:

backup Of - /usr | (cd /mnt; restore xf -)

v Normally restore works silently. The v (verbose) key causes it to
type the name of each file it treats preceded by its file type.

y restore will not ask whether it should abort the restore if it gets a
tape error. It will always try to skip the bad tape block(s) and con-
tinue.

m restore will extract by i-node numbers rather than by file name.
This is useful if only a few files are being extracted to avoid regen-
erating the complete path name to the file.

h restore extracts the actual directory, rather than the files that it
references. This prevents hierarchical restoration of complete sub-
trees from the tape.

s The next argument to restore is a number that selects the file on a
multifile backup tape. File numbering starts at 1.
FILES
/dev/rmt/Om the default tape drive
/tmp/rstdirs file containing directories on the tape
/tmp/rstmodex owner, mode, and time stamps for directories
./restoresymtab information passed between incremental restores
SEE ALSO

backup(1), rtc(1).

newfs(1M), mount(1M) in the CLIX System Administrator's Reference

Manual.

mkfs(1M) in the UNIX System Administrator's Reference Manual.
DIAGNOSTICS

Complains about bad key characters.

Complains if it gets a read error. If y has been specified or the user responds
‘“y", restore will attempt to continue the restore.

12/88 3

RESTORE(1) RESTORE(1)

BUGS

If the backup extends over more than one tape, restore will ask the user to
change tapes. If the x or i key has been specified, restore will also ask which
volume the user wishes to mount. The fastest way to extract a few files is to
start with the last volume and work toward the first volume,

Numerous consistency checks can be listed by restore, Most checks are self-
explanatory or can “never happen”. Common errors are given below,

File-name: not found on tape
The specified file-name was listed in the tape directory, but was not
found on the tape. This is caused by tape read errors while looking
for the file and from using a backup tape created on an active file
system.

Expected next file inumber, got inumber
A file that was not listed in the directory appeared. This can occur
when using a backup tape created on an active file system.

Incremental tape too low
When performing incremental restore, a tape that was written before
the previous incremental tape or that has an incremental level that is
too low was loaded.

Incremental tape too high
When performing incremental restore, a tape that does not begin its
coverage where the previous incremental tape left off, or that has an
incremental level that is too high was loaded.

Tape read error while restoring file-name

Tape read error while skipping over i-node inumber

Tape read error while trying to resynchronize
A tape read error occurred. If a file name is specified, its contents are
probably partially wrong. If an i-node is being skipped or the tape is
trying to resynchronize, no extracted files have been corrupted,
though files may not be found on the tape.

Resync restore, skipped num blocks
After a tape read error, restore may need resynchronize. This mes-
sage lists the number of blocks that were skipped.

restore can become confused when performing incremental restores from
backup tapes made on active file systems.

A level zero backup must be performed after a full restore. Because restore
runs in user code, it cannot control i-node allocation; thus, a full restore
must be performed to get a new set of directories. These directories reflect
the new i-node numbering even though the file contents are unchanged.

12/88

g

RLOG(1) RLOG(1)

NAME

rlog - print log messages and other information about RCS files

SYNOPSIS

rlog [option ...] file ...

DESCRIPTION

12/88

rlog prints information about Revision Control System (RCS) files. Files
ending in “,v” are RCS files; all others are working files. If a working file is
given, rlog searches for the corresponding RCS file first in directory ./RCS and
then in the current directory, as explained in co(1).

rlog prints the following information for each RCS file: RCS file name, work-
ing file name, head (i.e., the number of the latest revision on the trunk),
default branch, access list, locks, symbolic names, suffix, total number of
revisions, number of revisions selected for printing, and descriptive text.
This is followed by entries for the selected revisions in reverse chronological
order for each branch. For each revision, rlog prints revision number, author,
date/time, state, number of lines added/deleted (with respect to the previous
revision), locker of the revision (if any), and log message. Without options,
rlog prints complete information. The options below restrict this output.

-L Ignores RCS files that have no locks set; convenient when com-
bined with -R, -h, or -1.

-R Prints only the RCS file name; convenient for translating a
working file name into an RCS file name.

-h Prints only the RCS file name, working file name, head, default
branch, access list, locks, symbolic names, and suffix,

-t Prints the same as -h, plus the descriptive text.

-b Prints information about the revisions on the default branch

(normally the highest branch on the trunk).

~-ddates Prints information about revisions with a checkin date/time in
the ranges given by the semicolon-separated list of dates. A
range with the form d1<d2 or d2>d1 selects the revisions
deposited between dI and d2 (inclusive). A range with the
form <d or d> selects all revisions dated d or earlier. A
range with the form d < or >d selects all revisions dated d or
later. A range with the form d selects the single, latest revi-
sion dated d or earlier. The date/time strings d, d1, and d2 are
in the free format explained in co(1). Quoting is normally
necessary, especially for < and >. Note that the separator is
a semicolon.

-1[tockers] Prints information about locked revisions. If the comma-
separated list lockers of login names is given, only the revi-
sions locked by the given login names are printed. If the list is
omitted, all locked revisions are printed.

RLOG(1) RLOG(1)

-rrevisions Prints information about revisions given in the comma-
separated list revisions of revisions and ranges. A range
revl-rev2 indicates revisions revl to rev2 on the same branch;
-rev indicates revisions from the beginning of the branch up to
and including rev; and rev- indicates revisions starting with
rev to the end of the branch containing rev. An argument that
is a branch indicates all revisions on that branch. A range of
branches indicates all revisions on the branches in that range.

-Sstates Prints information about revisions whose state attributes
match one of the states given in the comma-separated list
states.

-w[logins] Prints information about revisions checked in by users with
login names appearing in the comma-separated list logins. If
logins is omitted, the user’s login is assumed.

rlog prints the intersection of the revisions selected with options -d, -1, -s,
and -w, intersected with the union of the revisions selected by -b and -r.

EXAMPLES
rlog -L -R RCS/x,v
rlog -L -h RCS/»,v
rlog -L -1 RCS/*,v
rlog RCS/*,v

The first command prints the names of all RCS files that have locks in the
subdirectory RCS. The second command prints the headers of those files,
and the third prints the headers plus the log messages of the locked revi-
sions. The last command prints complete information.

SEE ALSO
ci(1), co(1), ident(1), res(1), resclean(1), resdiff(1), resmerge(1), resfile(4),
scestores(1).
Walter F, Tichy, “Design, Implementation, and Evaluation of a Revision
Control System,” in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS

The exit status always refers to the last RCS file operated on and is O if the
operation was successful, 1 otherwise.

IDENTIFICATION
Author: Walter F. Tichy,
Purdue University, West Lafayette, IN 47907.
Copyright © 1982 by Walter F. Tichy.

2 12/88

N

RLOGIN(1) RLOGIN(1)

NAME

rlogin - remote login

SYNOPSIS

rlogin rhost [-ec] [-1 user-name]

rhost [-ec] [-1 user-name]

DESCRIPTION

rlogin connects the terminal on the local host to the remote host rhost.

The remote terminal type is the same as the local terminal type (as given in
the environment variable TERM). All echoing occurs at the remote host, so
that (except for delays) the rlogin is transparent. Flow control through
<CONTROL>-S and <CONTROL>-Q is handled on the remote host. A ~.
will disconnect the local host from the remote host, where ~ is the escape
character. A ~<CONTROL>-Z, where <CONTROL>-Z is the suspend char-
acter, will suspend the rlogin session.

The following options are supported:
-ec Specify an escape character, c, other than ~.
-1 user-name Specify user-name to be used in the login procedure.

The command shown on the second line of the synopsis will allow the user
to specify only the name of the remote host to be connected to rather than
explicitly typing rlogin. To use this command, the user must link (see
in(1)) /usr/bin/rlogin to /usr/bin/rhost, where rhost is the name of the
remote host system,

If /etc/hosts.equiv exists, it contains a list of remote host names that share
account names with the local host. (The host names must be the standard
names as described in recmd(1).) Users may also have a private equivalence
list in a .rhosts file in their login directory. Each line in this file should
contain an rhost and a user-name separated by a space, giving additional
cases where logins without passwords will be permitted. If the originating
user is not equivalent to the remote user, a login and password will be
prompted for on the remote machine as in login(1). Either the remote user
or root must own the .rhosts file.

SEE ALSO

01/90

remd(1).

()

RM(1) BRM(1)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-f] [-1] file ...
rm -r [f] [-i] dirname ... [Aile ...]
rmdir [-p] [-s] dirname ...

DESCRIPTION

rm removes the entries for one or more files from a directory. If an entry is
the last link to the file, the file is destroyed. If an entry is a symbolic link,
removal of the link file produces the same result as removal of an ordinary
(“‘hard”) link. However, if an entry is the file to which a symbolic link
points, the file is removed, but the link remains and points to nothing.
Removal of a file requires write permission in its directory, but neither read
nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, the
full set of permissions (in octal) for the file are printed, followed by a ques-
tion mark. This is a prompt for confirmation. If the answer begins with y
(for “‘yes’), the file is deleted; otherwise the file remains.

Note that if the standard input is not a terminal, the command will operate
as if the -f option is in effect.

rmdir removes the named directories, which must be empty.
Three options apply to rm:

-f This option removes all files (whether write-protected or not) in a
directory without prompting the user. In a write-protected directory,
however, files are never removed (regardless of their permissions), but
no messages are displayed. If the removal of a write-protected direc-
tory was attempted, this option could not suppress an error message.

-r This option causes any directories and subdirectories in the argument
list to be recursively removed. Files will be emptied from the direc-
tory and the directory will be removed. Note that the user is normally
prompted for removal of any write-protected files the directory con-
tains. The write-protected files are removed without prompting, how-
ever, if the -f option is used or if the standard input is not a terminal
and the -i option is not used.

If the removal of a nonempty, write-protected directory is attempted,
the command will‘always fail (even if the -f option is used), resulting
in an error message.

-i With this option, removal of any write-protected file is confirmed
interactively. It overrides the -f option and remains in effect even if
the standard input is not a terminal.

Two options apply to rmdir:

12/88 1

RM(1) RM(Q1)

-p This option allows users to remove the directory dirname and its
parent directories that become empty. A message is printed on stan-
dard output telling whether the whole path is removed or part of the
path remains for some reason.

-8 This option is used to suppress the message printed on standard error
when -p is in effect,

SEE ALSO
In(1).
unlink(2), rmdir(2) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
All messages are generally self-explanatory.

Removing the files “.”” and “..” is forbidden to avoid the consequences of
inadvertently making the following type of mistake:

rm -r .*

Both rm and rmdir return exit codes of O if all specified directories are
removed successfully, Otherwise, they return a nonzero exit code.

2 12/88

e SR S PO O R s

RPCGEN(1) RPCGEN(1)

NAME

rpcgen - an RPC protocol compiler

SYNOPSIS

rpegen -h [-o0 outfile] [infile]

rpcgen < [0 outfile] [infile]

rpcgen infile

rpcgen [-8 transport] [-o outfile] [infile]

DESCRIPTION

rpcgen is a tool that generates C code to implement a Remote Procedure Call
(RPC) protocol. The input to rpcgen is a language with striking similarity to
C known as the Remote Procedure Call Language (RPCL). rpcgen operates in
four modes. The first mode is used to convert RPCL definitions into C
definitions for use as a header file. The second mode compiles the External
Data Representation (XDR) routines required to serialize the protocol
described by RPCL. The third mode compiles both, leaving the header file in
a file named infile with a extension. The fourth mode is used to compile an
RPC server skeleton, so that an RPC server can be implemented using local
procedures that know nothing about RPC.

The input may contain C-style comments and preprocessor directives. Com-
ments are ignored, while the directives are simply written uninterpreted in
the output header file.

Some of the XDR routines can be customized by leaving certain data types
undefined. For every data type that is undefined, rpcgen assumes that there
exists a routine with the name ‘“xdr_" prepended to the name of the

undefined type.

The following options are available:

- Compile XDR routines,

-h Compile C data-definitions (a header file)

-0 outfile Specify the name of the output file. If none is specified,

standard output is used (-c, -h and -s modes only).

-8 transport Compile a server, using the given transport. The sup-
ported transports are udp and tcp. This option may be
invoked more than once so as to compile a server that
serves multiple transports.

The following summary of RPCL syntax, which is used for rpcgen input, is
intended more for aiding comprehension than as an exact statement of the
language.

Primitive Data Types

12/88

[unsigned] char [unsigned] short
[unsigned] int [unsigned] long
unsigned float

double void

RPCGEN(1) RPCGEN(1)

bool

Except for the added boolean data-type bool, RPCL is identical to C. rpcgen
converts bool declarations to int declarations in the output header file
(literally it is converted to a bool_t, which has been #define’d to be an .o
int). Also, void declarations may appear only inside of union and pro-
gram definitions. For those averse to typing the prefix unsigned, the abbre-
viations u__char, u__short, u_int and u__long are available.

Declarations
RPCL allows only three kinds of declarations:

declaration:
simple-declaration
pointer-declaration
vector-declaration

sitmple-declaration:
type-name object-ident
pointer-declaration:
type-name ®object-ident
vector-declaration:
type-name object-ident| size]
(Size can be either an integer or a symbolic constant).

RPCL declarations contain both limitations and extensions with respect to C. -

The limitations are that multidimensional arrays pointers-to-pointers can-
not be declared in-line (they may still be declared using typedef). There are
two extensions:

Opaque data is declared as a vector as follows:
opaque object-ident [size]

In the protocol, this results in an object of size bytes. Note that this
is not the same as a declaration of size characters, since XDR charac-
ters are 32-bits. Opaque declarations are compiled in the output
header file into character array declarations of size bytes.

Strings are special and are declared as a vector declaration:
string object-ident [max-size]

If max-size is unspecified, then there is essentially no limit to the
maximum length of the string. String declarations get compiled into
the following:

char ®object-ident

Type Definitions
The only way to generate an XDR routine is to define a type. For every type
zetype defined, there is a corresponding XDR routine named xdr_ zetype.

There are six ways to define a type:

2 12/88

RPCGEN(1) RPCGEN(1)

type-definition:
typedef
enumeration-def
structure-def
variable-length-array-def
discriminated-union-def
program-def

The first three are very similar to their C namesakes. C does not have a for-
mal type mechanism to define variable-length arrays and XDR unions are
quite different from their C counterparts. Program definitions are not really
type definitions, but they are useful nonetheless.

XDR definitions may not be nested. For example, the following will cause
rpcgen to fail:
struct dontdoit {
struct ididit {

int oops;
} sorry;
enum ididitagain { OOPS, WHOOPS } iapologize;
I
Typedefs
An XDR typedef looks as follows:
typedef:

typedef declaration ;
The object-ident part of declaration is the name of the new type, whereas the
type-name part is the name of the type from which it is derived.

Enumeration Types
The syntax is:

enumeration-def:
enum enum-ident {
enum-list
k

enum-list:
enum-symbol-ident [= asslgnment]
enum-symbol-ident [= assignment] , enum-list
(assignment may be either an integer or a symbolic constant)
If there is no explicit assignment, then the implicit assignment is the value of

the previous enumeration plus 1. If not explicitly assigned, the first
enumeration receives the value O.

Structures
structure-def:
struct struct-ident {
\ declaration-list
b 4

12/88 3

RPCGEN(1) RPCGEN(1)

declaration-list:
declaration ;
declaration ; declaration-list

Variable-Length Arrays e
variable-length-array-def:
array array-ident {
unsigned length-identifier ;
vector-declaration ;
¥
A variable length array definition looks much like a structure definition.
Here’s an example:
array mp_int {
unsigned len;
\ short val[MAX_MP_LENGTH];
This is compiled into:
struct mp__int {
unsigned len;
| short *val;

typedef struct mp_int mp__int;

Discriminated Unions i,
discriminated-union-def:
union union-ident switch (discriminant-declaration) {
case-list
[default : declaration ;]
k
case-list:
case case-ident : declaration ;
case case-ident : declaration ; case-list

discriminant-declaration:
declaration

The union definition looks like a cross between a C-union and a C-switch.
An example:
union net_object switch (net__kind kind) {
case MACHINE:
struct sockaddr__in sin;
case USER:
int uid;
default: e,
\ string whatisit;

Compiles into:

struct net__object {

4 12/88

e e i S A S R A e e S PP v

RPCGEN(1) RPCGEN(1)

net__kind kind;
union {
struct sockaddr__in sin;
int uid;
char *swhatisit;
} net__object;
k
typedef struct net_object net_object;
Note that the name of the union component of the output struct is the same
as the name of the type itself.

Program Definitions
program-def:
program program-ident {
version-list
}= program-number ;
version-list:
version
version version-list
version:
version version-ident {
procedure-list
} = version-number ;
procedure-list:
procedure-declaration
procedure-declaration procedure-list
procedure-declaration:
type-name procedure-ident (type-name) = procedure-number ;

The following is an example of a program definition to create a server that
can get or set the date. The declaration looks as follows:

program DATE_PROG {
version DATE_VERS {
date DATE_GET(timezone) = 1;
void DATE_SET(date) = 2; /* Greenwich mean time **/
=1
} =100;
In the header file, this compiles into the following:

#define DATE_PROG 100
#define DATE_VERS 1
#define DATE_GET 1
#define DATE_SET 2

These #define’s are intended for use by the client program to reference the
remote procedures,

If the server is being compiled using rpcgen, there are some important things
to know. The server interfaces to the user’s local procedures using a C

12/88 5

RPCGEN(1) RPCGEN(1)

function with the name as the program definition, but in lowercase and fol-
lowed by the version number. Here is the local procedure that implements

DATE_GET:
date * /% always returns a pointer to the results */
date_ get_ 1(tz)
timezone *tz; /% always takes a pointer to the arguments */

static date d; /* must be static! */

/%

x figure out the date

xand store itind

x/

return(&d);

’

The name of the routine is the same as the #define’d name, but in all lower-
case letters and followed by the version number. XDR recursively frees the
argument after getting the results from the local procedure, so any data
needed between calls should be copied from the argument. However, XDR
neither allocates nor frees the results. The user must take care of the storage.

Make Inference Rules For Compiling XDR Headers

It is possible to set up suffix transformation rules in make(1) for compiling
XDR routines and header files. The convention is that RPCL protocol files
have the extension The make rules to do this are:

rpcgen < $< -0 $@

rpcgen -h $< -0 $@
SEE ALSO
“RPC/XDR Tutorial” in the CLIX System Guide.
BUGS

Name clashes can occur when using program definitions, since the apparent
scoping does not really apply. Most of these can be avoided by giving
unique names for programs, versions, procedures and types.

6 12/88

s A RN

RPIPE(1) RPIPE(1)

NAME
rpipe - remote pipe program

SYNOPSIS
rpipe host.user[.[password]] command-list

DESCRIPTION
rpipe is a utility which transfers data to a command executing on a remote
system via a pipe.
Host .user[.[password]] is the same syntax as that for fmu(1). The user is
placed in the user’s home directory on host, and all commands executed have
the same user and group ID as user on host. The standard input given to the
command-list executed on host is the standard input from rpipe.

EXAMPLES
The following example copies the directory tree src from the local machine
to the remote host ipro3, under the directory /usr/test.
find src -print | cpic -ovB | rpipe ipro3.sys "cd /usr/test; cpio -idumB"
WARNINGS
Characters with special meanings to the shell, like (,), and ; must be quoted.

BUGS
The standard output and standard error of command-list are not echoed back
to the user.

12/88 1

i

Mgy

RTAPE(1) RTAPE(1)

NAME

rtape - remote tape manipulation program

SYNOPSIS

rtape host tape-device command [count]

DESCRIPTION

01/90

rtape performs a variety of functions on a remote tape. The only require-
ments of the remote system are that the tape is physically mounted on the
tape drive and the tape drive is online.

Host is the name or address of the machine where the tape drive resides,
tape-device is the name of the tape drive on the host machine. If tape-device
is a CLIX non-rewindable device, the tape will not rewind after the com-
mand is completed.

Count is the size (in 5§12-byte blocks) of write operations and the number of
files or records in skip operations. By default, the block size is set to 20, and
the number of files or records to be skipped is one.

rtape uses standard input and standard output, so common tape commands
such as tar(1) and cpio(1) can be used.

The following commands may be used:

read Read the tape until an end-of-file mark is found and then
rewind the tape unless a no-rewind device is specified. (Count
is ignored).

write Write the tape. If count is specified, count blocks are written.
Two end-of-file marks are written to the tape when the write
terminates and the tape rewinds unless a no-rewind device is
specified.

read_nrw Read the tape until an end-of-file mark is found, but do not
rewind the tape. (Count is ignored).

write_nrw Write the tape. If count is specified, count blocks are written.
Two end-of-file marks are written to the tape when the write
terminates, and the tape will be positioned between these two

marks.
rew Rewind the tape. (Count is ignored).
fsf Forward skip count files on the tape.
fsr Forward skip count records on the tape.
bsf Backward skip count files on the tape.
bsr Backward skip count records on the tape.
eof Write one end-of-file mark on the tape.
erase Erase the tape from the current position onward. (This

feature is not supported on most tape controllers.)

RTAPE(1) RTAPE(1)

examine Examine the tape, reporting the size of records and tape
marks encountered. If count is zero, the tape is read until it is
interrupted or the physical end-of-tape is encountered. If
count is one, the tape is read until a single end-of-file mark is
encountered and then rewound. If count is two or omitted,
the tape is read until a double end-of-file (end-of-tape) is
encountered.

The read__nrw and write_nrw commands are not supported on CLIX host
machines. The read and write commands should be used instead with a
no-rewind tape-device specified.

EXAMPLES

All examples assume a machine named “ipro3” with a tape drive attached to
““/dev/rmt/mt5”,

The following command could be used to make a tar(1) tape:
tar cvf - . | rtape ipro3 /dev/rmt/mtS write

The following command could be used to read a tar(1) tape:
rtape ipro3 /dev/rmt/mtS read | tar xvf -

The following command could be used to make a cpio(1) tape:
find . -print | cpio -ovB | rtape ipro3 /dev/rmt/mt5 write 10

The following command could be used to read a cpio(1) tape:
rtape ipro3 /dev/rmt/mtS read | cpio -ivdumB

If “/dev/rmt/mt5n” is used, the tape will not rewind. This will allow for
multiple archives on the same tape.

SEE ALSO

cpio(1), rtc(1), tar(1).
rtc(78), tc(78) in the CLIX System Administrator's Reference Manual.

WARNINGS

BUGS

Some commands are not supported by all tape drives.
Some newer tape drives are not supported.

Since this program uses a network, the remote system controls the tape. If
the program is interrupted, the remote system attempts to recover. How-
ever, sometimes the recovery may be slow.

01/90

()

()

0)

Ve

B i

.)

RTC(1)

NAME

RTC(1)

rtc - remote tape control

SYNOPSIS

rtc -a [-s system] [-r rewdev] [-n norewdev] [-t timeout] controldev
rtc -d controldev

DESCRIPTION

01/90

rtc allows a tape drive on another machine to be used as if it resides on the
local machine. The following command options allow the tape drive to be
configured:.

-a Allocate a tape drive on a remote machine.
-d Deallocate a tape drive on a remote machine.

The -a option allows the use of a tape drive on a remote machine. Once allo-
cated, the remote tape drive remains allocated until a timeout occurs or the
-d option is invoked. If the tape drive is being used when the -d option is
invoked, an error is printed. The controldev parameter is the name of a tape
control device (such as /dev/rmt/rtO.ctl) that controls the functions of
other tape devices in the same group.

The following options are supported:
-8 system Specify the remote system where the tape drive resides.

-r rewdev Specify the tape drive rewdev on systern as the rewindable
tape device.

-n norewdev Specify the tape drive norewdev on system as the no-rewind
tape device.

-t timeout Set the idle time allowed to timeout minutes. If the tape is
idle for timeout minutes, it is deallocated following a warn-
ing, which is printed on the system console. The default
timeout is five minutes.

If an allocate option is not present, the corresponding environment variables
are used if set:

RTCSYSTEM Specify the remote system (-8 option).
RTCREWIND Specify the rewind device (-r option).
RTCNOREWIND Specify the no-rewind device (-n option).
RTCTIMEQOUT Specify the idle timeout (-t option).

Since the remote tape driver that rtc uses, rtc(7S), is a STREAMS driver, the
driver must be kept open for the network connection to be preserved. After
issuing an allocate command, rtc forks a child process that remains in the
background before returning to the user. If this process is killed or the user
logs out, the remote tape drive will automatically be deallocated when the
current process using the tape drive exits.

RTC(1) RTC(1)

The -d option will cleanly close the connection to the remote host and send a
signal to the process that was executed by the -a option.

rtc also looks in a series of .rtcrc files to determine the proper action if an
option to the allocate command is not present. Given controldev, rtc looks
for a line that begins with the name controldev. The line that begins with
controldev should be followed by a remote system name, separated by spaces
or tabs. rtc then continues looking for a line that begins with that remote
system name. The line should contain a list of options in the following
order:

rewdev [norewdev [timeout])
The following is a sample file:
/dev/rmt/rt0O.ctl iprol

iprol /dev/rmt/mt6 /dev/rmt/mtén 10
The files are checked as follows:
.rtere

$HOME/ .rtcre
/etc/.rtere

EXAMPLES
This command allocates the ‘“‘/dev/rmt/mt6” tape drive on the machine
“iprol”,

rtc -a -s iprol -r /dev/rmt/mt6 -n /dev/rmt/mtén -t 10 /dev/rmt/rt0.ctl

FILES
/dev/rmt/rt? rewind rtc device
/dev/rmt/rt?n no-rewind rtc device
/dev/rmt/rt?.ctl control device (used only by rtc)
SEE ALSO
cpio(1), mt(1), tar(1), rtc_allocate(3N).
rtec_s(1M), rtc(7S), tc(7S) in the CLIX System Administrator’s Reference
Manual.
2 01/90

()

Q)

RUPTIME(Q1) RUPTIME(1)

NAME
ruptime - show host status for each machine on the local network

SYNOPSIS
ruptime [-altur]

DESCRIPTION
ruptime gives a status line for each machine on the local network running
rwhod(1M). The status is a summary of the current activity on each system.
This data is provided by packets broadcast by each host once every three
minutes.
Machines for which a status report has not been received in the last five
minutes are shown as being down.
Users idle an hour or more are omitted from the listing unless the -a option
is given.
Normally, the listing is sorted by host name. The -1, -t, and -u options
specify sorting by load average, uptime, and number of users, respectively.
The -r option reverses the sort order.

FILES
/ust/spool/rwho/whod * data files containing information about each

machine

SEE ALSO

rwho(1).

12/88

rwhod(1M) in the CLIX System Administrator’s Reference Manual.

RWHO(1) RWHO(1)

NAME
rwho - lists users logged in to machines on the local network

SYNOPSIS
rwho [-a]

DESCRIPTION
rwho produces output similar to who, but for all machines on the local net-
work running rwhod(1M). If a report has not been received from a machine
for five minutes, rwho assumes the machine is down and does not report
users last known to be logged into that machine.

If a user has not typed to the system for a minute or more, rwho reports this
idle time. If a user has not typed to the system for an hour or more, the
user will be omitted from the output of rwho unless the -a option is given.

FILES
/usr/spool/rwho/whod.* data files containing information about each
machine
SEE ALSO
ruptime(1).
rwhod(1M) in the CLIX System Administrator's Reference Manual.
BUGS
This is unwieldy when the number of machines on the local network is
large.

12/88 1

sy,

v

AN

SCCSTORCS(1) SCCSTORCS(1)

NAME

sccstorcs - build RCS file from SCCS file
SYNOPSIS

sccstores [-t] [-v] s.fite ...
DESCRIPTION

sccstorcs builds a Revision Control Systemk (RCS) file from each Source

Code Control System (SCCS) file argument. The deltas and comments for

each delta are preserved and installed in the new RCS file in order. Also

preserved are the user access list and descriptive text from the SCCS file.

The following options are available:

-t Trace only. Prints detailed information about the SCCS file and lists
the commands that would be executed to produce the RCS file. No
commands are actually executed and no RCS file is created.

-v Verbose. Prints each command run while it is building the RCS file.

FILES

For each s.somefile, sccstorcs writes the files somefile and somefile,v, which

should not exist. sccstorcs will abort rather than overwrite files if they

exist,
SEE ALSO

ci(1), co(1), res(1).

Walter F. Tichy, “Design, Implementation, and Evaluation of a Revision

Control System,” in Proceedings of the 6th International Conference on

Software Engineering, IEEE, Tokyo, Sept. 1982,

DIAGNOSTICS
All diagnostics are written to stderr. Nonzero exit status on error.
BUGS

sccstorcs does not preserve all SCCS options specified in the SCCS file,. Most

notably, it does not preserve removed deltas, MR numbers, and cutoff points.

scestorcs fails if used on an SCCS file with removed deltas.

sccstorcs fails if it checks in one version of an RCS file, gets the next SCCS

version, and checks in the new version, all in the same second. This is due to

ci(1) not allowing checkins with the same time stamp.
IDENTIFICATION

12/88

Ken Greer
Copyright © 1983 by Kenneth L. Greer

pree.

()

SCPIO(1) scpr1o(1)

NAME
scpio - multibuffering and asynchronous /0 cpio(1)

SYNOPSIS
scpio -0 [acBvV] [-C bufsize] [-z bufcount] [[-O file] [-M message]]
scpio -i [BcdmrtuvV{sSb6] [-C bufsize] [-z bufcount] [[-1 file]
[-M message]] [pattern ...
scpio -p [adlmuvV] directory

scpio -x [cstvEB6] [-C bufsize] [-z bufcount] [-I file] [pattern ...]
DESCRIPTION

scpio is a modified version of cpio(1) with two major enhancements—
asynchronous /O and multibuffering—which significantly improve its per-
formance. See cpio(1) for a description of basic capabilities and options,

In addition to the three standard modes of cpio(1) (input, output, and
passthrough), scpio provides a verify mode (-x option). In this mode, scpio
verifies the integrity of the archived file by comparing it to the input file.
An error message is printed if a difference is found.

Additional options supported by scpio are as follows:

-x Compare the archive and the input files and report any
differences.

-z bufcount Specify the number of buffers to be used for multibuffering.
Permissible values are 2 to 25, If this parameter is not
specified, it defaults to 1 and I/0 is synchronous.

EXAMPLES
The following command uses 25 buffers, each 63488 bytes in size, to create
an archive on /dev/rmt/Om:
scpio -0 -C 63488 -z 25 -O /dev/rmt/Om

The next command reads an archive from /dev/rmt/Om using the same
buffer count and size as the previous example:
scpio -idm -C 63488 -z 25 -1 /dev/rmt/Om

SEE ALSO
cpio(1).

NOTES
When an archive is being verified (-x option), file headers and data are com-
pared. If one of the input files is accessed between the time it was written
and the time it is read for verification, the date in the header is changed.
This results in a verification error, although nothing is wrong with the file,
Using the -v option may give less than optimal speed due to time spent writ-

ing file names to the screen. The -V option prints a dot for every file, veri-
fying activity without the overhead of printing every file name.

01/90 1

0)

()

SDB(1)

NAME

SDB(1)

sdb - symbolic debugger

SYNOPSIS

sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION

12/88

sdb is a symbolic debugger that can be used with C and FORTRAN programs.
It may be used to examine their object files and core files and provide a con-
trolled environment for their execution.

Objfil is an executable program file that has been compiled with the g
(debug) option. If it has not been compiled with the g option, the symbolic
capabilities of sdb will be limited, but the file can still be examined and the
program debugged, The default for objfil is a.out. Corfil is assumed to be a
core(4) image file produced after executing obj/il; the default for corfil is
core. The core(4) file need not be present. A - in place of coril will force
sdb to ignore any core(4) image file. The colon-separated list of directories
(directory-list) is used to locate the source files used to build objfil.

It is useful to know that at any time a current line and current file exist. If
corfil exists, they are initially set to the line and file containing the source
statement at which the process terminated. Otherwise, they are set to the
first line in main(). The current line and file may be changed with the
source file examination commands.

By default, warnings are provided if the source files used in producing obj/il
cannot be found or are newer than objfil. This checking feature and the
accompanying warnings may be disabled by using the -W flag.

Names of variables are written just as they are in C or FORTRAN. sdb does
not truncate names. Variables local to a procedure may be accessed using the
form procedure:variable. If no procedure name is given, the procedure con-
taining the current line is used by default,

It is also possible to refer to structure members as variable.member, pointers
to structure members as variable->member, and array elements as
variable[number]. Pointers may be dereferenced by using the form
pointer[0]. Combinations of these forms may also be used. FORTRAN com-
mon variables may be referenced by using the name of the common block
instead of the structure name. Blank common variables may be named by
the form .variable. A number may be used in place of a structure variable
name. In this case, the number is the address of the structure, and the tem-
plate used for the structure is that of the last structure referenced by sdb.
An unqualified structure variable may also be used with various commands.
Generally, sdb will interpret a structure as a set of variables. Thus, sdb will
display the values of all elements of a structure when it is requested to
display a structure. An exception to thi interpretation occurs when
displaying variable addresses. An entire structure does have an address. sdb
displays this value, not the addresses of individual elements.

SDB(1) SDB(1)

Elements of a multidimensional array may be referenced as variable
[number][number]..., or as variable [number,number,...]. In place of
number, the form number;number may be used to indicate a range of values,
* may be used to indicate all legitimate values for that subscript, or sub-
scripts may be omitted entirely if they are the last subscripts and the full
range of values is desired. As with structures, sdb displays all values of an
array or of the section of an array if trailing subscripts are omitted. It
displays only the address of the array itself or of the section specified by the
user if subscripts are omitted. A multidimensional parameter in a FORTRAN
program cannot be displayed as an array, but it is actually a pointer, whose
value is the location of the array. The array itself can be accessed symboli-
cally from the calling function.

S,

An instance of a variable on the stack may be referenced by using the form
procedure:variable,number. All variations mentioned in naming variables
may be used. Number is the occurrence of the specified procedure on the
stack, counting the top, or most current, as the first. If no procedure is
specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants valid in C may be used so that addresses may be input in decimal,
octal, or hexadecimal,

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case, the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they refer to objfil or corfil. An initial argument of -w
permits overwriting locations in objAl.
Addresses

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri-
ples (b1, el, f1) and (b2, e2, 2). The file address corresponding to a written
address is calculated as follows:

bl<address<el — file address=address+f1—bl
otherwise
b2<address<e2 — Jfile address=address+f2—b2

otherwise, the requested address is not legal. In some cases (as for programs
with separated I and D space), the two segments for a file may overlap.

g

The initial setting of both mappings is suitable for normal a.out(4) and
core(4) files. If either file is not the kind expected then, for that file; b7 is set
to O; el is set to the maximum file size; and fI is set to 0. In this way, the
whole file can be examined with no address translation.

2 12/88

SDB(1) SDB(1)

For sdb to be used on large files, all appropriate values are kept as signed,
32-bit integers.

Commands
The commands for examining data in the program are as follows:

t Print a stack trace of the terminated or halted program. This command
will not work properly unless the program has been compiled to use a
stack frame pointer (-g or -ga compiler options).

T Print the top line of the stack trace.

variable/clm
Print the value of variable according to length ! and format m. A
numeric count ¢ indicates that a region of memory, beginning at the
address implied by variable, will be displayed. The length specifiers
are as follows:

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for m are:

character

decimal

decimal, unsigned

octal

hexadecimal

32-bit single-precision floating point

64-bit double-precision floating point

assume variable is a string pointer and print characters
starting at the address pointed to by the variable.

print characters starting at the variable’s address (this
format may not be used with register variables)

pointer to procedure

disassemble machine-language instruction with
addresses printed numerically and symbolically

| disassemble machine-language instruction with
addresses printed numerically only

®eQ OO

land, -

Length specifiers are only effective with the c, d, u, o, and x formats.
C, 1, and m specifiers may be omitted. If all are omitted, sdb chooses a
length and a format suitable for the variable’s type declared in the pro-
gram. If m is specified, this format is used for displaying the variable.
A length specifier determines the output length of the value to be
displayed, sometimes resulting in truncation. A count specifier c tells
sdb how many units of memory to display, beginning at the address of
variable. The number of bytes in a unit of memory is determined by
the length specifier I, or if no length is given, by the size associated
with the variable. If a count specifier is used for the s or a command,
the number of characters specified is printed. Otherwise, successive

12/88 3

SDB(1)

SDB(1)
characters are printed until either a null byte is reached or 128 charac-
ters are printed. The last variable may be redisplayed with the com-
mand ./,

The sh(1) metacharacters ® and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified, only
variables local to that procedure are matched. To match only global
variables, the form :pattern is used.

linenumberNm

variable:m
Print the value at the address from a.out or I space given by
linenumber or variable (procedure name) according to the format Im,
The default format is i.

variable=lm

linenumber=lm

number=lm

Print the address of variable or linenumber or the value of number in
the format specified by im. If no format is given, Ix is used. The last
variant of this command provides a convenient way to convert between
decimal, octal, and hexadecimal.

varilable!value

Set variable to the given value. The value may be a number, a character
constant, or a variable. The value must be well-defined; expressions
that produce more than one value, such as structures, are not allowed.
Character constants are denoted by ’character. Numbers are viewed as
integers unless a decimal point or exponent is used. In this case, they
are treated as if they are type double. Registers are viewed as integers.
The variable may be an expression that indicates more than one vari-
able, such as an array or structure name. If the address of a variable is
given, it is interpreted as the address of a variable with type int. C
conventions are used in any type conversions necessary to perform the
indicated assignment,

X Print the machine registers and the current machine-language instruc-
tion.

X Print the current machine-language instruction.
The commands for examining source files are as follows:
e procedure
e file-name
e directory/
e directory file-name
The first two forms set the current file to the file containing procedure

or to filename, The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The

12/88

SDB(1) SDB(1)

default is the current working directory. The latter two forms change
the value of directory. If no procedure, file name, or directory is given,
the current procedure name and file name are reported.

/regular expression/
Search forward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing / may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing ? may be deleted.

P Print the current line.

z Print the current line followed by the next nine lines. Set the current
line to the last line printed.

w (Window) Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count+
Advance the current line by count lines. Print the new current line.

count—
Retreat the current line by count lines. Print the new current line.

The commands for controlling the source program execution are as follows:

count T args

count R
Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin-
ning with < or > causes standard input or output to be redirected,
respectively. If count is given, it specifies the number of breakpoints to
be ignored.

linenumber ¢ count

linenumber C count
Continue after a breakpoint or interrupt. If count is given, the program
will stop when count breakpoints have been encountered. The signal
that caused the program to stop is reactivated with the C command and
ignored with the c command. If a line number is specified, a temporary
breakpoint is placed at the line and execution is continued. The break-
point is deleted when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line.
If count is given, it specifies the number of breakpoints to be ignored.

12/88 5

SDB(1)

8 count

S count
Single step the program through count lines. If no count is given, the
program runs for one line. S is equivalent to s except that it steps
through procedure calls and s does not.

Py pte

Single step one machine-language instruction. The signal that caused
the program to stop is reactivated with the I command and ignored
with the i command.

variable3m count

address:m count
Single step (as with 8) until the specified location is modified with a
new value, If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is done
by software, it can be very slow.

level v
Toggle verbose mode to for use when single stepping with S, s, or m.
If level is omitted, only the current source file and/or subroutine name
is printed when either changes. If level is 1 or greater, each C source
line is printed before it is executed; if level is 2 or greater, each assem-
bler statement is also printed. A v turns verbose mode off if it is on
for any level.

k Kill the program being debugged.

procedure(argl,arg2,...)

procedure(argl,arg2,...)/m
Execute the named procedure with the given arguments. Arguments
can be integer, character, or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d. This facility is only available if
the program was loaded with the -g option.

linenumber b commands

Set a breakpoint at the given line. If a procedure name without a line
number is given (i.e. proc:), a breakpoint is placed at the first line in
the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control returns to sdb. Otherwise, the commands are executed when
the breakpoint is encountered and execution continues. Multiple com-
mands are specified by separating them with semicolons. If k is used as
a command to execute at a breakpoint, control returns to sdb instead of
continuing execution.

B Print a list of the currently-active breakpoints,

12/88

e

SDB(1) SDB(1)

linenumber d
Delete a breakpoint at the given line. If no linenumber is given, the
breakpoints are deleted interactively. Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d, the breakpoint is deleted.

D Delete all breakpoints.
1 Print the last executed line.

linenumber a
(Announce) If linenumber has the form proc:number, the command
effectively executes a linenumber b 1. If linenumber has the form proc:,
the command effectively executes a proc: b T.

Miscellaneous commands:

{command
The command is interpreted by sh(1).

newline
If the previous command printed a source line, advance the current line
by one line and print the new current line. If the previous command
displayed a memory location, display the next memory location.

end-of-file character
(Scroll) Print the next 10 lines of instructions, source, or data, depend-
ing on which was printed last. The end-of-file character is usually
< CONTROL>-D.

< file-name
Read commands from filename until the end of file is reached, and
then continue to accept commands from standard input. When a com-
mand in this file tells sdb to display a variable, the variable name is
displayed along with the value. This command may not be nested; <
may not appear as a command in a file.

M Print the address maps.

M[7/] [*#]lbef
Record new values for the address map. The arguments ? and / specify
the text and data maps, respectively. The first segment (b1, el, f1) is
changed unless # is specified. In this case, the second segment (2, e2,
f2) of the mapping is changed. If fewer than three values are given,
the remaining map parameters are unchanged.

L
string
Print the given string. The C escape sequences with the form \charac-
ter are recognized, where character is a non-numeric character.

q Exit the debugger.

12/88 7

SDB(1) SDB(1)

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output,

FILES
a.out
core

SEE ALSO
cc(1), £77(1), a.out(4), core(4).
syms(4) in the UNIX System V Programmer's Reference Manual.
sh(1) in the UNIX System V User's Reference Manual.

WARNINGS
When sdb prints the value of an external variable that has no debugging
information, a warning is printed before the value. The size is assumed to be
an integer,

Data stored in text sections cannot be distinguished from functions.

Line number information in optimized functions is unreliable, and some
information may be missing.

BUGS
If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a procedure
that formats data from a core image.

ooy,

sdb cannot print the value of a FORTRAN parameter. It will erroneously
print the address.

Tracebacks containing FORTRAN subprograms with multiple entry points
may print too many arguments in the wrong order, but their values are
correct,

The range of a FORTRAN array subscript is assumed to be 1 to n, where n is
the dimension corresponding to that subscript. This is only significant when
the user omits a subscript, or uses ® to indicate the full range. Arrays hav-
ing subscripts whose lower bounds are not 1 produce no problems,

8 12/88

)

SETHOST(1) SETHOST(1)

NAME

sethost - DNP remote login DECnet or CLIX node,

SYNOPSIS

sethost [-hrx] [-estring]
sethost [-hrx] [-estring] node-name
sethost [-hrx] [-estring] [node-area. 1node-number

DESCRIPTION

01/90

sethost allows a user to log in to a remote host supporting the Digital Net-
work Architecture (DNA) from the local host. sethost uses the DNA hetero-
geneous Command Terminal Protocol (CTERM). sethost connects the user to
any DECnet host that supports the CTERM protocol.

If node-name is specified, it must be one of the remote node names defined in
the local ncp(1M) database. Node-name is a group of not more than six
alphanumeric characters where the first character is a letter.

Alternately, an address of an active remote node may be specified, This
address can specify an optional area-number range of 1-63. The node-
number ranges from 1-1023 and must be unique in the network area. If the
remote node is in the same network area as the local node, the node-number
can be used alone,

If a node or address is not provided, sethost prompts for input,

Once the connection is established, the user is prompted from the remote
node for login information.

The following options are available to sethost:

-h Display a brief help summary.
-r Display the release numbers of sethost(1).
-X Set the CTERM flow control passthrough characteristic

(remoteflow) to TRUE. This allows <CONTROL>-
S/ < CONTROL>-Q to be passed to the remote instead of using local
flow control. This is useful for a remote application, such as
emacs, that uses <CONTROL>-S. If the user requires this option
frequently, the environment variable, REMOTEFLOW, may be
created with any non-NULL value. Users can refer to the
environment manipulation routines for their particular shell. The
default is to allow local flow control. When the user specifies the
-x option, the remote performs all XON/XOFF processing. This
may cause a delay when <CONTROL>-S/<CONTROL>-Q is used
to stop output from an application that is writing to the screen,
such as DIR or TYPE on VMS and Is(1) or cat(1) on CLIX.

-estring Change the default escape string from ~. to string. There can be
no spaces between -e and string. The string can be up to 10 char-
acters long. Characters after 10 are ignored. Alternately, the
user may set the escape string with the ESCAPESTR environment

SETHOST(1)

SETHOST(1)

variable, If the -e option is not used and there is no environment
variable, sethost uses the default ~..

The escape string allows the user to leave the sethost session at
any time, even if the user is hung in a remote application pro-
gram, Additionally, when connected to a remote VMS machine at
the Digital Command Language (DCL) command line, the user can
type two quick (within one second), consecutive <CONTROL>-Y
or <CONTROL>-C characters to gain control. When the escape
string or control characters are typed, the following question
appears:

Do you wish to abort the network virtual terminal session?

If the user answers Y, the connection is terminated. Otherwise,
the escape string or control characters are passed to the remote.

When connecting to VMS nodes, sethost allows command-line editing at the
DCL prompt. The cursor movement assumes that a VTx00-style terminal is
being used. If a non-VTx00 terminal is used, command-line editing may
produce unexpected output. The left, right, up, and down arrow keys, along
with the following control characters, are supported:

<CONTROL>-A Toggle insert/overstrike mode,
<CONTROL>-E Move cursor to end of line.
<CONTROL>-F Move cursor right one space,.
<CONTROL>-H Move cursor to beginning of line.
<CONTROL>-R Redisplay input.

<CONTROL>-U Delete from cursor to beginning of line,
<CONTROL>-W Delete word to left,

<CONTROL >-X Functions same as <CONTROL>-U.

The default mode is overstrike. The mode is changed to insert on the com-
mand line by typing <CONTROL>-A. Changing the VMS overstrike/insert
characteristic has no effect. After <RETURN> is pressed, the mode reverts to

overstrike.

NOTES

VMS versions before V4.0 and DECnet-11M-PLUS versions before V3.0 do not
support CTERM. Consequently, sethost is not supported on these machines.

SEE ALSO

sh(1), ksh(1), csh(1), getenv(3).
sethostd(1M), ncp(1M) in the CLIX System Administrator's Reference

Manual.

CAVEATS

“I is displayed if the user presses the tab key when connected to a VMS

machine,

01/90

O

()

o,

SHOWFILES(1)

NAME

SHOWFILES(1)

showfiles - CRM utility for monitoring open files

SYNOPSIS

/usr/ip32/crm/showfiles [-cdf] [input-option] [-0 output-file]

DESCRIPTION

showfiles displays a list of all processes on the system. It also lists open files
for each process. Device names and i-node numbers are provided for each

open file.

Once an open file’s i-node number is determined, the ncheck(1M) command
can be used to generate the path names from the i-node numbers. Refer to
the System V Online manuals for more information on ncheck(1M).

The following options are are available:

-
-d

-f

-0 output-file

Run continuously.

Translate major and minor device numbers to device
names,

Spawn ncheck(1M) to translate i-node numbers to
file names. Also translate device numbers to to dev-
ice names as with the -d option.

Direct output to output-file. A - for output-file directs
output to stdout.

The following input-options are available:

-p pid

-IL process-name

-1 input-file

SEE ALSO
crm(1).

Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

Specify the name of the process to monitor, The user
can key in ps -e at the system prompt to determine
the name of a process already running.

Read the data from input-file each interval. The
ing+t-file must have been created as an output-file
using the -0 oution. A - for input-file reads input
from standard input.

ncheck(1M) in the UNIX System V Administrator’s Reference Manual.

WARNINGS

Sending raw data to a file can create a very large file.

Device name translation takes more time.

File name lookup by ncheck(1M) takes much more time, since each file sys-
tem must be searched for the i-node numbers.

01/90

O

()

e

SHOWMEMORY(1)

NAME

SHOWMEMORY(1)

showmemory - CRM utility for monitoring process memory regions

SYNOPSIS

/usr/ip32/crm/showmemory [input-option]

DESCRIPTION

showmemory displays a list of all processes on the system. It also lists
attached memory regions associated with each process.

The following input-options are available:

-p pid

~Ib process-name

-e command arg ...

Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

Run, provide arguments for, and monitor a program.

A brief explanation of the showmemory information given for each displayed

region follows:
REGION TYPE

REGION NUMBER

VIRTUAL SIZE

PHYSICAL SIZE

SHARED

PERCENT MEMORY

01/90

Displays the region type, which can be one of the fol-
lowing types:

TEXT main executable code

DATA main data region

STACK process stack

SHMEM shared memory

DMM double mapped memory

LIBTXT shared library code

LIBDAT shared library data

Displays the CLIX internal identification number of the
region. If a region number displays in more than one
process, the region is shared among those processes.

Displays the amount of virtual memory allocated to
the region. The virtual size of the regions is also allo-
cated from the available swap space.

Displays the amount of real memory currently being
used by the region.

Displays the number of processes currently attached to
the region. If no number appears in the shared
column, the region is being used only by the one pro-
cess,

Displays the percentage of physical memory allocated
to the region. This number is weighted by the number

SHOWMEMORY(1) SHOWMEMORY(1)

of processes sharing the region.

CUMULATIVE Displays the cumulative percentage of physical
memory used by the regions.

After the list of processes has been displayed, a system summary is
displayed. The summary gives the following information:

Total Physical Memory On System
Displays (in megabytes) the amount of real memory the system has.

Used By Processes
Displays the final cumulative total of physical memory being used
by the process regions.

Process Overhead
Displays the amount of memory used by the system to keep page
tables and user blocks.

Unattached Regions
Displays the amount of physical memory being used by regions with
unattached processes. Unattached regions can occur when a program
has the sticky bit set in its mode (see chmod(1)).

Available Memory
Displays the amount of pkysical memory that is available for
processes to use.

Initial Clix Size
Displays the amount of physical memory used by the CLIX operating
system when the system boots.

Allocated By Clix
Displays the amount of physical memory allocated when the CLIX

operating system is running. For example, when a driver is loaded,
its text and data section occupies a section of physical memory.

SEE ALSO

crm(1), chmod(1).

01/90

Q)

()

STTY(1) STTY(1)

NAME

stty - set the options for a terminal

SYNOPSIS

stty [-a] [-g] [option ...]

DESCRIPTION

stty sets certain terminal I/O options for the device that is the current stan-
dard input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret (*), the value of that
option is the corresponding <CONTROL> character (e.g., “"h” s
<CONTROL>-H; in this case, <CONTROL>-H is the same as the <BACK
SPACE> key). The sequence ~* means that an option has a null value. For
example, normally stty -a will report that the value of swtch is **; how-
ever, if shl(1) or layers(1) has been invoked, stty -a will have the value

u"zn.

-a Reports all option settings.

£ Reports current settings in a form that can be used as an argument to
another stty command.

Options in the last group are implemented using options in the previous
groups. Note that many combinations of options do not make sense, but no
sanity checking is performed. The options are selected from the following:

Control Modes

12/88

parenb (-parenb) Enable (disable) parity generation and detection.
parodd (-parodd) Select odd (even) parity.

csS cs6 cs7 cs8 Select character size (see termio(7S)).

0 Hang up phone line immediately.

110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal baud rate to the number given, if possi-
ble. (All speeds are not supported by all hardware
interfaces.)

hupcl (-hupcl) Hang up (do not hang up) dataphone connection on
last close.

hup (-hup) Same as hupcl (-hupcl).

cstopb (-cstopb) Use two (one) stop bits per character.

cread (-cread) Enable (disable) the receiver.

clocal (-clocal) Assume a line without (with) modem control.

loblk (-loblk) Block (do not block) output from a noncurrent
layer.

1

STTY(1)

Input Modes

ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpck (-inpck)
istrip (-istrip)
inler (<inler)
igncr (<igner)
icrnl (<icrnl)
iucle (-iucle)

ixon (-ixon)

ixany (-ixany)
ixoff (-ixoff)

Output Modes

opost (-opost)
olcuc (-olcuc)

onlcr (-onlcr)
ocrnl (-ocrnl)
onocr (-onocr)
onlret (-onlret)

ofill (-ofill)
ofdel (-ofdel)
cr0 crl cr2 cr3

nl0 nl1
tab0 tabl tab2 tab3

bsO bsl

STTY(1)

Ignore (do not ignore) break on input.

Signal (do not signal) INTR on break.

Ignore (do not ignore) parity errors.

Mark (do not mark) parity errors (see termio(7S)).
Enable (disable) input parity checking.

Strip (do not strip) input characters to seven bits,
Map (do not map) NL to CR on input.

Ignore (do not ignore) CR on input.

Map (do not map) CR to NL on input,

Map (do not map) uppercase alphabetics to lowercase
on input.

Enable (disable) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by
sending an ASCII DC1.

Allow any character (only DC1) to restart output,

Request that the system send (not send) START/STOP
characters when the input queue is nearly
empty/full,

Post-process output (do not post-process output;
ignore all other output modes).

Map (do not map) lowercase alphabetics to uppercase
on output,

Map (do not map) NL to CR-NL on output.
Map (do not map) CR to NL on output.
Do not (do) output CRs at column zero.

On the terminal, NL performs (does not perform) the
CR function.

Use fill characters (use timing) for delays.
Fill characters are DELs (NULs).

Select style of delay for carriage returns (see
termio(78)).

Select style of delay for linefeeds (see termio(78)).

Select style of delay for horizontal tabs (see
termio(78)).

Select style of delay for backspaces (see termio(7S)).

12/88

STTY(1)

f£f0 f£f1
vt0 vtl

Local Modes

isig (-isig)

icanon (-icanon)
xcase (-xcase)

echo (-echo)
echoe (-echoe)

echok (-echok)
Ifkc (-1fkc)
echonl (-echonl)
noflsh (-noflsh)

tostop (-tostop)
stwrap (-stwrap)
stflush (-stflush)

stappl (-stappl)

Control Assignments

12/88

control-character ¢

STTY(1)

Select style of delay for formfeeds (see termio(7S)).

Select style of delay for tabs (see
termio(78)).

vertical

Enable (disable) the checking of characters against
the special control characters INTR, QUIT, SWTCH,
and SUSP.

Enable (disable) canonical input (ERASE and KILL
processing).

Canonical (unprocessed) uppercase/lowercase presen-
tation.

Echo back (do not echo back) every character typed.

Echo (do not echo) ERASE character as a backspace-
space-backspace string. Note: this mode will erase
the ERASEd character on many CRT terminals; how-
ever, it does not keep track of column position and,
as a result, may be confusing on escaped characters,
tabs, and backspaces.

Echo (do not echo) NL after KILL character.
The same as echok (-echok); obsolete,
Echo (do not echo) NL.

Disable (enable) flush after INTR, QUIT, SWTCH, or
SUSP.

Stop (do not stop) background jobs if they attempt
terminal output. ’

Disable (enable) truncation of lines longer than 79
characters on a synchronous line,

Enable (disable) flush on a synchronous line after
every write(2).

Use application mode (use line mode) on a synchro-
nous line.

Set control-character to ¢, where control-character is
erase, kill, intr, quit, swtch, susp, eof, eol, ctab,
min, or time. (ctab is used with -stappl; min and
time are used with -icanon; see termio(7S).) If c is
preceded by a caret (*) (escaped from the shell), the
value used is the corresponding <CONTROL> charac-
ter (e.g., “"d” is a <CONTROL>-D); “"?” is inter-
preted as and “"-” is interpreted as
undefined.

STTY(1)

line ¢

Combination Modes
evenp or parity

oddp

STTY(1)
Set line discipline to { (0 < { < 127).

Enable parenb and cs7.
Enable parenb, cs7, and parodd.

-parity, -evenp, or -oddp

Disable parenb, and set cs8.

raw (-raw or cooked) Enable (disable) raw input and output (no ERASE,

nl (-n1)

lcase (-lcase)
LCASE (-LCASE)
tabs (-tabs or tab3)
ek

sane
term

SEE ALSO

KILL, INTR, QUIT, SWTCH, SUSP, EOT, or output post
processing).

Unset (set) icrnl, onlcr. In addition -nl unsets
inlcr, igncr, ocrnl, and onlret.

Set (unset) xcase, iuclc, and olcuc.
Same as lcase (-lcase).
Preserve (expand to spaces) tabs when printing.

Reset ERASE and KILL characters back to normal #
and @,

Reset all modes to reasonable values.

Set all modes suitable for the terminal type term,
where term is tty33, tty37, vt0S, tn300, ti700, or
tek.

termio(7S) in the CLIX System Administrator's Reference Manual.
ioctl(2) in the UNIX System V Programmer’s Reference Manual.

12/88

O A PR Ao e i

sry,

TELNET(1) TELNET(1)

NAME

telnet - user interface to the TELNET protocol

SYNOPSIS

telnet [ost[port]]

DESCRIPTION

telnet communicates with another host using the TELNET protocol. If telnet
is invoked without arguments, it enters command mode, indicated by its
prompt (telmet>). In this mode, it accepts and executes the commands
listed below. If it is invoked with arguments, it performs an open com-
mand (see below) with those arguments.

Once a connection is opened, telnet enters an input mode. The input mode
entered will be either character-at-a-time or line-by-line, depending on what
the remote system supports.

In character-at-a-time mode, most text typed is immediately sent to the
remote host for processing.

In line-by-line mode, all text is echoed locally, and (normally) only com-
pleted lines are sent to the remote host. The local echo character (initially
< CONTROL>-E) will turn the local echo off and on. (This would mostly be
used to enter passwords without the password being echoed.)

In either mode, if the localchars toggle is TRUE (the default in line-by-line
mode as shown below), the user’s QUIT and INTR characters are trapped
locally and sent as TELNET protocol sequences to the remote side. Some
options (toggle autosynch below) cause this action to flush subsequent out-
put to the terminal (until the remote host acknowledges the TELNET
sequence) and flush previous terminal input (in the case of quit and intr).

‘While connected to a remote host, the user may enter telnet command mode
may by keying in the telnet escape character (initially <CONTROL>-]1). In
command mode, the normal terminal editing conventions are available.

Commands

01/90

The following commands are available. Only enough of each command to
uniquely identify it needs to be typed. (This is also true for arguments to
the mode, set, toggle, and display commands).

open host [port]
Open a connection to the named host. If a port number is not
specified, telnet will attempt to contact a TELNET server at the
default port. The host specification may be either a host name (see
hosts(4)) or an Internet address specified in the dot notation (see
inet(3B)).

close Close a TELNET session and return to command mode.

quit Close any open TELNET session and exit telnet. An end-of-file (in
command mode) will also close a session and exit.

TELNET(1) TELNET(1)

z Suspend telnet. This command works only when using csh(1) or
ksh(1).
mode type

Type is either line (for line-byline mode) or character (for
character-at-a-time mode). The remote host is asked for permission
to enter the requested mode. If the remote host can enter that mode,
the requested mode will be entered.

status Show the current status of telnet. This includes the peer the user is
connected to and the current mode.

display [argument...]
Display all or some of the set and toggle values (see below).

? [command]
Get help. With no arguments, telnet prints a help summary. If a
command is specified, telnet will print the help information for that
command only.

send arguments
Send one or more special character sequences to the remote host. The
following arguments may be specified. (More than one argument
may be specified at a time.)

escape Send the current telnet escape character (initially
<CONTROL>-]).

synch Send the TELNET SYNCH sequence. This sequence causes the
remote system to discard all previously typed (but not yet
read) input. This sequence is sent as Transmission Control
Protocol (TCP) urgent data. (This may not work if the
remote system is a 4.2 Berkeley Software Distribution (BSD)

system. If it does not work, a lowercase ‘“‘r’’ may be echoed
on the terminal),

brk Send the TELNET BRK (BReaK) sequence, which may be
significant to the remote system.
ip Send the TELNET IP (Interrupt Process) sequence, which

should cause the remote system to abort the currently run-
ning process.

ao Send the TELNET AO (Abort Output) sequence, which should
cause the remote system to flush all output from the remote
system to the user’s terminal.

ayt Send the TELNET AYT (Are You There) sequence, to which
the remote system may or may not choose to respond.

ec Send the TELNET EC (Erase Character) sequence, which
should cause the remote system to erase the last character
entered,

01/90

0)

()

i,

S

i,

S

TELNET(1) TELNET(1)
el Send the TELNET EL (Erase Line) sequence, which should
cause the remote system to erase the line currently being
entered.
ga Send the TELNET GA (Go Ahead) sequence, which likely is

not significant to the remote system,
nop Send the TELNET NOP (No OPeration) sequence.
? Print help information for the send command.

set argument value

Set any one of a number of telnet variables to a specific value. The
special value off turns off the function associated with the variable.
The values of variables may be interrogated with the display com-
mand. The variables that may be specified are as follows:

echo

escape

interrupt

quit

erase

01/90

This is the value (initially <CONTROL>-E) that, when
in line-by-line mode, toggles between echoing entered
characters locally (for normal processing), and
suppressing echoing of entered characters (such as for
entering a password).

This is the telnet escape character (initially
<CONTROL>-E) that causes telnet to enter command
mode (when connected to a remote system).

If telnet is in localchars mode (see toggle localchars
below) and the INTR character is keyed in, a TELNET IP
sequence (see send ip above) is sent to the remote host.
The initial value for the interrupt character is inter-
preted as the terminal’s INTR character.

If telnet is in localchars mode (see toggle localchars
below) and the QUIT character is typed, a TELNET BRK
sequence (see send brk above) is sent to the remote
host. The initial value for the quit character is inter-
preted as the terminal’s QUIT character.

If telnet is in localchars mode (see toggle localchars
below) and telnet is operating in character-at-a-time
mode, when this character is typed, a TELNET EC
sequence (see send ec above) is sent to the remote sys-
tem. The initial value for the erase character is inter-
preted as the terminal’s ERASE character.

If telnet is in localchars mode (see toggle localchars
below) and telnet is operating in character-at-a-time
mode, when this character is typed, a TELNET EL
sequence (see send el above) is sent to the remote sys-
tem. The initial value for the kill character is inter-
preted as the terminal’s KILL character.

TELNET(1)

eof

toggle argument ...

TELNET(1)

If telnet is operating in line-by-line mode, entering this
character as the first character on a line will cause this
character to be sent to the remote system. The initial
value of the end-of-file character is interpreted as the
terminal’s EOF character.

Toggle (between TRUE and FALSE) various flags that control how tel-
net responds to events. More than one argument may be specified.

The state of

these flags may be interrogated with the display com-

mand. Valid arguments are as follows:

localchars

autosynch

crmod

debug

options

netdata

?

If this is TRUE, the INTR, QUIT, ERASE, and KILL charac-
ters (see set above) are recognized locally and
transformed into appropriate TELNET control sequences
(respectively, ao, ip, brk, ec, and el; see send above).
The initial value for this toggle is TRUE in line-by-line
mode and FALSE in character-at-a-time mode,

If autosynch and localchars are both TRUE, when the
INTR or QUIT characters are typed the resulting TELNET
sequence sent is followed by the TELNET SYNCH
sequence. (See set above for descriptions of the INTR
and QUIT characters.) This procedure should cause the
remote system to begin discarding all previously typed
input until both of the TELNET sequences have been
read and acted on. The initial value of this toggle is
FALGE.

Toggle carriage return mode. When this mode is
enabled, most carriage return characters received from
the remote host will be mapped to a carriage return fol-
lowed by a line feed. This mode does not affect charac-
ters typed by the user; only those received from the
remote host are affected. This mode is not useful unless
the remote host only sends a carriage return, but it
never sends a line feed. The initial value for this toggle
is FALSE.

Toggle socket-level debugging. (This is useful only to
the super-user.) The initial value for this toggle is
FALSE.

Toggle the display of some internal telnet protocol pro-
cessing (concerning TELNET options). The initial value
for this toggle is FALSE.

Toggle the display of all network data (in hexadecimal
format). The initial value for this toggle is FALSE.

Display the legal toggle commands,

01/90

0)

Q)

TELNET(1) TELNET(1)

SEE ALSO

visit(1), rlogin(1), inet(3B), hosts(4) in the CLIX Programmer’s and User’s
Reference Manual.
telnetd(1M) in the CLIX System Administrator’s Reference Manual.

wn CAVEATS

— On some remote systems, echo must be turned off manually in line-by-line
mode.
In line-by-line mode, the terminal’s EOF character is recognized (and sent to
the remote system) only when it is the first character on a line.

g

01/90 5

()

()

R

N

TEST(1)

NAME

TEST(1)

test - condition evaluation command

SYNOPSIS
test expr
Lexpr]
DESCRIPTION

test evaluates the expression expr and, if its value is true, sets a zero (true)
exit status; otherwise, a nonzero (false) exit status is set, test also sets a
nonzero exit status if there are no arguments. When permissions are tested,
the effective process user ID is used.

All operators, flags, and brackets (brackets used as shown in the second
SYNOPSIS line) must be separate arguments to the test command; normally
these items are separated by spaces.

The following primitives are used to construct expr:

-T file
-w file
-X file
£ file
—-d file
— file
-b file
-L file
-p file
-u file
g file
-k file
-8 file
-t [fildes]

-z sl

-n sl

sl =52
sl t1=s2
sl

nl -eq n2

01/90

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.
True if file exists and is a block special file.
True if file exists and is a symbolic link.

True if file exists and is a named pipe (fifo).
True if file exists and its set-user-ID bit is set.
True if file exists and its set-group-ID bit is set.
True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

True if the length of string s/ is zero,

True if the length of the string s/ is nonzero.
True if strings sI and s2 are identical.

True if strings sI and s2 are not identical.
True if s1 is not the null string.

True if the integers nl and n2 are algebraically equal. Any of
the comparisons -ne, -gt, -ge, -1t, and -le may be used instead
of -eq.

TEST(1) TEST(1)

These primaries may be combined with the following operators:

! Unary negation operator.
-a Binary AND operator.
-0 Binary OR operator (-a has higher precedence than -o0).
(expr) Parentheses for grouping. Notice also that parentheses are
meaningful to the shell., Therefore, they must be quoted.
SEE ALSO
find(1).
sh(1) in the UNIX System V User’s Reference Manual.
WARNINGS

If an owned file is tested (the -r, -w, or -X tests), but the permission tested
does not have the owner bit set, a nonzero (false) exit status will be returned
even though the file may have the group or other bit set for that permission.
The correct exit status will be set if executed by the super-user.

The = and != operators have a higher precedence than the -r through -n
operators, and = and != always expect arguments; therefore, = and != can-
not be used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the
first argument is examined; the others are ignored unless -a or -0 is the
second argument,

2 01/90

0)

Q)

TFTP(1) TFTP(1)

NAME

tftp - trivial file transfer program

SYNOPSIS

/usr/ip32/tcpip/tftp [host [port]]

DESCRIPTION

01/90

tftp is the user interface to the Internet Trivial File Transfer Protocol
(TFTP), which allows users to transfer files to and from a remote machine.
The remote host may be specified on the command line. In this case tftp uses
host as the default host for future transfers (see the connect command
below). If host is specified on the command line, an optional port number
can also be specified. In this case, tftp uses that port number for future
transfers.

Once tftp is running, it issues the tftp> prompt and recognizes the follow-
ing commands:

connect host [port]
Set the host (and optionally port) for transfers. The TFTP protocol,
unlike the FTP protocol, does not maintain connections between
transfers; thus, the connect command does not actually create a
connection, but specifies the host to be used for transfers. The con-
nect command does not need to be used; the remote host can be
specified as part of the get or put command.

mode transfer-mode
Set the mode for transfers; transfer-mode may be ascii or binary.
The default is ascii.

put file

put local-file remote-file

put filel file2 ... fileN remote-directory
Copy a file or set of files to the specified remote file or directory. The
destination can be in one of two forms: a file-name on the remote
host if the host has been specified or a string of the form host@ file-
name to specify both a host and file name at once. If the latter form
is used, the host name specified becomes the default for future
transfers. If the remote-directory form is used, the remote host is
assumed to be a UNIX machine.

get file-name

get remote-name local-name

get filel file2 ... fileN
Get a file or set of files from the specified source. The source can be
in one of two forms: a file-name on the remote host if the host has
been specified or a string of the form host@file-name to specify both
a host and file name at once. If the latter form is used, the last host
name specified becomes the default for future transfers.

TFTP(1) TFTP(1)

quit Exit tftp. An end-of-file also exits,
verbose
Toggle verbose mode.
trace Toggle packet tracing.
status Show the current status,

rexmt retransmission-timeout
Set the per-packet retransmission timeout. The timeout is specified
in seconds.

timeout total-transmission-timeout
Set the total transmission timeout. The timeout is specified in
seconds.

ascii Synonym for mode ascii.

binary
Synonym for mode binary.
? [command-name ...]
Print help information.
help [command-name ...]
Print help information.
SEE ALSO
tftpd(1M) in the CLIX System Administrator's Reference Manual.
CAVEATS
Because no user login or validation is in the TFTP protocol, the remote site

will probably have file access restrictions. The exact methods are specific to
each site.

2 01/90

Q)

()

S0

TO_FLOP(1) TO_FLOP(1)

NAME
to_flop, fr_ flop - continuous floppy disk filters

SYNOPSIS
to_flop [-11 [-b blocks] [-n num] [-f name] [-d device]
fr_flop [-1] [-b dlocks] [-n num] [-f name] [-d device]

DESCRIPTION
to_flop copies data from standard input to a floppy disk device, prompting
the user to insert sequential floppy disks as needed. Data is output in 512-

byte blocks until the specified number of blocks is written to the floppy
disk.

fr_flop reads data from a floppy disk device and outputs to standard out,
prompting the user to insert sequential floppy disks as needed.

The following options are recognized:

-1 Indicate that the floppy has low density and contains only 720
blocks (1440 on a 3%-inch disk) (The default is high density
containing 2400 (2880) blocks.)

-b blocks Specify the total number of 512-byte blocks on the floppy.
This option is used when the floppy does not contain the stan-
dard 720 (1440) or 2400 (2880) blocks.

-n num Specify the starting number for subsequent floppy prompting.
This is used only when generating the prompt message.

-f name Specify the floppy set name for subsequent floppy prompting.
This is used only when the prompt message is generated.

-d device Specify that device will be used as the input or output device.
If this option is not specified, /dev/rdsk/fl is used.

The -d and -b options allow the utility to be used with devices other than

floppy disks if the device capacity is known,

EXAMPLES

To make a multiple floppy disk cpio(1) archive of the /usr file system, use
the following command:

find /usr -print | cpio -o 1 to__flop

To retrieve the cpio(1) archive located on the floppy disk set made from the
above to_flop example, use the following command:

fr_flop | cpio -ivmud

FILES
/dev/rdsk/fl default floppy device

WARNINGS

Label the floppy disks created by to_flop with sequence numbers. No indi-
cation of the sequence number is written to the floppy disks.

01/90 1

()

()

S

TOPCPU(1) TOPCPU(1)

NAME

topcpu - CRM utility for monitoring CPU time

SYNOPSIS

/usr/ip32/crm/topcpu [-1 interval] [-i input-file] [-0 output-file] [-w]

DESCRIPTION

topcpu monitors the amount of CPU time being used in each of the following
modes: user, kernel, wait /O, swap /O, phys /O (physical I/0), and sxbrk
(time spent allocating memory for a new job).

The following options are available:

-I interval Specify how frequently the monitor samples and displays
information. The interval is the number of seconds. The
default is 2.

-1 input-file Read the data from input-file each interval, The input-file
must have been created as an output-file using the -0 option.
A - for input-file reads input from stdin.

-0 output-file Direct output to output-file. A - for output-file directs output
to stdout.

-W Execute topcpu in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the
length of the window with the standard modify icon. To receive a descrip-
tion of each category represented in the monitor bar graphs, select the ques-
tion mark (?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in topcpu, select the color
palette icon from the window icon box. A small Color menu will appear.
The foreground color is displayed when the menu first appears. Clicking the
mouse button moves to the next color. Exit and save the changes by select-
ing the delete icon in the Colors window. These colors are saved for this
monitoring session only.

A brief explanation of the topcpu fields follows. A similar list can be
accessed online by keying in ? while the monitor is running.

%Used Displays the amount of overall CPU time being used
by a process.

%User/System used Displays a type of bar graph composed of U (user)
and S (system) to illustrate visually how much CPU
time used by a process is being taken up by the user
(the process itself) or by the system. Each U or 8§
represents about two percent.

SEE ALSO

crm(1).

WARNINGS

01/90

Sending raw data to a file can create a very large file.

0)

()

TOPFAULT(1)

NAME

TOPFAULT(1)

topfault - CRM utility for monitoring page faults

SYNOPSIS

)

DESCRIPTION

/usr/ip32/crm/topfault [-1 interval] [-i input-file] [-0 output-file]

topfault monitors the page faults being encountered by each process running

on the system.

The following options are available:

-I interval

-1 input-file

-0 output-file

Specify how frequently the monitor samples and displays
information. The interval is the number of seconds. The
default is 2.

Read the data from input-file each interval. The input-file
must have been created as an output-file using the -0 option,
A - for input-file reads input from stdin.

Direct output to output-file. A - for output-file directs output
to stdout.

A brief explanation of the topfault fields follows. A similar list can be
accessed online by keying in a ? while the monitor is running.

Sample time

Max displayed

vfault

pfault

e

01/90

Displays how frequently (in seconds) the monitor gathers
and displays information. The default setting is two
seconds. This time interval can be changed by pressing
the up arrow key (to increment) and the down arrow key
(to decrement).

Displays the maximum number of faulting processes.
This value can be changed by pressing the right arrow key
(to increment) and the left arrow key (to decrement).

Displays virtual faults. The vfault value is the sum of
the four following values defined by CLIX. Remember
that, out of the four following types of faults, only swap
and file faults go to the disk; demand and cache faults are
satisfied in memory.

demand demand zero and demand fill pages

swap fault satisfied when swapping to memory
cache fault satisfied in the cache
file fault satisfied from a file

Displays protection faults. The pfault value is the sum of
the following values:

cop_wrt (Copy-on-write) If two processes are sharing
a copy-on-write page in memory, the page
must be copied when one process needs to

TOPFAULT(1)

freedpgs

unmodsw

unmodfl

swapin

swapout
SEE ALSO

crm(1).
WARNINGS

TOPFAULT(1)

write to the page.

steal If a page is marked copy-on-write but only
one process is accessing it, the page does not
need to be copied. Instead, the protections are
changed on the page so that one process can
write to it.

Displays the number of pages that were freed on the sys-
tem during the last sample interval.

Displays the number of unmodified pages in swap (as
determined by getpages) during the sample time period.

Displays the number of unmodified pages in all files (as
determined by getpages) during the sample time period.
Displays the number of pages swapped intoc memory dur-
ing the sample time period.

Displays the number of pages swapped out of memory
during the sample time period.

Sending raw data to a file can create a very large file.

01/90

()

)

TOPIO(1)

NAME

TOPIO(1)

topio - CRM utility for monitoring I/0 activity

SYNOPSIS

/usr/ip32/crm/topio [-I interval] [-i input-file] [-0 output-file]

DESCRIPTION

topio monitors the I/0 activity on the system and displays which processes
are performing the activity.

The following options are available:

-I interval

-1 input-file

Specify how frequently the monitor samples and displays
information. Interval is the number of seconds. The default
is 2.

Read the data from input-file each interval. Input-file must
have been created as an output-file using the -0 option. A -
for input-file reads input from stdin.

-0 output-file Direct output to output-file. A - for output-file directs output

to stdout.

A brief explanation of the topio fields follows. A similar list can be accessed
online by keying in ? while the monitor is running.

b__read
b_wrt

1__read
1_wrt

cache

phread
phwrt

sysrd
syswrt

rdch

wrtch

device

01/90

Displays the number of reads (b_read) and writes (b_wrt) to
the block-oriented device (the disk). The ‘b’ represents block.

Displays the number of data accesses (by a program) to the sys-
tem buffer cache.

Displays the percent of I/O that is satisfied by the buffer cache
(rather than by the block-oriented device, or disk). This value
is derived from the difference between the b_read and 1_read
values.

Displays the number of physical reads and writes to the raw
disk.

Displays the number of system calls to the read and write rou-
tines.

Displays the total number of bytes (characters) that are
transferred by all read and write calls from a program regard-
less of where the data came from (cache, disk, or memory).

Displays the Small Computer System Interface (SCSI) devices
involved in I/O on the system.

TOPIO(1)
ops
busy

bent

avque

currque

ioch
SEE ALSO

crm(1).
WARNINGS

TOPIO(1)

Displays the number of /O operations that occurred on the
corresponding SCSI bus.

Displays the percentage of time that the SCSI device was busy
with I/0 operations (versus how much time spent idle).

Displays a count of disk blocks that were transferred.

Displays the average number of times that /O had to wait
because the SCSI device was busy servicing other I/0 requests.

Displays the current I/O queue depth (how many /O requests
are in the queue to be serviced).

Displays the number of characters transferred by the
corresponding process.

Sending raw data to a file can create a very large file.

01/90

()

0

()

s

P i

TOPMEM(1) TOPMEM(1)

NAME

topmem - CRM utility for monitoring physical and virtual memory

SYNOPSIS

/usr/ip32/crm/topmem [-I intervall [-i input-file] [-0 outpur-file] [-w]

DESCRIPTION

01/90

topmem monitors the amounts of physical and virtual memory being used by
processes on the system.

The following options are available:

-1 interval Specify how frequently the monitor samples and displays
information. Interval is the number of seconds. The default
is 2.

-i input-file Read the data from input-file each interval. Input-file must
have been created as an output-file using the -o option. A -
for input-file reads input from stdin.

-0 output-file Direct output to output-file. A - for output-file directs output
to stdout.

-w Execute topmem in graphics-based format.

In graphics, to expand the list of processes being monitored, stretch the
length of the window with the standard modify icon. To receive a descrip-
tion of each category represented in the monitor bar graphs, select the ques-
tion mark (?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in topmem, select the color
palette icon from the window icon box. A small Color menu will appear.
The foreground color is displayed when the menu first appears. Clicking the
mouse button moves to the next color. Exit and save the changes by select-
ing the delete icon in the Colors window. These colors are saved for this
monitoring session only.

A brief explanation of the topmem fields follows. A similar list can be
accessed online by keying in ? while the monitor is running.

freepages Displays the average number of pages that were
free (available) during the last sample interval.
proc__phys Displays the sum of all Weighted__physical_size

values. The resulting sum indicates the total
physical memory used by all processes.

freeswap Displays the amount of space available on the
swap device,

Physical_size Displays the total amount of physical memory
(valid pages) being used by the indicated pro-
cess.

1

TOPMEM(1)

Virtual _size

Weighted__physical__size

SEE ALSO
crm(1).

WARNINGS

TOPMEM(1)

Displays the size of the virtual address space
being used by the indicated process. This value
indicates the amount of swap space being allo-
cated to processes.

Displays the sum of valid pages used by a pro-
cess, modified by the number of processes that
share it. When several processes can share
memory pages, fewer pages will need to be allo-
cated for the later processes since they will share
some of the pages that have already been allo-
cated by earlier processes, This value indicates
the amount of physical memory actually being
used.

For example, if three vterm processes were run-
ning, the first process executed would be allo-
cated the memory pages needed to run. The
second and third vterm processes would not
require as many memory pages because they
could share some of the pages allocated to the
original process, Therefore, the weighted physi-
cal size of each process will vary depending on
the number of pages already allocated to another
process that the processes can share,

Sending raw data to a file can create a very large file.

01/90

O

()

()

TOPSYS(1) TOPSYS(1)

NAME
topsys - CRM utility for monitoring system activity

SYNOPSIS
/usr/ip32/crm/topsys [-1 interval] [-i input-file] [-o output-file]
DESCRIPTION
topsys monitors the activity of the entire system. It simultaneously displays
the activities that the other four system monitors (topmem(1), topcpu(1),

topio(1), and topfault(1)) show individually to give a complete overview of
system activity.

topsys is a graphics-based monitor in which the percentage of system
resources being used by each process is represented by bars of contrasting
colors. topsys cannot presently display in a curses-based format. Although
the alphanumeric console of servers will not display graphics, topsys can run
on a local server and display on a remote workstation.

The following options are available:

-1 interval Specify how frequently the monitor samples and displays
information., Interval is the number of seconds. The default
is 2.

-i input-file Read the data from input-file each interval. Input-file must
have been created as an output-file using the -o option. A -
for input-file reads input from stdin.

-0 output-file Direct output to output-file. A - for output-file directs output
to stdout.

In graphics, to expand the list of processes being monitored, stretch the
length of the window with the standard modify icon. To receive a descrip-
tion of each category represented in the monitor bar graphs, select the ques-
tion mark (?) icon from the window icon box. A help window will appear.

In graphics, to change the colors of the bar graphs in topsys, select the color
palette icon from the window icon box. A small Color menu will appear.
The foreground color is displayed when the menu first appears. Clicking the
mouse button moves to the next color. Exit and save the changes by select-
ing the delete icon in the Colors window. These colors are saved for this
monitoring session only.
EXAMPLES

To run topsys on a graphics monitor from a remote server, the following
command may be used:

topsys -0 - | rpipe node.user.password topsys -i-

In the above syntax, node.user.password is the node name and login of the
graphics workstation on which to display the monitor.

SEE ALSO
crm(1), topmem(1), topcpu(1), topio(1), topfault(1).

01/90 1

TOPSYS(1)

WARNINGS
Sending raw data to a file can create a very large file.

TOPSYS(1)

01/90

Q)

()

UCPNICE(1) UCPNICE(1)

NAME
ucpnice - run a process at UCP priority

SYNOPSIS
ucpnice priority command [argument ...]
ucpnice priority -p pid
DESCRIPTION
ucpnice executes command at the User Controlled Priority (UCP) specified by
priority. If priority is 128, then the UCP priority is cleared.

If -p is specified, then the currently running process with process ID pid is
changed to the UCP priority priority.

Additional processes that may be fork(2)ed from command or the process pid
inherit the UCP priority of their parent.

This command fails if the priority is not in the range 0-128 or the process ID
specified does not exist.
SEE ALSO
ucpset(2I), ucpelr(21).
DIAGNOSTICS
ucpnice returns the exit status of the subject command.
NOTES
Only the super-user can execute this command.

12/88 1

i ;o - A e S 5

)

i,

s

VISIT(1) VISIT(1)

NAME

visit - Intergraph remote login program

SYNOPSIS

visit [-p protocol] [option ...] [host]

DESCRIPTION

visit is a remote login program that supports the Intergraph Xerox Network
Systems (XNS) XT protocol and the Bridge XNS Virtual Terminal Protocol
(VTP). Both protocols can be active at the same time, providing the same
user interface.

If visit is invoked without command-line options, it will enter interactive
mode with a visit> prompt.

Once a connection is made, an escape sequence will return visit to interactive
mode.

Host specifies the remote system. Host can be entered as a node name or net-
work address. The node name is specified in the Intergraph clearinghouse
(see cth(1)). A network address has the form [xxxxxx.]aa-bb-cc-dd-ee-ff,
where xxxxxx is an optional Local Area Network (LAN) number, and aa-bb-
cc-dd-ee-ff is an Ethernet address.

visit searches the login directory for a .rloginrc file that can be used to
specify default options and a simple chat script.

The following sections describe the options available from the command
line. They can also be entered using the visit connect command. The -p
option defines the protocol to be used for the current session. The valid pro-
tocols are xt and vtp, The default protocol is xt.

The following three sections describe options available to visit on the com-
mand line and as options to the visit connect command.

General Options

01/90

The following options can be used for all protocols:

-e chars Specify an escape sequence to access interactive mode. Chars
specifies a sequence of characters, where " represents <CON-
TROL> and * represents ~. The default sequence is
<CONTROL>-Y <CONTROL>-Y. To prevent escaping to
interactive mode, a null escape sequence may be entered (such
as - ""). This is useful for captive accounts.

-f logfile Specify a log file on the local machine. If the specified file does
not exist, it will be created. If the file exists, it will be
overwritten.

-i time Specify the time (in 1/60-second intervals) that visit will
check for terminal input. The default is 5.

-n Ignore the login script .rloginrc. However, default visit con-
nect options in the login script are not ignored.

VISIT(1)

q

-X

-y

-?

VISIT(1)

Prevent the display of certain visit messages. These messages
include the XON/XOFF message that appears during a visit con-
nect and the termination message. This option is useful for
cosmetic purposes in shell scripts that invoke visit.

Send a <RETURN> to the remote host after a connection is
established. This option can be used if the remote host does
not automatically prompt the user to log in.

Set the terminal baud rate for the visit session.

Stop visit from waiting for input from a device attached to an
auxiliary port.

Cause the local system to interpret XON/XOFF (< CONTROL >-
S/<CONTROL>-Q) flow control. This is the default if the local
terminal is set to ixon (see stty(1)).

Allow XON/XOFF (<CONTROL>-S/<CONTROL>-Q) to be
passed to the remote host instead of being interpreted by the
local system. This option is useful when running programs on
the remote host that need to interpret the XON/XOFF character
sequences. For example, emacs uses <CONTROL>-S as a com-
mand. The -y option is the opposite of the -Xx option. This is
the default if the local terminal is set to -ixon (see stzy(1)).

Display a usage message and exit.

XT Protocol Options

-0

-t device

Prevent the connection to the remote host from being ter-
minated on logout. To disconnect or exit from the remote sys-
tem, enter the escape sequence in interactive mode.

If a remote host is running CLIX, device is a device number of
the remote terminal device. (A device of 5 would correspond
to the terminal device /dev/ttn05.) If the device is preceded
by a +, a getty(1M) will not be started.

If a remote host is an Intergraph VAX/VMS system, an XT dev-
ice name becomes associated with the logical name device.

VTP Protocol Options

-C

-1 port#

-j address

Configure a Communications Server. Only the super-user can
execute this option. No other options should be specified.

Specify the port on a Communications Server for the connec-
tion. See the Intergraph XNS/VIP Administrator’s Guide for a
discussion of port and rotary numbers,

Specify an X.25 address to access a host on a Public Data Net-
work (PDN) through an XNS/X.25 gateway. If the X.25 host is
connected directly to an XNS/X.25 Gateway, the X.25 address
need not be specified.

01/90

Q)

()

RN

VISIT(1)

Interactive Commands

.rloginrc File Commands

01/90

? [command]

1 [tocal command]

VISIT(1)

Display help information for the specified com-
mand. If no command is given, list all available
commands.

Execute a command on the local host. Specifying
? alone will start a shell process.

connect [option ...] host Connect to the specified host. All options

disconnect session
exit

help [command]
quit

resume session#
show__sessions

stop_ log session#

unstop_ log session#
version

described above can be used with the visit con-
nect command. Each visit connect establishes a
session (maximum of eight sessions). Sessions are
numbered starting with O.

Disconnect session,

Terminate all connections and exit.
Synonym for the ? command.
Synonym for the exit command.
Resume session#.

List all current sessions.

Stop logging session#. Logging must have been
turned on by the -f option.

Resume logging session#.

Display the visit release date.

The following commands are available in the .rloginrc startup file. The
first line of a file may contain a c followed by a list of options. The follow-
ing lines may contain chat scripts for different remote hosts. Each chat
script begins with a line starting with a 1.

connect [option ...]

t [Rost]

output string

input timeout string

List default visit connect options. These options
can be overridden on the command line. This must
be the first line of the .rloginrec file if it is included.

Start a new chat script. If host is specified, this chat
script will be used every time a session is started
with host. host may be specified as a node name or
network address. To override this chat script, use
the -n option, If an argument is not specified, this
chat script will be the default chat script.

Output string to the session once it is connected.
String is a sequence of characters, where ~ represents
<CONTROL> and \" represents ".

Wait for host to print string. String is a sequence of
characters, where ~ represents <CONTROL> and \”
represents ~. The timeout is specified in seconds. If

VISIT(1) VISIT(1)

string is not received within timeout seconds, visit
will ignore the rest of the chat script.

EXAMPLES
An example .rloginrc would appear as follows:

connect -y -e " -f logfile.dat
!is200
input § login:
output joe M
input 2 word:
output abc123"M
input 60 §
output who™™

The first line specifies the default visit connect options to be used anytime a
session is started, The rest of the script is an example of a chat script to be
used when a connection is made to “is200.”

When a connection is made to “is200,” visit sets the default options “~y -e '
-f logfile.dat” and then waits a maximum of five seconds for the string
“login:.” When this string is received, the string “joe<RETURN>" is sent to
the remote system. visit then waits a maximum of two seconds for “word:,”
the last portion of “password:.” visit sends the password
“abc123<RETURN>,” waits a maximum of 60 seconds for the “$”’ prompt,
and finally sends “who<RETURN>" to the remote system and returns con-
trol to the user.

SEE ALSO
Intergraph Network Core User's Guide.
XNS/VTP Administrator's Guide.

4 01/90

Q)

)

()

N

()

VMSBACKUP(1)

NAME

VMSBACKUP(1)

vmsbackup - read a VMS backup tape

SYNOPSIS
vmsbackup
[name ...]

DESCRIPTION

[tx] [-cdevw] [-8 setnum] [-n setname] [-f tapefile]

vmsbackup reads a VMS-generated backup tape and writes the files to a CLIX
disk. The default operation of the program is to extract every file from the
tape and write it to disk. The default may be modified by the following

options:

i

é

-f

-8 setnumber

- setname

-t tapefile

-V

01/90

Use complete file names including the version number. A
colon and the octal version number will be appended to all file
names. This option is useful only when multiple versions of
the same file are on a single tape or when a file with the same
name exists in the destination directory. By default, version
numbers are ignored.

Use the directory structure from VMS.

Process all file name extensions. Since this program is mainly
intended to move source code and possibly data from a VMS
system to a CLIX system, the default is to ignore all files
whose file name extensions specify system-dependent data.
The file types that will be ignored unless the -e option is
specified are as follows:

exe VMS executable file

lib VMS object library file

obj RSX object file

odl RSX overlay description file
olb RSX object library file

pmd RSX post-mortem dump file
stb RSX task symbol table file
sys RSX bootable system file
tsk RSX executable task file

Use the next argument in the command line as the tape device
to be used rather than the default /dev/rmt/Om.

Process only the given saveset number.

Process only savesets on the tape whose names match the set-
name argument. Pattern matching in the manner of sh(1) is
attempted using the meta-characters %, 2,1, [,and].

Produce a table of contents (a directory listing) on the stan-
dard output of the files on tape.

Set verbose mode. The verbose option will cause the names of
the files being read from tape to be written to standard

VMSBACKUP(1) VMSBACKUP(1)

output.

-w Query the user for file disposition. vmsbackup prints the mes-
sage “‘extract file-name [ny]” and waits for user confirmation
that the file is to be extracted. If a word beginning with y is
given, the file is copied to the file system. Any other input is
interpreted as no.

-X Extract the named files from the tape. The optional name
argument specifies one or more file names to be searched for on
the tape. Pattern matching in the manner of sh(l) is
attempted using the meta-characters #, 2, %, [, and]. Only
files with matching names are processed.

FILES
/dev/rmt/Om default tape device

CAVEATS
The file name match uses the complete VMS file names.

2 01/90

Q)

)

S,

WATCHER(1)

NAME

WATCHER(1)

watcher - CRM utility for monitoring system calls and faults

SYNOPSIS

/usr/ip32/crm/watcher event-options [-a] [-o0 output-file] input-option

DESCRIPTION

If a summary of the system calls was selected to be displayed, the calls will
be displayed when watcher is exited. Otherwise, a scrolling list of the sys-
tem calls and faults being encountered by the specified process will be

displayed.

The following event-options are available:

-f fault-options

-8 system-call-types

Enable monitoring of system faults. The ALL option
will provide monitoring of all system faults. Other
fault-options that can be defined are demand, swap,
cache, file, cw, and steal.

Enable monitoring of system calls. The ALL option
enables all system calls to be monitored. Other sys-
tem calls are program-specific and are therefore
user-definable.

The following options are available:

-a Translate addresses. If the program was compiled to
include debugger symbols (such as to be used by dbg(1)),
watcher can read these symbols and provide more logical
values for the program counter (PC).

-0 output-file Specify an output-file for raw data to be stored in. A - can
e used to direct output to stdout.

The following input-options are available:

-1 input-file

-p pid

- process-name

-e command [arg ...]

Read the data from input-file. Input-file must have
been created as an output-file using the -o option. A -
for input-file reads input from stdin.

Specify the ID number of the process to monitor
(PID). The user can key in ps -e at the system
prompt to determine the PID of a process already
running.

Specify the name of the process to monitor. The user
can key in ps -e at the system prompt to determine
the name of a process already running.

Allow the user to run, provide arguments for, and
monitor a program.

A brief explanation of the watcher System Faults fields follows:

01/90

WATCHER(1)
System Fault
PC (program counter)

Virtual address

WATCHER(1)

Displays the occurrence of a page fault and the fault
type (such as demand, swap, cache).

Displays the address of the program instruction that
took the fault.

Displays the address that was accessed to cause the
fault.

A brief explanation of the watcher System Calls fields follows:

PC (program counter)

arg0, argl ... argn
completion status

EXAMPLES

Displays the address of the program instruction that
issued the system call.

Displays any arguments of the system call.

Displays the success or failure of a system call or
provides data about the call. For instance, a write(2)
would display a value in this field to indicate the
number of bytes that were written during the call.

A sample of system call and system fault fields are displayed in the Profiler

as follows:

System Faults:

DEMAND

PC: 0x00004400
Virtual address: 0x0040157d

OPEN system call
PC: O0xff804e62

647773 7361702F 6374652F /etc/passwd

completion status: 1

arg0:
argl:
SEE ALSO
crm(1), write(2).
WARNINGS

Sending raw data to a file can create a very large file.

01/90

()

-

()

YPCAT(1)

NAME

YPCAT(1)

ypcat - print values in a YP database

SYNOPSIS

ypcat [-k] [-t] [-d domain-name] mname

ypcat -x
DESCRIPTION

ypcat prints values in a Yellow Pages (YP) map specified by mname, which
may be either a mapname or a map nickname. Since ypcat uses the YP net-
work services, no YP server is specified.

To look at the network-wide password database, passwd.byname, (with
the nickname passwd) key in:

ypcat passwd

The following options are available:

-k

-d domain-name

-X

Display the keys for maps in which the values are null or
the key is not part of the value. (None of the maps
derived from files that have an ASCII version in /etc fall
in this class.)

Inhibit translation of mname to mapname. For example,
ypcat -t passwd fails because no map is named passwd;
whereas, ypcat passwd is translated to Yypcat
passwd.byname.

Specify a domain other than the default. The default
domain is returned by domname(1).

Display the map nickname table. This lists the nicknames
(mnames) with which the command is familiar and indi-
cates the mapname associated with each nickname.

Refer to ypfiles(4) and ypserv(1M) for an overview of the YP,

SEE ALSO

ypfiles(4), ypmatch(1), domname(1).
ypserv(1M) in the CLIX System Administrator's Reference Manual.

12/88

st st 4 i R R e R . e .

YPMATCH(1) YPMATCH(1)

NAME
ypmatch - print the value of one or more keys from a YP map

SYNOPSIS
ypmatch [-d domain] [-k] [-t] key ... mname
ypmatch -x

DESCRIPTION
ypmatch prints the values associated with one or more keys from the Yellow
Pages (YP) map (database) specified by a mname, which may be either a map-
name or a map nickname.

Multiple keys can be specified; the same map is searched for all. The keys
must be exact values in capitalization and length. No pattern matching is
available. If a key is not matched, a diagnostic message is produced.

The following options are available:
-d Specify a domain other than the default.

-k Before printing the value of a key, print the key itself followed by a
colon (*:”). This is useful only if the keys are not duplicated in the
values, or so many keys have been specified that the output could be
confusing.

-t Inhibit translation of nickname to mapname. For example,
ypmatch -t zippy passwd fails because no map is named passwd,
while ypmatch zippy passwd is translated to ypmatch zippy
passwd.byname.

-X Display the map nickname table. This lists the nicknames (mnames)
with which the command is familiar and indicates the mapname
associated with each nickname.

SEE ALSO
ypfiles(4), ypcat(1).

12/88 1

S T s

g

i,

¥,

YPPASSWD(1) YPPASSWD(1)

NAME

yppasswd - change login password in YP

SYNOPSIS

yppasswd [namel

DESCRIPTION

yppasswd changes or installs a password associated with the user name (login
name default) in the Yellow Pages (YP). The YP password may be different
from the one on the local machine.

yppasswd prompts for the old YP password and then for the new one. The
user must supply both. The new password must be typed twice to avoid
mistakes. New passwords must have at least four characters if they use a
sufficiently-rich alphabet (uppercase, lowercase, and nonalphabetic charac-
ters) or at least six characters if monocase (all uppercase or all lowercase).

Only the name owner or super-user may change a password; in either case
the old password must be supplied.

SEE ALSO

BUGS

12/88

ypfiles(4).
yppasswdd(1M) in the CLIX System Administrator’s Reference Manual.
passwd(1l) in the UNIX System V User's Reference Manual.

The update protocol passes all information to the server in one Remote Pro-
cedure Call without looking at it. Thus, if the old password is typed in
incorrectly, notification will not be sent until after the new password has
been entered.

e
oy

System Calls (2)

O

INTRO(2) INTRO(2)

NAME

intro - introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

12/88

This section describes all system calls. Certain major collections are
identified by a letter after the section number:

(2B) Certain 4.3 Berkeley Softtware Distribution (BSD) functionality was
added to CLIX through additional system calls. The system calls can
be accessed with the library libbsd. They are not automatically
loaded as needed by the C compiler, cc(1). However, the link editor,
1d(1), searches this library under the -1bsd option.

(2I) These system calls are CLIX-specific calls. The system calls can be
accessed with the Intergraph Library libix. They are not automati-
cally loaded as needed by the C compiler, cc(1); however, the link
editor, ld(1), searches this library under the -lix option.

Most of these calls have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. This is almost always
-1 or the null pointer; the individual descriptions specify the details. An
error number is also available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an error is indi-
cated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined
in <errno.h>.

1 EPERM Not owner ,
Typically this error indicates an attempt to modify a file forbidden
except to its owner or super-user. It is also returned if an ordinary
user attempts an action allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but does not, or when one of the directories in a path name does
not exist.

3 ESRCH No such process
No process can be found that corresponds to the process specified by
pid in kill(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), that the user
elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter-
rupted system call returned this error condition.

INTRO(2) INTRO(2)

S EIO I/0 error
Some physical I/O error occurred. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist or is
beyond the limits of the device. It may also occur when, for exam-
ple, a tape drive is not online or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec(2) family.

8 ENOEXEC Exec format error
Execution of a file that, although it has the appropriate permissions,
does not start with a valid magic number (see a.out(4)) is requested.

9 EBADF Bad file number
Either a file descriptor refers to no open file or a read(2) (respec-
tively, write(2)) request is made to a file that is open only for writ-
ing (respectively, reading).

10 ECHILD No child processes
A wait(2) was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork(2) failed because the system’s process table is full or the user
is not allowed to create any more processes. Or a system call failed
because of insufficient memory or swap space.

12 ENOMEM Not enough space

During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary con-
dition; the maximum space size is a system parameter. The error
may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough
swap space during a fork(2). This error occurring on a resource
associated with Remote File Sharing (RFS) indicates a memory deple-
tion that may be temporary, depending on system activity at the
time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the pro-
tection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required
A nonblock file was mentioned where a block device was required
(as in mount(2)).

2 12/88

iy

INTRO(2) INTRO(2)

12/88

16 EBUSY Device or resource busy
An attempt was made to mount a device already mounted or to
dismount a device that has an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already enabled.
The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (such as
link(2)).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device (such as to read a write-only device).

20 ENOTDIR Not a directory
A nondirectory was specified where a directory is required (such as
in a path prefix or as an argument to chdir(2)).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (such as dismounting a nonmounted device;
mentioning an undefined signal in signal(2) or kili(2); or reading or
writing a file for which Iseek(2) has generated a negative pointer).
The error is Also set by the math functions described in the (3M)
entries of this manual,

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than NOFILES (default 128) descriptors
open at a time.

25 ENOTTY Not a character device (or) Not a typewriter
An attempt was made to {octi(2) a file that is not a special character
device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program currently
open for writing, Also, an attempt to open for writing or to remove
a pure-procedure program being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size or ULIMIT (see
ulimit(2)).

28 ENOSPC No space left on device
During a write(2) to an ordinary file, no free space is left on the

INTRO(2) INTRO(2)

device. In fentl(2), the setting or removing of record locks on a file
cannot be accomplished because no more record entries remain on the
system,

29 ESPIPE Illegal seek
An Iseek(2) was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt was made to make more than the maximum number of
links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which no process to read the data exists. This
condition normally generates a signal; the error is returned if the sig-
nal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the
function’s domain.

34 ERANGE Result too large
The value of a function in the math package (3M) is not represent-
able within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue (see msgop(2)).

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the
removal of an identifier from the file system’s name space (see
msgctl(2), semctl(2), and shmctl(2)).

37-44 Reserved numbers

45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains
to file and record locking.

46 ENOLCK No lock
In fcntl(2), setting or removing record locks on a file cannot be
accomplished because no more record entries remain on the system.
60 ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

62 ETIME Stream ioctl timeout
The timer set for a STREAMS ioctl(2) call expired. The cause of this
error is device specific and could indicate a hardware or software
failure or a timeout value that is too short for the specific operation.

4 12/88

INTRO(2) INTRO(2)

12/88

The status of the ioctl(2) operation is indeterminate.

63 ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users
try to advertise, unadvertise, mount, or unmount remote resources
when the machine did no do the proper startup to connect to the net-
work.

65 ENOPKG No package
This error occurs when users attempt to use a system call from a
package that is not installed.

66 EREMOTE Resource is remote
This error is RFS specific. It occurs when users try to advertise a
resource that is not on the local machine or try to mount/unmount a
device (or path name) that is on a remote machine.

67 ENOLINK Virtual circuit is gone
This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

68 EADV Advertise error
This error is RFS-specific. It occurs when users try to advertise a
resource that has been advertised, try to stop the RFS while resources
are still advertised, or try to force an unmount on a resource when it
is still advertised.

69 ESRMNT Srmount error
This error is RFS-specific. It occurs when users try to stop RFS while
resources are still mounted by remote machines.

70 ECOMM Communication error
This error is RFS-specific. It occurs when users try to send messages
to remote machines, but no virtual circuit can be found.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is
generally not related to a hardware failure,

74 EMULTIHOP Multihop attempted
This error is RFS-specific. It occurs when users try to access remote
resources that are not directly accessible.

77 EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a
STREAMS device, something that cannot be processed has come to the
head of the queue. What it is depends on the system call:

read(2) - Control information or a passed file descriptor.
getmsg(2) - Passed file descriptor.
ioctl(2) - Control or data information.

INTRO(2) INTRO(2)

83 ELIBACC Cannot access a needed shared library
Tried to exec(2) an a.out(4) that requires a shared library (to be
linked in) and the shared library does not exist or the user does not
have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Tried to exec(2) an a.out(4) that requires a shared library (to be
linked in) and exec(2) could not load the shared library. The shared
library is probably corrupted.

85 ELIBSCN .lib section in a.out(4) corrupted
Tried to exec(2) an a.out(4) that requires a shared library (to be
linked in) and erroneous data was in the .lib section of the a.out(4).
The .1ib section tells exec(2) the shared libraries needed. The a.out(4)
is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Tried to exec(2) an a.out(4) that requires more shared libraries (to be
linked in) than allowed on the current system configuration,

87 ELIBEXEC Cannot exec a shared library directly
Tried to exec(2) a shared library directly. This is not allowed.

90 EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on
an object in nonblocking mode (see fcntl(2)).

91 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect(2B)) was attempted on a nonblocking object (see fcntl(2)).

92 EALREADY Operation already in progress
An operation was attempted on a nonblocking object that had an
operation in progress.

93 ENOTSOCK Socket operation on nonsocket
Self-explanatory.

94 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

95 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message
buffer or some other network limit.

96 EPROTOTYPE Protocol wrong type for socket
A protocol that does not support the semantics of the socket type
requested was specified.

97 EPROTONOSUPPORT Protocol not supported
The protocol was not configured in the system or no implementation
exists for it.

98 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type was not configured in the system or

6 12/88

INTRO(2) INTRO(2)

12/88

no implementation exists for it.

99 EOPNOTSUPP Operation not supported on socket
Self-explanatory.

100 EPFNOSUPPORT Protocol family not supported
The protocol family was not configured in the system or no imple-
mentation exists for it.

101 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.
102 EADDRINUSE Address already in use
Only one use of each address is normally permitted.
103 EADDRNOTAVAIL Can’t assign requested address
This normally results from an attempt to create a socket with an
address not on this machine.

104 ENETDOWN Network is down
A socket operation encountered a dead network.

105 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

106 ENETRESET Network dropped connection on reset
The host connected to crashed and rebooted.

107 ECONNABORTED Software caused connection abort
A connection abort was caused internal to the host machine,

108 ECONNRESET Connection reset be peer
A connection was forcibly closed by a peer. This normally results
from a loss of the connection on the remote socket due to a timeout
or a reboot,

109 ENOBUFS No buffer space available
An operation on a socket was not performed because the system
lacked sufficient buffer space or because a queue was full.

110 EISCONN Socket is already connected
A connect(2B) request was made on an already connected socket or a
sendto(2B) request on a connected socket specified a destination when
it was already connected.

111 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket
is not connected and (when sending on a datagram socket) no address
was supplied.

112 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket was shut
down with a previous shutdown(2B) call.

114 ETIMEDOUT Connection timed out
A socket operation timed out. The timeout period depends on the
communication protocol.

INTRO(2) INTRO(2)

115 ECONNREFUSED Connection refused
No connection could be made because the target machine actively
refused it. This usually results from trying to connect to a service
that is inactive on the foreign host.

116 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

117 EHOSTUNREACH No route to host
A socket operation was attempted to an unreachable host.

118 ENOPROTOOPT Protocol not available
A bad option or level was specified in a getsockopt(2B) or
setsockopt(2B) call.

Definitions
Process ID
Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process (see fork(2)).
The parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group identified by a
positive integer called the process group ID. This ID is the process ID
of the group leader. This grouping permits the signaling of related
processes (see kill(2)).

Tty Group ID
Each active process can be a member of a terminal group identified
by a positive integer called the tty group ID. This grouping is used to
terminate a group of related processes when one of the processes in
the group is terminated (see exit(2) and signal(2)).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer (0
to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and real group ID that are set to
the real user ID and real group ID, respectively, of the user responsi-
ble for the process creation.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID
used to determine file access permissions. The effective user ID and
effective group ID are equal to the process’s real user ID and real
group ID, respectively unless the process or one of its ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set
(see exec(2)).

3 12/88

INTRO(2) INTRO(2)

Super-user
A process is recognized as a super-user process and is granted special
privileges, such as immunity from file permissions, if its effective
user ID is O.

Special Processes
The processes with a process ID of O and a process ID of 1 are spe-
cial processes and are referred to as procQ and procl.

ProcO is the scheduler. Procl is the initialization process (init).
Procl is the ancestor of every other process in the system and is used
to control the process structure.

File Descriptor
A file descriptor is a small integer used to perform I/O on a file. The
value of a file descriptor is from O to (NOFILES - 1). A process may
have no more than NOFILES file descriptors open simultaneously. A
file descriptor is returned by system calls such as open(2) or pipe(2).
The file descriptor is used as an argument by calls such as read(2),
write(2), ioctl(2), and close(2).

File Name
Names consisting of 1 to 14 characters may be used to name an ordi-
nary file, special file, or directory.

These characters may be selected from the set of all character values
excluding \0 (null) and the ASCII code for / (slash).

It is generally unwise to use %, 2, [, or] as part of file names because
of the special meaning attached to these characters by the shell (see
sh(1)). Although permitted, using unprintable characters in file
names should be avoided.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an

optional slash (/), followed by zero or more directory names
separated by slashes, and optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current work-
ing directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as
if it named a nonexistent file,

Directory
Directory entries are called links. By convention, a directory con-
tains at least two links, . and .., referred to as dot and dot-dot,
respectively. Dot is the directory itself and dot-dot is its parent
directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and

12/88 9

INTRO(2)

10

INTRO(2)

a current working directory for resolving path name searches. The
root directory of a process need not be the root directory of the root

file system.
File Access Permissions

Read, write, and execute/search permissions on a file are granted to a

process if one or more of the following is true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of
the file owner and the appropriate access bit of the “owner”
portion (0700) of the file mode is set.

The effective user ID of the process does not match the user
ID of the file owner, the effective group ID of the process
matches the group of the file, and the appropriate access bit
of the file mode’s “group” portion (0070) is set.

The effective user ID of the process does not match the user
ID of the file owner, the effective group ID of the process
does not match the group ID of the file, and the appropriate
access bit of the file mode’s “other” portion (0007) is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier

A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has an associated
message queue and data structure. The data structure is referred to

as msqid_ds and contains the following members:

struct ipc_ perm msg_ perm;
struct msg *msg_ first;
struct msg *msg_ last;
ushort msg_ cbytes;
ushort msg_qnum;
ushort msg_qbytes;
ushort msg_1spid;
ushort msg_lIrpid;
time_t msg_ stime;
time_t msg_rtime;
time_t msg_ctime;

msg_ perm

An ipc_perm structure that specifies the message operation
permission (see below). This structure includes the follow-
ing members:

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;

/% creator user ID »/
/% creator group ID */
/% user ID x/

/% group ID %/

12/88

INTRO(2) INTRO(2)

ushort mode; /% r/w permission */
ushort seq; /% slot usage sequence # */
key_t key; /% key %/
msg smsg first
A pointer to the first message on the queue.
msg *msg_ last
A pointer to the last message on the queue.
msg_chytes
The current number of bytes on the queue.
msg_gnum
The number of messages currently on the queue.
msg_qbytes
The maximum number of bytes allowed on the queue.
msg_lIspid
The process ID of the last process that performed a msgsnd
operation.
msg_Irpid
The process ID of the last process that performed a msgrcv
operation,
msg_stime
The time of the last msgsnd operation.
msg_rtime
The time of the last msgrcv operation
msg_ctime

The time of the last msgctl(2) operation that changed a
member of the above structure.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions, the permis-
sion required for an operation is given as {token}, where token is the
type of permission needed, interpreted as follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a msqid are granted to a process if one
or more of the following is true:

The effective user ID of the process is super-user.

The effective wuser ID of the process matches
msg_ perm.cuid or msg_perm.uid in the data structure
associated with msqid and the appropriate bit of the *“‘user”

12/88 11

INTRO(2)

INTRO(2)

portion (0600) of msg_perm.mode is set.

The effective group ID of the process matches
msg_perm.cgid or msg_perm.gid and the appropriate bit
of the “group” portion (060) of msg_perm.mode is set.

The appropriate bit of the ‘“other” portion (006) of
msg__perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

12

A semaphore identifier (semid) is a unique positive integer created by
a semget(2) system call. Each semid has a set of semaphores and a
data structure associated with it. The data structure is referred to as
semid_ds and contains the following members:

struct ipc__perm sem__perm;/* operation permission struct */

struct sem *sem__ base; /% ptr to first semaphore in set */
ushort sem__nsems; /% number of sems in set »/
time_t sem_ otime; /% last operation time */

time_t sem_ctime; /% last change time */

/% Times measured in secs since */

/% 00:00:00 GMT, Jan. 1, 1970 */

sem__perm

An ipc_perm structure that specifies the semaphore opera-
tion permission. This structure includes the following
members:

ushort uid; /% user ID x/

ushort gid; /% group ID */

ushort cuid; /% creator user ID %/

ushort cgid; /% creator group ID */

ushort mode; /% r/a permission */

ushort seq; /% slot usage sequence number */
key_t Kkey; /% key »/

sem__nsems
Equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive
integer referred to as a sem_num. Sem_num values
run sequentially from O to the value of sem__nsems
minus 1,

sem_ otime
The time of the last semop(2) operation.

sem_ ctime
The time of the last semctl(2) operation that changed
a member of the above structure.

A semaphore is a data structure called sem that contains the
following members:

12/88

R R S

sy

INTRO(2)

12/88

INTRO(2)
ushort semval; /x semaphore value */
short sempid; /% pid of last operation */
ushort semncnt; /% # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = O %/
semval
A non-negative integer that is the actual value of the
semaphore.
sempid

Equal to the process ID of the last process that per-
formed a semaphore operation on this semaphore.

semncnt
A count of the number of processes currently
suspended and awaiting this semaphore’s semval to
‘become greater than its current value.

semzcnt
A count of the number of processes currently
suspended and awaiting this semaphore’s semval to
become zero.

Semaphore Operation Permissions

In the semop(2) and semctl(2) system call descriptions, the
permission required for an operation is given as {token},
where token is the type of permission needed, interpreted as
follows:

00400 read by user
00200 alter by user
00040 read by group
00020 alter by group
00004 read by others
00002 alter by others

Read and alter permissions on a semid are granted to a pro-
cess if one or more of the following is true:

The effective user ID of the process is super-user.

The effective wuser ID of the process matches
sem_ perm.cuid or sem_perm.uid in the data
structure associated with semid and the appropriate
bit of the “user” portion (0600) of sem__perm.mode
is set.

The effective group ID of the process matches
sem_perm.cgid or sem_perm.gid and the
appropriate bit of the ‘“group” portion (060) of
sem__ perm.mode is set.

The appropriate bit of the “other” portion (006) of
sem_ perm.mode is set.

13

INTRO(2) INTRO(2)

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive
integer created by a shmget(2) system call. Each shmid has a
segment of memory (referred to as a shared memory seg-
ment) and an associated data structure. (These shared
memory segments must be explicitly removed by the user
after the last reference to them is removed.) The data struc-
ture is referred to as shmid_ds and contains the following

E

members:

struct ipc_ perm shm_ perm;/* operation permission struct */
int shm_ segsz; /% size of segment */

struct region *shm__reg; /#ptr to region structure */

char pad[4]; /% for swap compatibility */
ushort shm_ 1pid; /% pid of last operation »/
ushort shm_ cpid; /% creator pid »/

ushort shm_ nattch; /* number of current attaches */
ushort shm_ cnattch; /% used only for shminfo */
time_t shm_ atime; /% last attach time »/

time_t shm_dtime; /* last detach time »/

time__t shm_ ctime; /% last change time */

/* Times measured in secs since */
/% 00:00:00 GMT, Jan. 1, 1970 »/

s,

shm__perm
An ipc_perm structure that specifies the shared
memory operation permission. This structure
includes the following members:

ushort cuid; /% creator user ID */
ushort cgid; /% creator group ID »/
ushort uid; /% user ID »/
ushort gid; /% group ID */
ushort mode; /% t/w permission */
ushort seq; /% slot usage sequence # */
key_t key; /% key »/

shm__segsz

The size of the shared memory segment in bytes.
shm_ cpid

The process ID of the process that created the shared
memory identifier,

shm_ lpid
The process ID of the last process that performed a
shmop(2) operation.

shm_ nattch
The number of processes that currently have this

14 12/88

e S A B

INTRO(2)

12/88

INTRO(2)

segment attached.

shm_ atime
The time of the last shmat(2) operation.
shm_dtime
The time of the last shmdt(2) operation.
shm__ctime
The time of the last shmctl(2) operation that changed
a member of the above structure.

Shared Memory Operation Permissions

In the shmop(2) and shmctl(2) system call descriptions, the
permission required for an operation is given as {token},
where token is the type of permission needed, interpreted as
follows:

00400 read by user
00200 write by user
00040 read by group
00020 write by group
00004 read by others
00002 write by others

Read and write permissions on a shmid are granted to a pro-
cess if one or more of the following is true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
shm_ perm.cuid or shm_perm.uid in the data struc-
ture associated with shmid and the appropriate bit of
the “‘user” portion (0600) of shm_ perm.mode is set.

The effective group ID of the process matches
shm_perm.cgid or shm_perm.gid and the appropriate
bit of the “group” portion (060) of shm_perm.mode
is set.

The appropriate bit of the ‘“‘other” portion (06) of
shm__perm.mode is set.

Otherwise, the corresponding permissions are denied.

STREAMS

A set of kernel mechanisms that support the development of
network services and data communication drivers. It defines
interface standards for character input/output within the
kernel and between the kernel and user-level processes. The
STREAMS mechanism is composed of utility routines, kernel
facilities, and a set of data structures.

Stream

A fuli-duplex data path within the kernel between a user

15

INTRO(2)

16

INTRO(2)

process and driver routines. The primary components are a
stream head, a driver, and zero or more modules between
the stream head and driver. A stream is analogous to a
shell pipeline except that data flow and processing are
bidirectional,

Stream Head
The end of the stream that provides the interface between
the stream and a user process. The principle functions of
the stream head are processing STREAMS-related system calls
and passing data and information between a user process and
the stream.

Driver
The interface between peripheral hardware and the stream.
A driver can also be a pseudo-driver, such as a multiplexor
or log driver (see log(7)), that is not associated with a
hardware device.

Module

An entity containing processing routines for input and out-
put data. It always exists in the middle of a stream between
the stream’s head and a driver. A module is the STREAMS’
counterpart to the commands in a shell pipeline except that a
module contains a pair of functions that allow independent
bidirectional (downstream and upstream) data flow and
processing.

Downstream
In a stream, the direction from stream head to driver.

Upstream
In a stream, the direction from driver to stream head.
Message
In a stream, one or more blocks of data or information with
associated STREAMS control structures. Messages can be of
several defined types, that identify the message contents,
Messages are the only means of transferring data and com-
municating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing
by a module or driver.

Read Queue
In a stream, the message queue in a module or driver
containing messages moving